Compare commits

...

43 Commits

Author SHA1 Message Date
jomjol
48067b10cd v7.1.2 2021-06-17 20:10:30 +02:00
jomjol
21a59fbd35 Update README.md 2021-05-30 21:52:52 +02:00
jomjol
cdcf940d12 v7.1.1 2021-05-30 21:49:50 +02:00
jomjol
6cefc44fb6 Update README.md 2021-05-28 20:56:24 +02:00
jomjol
e5ff8f2164 Update Firmware 2021-05-28 19:56:10 +02:00
jomjol
a000252c8a Merge pull request #236 from jomjol/rolling
Update to v7.1.0
2021-05-28 19:53:08 +02:00
jomjol
9a42c580cf v7.1.0 2021-05-28 19:52:26 +02:00
jomjol
6e0a7a742e Rolling 210527 2021-05-27 19:22:27 +02:00
jomjol
026bac121f Rolling 20210522-v2 2021-05-22 11:37:46 +02:00
jomjol
8a26b817f7 Rolling 20210522 2021-05-22 07:39:10 +02:00
jomjol
528a4435a9 Rolling 20210520 2021-05-20 21:58:37 +02:00
jomjol
9b791bb7a7 rolling 20210520 2021-05-20 07:00:09 +02:00
jomjol
58eb0b1292 rolling 20210517 2021-05-17 19:35:38 +02:00
jomjol
39eda4a4be Merge pull request #224 from jomjol/master
sync rolling
2021-05-13 08:23:03 +02:00
jomjol
87a6445ff6 Update version in firmware 2021-05-13 08:22:20 +02:00
jomjol
b7e6d33d48 Merge pull request #223 from jomjol/rolling
Update v7.0.1
2021-05-13 08:17:03 +02:00
jomjol
52e9cd20ee Update v7.0.1 2021-05-13 08:16:01 +02:00
jomjol
b34bd5d988 Merge pull request #217 from jomjol/master
Synch rolling
2021-05-08 18:23:54 +02:00
jomjol
58d5e7bc58 v7.0.0 2021-05-08 18:23:10 +02:00
jomjol
1e09bfbb80 Merge pull request #216 from jomjol/rolling
Update to v7.0.0
2021-05-08 18:20:11 +02:00
jomjol
91fa1c066c Vorbereitung v7.0.0 2021-05-08 18:16:58 +02:00
jomjol
10d49b55d1 Rolling 20210507 2021-05-07 21:33:16 +02:00
jomjol
67d0bf6a27 Update config.ini 2021-05-06 21:54:38 +02:00
jomjol
d36cbde7aa Rolling 20210506v2 2021-05-06 21:50:14 +02:00
jomjol
016f4088d4 Rolling 20210506 2021-05-06 20:28:27 +02:00
jomjol
c2d1bbb4be Merge pull request #205 from jomjol/rolling
v6.7.2
2021-05-01 19:53:26 +02:00
jomjol
bc6a01444a v6.7.2 2021-05-01 19:52:10 +02:00
jomjol
24f0902194 Merge pull request #204 from jomjol/master
Sync Rolling
2021-05-01 17:47:08 +02:00
jomjol
19fd6a10dd v6.7.1 2021-05-01 17:44:56 +02:00
jomjol
a45a5296e4 Merge branch 'rolling' into master 2021-05-01 17:40:31 +02:00
jomjol
1459bb15c1 Prepare v6.7.1 2021-05-01 17:32:22 +02:00
jomjol
ce5f3c463b Rolling 2021-05-01 08:15:11 +02:00
jomjol
04ebbf35e7 Update README.md 2021-04-23 07:22:07 +02:00
jomjol
ba1d6e30e2 Update README.md 2021-04-23 07:15:16 +02:00
jomjol
e9ac8933f9 Update Version 2021-04-23 07:14:11 +02:00
jomjol
ec96b7f878 Merge pull request #194 from jomjol/rolling
Update to v6.7.0
2021-04-23 07:10:11 +02:00
jomjol
ba7d429178 v6.7.0 2021-04-23 07:08:18 +02:00
jomjol
79be2089be Prepare to v6.7.0 2021-04-23 07:04:05 +02:00
jomjol
ea2305de47 Rolling 20210420 2021-04-20 19:44:16 +02:00
jomjol
635b2c35a8 Update README.md 2021-04-08 10:42:42 +02:00
jomjol
afdc4bb3f1 Merge pull request #179 from queeek/patch-1
Update README.md
2021-04-08 10:38:53 +02:00
Ina
3d49ec72ba Update README.md
3D Housing link is linked to the housing only project
2021-04-08 10:07:21 +02:00
jomjol
520f818adc Merge pull request #176 from jomjol/master
Sync Rolling
2021-04-05 10:18:36 +02:00
183 changed files with 12026 additions and 8662 deletions

View File

@@ -1,5 +1,83 @@
# Versions
##### 6.7.2 Image Processing in Memory - (2021-05-01)
* NEW 6.7.2: Updated html for setup modus - remove reboot on edit configuration)
* NEW 6.7.1: Improved stability of camera (back to v6.6.1) - remove black strips and areas
* Upgrade digital CNN to v8.3.0 (added new type of digits)
* Internal update: TFlite (v2.5), esp32cam, startup sequence
* Rollback to espressif v2.1.0, as v3.2.0 shows unstable reboot
* Bugfix: WLan-passwords, reset of hostname
##### 6.6.1 Image Processing in Memory - (2021-04-05)
* NEW 6.6.1: failed SD card initialization indicated by fast blinking LED at startup
* Improved SD-card handling (increase compatibility with more type of cards)
##### 6.5.0 Image Processing in Memory - (2021-03-25)
* Upgrade digital CNN to v8.2.0 (added new type of digits)
* Supporting alignment structures in ROI definition
* Bug fixing: definition of hostname in `config.ini`
##### 6.4.0 Image Processing in Memory - (2021-03-20)
* Additional alignment marks for settings the ROIs (analog and digit)
* Upgrade analog CNN to v7.0.0 (added new type of pointer)
##### 6.3.1 Image Processing in Memory - (2021-03-16)
* NEW: 6.3.1: bug fixing in initial edit reference image and `config.ini` (Spelling error in `InitialRotate`)
* Initial setup mode: bug fixing, error correction
* Bug-fixing
##### 6.2.2 Image Processing in Memory - (2021-03-10)
* NEW 6.2.2: bug fixing
* NEW 6.2.1: Changed brightness and contrast to default if not enabled (resolves to bright images)
* Determination of fixed illumination settings during startup - speed up of 5s in each run
* Update digital CNN to v8.1.1 (additional digital images trained)
* Extended error message in MQTT error message
* Image brightness is now adjustable
* Bug fixing: minor topics
##### 6.1.0 Image Processing in Memory - (2021-01-20)
* Disabling of analog / digital counters in configuration
* Improved Alignment Algorithm (`AlignmentAlgo` = `Default`, `Accurate` , `Fast`)
* Analog counters: `ExtendedResolution` (last digit is extended by sub comma value of CNN)
* `config.ini`: additional parameter `hostname` (additional to wlan.ini)
* Switching of GPIO12/13 via http-interface: `/GPIO?GPIO=12&Status=high/low`
* Bug fixing: html configuration page, wlan password ("=" now possible)
##### 6.0.0 Image Processing in Memory - (2021-01-02)
* **Major change**: image processing fully in memory - no need of SD card buffer anymore
* Need to limit camera resolution to VGA (due to memory limits)
* MQTT: Last Will Testament (LWT) implemented: "connection lost" in case of connection lost to `TopicError`
* Disabled `CheckDigitIncreaseConsistency` in default configuration - must now be explicit enabled if needed
* Update digital CNN to v7.2.1 (additional digital images trained)
* Setting of arbitrary time server in `config.ini`
* Option for fixed IP-, DNS-Settings in `wlan.ini`
* Increased stability (internal image and camera handling)
* Bug fixing: edit digits, handling PreValue, html-bugs
##### 5.0.0 Setup Modus - (2020-12-06)
* Implementation of initial setup modus for fresh installation
@@ -127,4 +205,4 @@
##### 0.1.0 (2020-08-07)
* Initial Version
* Initial Version

View File

@@ -11,6 +11,28 @@
____
#### #6 Check for double ROI names
Check during configuration, that ROI names are unique.
To do:
* Implementation of ROI name checking in html code before saving analog or digital ROIs
#### #5 Configurable decimal separator (point or comma)
Decimal separator configurable for different systems
To do:
* Implementation of decimal point into postprocessing module
* Extension of configuration
* Adaption of the html configuration to implement shifting
#### #4 Initial Shifting and Rotation
* https://github.com/jomjol/AI-on-the-edge-device/issues/123

View File

@@ -4,7 +4,9 @@ This is an example of Artificial Intelligence (AI) calculations on a very cheap
### Details on **function**, **installation** and **configuration** can be found on the **[Wiki Page](https://github.com/jomjol/AI-on-the-edge-device/wiki)**
A 3d-printable housing can be found here: https://www.thingiverse.com/thing:4571627
A 3d-printable housing can be found here: https://www.thingiverse.com/thing:4573481
respectively ESP32-Cam housing only: https://www.thingiverse.com/thing:4571627
<img src="https://raw.githubusercontent.com/jomjol/AI-on-the-edge-device/master/images/watermeter_all.jpg" width="200"><img src="https://raw.githubusercontent.com/jomjol/AI-on-the-edge-device/master/images/main.jpg" width="200"><img src="https://raw.githubusercontent.com/jomjol/AI-on-the-edge-device/master/images/size.png" width="200">
@@ -24,7 +26,9 @@ If you would like to support the developer with a cup of coffee you can do that
<input type="image" src="https://www.paypalobjects.com/en_US/DK/i/btn/btn_donateCC_LG.gif" border="0" name="submit" title="PayPal - The safer, easier way to pay online!" alt="Donate with PayPal button" />
<img alt="" border="0" src="https://www.paypal.com/en_DE/i/scr/pixel.gif" width="1" height="1" />
</form>
If you have any technical topics, you can file a issue in this repository.
In other cases you can contact the developer via email: <img src="https://raw.githubusercontent.com/jomjol/AI-on-the-edge-device/master/images/mail.jpg" height="25">
## Change log
@@ -41,66 +45,30 @@ If you would like to support the developer with a cup of coffee you can do that
##### 6.6.1 Image Processing in Memory - (2021-04-05)
* NEW 6.6.1: failed SD card initialization indicated by fast blinking LED at startup
* Improved SD-card handling (increase compatibility with more type of cards)
##### 7.1.2 MQTT-Update - (2021-06-17)
##### 6.5.0 Image Processing in Memory - (2021-03-25)
* Upgrade digital CNN to v8.2.0 (added new type of digits)
* Supporting alignment structures in ROI definition
* Bug fixing: definition of hostname in `config.ini`
##### 6.4.0 Image Processing in Memory - (2021-03-20)
* Additional alignment marks for settings the ROIs (analog and digit)
* Upgrade analog CNN to v7.0.0 (added new type of pointer)
##### 6.3.1 Image Processing in Memory - (2021-03-16)
* NEW: 6.3.1: bug fixing in initial edit reference image and `config.ini` (Spelling error in `InitialRotate`)
* Initial setup mode: bug fixing, error correction
* Bug-fixing
##### 6.2.2 Image Processing in Memory - (2021-03-10)
* NEW 6.2.2: bug fixing
* NEW 6.2.1: Changed brightness and contrast to default if not enabled (resolves to bright images)
* Determination of fixed illumination settings during startup - speed up of 5s in each run
* Update digital CNN to v8.1.1 (additional digital images trained)
* Extended error message in MQTT error message
* NEW: 7.1.2: bug fix setting hostname, Flash-LED not off during reboot
* NEW: 7.1.1: bug fix wlan password with "=" (again)
* MQTT error message: changes "no error", send retain flag
* Update wlan handling to esp-idf 4.1
* Upgrade digital CNN to v8.7.0 (added new images)
* Bug fix: MQTT, WLAN, LED-Controll, GPIO usage, fixed IP, calculation flow rate
* Image brightness is now adjustable
##### 7.0.1 MQTT-Update - (2021-05-13)
* NEW: 7.0.1: bug fix wlan password with "="
* Bug fixing: minor topics
* Upgrade digital CNN to v8.5.0 (added new images)
* New MQTT topics: flow rate (units/minute), time stamp (last correct read readout)
##### 6.1.0 Image Processing in Memory - (2021-01-20)
* Update MQTT/Error topic to " " in case no error (instead of empty string)
* Disabling of analog / digital counters in configuration
* Improved Alignment Algorithm (`AlignmentAlgo` = `Default`, `Accurate` , `Fast`)
* Analog counters: `ExtendedResolution` (last digit is extended by sub comma value of CNN)
* `config.ini`: additional parameter `hostname` (additional to wlan.ini)
* Switching of GPIO12/13 via http-interface: `/GPIO?GPIO=12&Status=high/low`
* Bug fixing: html configuration page, wlan password ("=" now possible)
* Portrait or landscape image orientation in rotated image (avoid cropping)
##### 6.0.0 Image Processing in Memory - (2021-01-02)
* **Major change**: image processing fully in memory - no need of SD card buffer anymore
* Need to limit camera resolution to VGA (due to memory limits)
* MQTT: Last Will Testament (LWT) implemented: "connection lost" in case of connection lost to `TopicError`
* Disabled `CheckDigitIncreaseConsistency` in default configuration - must now be explicit enabled if needed
* Update digital CNN to v7.2.1 (additional digital images trained)
* Setting of arbitrary time server in `config.ini`
* Option for fixed IP-, DNS-Settings in `wlan.ini`
* Increased stability (internal image and camera handling)
* Bug fixing: edit digits, handling PreValue, html-bugs
## Additional ideas
@@ -113,6 +81,8 @@ There are some ideas and feature request, which are not followed currently - mai
## History
##### 6.7.2 Image Processing in Memory - (2021-05-01)
##### 5.0.0 Setup Modus - (2020-12-06)
##### 4.1.1 Configuration editor - (2020-12-02)

Binary file not shown.

View File

@@ -1,539 +0,0 @@
#include "connect_wlan.h"
#include <string.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/event_groups.h"
#include "esp_wifi.h"
#include "esp_log.h"
#include <fstream>
#include <vector>
#include <sstream>
#include "Helper.h"
static const char *TAG = "connect_wlan";
std::string ssid = "";
std::string passphrase = "";
std::string hostname = "";
std::string ipaddress = "";
std::string gw = "";
std::string netmask = "";
std::string dns = "";
std::string std_hostname = "watermeter";
#define BLINK_GPIO GPIO_NUM_33
static EventGroupHandle_t s_wifi_event_group;
#define WIFI_CONNECTED_BIT BIT0
#define WIFI_FAIL_BIT BIT1
static int s_retry_num = 0;
std::vector<string> ZerlegeZeile(std::string input, std::string _delimiter = "")
{
std::vector<string> Output;
std::string delimiter = " =,";
if (_delimiter.length() > 0){
delimiter = _delimiter;
}
input = trim(input, delimiter);
size_t pos = findDelimiterPos(input, delimiter);
std::string token;
while (pos != std::string::npos) {
token = input.substr(0, pos);
token = trim(token, delimiter);
Output.push_back(token);
input.erase(0, pos + 1);
input = trim(input, delimiter);
pos = findDelimiterPos(input, delimiter);
}
Output.push_back(input);
return Output;
}
void blinkstatus(int dauer, int _anzahl)
{
gpio_reset_pin(BLINK_GPIO);
gpio_set_direction(BLINK_GPIO, GPIO_MODE_OUTPUT);
for (int i = 0; i < _anzahl; ++i)
{
gpio_set_level(BLINK_GPIO, 0);
vTaskDelay(dauer / portTICK_PERIOD_MS);
gpio_set_level(BLINK_GPIO, 1);
vTaskDelay(dauer / portTICK_PERIOD_MS);
}
}
void strinttoip4(std::string ip, int &a, int &b, int &c, int &d) {
std::stringstream s(ip);
char ch; //to temporarily store the '.'
s >> a >> ch >> b >> ch >> c >> ch >> d;
}
static void event_handler_neu(void* arg, esp_event_base_t event_base,
int32_t event_id, void* event_data)
{
if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_START) {
blinkstatus(200, 1);
esp_wifi_connect();
} else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_DISCONNECTED) {
blinkstatus(200, 5);
esp_wifi_connect();
s_retry_num++;
ESP_LOGI(TAG, "retry to connect to the AP");
} else if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) {
blinkstatus(1000, 3);
ip_event_got_ip_t* event = (ip_event_got_ip_t*) event_data;
ESP_LOGI(TAG, "got ip:" IPSTR, IP2STR(&event->ip_info.ip));
s_retry_num = 0;
xEventGroupSetBits(s_wifi_event_group, WIFI_CONNECTED_BIT);
}
}
void initialise_wifi()
{
s_wifi_event_group = xEventGroupCreate();
ESP_ERROR_CHECK(esp_netif_init());
ESP_ERROR_CHECK(esp_event_loop_create_default());
esp_netif_create_default_wifi_sta();
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
ESP_ERROR_CHECK(esp_wifi_init(&cfg));
esp_event_handler_instance_t instance_any_id;
esp_event_handler_instance_t instance_got_ip;
ESP_ERROR_CHECK(esp_event_handler_instance_register(WIFI_EVENT,
ESP_EVENT_ANY_ID,
&event_handler_neu,
NULL,
&instance_any_id));
ESP_ERROR_CHECK(esp_event_handler_instance_register(IP_EVENT,
IP_EVENT_STA_GOT_IP,
&event_handler_neu,
NULL,
&instance_got_ip));
wifi_config_t wifi_config = { };
strcpy((char*)wifi_config.sta.ssid, (const char*)ssid.c_str());
strcpy((char*)wifi_config.sta.password, (const char*)passphrase.c_str());
ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA) );
ESP_ERROR_CHECK(esp_wifi_set_config(ESP_IF_WIFI_STA, &wifi_config) );
ESP_ERROR_CHECK(esp_wifi_start() );
ESP_LOGI(TAG, "wifi_init_sta finished.");
// Waiting until either the connection is established (WIFI_CONNECTED_BIT) or connection failed for the maximum
// number of re-tries (WIFI_FAIL_BIT). The bits are set by event_handler() (see above)
EventBits_t bits = xEventGroupWaitBits(s_wifi_event_group,
WIFI_CONNECTED_BIT | WIFI_FAIL_BIT,
pdFALSE,
pdFALSE,
portMAX_DELAY);
// xEventGroupWaitBits() returns the bits before the call returned, hence we can test which event actually
// happened.
if (bits & WIFI_CONNECTED_BIT) {
ESP_LOGI(TAG, "connected to ap SSID:%s password:%s",
ssid.c_str(), passphrase.c_str());
} else if (bits & WIFI_FAIL_BIT) {
ESP_LOGI(TAG, "Failed to connect to SSID:%s, password:%s",
ssid.c_str(), passphrase.c_str());
} else {
ESP_LOGE(TAG, "UNEXPECTED EVENT");
}
// The event will not be processed after unregister
ESP_ERROR_CHECK(esp_event_handler_instance_unregister(IP_EVENT, IP_EVENT_STA_GOT_IP, instance_got_ip));
ESP_ERROR_CHECK(esp_event_handler_instance_unregister(WIFI_EVENT, ESP_EVENT_ANY_ID, instance_any_id));
vEventGroupDelete(s_wifi_event_group);
tcpip_adapter_ip_info_t ip_info;
ESP_ERROR_CHECK(tcpip_adapter_get_ip_info(TCPIP_ADAPTER_IF_STA, &ip_info));
ipaddress = std::string(ip4addr_ntoa(&ip_info.ip));
netmask = std::string(ip4addr_ntoa(&ip_info.netmask));
gw = std::string(ip4addr_ntoa(&ip_info.gw));
printf("IPv4 : %s\n", ip4addr_ntoa(&ip_info.ip));
printf("HostName : %s\n", hostname.c_str());
}
void initialise_wifi_fixed_ip2()
{
s_wifi_event_group = xEventGroupCreate();
ESP_ERROR_CHECK(esp_netif_init());
ESP_ERROR_CHECK(esp_event_loop_create_default());
esp_netif_t *my_sta = esp_netif_create_default_wifi_sta();
esp_netif_dhcpc_stop(my_sta);
esp_netif_ip_info_t ip_info;
int a, b, c, d;
strinttoip4(ipaddress, a, b, c, d);
IP4_ADDR(&ip_info.ip, a, b, c, d);
strinttoip4(gw, a, b, c, d);
IP4_ADDR(&ip_info.gw, a, b, c, d);
strinttoip4(netmask, a, b, c, d);
IP4_ADDR(&ip_info.netmask, a, b, c, d);
esp_netif_set_ip_info(my_sta, &ip_info);
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
ESP_ERROR_CHECK(esp_wifi_init(&cfg));
if (dns.length() > 0) {
esp_netif_dns_info_t dns_info;
ip4_addr_t ip;
ip.addr = esp_ip4addr_aton(dns.c_str());
ip_addr_set_ip4_u32(&dns_info.ip, ip.addr);
ESP_ERROR_CHECK(esp_netif_set_dns_info(my_sta, ESP_NETIF_DNS_MAIN, &dns_info));
}
esp_event_handler_instance_t instance_any_id;
esp_event_handler_instance_t instance_got_ip;
ESP_ERROR_CHECK(esp_event_handler_instance_register(WIFI_EVENT,
ESP_EVENT_ANY_ID,
&event_handler_neu,
NULL,
&instance_any_id));
ESP_ERROR_CHECK(esp_event_handler_instance_register(IP_EVENT,
IP_EVENT_STA_GOT_IP,
&event_handler_neu,
NULL,
&instance_got_ip));
wifi_config_t wifi_config = { };
strcpy((char*)wifi_config.sta.ssid, (const char*)ssid.c_str());
strcpy((char*)wifi_config.sta.password, (const char*)passphrase.c_str());
ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA) );
ESP_ERROR_CHECK(esp_wifi_set_config(ESP_IF_WIFI_STA, &wifi_config) );
ESP_ERROR_CHECK(esp_wifi_start() );
ESP_LOGI(TAG, "wifi_init_sta finished.");
// Waiting until either the connection is established (WIFI_CONNECTED_BIT) or connection failed for the maximum
// number of re-tries (WIFI_FAIL_BIT). The bits are set by event_handler() (see above)
EventBits_t bits = xEventGroupWaitBits(s_wifi_event_group,
WIFI_CONNECTED_BIT | WIFI_FAIL_BIT,
pdFALSE,
pdFALSE,
portMAX_DELAY);
// xEventGroupWaitBits() returns the bits before the call returned, hence we can test which event actually
// happened.
if (bits & WIFI_CONNECTED_BIT) {
ESP_LOGI(TAG, "connected to ap SSID:%s password:%s",
ssid.c_str(), passphrase.c_str());
} else if (bits & WIFI_FAIL_BIT) {
ESP_LOGI(TAG, "Failed to connect to SSID:%s, password:%s",
ssid.c_str(), passphrase.c_str());
} else {
ESP_LOGE(TAG, "UNEXPECTED EVENT");
}
// The event will not be processed after unregister
ESP_ERROR_CHECK(esp_event_handler_instance_unregister(IP_EVENT, IP_EVENT_STA_GOT_IP, instance_got_ip));
ESP_ERROR_CHECK(esp_event_handler_instance_unregister(WIFI_EVENT, ESP_EVENT_ANY_ID, instance_any_id));
vEventGroupDelete(s_wifi_event_group);
tcpip_adapter_ip_info_t ip_info2;
ESP_ERROR_CHECK(tcpip_adapter_get_ip_info(TCPIP_ADAPTER_IF_STA, &ip_info2));
ipaddress = std::string(ip4addr_ntoa(&ip_info2.ip));
netmask = std::string(ip4addr_ntoa(&ip_info2.netmask));
gw = std::string(ip4addr_ntoa(&ip_info2.gw));
}
void ConnectToWLAN()
{
if (ipaddress.length() == 0 || gw.length() == 0 || netmask.length() == 0)
{
printf("Connect to WLAN with dyn. IP\n");
initialise_wifi();
}
else
{
printf("Connect to WLAN with fixed IP\n");
initialise_wifi_fixed_ip2();
}
}
bool ChangeHostName(std::string fn, std::string _newhostname)
{
if (_newhostname == hostname)
return false;
string line = "";
std::vector<string> zerlegt;
bool found = false;
std::vector<string> neuesfile;
FILE* pFile;
fn = FormatFileName(fn);
pFile = OpenFileAndWait(fn.c_str(), "r");
printf("file loaded\n");
if (pFile == NULL)
return false;
char zw[1024];
fgets(zw, 1024, pFile);
line = std::string(zw);
while ((line.size() > 0) || !(feof(pFile)))
{
printf("%s", line.c_str());
zerlegt = ZerlegeZeile(line, "=");
zerlegt[0] = trim(zerlegt[0], " ");
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "HOSTNAME")){
line = "hostname = \"" + _newhostname + "\"\n";
found = true;
}
neuesfile.push_back(line);
if (fgets(zw, 1024, pFile) == NULL)
{
line = "";
}
else
{
line = std::string(zw);
}
}
if (!found)
{
line = "hostname = \"" + _newhostname + "\"\n";
neuesfile.push_back(line);
}
fclose(pFile);
pFile = OpenFileAndWait(fn.c_str(), "w+");
for (int i = 0; i < neuesfile.size(); ++i)
{
fputs(neuesfile[i].c_str(), pFile);
}
fclose(pFile);
return true;
}
void LoadWlanFromFile(std::string fn)
{
string line = "";
std::vector<string> zerlegt;
hostname = std_hostname;
FILE* pFile;
fn = FormatFileName(fn);
pFile = OpenFileAndWait(fn.c_str(), "r");
printf("file loaded\n");
if (pFile == NULL)
return;
char zw[1024];
fgets(zw, 1024, pFile);
line = std::string(zw);
while ((line.size() > 0) || !(feof(pFile)))
{
printf("%s", line.c_str());
zerlegt = ZerlegeZeile(line, "=");
zerlegt[0] = trim(zerlegt[0], " ");
for (int i = 2; i < zerlegt.size(); ++i)
zerlegt[i] = zerlegt[i-1] + zerlegt[i];
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "HOSTNAME")){
hostname = trim(zerlegt[1]);
if ((hostname[0] == '"') && (hostname[hostname.length()-1] == '"')){
hostname = hostname.substr(1, hostname.length()-2);
}
}
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "SSID")){
ssid = trim(zerlegt[1]);
if ((ssid[0] == '"') && (ssid[ssid.length()-1] == '"')){
ssid = ssid.substr(1, ssid.length()-2);
}
}
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "PASSWORD")){
passphrase = zerlegt[1];
if ((passphrase[0] == '"') && (passphrase[passphrase.length()-1] == '"')){
passphrase = passphrase.substr(1, passphrase.length()-2);
}
}
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "IP")){
ipaddress = zerlegt[1];
if ((ipaddress[0] == '"') && (ipaddress[ipaddress.length()-1] == '"')){
ipaddress = ipaddress.substr(1, ipaddress.length()-2);
}
}
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "GATEWAY")){
gw = zerlegt[1];
if ((gw[0] == '"') && (gw[gw.length()-1] == '"')){
gw = gw.substr(1, gw.length()-2);
}
}
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "NETMASK")){
netmask = zerlegt[1];
if ((netmask[0] == '"') && (netmask[netmask.length()-1] == '"')){
netmask = netmask.substr(1, netmask.length()-2);
}
}
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "DNS")){
dns = zerlegt[1];
if ((dns[0] == '"') && (dns[dns.length()-1] == '"')){
dns = dns.substr(1, dns.length()-2);
}
}
if (fgets(zw, 1024, pFile) == NULL)
{
line = "";
}
else
{
line = std::string(zw);
}
}
fclose(pFile);
// Check if Hostname was empty in .ini if yes set to std_hostname
if(hostname.length() <= 0){
hostname = std_hostname;
}
printf("\nWLan: %s, %s\n", ssid.c_str(), passphrase.c_str());
printf("Hostename: %s\n", hostname.c_str());
printf("Fixed IP: %s, Gateway %s, Netmask %s, DNS %s\n", ipaddress.c_str(), gw.c_str(), netmask.c_str(), dns.c_str());
}
void LoadNetConfigFromFile(std::string _fn, std::string &_ip, std::string &_gw, std::string &_netmask, std::string &_dns)
{
string line = "";
std::vector<string> zerlegt;
FILE* pFile;
_fn = FormatFileName(_fn);
pFile = OpenFileAndWait(_fn.c_str(), "r");
if (pFile == NULL)
return;
char zw[1024];
fgets(zw, 1024, pFile);
line = std::string(zw);
while ((line.size() > 0) || !(feof(pFile)))
{
printf("%s", line.c_str());
zerlegt = ZerlegeZeile(line, "=");
zerlegt[0] = trim(zerlegt[0], " ");
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "IP")){
_ip = zerlegt[1];
if ((_ip[0] == '"') && (_ip[_ip.length()-1] == '"')){
_ip = _ip.substr(1, _ip.length()-2);
}
}
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "GATEWAY")){
_gw = zerlegt[1];
if ((_gw[0] == '"') && (_gw[_gw.length()-1] == '"')){
_gw = _gw.substr(1, _gw.length()-2);
}
}
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "NETMASK")){
_netmask = zerlegt[1];
if ((_netmask[0] == '"') && (_netmask[_netmask.length()-1] == '"')){
_netmask = _netmask.substr(1, _netmask.length()-2);
}
}
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "DNS")){
_dns = zerlegt[1];
if ((_dns[0] == '"') && (_dns[_dns.length()-1] == '"')){
_dns = _dns.substr(1, _dns.length()-2);
}
}
if (fgets(zw, 1024, pFile) == NULL)
{
line = "";
}
else
{
line = std::string(zw);
}
}
fclose(pFile);
}
std::string getHostname(){
return hostname;
}
std::string getIPAddress(){
return ipaddress;
}
std::string getSSID(){
return ssid;
}
std::string getNetMask(){
return netmask;
}
std::string getGW(){
return gw;
}

View File

@@ -1,21 +0,0 @@
//#ifndef CONNECT_WLAN_H
//#define CONNECT_WLAN_H
#include <string>
#include "driver/gpio.h"
const int CONNECTED_BIT = BIT0;
void ConnectToWLAN();
void LoadWlanFromFile(std::string fn);
bool ChangeHostName(std::string fn, std::string _newhostname);
std::string getHostname();
std::string getIPAddress();
std::string getSSID();
std::string getNetMask();
std::string getGW();
//#endif

View File

@@ -1,492 +0,0 @@
#include "connect_wlan.h"
#include <string.h>
#include "esp_wifi.h"
#include "esp_event_loop.h"
#include "freertos/event_groups.h"
#include "esp_log.h"
#include <fstream>
#include <string>
#include <vector>
#include <sstream>
#include <iostream>
#include <arpa/inet.h>
#include "Helper.h"
static const char *MAIN_TAG = "connect_wlan";
std::string ssid = "";
std::string passphrase = "";
std::string hostname = "";
std::string ipaddress = "";
std::string gw = "";
std::string netmask = "";
std::string dns = "";
std::string std_hostname = "watermeter";
static EventGroupHandle_t wifi_event_group;
#define BLINK_GPIO GPIO_NUM_33
std::vector<string> ZerlegeZeile(std::string input, std::string _delimiter = "")
{
std::vector<string> Output;
std::string delimiter = " =,";
if (_delimiter.length() > 0){
delimiter = _delimiter;
}
input = trim(input, delimiter);
size_t pos = findDelimiterPos(input, delimiter);
std::string token;
while (pos != std::string::npos) {
token = input.substr(0, pos);
token = trim(token, delimiter);
Output.push_back(token);
input.erase(0, pos + 1);
input = trim(input, delimiter);
pos = findDelimiterPos(input, delimiter);
}
Output.push_back(input);
return Output;
}
void wifi_connect(){
wifi_config_t cfg = { };
strcpy((char*)cfg.sta.ssid, (const char*)ssid.c_str());
strcpy((char*)cfg.sta.password, (const char*)passphrase.c_str());
ESP_ERROR_CHECK( esp_wifi_disconnect() );
ESP_ERROR_CHECK( esp_wifi_set_config(ESP_IF_WIFI_STA, &cfg) );
ESP_ERROR_CHECK( esp_wifi_connect() );
}
void blinkstatus(int dauer, int _anzahl)
{
gpio_reset_pin(BLINK_GPIO);
gpio_set_direction(BLINK_GPIO, GPIO_MODE_OUTPUT);
for (int i = 0; i < _anzahl; ++i)
{
gpio_set_level(BLINK_GPIO, 0);
vTaskDelay(dauer / portTICK_PERIOD_MS);
gpio_set_level(BLINK_GPIO, 1);
vTaskDelay(dauer / portTICK_PERIOD_MS);
}
}
static esp_err_t event_handler(void *ctx, system_event_t *event)
{
switch(event->event_id) {
case SYSTEM_EVENT_STA_START:
blinkstatus(200, 1);
wifi_connect();
break;
case SYSTEM_EVENT_STA_GOT_IP:
xEventGroupSetBits(wifi_event_group, CONNECTED_BIT);
blinkstatus(1000, 3);
break;
case SYSTEM_EVENT_STA_DISCONNECTED:
blinkstatus(200, 5);
esp_wifi_connect();
xEventGroupClearBits(wifi_event_group, CONNECTED_BIT);
break;
default:
break;
}
return ESP_OK;
}
void initialise_wifi()
{
ESP_ERROR_CHECK(esp_event_loop_init(event_handler, NULL) );
wifi_event_group = xEventGroupCreate();
esp_log_level_set("wifi", ESP_LOG_NONE); // disable wifi driver logging
tcpip_adapter_init();
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
ESP_ERROR_CHECK( esp_wifi_init(&cfg) );
ESP_ERROR_CHECK( esp_wifi_set_mode(WIFI_MODE_STA) );
ESP_ERROR_CHECK( esp_wifi_start() );
esp_err_t ret = tcpip_adapter_set_hostname(TCPIP_ADAPTER_IF_STA , hostname.c_str());
if(ret != ESP_OK ){
ESP_LOGE(MAIN_TAG,"failed to set hostname:%d",ret);
}
xEventGroupWaitBits(wifi_event_group,CONNECTED_BIT,true,true,portMAX_DELAY);
tcpip_adapter_ip_info_t ip_info;
ESP_ERROR_CHECK(tcpip_adapter_get_ip_info(TCPIP_ADAPTER_IF_STA, &ip_info));
ipaddress = std::string(ip4addr_ntoa(&ip_info.ip));
netmask = std::string(ip4addr_ntoa(&ip_info.netmask));
gw = std::string(ip4addr_ntoa(&ip_info.gw));
printf("IPv4 : %s\n", ip4addr_ntoa(&ip_info.ip));
printf("HostName : %s\n", hostname.c_str());
}
///////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////
void strinttoip4(std::string ip, int &a, int &b, int &c, int &d) {
std::stringstream s(ip);
char ch; //to temporarily store the '.'
s >> a >> ch >> b >> ch >> c >> ch >> d;
}
void initialise_wifi_fixed_ip()
{
wifi_event_group = xEventGroupCreate();
ESP_ERROR_CHECK(esp_netif_init());
ESP_ERROR_CHECK(esp_event_loop_create_default());
esp_netif_t *my_sta = esp_netif_create_default_wifi_sta();
esp_netif_dhcpc_stop(my_sta);
esp_netif_ip_info_t ip_info;
int a, b, c, d;
strinttoip4(ipaddress, a, b, c, d);
IP4_ADDR(&ip_info.ip, a, b, c, d);
strinttoip4(gw, a, b, c, d);
IP4_ADDR(&ip_info.gw, a, b, c, d);
strinttoip4(netmask, a, b, c, d);
IP4_ADDR(&ip_info.netmask, a, b, c, d);
esp_netif_set_ip_info(my_sta, &ip_info);
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
ESP_ERROR_CHECK(esp_wifi_init(&cfg));
if (dns.length() > 0) {
esp_netif_dns_info_t dns_info;
ip4_addr_t ip;
ip.addr = esp_ip4addr_aton(dns.c_str());
ip_addr_set_ip4_u32(&dns_info.ip, ip.addr);
ESP_ERROR_CHECK(esp_netif_set_dns_info(my_sta, ESP_NETIF_DNS_MAIN, &dns_info));
}
ESP_ERROR_CHECK(esp_event_loop_init(event_handler, NULL) );
wifi_config_t wifi_config = { };
strcpy((char*)wifi_config.sta.ssid, (const char*)ssid.c_str());
strcpy((char*)wifi_config.sta.password, (const char*)passphrase.c_str());
ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA) );
ESP_ERROR_CHECK(esp_wifi_set_config(ESP_IF_WIFI_STA, &wifi_config) );
ESP_ERROR_CHECK(esp_wifi_start() );
ESP_LOGI(MAIN_TAG, "wifi_init_sta finished.");
EventBits_t bits = xEventGroupWaitBits(wifi_event_group,CONNECTED_BIT,true,true,portMAX_DELAY);
if (bits & CONNECTED_BIT) {
ESP_LOGI(MAIN_TAG, "connected to ap SSID:%s password:%s",
ssid.c_str(), passphrase.c_str());
} else {
ESP_LOGI(MAIN_TAG, "Failed to connect to SSID:%s, password:%s",
ssid.c_str(), passphrase.c_str());
}
tcpip_adapter_ip_info_t ip_info2;
ESP_ERROR_CHECK(tcpip_adapter_get_ip_info(TCPIP_ADAPTER_IF_STA, &ip_info2));
ipaddress = std::string(ip4addr_ntoa(&ip_info2.ip));
netmask = std::string(ip4addr_ntoa(&ip_info2.netmask));
gw = std::string(ip4addr_ntoa(&ip_info2.gw));
// vEventGroupDelete(wifi_event_group);
}
void ConnectToWLAN()
{
if (ipaddress.length() == 0 || gw.length() == 0 || netmask.length() == 0)
{
printf("Connect to WLAN with dyn. IP\n");
initialise_wifi();
}
else
{
printf("Connect to WLAN with fixed IP\n");
initialise_wifi_fixed_ip();
}
}
bool ChangeHostName(std::string fn, std::string _newhostname)
{
if (_newhostname == hostname)
return false;
string line = "";
std::vector<string> zerlegt;
bool found = false;
std::vector<string> neuesfile;
FILE* pFile;
fn = FormatFileName(fn);
pFile = OpenFileAndWait(fn.c_str(), "r");
printf("file loaded\n");
if (pFile == NULL)
return false;
char zw[1024];
fgets(zw, 1024, pFile);
line = std::string(zw);
while ((line.size() > 0) || !(feof(pFile)))
{
printf("%s", line.c_str());
zerlegt = ZerlegeZeile(line, "=");
zerlegt[0] = trim(zerlegt[0], " ");
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "HOSTNAME")){
line = "hostname = \"" + _newhostname + "\"\n";
found = true;
}
neuesfile.push_back(line);
if (fgets(zw, 1024, pFile) == NULL)
{
line = "";
}
else
{
line = std::string(zw);
}
}
if (!found)
{
line = "hostname = \"" + _newhostname + "\"\n";
neuesfile.push_back(line);
}
fclose(pFile);
pFile = OpenFileAndWait(fn.c_str(), "w+");
for (int i = 0; i < neuesfile.size(); ++i)
{
printf(neuesfile[i].c_str());
fputs(neuesfile[i].c_str(), pFile);
}
fclose(pFile);
printf("*** Update hostname done ***\n");
return true;
}
void LoadWlanFromFile(std::string fn)
{
string line = "";
std::vector<string> zerlegt;
hostname = std_hostname;
FILE* pFile;
fn = FormatFileName(fn);
pFile = OpenFileAndWait(fn.c_str(), "r");
printf("file loaded\n");
if (pFile == NULL)
return;
char zw[1024];
fgets(zw, 1024, pFile);
line = std::string(zw);
while ((line.size() > 0) || !(feof(pFile)))
{
printf("%s", line.c_str());
zerlegt = ZerlegeZeile(line, "=");
zerlegt[0] = trim(zerlegt[0], " ");
for (int i = 2; i < zerlegt.size(); ++i)
zerlegt[i] = zerlegt[i-1] + zerlegt[i];
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "HOSTNAME")){
hostname = trim(zerlegt[1]);
if ((hostname[0] == '"') && (hostname[hostname.length()-1] == '"')){
hostname = hostname.substr(1, hostname.length()-2);
}
}
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "SSID")){
ssid = trim(zerlegt[1]);
if ((ssid[0] == '"') && (ssid[ssid.length()-1] == '"')){
ssid = ssid.substr(1, ssid.length()-2);
}
}
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "PASSWORD")){
passphrase = zerlegt[1];
if ((passphrase[0] == '"') && (passphrase[passphrase.length()-1] == '"')){
passphrase = passphrase.substr(1, passphrase.length()-2);
}
}
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "IP")){
ipaddress = zerlegt[1];
if ((ipaddress[0] == '"') && (ipaddress[ipaddress.length()-1] == '"')){
ipaddress = ipaddress.substr(1, ipaddress.length()-2);
}
}
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "GATEWAY")){
gw = zerlegt[1];
if ((gw[0] == '"') && (gw[gw.length()-1] == '"')){
gw = gw.substr(1, gw.length()-2);
}
}
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "NETMASK")){
netmask = zerlegt[1];
if ((netmask[0] == '"') && (netmask[netmask.length()-1] == '"')){
netmask = netmask.substr(1, netmask.length()-2);
}
}
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "DNS")){
dns = zerlegt[1];
if ((dns[0] == '"') && (dns[dns.length()-1] == '"')){
dns = dns.substr(1, dns.length()-2);
}
}
if (fgets(zw, 1024, pFile) == NULL)
{
line = "";
}
else
{
line = std::string(zw);
}
}
fclose(pFile);
// Check if Hostname was empty in .ini if yes set to std_hostname
if(hostname.length() <= 0){
hostname = std_hostname;
}
printf("\nWLan: %s, %s\n", ssid.c_str(), passphrase.c_str());
printf("Hostename: %s\n", hostname.c_str());
printf("Fixed IP: %s, Gateway %s, Netmask %s, DNS %s\n", ipaddress.c_str(), gw.c_str(), netmask.c_str(), dns.c_str());
}
void LoadNetConfigFromFile(std::string fn, std::string &_ip, std::string &_gw, std::string &_netmask, std::string &_dns)
{
string line = "";
std::vector<string> zerlegt;
FILE* pFile;
fn = FormatFileName(fn);
pFile = OpenFileAndWait(fn.c_str(), "r");
printf("file loaded\n");
if (pFile == NULL)
return;
char zw[1024];
fgets(zw, 1024, pFile);
line = std::string(zw);
while ((line.size() > 0) || !(feof(pFile)))
{
printf("%s", line.c_str());
zerlegt = ZerlegeZeile(line, "=");
zerlegt[0] = trim(zerlegt[0], " ");
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "IP")){
_ip = zerlegt[1];
if ((_ip[0] == '"') && (_ip[_ip.length()-1] == '"')){
_ip = _ip.substr(1, _ip.length()-2);
}
}
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "GATEWAY")){
_gw = zerlegt[1];
if ((_gw[0] == '"') && (_gw[_gw.length()-1] == '"')){
_gw = _gw.substr(1, _gw.length()-2);
}
}
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "NETMASK")){
_netmask = zerlegt[1];
if ((_netmask[0] == '"') && (_netmask[_netmask.length()-1] == '"')){
_netmask = _netmask.substr(1, _netmask.length()-2);
}
}
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "DNS")){
_dns = zerlegt[1];
if ((_dns[0] == '"') && (_dns[_dns.length()-1] == '"')){
_dns = _dns.substr(1, _dns.length()-2);
}
}
if (fgets(zw, 1024, pFile) == NULL)
{
line = "";
}
else
{
line = std::string(zw);
}
}
fclose(pFile);
}
std::string getHostname(){
return hostname;
}
std::string getIPAddress(){
return ipaddress;
}
std::string getSSID(){
return ssid;
}
std::string getNetMask(){
return netmask;
}
std::string getGW(){
return gw;
}

View File

@@ -1,20 +0,0 @@
#ifndef CONNECT_WLAN_H
#define CONNECT_WLAN_H
#include <string>
#include "driver/gpio.h"
const int CONNECTED_BIT = BIT0;
void ConnectToWLAN();
void LoadWlanFromFile(std::string fn);
bool ChangeHostName(std::string fn, std::string _newhostname);
std::string getHostname();
std::string getIPAddress();
std::string getSSID();
std::string getNetMask();
std::string getGW();
#endif

View File

@@ -62,7 +62,8 @@ bool frame2jpg_cb(camera_fb_t * fb, uint8_t quality, jpg_out_cb cb, void * arg);
* @param height Height in pixels of the source image
* @param format Format of the source image
* @param quality JPEG quality of the resulting image
* @param out Pointer to be populated with the address of the resulting buffer
* @param out Pointer to be populated with the address of the resulting buffer.
* You MUST free the pointer once you are done with it.
* @param out_len Pointer to be populated with the length of the output buffer
*
* @return true on success

View File

@@ -317,7 +317,7 @@ bool fmt2bmp(uint8_t *src, size_t src_len, uint16_t width, uint16_t height, pixf
}
*out = out_buf;
*out_len = out_size;
return true;
return true;
}
bool frame2bmp(camera_fb_t * fb, uint8_t ** out, size_t * out_len)

View File

@@ -1321,7 +1321,7 @@ esp_err_t camera_init(const camera_config_t* config)
}
vsync_intr_disable();
err = gpio_install_isr_service(ESP_INTR_FLAG_LEVEL1 | ESP_INTR_FLAG_IRAM);
err = gpio_install_isr_service(ESP_INTR_FLAG_LOWMED | ESP_INTR_FLAG_IRAM);
if (err != ESP_OK) {
if (err != ESP_ERR_INVALID_STATE) {
ESP_LOGE(TAG, "gpio_install_isr_service failed (%x)", err);

View File

@@ -1,5 +1,3 @@
name: "esp32-camera"
version: "1.0.0"
description: This package hosts ESP32 compatible driver for OV2640 image sensors. Additionally it provides a few tools, which allow converting the captured frame data to the more common BMP and JPEG formats.
url: https://github.com/espressif/esp32-camera

View File

@@ -4,6 +4,6 @@ list(APPEND EXTRA_COMPONENT_DIRS $ENV{IDF_PATH}/examples/common_components/proto
idf_component_register(SRCS ${app_sources}
INCLUDE_DIRS "."
REQUIRES esp32-camera-master esp_http_server jomjol_logfile jomjol_image_proc nvs_flash)
REQUIRES esp32-camera-master esp_http_server jomjol_logfile jomjol_image_proc nvs_flash jomjol_fileserver_ota)

View File

@@ -9,6 +9,8 @@
#include "Helper.h"
#include "CImageBasis.h"
#include "server_ota.h"
#define BOARD_ESP32CAM_AITHINKER
@@ -220,13 +222,17 @@ void CCamera::SetQualitySize(int qual, framesize_t resol)
void CCamera::EnableAutoExposure(int flashdauer)
{
LEDOnOff(true);
LightOnOff(true);
if (flashdauer > 0)
LightOnOff(true);
const TickType_t xDelay = flashdauer / portTICK_PERIOD_MS;
vTaskDelay( xDelay );
camera_fb_t * fb = esp_camera_fb_get();
if (!fb) {
ESP_LOGE(TAGCAMERACLASS, "Camera Capture Failed");
LEDOnOff(false);
LightOnOff(false);
doReboot();
}
esp_camera_fb_return(fb);
@@ -271,6 +277,9 @@ esp_err_t CCamera::CaptureToBasisImage(CImageBasis *_Image, int delay)
if (!fb) {
ESP_LOGE(TAGCAMERACLASS, "Camera Capture Failed");
LEDOnOff(false);
LightOnOff(false);
doReboot();
return ESP_FAIL;
}
@@ -354,7 +363,11 @@ esp_err_t CCamera::CaptureToFile(std::string nm, int delay)
camera_fb_t * fb = esp_camera_fb_get();
if (!fb) {
ESP_LOGE(TAGCAMERACLASS, "Camera Capture Failed");
ESP_LOGE(TAGCAMERACLASS, "Reboot ?????");
LEDOnOff(false);
LightOnOff(false);
doReboot();
return ESP_FAIL;
}
LEDOnOff(false);
@@ -443,7 +456,11 @@ esp_err_t CCamera::CaptureToHTTP(httpd_req_t *req, int delay)
fb = esp_camera_fb_get();
if (!fb) {
ESP_LOGE(TAGCAMERACLASS, "Camera capture failed");
LEDOnOff(false);
LightOnOff(false);
httpd_resp_send_500(req);
// doReboot();
return ESP_FAIL;
}

View File

@@ -2,6 +2,6 @@ FILE(GLOB_RECURSE app_sources ${CMAKE_CURRENT_SOURCE_DIR}/*.*)
idf_component_register(SRCS ${app_sources}
INCLUDE_DIRS "."
REQUIRES jomjol_tfliteclass jomjol_helper jomjol_controlcamera jomjol_mqtt jomjol_fileserver_ota jomjol_image_proc connect_wlan)
REQUIRES jomjol_tfliteclass jomjol_helper jomjol_controlcamera jomjol_mqtt jomjol_fileserver_ota jomjol_image_proc jomjol_wlan)

View File

@@ -19,6 +19,7 @@ void ClassFlowAlignment::SetInitialParameter(void)
initalrotate = 0;
anz_ref = 0;
initialmirror = false;
initialflip = false;
SaveAllFiles = false;
namerawimage = "/sdcard/img_tmp/raw.jpg";
FileStoreRefAlignment = "/sdcard/config/align.txt";
@@ -72,6 +73,11 @@ bool ClassFlowAlignment::ReadParameter(FILE* pfile, string& aktparamgraph)
while (this->getNextLine(pfile, &aktparamgraph) && !this->isNewParagraph(aktparamgraph))
{
zerlegt = ZerlegeZeile(aktparamgraph);
if ((toUpper(zerlegt[0]) == "FLIPIMAGESIZE") && (zerlegt.size() > 1))
{
if (toUpper(zerlegt[1]) == "TRUE")
initialflip = true;
}
if ((toUpper(zerlegt[0]) == "INITIALMIRROR") && (zerlegt.size() > 1))
{
if (toUpper(zerlegt[1]) == "TRUE")
@@ -153,7 +159,13 @@ bool ClassFlowAlignment::doFlow(string time)
delete AlignAndCutImage;
AlignAndCutImage = new CAlignAndCutImage(ImageBasis, ImageTMP);
CRotateImage rt(AlignAndCutImage, ImageTMP);
CRotateImage rt(AlignAndCutImage, ImageTMP, initialflip);
if (initialflip)
{
int _zw = ImageBasis->height;
ImageBasis->height = ImageBasis->width;
ImageBasis->width = _zw;
}
if (initialmirror){
printf("do mirror\n");
@@ -161,7 +173,7 @@ bool ClassFlowAlignment::doFlow(string time)
if (SaveAllFiles) AlignAndCutImage->SaveToFile(FormatFileName("/sdcard/img_tmp/mirror.jpg"));
}
if (initalrotate != 0)
if ((initalrotate != 0) || initialflip)
{
rt.Rotate(initalrotate);
if (SaveAllFiles) AlignAndCutImage->SaveToFile(FormatFileName("/sdcard/img_tmp/rot.jpg"));
@@ -176,6 +188,12 @@ bool ClassFlowAlignment::doFlow(string time)
if (SaveAllFiles)
{
if (initialflip)
{
int _zw = ImageTMP->width;
ImageTMP->width = ImageTMP->height;
ImageTMP->height = _zw;
}
DrawRef(ImageTMP);
ImageTMP->SaveToFile(FormatFileName("/sdcard/img_tmp/alg_roi.jpg"));
}
@@ -209,7 +227,7 @@ void ClassFlowAlignment::SaveReferenceAlignmentValues()
time(&rawtime);
timeinfo = localtime(&rawtime);
strftime(buffer, 80, "%Y-%m-%d_%H-%M-%S", timeinfo);
strftime(buffer, 80, "%Y-%m-%dT%H:%M:%S", timeinfo);
zwtime = std::string(buffer);
}

View File

@@ -15,6 +15,7 @@ class ClassFlowAlignment :
protected:
float initalrotate;
bool initialmirror;
bool initialflip;
RefInfo References[2];
int anz_ref;
string namerawimage;

View File

@@ -3,6 +3,8 @@
#include <math.h>
#include <iomanip>
#include <sys/types.h>
#include <sstream> // std::stringstream
// #define OHNETFLITE

View File

@@ -1,6 +1,7 @@
#include "ClassFlowControll.h"
#include "connect_wlan.h"
#include "read_wlanini.h"
#include "freertos/task.h"
@@ -21,13 +22,16 @@ static const char* TAG = "flow_controll";
std::string ClassFlowControll::doSingleStep(std::string _stepname, std::string _host){
std::string _classname = "";
std::string result = "";
// printf("_stepname: %s\n", _stepname.c_str());
if ((_stepname.compare("[MakeImage]") == 0) || (_stepname.compare(";[MakeImage]") == 0)){
_classname = "ClassFlowMakeImage";
}
if ((_stepname.compare("[Alignment]") == 0) || (_stepname.compare(";[Alignment]") == 0)){
_classname = "ClassFlowAlignment";
}
if ((_stepname.compare("[Digits]") == 0) || (_stepname.compare(";[Digits]") == 0)){
if ((_stepname.compare(0, 7, "[Digits") == 0) || (_stepname.compare(0, 8, ";[Digits") == 0)) {
// if ((_stepname.compare("[Digits]") == 0) || (_stepname.compare(";[Digits]") == 0)){
// printf("Digits!!!\n");
_classname = "ClassFlowDigit";
}
if ((_stepname.compare("[Analog]") == 0) || (_stepname.compare(";[Analog]") == 0)){
@@ -109,7 +113,7 @@ ClassFlow* ClassFlowControll::CreateClassFlow(std::string _type)
cfc = new ClassFlowAnalog(&FlowControll);
flowanalog = (ClassFlowAnalog*) cfc;
}
if (toUpper(_type).compare("[DIGITS]") == 0)
if (toUpper(_type).compare(0, 7, "[DIGITS") == 0)
{
cfc = new ClassFlowDigit(&FlowControll);
flowdigit = (ClassFlowDigit*) cfc;

View File

@@ -26,7 +26,8 @@ void ClassFlowDigit::SetInitialParameter(void)
previousElement = NULL;
SaveAllFiles = false;
disabled = false;
DecimalShift = 0;
DecimalShiftEnabled = false;
}
ClassFlowDigit::ClassFlowDigit() : ClassFlowImage(TAG)
@@ -88,8 +89,25 @@ bool ClassFlowDigit::ReadParameter(FILE* pfile, string& aktparamgraph)
if (!this->GetNextParagraph(pfile, aktparamgraph))
return false;
printf("aktparamgraph: %s\n", aktparamgraph.c_str());
/*
if ((aktparamgraph.compare("[Digits]") != 0) && (aktparamgraph.compare(";[Digits]") != 0)) // Paragraph passt nich zu MakeImage
return false;
*/
if ((aktparamgraph.compare(0, 7, "[Digits") != 0) && (aktparamgraph.compare(0, 8, ";[Digits") != 0)) // Paragraph passt nich zu MakeImage
return false;
int _pospkt = aktparamgraph.find_first_of(".");
int _posklammerzu = aktparamgraph.find_first_of("]");
// printf("Pos: %d, %d\n", _pospkt, _posklammerzu);
if (_pospkt > -1)
NameDigit = aktparamgraph.substr(_pospkt+1, _posklammerzu - _pospkt-1);
else
NameDigit = "";
printf("Name Digit: %s\n", NameDigit.c_str());
if (aktparamgraph[0] == ';')
{

View File

@@ -21,6 +21,10 @@ protected:
string cnnmodelfile;
int modelxsize, modelysize;
bool SaveAllFiles;
string NameDigit;
int DecimalShift;
bool DecimalShiftEnabled;
ClassFlowAlignment* flowpostalignment;

View File

@@ -11,6 +11,8 @@ void ClassFlowMQTT::SetInitialParameter(void)
uri = "";
topic = "";
topicError = "";
topicRate = "";
topicTimeStamp = "";
clientname = "watermeter";
OldValue = "";
flowpostprocessing = NULL;
@@ -94,6 +96,15 @@ bool ClassFlowMQTT::ReadParameter(FILE* pfile, string& aktparamgraph)
{
this->topicError = zerlegt[1];
}
if ((toUpper(zerlegt[0]) == "TOPICRATE") && (zerlegt.size() > 1))
{
this->topicRate = zerlegt[1];
}
if ((toUpper(zerlegt[0]) == "TOPICTIMESTAMP") && (zerlegt.size() > 1))
{
this->topicTimeStamp = zerlegt[1];
}
if ((toUpper(zerlegt[0]) == "CLIENTID") && (zerlegt.size() > 1))
{
this->clientname = zerlegt[1];
@@ -114,12 +125,16 @@ bool ClassFlowMQTT::doFlow(string zwtime)
{
std::string result;
std::string resulterror = "";
std::string resultrate = "";
std::string resulttimestamp = "";
string zw = "";
if (flowpostprocessing)
{
result = flowpostprocessing->getReadoutParam(false, true);
resulterror = flowpostprocessing->getReadoutError();
resultrate = flowpostprocessing->getReadoutRate();
resulttimestamp = flowpostprocessing->getReadoutTimeStamp();
}
else
{
@@ -139,7 +154,19 @@ bool ClassFlowMQTT::doFlow(string zwtime)
MQTTPublish(topic, result);
if (topicError.length() > 0) {
MQTTPublish(topicError, resulterror);
if (resulterror.length() == 0)
{
resulterror = " ";
}
MQTTPublish(topicError, resulterror, 1);
}
if (topicRate.length() > 0) {
MQTTPublish(topicRate, resultrate);
}
if (topicTimeStamp.length() > 0) {
MQTTPublish(topicTimeStamp, resulttimestamp);
}
OldValue = result;

View File

@@ -9,7 +9,7 @@ class ClassFlowMQTT :
public ClassFlow
{
protected:
std::string uri, topic, topicError, clientname;
std::string uri, topic, topicError, clientname, topicRate, topicTimeStamp;
std::string OldValue;
ClassFlowPostProcessing* flowpostprocessing;
std::string user, password;

View File

@@ -14,12 +14,23 @@ static const char* TAG = "flow_make_image";
esp_err_t ClassFlowMakeImage::camera_capture(){
string nm = namerawimage;
Camera.CaptureToFile(nm);
time(&TimeImageTaken);
localtime(&TimeImageTaken);
return ESP_OK;
}
void ClassFlowMakeImage::takePictureWithFlash(int flashdauer)
{
// für den Fall, dass das Bild geflippt wird, muss es hier zurück gesetzt werden ////
rawImage->width = image_width;
rawImage->height = image_height;
/////////////////////////////////////////////////////////////////////////////////////
printf("Flashdauer: %d\n", flashdauer);
Camera.CaptureToBasisImage(rawImage, flashdauer);
time(&TimeImageTaken);
localtime(&TimeImageTaken);
if (SaveAllFiles) rawImage->SaveToFile(namerawimage);
}
@@ -82,6 +93,12 @@ bool ClassFlowMakeImage::ReadParameter(FILE* pfile, string& aktparamgraph)
if (toUpper(zerlegt[1]) == "TRUE")
SaveAllFiles = true;
}
if ((toUpper(zerlegt[0]) == "WAITBEFORETAKINGPICTURE") && (zerlegt.size() > 1))
{
waitbeforepicture = stoi(zerlegt[1]);
}
if ((toUpper(zerlegt[0]) == "BRIGHTNESS") && (zerlegt.size() > 1))
{
@@ -114,9 +131,9 @@ bool ClassFlowMakeImage::ReadParameter(FILE* pfile, string& aktparamgraph)
rawImage->CreateEmptyImage(image_width, image_height, 3);
waitbeforepicture_store = waitbeforepicture;
if (FixedExposure)
if (FixedExposure && (waitbeforepicture > 0))
{
printf("Fixed Exposure enabled!\n");
// printf("Fixed Exposure enabled!\n");
int flashdauer = (int) (waitbeforepicture * 1000);
Camera.EnableAutoExposure(flashdauer);
waitbeforepicture = 0.2;
@@ -165,6 +182,9 @@ bool ClassFlowMakeImage::doFlow(string zwtime)
esp_err_t ClassFlowMakeImage::SendRawJPG(httpd_req_t *req)
{
int flashdauer = (int) (waitbeforepicture * 1000);
time(&TimeImageTaken);
localtime(&TimeImageTaken);
return Camera.CaptureToHTTP(req, flashdauer);
}
@@ -175,6 +195,9 @@ ImageData* ClassFlowMakeImage::SendRawImage()
ImageData *id;
int flashdauer = (int) (waitbeforepicture * 1000);
Camera.CaptureToBasisImage(zw, flashdauer);
time(&TimeImageTaken);
localtime(&TimeImageTaken);
id = zw->writeToMemoryAsJPG();
delete zw;
return id;

View File

@@ -11,6 +11,13 @@
#include <time.h>
#include "time_sntp.h"
#define PREVALUE_TIME_FORMAT_OUTPUT "%Y-%m-%dT%H:%M:%S"
#define PREVALUE_TIME_FORMAT_INPUT "%d-%d-%dT%d:%d:%d"
string ClassFlowPostProcessing::GetPreValue()
{
std::string result;
@@ -63,7 +70,7 @@ bool ClassFlowPostProcessing::LoadPreValue(void)
int yy, month, dd, hh, mm, ss;
struct tm whenStart;
sscanf(zwtime.c_str(), "%d-%d-%d_%d-%d-%d", &yy, &month, &dd, &hh, &mm, &ss);
sscanf(zwtime.c_str(), PREVALUE_TIME_FORMAT_INPUT, &yy, &month, &dd, &hh, &mm, &ss);
whenStart.tm_year = yy - 1900;
whenStart.tm_mon = month - 1;
whenStart.tm_mday = dd;
@@ -72,12 +79,11 @@ bool ClassFlowPostProcessing::LoadPreValue(void)
whenStart.tm_sec = ss;
whenStart.tm_isdst = -1;
tStart = mktime(&whenStart);
lastvalue = mktime(&whenStart);
time_t now;
time(&now);
localtime(&now);
double difference = difftime(now, tStart);
time(&tStart);
localtime(&tStart);
double difference = difftime(tStart, lastvalue);
difference /= 60;
if (difference > PreValueAgeStartup)
return false;
@@ -122,13 +128,17 @@ void ClassFlowPostProcessing::SavePreValue(float value, string zwtime)
time(&rawtime);
timeinfo = localtime(&rawtime);
strftime(buffer, 80, "%Y-%m-%d_%H-%M-%S", timeinfo);
zwtime = std::string(buffer);
strftime(buffer, 80, PREVALUE_TIME_FORMAT_OUTPUT, timeinfo);
timeStamp = std::string(buffer);
}
else
{
timeStamp = zwtime;
}
PreValue = value;
fputs(zwtime.c_str(), pFile);
fputs(timeStamp.c_str(), pFile);
fputs("\n", pFile);
fputs(to_string(value).c_str(), pFile);
fputs("\n", pFile);
@@ -139,6 +149,7 @@ void ClassFlowPostProcessing::SavePreValue(float value, string zwtime)
ClassFlowPostProcessing::ClassFlowPostProcessing(std::vector<ClassFlow*>* lfc)
{
FlowRateAct = 0;
PreValueUse = false;
PreValueAgeStartup = 30;
AllowNegativeRates = false;
@@ -150,8 +161,18 @@ ClassFlowPostProcessing::ClassFlowPostProcessing(std::vector<ClassFlow*>* lfc)
checkDigitIncreaseConsistency = false;
DecimalShift = 0;
ErrorMessageText = "";
timeStamp = "";
FilePreValue = FormatFileName("/sdcard/config/prevalue.ini");
ListFlowControll = lfc;
flowMakeImage = NULL;
for (int i = 0; i < ListFlowControll->size(); ++i)
{
if (((*ListFlowControll)[i])->name().compare("ClassFlowMakeImage") == 0)
{
flowMakeImage = (ClassFlowMakeImage*) (*ListFlowControll)[i];
}
}
}
@@ -300,7 +321,7 @@ bool ClassFlowPostProcessing::doFlow(string zwtime)
timeinfo = localtime(&imagetime);
char strftime_buf[64];
strftime(strftime_buf, sizeof(strftime_buf), "%Y-%m-%d_%H-%M-%S", timeinfo);
strftime(strftime_buf, sizeof(strftime_buf), "%Y-%m-%dT%H:%M:%S", timeinfo);
zwtime = std::string(strftime_buf);
@@ -343,12 +364,23 @@ bool ClassFlowPostProcessing::doFlow(string zwtime)
PreValueOkay = true;
PreValue = Value;
if (flowMakeImage)
{
lastvalue = flowMakeImage->getTimeImageTaken();
zwtime = ConvertTimeToString(lastvalue, PREVALUE_TIME_FORMAT_OUTPUT);
}
else
{
time(&lastvalue);
localtime(&lastvalue);
}
SavePreValue(Value, zwtime);
}
return true;
}
zw = ErsetzteN(ReturnRawValue);
Value = std::stof(zw);
@@ -373,17 +405,37 @@ bool ClassFlowPostProcessing::doFlow(string zwtime)
zwvalue = RundeOutput(Value, AnzahlAnalog - DecimalShift);
}
ReturnValueNoError = zwvalue;
ReturnValue = zwvalue;
if (ErrorMessage && (ErrorMessageText.length() > 0))
ReturnValue = ReturnValue + "\t" + ErrorMessageText;
time_t currenttime;
if (flowMakeImage)
{
currenttime = flowMakeImage->getTimeImageTaken();
zwtime = ConvertTimeToString(currenttime, PREVALUE_TIME_FORMAT_OUTPUT);
}
else
{
time(&currenttime);
localtime(&currenttime);
}
double difference = difftime(currenttime, lastvalue); // in Sekunden
difference /= 60; // in Minuten
FlowRateAct = (Value - PreValue) / difference;
lastvalue = currenttime;
// std::string _zw = "CalcRate: " + std::to_string(FlowRateAct) + " TimeDifference[min]: " + std::to_string(difference);
// _zw = _zw + " Value: " + std::to_string(Value) + " PreValue: " + std::to_string(PreValue);
// LogFile.WriteToFile(_zw);
if (ErrorMessageText.length() == 0)
{
PreValue = Value;
ErrorMessageText = "no error";
SavePreValue(Value, zwtime);
}
return true;
}
@@ -506,6 +558,16 @@ float ClassFlowPostProcessing::checkDigitConsistency(float input, int _decilamsh
return input;
}
string ClassFlowPostProcessing::getReadoutRate()
{
return std::to_string(FlowRateAct);
}
string ClassFlowPostProcessing::getReadoutTimeStamp()
{
return timeStamp;
}
string ClassFlowPostProcessing::getReadoutError()
{

View File

@@ -1,9 +1,12 @@
#pragma once
#include "ClassFlow.h"
#include "ClassFlowMakeImage.h"
#include <string>
class ClassFlowPostProcessing :
public ClassFlow
{
@@ -17,6 +20,9 @@ protected:
bool PreValueOkay;
bool checkDigitIncreaseConsistency;
int DecimalShift;
time_t lastvalue;
float FlowRateAct; // m3 / min
string FilePreValue;
float PreValue; // letzter Wert, der gut ausgelesen wurde
@@ -25,6 +31,9 @@ protected:
string ReturnValue; // korrigierter Rückgabewert, ggf. mit Fehlermeldung
string ReturnValueNoError; // korrigierter Rückgabewert ohne Fehlermeldung
string ErrorMessageText; // Fehlermeldung bei Consistency Check
string timeStamp;
ClassFlowMakeImage *flowMakeImage;
bool LoadPreValue(void);
string ShiftDecimal(string in, int _decShift);
@@ -40,6 +49,8 @@ public:
string getReadout();
string getReadoutParam(bool _rawValue, bool _noerror);
string getReadoutError();
string getReadoutRate();
string getReadoutTimeStamp();
void SavePreValue(float value, string time = "");
string GetPreValue();

View File

@@ -1,7 +1,7 @@
#include "CRotateImage.h"
CRotateImage::CRotateImage(CImageBasis *_org, CImageBasis *_temp)
CRotateImage::CRotateImage(CImageBasis *_org, CImageBasis *_temp, bool _flip)
{
rgb_image = _org->rgb_image;
channels = _org->channels;
@@ -9,8 +9,10 @@ CRotateImage::CRotateImage(CImageBasis *_org, CImageBasis *_temp)
height = _org->height;
bpp = _org->bpp;
externalImage = true;
ImageTMP = _temp;
ImageTMP = _temp;
ImageOrg = _org;
islocked = false;
doflip = _flip;
}
void CRotateImage::Mirror(){
@@ -58,12 +60,33 @@ void CRotateImage::Mirror(){
void CRotateImage::Rotate(float _angle, int _centerx, int _centery)
{
int org_width, org_height;
float m[2][3];
float x_center = _centerx;
float y_center = _centery;
_angle = _angle / 180 * M_PI;
if (doflip)
{
org_width = width;
org_height = height;
height = org_width;
width = org_height;
x_center = x_center - (org_width/2) + (org_height/2);
y_center = y_center + (org_width/2) - (org_height/2);
if (ImageOrg)
{
ImageOrg->height = height;
ImageOrg->width = width;
}
}
else
{
org_width = width;
org_height = height;
}
m[0][0] = cos(_angle);
m[0][1] = sin(_angle);
m[0][2] = (1 - m[0][0]) * x_center - m[0][1] * y_center;
@@ -72,6 +95,12 @@ void CRotateImage::Rotate(float _angle, int _centerx, int _centery)
m[1][1] = m[0][0];
m[1][2] = m[0][1] * x_center + (1 - m[0][0]) * y_center;
if (doflip)
{
m[0][2] = m[0][2] + (org_width/2) - (org_height/2);
m[1][2] = m[1][2] - (org_width/2) + (org_height/2);
}
int memsize = width * height * channels;
uint8_t* odata;
if (ImageTMP)
@@ -101,9 +130,9 @@ void CRotateImage::Rotate(float _angle, int _centerx, int _centery)
x_source += int(m[0][2]);
y_source += int(m[1][2]);
if ((x_source >= 0) && (x_source < width) && (y_source >= 0) && (y_source < height))
if ((x_source >= 0) && (x_source < org_width) && (y_source >= 0) && (y_source < org_height))
{
p_source = rgb_image + (channels * (y_source * width + x_source));
p_source = rgb_image + (channels * (y_source * org_width + x_source));
for (int _channels = 0; _channels < channels; ++_channels)
p_target[_channels] = p_source[_channels];
}

View File

@@ -4,10 +4,11 @@
class CRotateImage: public CImageBasis
{
public:
CImageBasis *ImageTMP;
CRotateImage(std::string _image) : CImageBasis(_image) {ImageTMP = NULL;};
CRotateImage(uint8_t* _rgb_image, int _channels, int _width, int _height, int _bpp) : CImageBasis(_rgb_image, _channels, _width, _height, _bpp) {ImageTMP = NULL;};
CRotateImage(CImageBasis *_org, CImageBasis *_temp);
CImageBasis *ImageTMP, *ImageOrg;
bool doflip;
CRotateImage(std::string _image, bool _flip = false) : CImageBasis(_image) {ImageTMP = NULL; ImageOrg = NULL; doflip = _flip;};
CRotateImage(uint8_t* _rgb_image, int _channels, int _width, int _height, int _bpp, bool _flip = false) : CImageBasis(_rgb_image, _channels, _width, _height, _bpp) {ImageTMP = NULL; ImageOrg = NULL; doflip = _flip;};
CRotateImage(CImageBasis *_org, CImageBasis *_temp, bool _flip = false);
void Rotate(float _angle);
void Rotate(float _angle, int _centerx, int _centery);

View File

@@ -77,7 +77,7 @@ void ClassLogFile::WriteToDedicatedFile(std::string _fn, std::string info, bool
time(&rawtime);
timeinfo = localtime(&rawtime);
strftime(buffer, 80, "%Y-%m-%d_%H-%M-%S", timeinfo);
strftime(buffer, 80, "%Y-%m-%dT%H:%M:%S", timeinfo);
zwtime = std::string(buffer);
info = zwtime + ": " + info;

View File

@@ -16,11 +16,11 @@ esp_mqtt_event_id_t esp_mmqtt_ID = MQTT_EVENT_ANY;
bool mqtt_connected = false;
esp_mqtt_client_handle_t client = NULL;
void MQTTPublish(std::string _key, std::string _content){
void MQTTPublish(std::string _key, std::string _content, int retained_flag){
if (client && mqtt_connected) {
int msg_id;
std::string zw;
msg_id = esp_mqtt_client_publish(client, _key.c_str(), _content.c_str(), 0, 1, 0);
msg_id = esp_mqtt_client_publish(client, _key.c_str(), _content.c_str(), 0, 1, retained_flag);
zw = "sent publish successful in MQTTPublish, msg_id=" + std::to_string(msg_id) + ", " + _key + ", " + _content;
if (debugdetail) LogFile.WriteToFile(zw);
ESP_LOGI(TAG, "sent publish successful in MQTTPublish, msg_id=%d, %s, %s", msg_id, _key.c_str(), _content.c_str());
@@ -74,6 +74,7 @@ void MQTTInit(std::string _mqttURI, std::string _clientid, std::string _user, st
.client_id = _clientid.c_str(),
.lwt_topic = _LWTContext.c_str(),
.lwt_msg = _zwmessage.c_str(),
.lwt_retain = 1,
.lwt_msg_len = _lzw,
.keepalive = _keepalive
};
@@ -88,5 +89,5 @@ void MQTTInit(std::string _mqttURI, std::string _clientid, std::string _user, st
esp_mqtt_client_register_event(client, esp_mmqtt_ID, mqtt_event_handler, client);
esp_mqtt_client_start(client);
MQTTPublish(_LWTContext, "");
MQTTPublish(_LWTContext, "", 1);
}

View File

@@ -4,4 +4,4 @@ void MQTTInit(std::string _mqttURI, std::string _clientid, std::string _user, st
//void MQTTInit(std::string _mqttURI, std::string _clientid, std::string _user = "", std::string _password = "");
void MQTTPublish(std::string _key, std::string _content);
void MQTTPublish(std::string _key, std::string _content, int retained_flag = 0);

View File

@@ -9,7 +9,7 @@
#include "tensorflow/lite/micro/micro_error_reporter.h"
#include "tensorflow/lite/micro/micro_interpreter.h"
#include "tensorflow/lite/schema/schema_generated.h"
#include "tensorflow/lite/version.h"
//#include "tensorflow/lite/version.h"
#include "tensorflow/lite/micro/kernels/micro_ops.h"
#include "esp_err.h"
#include "esp_log.h"

View File

@@ -27,6 +27,17 @@ void time_sync_notification_cb(struct timeval *tv)
ESP_LOGI(TAG, "Notification of a time synchronization event");
}
std::string ConvertTimeToString(time_t _time, const char * frm)
{
struct tm timeinfo;
char strftime_buf[64];
localtime_r(&_time, &timeinfo);
strftime(strftime_buf, sizeof(strftime_buf), frm, &timeinfo);
std::string result(strftime_buf);
return result;
}
std::string gettimestring(const char * frm)
{
time_t now;

View File

@@ -15,5 +15,7 @@
void setup_time(void);
std::string gettimestring(const char * frm);
std::string ConvertTimeToString(time_t _time, const char * frm);
void setTimeZone(std::string _tzstring);
void reset_servername(std::string _servername);

View File

@@ -2,6 +2,6 @@ FILE(GLOB_RECURSE app_sources ${CMAKE_CURRENT_SOURCE_DIR}/*.*)
idf_component_register(SRCS ${app_sources}
INCLUDE_DIRS "."
REQUIRES jomjol_helper)
REQUIRES nvs_flash jomjol_helper)

View File

@@ -0,0 +1,293 @@
#include "connect_wlan.h"
#include <string.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/event_groups.h"
#include "driver/gpio.h"
#include "esp_system.h"
#include "esp_wifi.h"
#include "esp_event.h"
#include "esp_log.h"
#include "nvs_flash.h"
#include "lwip/err.h"
#include "lwip/sys.h"
#include <fstream>
#include <string>
#include <vector>
#include <sstream>
#include <iostream>
#define EXAMPLE_ESP_MAXIMUM_RETRY 1000
/* FreeRTOS event group to signal when we are connected*/
static EventGroupHandle_t s_wifi_event_group;
/* The event group allows multiple bits for each event, but we only care about two events:
* - we are connected to the AP with an IP
* - we failed to connect after the maximum amount of retries */
#define WIFI_CONNECTED_BIT BIT0
#define WIFI_FAIL_BIT BIT1
static const char *TAG = "wifi station";
static int s_retry_num = 0;
///////////////////////////////////////////////////////////
#define BLINK_GPIO GPIO_NUM_33
int BlinkDauer;
int BlinkAnzahl;
bool BlinkOff;
bool BlinkIsRunning = false;
std::string hostname = "";
std::string std_hostname = "watermeter";
std::string ipadress = "";
std::string ssid = "";
std::string getIPAddress()
{
return ipadress;
}
std::string getSSID()
{
return ssid;
}
void task_doBlink(void *pvParameter)
{
ESP_LOGI("BLINK", "Blinken - start");
while (BlinkIsRunning)
{
// ESP_LOGI("BLINK", "Blinken - wait");
vTaskDelay(100 / portTICK_PERIOD_MS);
}
BlinkIsRunning = true;
// Init the GPIO
gpio_pad_select_gpio(BLINK_GPIO);
/* Set the GPIO as a push/pull output */
gpio_set_direction(BLINK_GPIO, GPIO_MODE_OUTPUT);
for (int i = 0; i < BlinkAnzahl; ++i)
{
if (BlinkAnzahl > 1)
{
gpio_set_level(BLINK_GPIO, 1);
vTaskDelay(BlinkDauer / portTICK_PERIOD_MS);
}
gpio_set_level(BLINK_GPIO, 0);
vTaskDelay(BlinkDauer / portTICK_PERIOD_MS);
}
if (BlinkOff)
gpio_set_level(BLINK_GPIO, 1);
ESP_LOGI("BLINK", "Blinken - done");
BlinkIsRunning = false;
vTaskDelete(NULL); //Delete this task if it exits from the loop above
}
void LEDBlinkTask(int _dauer, int _anz, bool _off)
{
BlinkDauer = _dauer;
BlinkAnzahl = _anz;
BlinkOff = _off;
xTaskCreate(&task_doBlink, "task_doBlink", configMINIMAL_STACK_SIZE * 8, NULL, tskIDLE_PRIORITY+1, NULL);
}
/////////////////////////////////////////////////////////
static void event_handler(void* arg, esp_event_base_t event_base,
int32_t event_id, void* event_data)
{
if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_START) {
LEDBlinkTask(200, 1, true);
esp_wifi_connect();
} else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_DISCONNECTED) {
if (s_retry_num < EXAMPLE_ESP_MAXIMUM_RETRY) {
// LEDBlinkTask(200, 1, true);
esp_wifi_connect();
s_retry_num++;
ESP_LOGI(TAG, "retry to connect to the AP");
} else {
xEventGroupSetBits(s_wifi_event_group, WIFI_FAIL_BIT);
}
ESP_LOGI(TAG,"connect to the AP fail");
} else if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) {
ip_event_got_ip_t* event = (ip_event_got_ip_t*) event_data;
ESP_LOGI(TAG, "got ip:" IPSTR, IP2STR(&event->ip_info.ip));
ipadress = std::string(ip4addr_ntoa((const ip4_addr*) &event->ip_info.ip));
s_retry_num = 0;
xEventGroupSetBits(s_wifi_event_group, WIFI_CONNECTED_BIT);
LEDBlinkTask(1000, 5, true);
}
}
void strinttoip4(const char *ip, int &a, int &b, int &c, int &d) {
std::string zw = std::string(ip);
std::stringstream s(zw);
char ch; //to temporarily store the '.'
s >> a >> ch >> b >> ch >> c >> ch >> d;
}
void wifi_init_sta(const char *_ssid, const char *_password, const char *_hostname, const char *_ipadr, const char *_gw, const char *_netmask, const char *_dns)
{
ssid = std::string(_ssid);
s_wifi_event_group = xEventGroupCreate();
ESP_ERROR_CHECK(esp_netif_init());
ESP_ERROR_CHECK(esp_event_loop_create_default());
/////////////////////////////////////////////////////////////////
esp_netif_t *my_sta = esp_netif_create_default_wifi_sta();
if ((_ipadr != NULL) && (_gw != NULL) && (_netmask != NULL))
{
ESP_LOGI(TAG, "set IP %s, GW %s, Netmask %s manual", _ipadr, _gw, _netmask);
esp_netif_dhcpc_stop(my_sta);
esp_netif_ip_info_t ip_info;
int a, b, c, d;
strinttoip4(_ipadr, a, b, c, d);
IP4_ADDR(&ip_info.ip, a, b, c, d);
strinttoip4(_gw, a, b, c, d);
IP4_ADDR(&ip_info.gw, a, b, c, d);
strinttoip4(_netmask, a, b, c, d);
IP4_ADDR(&ip_info.netmask, a, b, c, d);
esp_netif_set_ip_info(my_sta, &ip_info);
}
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
ESP_ERROR_CHECK(esp_wifi_init(&cfg));
if ((_ipadr != NULL) && (_gw != NULL) && (_netmask != NULL))
{
if (_dns == NULL)
_dns = _gw;
ESP_LOGI(TAG, "set DNS manual");
esp_netif_dns_info_t dns_info;
ip4_addr_t ip;
ip.addr = esp_ip4addr_aton(_dns);
ip_addr_set_ip4_u32(&dns_info.ip, ip.addr);
ESP_ERROR_CHECK(esp_netif_set_dns_info(my_sta, ESP_NETIF_DNS_MAIN, &dns_info));
}
/////////////////////////////////////////////////////////////////
// esp_netif_create_default_wifi_sta();
// wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
// ESP_ERROR_CHECK(esp_wifi_init(&cfg));
/*
////////////////////////////// esp-idf 4.2 //////////////////////////
esp_event_handler_instance_t instance_any_id;
esp_event_handler_instance_t instance_got_ip;
ESP_ERROR_CHECK(esp_event_handler_instance_register(WIFI_EVENT,
ESP_EVENT_ANY_ID,
&event_handler,
NULL,
&instance_any_id));
ESP_ERROR_CHECK(esp_event_handler_instance_register(IP_EVENT,
IP_EVENT_STA_GOT_IP,
&event_handler,
NULL,
&instance_got_ip));
////////////////////////// ENDE esp-idf 4.2 ///////////////////////////
*/
ESP_ERROR_CHECK(esp_event_handler_register(WIFI_EVENT, ESP_EVENT_ANY_ID, &event_handler, NULL));
ESP_ERROR_CHECK(esp_event_handler_register(IP_EVENT, IP_EVENT_STA_GOT_IP, &event_handler, NULL));
wifi_config_t wifi_config = { };
strcpy((char*)wifi_config.sta.ssid, (const char*)_ssid);
strcpy((char*)wifi_config.sta.password, (const char*)_password);
ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA) );
ESP_ERROR_CHECK(esp_wifi_set_config(WIFI_IF_STA, &wifi_config) );
ESP_ERROR_CHECK(esp_wifi_start() );
if (_hostname != NULL)
{
esp_err_t ret = tcpip_adapter_set_hostname(TCPIP_ADAPTER_IF_STA , _hostname);
hostname = std::string(_hostname);
if(ret != ESP_OK ){
ESP_LOGE(TAG,"failed to set hostname:%d",ret);
}
}
ESP_LOGI(TAG, "wifi_init_sta finished.");
/* Waiting until either the connection is established (WIFI_CONNECTED_BIT) or connection failed for the maximum
* number of re-tries (WIFI_FAIL_BIT). The bits are set by event_handler() (see above) */
EventBits_t bits = xEventGroupWaitBits(s_wifi_event_group,
WIFI_CONNECTED_BIT | WIFI_FAIL_BIT,
pdFALSE,
pdFALSE,
portMAX_DELAY);
/* xEventGroupWaitBits() returns the bits before the call returned, hence we can test which event actually
* happened. */
if (bits & WIFI_CONNECTED_BIT) {
ESP_LOGI(TAG, "connected to ap SSID:%s password:%s",
_ssid, _password);
} else if (bits & WIFI_FAIL_BIT) {
ESP_LOGI(TAG, "Failed to connect to SSID:%s, password:%s",
_ssid, _password);
} else {
ESP_LOGE(TAG, "UNEXPECTED EVENT");
}
/* The event will not be processed after unregister */
/*
////////////////////////////// esp-idf 4.2 //////////////////////////
ESP_ERROR_CHECK(esp_event_handler_instance_unregister(IP_EVENT, IP_EVENT_STA_GOT_IP, instance_got_ip));
ESP_ERROR_CHECK(esp_event_handler_instance_unregister(WIFI_EVENT, ESP_EVENT_ANY_ID, instance_any_id));
////////////////////////// ENDE esp-idf 4.2 ///////////////////////////
*/
/* Deaktiveren, damit bei einen Verbindungsabbruch neu aufgebaut wird
ESP_ERROR_CHECK(esp_event_handler_unregister(IP_EVENT, IP_EVENT_STA_GOT_IP, &event_handler));
ESP_ERROR_CHECK(esp_event_handler_unregister(WIFI_EVENT, ESP_EVENT_ANY_ID, &event_handler));
vEventGroupDelete(s_wifi_event_group);
*/
/*
while (BlinkIsRunning)
{
vTaskDelay(100 / portTICK_PERIOD_MS);
}
*/
}
void wifi_init_sta(const char *_ssid, const char *_password, const char *_hostname)
{
wifi_init_sta(_ssid, _password, _hostname, NULL, NULL, NULL, NULL);
}
void wifi_init_sta(const char *_ssid, const char *_password)
{
wifi_init_sta(_ssid, _password, NULL, NULL, NULL, NULL, NULL);
}

View File

@@ -0,0 +1,16 @@
#ifndef CONNECT_WLAN_H
#define CONNECT_WLAN_H
#include <string>
void wifi_init_sta(const char *_ssid, const char *_password, const char *_hostname, const char *_ipadr, const char *_gw, const char *_netmask, const char *_dns);
void wifi_init_sta(const char *_ssid, const char *_password, const char *_hostname);
void wifi_init_sta(const char *_ssid, const char *_password);
std::string getIPAddress();
std::string getSSID();
extern std::string hostname;
extern std::string std_hostname;
#endif

View File

@@ -0,0 +1,257 @@
#include "read_wlanini.h"
#include "Helper.h"
#include "connect_wlan.h"
#include <fstream>
#include <string>
#include <vector>
#include <sstream>
#include <iostream>
#include <string.h>
std::vector<string> ZerlegeZeile(std::string input, std::string _delimiter = "")
{
std::vector<string> Output;
std::string delimiter = " =,";
if (_delimiter.length() > 0){
delimiter = _delimiter;
}
input = trim(input, delimiter);
size_t pos = findDelimiterPos(input, delimiter);
std::string token;
while (pos != std::string::npos) {
token = input.substr(0, pos);
token = trim(token, delimiter);
Output.push_back(token);
input.erase(0, pos + 1);
input = trim(input, delimiter);
pos = findDelimiterPos(input, delimiter);
}
Output.push_back(input);
return Output;
}
void LoadWlanFromFile(std::string fn, char *&_ssid, char *&_password, char *&_hostname, char *&_ipadr, char *&_gw, char *&_netmask, char *&_dns)
{
std::string ssid = "";
std::string passphrase = "";
std::string ipaddress = "";
std::string gw = "";
std::string netmask = "";
std::string dns = "";
std::string line = "";
std::vector<string> zerlegt;
hostname = std_hostname;
FILE* pFile;
fn = FormatFileName(fn);
pFile = OpenFileAndWait(fn.c_str(), "r");
printf("file loaded\n");
if (pFile == NULL)
return;
char zw[1024];
fgets(zw, 1024, pFile);
line = std::string(zw);
while ((line.size() > 0) || !(feof(pFile)))
{
// printf("%s", line.c_str());
zerlegt = ZerlegeZeile(line, "=");
zerlegt[0] = trim(zerlegt[0], " ");
for (int i = 2; i < zerlegt.size(); ++i)
zerlegt[1] = zerlegt[1] + "=" + zerlegt[i];
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "HOSTNAME")){
hostname = trim(zerlegt[1]);
if ((hostname[0] == '"') && (hostname[hostname.length()-1] == '"')){
hostname = hostname.substr(1, hostname.length()-2);
}
}
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "SSID")){
ssid = trim(zerlegt[1]);
if ((ssid[0] == '"') && (ssid[ssid.length()-1] == '"')){
ssid = ssid.substr(1, ssid.length()-2);
}
}
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "PASSWORD")){
passphrase = zerlegt[1];
if ((passphrase[0] == '"') && (passphrase[passphrase.length()-1] == '"')){
passphrase = passphrase.substr(1, passphrase.length()-2);
}
}
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "IP")){
ipaddress = zerlegt[1];
if ((ipaddress[0] == '"') && (ipaddress[ipaddress.length()-1] == '"')){
ipaddress = ipaddress.substr(1, ipaddress.length()-2);
}
}
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "GATEWAY")){
gw = zerlegt[1];
if ((gw[0] == '"') && (gw[gw.length()-1] == '"')){
gw = gw.substr(1, gw.length()-2);
}
}
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "NETMASK")){
netmask = zerlegt[1];
if ((netmask[0] == '"') && (netmask[netmask.length()-1] == '"')){
netmask = netmask.substr(1, netmask.length()-2);
}
}
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "DNS")){
dns = zerlegt[1];
if ((dns[0] == '"') && (dns[dns.length()-1] == '"')){
dns = dns.substr(1, dns.length()-2);
}
}
if (fgets(zw, 1024, pFile) == NULL)
{
line = "";
}
else
{
line = std::string(zw);
}
}
fclose(pFile);
// Check if Hostname was empty in .ini if yes set to std_hostname
if(hostname.length() == 0){
hostname = std_hostname;
}
_hostname = new char[hostname.length() + 1];
strcpy(_hostname, hostname.c_str());
_ssid = new char[ssid.length() + 1];
strcpy(_ssid, ssid.c_str());
_password = new char[passphrase.length() + 1];
strcpy(_password, passphrase.c_str());
if (ipaddress.length() > 0)
{
_ipadr = new char[ipaddress.length() + 1];
strcpy(_ipadr, ipaddress.c_str());
}
else
_ipadr = NULL;
if (gw.length() > 0)
{
_gw = new char[gw.length() + 1];
strcpy(_gw, gw.c_str());
}
else
_gw = NULL;
if (netmask.length() > 0)
{
_netmask = new char[netmask.length() + 1];
strcpy(_netmask, netmask.c_str());
}
else
_netmask = NULL;
if (dns.length() > 0)
{
_dns = new char[dns.length() + 1];
strcpy(_dns, dns.c_str());
}
else
_dns = NULL;
}
bool ChangeHostName(std::string fn, std::string _newhostname)
{
if (_newhostname == hostname)
return false;
string line = "";
std::vector<string> zerlegt;
bool found = false;
std::vector<string> neuesfile;
FILE* pFile;
fn = FormatFileName(fn);
pFile = OpenFileAndWait(fn.c_str(), "r");
printf("file loaded\n");
if (pFile == NULL)
return false;
char zw[1024];
fgets(zw, 1024, pFile);
line = std::string(zw);
while ((line.size() > 0) || !(feof(pFile)))
{
printf("%s", line.c_str());
zerlegt = ZerlegeZeile(line, "=");
zerlegt[0] = trim(zerlegt[0], " ");
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "HOSTNAME")){
line = "hostname = \"" + _newhostname + "\"\n";
found = true;
}
neuesfile.push_back(line);
if (fgets(zw, 1024, pFile) == NULL)
{
line = "";
}
else
{
line = std::string(zw);
}
}
if (!found)
{
line = "\nhostname = \"" + _newhostname + "\"\n";
neuesfile.push_back(line);
}
fclose(pFile);
pFile = OpenFileAndWait(fn.c_str(), "w+");
for (int i = 0; i < neuesfile.size(); ++i)
{
printf(neuesfile[i].c_str());
fputs(neuesfile[i].c_str(), pFile);
}
fclose(pFile);
printf("*** Update hostname done ***\n");
return true;
}

View File

@@ -0,0 +1,11 @@
#ifndef READ_WLANINI_H
#define READ_WLANINI_H
#include <string>
void LoadWlanFromFile(std::string fn, char *&_ssid, char *&_password, char *&_hostname, char *&_ipadr, char *&_gw, char *&_netmask, char *&_dns);
bool ChangeHostName(std::string fn, std::string _newhostname);
#endif

View File

@@ -23,7 +23,7 @@ if(NOT DEFINED ENV{IDF_PATH})
endif()
idf_component_register(
SRCS tensorflow/lite/micro/micro_error_reporter.cc tensorflow/lite/micro/simple_memory_allocator.cc tensorflow/lite/micro/memory_helpers.cc tensorflow/lite/micro/test_helpers.cc tensorflow/lite/micro/recording_micro_allocator.cc tensorflow/lite/micro/micro_time.cc tensorflow/lite/micro/recording_simple_memory_allocator.cc tensorflow/lite/micro/micro_string.cc tensorflow/lite/micro/micro_profiler.cc tensorflow/lite/micro/debug_log.cc tensorflow/lite/micro/all_ops_resolver.cc tensorflow/lite/micro/micro_utils.cc tensorflow/lite/micro/micro_interpreter.cc tensorflow/lite/micro/micro_allocator.cc tensorflow/lite/micro/benchmarks/keyword_scrambled_model_data.cc tensorflow/lite/micro/memory_planner/linear_memory_planner.cc tensorflow/lite/micro/memory_planner/greedy_memory_planner.cc tensorflow/lite/micro/testing/test_conv_model.cc tensorflow/lite/c/common.c tensorflow/lite/core/api/error_reporter.cc tensorflow/lite/core/api/flatbuffer_conversions.cc tensorflow/lite/core/api/op_resolver.cc tensorflow/lite/core/api/tensor_utils.cc tensorflow/lite/kernels/internal/quantization_util.cc tensorflow/lite/kernels/kernel_util.cc tensorflow/lite/schema/schema_utils.cc tensorflow/lite/micro/kernels/prelu.cc tensorflow/lite/micro/kernels/dequantize.cc tensorflow/lite/micro/kernels/pad.cc tensorflow/lite/micro/kernels/shape.cc tensorflow/lite/micro/kernels/l2norm.cc tensorflow/lite/micro/kernels/tanh.cc tensorflow/lite/micro/kernels/resize_nearest_neighbor.cc tensorflow/lite/micro/kernels/logical.cc tensorflow/lite/micro/kernels/kernel_util.cc tensorflow/lite/micro/kernels/ceil.cc tensorflow/lite/micro/kernels/arg_min_max.cc tensorflow/lite/micro/kernels/softmax.cc tensorflow/lite/micro/kernels/sub.cc tensorflow/lite/micro/kernels/add.cc tensorflow/lite/micro/kernels/floor.cc tensorflow/lite/micro/kernels/kernel_runner.cc tensorflow/lite/micro/kernels/split_v.cc tensorflow/lite/micro/kernels/hard_swish.cc tensorflow/lite/micro/kernels/pooling.cc tensorflow/lite/micro/kernels/concatenation.cc tensorflow/lite/micro/kernels/mul.cc tensorflow/lite/micro/kernels/unpack.cc tensorflow/lite/micro/kernels/round.cc tensorflow/lite/micro/kernels/quantize.cc tensorflow/lite/micro/kernels/ethosu.cc tensorflow/lite/micro/kernels/svdf.cc tensorflow/lite/micro/kernels/maximum_minimum.cc tensorflow/lite/micro/kernels/reshape.cc tensorflow/lite/micro/kernels/reduce.cc tensorflow/lite/micro/kernels/strided_slice.cc tensorflow/lite/micro/kernels/neg.cc tensorflow/lite/micro/kernels/pack.cc tensorflow/lite/micro/kernels/elementwise.cc tensorflow/lite/micro/kernels/comparisons.cc tensorflow/lite/micro/kernels/fully_connected.cc tensorflow/lite/micro/kernels/depthwise_conv.cc tensorflow/lite/micro/kernels/split.cc tensorflow/lite/micro/kernels/logistic.cc tensorflow/lite/micro/kernels/circular_buffer.cc tensorflow/lite/micro/kernels/conv.cc tensorflow/lite/micro/kernels/activations.cc
SRCS tensorflow/lite/micro/simple_memory_allocator.cc tensorflow/lite/micro/micro_error_reporter.cc tensorflow/lite/micro/memory_helpers.cc tensorflow/lite/micro/test_helpers.cc tensorflow/lite/micro/recording_micro_allocator.cc tensorflow/lite/micro/micro_time.cc tensorflow/lite/micro/recording_simple_memory_allocator.cc tensorflow/lite/micro/micro_string.cc tensorflow/lite/micro/micro_profiler.cc tensorflow/lite/micro/debug_log.cc tensorflow/lite/micro/all_ops_resolver.cc tensorflow/lite/micro/micro_utils.cc tensorflow/lite/micro/micro_interpreter.cc tensorflow/lite/micro/micro_allocator.cc tensorflow/lite/micro/system_setup.cc tensorflow/lite/micro/memory_planner/linear_memory_planner.cc tensorflow/lite/micro/memory_planner/greedy_memory_planner.cc tensorflow/lite/c/common.c tensorflow/lite/core/api/error_reporter.cc tensorflow/lite/core/api/flatbuffer_conversions.cc tensorflow/lite/core/api/op_resolver.cc tensorflow/lite/core/api/tensor_utils.cc tensorflow/lite/kernels/internal/quantization_util.cc tensorflow/lite/kernels/kernel_util.cc tensorflow/lite/schema/schema_utils.cc tensorflow/lite/micro/kernels/activations.cc tensorflow/lite/micro/kernels/add.cc tensorflow/lite/micro/kernels/add_n.cc tensorflow/lite/micro/kernels/arg_min_max.cc tensorflow/lite/micro/kernels/batch_to_space_nd.cc tensorflow/lite/micro/kernels/cast.cc tensorflow/lite/micro/kernels/ceil.cc tensorflow/lite/micro/kernels/circular_buffer.cc tensorflow/lite/micro/kernels/comparisons.cc tensorflow/lite/micro/kernels/concatenation.cc tensorflow/lite/micro/kernels/conv.cc tensorflow/lite/micro/kernels/conv_common.cc tensorflow/lite/micro/kernels/depthwise_conv.cc tensorflow/lite/micro/kernels/depthwise_conv_common.cc tensorflow/lite/micro/kernels/dequantize.cc tensorflow/lite/micro/kernels/detection_postprocess.cc tensorflow/lite/micro/kernels/div.cc tensorflow/lite/micro/kernels/elementwise.cc tensorflow/lite/micro/kernels/elu.cc tensorflow/lite/micro/kernels/ethosu.cc tensorflow/lite/micro/kernels/exp.cc tensorflow/lite/micro/kernels/expand_dims.cc tensorflow/lite/micro/kernels/fill.cc tensorflow/lite/micro/kernels/floor.cc tensorflow/lite/micro/kernels/fully_connected.cc tensorflow/lite/micro/kernels/fully_connected_common.cc tensorflow/lite/micro/kernels/hard_swish.cc tensorflow/lite/micro/kernels/kernel_runner.cc tensorflow/lite/micro/kernels/kernel_util.cc tensorflow/lite/micro/kernels/l2norm.cc tensorflow/lite/micro/kernels/l2_pool_2d.cc tensorflow/lite/micro/kernels/leaky_relu.cc tensorflow/lite/micro/kernels/logical.cc tensorflow/lite/micro/kernels/logistic.cc tensorflow/lite/micro/kernels/maximum_minimum.cc tensorflow/lite/micro/kernels/mul.cc tensorflow/lite/micro/kernels/neg.cc tensorflow/lite/micro/kernels/pack.cc tensorflow/lite/micro/kernels/pad.cc tensorflow/lite/micro/kernels/pooling.cc tensorflow/lite/micro/kernels/prelu.cc tensorflow/lite/micro/kernels/quantize.cc tensorflow/lite/micro/kernels/quantize_common.cc tensorflow/lite/micro/kernels/reduce.cc tensorflow/lite/micro/kernels/reshape.cc tensorflow/lite/micro/kernels/resize_nearest_neighbor.cc tensorflow/lite/micro/kernels/round.cc tensorflow/lite/micro/kernels/shape.cc tensorflow/lite/micro/kernels/softmax.cc tensorflow/lite/micro/kernels/softmax_common.cc tensorflow/lite/micro/kernels/space_to_batch_nd.cc tensorflow/lite/micro/kernels/split.cc tensorflow/lite/micro/kernels/split_v.cc tensorflow/lite/micro/kernels/squeeze.cc tensorflow/lite/micro/kernels/strided_slice.cc tensorflow/lite/micro/kernels/sub.cc tensorflow/lite/micro/kernels/svdf.cc tensorflow/lite/micro/kernels/svdf_common.cc tensorflow/lite/micro/kernels/tanh.cc tensorflow/lite/micro/kernels/transpose_conv.cc tensorflow/lite/micro/kernels/unpack.cc tensorflow/lite/micro/kernels/zeros_like.cc
INCLUDE_DIRS . third_party/gemmlowp third_party/flatbuffers/include third_party/ruy)
# Reduce the level of paranoia to be able to compile TF sources
@@ -32,7 +32,7 @@ target_compile_options(${COMPONENT_LIB} PRIVATE
-Wno-missing-field-initializers
-Wno-type-limits)
target_compile_options(${COMPONENT_LIB} PRIVATE -fno-unwind-tables -ffunction-sections -fdata-sections -fmessage-length=0 -DTF_LITE_STATIC_MEMORY -DTF_LITE_DISABLE_X86_NEON -O3 -Werror -Wsign-compare -Wdouble-promotion -Wshadow -Wunused-variable -Wmissing-field-initializers -Wunused-function -Wswitch -Wvla -Wall -Wextra -Wstrict-aliasing -Wno-unused-parameter)
target_compile_options(${COMPONENT_LIB} PRIVATE $<$<COMPILE_LANGUAGE:CXX>: -std=c++11 -fno-rtti -fno-exceptions -fno-threadsafe-statics -fno-unwind-tables -ffunction-sections -fdata-sections -fmessage-length=0 -DTF_LITE_STATIC_MEMORY -DTF_LITE_DISABLE_X86_NEON -O3 -Werror -Wsign-compare -Wdouble-promotion -Wshadow -Wunused-variable -Wmissing-field-initializers -Wunused-function -Wswitch -Wvla -Wall -Wextra -Wstrict-aliasing -Wno-unused-parameter >)
target_compile_options(${COMPONENT_LIB} PRIVATE -fno-unwind-tables -ffunction-sections -fdata-sections -fmessage-length=0 -DTF_LITE_STATIC_MEMORY -DTF_LITE_DISABLE_X86_NEON -O3 -Werror -Wsign-compare -Wdouble-promotion -Wshadow -Wunused-variable -Wmissing-field-initializers -Wunused-function -Wswitch -Wvla -Wall -Wextra -Wstrict-aliasing -Wno-unused-parameter -DESP)
target_compile_options(${COMPONENT_LIB} PRIVATE $<$<COMPILE_LANGUAGE:CXX>: -std=c++11 -fno-rtti -fno-exceptions -fno-threadsafe-statics -fno-unwind-tables -ffunction-sections -fdata-sections -fmessage-length=0 -DTF_LITE_STATIC_MEMORY -DTF_LITE_DISABLE_X86_NEON -O3 -Werror -Wsign-compare -Wdouble-promotion -Wshadow -Wunused-variable -Wmissing-field-initializers -Wunused-function -Wswitch -Wvla -Wall -Wextra -Wstrict-aliasing -Wno-unused-parameter -DESP >)
target_compile_options(${COMPONENT_LIB} INTERFACE $<$<IN_LIST:-DTF_LITE_STATIC_MEMORY,$<TARGET_PROPERTY:${COMPONENT_LIB},COMPILE_OPTIONS>>:-DTF_LITE_STATIC_MEMORY>)
target_link_libraries(${COMPONENT_LIB} PRIVATE -lm)

View File

@@ -1,139 +0,0 @@
/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_CORE_PUBLIC_VERSION_H_
#define TENSORFLOW_CORE_PUBLIC_VERSION_H_
// TensorFlow uses semantic versioning, see http://semver.org/.
// Also update tensorflow/tensorflow.bzl and
// tensorflow/tools/pip_package/setup.py
#define TF_MAJOR_VERSION 2
#define TF_MINOR_VERSION 5
#define TF_PATCH_VERSION 0
// TF_VERSION_SUFFIX is non-empty for pre-releases (e.g. "-alpha", "-alpha.1",
// "-beta", "-rc", "-rc.1")
#define TF_VERSION_SUFFIX ""
#define TF_STR_HELPER(x) #x
#define TF_STR(x) TF_STR_HELPER(x)
// e.g. "0.5.0" or "0.6.0-alpha".
#define TF_VERSION_STRING \
(TF_STR(TF_MAJOR_VERSION) "." TF_STR(TF_MINOR_VERSION) "." TF_STR( \
TF_PATCH_VERSION) TF_VERSION_SUFFIX)
// GraphDef compatibility versions (the versions field in graph.proto).
//
// Each graph has producer and min_consumer versions, and each
// consumer has its own version and a min_producer. In addition, graphs can
// mark specific consumer versions as bad (to prevent bugs from executing).
// A consumer will execute a graph if the consumer's version is at least the
// graph's min_consumer, the graph's producer version is at least the consumer's
// min_producer, and the consumer version isn't specifically disallowed by the
// graph.
//
// By default, newly created graphs have producer version TF_GRAPH_DEF_VERSION
// min_consumer TF_GRAPH_DEF_MIN_CONSUMER, and no other bad consumer versions.
//
// Version history:
//
// 0. Graphs created before GraphDef versioning
// 1. First real version (2dec2015)
// 2. adjust_contrast only takes float, doesn't perform clamping (11dec2015)
// 3. Remove TileGrad, since it was equivalent to reduce_sum (30dec2015)
// 4. When support for this version is removed, we can safely make AttrValue
// parsing more strict with respect to empty list values (see
// 111635679, 7jan2016).
// 5. Graphs are wholly-validated during Session::Create() (7jan2016).
// 6. TensorFlow is scalar strict within Google (27jan2016).
// 7. Remove TopK in favor of TopKV2 (5feb2016).
// 8. Replace RandomCrop from C++ with pure Python (5feb2016).
// 9. Deprecate batch_norm_with_global_normalization (16feb2016).
// 10. Deprecate conv3d_backprop_{filter,input} (10jun2016).
// 11. Deprecate {batch}_self_adjoint_eig (3aug2016).
// 12. Graph consumers understand the node_def field of FunctionDef (22aug2016).
// 13. Deprecate multiple batch linear algebra ops (9sep2016).
// 14. Deprecate batch_matrix_* ops. (10sep2016).
// 15. Deprecate batch_fft_* ops. (14sep2016).
// 16. Deprecate tensor_array (v1) ops in favor of v2 (10nov2016).
// 17. Deprecate inv (11nov2016).
// 17. Expose reverse_v2 (10nov2016)
// 18. Add VariableV2 (30nov2016)
// 19. Deprecated ops created by models moved out of core SkipGram, NegTrain.
// (08dec2016)
// 20. Catch all version 1.0 changes to Python API generation. SplitV is now
// used for tf.split, ReverseV2 is now used by tf.reverse, ConcatV2 is
// now used by tf.concat. Graphs use flooring
// division and mod semantics. TensorArrayV3. (12dec2016)
// Also considered the version for when it is required for reduction
// ops' indices to be scalar or vector, and not higher rank.
// Some earlier graph def versions allowed this.
// 21. Dropped FunctionDef.Node support, switched to node_def introduced
// in version 12. (11jan2017)
// 22. Placeholder now can specify and enforce scalar and partial
// shapes, particularly when restoring a graph from GraphDef
// produced at version 22 or later. (04/10/2016)
// 23. Remove NonMaxSuppression in favor of NonMaxSuppressionV2.
// 24. Deprecate lookup ops (v1) ops in favor of v2 (30may2017)
// 25. Deprecate stack (v1) ops in favor of v2 (2017/6/15).
// 25. Deprecate RandomPoisson (v1) ops in favor of v2 (2017/10/25).
// 26. Add a bool 'stripped_default_attrs' to MetaInfoDef indicating
// whether default-valued attrs have been stripped from the nodes in the
// GraphDef. (7dec2017)
// 27. Deprecate TensorArray ops v2 in favor of v3 and deprecated io_ops
// deprecated in favor of V2 ops. (2018/01/23)
// 28. Deprecate MatrixExponential op in favor of Python implementation.
// (2018/08/21).
// (2019/02/15). Added `control_ret` field to FunctionDef proto, and
// `control_output` field to OpDef proto.
// 29. Deprecate StatefulStandardNormal op in favor of StatefulStandardNormalV2.
// (2019/03/25).
// (2019/04/17). Added `arg_attr` field to FunctionDefProto.
// 30. (2019/05/09) First date based GraphDef version. GraphDef
// versions advance by 1 each day after this point.
#define TF_GRAPH_DEF_VERSION_MIN_PRODUCER 0
#define TF_GRAPH_DEF_VERSION_MIN_CONSUMER 0
#define TF_GRAPH_DEF_VERSION 578 // Updated: 2020/11/7
// Checkpoint compatibility versions (the versions field in SavedSliceMeta).
//
// The checkpoint versions have the same semantics as GraphDef versions, but the
// numbering scheme is separate. We have no plans to ever deprecate checkpoint
// versions, but it's good to have this in place in case we ever need to.
//
// Version history:
//
// 0. Checkpoints saved before checkpoint versioning.
// 1. First real version (10feb2015).
#define TF_CHECKPOINT_VERSION_MIN_PRODUCER 0
#define TF_CHECKPOINT_VERSION_MIN_CONSUMER 0
#define TF_CHECKPOINT_VERSION 1
/// Version query functions (defined in generated version_info.cc)
// Host compiler version (declared elsewhere to be __VERSION__)
extern const char* tf_compiler_version();
// The git commit designator when tensorflow was built
// If no git repository, this will be "internal".
extern const char* tf_git_version();
// Value of the _GLIBCXX_USE_CXX11_ABI flag, or 0 if it's not set.
extern int tf_cxx11_abi_flag();
// Returns 1 if build is monolithic, or 0 otherwise.
extern int tf_monolithic_build();
#endif // TENSORFLOW_CORE_PUBLIC_VERSION_H_

View File

@@ -67,9 +67,8 @@ typedef struct {
typedef enum {
kTfLiteActNone = 0,
kTfLiteActRelu,
kTfLiteActReluN1To1, // min(max(-1, x), 1)
kTfLiteActRelu1 = kTfLiteActReluN1To1, // kTfLiteActRelu1 will be deprecated.
kTfLiteActRelu6, // min(max(0, x), 6)
kTfLiteActReluN1To1, // min(max(-1, x), 1)
kTfLiteActRelu6, // min(max(0, x), 6)
kTfLiteActTanh,
kTfLiteActSignBit,
kTfLiteActSigmoid,
@@ -88,6 +87,17 @@ typedef struct {
int dilation_height_factor;
} TfLiteConvParams;
typedef struct {
TfLitePadding padding;
int stride_width;
int stride_height;
int stride_depth;
int dilation_width_factor;
int dilation_height_factor;
int dilation_depth_factor;
TfLiteFusedActivation activation;
} TfLiteConv3DParams;
typedef struct {
TfLitePadding padding;
int stride_width;
@@ -214,6 +224,10 @@ typedef struct {
typedef struct {
bool adj_x;
bool adj_y;
// Parameters for BatchMatMul version 4 or above.
// If set to true and the weights are quantized, then non constant inputs
// are quantized at evaluation time with asymmetric quantization.
bool asymmetric_quantize_inputs;
} TfLiteBatchMatMulParams;
typedef struct {
@@ -351,6 +365,7 @@ typedef struct {
typedef struct {
int axis;
int batch_dims;
} TfLiteGatherParams;
typedef struct {
@@ -474,6 +489,12 @@ typedef struct {
int init_subgraph_index;
} TfLiteCallOnceParams;
typedef struct {
int table_id;
TfLiteType key_dtype;
TfLiteType value_dtype;
} TfLiteHashtableParams;
#ifdef __cplusplus
} // extern "C"
#endif // __cplusplus

View File

@@ -0,0 +1,95 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
// This file declares types used by the pure C inference API defined in c_api.h,
// some of which are also used in the C++ and C kernel and interpreter APIs.
#ifndef TENSORFLOW_LITE_C_C_API_TYPES_H_
#define TENSORFLOW_LITE_C_C_API_TYPES_H_
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
// Define TFL_CAPI_EXPORT macro to export a function properly with a shared
// library.
#ifdef SWIG
#define TFL_CAPI_EXPORT
#else
#if defined(_WIN32)
#ifdef TFL_COMPILE_LIBRARY
#define TFL_CAPI_EXPORT __declspec(dllexport)
#else
#define TFL_CAPI_EXPORT __declspec(dllimport)
#endif // TFL_COMPILE_LIBRARY
#else
#define TFL_CAPI_EXPORT __attribute__((visibility("default")))
#endif // _WIN32
#endif // SWIG
typedef enum TfLiteStatus {
kTfLiteOk = 0,
// Generally referring to an error in the runtime (i.e. interpreter)
kTfLiteError = 1,
// Generally referring to an error from a TfLiteDelegate itself.
kTfLiteDelegateError = 2,
// Generally referring to an error in applying a delegate due to
// incompatibility between runtime and delegate, e.g., this error is returned
// when trying to apply a TfLite delegate onto a model graph that's already
// immutable.
kTfLiteApplicationError = 3
} TfLiteStatus;
// Types supported by tensor
typedef enum {
kTfLiteNoType = 0,
kTfLiteFloat32 = 1,
kTfLiteInt32 = 2,
kTfLiteUInt8 = 3,
kTfLiteInt64 = 4,
kTfLiteString = 5,
kTfLiteBool = 6,
kTfLiteInt16 = 7,
kTfLiteComplex64 = 8,
kTfLiteInt8 = 9,
kTfLiteFloat16 = 10,
kTfLiteFloat64 = 11,
kTfLiteComplex128 = 12,
kTfLiteUInt64 = 13,
kTfLiteResource = 14,
kTfLiteVariant = 15,
kTfLiteUInt32 = 16,
} TfLiteType;
// Legacy. Will be deprecated in favor of TfLiteAffineQuantization.
// If per-layer quantization is specified this field will still be populated in
// addition to TfLiteAffineQuantization.
// Parameters for asymmetric quantization. Quantized values can be converted
// back to float using:
// real_value = scale * (quantized_value - zero_point)
typedef struct TfLiteQuantizationParams {
float scale;
int32_t zero_point;
} TfLiteQuantizationParams;
#ifdef __cplusplus
} // extern C
#endif
#endif // TENSORFLOW_LITE_C_C_API_TYPES_H_

View File

@@ -14,6 +14,8 @@ limitations under the License.
==============================================================================*/
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/c/c_api_types.h"
#ifndef TF_LITE_STATIC_MEMORY
#include <stdlib.h>
#include <string.h>
@@ -197,12 +199,16 @@ const char* TfLiteTypeGetName(TfLiteType type) {
return "INT16";
case kTfLiteInt32:
return "INT32";
case kTfLiteUInt32:
return "UINT32";
case kTfLiteUInt8:
return "UINT8";
case kTfLiteInt8:
return "INT8";
case kTfLiteInt64:
return "INT64";
case kTfLiteUInt64:
return "UINT64";
case kTfLiteBool:
return "BOOL";
case kTfLiteComplex64:
@@ -215,6 +221,10 @@ const char* TfLiteTypeGetName(TfLiteType type) {
return "FLOAT16";
case kTfLiteFloat64:
return "FLOAT64";
case kTfLiteResource:
return "RESOURCE";
case kTfLiteVariant:
return "VARIANT";
}
return "Unknown type";
}

View File

@@ -40,26 +40,12 @@ limitations under the License.
#include <stddef.h>
#include <stdint.h>
#include "tensorflow/lite/c/c_api_types.h" // IWYU pragma: export
#ifdef __cplusplus
extern "C" {
#endif // __cplusplus
typedef enum TfLiteStatus {
kTfLiteOk = 0,
// Generally referring to an error in the runtime (i.e. interpreter)
kTfLiteError = 1,
// Generally referring to an error from a TfLiteDelegate itself.
kTfLiteDelegateError = 2,
// Generally referring to an error in applying a delegate due to
// incompatibility between runtime and delegate, e.g., this error is returned
// when trying to apply a TfLite delegate onto a model graph that's already
// immutable.
kTfLiteApplicationError = 3
} TfLiteStatus;
// The list of external context types known to TF Lite. This list exists solely
// to avoid conflicts and to ensure ops can share the external contexts they
// need. Access to the external contexts is controlled by one of the
@@ -80,7 +66,7 @@ struct TfLiteRegistration;
// An external context is a collection of information unrelated to the TF Lite
// framework, but useful to a subset of the ops. TF Lite knows very little
// about about the actual contexts, but it keeps a list of them, and is able to
// about the actual contexts, but it keeps a list of them, and is able to
// refresh them if configurations like the number of recommended threads
// change.
typedef struct TfLiteExternalContext {
@@ -98,7 +84,8 @@ typedef struct TfLiteIntArray {
// https://github.com/google/re2/commit/b94b7cd42e9f02673cd748c1ac1d16db4052514c
#if (!defined(__clang__) && defined(__GNUC__) && __GNUC__ == 6 && \
__GNUC_MINOR__ >= 1) || \
defined(HEXAGON) || (__clang_major__ == 7 && __clang_minor__ == 1)
defined(HEXAGON) || \
(defined(__clang__) && __clang_major__ == 7 && __clang_minor__ == 1)
int data[0];
#else
int data[];
@@ -254,22 +241,6 @@ void TfLiteFloatArrayFree(TfLiteFloatArray* a);
} \
} while (0)
// Define TFL_CAPI_EXPORT macro to export a function properly with a shared
// library.
#ifdef SWIG
#define TFL_CAPI_EXPORT
#else
#if defined(_WIN32)
#ifdef TFL_COMPILE_LIBRARY
#define TFL_CAPI_EXPORT __declspec(dllexport)
#else
#define TFL_CAPI_EXPORT __declspec(dllimport)
#endif // TFL_COMPILE_LIBRARY
#else
#define TFL_CAPI_EXPORT __attribute__((visibility("default")))
#endif // _WIN32
#endif // SWIG
// Single-precision complex data type compatible with the C99 definition.
typedef struct TfLiteComplex64 {
float re, im; // real and imaginary parts, respectively.
@@ -285,23 +256,6 @@ typedef struct TfLiteFloat16 {
uint16_t data;
} TfLiteFloat16;
// Types supported by tensor
typedef enum {
kTfLiteNoType = 0,
kTfLiteFloat32 = 1,
kTfLiteInt32 = 2,
kTfLiteUInt8 = 3,
kTfLiteInt64 = 4,
kTfLiteString = 5,
kTfLiteBool = 6,
kTfLiteInt16 = 7,
kTfLiteComplex64 = 8,
kTfLiteInt8 = 9,
kTfLiteFloat16 = 10,
kTfLiteFloat64 = 11,
kTfLiteComplex128 = 12,
} TfLiteType;
// Return the name of a given type, for error reporting purposes.
const char* TfLiteTypeGetName(TfLiteType type);
@@ -318,22 +272,12 @@ typedef enum TfLiteQuantizationType {
typedef struct TfLiteQuantization {
// The type of quantization held by params.
TfLiteQuantizationType type;
// Holds a reference to one of the quantization param structures specified
// below.
// Holds an optional reference to a quantization param structure. The actual
// type depends on the value of the `type` field (see the comment there for
// the values and corresponding types).
void* params;
} TfLiteQuantization;
// Legacy. Will be deprecated in favor of TfLiteAffineQuantization.
// If per-layer quantization is specified this field will still be populated in
// addition to TfLiteAffineQuantization.
// Parameters for asymmetric quantization. Quantized values can be converted
// back to float using:
// real_value = scale * (quantized_value - zero_point)
typedef struct TfLiteQuantizationParams {
float scale;
int32_t zero_point;
} TfLiteQuantizationParams;
// Parameters for asymmetric quantization across a dimension (i.e per output
// channel quantization).
// quantized_dimension specifies which dimension the scales and zero_points
@@ -353,7 +297,9 @@ typedef union TfLitePtrUnion {
* GetTensorData<TYPE>(tensor) instead, otherwise only access .data, as other
* members are deprecated. */
int32_t* i32;
uint32_t* u32;
int64_t* i64;
uint64_t* u64;
float* f;
TfLiteFloat16* f16;
double* f64;
@@ -430,6 +376,17 @@ typedef struct TfLiteCustomAllocation {
size_t bytes;
} TfLiteCustomAllocation;
// The flags used in `Interpreter::SetCustomAllocationForTensor`.
// Note that this is a bitmask, so the values should be 1, 2, 4, 8, ...etc.
typedef enum TfLiteCustomAllocationFlags {
kTfLiteCustomAllocationFlagsNone = 0,
// Skips checking whether allocation.data points to an aligned buffer as
// expected by the TFLite runtime.
// NOTE: Setting this flag can cause crashes when calling Invoke().
// Use with caution.
kTfLiteCustomAllocationFlagsSkipAlignCheck = 1,
} TfLiteCustomAllocationFlags;
// A tensor in the interpreter system which is a wrapper around a buffer of
// data including a dimensionality (or NULL if not currently defined).
#ifndef TF_LITE_STATIC_MEMORY
@@ -534,7 +491,7 @@ typedef struct TfLiteNode {
// WARNING: This is an experimental interface that is subject to change.
struct TfLiteDelegate* delegate;
} TfLiteNode;
#else // defined(TF_LITE_STATIC_MEMORY)?
#else // defined(TF_LITE_STATIC_MEMORY)?
// NOTE: This flag is opt-in only at compile time.
//
// Specific reduced TfLiteTensor struct for TF Micro runtime. This struct

View File

@@ -169,6 +169,10 @@ TfLiteStatus ParseOpDataTfLite(const Operator* op, BuiltinOperator op_type,
return ParseAdd(op, error_reporter, allocator, builtin_data);
}
case BuiltinOperator_ADD_N: {
return ParseAddN(op, error_reporter, allocator, builtin_data);
}
case BuiltinOperator_ARG_MAX: {
return ParseArgMax(op, error_reporter, allocator, builtin_data);
}
@@ -181,6 +185,14 @@ TfLiteStatus ParseOpDataTfLite(const Operator* op, BuiltinOperator op_type,
return ParsePool(op, error_reporter, allocator, builtin_data);
}
case BuiltinOperator_BATCH_MATMUL: {
return ParseBatchMatMul(op, error_reporter, allocator, builtin_data);
}
case BuiltinOperator_BATCH_TO_SPACE_ND: {
return ParseBatchToSpaceNd(op, error_reporter, allocator, builtin_data);
}
case BuiltinOperator_CEIL: {
return ParseCeil(op, error_reporter, allocator, builtin_data);
}
@@ -193,6 +205,14 @@ TfLiteStatus ParseOpDataTfLite(const Operator* op, BuiltinOperator op_type,
return ParseConv2D(op, error_reporter, allocator, builtin_data);
}
case BuiltinOperator_CUMSUM: {
return ParseCumsum(op, error_reporter, allocator, builtin_data);
}
case BuiltinOperator_DEPTH_TO_SPACE: {
return ParseDepthToSpace(op, error_reporter, allocator, builtin_data);
}
case BuiltinOperator_DEPTHWISE_CONV_2D: {
return ParseDepthwiseConv2D(op, error_reporter, allocator, builtin_data);
}
@@ -201,14 +221,46 @@ TfLiteStatus ParseOpDataTfLite(const Operator* op, BuiltinOperator op_type,
return ParseDequantize(op, error_reporter, allocator, builtin_data);
}
case BuiltinOperator_DIV: {
return ParseDiv(op, error_reporter, allocator, builtin_data);
}
case BuiltinOperator_ELU: {
return ParseElu(op, error_reporter, allocator, builtin_data);
}
case BuiltinOperator_EXP: {
return ParseExp(op, error_reporter, allocator, builtin_data);
}
case BuiltinOperator_EXPAND_DIMS: {
return ParseExpandDims(op, error_reporter, allocator, builtin_data);
}
case BuiltinOperator_FILL: {
return ParseFill(op, error_reporter, allocator, builtin_data);
}
case BuiltinOperator_FLOOR: {
return ParseFloor(op, error_reporter, allocator, builtin_data);
}
case BuiltinOperator_FLOOR_DIV: {
return ParseFloorDiv(op, error_reporter, allocator, builtin_data);
}
case BuiltinOperator_FLOOR_MOD: {
return ParseFloorMod(op, error_reporter, allocator, builtin_data);
}
case BuiltinOperator_FULLY_CONNECTED: {
return ParseFullyConnected(op, error_reporter, allocator, builtin_data);
}
case BuiltinOperator_GATHER_ND: {
return ParseGatherNd(op, error_reporter, allocator, builtin_data);
}
case BuiltinOperator_GREATER: {
return ParseGreater(op, error_reporter, allocator, builtin_data);
}
@@ -229,6 +281,10 @@ TfLiteStatus ParseOpDataTfLite(const Operator* op, BuiltinOperator op_type,
return ParsePool(op, error_reporter, allocator, builtin_data);
}
case BuiltinOperator_LEAKY_RELU: {
return ParseLeakyRelu(op, error_reporter, allocator, builtin_data);
}
case BuiltinOperator_LESS: {
return ParseLess(op, error_reporter, allocator, builtin_data);
}
@@ -257,6 +313,10 @@ TfLiteStatus ParseOpDataTfLite(const Operator* op, BuiltinOperator op_type,
return ParseLogistic(op, error_reporter, allocator, builtin_data);
}
case BuiltinOperator_LOG_SOFTMAX: {
return ParseLogSoftmax(op, error_reporter, allocator, builtin_data);
}
case BuiltinOperator_MAXIMUM: {
return ParseMaximum(op, error_reporter, allocator, builtin_data);
}
@@ -297,6 +357,10 @@ TfLiteStatus ParseOpDataTfLite(const Operator* op, BuiltinOperator op_type,
return ParsePadV2(op, error_reporter, allocator, builtin_data);
}
case BuiltinOperator_POW: {
return ParsePow(op, error_reporter, allocator, builtin_data);
}
case BuiltinOperator_PRELU: {
return ParsePrelu(op, error_reporter, allocator, builtin_data);
}
@@ -362,6 +426,14 @@ TfLiteStatus ParseOpDataTfLite(const Operator* op, BuiltinOperator op_type,
return ParseSoftmax(op, error_reporter, allocator, builtin_data);
}
case BuiltinOperator_SPACE_TO_BATCH_ND: {
return ParseSpaceToBatchNd(op, error_reporter, allocator, builtin_data);
}
case BuiltinOperator_SPACE_TO_DEPTH: {
return ParseSpaceToDepth(op, error_reporter, allocator, builtin_data);
}
case BuiltinOperator_SPLIT: {
return ParseSplit(op, error_reporter, allocator, builtin_data);
}
@@ -378,6 +450,10 @@ TfLiteStatus ParseOpDataTfLite(const Operator* op, BuiltinOperator op_type,
return ParseSquare(op, error_reporter, allocator, builtin_data);
}
case BuiltinOperator_SQUEEZE: {
return ParseSqueeze(op, error_reporter, allocator, builtin_data);
}
case BuiltinOperator_STRIDED_SLICE: {
return ParseStridedSlice(op, error_reporter, allocator, builtin_data);
}
@@ -398,23 +474,20 @@ TfLiteStatus ParseOpDataTfLite(const Operator* op, BuiltinOperator op_type,
return ParseTanh(op, error_reporter, allocator, builtin_data);
}
case BuiltinOperator_TRANSPOSE_CONV: {
return ParseTransposeConv(op, error_reporter, allocator, builtin_data);
}
case BuiltinOperator_UNPACK: {
return ParseUnpack(op, error_reporter, allocator, builtin_data);
}
case BuiltinOperator_ZEROS_LIKE: {
return ParseZerosLike(op, error_reporter, allocator, builtin_data);
}
case BuiltinOperator_CAST: {
auto params = safe_allocator.Allocate<TfLiteCastParams>();
TF_LITE_ENSURE(error_reporter, params != nullptr);
if (const auto* schema_params = op->builtin_options_as_CastOptions()) {
TF_LITE_ENSURE_STATUS(ConvertTensorType(schema_params->in_data_type(),
&params->in_data_type,
error_reporter));
TF_LITE_ENSURE_STATUS(ConvertTensorType(schema_params->out_data_type(),
&params->out_data_type,
error_reporter));
}
*builtin_data = params.release();
return kTfLiteOk;
return ParseCast(op, error_reporter, allocator, builtin_data);
}
case BuiltinOperator_LSH_PROJECTION: {
auto params = safe_allocator.Allocate<TfLiteLSHProjectionParams>();
@@ -483,16 +556,7 @@ TfLiteStatus ParseOpDataTfLite(const Operator* op, BuiltinOperator op_type,
case BuiltinOperator_HASHTABLE_LOOKUP:
// no-op.
return kTfLiteOk;
case BuiltinOperator_DIV: {
auto params = safe_allocator.Allocate<TfLiteDivParams>();
TF_LITE_ENSURE(error_reporter, params != nullptr);
if (const auto* schema_params = op->builtin_options_as_DivOptions()) {
params->activation =
ConvertActivation(schema_params->fused_activation_function());
}
*builtin_data = params.release();
return kTfLiteOk;
}
case BuiltinOperator_LOCAL_RESPONSE_NORMALIZATION: {
auto params = safe_allocator.Allocate<TfLiteLocalResponseNormParams>();
TF_LITE_ENSURE(error_reporter, params != nullptr);
@@ -584,66 +648,9 @@ TfLiteStatus ParseOpDataTfLite(const Operator* op, BuiltinOperator op_type,
*builtin_data = params.release();
return kTfLiteOk;
}
case BuiltinOperator_SPACE_TO_DEPTH: {
auto params = safe_allocator.Allocate<TfLiteSpaceToDepthParams>();
TF_LITE_ENSURE(error_reporter, params != nullptr);
if (const auto* schema_params =
op->builtin_options_as_SpaceToDepthOptions()) {
params->block_size = schema_params->block_size();
}
*builtin_data = params.release();
return kTfLiteOk;
}
case BuiltinOperator_DEPTH_TO_SPACE: {
auto params = safe_allocator.Allocate<TfLiteDepthToSpaceParams>();
TF_LITE_ENSURE(error_reporter, params != nullptr);
if (const auto* schema_params =
op->builtin_options_as_DepthToSpaceOptions()) {
params->block_size = schema_params->block_size();
}
*builtin_data = params.release();
return kTfLiteOk;
}
case BuiltinOperator_GATHER: {
auto params = safe_allocator.Allocate<TfLiteGatherParams>();
TF_LITE_ENSURE(error_reporter, params != nullptr);
params->axis = 0;
if (const auto* gather_params = op->builtin_options_as_GatherOptions()) {
params->axis = gather_params->axis();
}
*builtin_data = params.release();
return kTfLiteOk;
}
case BuiltinOperator_SQUEEZE: {
auto params = safe_allocator.Allocate<TfLiteSqueezeParams>();
TF_LITE_ENSURE(error_reporter, params != nullptr);
if (const auto* schema_params = op->builtin_options_as_SqueezeOptions()) {
const auto* squeeze_dims = schema_params->squeeze_dims();
if (squeeze_dims != nullptr) {
TF_LITE_ENSURE_STATUS(FlatBufferIntVectorToArray(
sizeof(params->squeeze_dims), squeeze_dims, params->squeeze_dims,
error_reporter, "squeeze"));
params->num_squeeze_dims = squeeze_dims->size();
} else {
params->num_squeeze_dims = 0;
}
}
*builtin_data = params.release();
return kTfLiteOk;
}
case BuiltinOperator_TRANSPOSE_CONV: {
auto params = safe_allocator.Allocate<TfLiteTransposeConvParams>();
TF_LITE_ENSURE(error_reporter, params != nullptr);
if (const auto* transpose_conv_params =
op->builtin_options_as_TransposeConvOptions()) {
params->padding = ConvertPadding(transpose_conv_params->padding());
params->stride_width = transpose_conv_params->stride_w();
params->stride_height = transpose_conv_params->stride_h();
}
*builtin_data = params.release();
return kTfLiteOk;
return ParseGather(op, error_reporter, allocator, builtin_data);
}
case BuiltinOperator_SPARSE_TO_DENSE: {
auto params = safe_allocator.Allocate<TfLiteSparseToDenseParams>();
@@ -683,16 +690,6 @@ TfLiteStatus ParseOpDataTfLite(const Operator* op, BuiltinOperator op_type,
*builtin_data = params.release();
return kTfLiteOk;
}
case BuiltinOperator_LEAKY_RELU: {
auto params = safe_allocator.Allocate<TfLiteLeakyReluParams>();
TF_LITE_ENSURE(error_reporter, params != nullptr);
if (const auto* leaky_relu_params =
op->builtin_options_as_LeakyReluOptions()) {
params->alpha = leaky_relu_params->alpha();
}
*builtin_data = params.release();
return kTfLiteOk;
}
case BuiltinOperator_MIRROR_PAD: {
auto params = safe_allocator.Allocate<TfLiteMirrorPaddingParams>();
TF_LITE_ENSURE(error_reporter, params != nullptr);
@@ -750,17 +747,6 @@ TfLiteStatus ParseOpDataTfLite(const Operator* op, BuiltinOperator op_type,
*builtin_data = params.release();
return kTfLiteOk;
}
case BuiltinOperator_BATCH_MATMUL: {
auto params = safe_allocator.Allocate<TfLiteBatchMatMulParams>();
TF_LITE_ENSURE(error_reporter, params != nullptr);
if (const auto* bmm_params =
op->builtin_options_as_BatchMatMulOptions()) {
params->adj_x = bmm_params->adj_x();
params->adj_y = bmm_params->adj_y();
}
*builtin_data = params.release();
return kTfLiteOk;
}
case BuiltinOperator_CALL_ONCE: {
auto params = safe_allocator.Allocate<TfLiteCallOnceParams>();
TF_LITE_ENSURE(error_reporter, params != nullptr);
@@ -771,50 +757,59 @@ TfLiteStatus ParseOpDataTfLite(const Operator* op, BuiltinOperator op_type,
*builtin_data = params.release();
return kTfLiteOk;
}
case BuiltinOperator_CUMSUM: {
auto params = safe_allocator.Allocate<TfLiteCumsumParams>();
case BuiltinOperator_CONV_3D: {
auto params = safe_allocator.Allocate<TfLiteConv3DParams>();
TF_LITE_ENSURE(error_reporter, params != nullptr);
if (const auto* cumsum_params = op->builtin_options_as_CumsumOptions()) {
params->exclusive = cumsum_params->exclusive();
params->reverse = cumsum_params->reverse();
if (const auto* conv3d_params = op->builtin_options_as_Conv3DOptions()) {
params->padding = ConvertPadding(conv3d_params->padding());
params->activation =
ConvertActivation(conv3d_params->fused_activation_function());
params->stride_depth = conv3d_params->stride_d();
params->stride_height = conv3d_params->stride_h();
params->stride_width = conv3d_params->stride_w();
params->dilation_depth_factor = conv3d_params->dilation_d_factor();
params->dilation_height_factor = conv3d_params->dilation_h_factor();
params->dilation_width_factor = conv3d_params->dilation_w_factor();
}
*builtin_data = params.release();
return kTfLiteOk;
}
case BuiltinOperator_HASHTABLE: {
auto params = safe_allocator.Allocate<TfLiteHashtableParams>();
TF_LITE_ENSURE(error_reporter, params != nullptr);
if (const auto* hashtable_params =
op->builtin_options_as_HashtableOptions()) {
params->table_id = hashtable_params->table_id();
TF_LITE_ENSURE_STATUS(ConvertTensorType(
hashtable_params->key_dtype(), &params->key_dtype, error_reporter));
TF_LITE_ENSURE_STATUS(ConvertTensorType(hashtable_params->value_dtype(),
&params->value_dtype,
error_reporter));
}
*builtin_data = params.release();
return kTfLiteOk;
}
// Below are the ops with no builtin_data structure.
case BuiltinOperator_BATCH_TO_SPACE_ND:
// TODO(aselle): Implement call in BuiltinOptions, but nullptrs are
// ok for now, since there is no call implementation either.
case BuiltinOperator_CALL:
case BuiltinOperator_CONCAT_EMBEDDINGS:
case BuiltinOperator_COS:
case BuiltinOperator_CUSTOM:
case BuiltinOperator_ELU:
case BuiltinOperator_EMBEDDING_LOOKUP:
case BuiltinOperator_EQUAL:
case BuiltinOperator_EXP:
case BuiltinOperator_EXPAND_DIMS:
case BuiltinOperator_LOG_SOFTMAX:
case BuiltinOperator_MATRIX_DIAG:
case BuiltinOperator_MATRIX_SET_DIAG:
case BuiltinOperator_RELU_N1_TO_1:
case BuiltinOperator_SELECT:
case BuiltinOperator_SELECT_V2:
case BuiltinOperator_SLICE:
case BuiltinOperator_SPACE_TO_BATCH_ND:
case BuiltinOperator_TILE:
case BuiltinOperator_TOPK_V2:
case BuiltinOperator_TRANSPOSE:
case BuiltinOperator_POW:
case BuiltinOperator_FLOOR_DIV:
case BuiltinOperator_ZEROS_LIKE:
case BuiltinOperator_FILL:
case BuiltinOperator_FLOOR_MOD:
case BuiltinOperator_RANGE:
case BuiltinOperator_SQUARED_DIFFERENCE:
case BuiltinOperator_REVERSE_V2:
case BuiltinOperator_ADD_N:
case BuiltinOperator_GATHER_ND:
case BuiltinOperator_WHERE:
case BuiltinOperator_RANK:
case BuiltinOperator_NON_MAX_SUPPRESSION_V4:
@@ -823,6 +818,13 @@ TfLiteStatus ParseOpDataTfLite(const Operator* op, BuiltinOperator op_type,
case BuiltinOperator_DENSIFY:
case BuiltinOperator_SEGMENT_SUM:
case BuiltinOperator_BROADCAST_TO:
case BuiltinOperator_RFFT2D:
case BuiltinOperator_IMAG:
case BuiltinOperator_REAL:
case BuiltinOperator_COMPLEX_ABS:
case BuiltinOperator_HASHTABLE_FIND:
case BuiltinOperator_HASHTABLE_IMPORT:
case BuiltinOperator_HASHTABLE_SIZE:
return kTfLiteOk;
case BuiltinOperator_PLACEHOLDER_FOR_GREATER_OP_CODES:
return kTfLiteError;
@@ -850,6 +852,9 @@ TfLiteStatus ConvertTensorType(TensorType tensor_type, TfLiteType* type,
case TensorType_INT32:
*type = kTfLiteInt32;
return kTfLiteOk;
case TensorType_UINT32:
*type = kTfLiteUInt32;
return kTfLiteOk;
case TensorType_UINT8:
*type = kTfLiteUInt8;
return kTfLiteOk;
@@ -859,6 +864,9 @@ TfLiteStatus ConvertTensorType(TensorType tensor_type, TfLiteType* type,
case TensorType_INT64:
*type = kTfLiteInt64;
return kTfLiteOk;
case TensorType_UINT64:
*type = kTfLiteUInt64;
return kTfLiteOk;
case TensorType_STRING:
*type = kTfLiteString;
return kTfLiteOk;
@@ -871,6 +879,12 @@ TfLiteStatus ConvertTensorType(TensorType tensor_type, TfLiteType* type,
case TensorType_COMPLEX128:
*type = kTfLiteComplex128;
return kTfLiteOk;
case TensorType_RESOURCE:
*type = kTfLiteResource;
return kTfLiteOk;
case TensorType_VARIANT:
*type = kTfLiteVariant;
return kTfLiteOk;
default:
*type = kTfLiteNoType;
TF_LITE_REPORT_ERROR(error_reporter,
@@ -912,6 +926,11 @@ TfLiteStatus ParseAdd(const Operator* op, ErrorReporter* error_reporter,
return kTfLiteOk;
}
TfLiteStatus ParseAddN(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator, void** builtin_data) {
return kTfLiteOk;
}
TfLiteStatus ParseArgMax(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator, void** builtin_data) {
CheckParsePointerParams(op, error_reporter, allocator, builtin_data);
@@ -962,6 +981,56 @@ TfLiteStatus ParseArgMin(const Operator* op, ErrorReporter* error_reporter,
return kTfLiteOk;
}
// We have this parse function instead of directly returning kTfLiteOk from the
// switch-case in ParseOpData because this function is used as part of the
// selective registration for the OpResolver implementation in micro.
TfLiteStatus ParseBatchMatMul(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator,
void** builtin_data) {
CheckParsePointerParams(op, error_reporter, allocator, builtin_data);
SafeBuiltinDataAllocator safe_allocator(allocator);
auto params = safe_allocator.Allocate<TfLiteBatchMatMulParams>();
TF_LITE_ENSURE(error_reporter, params != nullptr);
if (const auto* bmm_params = op->builtin_options_as_BatchMatMulOptions()) {
params->adj_x = bmm_params->adj_x();
params->adj_y = bmm_params->adj_y();
params->asymmetric_quantize_inputs =
bmm_params->asymmetric_quantize_inputs();
}
*builtin_data = params.release();
return kTfLiteOk;
}
// We have this parse function instead of directly returning kTfLiteOk from the
// switch-case in ParseOpData because this function is used as part of the
// selective registration for the OpResolver implementation in micro.
TfLiteStatus ParseBatchToSpaceNd(const Operator*, ErrorReporter*,
BuiltinDataAllocator*, void**) {
return kTfLiteOk;
}
// We have this parse function instead of directly returning kTfLiteOk from the
// switch-case in ParseOpData because this function is used as part of the
// selective registration for the OpResolver implementation in micro.
TfLiteStatus ParseCast(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator, void** builtin_data) {
CheckParsePointerParams(op, error_reporter, allocator, builtin_data);
SafeBuiltinDataAllocator safe_allocator(allocator);
auto params = safe_allocator.Allocate<TfLiteCastParams>();
TF_LITE_ENSURE(error_reporter, params != nullptr);
if (const auto* schema_params = op->builtin_options_as_CastOptions()) {
TF_LITE_ENSURE_STATUS(ConvertTensorType(
schema_params->in_data_type(), &params->in_data_type, error_reporter));
TF_LITE_ENSURE_STATUS(ConvertTensorType(schema_params->out_data_type(),
&params->out_data_type,
error_reporter));
}
*builtin_data = params.release();
return kTfLiteOk;
}
// We have this parse function instead of directly returning kTfLiteOk from the
// switch-case in ParseOpData because this function is used as part of the
// selective registration for the OpResolver implementation in micro.
@@ -1030,6 +1099,24 @@ TfLiteStatus ParseConv2D(const Operator* op, ErrorReporter* error_reporter,
return kTfLiteOk;
}
// We have this parse function instead of directly returning kTfLiteOk from the
// switch-case in ParseOpData because this function is used as part of the
// selective registration for the OpResolver implementation in micro.
TfLiteStatus ParseCumsum(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator, void** builtin_data) {
CheckParsePointerParams(op, error_reporter, allocator, builtin_data);
SafeBuiltinDataAllocator safe_allocator(allocator);
auto params = safe_allocator.Allocate<TfLiteCumsumParams>();
TF_LITE_ENSURE(error_reporter, params != nullptr);
if (const auto* cumsum_params = op->builtin_options_as_CumsumOptions()) {
params->exclusive = cumsum_params->exclusive();
params->reverse = cumsum_params->reverse();
}
*builtin_data = params.release();
return kTfLiteOk;
}
// We have this parse function instead of directly returning kTfLiteOk from the
// switch-case in ParseOpData because this function is used as part of the
// selective registration for the OpResolver implementation in micro.
@@ -1038,6 +1125,31 @@ TfLiteStatus ParseCos(const Operator*, ErrorReporter*, BuiltinDataAllocator*,
return kTfLiteOk;
}
TfLiteStatus ParseDepthToSpace(const Operator* op,
ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator,
void** builtin_data) {
CheckParsePointerParams(op, error_reporter, allocator, builtin_data);
SafeBuiltinDataAllocator safe_allocator(allocator);
std::unique_ptr<TfLiteDepthToSpaceParams,
SafeBuiltinDataAllocator::BuiltinDataDeleter>
params = safe_allocator.Allocate<TfLiteDepthToSpaceParams>();
TF_LITE_ENSURE(error_reporter, params != nullptr);
const auto* schema_params = op->builtin_options_as_DepthToSpaceOptions();
if (schema_params != nullptr) {
params->block_size = schema_params->block_size();
} else {
// TODO(b/157480169): We should either return kTfLiteError or fill in some
// reasonable defaults in the params struct. We are not doing so until we
// better undertand the ramifications of changing the legacy behavior.
}
*builtin_data = params.release();
return kTfLiteOk;
}
TfLiteStatus ParseDepthwiseConv2D(const Operator* op,
ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator,
@@ -1082,6 +1194,29 @@ TfLiteStatus ParseDequantize(const Operator*, ErrorReporter*,
return kTfLiteOk;
}
TfLiteStatus ParseDiv(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator, void** builtin_data) {
CheckParsePointerParams(op, error_reporter, allocator, builtin_data);
SafeBuiltinDataAllocator safe_allocator(allocator);
auto params = safe_allocator.Allocate<TfLiteDivParams>();
TF_LITE_ENSURE(error_reporter, params != nullptr);
if (const auto* schema_params = op->builtin_options_as_DivOptions()) {
params->activation =
ConvertActivation(schema_params->fused_activation_function());
}
*builtin_data = params.release();
return kTfLiteOk;
}
// We have this parse function instead of directly returning kTfLiteOk from the
// switch-case in ParseOpData because this function is used as part of the
// selective registration for the OpResolver implementation in micro.
TfLiteStatus ParseElu(const Operator*, ErrorReporter*, BuiltinDataAllocator*,
void**) {
return kTfLiteOk;
}
// We have this parse function instead of directly returning kTfLiteOk from the
// switch-case in ParseOpData because this function is used as part of the
// selective registration for the OpResolver implementation in micro.
@@ -1090,6 +1225,30 @@ TfLiteStatus ParseEqual(const Operator*, ErrorReporter*, BuiltinDataAllocator*,
return kTfLiteOk;
}
// We have this parse function instead of directly returning kTfLiteOk from the
// switch-case in ParseOpData because this function is used as part of the
// selective registration for the OpResolver implementation in micro.
TfLiteStatus ParseExp(const Operator*, ErrorReporter*, BuiltinDataAllocator*,
void**) {
return kTfLiteOk;
}
// We have this parse function instead of directly returning kTfLiteOk from the
// switch-case in ParseOpData because this function is used as part of the
// selective registration for the OpResolver implementation in micro.
TfLiteStatus ParseExpandDims(const Operator*, ErrorReporter*,
BuiltinDataAllocator*, void**) {
return kTfLiteOk;
}
// We have this parse function instead of directly returning kTfLiteOk from the
// switch-case in ParseOpData because this function is used as part of the
// selective registration for the OpResolver implementation in micro.
TfLiteStatus ParseFill(const Operator*, ErrorReporter*, BuiltinDataAllocator*,
void**) {
return kTfLiteOk;
}
// We have this parse function instead of directly returning kTfLiteOk from the
// switch-case in ParseOpData because this function is used as part of the
// selective registration for the OpResolver implementation in micro.
@@ -1098,6 +1257,22 @@ TfLiteStatus ParseFloor(const Operator*, ErrorReporter*, BuiltinDataAllocator*,
return kTfLiteOk;
}
// We have this parse function instead of directly returning kTfLiteOk from the
// switch-case in ParseOpData because this function is used as part of the
// selective registration for the OpResolver implementation in micro.
TfLiteStatus ParseFloorDiv(const Operator*, ErrorReporter*,
BuiltinDataAllocator*, void**) {
return kTfLiteOk;
}
// We have this parse function instead of directly returning kTfLiteOk from the
// switch-case in ParseOpData because this function is used as part of the
// selective registration for the OpResolver implementation in micro.
TfLiteStatus ParseFloorMod(const Operator*, ErrorReporter*,
BuiltinDataAllocator*, void**) {
return kTfLiteOk;
}
TfLiteStatus ParseFullyConnected(const Operator* op,
ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator,
@@ -1144,6 +1319,35 @@ TfLiteStatus ParseFullyConnected(const Operator* op,
return kTfLiteOk;
}
// We have this parse function instead of directly returning kTfLiteOk from the
// switch-case in ParseOpData because this function is used as part of the
// selective registration for the OpResolver implementation in micro.
TfLiteStatus ParseGather(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator, void** builtin_data) {
CheckParsePointerParams(op, error_reporter, allocator, builtin_data);
SafeBuiltinDataAllocator safe_allocator(allocator);
auto params = safe_allocator.Allocate<TfLiteGatherParams>();
TF_LITE_ENSURE(error_reporter, params != nullptr);
params->axis = 0;
params->batch_dims = 0;
if (const auto* gather_params = op->builtin_options_as_GatherOptions()) {
params->axis = gather_params->axis();
params->batch_dims = gather_params->batch_dims();
}
*builtin_data = params.release();
return kTfLiteOk;
}
// We have this parse function instead of directly returning kTfLiteOk from the
// switch-case in ParseOpData because this function is used as part of the
// selective registration for the OpResolver implementation in micro.
TfLiteStatus ParseGatherNd(const Operator*, ErrorReporter*,
BuiltinDataAllocator*, void**) {
return kTfLiteOk;
}
// We have this parse function instead of directly returning kTfLiteOk from the
// switch-case in ParseOpData because this function is used as part of the
// selective registration for the OpResolver implementation in micro.
@@ -1195,6 +1399,22 @@ TfLiteStatus ParseL2Normalization(const Operator* op,
return kTfLiteOk;
}
TfLiteStatus ParseLeakyRelu(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator,
void** builtin_data) {
CheckParsePointerParams(op, error_reporter, allocator, builtin_data);
SafeBuiltinDataAllocator safe_allocator(allocator);
auto params = safe_allocator.Allocate<TfLiteLeakyReluParams>();
TF_LITE_ENSURE(error_reporter, params != nullptr);
if (const auto* leaky_relu_params =
op->builtin_options_as_LeakyReluOptions()) {
params->alpha = leaky_relu_params->alpha();
}
*builtin_data = params.release();
return kTfLiteOk;
}
// We have this parse function instead of directly returning kTfLiteOk from the
// switch-case in ParseOpData because this function is used as part of the
// selective registration for the OpResolver implementation in micro.
@@ -1251,6 +1471,14 @@ TfLiteStatus ParseLogistic(const Operator*, ErrorReporter*,
return kTfLiteOk;
}
// We have this parse function instead of directly returning kTfLiteOk from the
// switch-case in ParseOpData because this function is used as part of the
// selective registration for the OpResolver implementation in micro.
TfLiteStatus ParseLogSoftmax(const Operator*, ErrorReporter*,
BuiltinDataAllocator*, void**) {
return kTfLiteOk;
}
// We have this parse function instead of directly returning kTfLiteOk from the
// switch-case in ParseOpData because this function is used as part of the
// selective registration for the OpResolver implementation in micro.
@@ -1378,6 +1606,14 @@ TfLiteStatus ParsePool(const Operator* op, ErrorReporter* error_reporter,
return kTfLiteOk;
}
// We have this parse function instead of directly returning kTfLiteOk from the
// switch-case in ParseOpData because this function is used as part of the
// selective registration for the OpResolver implementation in micro.
TfLiteStatus ParsePow(const Operator*, ErrorReporter*, BuiltinDataAllocator*,
void**) {
return kTfLiteOk;
}
// We have this parse function instead of directly returning kTfLiteOk from the
// switch-case in ParseOpData because this function is used as part of the
// selective registration for the OpResolver implementation in micro.
@@ -1599,6 +1835,39 @@ TfLiteStatus ParseSoftmax(const Operator* op, ErrorReporter* error_reporter,
return kTfLiteOk;
}
// We have this parse function instead of directly returning kTfLiteOk from the
// switch-case in ParseOpData because this function is used as part of the
// selective registration for the OpResolver implementation in micro.
TfLiteStatus ParseSpaceToBatchNd(const Operator*, ErrorReporter*,
BuiltinDataAllocator*, void**) {
return kTfLiteOk;
}
TfLiteStatus ParseSpaceToDepth(const Operator* op,
ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator,
void** builtin_data) {
CheckParsePointerParams(op, error_reporter, allocator, builtin_data);
SafeBuiltinDataAllocator safe_allocator(allocator);
std::unique_ptr<TfLiteSpaceToDepthParams,
SafeBuiltinDataAllocator::BuiltinDataDeleter>
params = safe_allocator.Allocate<TfLiteSpaceToDepthParams>();
TF_LITE_ENSURE(error_reporter, params != nullptr);
const auto* schema_params = op->builtin_options_as_SpaceToDepthOptions();
if (schema_params != nullptr) {
params->block_size = schema_params->block_size();
} else {
// TODO(b/157480169): We should either return kTfLiteError or fill in some
// reasonable defaults in the params struct. We are not doing so until we
// better undertand the ramifications of changing the legacy behavior.
}
*builtin_data = params.release();
return kTfLiteOk;
}
TfLiteStatus ParseSplit(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator, void** builtin_data) {
CheckParsePointerParams(op, error_reporter, allocator, builtin_data);
@@ -1647,6 +1916,39 @@ TfLiteStatus ParseSplitV(const Operator* op, ErrorReporter* error_reporter,
return kTfLiteOk;
}
TfLiteStatus ParseSqueeze(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator,
void** builtin_data) {
CheckParsePointerParams(op, error_reporter, allocator, builtin_data);
SafeBuiltinDataAllocator safe_allocator(allocator);
std::unique_ptr<TfLiteSqueezeParams,
SafeBuiltinDataAllocator::BuiltinDataDeleter>
params = safe_allocator.Allocate<TfLiteSqueezeParams>();
TF_LITE_ENSURE(error_reporter, params != nullptr);
const SqueezeOptions* schema_params = op->builtin_options_as_SqueezeOptions();
if (schema_params != nullptr) {
const auto* squeeze_dims = schema_params->squeeze_dims();
if (squeeze_dims != nullptr) {
TF_LITE_ENSURE_STATUS(FlatBufferIntVectorToArray(
sizeof(params->squeeze_dims), squeeze_dims, params->squeeze_dims,
error_reporter, "squeeze"));
params->num_squeeze_dims = squeeze_dims->size();
} else {
params->num_squeeze_dims = 0;
}
} else {
// TODO(b/157480169): We should either return kTfLiteError or fill in some
// reasonable defaults in the params struct. We are not doing so until we
// better undertand the ramifications of changing the legacy behavior.
}
*builtin_data = params.release();
return kTfLiteOk;
}
// We have this parse function instead of directly returning kTfLiteOk from the
// switch-case in ParseOpData because this function is used as part of the
// selective registration for the OpResolver implementation in micro.
@@ -1753,6 +2055,40 @@ TfLiteStatus ParseTanh(const Operator*, ErrorReporter*, BuiltinDataAllocator*,
void**) {
return kTfLiteOk;
}
//
// We have this parse function instead of directly returning kTfLiteOk from the
// switch-case in ParseOpData because this function is used as part of the
// selective registration for the OpResolver implementation in micro.
TfLiteStatus ParseTranspose(const Operator*, ErrorReporter*,
BuiltinDataAllocator*, void**) {
return kTfLiteOk;
}
TfLiteStatus ParseTransposeConv(const Operator* op,
ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator,
void** builtin_data) {
CheckParsePointerParams(op, error_reporter, allocator, builtin_data);
SafeBuiltinDataAllocator safe_allocator(allocator);
std::unique_ptr<TfLiteTransposeConvParams,
SafeBuiltinDataAllocator::BuiltinDataDeleter>
params = safe_allocator.Allocate<TfLiteTransposeConvParams>();
TF_LITE_ENSURE(error_reporter, params != nullptr);
const TransposeConvOptions* transpose_conv_params =
op->builtin_options_as_TransposeConvOptions();
if (transpose_conv_params != nullptr) {
params->padding = ConvertPadding(transpose_conv_params->padding());
params->stride_width = transpose_conv_params->stride_w();
params->stride_height = transpose_conv_params->stride_h();
} else {
// TODO(b/157480169): We should either return kTfLiteError or fill in some
// reasonable defaults in the params struct. We are not doing so until we
// better undertand the ramifications of changing the legacy behavior.
}
*builtin_data = params.release();
return kTfLiteOk;
}
TfLiteStatus ParseUnpack(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator, void** builtin_data) {
@@ -1779,6 +2115,14 @@ TfLiteStatus ParseUnpack(const Operator* op, ErrorReporter* error_reporter,
return kTfLiteOk;
}
// We have this parse function instead of directly returning kTfLiteOk from the
// switch-case in ParseOpData because this function is used as part of the
// selective registration for the OpResolver implementation in micro.
TfLiteStatus ParseZerosLike(const Operator*, ErrorReporter*,
BuiltinDataAllocator*, void**) {
return kTfLiteOk;
}
TfLiteStatus ParseOpData(const Operator* op, BuiltinOperator op_type,
ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator, void** builtin_data) {

View File

@@ -75,15 +75,30 @@ TfLiteStatus ParseAbs(const Operator* op, ErrorReporter* error_reporter,
TfLiteStatus ParseAdd(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator, void** builtin_data);
TfLiteStatus ParseAddN(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator, void** builtin_data);
TfLiteStatus ParseArgMax(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator, void** builtin_data);
TfLiteStatus ParseArgMin(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator, void** builtin_data);
TfLiteStatus ParseBatchMatMul(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator,
void** builtin_data);
TfLiteStatus ParseBatchToSpaceNd(const Operator* op,
ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator,
void** builtin_data);
TfLiteStatus ParseCeil(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator, void** builtin_data);
TfLiteStatus ParseCast(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator, void** builtin_data);
TfLiteStatus ParseConcatenation(const Operator* op,
ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator,
@@ -95,6 +110,14 @@ TfLiteStatus ParseConv2D(const Operator* op, ErrorReporter* error_reporter,
TfLiteStatus ParseCos(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator, void** builtin_data);
TfLiteStatus ParseCumsum(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator, void** builtin_data);
TfLiteStatus ParseDepthToSpace(const Operator* op,
ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator,
void** builtin_data);
TfLiteStatus ParseDepthwiseConv2D(const Operator* op,
ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator,
@@ -104,17 +127,48 @@ TfLiteStatus ParseDequantize(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator,
void** builtin_data);
TfLiteStatus ParseDiv(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator, void** builtin_data);
TfLiteStatus ParseElu(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator, void** builtin_data);
TfLiteStatus ParseEqual(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator, void** builtin_data);
TfLiteStatus ParseExp(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator, void** builtin_data);
TfLiteStatus ParseExpandDims(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator,
void** builtin_data);
TfLiteStatus ParseFill(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator, void** builtin_data);
TfLiteStatus ParseFloor(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator, void** builtin_data);
TfLiteStatus ParseFloorDiv(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator,
void** builtin_data);
TfLiteStatus ParseFloorMod(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator,
void** builtin_data);
TfLiteStatus ParseFullyConnected(const Operator* op,
ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator,
void** builtin_data);
TfLiteStatus ParseGather(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator, void** builtin_data);
TfLiteStatus ParseGatherNd(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator,
void** builtin_data);
TfLiteStatus ParseGreater(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator, void** builtin_data);
@@ -132,6 +186,10 @@ TfLiteStatus ParseL2Normalization(const Operator* op,
BuiltinDataAllocator* allocator,
void** builtin_data);
TfLiteStatus ParseLeakyRelu(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator,
void** builtin_data);
TfLiteStatus ParseLess(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator, void** builtin_data);
@@ -158,6 +216,10 @@ TfLiteStatus ParseLogistic(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator,
void** builtin_data);
TfLiteStatus ParseLogSoftmax(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator,
void** builtin_data);
TfLiteStatus ParseMaximum(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator, void** builtin_data);
@@ -186,6 +248,9 @@ TfLiteStatus ParsePadV2(const Operator* op, ErrorReporter* error_reporter,
TfLiteStatus ParsePool(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator, void** builtin_data);
TfLiteStatus ParsePow(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator, void** builtin_data);
TfLiteStatus ParsePrelu(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator, void** builtin_data);
@@ -230,12 +295,25 @@ TfLiteStatus ParseSin(const Operator* op, ErrorReporter* error_reporter,
TfLiteStatus ParseSoftmax(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator, void** builtin_data);
TfLiteStatus ParseSpaceToBatchNd(const Operator* op,
ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator,
void** builtin_data);
TfLiteStatus ParseSpaceToDepth(const Operator* op,
ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator,
void** builtin_data);
TfLiteStatus ParseSplit(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator, void** builtin_data);
TfLiteStatus ParseSplitV(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator, void** builtin_data);
TfLiteStatus ParseSqueeze(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator, void** builtin_data);
TfLiteStatus ParseSqrt(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator, void** builtin_data);
@@ -256,9 +334,22 @@ TfLiteStatus ParseSvdf(const Operator* op, ErrorReporter* error_reporter,
TfLiteStatus ParseTanh(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator, void** builtin_data);
TfLiteStatus ParseTranspose(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator,
void** builtin_data);
TfLiteStatus ParseTransposeConv(const Operator* op,
ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator,
void** builtin_data);
TfLiteStatus ParseUnpack(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator, void** builtin_data);
TfLiteStatus ParseZerosLike(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator,
void** builtin_data);
} // namespace tflite
#endif // TENSORFLOW_LITE_CORE_API_FLATBUFFER_CONVERSIONS_H_

View File

@@ -43,7 +43,9 @@ TfLiteStatus GetRegistrationFromOpCode(
if (*registration == nullptr) {
TF_LITE_REPORT_ERROR(
error_reporter,
"Didn't find op for builtin opcode '%s' version '%d'\n",
"Didn't find op for builtin opcode '%s' version '%d'. "
"An older version of this builtin might be supported. "
"Are you using an old TFLite binary with a newer model?\n",
EnumNameBuiltinOperator(builtin_code), version);
status = kTfLiteError;
}

View File

@@ -15,6 +15,7 @@ limitations under the License.
#ifndef TENSORFLOW_LITE_CORE_API_OP_RESOLVER_H_
#define TENSORFLOW_LITE_CORE_API_OP_RESOLVER_H_
#include <memory>
#include <vector>
#include "tensorflow/lite/c/common.h"

View File

@@ -1,194 +0,0 @@
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_CORE_API_PROFILER_H_
#define TENSORFLOW_LITE_CORE_API_PROFILER_H_
#include <cstdint>
namespace tflite {
// A simple utility for enabling profiled event tracing in TensorFlow Lite.
class Profiler {
public:
// As certain Profiler instance might be only interested in certain event
// types, we define each event type value to allow a Profiler to use
// bitmasking bitwise operations to determine whether an event should be
// recorded or not.
enum class EventType {
// Default event type, the metadata field has no special significance.
DEFAULT = 1,
// The event is an operator invocation and the event_metadata field is the
// index of operator node.
OPERATOR_INVOKE_EVENT = 2,
// The event is an invocation for an internal operator of a TFLite delegate.
// The event_metadata field is the index of operator node that's specific to
// the delegate.
DELEGATE_OPERATOR_INVOKE_EVENT = 4,
// The event is a recording of runtime instrumentation such as the overall
// TFLite runtime status, the TFLite delegate status (if a delegate
// is applied), and the overall model inference latency etc.
// Note, the delegate status and overall status are stored as separate
// event_metadata fields. In particular, the delegate status is encoded
// as DelegateStatus::full_status().
GENERAL_RUNTIME_INSTRUMENTATION_EVENT = 8,
};
virtual ~Profiler() {}
// Signals the beginning of an event and returns a handle to the profile
// event. The `event_metadata1` and `event_metadata2` have different
// interpretations based on the actual Profiler instance and the `event_type`.
// For example, as for the 'SubgraphAwareProfiler' defined in
// lite/core/subgraph.h, when the event_type is OPERATOR_INVOKE_EVENT,
// `event_metadata1` represents the index of a TFLite node, and
// `event_metadata2` represents the index of the subgraph that this event
// comes from.
virtual uint32_t BeginEvent(const char* tag, EventType event_type,
int64_t event_metadata1,
int64_t event_metadata2) = 0;
// Similar w/ the above, but `event_metadata2` defaults to 0.
uint32_t BeginEvent(const char* tag, EventType event_type,
int64_t event_metadata) {
return BeginEvent(tag, event_type, event_metadata, /*event_metadata2*/ 0);
}
// Signals an end to the specified profile event with 'event_metadata's, This
// is useful when 'event_metadata's are not available when the event begins
// or when one wants to overwrite the 'event_metadata's set at the beginning.
virtual void EndEvent(uint32_t event_handle, int64_t event_metadata1,
int64_t event_metadata2) {}
// Signals an end to the specified profile event.
virtual void EndEvent(uint32_t event_handle) = 0;
// Appends an event of type 'event_type' with 'tag' and 'event_metadata'
// which started at 'start' and ended at 'end'
// Note:
// In cases were ProfileSimmarizer and tensorflow::StatsCalculator are used
// they assume the value is in "usec", if in any case subclasses
// didn't put usec, then the values are not meaningful.
// TODO karimnosseir: Revisit and make the function more clear.
void AddEvent(const char* tag, EventType event_type, uint64_t start,
uint64_t end, int64_t event_metadata) {
AddEvent(tag, event_type, start, end, event_metadata,
/*event_metadata2*/ 0);
}
virtual void AddEvent(const char* tag, EventType event_type, uint64_t start,
uint64_t end, int64_t event_metadata1,
int64_t event_metadata2) {}
protected:
friend class ScopedProfile;
};
// Adds a profile event to `profiler` that begins with the construction
// of the object and ends when the object goes out of scope.
// The lifetime of tag should be at least the lifetime of `profiler`.
// `profiler` may be null, in which case nothing is profiled.
class ScopedProfile {
public:
ScopedProfile(Profiler* profiler, const char* tag,
Profiler::EventType event_type = Profiler::EventType::DEFAULT,
int64_t event_metadata = 0)
: profiler_(profiler), event_handle_(0) {
if (profiler) {
event_handle_ = profiler_->BeginEvent(tag, event_type, event_metadata);
}
}
~ScopedProfile() {
if (profiler_) {
profiler_->EndEvent(event_handle_);
}
}
protected:
Profiler* profiler_;
uint32_t event_handle_;
};
class ScopedOperatorProfile : public ScopedProfile {
public:
ScopedOperatorProfile(Profiler* profiler, const char* tag, int node_index)
: ScopedProfile(profiler, tag, Profiler::EventType::OPERATOR_INVOKE_EVENT,
static_cast<uint32_t>(node_index)) {}
};
class ScopedDelegateOperatorProfile : public ScopedProfile {
public:
ScopedDelegateOperatorProfile(Profiler* profiler, const char* tag,
int node_index)
: ScopedProfile(profiler, tag,
Profiler::EventType::DELEGATE_OPERATOR_INVOKE_EVENT,
static_cast<uint32_t>(node_index)) {}
};
class ScopedRuntimeInstrumentationProfile : public ScopedProfile {
public:
ScopedRuntimeInstrumentationProfile(Profiler* profiler, const char* tag)
: ScopedProfile(
profiler, tag,
Profiler::EventType::GENERAL_RUNTIME_INSTRUMENTATION_EVENT, -1) {}
void set_runtime_status(int64_t delegate_status, int64_t interpreter_status) {
if (profiler_) {
delegate_status_ = delegate_status;
interpreter_status_ = interpreter_status;
}
}
~ScopedRuntimeInstrumentationProfile() {
if (profiler_) {
profiler_->EndEvent(event_handle_, delegate_status_, interpreter_status_);
}
}
private:
int64_t delegate_status_;
int64_t interpreter_status_;
};
} // namespace tflite
#define TFLITE_VARNAME_UNIQ_IMPL(name, ctr) name##ctr
#define TFLITE_VARNAME_UNIQ(name, ctr) TFLITE_VARNAME_UNIQ_IMPL(name, ctr)
#define TFLITE_SCOPED_TAGGED_DEFAULT_PROFILE(profiler, tag) \
tflite::ScopedProfile TFLITE_VARNAME_UNIQ(_profile_, __COUNTER__)( \
(profiler), (tag))
#define TFLITE_SCOPED_TAGGED_OPERATOR_PROFILE(profiler, tag, node_index) \
tflite::ScopedOperatorProfile TFLITE_VARNAME_UNIQ(_profile_, __COUNTER__)( \
(profiler), (tag), (node_index))
#define TFLITE_SCOPED_DELEGATE_OPERATOR_PROFILE(profiler, tag, node_index) \
tflite::ScopedDelegateOperatorProfile TFLITE_VARNAME_UNIQ( \
_profile_, __COUNTER__)((profiler), (tag), (node_index))
#define TFLITE_ADD_RUNTIME_INSTRUMENTATION_EVENT( \
profiler, tag, delegate_status, interpreter_status) \
do { \
if (!profiler) { \
const auto handle = profiler->BeginEvent( \
tag, Profiler::EventType::GENERAL_RUNTIME_INSTRUMENTATION_EVENT, \
delegate_status, interpreter_status); \
profiler->EndEvent(handle); \
} \
} while (false);
#endif // TENSORFLOW_LITE_CORE_API_PROFILER_H_

View File

@@ -178,14 +178,54 @@ inline int32_t MultiplyByQuantizedMultiplier(int64_t x,
// - input x is in the range -(1<<47) <= x < (1<<47)
assert(quantized_multiplier >= 0);
assert(shift >= -31 && shift < 8);
assert(x >= -(static_cast<int64_t>(1) << 47) &&
x < (static_cast<int64_t>(1) << 47));
int32_t reduced_multiplier = (quantized_multiplier + (1 << 15)) >> 16;
int32_t reduced_multiplier = (quantized_multiplier < 0x7FFF0000)
? ((quantized_multiplier + (1 << 15)) >> 16)
: 0x7FFF;
int total_shift = 15 - shift;
x = (x * (int64_t)reduced_multiplier) + ((int64_t)1 << (total_shift - 1));
int32_t result = x >> total_shift;
return result;
}
#ifdef USE_NEON
// Round uses ARM's rounding shift right.
inline int32x4x4_t MultiplyByQuantizedMultiplier4Rows(
int32x4x4_t input_val, int32_t quantized_multiplier, int shift) {
const int left_shift = std::max(shift, 0);
const int right_shift = std::min(shift, 0);
int32x4x4_t result;
int32x4_t multiplier_dup = vdupq_n_s32(quantized_multiplier);
int32x4_t left_shift_dup = vdupq_n_s32(left_shift);
int32x4_t right_shift_dup = vdupq_n_s32(right_shift);
result.val[0] =
vrshlq_s32(vqrdmulhq_s32(vshlq_s32(input_val.val[0], left_shift_dup),
multiplier_dup),
right_shift_dup);
result.val[1] =
vrshlq_s32(vqrdmulhq_s32(vshlq_s32(input_val.val[1], left_shift_dup),
multiplier_dup),
right_shift_dup);
result.val[2] =
vrshlq_s32(vqrdmulhq_s32(vshlq_s32(input_val.val[2], left_shift_dup),
multiplier_dup),
right_shift_dup);
result.val[3] =
vrshlq_s32(vqrdmulhq_s32(vshlq_s32(input_val.val[3], left_shift_dup),
multiplier_dup),
right_shift_dup);
return result;
}
#endif
template <typename T>
int CountLeadingZeros(T integer_input) {
static_assert(std::is_unsigned<T>::value,
@@ -261,10 +301,11 @@ inline void gen_lut(double (*func)(double), double min, double max,
TfLiteRound(func(min + i * step + half_step) * 32768.0);
double midpoint_err = midpoint_interp_val - midpoint_val;
double bias = TfLiteRound(midpoint_err / 2.0);
table[i] = std::min(std::max(sample_val - bias, -32768.0), 32767.0);
table[i] = std::min<double>(std::max<double>(sample_val - bias, -32768.0),
32767.0);
}
table[num - 1] =
std::min(std::max(TfLiteRound(func(max) * 32768.0), -32768.0), 32767.0);
table[num - 1] = std::min<double>(
std::max<double>(TfLiteRound(func(max) * 32768.0), -32768.0), 32767.0);
}
// generate INT16 LUT for function(), e.g., table exp(x) and 1/(1+x) used in
@@ -289,10 +330,11 @@ inline void gen_lut(float (*func)(float), float min, float max, int16_t* table,
TfLiteRound(func(min + i * step + half_step) * 32768.0f);
float midpoint_err = midpoint_interp_val - midpoint_val;
float bias = TfLiteRound(midpoint_err / 2.0f);
table[i] = std::min(std::max(sample_val - bias, -32768.0f), 32767.0f);
table[i] = std::min<float>(std::max<float>(sample_val - bias, -32768.0f),
32767.0f);
}
table[num - 1] = std::min(
std::max(TfLiteRound(func(max) * 32768.0f), -32768.0f), 32767.0f);
table[num - 1] = std::min<float>(
std::max<float>(TfLiteRound(func(max) * 32768.0f), -32768.0f), 32767.0f);
}
// int16_t func table lookup, e.g., lookup exp() and 1/(1+x) used in softmax

View File

@@ -34,6 +34,7 @@ namespace tflite {
}
DECLARE_STD_GLOBAL_SWITCH1(TfLiteRound, round);
DECLARE_STD_GLOBAL_SWITCH1(TfLiteExpm1, expm1);
} // namespace tflite

View File

@@ -15,7 +15,6 @@ limitations under the License.
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_PORTABLE_TENSOR_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_PORTABLE_TENSOR_H_
#include <complex>
#include <vector>
#include "tensorflow/lite/c/common.h"

View File

@@ -289,7 +289,7 @@ void PreprocessSoftmaxScaling(double beta, double input_scale,
input_beta_real_multiplier = (1ll << 31) - 1.0;
}
#else // TFLITE_EMULATE_FLOAT
const double input_beta_real_multiplier = std::min(
const double input_beta_real_multiplier = std::min<double>(
beta * input_scale * (1 << (31 - input_integer_bits)), (1ll << 31) - 1.0);
#endif // TFLITE_EMULATE_FLOAT

View File

@@ -202,14 +202,6 @@ inline void Add(const ArithmeticParams& params,
}
}
// TODO(jiawen): We can implement BroadcastAdd on buffers of arbitrary
// dimensionality if the runtime code does a single loop over one dimension
// that handles broadcasting as the base case. The code generator would then
// generate max(D1, D2) nested for loops.
// TODO(benoitjacob): BroadcastAdd is intentionally duplicated from
// reference_ops.h. Once an optimized version is implemented and NdArrayDesc<T>
// is no longer referenced in this file, move NdArrayDesc<T> from types.h to
// reference_ops.h.
inline void BroadcastAdd4DSlow(const ArithmeticParams& params,
const RuntimeShape& input1_shape,
const float* input1_data,

View File

@@ -0,0 +1,42 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ADD_N_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ADD_N_H_
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
namespace reference_ops {
// T is expected to be either float or int.
template <typename T>
inline void AddN(const RuntimeShape& input_shape, const size_t num_inputs,
const T* const* input_data, T* output_data) {
// All inputs and output should have the same shape, this is checked during
// Prepare stage.
const size_t size = input_shape.FlatSize();
for (size_t i = 0; i < size; ++i) {
T x = 0;
for (size_t j = 0; j < num_inputs; ++j) {
x += input_data[j][i];
}
output_data[i] = x;
}
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ADD_N_H_

View File

@@ -15,12 +15,23 @@ limitations under the License.
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ARG_MIN_MAX_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ARG_MIN_MAX_H_
#include <functional>
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
namespace reference_ops {
template <typename T>
std::function<bool(T, T)> GetComparefunction(bool is_arg_max) {
if (is_arg_max) {
return std::greater<T>();
} else {
return std::less<T>();
}
}
template <typename T1, typename T2, typename T3, typename Cmp>
void ArgMinMax(const RuntimeShape& input1_shape, const T1* input1_data,
const T3* input2_data, const RuntimeShape& output_shape,
@@ -62,6 +73,15 @@ void ArgMinMax(const RuntimeShape& input1_shape, const T1* input1_data,
}
}
}
template <typename T1, typename T2, typename T3>
void ArgMinMax(const RuntimeShape& input1_shape, const T1* input1_data,
const T3* input2_data, const RuntimeShape& output_shape,
T2* output_data, const bool is_arg_max) {
ArgMinMax(input1_shape, input1_data, input2_data, output_shape, output_data,
GetComparefunction<T1>(is_arg_max));
}
} // namespace reference_ops
} // namespace tflite

View File

@@ -0,0 +1,101 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_BATCH_TO_SPACE_ND_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_BATCH_TO_SPACE_ND_H_
#include <cmath>
#include "ruy/profiler/instrumentation.h" // from @ruy
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
namespace reference_ops {
// TODO(b/135760455): Move this method anonymous namespace in a cc file.
inline RuntimeShape ExtendShapeBatchToSpace(const RuntimeShape& shape) {
if (shape.DimensionsCount() == 4) {
return shape;
}
RuntimeShape new_shape(4, 1);
new_shape.SetDim(0, shape.Dims(0));
new_shape.SetDim(1, shape.Dims(1));
new_shape.SetDim(3, shape.Dims(2));
return new_shape;
}
template <typename T>
inline void BatchToSpaceND(const RuntimeShape& unextended_input1_shape,
const T* input1_data,
const RuntimeShape& unextended_input2_shape,
const int32_t* block_shape_data,
const RuntimeShape& unextended_input3_shape,
const int32_t* crops_data,
const RuntimeShape& unextended_output_shape,
T* output_data) {
ruy::profiler::ScopeLabel label("BatchToSpaceND");
TFLITE_DCHECK_GE(unextended_input1_shape.DimensionsCount(), 3);
TFLITE_DCHECK_LE(unextended_input1_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(unextended_input1_shape.DimensionsCount(),
unextended_output_shape.DimensionsCount());
const RuntimeShape input1_shape =
ExtendShapeBatchToSpace(unextended_input1_shape);
const RuntimeShape output_shape =
ExtendShapeBatchToSpace(unextended_output_shape);
const int output_width = output_shape.Dims(2);
const int output_height = output_shape.Dims(1);
const int output_batch_size = output_shape.Dims(0);
const int depth = input1_shape.Dims(3);
const int input_width = input1_shape.Dims(2);
const int input_height = input1_shape.Dims(1);
const int input_batch_size = input1_shape.Dims(0);
const int block_shape_height = block_shape_data[0];
const int block_shape_width =
unextended_input1_shape.DimensionsCount() == 4 ? block_shape_data[1] : 1;
const int crops_top = crops_data[0];
const int crops_left =
unextended_input1_shape.DimensionsCount() == 4 ? crops_data[2] : 0;
for (int in_batch = 0; in_batch < input_batch_size; ++in_batch) {
const int out_batch = in_batch % output_batch_size;
const int spatial_offset = in_batch / output_batch_size;
for (int in_h = 0; in_h < input_height; ++in_h) {
const int out_h = in_h * block_shape_height +
spatial_offset / block_shape_width - crops_top;
if (out_h < 0 || out_h >= output_height) {
continue;
}
for (int in_w = 0; in_w < input_width; ++in_w) {
const int out_w = in_w * block_shape_width +
spatial_offset % block_shape_width - crops_left;
if (out_w < 0 || out_w >= output_width) {
continue;
}
T* out = output_data + Offset(output_shape, out_batch, out_h, out_w, 0);
const T* in =
input1_data + Offset(input1_shape, in_batch, in_h, in_w, 0);
memcpy(out, in, depth * sizeof(T));
}
}
}
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_BATCH_TO_SPACE_ND_H_

View File

@@ -23,9 +23,6 @@ namespace tflite {
namespace reference_ops {
// TODO(ycling): Refactoring. Remove BroadcastLogical and use the more
// generalized and efficient BroadcastBinaryFunction.
//
// Also appears to duplicate MinimumMaximum.
//
// R: Result type. T1: Input 1 type. T2: Input 2 type.
@@ -63,7 +60,6 @@ inline void BroadcastBinaryFunction4DSlow(
}
// R: Result type. T1: Input 1 type. T2: Input 2 type.
// TODO(renjieliu): Refactor other binary functions to use this one.
template <typename R, typename T1, typename T2>
inline void BinaryFunction(const RuntimeShape& input1_shape,
const T1* input1_data,

View File

@@ -68,8 +68,7 @@ inline void Concatenation(const ConcatenationParams& params,
}
}
// TODO(prabhumk): This is the same as the optimized implementation.
// TODO(prabhumk): The quantized implementation of concatentation isn't fully
// TODO(b/174275780): The quantized implementation of concatentation isn't fully
// quantized as it takes scale as a floating point value. This should be fixed
// when optimizng this routine further.
inline void ConcatenationWithScaling(const ConcatenationParams& params,

View File

@@ -15,16 +15,13 @@ limitations under the License.
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_CONV_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_CONV_H_
#include "tensorflow/lite/kernels/internal/types.h"
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
namespace reference_ops {
inline void Conv(const ConvParams& params, const RuntimeShape& input_shape,
const float* input_data, const RuntimeShape& filter_shape,
const float* filter_data, const RuntimeShape& bias_shape,
@@ -108,8 +105,8 @@ inline void Conv(const ConvParams& params, const RuntimeShape& input_shape,
uint8_t* output_data, const RuntimeShape& im2col_shape,
uint8_t* im2col_data, void* cpu_backend_context) {
(void)cpu_backend_context; // only used in optimized code.
(void)im2col_data; // only used in optimized code.
(void)im2col_shape; // only used in optimized code.
(void)im2col_data; // only used in optimized code.
(void)im2col_shape; // only used in optimized code.
const int stride_width = params.stride_width;
const int stride_height = params.stride_height;
const int dilation_width_factor = params.dilation_width_factor;

View File

@@ -0,0 +1,239 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DIV_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DIV_H_
#include <algorithm>
#include "tensorflow/lite/kernels/internal/common.h"
namespace tflite {
namespace reference_ops {
template <typename T>
inline void DivCheckArithmeticParams(const ArithmeticParams& params) {
TFLITE_DCHECK_LE(params.quantized_activation_min,
params.quantized_activation_max);
// Input offset is negative input zero point. Activation tensors are
// asymmetric quantized so they span the full int8 range.
constexpr int32_t max_value =
static_cast<int32_t>(std::numeric_limits<T>::max());
TFLITE_DCHECK_GE(params.input1_offset, -max_value);
TFLITE_DCHECK_LE(params.input1_offset, max_value);
TFLITE_DCHECK_GE(params.input2_offset, -max_value);
TFLITE_DCHECK_LE(params.input2_offset, max_value);
TFLITE_DCHECK_GE(params.output_offset, -max_value);
TFLITE_DCHECK_LE(params.output_offset, max_value);
}
// Element-wise div that can often be used for inner loop of broadcast Div as
// well as the non-broadcast Div.
template <typename T>
inline void DivElementwise(int size, const ArithmeticParams& params,
const T* input1_data, const T* input2_data,
T* output_data) {
DivCheckArithmeticParams<T>(params);
for (int i = 0; i < size; ++i) {
const int32_t input1_val = params.input1_offset + input1_data[i];
const int32_t input2_val = params.input2_offset + input2_data[i];
TFLITE_DCHECK_NE(input2_val, 0);
int recip_shift;
const int32_t input2_inv =
(input2_val > 0) ? GetReciprocal(input2_val, 31, &recip_shift)
: -GetReciprocal(-input2_val, 31, &recip_shift);
const int headroom = CountLeadingSignBits(input1_val);
const int32_t unscaled_quotient =
MultiplyByQuantizedMultiplierGreaterThanOne(input1_val, input2_inv,
headroom);
const int total_shift = params.output_shift - recip_shift - headroom;
const int32_t unclamped_result =
params.output_offset +
MultiplyByQuantizedMultiplierSmallerThanOneExp(
unscaled_quotient, params.output_multiplier, total_shift);
const int32_t clamped_output =
std::min(params.quantized_activation_max,
std::max(params.quantized_activation_min, unclamped_result));
output_data[i] = static_cast<T>(clamped_output);
}
}
inline void Div(const ArithmeticParams& params,
const RuntimeShape& input1_shape, const uint8_t* input1_data,
const RuntimeShape& input2_shape, const uint8_t* input2_data,
const RuntimeShape& output_shape, uint8_t* output_data) {
TFLITE_DCHECK_LE(params.quantized_activation_min,
params.quantized_activation_max);
const int flat_size =
MatchingElementsSize(input1_shape, input2_shape, output_shape);
DivElementwise(flat_size, params, input1_data, input2_data, output_data);
}
inline void Div(const ArithmeticParams& params,
const RuntimeShape& input1_shape, const int8_t* input1_data,
const RuntimeShape& input2_shape, const int8_t* input2_data,
const RuntimeShape& output_shape, int8_t* output_data) {
TFLITE_DCHECK_LE(params.quantized_activation_min,
params.quantized_activation_max);
const int flat_size =
MatchingElementsSize(input1_shape, input2_shape, output_shape);
DivElementwise(flat_size, params, input1_data, input2_data, output_data);
}
template <typename T, int N = 5>
inline void BroadcastDivSlowQuantized(
const ArithmeticParams& params, const RuntimeShape& unextended_input1_shape,
const T* input1_data, const RuntimeShape& unextended_input2_shape,
const T* input2_data, const RuntimeShape& unextended_output_shape,
T* output_data) {
TFLITE_DCHECK_LE(unextended_input1_shape.DimensionsCount(), N);
TFLITE_DCHECK_LE(unextended_input2_shape.DimensionsCount(), N);
TFLITE_DCHECK_LE(unextended_output_shape.DimensionsCount(), N);
NdArrayDesc<N> desc1;
NdArrayDesc<N> desc2;
NdArrayDesc<N> output_desc;
NdArrayDescsForElementwiseBroadcast(unextended_input1_shape,
unextended_input2_shape, &desc1, &desc2);
CopyDimsToDesc(RuntimeShape::ExtendedShape(N, unextended_output_shape),
&output_desc);
DivCheckArithmeticParams<T>(params);
auto div_func = [&](int indexes[N]) {
const int32_t input1_val =
params.input1_offset + input1_data[SubscriptToIndex(desc1, indexes)];
const int32_t input2_val =
params.input2_offset + input2_data[SubscriptToIndex(desc2, indexes)];
TFLITE_DCHECK_NE(input2_val, 0);
int recip_shift;
const int32_t input2_inv =
(input2_val > 0) ? GetReciprocal(input2_val, 31, &recip_shift)
: -GetReciprocal(-input2_val, 31, &recip_shift);
const int headroom = CountLeadingSignBits(input1_val);
const int32_t unscaled_quotient =
MultiplyByQuantizedMultiplierGreaterThanOne(input1_val, input2_inv,
headroom);
const int total_shift = params.output_shift - recip_shift - headroom;
const int32_t unclamped_result =
params.output_offset +
MultiplyByQuantizedMultiplierSmallerThanOneExp(
unscaled_quotient, params.output_multiplier, total_shift);
const int32_t clamped_output =
std::min(params.quantized_activation_max,
std::max(params.quantized_activation_min, unclamped_result));
output_data[SubscriptToIndex(output_desc, indexes)] =
static_cast<T>(clamped_output);
};
NDOpsHelper<N>(output_desc, div_func);
}
template <int N = 5>
inline void BroadcastDivSlow(const ArithmeticParams& params,
const RuntimeShape& unextended_input1_shape,
const uint8_t* input1_data,
const RuntimeShape& unextended_input2_shape,
const uint8_t* input2_data,
const RuntimeShape& unextended_output_shape,
uint8_t* output_data) {
BroadcastDivSlowQuantized<uint8_t, N>(
params, unextended_input1_shape, input1_data, unextended_input2_shape,
input2_data, unextended_output_shape, output_data);
}
template <int N = 5>
inline void BroadcastDivSlow(const ArithmeticParams& params,
const RuntimeShape& unextended_input1_shape,
const int8_t* input1_data,
const RuntimeShape& unextended_input2_shape,
const int8_t* input2_data,
const RuntimeShape& unextended_output_shape,
int8_t* output_data) {
BroadcastDivSlowQuantized<int8_t, N>(
params, unextended_input1_shape, input1_data, unextended_input2_shape,
input2_data, unextended_output_shape, output_data);
}
// TODO(jiawen): We can implement BroadcastDiv on buffers of arbitrary
// dimensionality if the runtime code does a single loop over one dimension
// that handles broadcasting as the base case. The code generator would then
// generate max(D1, D2) nested for loops.
template <typename T, int N = 5>
void BroadcastDivSlow(const ArithmeticParams& params,
const RuntimeShape& unextended_input1_shape,
const T* input1_data,
const RuntimeShape& unextended_input2_shape,
const T* input2_data,
const RuntimeShape& unextended_output_shape,
T* output_data) {
T output_activation_min;
T output_activation_max;
GetActivationParams(params, &output_activation_min, &output_activation_max);
TFLITE_DCHECK_LE(unextended_input1_shape.DimensionsCount(), N);
TFLITE_DCHECK_LE(unextended_input2_shape.DimensionsCount(), N);
TFLITE_DCHECK_LE(unextended_output_shape.DimensionsCount(), N);
NdArrayDesc<N> desc1;
NdArrayDesc<N> desc2;
NdArrayDesc<N> output_desc;
NdArrayDescsForElementwiseBroadcast(unextended_input1_shape,
unextended_input2_shape, &desc1, &desc2);
CopyDimsToDesc(RuntimeShape::ExtendedShape(N, unextended_output_shape),
&output_desc);
// In Tensorflow, the dimensions are canonically named (batch_number, row,
// col, channel), with extents (batches, height, width, depth), with the
// trailing dimension changing most rapidly (channels has the smallest
// stride, typically 1 element).
//
// In generated C code, we store arrays with the dimensions reversed. The
// first dimension has smallest stride.
auto div_func = [&](int indexes[N]) {
output_data[SubscriptToIndex(output_desc, indexes)] =
ActivationFunctionWithMinMax(
input1_data[SubscriptToIndex(desc1, indexes)] /
input2_data[SubscriptToIndex(desc2, indexes)],
output_activation_min, output_activation_max);
};
NDOpsHelper<N>(output_desc, div_func);
}
template <typename T>
inline void Div(const ArithmeticParams& params,
const RuntimeShape& input1_shape, const T* input1_data,
const RuntimeShape& input2_shape, const T* input2_data,
const RuntimeShape& output_shape, T* output_data) {
T output_activation_min;
T output_activation_max;
GetActivationParams(params, &output_activation_min, &output_activation_max);
const int flat_size =
MatchingElementsSize(input1_shape, input2_shape, output_shape);
for (int i = 0; i < flat_size; ++i) {
output_data[i] = ActivationFunctionWithMinMax(
input1_data[i] / input2_data[i], output_activation_min,
output_activation_max);
}
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DIV_H_

View File

@@ -0,0 +1,37 @@
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ELU_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ELU_H_
#include "tensorflow/lite/kernels/internal/cppmath.h"
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
namespace reference_ops {
inline void Elu(const RuntimeShape& input_shape, const float* input_data,
const RuntimeShape& output_shape, float* output_data) {
const int flat_size = MatchingFlatSize(input_shape, output_shape);
for (int i = 0; i < flat_size; ++i) {
const float val = input_data[i];
output_data[i] = val < 0.0f ? TfLiteExpm1(val) : val;
}
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ELU_H_

View File

@@ -0,0 +1,38 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_EXP_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_EXP_H_
#include <cmath>
#include "ruy/profiler/instrumentation.h" // from @ruy
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
namespace reference_ops {
template <typename T>
inline void Exp(const T* input_data, const size_t num_elements,
T* output_data) {
ruy::profiler::ScopeLabel label("Exp");
for (size_t idx = 0; idx < num_elements; ++idx) {
output_data[idx] = std::exp(input_data[idx]);
}
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_EXP_H_

View File

@@ -0,0 +1,38 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_FILL_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_FILL_H_
#include <cmath>
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
namespace reference_ops {
template <typename T>
void Fill(const RuntimeShape& value_shape, const T* value_data,
const RuntimeShape& output_shape, T* output_data) {
TFLITE_DCHECK_EQ(value_shape.DimensionsCount(), 0);
const int flat_size = output_shape.FlatSize();
for (int i = 0; i < flat_size; ++i) {
output_data[i] = *value_data;
}
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_FILL_H_

View File

@@ -31,7 +31,7 @@ inline void FullyConnected(
float* output_data) {
const float output_activation_min = params.float_activation_min;
const float output_activation_max = params.float_activation_max;
// TODO(benoitjacob): This really should be:
// TODO(b/62193649): This really should be:
// const int batches = ArraySize(output_dims, 1);
// but the current --variable_batch hack consists in overwriting the 3rd
// dimension with the runtime batch size, as we don't keep track for each
@@ -76,7 +76,7 @@ inline void FullyConnected(
TFLITE_DCHECK_GE(output_shape.DimensionsCount(), 1);
TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
// TODO(benoitjacob): This really should be:
// TODO(b/62193649): This really should be:
// const int batches = ArraySize(output_dims, 1);
// but the current --variable_batch hack consists in overwriting the 3rd
// dimension with the runtime batch size, as we don't keep track for each
@@ -123,7 +123,7 @@ inline void FullyConnected(
TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
TFLITE_DCHECK_EQ(output_offset, 0);
// TODO(benoitjacob): This really should be:
// TODO(b/62193649): This really should be:
// const int batches = ArraySize(output_dims, 1);
// but the current --variable_batch hack consists in overwriting the 3rd
// dimension with the runtime batch size, as we don't keep track for each
@@ -176,7 +176,7 @@ inline void ShuffledFullyConnected(
TFLITE_DCHECK_GE(input_shape.DimensionsCount(), 1);
TFLITE_DCHECK_GE(weights_shape.DimensionsCount(), 2);
TFLITE_DCHECK_GE(output_shape.DimensionsCount(), 1);
// TODO(benoitjacob): This really should be:
// TODO(b/62193649): This really should be:
// const int batches = ArraySize(output_dims, 1);
// but the current --variable_batch hack consists in overwriting the 3rd
// dimension with the runtime batch size, as we don't keep track for each

View File

@@ -34,55 +34,24 @@ inline void CheckArithmeticParams(const ArithmeticParams& params) {
TFLITE_DCHECK_LE(-params.input2_offset, std::numeric_limits<int8_t>::max());
}
// Element-wise add that can often be used for inner loop of broadcast add as
// well as the non-broadcast add.
inline void AddElementwise(int size, const ArithmeticParams& params,
const int8_t* input1_data, const int8_t* input2_data,
int8_t* output_data) {
inline void ElementWise(
int size, const ArithmeticParams& params, const int8_t* input1_data,
const int8_t* input2_data, int8_t* output_data,
void (*check_arithmetic_params)(const ArithmeticParams&),
int8_t (*binary_func)(int8_t, int8_t, const ArithmeticParams&)) {
CheckArithmeticParams(params);
for (int i = 0; i < size; ++i) {
const int32_t input1_val = params.input1_offset + input1_data[i];
const int32_t input2_val = params.input2_offset + input2_data[i];
const int32_t shifted_input1_val = input1_val * (1 << params.left_shift);
const int32_t shifted_input2_val = input2_val * (1 << params.left_shift);
const int32_t scaled_input1_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input1_val, params.input1_multiplier, params.input1_shift);
const int32_t scaled_input2_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input2_val, params.input2_multiplier, params.input2_shift);
const int32_t raw_sum = scaled_input1_val + scaled_input2_val;
const int32_t raw_output =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
raw_sum, params.output_multiplier, params.output_shift) +
params.output_offset;
const int32_t clamped_output =
std::min(params.quantized_activation_max,
std::max(params.quantized_activation_min, raw_output));
output_data[i] = static_cast<int8_t>(clamped_output);
output_data[i] = binary_func(input1_data[i], input2_data[i], params);
}
}
inline void Add(const ArithmeticParams& params,
const RuntimeShape& input1_shape, const int8_t* input1_data,
const RuntimeShape& input2_shape, const int8_t* input2_data,
const RuntimeShape& output_shape, int8_t* output_data) {
CheckArithmeticParams(params);
const int flat_size =
MatchingElementsSize(input1_shape, input2_shape, output_shape);
AddElementwise(flat_size, params, input1_data, input2_data, output_data);
}
inline void BroadcastAdd4DSlow(const ArithmeticParams& params,
const RuntimeShape& input1_shape,
const int8_t* input1_data,
const RuntimeShape& input2_shape,
const int8_t* input2_data,
const RuntimeShape& output_shape,
int8_t* output_data) {
inline void BroadcastBinaryFunction4DSlow(
const ArithmeticParams& params, const RuntimeShape& input1_shape,
const int8_t* input1_data, const RuntimeShape& input2_shape,
const int8_t* input2_data, const RuntimeShape& output_shape,
int8_t* output_data,
void (*check_arithmetic_params)(const ArithmeticParams&),
int8_t (*binary_func)(int8_t, int8_t, const ArithmeticParams&)) {
NdArrayDesc<4> desc1;
NdArrayDesc<4> desc2;
NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
@@ -105,40 +74,70 @@ inline void BroadcastAdd4DSlow(const ArithmeticParams& params,
for (int y = 0; y < extended_output_shape.Dims(1); ++y) {
for (int x = 0; x < extended_output_shape.Dims(2); ++x) {
for (int c = 0; c < extended_output_shape.Dims(3); ++c) {
const int32_t input1_val =
params.input1_offset +
input1_data[SubscriptToIndex(desc1, b, y, x, c)];
const int32_t input2_val =
params.input2_offset +
input2_data[SubscriptToIndex(desc2, b, y, x, c)];
const int32_t shifted_input1_val =
input1_val * (1 << params.left_shift);
const int32_t shifted_input2_val =
input2_val * (1 << params.left_shift);
const int32_t scaled_input1_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input1_val, params.input1_multiplier,
params.input1_shift);
const int32_t scaled_input2_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input2_val, params.input2_multiplier,
params.input2_shift);
const int32_t raw_sum = scaled_input1_val + scaled_input2_val;
const int32_t raw_output =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
raw_sum, params.output_multiplier, params.output_shift) +
params.output_offset;
const int32_t clamped_output =
std::min(params.quantized_activation_max,
std::max(params.quantized_activation_min, raw_output));
output_data[Offset(extended_output_shape, b, y, x, c)] =
static_cast<int8_t>(clamped_output);
output_data[Offset(extended_output_shape, b, y, x, c)] = binary_func(
input1_data[SubscriptToIndex(desc1, b, y, x, c)],
input2_data[SubscriptToIndex(desc2, b, y, x, c)], params);
}
}
}
}
}
inline int8_t AddFunc(int8_t x, int8_t y, const ArithmeticParams& params) {
const int32_t input1_val = params.input1_offset + x;
const int32_t input2_val = params.input2_offset + y;
const int32_t shifted_input1_val = input1_val * (1 << params.left_shift);
const int32_t shifted_input2_val = input2_val * (1 << params.left_shift);
const int32_t scaled_input1_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input1_val, params.input1_multiplier, params.input1_shift);
const int32_t scaled_input2_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input2_val, params.input2_multiplier, params.input2_shift);
const int32_t raw_sum = scaled_input1_val + scaled_input2_val;
const int32_t raw_output =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
raw_sum, params.output_multiplier, params.output_shift) +
params.output_offset;
const int32_t clamped_output =
std::min(params.quantized_activation_max,
std::max(params.quantized_activation_min, raw_output));
return static_cast<int8_t>(clamped_output);
}
// Element-wise add that can often be used for inner loop of broadcast add as
// well as the non-broadcast add.
inline void AddElementwise(int size, const ArithmeticParams& params,
const int8_t* input1_data, const int8_t* input2_data,
int8_t* output_data) {
ElementWise(size, params, input1_data, input2_data, output_data,
CheckArithmeticParams, AddFunc);
}
inline void Add(const ArithmeticParams& params,
const RuntimeShape& input1_shape, const int8_t* input1_data,
const RuntimeShape& input2_shape, const int8_t* input2_data,
const RuntimeShape& output_shape, int8_t* output_data) {
CheckArithmeticParams(params);
const int flat_size =
MatchingElementsSize(input1_shape, input2_shape, output_shape);
AddElementwise(flat_size, params, input1_data, input2_data, output_data);
}
inline void BroadcastAdd4DSlow(const ArithmeticParams& params,
const RuntimeShape& input1_shape,
const int8_t* input1_data,
const RuntimeShape& input2_shape,
const int8_t* input2_data,
const RuntimeShape& output_shape,
int8_t* output_data) {
BroadcastBinaryFunction4DSlow(params, input1_shape, input1_data, input2_shape,
input2_data, output_shape, output_data,
CheckArithmeticParams, AddFunc);
}
} // namespace reference_integer_ops
} // namespace tflite

View File

@@ -101,7 +101,7 @@ inline void ConvPerChannel(
// long as the filter size (filter_y * filter_x * in_channel)
// does not exceed 2^16, which is the case in all the models
// we have seen so far.
// TODO(jianlijianli): Add a check to make sure the
// TODO(b/174275578): Add a check to make sure the
// accumulator depth is smaller than 2^16.
acc += filter_val * (input_val + input_offset);
}

View File

@@ -95,7 +95,7 @@ inline void DepthwiseConvPerChannel(
// long as the filter size (filter_y * filter_x * in_channel)
// does not exceed 2^16, which is the case in all the models
// we have seen so far.
// TODO(jianlijianli): Add a check to make sure the
// TODO(b/174275578): Add a check to make sure the
// accumulator depth is smaller than 2^16.
acc += filter_val * (input_val + input_offset);
}

View File

@@ -58,23 +58,36 @@ inline void Logistic(int32_t input_zero_point, int32_t input_range_radius,
}
}
inline void Logistic(int32_t input_multiplier, int32_t input_size,
const int16_t* ptr_input_data, int16_t* ptr_output_data) {
inline void Logistic(int32_t input_multiplier, int32_t input_left_shift,
int32_t input_size, const int16_t* ptr_input_data,
int16_t* ptr_output_data) {
// We use the LUT for sigmoid and take into account, that
// tanh(x) = 2*sigmoid(2*x) - 1
int32_t input_data_mul = (input_multiplier > 0) ? input_multiplier : 1;
// We scale by 3/4 to expand range [-8,8]->[-10.7,10.7].
// In case of general parameter scale, multiplier 3 is taken into account
// in TanhPrepare function and it is included in
// input_multiplier already.
TFLITE_DCHECK_GE(input_left_shift, 0);
if (input_multiplier == 0) { // power of two case
input_multiplier = 3 << input_left_shift;
input_left_shift = 0;
}
int32_t round = (input_left_shift > 0) ? 1 << (input_left_shift - 1) : 0;
for (int i = 0; i < input_size; ++i, ptr_input_data++, ptr_output_data++) {
int32_t input_data = (*ptr_input_data) * input_data_mul;
int32_t input_data =
((*ptr_input_data) * input_multiplier + round) >> input_left_shift;
// Scale by 3/4 to expand range [-8,8]->[-10.7,10.7] and
// we do interpolation on unsigned values.
uint32_t abs_input_data = 3 * abs(input_data);
// We do interpolation on unsigned values.
uint32_t abs_input_data = abs(input_data);
// We divide by 2 power of 9, because
// we need to divide by 2 in power of 7 for
// the input conversion + 1/4 from the scale above.
// Define uh as uint32_t type not to make this function overflow.
uint32_t uh = abs_input_data >> 9;
uint32_t result;

View File

@@ -65,19 +65,25 @@ inline void Tanh(int32_t input_multiplier, int32_t input_left_shift,
// We use the LUT for sigmoid and take into account, that
// tanh(x) = 2*sigmoid(2*x) - 1
int32_t input_data_mul = (input_multiplier > 0) ? input_multiplier : 1;
// We scale by 3/4 to expand range [-8,8]->[-10.7,10.7].
// In case of general parameter scale, multiplier 3 is taken into account
// in TanhPrepare function and it is included in
// input_multiplier already.
if (input_multiplier == 0) { // power of two case
input_multiplier = 3 << input_left_shift;
input_left_shift = 0;
}
int32_t round = (input_left_shift > 0) ? 1 << (input_left_shift - 1) : 0;
int flat_size = MatchingFlatSize(input_shape, output_shape);
for (int i = 0; i < flat_size; ++i, ptr_input_data++, ptr_output_data++) {
int32_t input_data = (*ptr_input_data) * input_data_mul;
int32_t input_data =
((*ptr_input_data) * input_multiplier + round) >> input_left_shift;
if (input_left_shift == 1) {
input_data <<= 1;
}
// Scale by 3/4 to expand range [-8,8]->[-10.7,10.7].
uint32_t abs_input_data = 3 * abs(input_data);
uint32_t abs_input_data = abs(input_data);
uint32_t uh = abs_input_data >> 8;
int32_t result;

View File

@@ -0,0 +1,221 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_TRANSPOSE_CONV_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_TRANSPOSE_CONV_H_
#include "tensorflow/lite/kernels/internal/common.h"
namespace tflite {
namespace reference_integer_ops {
// Fixed-point per-channel-quantization transpose convolution reference kernel.
inline void TransposeConv(
const ConvParams& params, const int32_t* output_multiplier,
const int32_t* output_shift, const RuntimeShape& input_shape,
const int8_t* input_data, const RuntimeShape& filter_shape,
const int8_t* filter_data, const RuntimeShape& bias_shape,
const int32_t* bias_data, const RuntimeShape& output_shape,
int8_t* output_data, const RuntimeShape& im2col_shape, int8_t* im2col_data,
int32_t* scratch_buffer) {
const int stride_width = params.stride_width;
const int stride_height = params.stride_height;
const int pad_width = params.padding_values.width;
const int pad_height = params.padding_values.height;
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
(void)im2col_data; // only used in optimized code.
(void)im2col_shape; // only used in optimized code.
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
const int input_depth = MatchingDim(input_shape, 3, filter_shape, 3);
const int output_depth = MatchingDim(filter_shape, 0, output_shape, 3);
if (bias_data) {
TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth);
}
const int input_height = input_shape.Dims(1);
const int input_width = input_shape.Dims(2);
const int filter_height = filter_shape.Dims(1);
const int filter_width = filter_shape.Dims(2);
const int output_height = output_shape.Dims(1);
const int output_width = output_shape.Dims(2);
const int32_t input_offset = params.input_offset;
const int32_t output_offset = params.output_offset;
const int32_t output_activation_min = std::numeric_limits<int8_t>::min();
const int32_t output_activation_max = std::numeric_limits<int8_t>::max();
TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
const int num_elements = output_shape.FlatSize();
// We need to initialize scratch_buffer to all 0s, as we apply the same
// 'scatter' based trick as in float version.
memset(scratch_buffer, 0, num_elements * sizeof(int32_t));
// Loop through input elements one at a time.
for (int batch = 0; batch < batches; ++batch) {
for (int in_y = 0; in_y < input_height; ++in_y) {
for (int in_x = 0; in_x < input_width; ++in_x) {
for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
// Loop through the output elements it will influence.
const int out_x_origin = (in_x * stride_width) - pad_width;
const int out_y_origin = (in_y * stride_height) - pad_height;
for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
for (int out_channel = 0; out_channel < output_depth;
++out_channel) {
// Compute output element location.
const int out_x = out_x_origin + filter_x;
const int out_y = out_y_origin + filter_y;
// We cannot accumulate out of bounds.
if ((out_x >= 0) && (out_x < output_width) && (out_y >= 0) &&
(out_y < output_height)) {
const int8_t input_value = input_data[Offset(
input_shape, batch, in_y, in_x, in_channel)];
const int8_t filter_value =
filter_data[Offset(filter_shape, out_channel, filter_y,
filter_x, in_channel)];
scratch_buffer[Offset(output_shape, batch, out_y, out_x,
out_channel)] +=
(input_value + input_offset) * filter_value;
}
}
}
}
}
}
}
}
for (int batch = 0; batch < batches; ++batch) {
for (int out_y = 0; out_y < output_height; ++out_y) {
for (int out_x = 0; out_x < output_width; ++out_x) {
for (int out_channel = 0; out_channel < output_depth; ++out_channel) {
int32_t acc = scratch_buffer[Offset(output_shape, batch, out_y, out_x,
out_channel)];
if (bias_data) {
acc += bias_data[out_channel];
}
acc = MultiplyByQuantizedMultiplier(
acc, output_multiplier[out_channel], output_shift[out_channel]);
acc += output_offset;
acc = std::max(acc, output_activation_min);
acc = std::min(acc, output_activation_max);
output_data[Offset(output_shape, batch, out_y, out_x, out_channel)] =
static_cast<int8_t>(acc);
}
}
}
}
}
// int16_t input (zero_point=0), int8_t filter, int64 accumulator
inline void TransposeConv(
const ConvParams& params, const int32_t* output_multiplier,
const int32_t* output_shift, const RuntimeShape& input_shape,
const int16_t* input_data, const RuntimeShape& filter_shape,
const int8_t* filter_data, const RuntimeShape& bias_shape,
const std::int64_t* bias_data, const RuntimeShape& output_shape,
int16_t* output_data, const RuntimeShape& im2col_shape, int8_t* im2col_data,
std::int64_t* scratch_buffer) {
const int stride_width = params.stride_width;
const int stride_height = params.stride_height;
const int pad_width = params.padding_values.width;
const int pad_height = params.padding_values.height;
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
(void)im2col_data; // only used in optimized code.
(void)im2col_shape; // only used in optimized code.
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
const int input_depth = MatchingDim(input_shape, 3, filter_shape, 3);
const int output_depth = MatchingDim(filter_shape, 0, output_shape, 3);
if (bias_data) {
TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth);
}
const int input_height = input_shape.Dims(1);
const int input_width = input_shape.Dims(2);
const int filter_height = filter_shape.Dims(1);
const int filter_width = filter_shape.Dims(2);
const int output_height = output_shape.Dims(1);
const int output_width = output_shape.Dims(2);
const int32_t output_activation_min = std::numeric_limits<int16_t>::min();
const int32_t output_activation_max = std::numeric_limits<int16_t>::max();
TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
const int num_elements = output_shape.FlatSize();
// We need to initialize scratch_buffer to all 0s, as we apply the same
// 'scatter' based trick as in float version.
memset(scratch_buffer, 0, num_elements * sizeof(std::int64_t));
// Loop through input elements one at a time.
for (int batch = 0; batch < batches; ++batch) {
for (int in_y = 0; in_y < input_height; ++in_y) {
for (int in_x = 0; in_x < input_width; ++in_x) {
for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
// Loop through the output elements it will influence.
const int out_x_origin = (in_x * stride_width) - pad_width;
const int out_y_origin = (in_y * stride_height) - pad_height;
for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
for (int out_channel = 0; out_channel < output_depth;
++out_channel) {
// Compute output element location.
const int out_x = out_x_origin + filter_x;
const int out_y = out_y_origin + filter_y;
// We cannot accumulate out of bounds.
if ((out_x >= 0) && (out_x < output_width) && (out_y >= 0) &&
(out_y < output_height)) {
const int32_t input_value = input_data[Offset(
input_shape, batch, in_y, in_x, in_channel)];
const int32_t filter_value =
filter_data[Offset(filter_shape, out_channel, filter_y,
filter_x, in_channel)];
scratch_buffer[Offset(output_shape, batch, out_y, out_x,
out_channel)] +=
input_value * filter_value;
}
}
}
}
}
}
}
}
for (int batch = 0; batch < batches; ++batch) {
for (int out_y = 0; out_y < output_height; ++out_y) {
for (int out_x = 0; out_x < output_width; ++out_x) {
for (int out_channel = 0; out_channel < output_depth; ++out_channel) {
std::int64_t acc = scratch_buffer[Offset(output_shape, batch, out_y,
out_x, out_channel)];
if (bias_data) {
acc += bias_data[out_channel];
}
int32_t scaled_acc = MultiplyByQuantizedMultiplier(
acc, output_multiplier[out_channel], output_shift[out_channel]);
scaled_acc = std::max(scaled_acc, output_activation_min);
scaled_acc = std::min(scaled_acc, output_activation_max);
output_data[Offset(output_shape, batch, out_y, out_x, out_channel)] =
static_cast<int16_t>(scaled_acc);
}
}
}
}
}
} // namespace reference_integer_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_TRANSPOSE_CONV_H_

View File

@@ -0,0 +1,69 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_LEAKY_RELU_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_LEAKY_RELU_H_
#include <algorithm>
#include <limits>
#include "tensorflow/lite/kernels/internal/common.h"
namespace tflite {
namespace reference_ops {
inline void LeakyRelu(const tflite::LeakyReluParams& params,
const RuntimeShape& input_shape, const float* input_data,
const RuntimeShape& output_shape, float* output_data) {
const int flat_size = MatchingFlatSize(input_shape, output_shape);
for (int i = 0; i < flat_size; ++i) {
const float val = input_data[i];
// Note that alpha might be > 1 or < 0, so we don't use std::max here.
output_data[i] = val > 0 ? val : val * params.alpha;
}
}
template <typename T>
inline void QuantizeLeakyRelu(const LeakyReluParams& params,
const RuntimeShape& input_shape,
const T* input_data,
const RuntimeShape& output_shape,
T* output_data) {
const int flat_size = MatchingFlatSize(input_shape, output_shape);
static const int32_t quantized_min = std::numeric_limits<T>::min();
static const int32_t quantized_max = std::numeric_limits<T>::max();
for (int i = 0; i < flat_size; ++i) {
const int32_t input_value = input_data[i] - params.input_offset;
int32_t unclamped_output;
if (input_value >= 0) {
unclamped_output = params.output_offset +
MultiplyByQuantizedMultiplier(
input_value, params.output_multiplier_identity,
params.output_shift_identity);
} else {
unclamped_output = params.output_offset +
MultiplyByQuantizedMultiplier(
input_value, params.output_multiplier_alpha,
params.output_shift_alpha);
}
const T clamped_output =
std::min(quantized_max, std::max(quantized_min, unclamped_output));
output_data[i] = static_cast<T>(clamped_output);
}
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_LEAKY_RELU_H_

View File

@@ -45,6 +45,7 @@ inline void Requantize(const input_type* input_data, int32_t size,
for (int i = 0; i < size; ++i) {
output_data[i] = input_data[i] ^ 0x80;
}
return;
}
}
static constexpr int32_t kMinOutput = std::numeric_limits<output_type>::min();

View File

@@ -0,0 +1,109 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_SPACE_TO_BATCH_ND_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_SPACE_TO_BATCH_ND_H_
#include <cmath>
#include "ruy/profiler/instrumentation.h" // from @ruy
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
namespace reference_ops {
// TODO(b/135760455): Move this method anonymous namespace in a cc file.
inline RuntimeShape ExtendShapeSpaceToBatch(const RuntimeShape& shape) {
if (shape.DimensionsCount() == 4) {
return shape;
}
RuntimeShape new_shape(4, 1);
new_shape.SetDim(0, shape.Dims(0));
new_shape.SetDim(1, shape.Dims(1));
new_shape.SetDim(3, shape.Dims(2));
return new_shape;
}
template <typename T>
inline void SpaceToBatchND(const SpaceToBatchParams& params,
const RuntimeShape& unextended_input1_shape,
const T* input1_data,
const RuntimeShape& unextended_input2_shape,
const int32_t* block_shape_data,
const RuntimeShape& unextended_input3_shape,
const int32_t* paddings_data,
const RuntimeShape& unextended_output_shape,
T* output_data) {
ruy::profiler::ScopeLabel label("SpaceToBatchND");
TFLITE_DCHECK_GE(unextended_input1_shape.DimensionsCount(), 3);
TFLITE_DCHECK_LE(unextended_input1_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(unextended_input1_shape.DimensionsCount(),
unextended_output_shape.DimensionsCount());
// Extends the input/output shape from 3D to 4D if needed, NHC -> NH1C.
const RuntimeShape input1_shape =
ExtendShapeSpaceToBatch(unextended_input1_shape);
const RuntimeShape output_shape =
ExtendShapeSpaceToBatch(unextended_output_shape);
const int depth = input1_shape.Dims(3);
const int input_width = input1_shape.Dims(2);
const int input_height = input1_shape.Dims(1);
const int input_batch_size = input1_shape.Dims(0);
const int output_width = output_shape.Dims(2);
const int output_height = output_shape.Dims(1);
const int output_batch_size = output_shape.Dims(0);
const int block_shape_height = block_shape_data[0];
const int block_shape_width =
unextended_input1_shape.DimensionsCount() == 4 ? block_shape_data[1] : 1;
const int padding_top = paddings_data[0];
const int padding_left =
unextended_input1_shape.DimensionsCount() == 4 ? paddings_data[2] : 0;
// For uint8 quantized, the correct padding "zero value" is the output offset.
const int32_t pad_value = params.output_offset;
for (int out_b = 0; out_b < output_batch_size; ++out_b) {
int input_batch = out_b % input_batch_size;
int shift_w = (out_b / input_batch_size) % block_shape_width;
int shift_h = (out_b / input_batch_size) / block_shape_width;
for (int out_h = 0; out_h < output_height; ++out_h) {
for (int out_w = 0; out_w < output_width; ++out_w) {
T* out = output_data + Offset(output_shape, out_b, out_h, out_w, 0);
if (out_h * block_shape_height + shift_h < padding_top ||
out_h * block_shape_height + shift_h >=
padding_top + input_height ||
out_w * block_shape_width + shift_w < padding_left ||
out_w * block_shape_width + shift_w >= padding_left + input_width) {
// This may not execute correctly when pad_value != 0 and T != uint8.
memset(out, pad_value, depth * sizeof(T));
} else {
const T* in =
input1_data +
Offset(input1_shape, input_batch,
(out_h * block_shape_height + shift_h) - padding_top,
(out_w * block_shape_width + shift_w) - padding_left, 0);
memcpy(out, in, depth * sizeof(T));
}
}
}
}
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_SPACE_TO_BATCH_ND_H_

View File

@@ -15,23 +15,28 @@ limitations under the License.
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_STRIDED_SLICE_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_STRIDED_SLICE_H_
#include "ruy/profiler/instrumentation.h" // from @ruy
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/compatibility.h"
#include "tensorflow/lite/kernels/internal/portable_tensor.h"
#include "tensorflow/lite/kernels/internal/strided_slice_logic.h"
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
namespace reference_ops {
template <typename T>
inline void StridedSlice(const tflite::StridedSliceParams& op_params,
const RuntimeShape& unextended_input_shape,
const T* input_data,
const RuntimeShape& unextended_output_shape,
T* output_data) {
SequentialTensorWriter<T>* writer) {
using strided_slice::LoopCondition;
using strided_slice::StartForAxis;
using strided_slice::StopForAxis;
ruy::profiler::ScopeLabel label("StridedSlice");
// Note that the output_shape is not used herein.
tflite::StridedSliceParams params_copy = op_params;
@@ -57,7 +62,6 @@ inline void StridedSlice(const tflite::StridedSliceParams& op_params,
const int start_4 = StartForAxis(params_copy, input_shape, 4);
const int stop_4 = StopForAxis(params_copy, input_shape, 4, start_4);
T* out_ptr = output_data;
for (int offset_0 = start_0 * input_shape.Dims(1),
end_0 = stop_0 * input_shape.Dims(1),
step_0 = params_copy.strides[0] * input_shape.Dims(1);
@@ -81,13 +85,36 @@ inline void StridedSlice(const tflite::StridedSliceParams& op_params,
for (int offset_4 = offset_3 + start_4, end_4 = offset_3 + stop_4;
!LoopCondition(offset_4, end_4, params_copy.strides[4]);
offset_4 += params_copy.strides[4]) {
*out_ptr++ = input_data[offset_4];
writer->Write(offset_4);
}
}
}
}
}
}
template <typename T>
inline void StridedSlice(const tflite::StridedSliceParams& op_params,
const RuntimeShape& unextended_input_shape,
const T* input_data,
const RuntimeShape& unextended_output_shape,
T* output_data) {
SequentialTensorWriter<T> writer(input_data, output_data);
StridedSlice<T>(op_params, unextended_input_shape, unextended_output_shape,
&writer);
}
template <typename T>
inline void StridedSlice(const tflite::StridedSliceParams& op_params,
const RuntimeShape& unextended_input_shape,
const TfLiteTensor* input,
const RuntimeShape& unextended_output_shape,
TfLiteTensor* output) {
SequentialTensorWriter<T> writer(input, output);
StridedSlice<T>(op_params, unextended_input_shape, unextended_output_shape,
&writer);
}
} // namespace reference_ops
} // namespace tflite

View File

@@ -65,10 +65,6 @@ inline void SubNonBroadcast(const ArithmeticParams& params,
// dimensionality if the runtime code does a single loop over one dimension
// that handles broadcasting as the base case. The code generator would then
// generate max(D1, D2) nested for loops.
// TODO(b/151345101): BroadcastSub is intentionally duplicated from
// reference_ops.h. Once an optimized version is implemented and NdArrayDesc<T>
// is no longer referenced in this file, move NdArrayDesc<T> from types.h to
// reference_ops.h.
template <int N = 5>
inline void BroadcastSubSlow(const ArithmeticParams& params,
const RuntimeShape& input1_shape,
@@ -336,6 +332,50 @@ void BroadcastSubSlow(const ArithmeticParams& params,
NDOpsHelper<N>(output_desc, sub_func);
}
template <int N = 5>
inline void BroadcastSub16POTSlow(const ArithmeticParams& params,
const RuntimeShape& input1_shape,
const int16_t* input1_data,
const RuntimeShape& input2_shape,
const int16_t* input2_data,
const RuntimeShape& output_shape,
int16_t* output_data) {
ruy::profiler::ScopeLabel label("BroadcastSub16POTSlow/int16_t");
NdArrayDesc<N> desc1;
NdArrayDesc<N> desc2;
NdArrayDesc<N> output_desc;
NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
&desc2);
CopyDimsToDesc(RuntimeShape::ExtendedShape(N, output_shape), &output_desc);
// In Tensorflow, the dimensions are canonically named (batch_number, row,
// col, channel), with extents (batches, height, width, depth), with the
// trailing dimension changing most rapidly (channels has the smallest stride,
// typically 1 element).
//
// In generated C code, we store arrays with the dimensions reversed. The
// first dimension has smallest stride.
//
// We name our variables by their Tensorflow convention, but generate C code
// nesting loops such that the innermost loop has the smallest stride for the
// best cache behavior.
auto sub_func = [&](int indexes[N]) {
const int32_t input1_val = input1_data[SubscriptToIndex(desc1, indexes)];
const int32_t input2_val = input2_data[SubscriptToIndex(desc2, indexes)];
const int32_t scaled_input1_val =
gemmlowp::RoundingDivideByPOT(input1_val, -params.input1_shift);
const int32_t scaled_input2_val =
gemmlowp::RoundingDivideByPOT(input2_val, -params.input2_shift);
const int32_t raw_output = scaled_input1_val - scaled_input2_val;
const int32_t clamped_output =
std::min(params.quantized_activation_max,
std::max(params.quantized_activation_min, raw_output));
output_data[SubscriptToIndex(output_desc, indexes)] =
static_cast<int16_t>(clamped_output);
};
NDOpsHelper<N>(output_desc, sub_func);
}
// Element-wise Sub that can often be used for inner loop of broadcast sub as
// well as the non-broadcast sub.
inline void SubElementwise(int size, const ArithmeticParams& params,

View File

@@ -0,0 +1,217 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_TRANSPOSE_CONV_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_TRANSPOSE_CONV_H_
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
namespace reference_ops {
inline void TransposeConv(
const ConvParams& params, const RuntimeShape& input_shape,
const float* input_data, const RuntimeShape& filter_shape,
const float* filter_data, const RuntimeShape& bias_shape,
const float* bias_data, const RuntimeShape& output_shape,
float* output_data, const RuntimeShape& im2col_shape, float* im2col_data) {
const int stride_width = params.stride_width;
const int stride_height = params.stride_height;
const int pad_width = params.padding_values.width;
const int pad_height = params.padding_values.height;
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
(void)im2col_data; // only used in optimized code.
(void)im2col_shape; // only used in optimized code.
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
const int input_depth = MatchingDim(input_shape, 3, filter_shape, 3);
const int output_depth = MatchingDim(filter_shape, 0, output_shape, 3);
const int input_height = input_shape.Dims(1);
const int input_width = input_shape.Dims(2);
const int filter_height = filter_shape.Dims(1);
const int filter_width = filter_shape.Dims(2);
const int output_height = output_shape.Dims(1);
const int output_width = output_shape.Dims(2);
if (bias_data) {
TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth);
}
// Although transpose convolution simplifies to convolution with transposed
// weights for strides of 1, non-unitary striding complicates matters. To
// keep this reference implementation as clear as possible, we use a
// "scatter" access pattern, where we loop through all the input elements,
// computing their influence on the output, rather than looping through the
// output elements in the typical "gather" access pattern of a conv. We
// therefore must initialize the output array to zero.
const int num_elements = output_shape.FlatSize();
for (int i = 0; i < num_elements; i++) {
output_data[i] = 0.0f;
}
// Loop through input elements one at a time.
for (int batch = 0; batch < batches; ++batch) {
for (int in_y = 0; in_y < input_height; ++in_y) {
for (int in_x = 0; in_x < input_width; ++in_x) {
for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
// Loop through the output elements it will influence
const int out_x_origin = (in_x * stride_width) - pad_width;
const int out_y_origin = (in_y * stride_height) - pad_height;
for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
for (int out_channel = 0; out_channel < output_depth;
++out_channel) {
// Compute output element location
const int out_x = out_x_origin + filter_x;
const int out_y = out_y_origin + filter_y;
// We cannot accumulate out of bounds
if ((out_x >= 0) && (out_x < output_width) && (out_y >= 0) &&
(out_y < output_height)) {
float input_value = input_data[Offset(
input_shape, batch, in_y, in_x, in_channel)];
float filter_value =
filter_data[Offset(filter_shape, out_channel, filter_y,
filter_x, in_channel)];
output_data[Offset(output_shape, batch, out_y, out_x,
out_channel)] +=
input_value * filter_value;
}
}
}
}
}
}
}
}
if (bias_data) {
for (int batch = 0; batch < batches; ++batch) {
for (int out_y = 0; out_y < output_height; ++out_y) {
for (int out_x = 0; out_x < output_width; ++out_x) {
for (int out_channel = 0; out_channel < output_depth; ++out_channel) {
output_data[Offset(output_shape, batch, out_y, out_x,
out_channel)] += bias_data[out_channel];
}
}
}
}
}
}
inline void TransposeConv(
const ConvParams& params, const RuntimeShape& input_shape,
const uint8_t* input_data, const RuntimeShape& filter_shape,
const uint8_t* filter_data, const RuntimeShape& bias_shape,
const int32_t* bias_data, const RuntimeShape& output_shape,
uint8_t* output_data, const RuntimeShape& im2col_shape,
uint8_t* im2col_data, int32_t* scratch_buffer) {
const int stride_width = params.stride_width;
const int stride_height = params.stride_height;
const int pad_width = params.padding_values.width;
const int pad_height = params.padding_values.height;
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
(void)im2col_data; // only used in optimized code.
(void)im2col_shape; // only used in optimized code.
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
const int input_depth = MatchingDim(input_shape, 3, filter_shape, 3);
const int output_depth = MatchingDim(filter_shape, 0, output_shape, 3);
const int input_height = input_shape.Dims(1);
const int input_width = input_shape.Dims(2);
const int filter_height = filter_shape.Dims(1);
const int filter_width = filter_shape.Dims(2);
const int output_height = output_shape.Dims(1);
const int output_width = output_shape.Dims(2);
const int32_t input_offset = params.input_offset;
const int32_t filter_offset = params.weights_offset;
const int32_t output_offset = params.output_offset;
const int32_t output_multiplier = params.output_multiplier;
const int output_shift = params.output_shift;
const int32_t output_activation_min = params.quantized_activation_min;
const int32_t output_activation_max = params.quantized_activation_max;
TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
if (bias_data) {
TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth);
}
const int num_elements = output_shape.FlatSize();
// We need to initialize scratch_buffer to all 0s, as we apply the same
// 'scatter' based trick as in float version.
memset(scratch_buffer, 0, num_elements * sizeof(int32_t));
// Loop through input elements one at a time.
for (int batch = 0; batch < batches; ++batch) {
for (int in_y = 0; in_y < input_height; ++in_y) {
for (int in_x = 0; in_x < input_width; ++in_x) {
for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
// Loop through the output elements it will influence.
const int out_x_origin = (in_x * stride_width) - pad_width;
const int out_y_origin = (in_y * stride_height) - pad_height;
for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
for (int out_channel = 0; out_channel < output_depth;
++out_channel) {
// Compute output element location.
const int out_x = out_x_origin + filter_x;
const int out_y = out_y_origin + filter_y;
// We cannot accumulate out of bounds.
if ((out_x >= 0) && (out_x < output_width) && (out_y >= 0) &&
(out_y < output_height)) {
uint8_t input_value = input_data[Offset(
input_shape, batch, in_y, in_x, in_channel)];
uint8_t filter_value =
filter_data[Offset(filter_shape, out_channel, filter_y,
filter_x, in_channel)];
scratch_buffer[Offset(output_shape, batch, out_y, out_x,
out_channel)] +=
(input_value + input_offset) *
(filter_value + filter_offset);
}
}
}
}
}
}
}
}
for (int batch = 0; batch < batches; ++batch) {
for (int out_y = 0; out_y < output_height; ++out_y) {
for (int out_x = 0; out_x < output_width; ++out_x) {
for (int out_channel = 0; out_channel < output_depth; ++out_channel) {
int32_t acc = scratch_buffer[Offset(output_shape, batch, out_y, out_x,
out_channel)];
if (bias_data) {
acc += bias_data[out_channel];
}
int32_t scaled_acc = MultiplyByQuantizedMultiplier(
acc, output_multiplier, output_shift);
scaled_acc += output_offset;
scaled_acc = std::max(scaled_acc, output_activation_min);
scaled_acc = std::min(scaled_acc, output_activation_max);
output_data[Offset(output_shape, batch, out_y, out_x, out_channel)] =
static_cast<uint8_t>(scaled_acc);
}
}
}
}
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_TRANSPOSE_CONV_H_

View File

@@ -140,7 +140,7 @@ inline int StopForAxis(const tflite::StridedSliceParams& params,
// start_for_axis + 1 to generate a length 1 slice, since start_for_axis has
// already been adjusted for negative indices.
if (shrink_axis) {
stop = start_for_axis + 1;
return start_for_axis + 1;
}
// end_mask override

View File

@@ -43,6 +43,20 @@ struct PaddingValues {
int16_t height_offset;
};
struct Padding3DValues {
int16_t width;
int16_t height;
int16_t depth;
// offset is used for calculating "remaining" padding, for example, `width`
// is 1 and `width_offset` is 1, so padding_left is 1 while padding_right is
// 1 + 1 = 2.
int16_t width_offset;
// Same as width_offset except it's over the height dimension.
int16_t height_offset;
// Same as width_offset except it's over the depth dimension.
int16_t depth_offset;
};
// This enumeration allows for non-default formats for the weights array
// of a fully-connected operator, allowing the use of special optimized
// runtime paths.
@@ -170,7 +184,11 @@ class RuntimeShape {
// rolls out.
RuntimeShape(RuntimeShape const& other) : size_(other.DimensionsCount()) {
if (size_ > kMaxSmallSize) {
#ifdef TF_LITE_STATIC_MEMORY
TFLITE_CHECK(false && "No shape resizing supported on this platform");
#else
dims_pointer_ = new int32_t[size_];
#endif
}
std::memcpy(DimsData(), other.DimsData(), sizeof(int32_t) * size_);
}
@@ -392,6 +410,20 @@ inline int Offset(const RuntimeShape& shape, int i0, int i1, int i2, int i3) {
return ((i0 * dims_data[1] + i1) * dims_data[2] + i2) * dims_data[3] + i3;
}
inline int Offset(const RuntimeShape& shape, int i0, int i1, int i2, int i3,
int i4) {
TFLITE_DCHECK_EQ(shape.DimensionsCount(), 5);
const int* dims_data = reinterpret_cast<const int*>(shape.DimsDataUpTo5D());
TFLITE_DCHECK(i0 >= 0 && i0 < dims_data[0]);
TFLITE_DCHECK(i1 >= 0 && i1 < dims_data[1]);
TFLITE_DCHECK(i2 >= 0 && i2 < dims_data[2]);
TFLITE_DCHECK(i3 >= 0 && i3 < dims_data[3]);
TFLITE_DCHECK(i4 >= 0 && i4 < dims_data[4]);
return (((i0 * dims_data[1] + i1) * dims_data[2] + i2) * dims_data[3] + i3) *
dims_data[4] +
i4;
}
inline int Offset(const Dims<4>& dims, int i0, int i1, int i2, int i3) {
TFLITE_DCHECK(i0 >= 0 && i0 < dims.sizes[0]);
TFLITE_DCHECK(i1 >= 0 && i1 < dims.sizes[1]);
@@ -840,6 +872,19 @@ struct ConvParams {
float float_activation_max;
};
struct Conv3DParams {
Padding3DValues padding_values;
int stride_width;
int stride_height;
int stride_depth;
int dilation_width;
int dilation_height;
int dilation_depth;
// float activation params.
float float_activation_min;
float float_activation_max;
};
struct DepthToSpaceParams {
int32_t block_size;
};
@@ -907,6 +952,7 @@ struct FullyConnectedParams {
struct GatherParams {
int16_t axis;
int16_t batch_dims;
};
struct L2NormalizationParams {
@@ -1025,9 +1071,9 @@ struct ResizeNearestNeighborParams {
struct SliceParams {
int8_t begin_count;
int32_t begin[4];
int32_t begin[5];
int8_t size_count;
int32_t size[4];
int32_t size[5];
};
struct SoftmaxParams {

View File

@@ -21,12 +21,19 @@ limitations under the License.
#include <complex>
#include <limits>
#include <memory>
#ifndef TF_LITE_STATIC_MEMORY
#include <string>
#endif // TF_LITE_STATIC_MEMORY
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/cppmath.h"
#include "tensorflow/lite/kernels/internal/quantization_util.h"
#if defined(__APPLE__)
#include "TargetConditionals.h"
#endif
namespace tflite {
namespace {
@@ -283,8 +290,7 @@ TfLiteStatus GetQuantizedConvolutionMultipler(TfLiteContext* context,
double* multiplier) {
const double input_product_scale = static_cast<double>(input->params.scale) *
static_cast<double>(filter->params.scale);
// TODO(ahentz): The following conditions must be guaranteed by the training
// pipeline.
// The following conditions must be guaranteed by the training pipeline.
if (bias) {
const double bias_scale = static_cast<double>(bias->params.scale);
// Here we're making sure the input_product_scale & bias_scale are about the
@@ -383,9 +389,25 @@ bool HaveSameShapes(const TfLiteTensor* input1, const TfLiteTensor* input2) {
return TfLiteIntArrayEqual(input1->dims, input2->dims);
}
// TODO(petewarden): Having macros around this is ugly, look at other strategies
// before replicating this approach elsewhere.
#ifndef TF_LITE_STATIC_MEMORY
// TODO(b/172067338): Having this function be part of TF_LITE_STATIC_MEMORY
// build results in a 6KB size increase, even though the function is unsused for
// that build. What appears to be happening is that while the linker drops the
// unsused function, the string library that gets pulled in is not dropped,
// resulting in the increased binary size.
std::string GetShapeDebugString(const TfLiteIntArray* shape) {
std::string str;
for (int d = 0; d < shape->size; ++d) {
if (str.empty())
str = "[" + std::to_string(shape->data[d]);
else
str += ", " + std::to_string(shape->data[d]);
}
str += "]";
return str;
}
TfLiteStatus CalculateShapeForBroadcast(TfLiteContext* context,
const TfLiteTensor* input1,
const TfLiteTensor* input2,
@@ -402,7 +424,13 @@ TfLiteStatus CalculateShapeForBroadcast(TfLiteContext* context,
for (int i = 0; i < out_dims; ++i) {
int d1 = i >= dims1 ? 1 : SizeOfDimension(input1, dims1 - i - 1);
int d2 = i >= dims2 ? 1 : SizeOfDimension(input2, dims2 - i - 1);
TF_LITE_ENSURE(context, d1 == d2 || d1 == 1 || d2 == 1);
if (!(d1 == d2 || d1 == 1 || d2 == 1)) {
context->ReportError(context,
"Given shapes, %s and %s, are not broadcastable.",
GetShapeDebugString(input1->dims).c_str(),
GetShapeDebugString(input2->dims).c_str());
return kTfLiteError;
}
shape->data[out_dims - i - 1] = std::max(d1, d2);
}
*output_shape = shape.release();
@@ -425,9 +453,15 @@ TfLiteStatus CalculateShapeForBroadcast(TfLiteContext* context,
int d2 = i >= dims2 ? 1 : SizeOfDimension(input2, dims2 - i - 1);
int d3 = i >= dims3 ? 1 : SizeOfDimension(input3, dims3 - i - 1);
int max_value = std::max(std::max(d1, d2), d3);
TF_LITE_ENSURE(context, d1 == 1 || d1 == max_value);
TF_LITE_ENSURE(context, d2 == 1 || d2 == max_value);
TF_LITE_ENSURE(context, d3 == 1 || d3 == max_value);
if (!(d1 == 1 || d1 == max_value) || !(d2 == 1 || d2 == max_value) ||
!(d3 == 1 || d3 == max_value)) {
context->ReportError(
context, "Given shapes, %s, %s and %s, are not broadcastable.",
GetShapeDebugString(input1->dims).c_str(),
GetShapeDebugString(input2->dims).c_str(),
GetShapeDebugString(input3->dims).c_str());
return kTfLiteError;
}
shape->data[out_dims - i - 1] = max_value;
}
*output_shape = shape.release();
@@ -458,9 +492,15 @@ int TfLiteTypeGetSize(TfLiteType type) {
case kTfLiteInt32:
TF_LITE_ASSERT_EQ(sizeof(int32_t), 4);
return 4;
case kTfLiteUInt32:
TF_LITE_ASSERT_EQ(sizeof(uint32_t), 4);
return 4;
case kTfLiteInt64:
TF_LITE_ASSERT_EQ(sizeof(int64_t), 8);
return 8;
case kTfLiteUInt64:
TF_LITE_ASSERT_EQ(sizeof(uint64_t), 8);
return 8;
case kTfLiteFloat64:
TF_LITE_ASSERT_EQ(sizeof(double), 8);
return 8;
@@ -475,4 +515,15 @@ int TfLiteTypeGetSize(TfLiteType type) {
}
}
bool IsMobilePlatform() {
#if defined(ANDROID) || defined(__ANDROID__)
return true;
#elif defined(__APPLE__)
#if TARGET_IPHONE_SIMULATOR || TARGET_OS_IPHONE
return true;
#endif
#endif
return false;
}
} // namespace tflite

View File

@@ -288,6 +288,9 @@ TfLiteStatus CalculateShapeForBroadcast(TfLiteContext* context,
// Return the size of given type in bytes. Return 0 in in case of string.
int TfLiteTypeGetSize(TfLiteType type);
// Whether the current platform is mobile (Android or iOS).
bool IsMobilePlatform();
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_KERNEL_UTIL_H_

View File

@@ -57,7 +57,7 @@ inline void InfiniteLoop() {
#endif // TF_LITE_MCU_DEBUG_LOG
#ifdef NDEBUG
#if defined(NDEBUG) || defined(ARDUINO)
#define TFLITE_ASSERT_FALSE (static_cast<void>(0))
#else
#define TFLITE_ASSERT_FALSE TFLITE_ABORT

View File

@@ -16,6 +16,7 @@ limitations under the License.
#define TENSORFLOW_LITE_KERNELS_PADDING_H_
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
@@ -75,6 +76,36 @@ inline TfLitePaddingValues ComputePaddingHeightWidth(
padding_values.width_offset = offset;
return padding_values;
}
inline Padding3DValues ComputePadding3DValues(
int stride_height, int stride_width, int stride_depth,
int dilation_rate_height, int dilation_rate_width, int dilation_rate_depth,
int in_height, int in_width, int in_depth, int filter_height,
int filter_width, int filter_depth, TfLitePadding padding, int* out_height,
int* out_width, int* out_depth) {
*out_width = ComputeOutSize(padding, in_width, filter_width, stride_width,
dilation_rate_width);
*out_height = ComputeOutSize(padding, in_height, filter_height, stride_height,
dilation_rate_height);
*out_depth = ComputeOutSize(padding, in_depth, filter_depth, stride_depth,
dilation_rate_depth);
Padding3DValues padding_values;
int offset = 0;
padding_values.depth =
ComputePaddingWithOffset(stride_depth, dilation_rate_depth, in_depth,
filter_depth, *out_depth, &offset);
padding_values.depth_offset = offset;
padding_values.height =
ComputePaddingWithOffset(stride_height, dilation_rate_height, in_height,
filter_height, *out_height, &offset);
padding_values.height_offset = offset;
padding_values.width =
ComputePaddingWithOffset(stride_width, dilation_rate_width, in_width,
filter_width, *out_width, &offset);
padding_values.width_offset = offset;
return padding_values;
}
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_PADDING_H_

View File

@@ -1,8 +1,11 @@
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
@@ -15,35 +18,35 @@ limitations under the License.
#include "tensorflow/lite/micro/kernels/micro_ops.h"
namespace tflite {
namespace ops {
namespace micro {
namespace custom {
TfLiteRegistration* Register_ETHOSU();
const char* GetString_ETHOSU();
} // namespace custom
} // namespace micro
} // namespace ops
AllOpsResolver::AllOpsResolver() {
// Please keep this list of Builtin Operators in alphabetical order.
AddAbs();
AddAdd();
AddAddN();
AddArgMax();
AddArgMin();
AddAveragePool2D();
AddBatchToSpaceNd();
AddCeil();
AddConcatenation();
AddConv2D();
AddCos();
AddDepthwiseConv2D();
AddDequantize();
AddDetectionPostprocess();
AddDiv();
AddElu();
AddEqual();
AddEthosU();
AddFloor();
AddFullyConnected();
AddGreater();
AddGreaterEqual();
AddHardSwish();
AddL2Normalization();
AddL2Pool2D();
AddLeakyRelu();
AddLess();
AddLessEqual();
AddLog();
@@ -51,8 +54,8 @@ AllOpsResolver::AllOpsResolver() {
AddLogicalNot();
AddLogicalOr();
AddLogistic();
AddMaximum();
AddMaxPool2D();
AddMaximum();
AddMean();
AddMinimum();
AddMul();
@@ -73,22 +76,18 @@ AllOpsResolver::AllOpsResolver() {
AddShape();
AddSin();
AddSoftmax();
AddSpaceToBatchNd();
AddSplit();
AddSplitV();
AddSqrt();
AddSquare();
AddSqueeze();
AddStridedSlice();
AddSub();
AddSvdf();
AddTanh();
AddTransposeConv();
AddUnpack();
// TODO(b/159644355): Figure out if custom Ops belong in AllOpsResolver.
TfLiteRegistration* registration =
tflite::ops::micro::custom::Register_ETHOSU();
if (registration) {
AddCustom(tflite::ops::micro::custom::GetString_ETHOSU(), registration);
}
}
} // namespace tflite

View File

@@ -1,8 +1,11 @@
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

View File

@@ -0,0 +1,119 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/kernels/internal/reference/add_n.h"
#include <cstdint>
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
namespace tflite {
namespace {
constexpr int kInputTensor0 = 0;
constexpr int kOutputTensor = 0;
TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node) {
int num_inputs = NumInputs(node);
TF_LITE_ENSURE(context, num_inputs >= 2);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
const TfLiteTensor* input_tensor_first;
TF_LITE_ENSURE_OK(
context, GetInputSafe(context, node, kInputTensor0, &input_tensor_first));
TfLiteTensor* output;
TF_LITE_ENSURE_OK(context,
GetOutputSafe(context, node, kOutputTensor, &output));
// Check that all tensors have the same shape and type.
TF_LITE_ENSURE_TYPES_EQ(context, output->type, input_tensor_first->type);
for (int i = kInputTensor0 + 1; i < num_inputs; ++i) {
const TfLiteTensor* input;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, i, &input));
TF_LITE_ENSURE(context, HaveSameShapes(input_tensor_first, input));
TF_LITE_ENSURE_TYPES_EQ(context, input_tensor_first->type, input->type);
}
// Allocate scratch buffer space for pointer to each tensor's data
// and store the scratch buffer index in the node's user_data
if (output->type == kTfLiteFloat32) {
int scratch_index;
size_t scratch_size = sizeof(float*) * num_inputs;
TF_LITE_ENSURE_OK(context, context->RequestScratchBufferInArena(
context, scratch_size, &scratch_index));
node->user_data =
reinterpret_cast<decltype(node->user_data)>(scratch_index);
} else {
TF_LITE_KERNEL_LOG(context, "ADD_N only supports FLOAT32, got %s.",
TfLiteTypeGetName(output->type));
return kTfLiteError;
}
return kTfLiteOk;
}
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
return CalculateOpData(context, node);
}
template <typename T>
void EvalAddN(TfLiteContext* context, TfLiteNode* node,
TfLiteEvalTensor* output) {
int num_inputs = NumInputs(node);
int scratch_index =
static_cast<int>(reinterpret_cast<intptr_t>(node->user_data));
void* scratch_buffer = context->GetScratchBuffer(context, scratch_index);
const T** all_inputs = static_cast<decltype(all_inputs)>(scratch_buffer);
for (int i = 0; i < num_inputs; i++) {
const TfLiteEvalTensor* next_input =
tflite::micro::GetEvalInput(context, node, kInputTensor0 + i);
all_inputs[i] = tflite::micro::GetTensorData<T>(next_input);
}
reference_ops::AddN<T>(tflite::micro::GetTensorShape(output), num_inputs,
all_inputs, tflite::micro::GetTensorData<T>(output));
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
if (output->type == kTfLiteFloat32) {
EvalAddN<float>(context, node, output);
} else {
TF_LITE_KERNEL_LOG(context, "ADD_N only supports FLOAT32, got %s.",
TfLiteTypeGetName(output->type));
return kTfLiteError;
}
return kTfLiteOk;
}
} // namespace
TfLiteRegistration Register_ADD_N() {
return {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/Prepare,
/*invoke=*/Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
} // namespace tflite

View File

@@ -0,0 +1,111 @@
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/kernels/internal/reference/batch_to_space_nd.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
#include "tensorflow/lite/micro/micro_utils.h"
namespace tflite {
namespace {
constexpr int kInputTensor = 0;
constexpr int kBlockShapeTensor = 1;
constexpr int kCropsTensor = 2;
constexpr int kOutputTensor = 0;
// Currently, only 3D NHC and 4D NHWC input/output op_context are supported.
// In case of 3D input, it will be extended to 3D NHWC by adding W=1.
// The 4D array need to have exactly 2 spatial dimensions.
// TODO(b/149952582): Support arbitrary dimension in SpaceToBatchND.
const int kInputOutputMinDimensionNum = 3;
const int kInputOutputMaxDimensionNum = 4;
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE_EQ(context, NumInputs(node), 3);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TF_LITE_ENSURE(context, input != nullptr && output != nullptr);
TF_LITE_ENSURE(context, NumDimensions(input) >= kInputOutputMinDimensionNum);
TF_LITE_ENSURE(context, NumDimensions(output) >= kInputOutputMinDimensionNum);
TF_LITE_ENSURE(context, NumDimensions(input) <= kInputOutputMaxDimensionNum);
TF_LITE_ENSURE(context, NumDimensions(output) <= kInputOutputMaxDimensionNum);
TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
return kTfLiteOk;
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteEvalTensor* input =
tflite::micro::GetEvalInput(context, node, kInputTensor);
const TfLiteEvalTensor* block_shape =
tflite::micro::GetEvalInput(context, node, kBlockShapeTensor);
const TfLiteEvalTensor* crops =
tflite::micro::GetEvalInput(context, node, kCropsTensor);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
switch (input->type) { // Already know in/out types are same.
case kTfLiteFloat32:
reference_ops::BatchToSpaceND(
tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<float>(input),
tflite::micro::GetTensorShape(block_shape),
tflite::micro::GetTensorData<int32_t>(block_shape),
tflite::micro::GetTensorShape(crops),
tflite::micro::GetTensorData<int32_t>(crops),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output));
break;
case kTfLiteInt8:
reference_ops::BatchToSpaceND(
tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<int8_t>(input),
tflite::micro::GetTensorShape(block_shape),
tflite::micro::GetTensorData<int32_t>(block_shape),
tflite::micro::GetTensorShape(crops),
tflite::micro::GetTensorData<int32_t>(crops),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int8_t>(output));
break;
default:
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
TfLiteTypeGetName(input->type), input->type);
return kTfLiteError;
}
return kTfLiteOk;
}
} // namespace.
TfLiteRegistration Register_BATCH_TO_SPACE_ND() {
return {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/Prepare,
/*invoke=*/Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
} // namespace tflite

View File

@@ -0,0 +1,96 @@
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
namespace tflite {
namespace {
constexpr int kInputTensor = 0;
constexpr int kOutputTensor = 0;
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TF_LITE_ENSURE(context, input != nullptr);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TF_LITE_ENSURE(context, output != nullptr);
return kTfLiteOk;
}
template <typename FromT, typename ToT>
void copyCast(const FromT* in, ToT* out, int num_elements) {
std::transform(in, in + num_elements, out,
[](FromT a) { return static_cast<ToT>(a); });
}
template <typename FromT>
TfLiteStatus copyToTensor(TfLiteContext* context, const FromT* in,
TfLiteEvalTensor* out, int num_elements) {
switch (out->type) {
case kTfLiteInt8:
copyCast(in, out->data.int8, num_elements);
break;
case kTfLiteFloat32:
copyCast(in, tflite::micro::GetTensorData<float>(out), num_elements);
break;
default:
// Unsupported type.
TF_LITE_KERNEL_LOG(context, "Output type %s (%d) not supported.",
TfLiteTypeGetName(out->type), out->type);
}
return kTfLiteOk;
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteEvalTensor* input =
tflite::micro::GetEvalInput(context, node, kInputTensor);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
int num_elements = MatchingFlatSize(tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorShape(output));
switch (input->type) {
case kTfLiteInt8:
return copyToTensor(context, input->data.int8, output, num_elements);
case kTfLiteFloat32:
return copyToTensor(context, tflite::micro::GetTensorData<float>(input),
output, num_elements);
default:
// Unsupported type.
TF_LITE_KERNEL_LOG(context, "Input type %s (%d) not supported.",
TfLiteTypeGetName(input->type), input->type);
}
return kTfLiteOk;
}
} // namespace
TfLiteRegistration Register_CAST() {
return {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/Prepare,
/*invoke=*/Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
} // namespace tflite

View File

@@ -13,6 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#define FLATBUFFERS_LOCALE_INDEPENDENT 0
#include "flatbuffers/flexbuffers.h"
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/compatibility.h"
@@ -55,7 +57,7 @@ constexpr int kInputTensor = 0;
constexpr int kOutputTensor = 0;
// TODO(b/149795762): Add this to TfLiteStatus enum.
constexpr int kTfLiteAbort = -9;
constexpr TfLiteStatus kTfLiteAbort = static_cast<TfLiteStatus>(-9);
// These fields control the stride period of a strided streaming model. This op
// returns kTfLiteAbort until cycles_until_run-- is zero. At this time,
@@ -65,47 +67,64 @@ struct OpData {
int cycles_max;
};
// These constants represent constants specific to the music detect model.
// They exist until (b/132070898) is fixed.
constexpr int kMaxOpDataSize = 7;
int op_data_counter = 0;
OpData op_data_array[kMaxOpDataSize];
} // namespace
void Free(TfLiteContext* context, void* buffer) { op_data_counter = 0; }
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
OpData* op_data = static_cast<OpData*>(
context->AllocatePersistentBuffer(context, sizeof(OpData)));
if (buffer != nullptr && length > 0) {
const uint8_t* buffer_t = reinterpret_cast<const uint8_t*>(buffer);
const flexbuffers::Map& m = flexbuffers::GetRoot(buffer_t, length).AsMap();
op_data->cycles_max = m["cycles_max"].AsInt32();
} else {
op_data->cycles_max = 0;
}
return op_data;
}
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TF_LITE_ENSURE(context, input != nullptr);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TF_LITE_ENSURE(context, output != nullptr);
TFLITE_DCHECK(node->user_data != nullptr);
OpData* op_data = static_cast<OpData*>(node->user_data);
TF_LITE_ENSURE(context, input != nullptr);
TF_LITE_ENSURE(context, output != nullptr);
TF_LITE_ENSURE_EQ(context, 1, output->dims->data[0]);
TF_LITE_ENSURE_EQ(context, 1, input->dims->data[0]);
TF_LITE_ENSURE_EQ(context, input->dims->data[0], output->dims->data[0]);
TF_LITE_ENSURE_EQ(context, 1, input->dims->data[1]);
TF_LITE_ENSURE_EQ(context, 1, output->dims->data[2]);
TF_LITE_ENSURE_EQ(context, 1, input->dims->data[2]);
TF_LITE_ENSURE_EQ(context, input->dims->data[2], output->dims->data[2]);
TF_LITE_ENSURE_EQ(context, output->dims->data[3], input->dims->data[3]);
TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
// The circular buffer custom operator currently only supports int8_t.
// The circular buffer custom operator currently only supports int8.
TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteInt8);
// TODO(b/132070898): Use statically slotted OpData structures until a
// scratch memory API is ready.
TFLITE_DCHECK_LE(op_data_counter, kMaxOpDataSize);
OpData* op_data = &op_data_array[op_data_counter++];
// The last circular buffer layer (length 5) simply accumulates outputs, and
// does not run periodically.
// TODO(b/150001379): Move this special case logic to the tflite flatbuffer.
if (output->dims->data[1] == 5) {
op_data->cycles_max = 1;
} else {
op_data->cycles_max = 2;
if (op_data->cycles_max <= 0) {
// The last circular buffer layer simply accumulates outputs, and does not
// run periodically.
// TODO(b/150001379): Move this special case logic to the tflite flatbuffer.
static int cb_prepare_count = 0;
cb_prepare_count++;
// These checks specifically work for the only two streaming models
// supported on TFLM. They use the shape of the output tensor along with the
// layer number to determine if the circular buffer period should be 1 or 2.
// These models are outlined int the following documents:
// https://docs.google.com/document/d/1lc_G2ZFhjiKFo02UHjBaljye1xsL0EkfybkaVELEE3Q/edit?usp=sharing
// https://docs.google.com/document/d/1pGc42PuWyrk-Jy1-9qeqtggvsmHr1ifz8Lmqfpr2rKA/edit?usp=sharing
if (output->dims->data[1] == 5 || output->dims->data[1] == 13 ||
(cb_prepare_count == 5 && output->dims->data[2] == 2 &&
output->dims->data[3] == 96)) {
op_data->cycles_max = 1;
cb_prepare_count = 0;
} else {
op_data->cycles_max = 2;
}
}
op_data->cycles_until_run = op_data->cycles_max;
node->user_data = op_data;
@@ -127,10 +146,11 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
TFLITE_DCHECK(node->user_data != nullptr);
OpData* data = reinterpret_cast<OpData*>(node->user_data);
int num_slots = output->dims->data[1];
int depth = output->dims->data[3];
int depth = output->dims->data[2] * output->dims->data[3];
if (input->type == kTfLiteInt8) {
EvalInt8(tflite::micro::GetTensorData<int8_t>(input), num_slots, depth,
@@ -148,12 +168,6 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
return static_cast<TfLiteStatus>(kTfLiteAbort);
}
// If prepare is ever called more than one time (for example, when testing the
// ambient model, the interpreter is created a few times), this op data
// counter needs to be reset so that future instances do not overrun this op
// data array.
op_data_counter = 0;
data->cycles_until_run = data->cycles_max;
return kTfLiteOk;
@@ -162,8 +176,8 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
} // namespace circular_buffer
TfLiteRegistration* Register_CIRCULAR_BUFFER() {
static TfLiteRegistration r = {/*init=*/nullptr,
/*free=*/circular_buffer::Free,
static TfLiteRegistration r = {/*init=*/circular_buffer::Init,
/*free=*/nullptr,
/*prepare=*/circular_buffer::Prepare,
/*invoke=*/circular_buffer::Eval,
/*profiling_string=*/nullptr,

View File

@@ -0,0 +1,22 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_MICRO_KERNELS_FLEXBUFFERS_GENERATED_DATA_H
#define TENSORFLOW_LITE_MICRO_KERNELS_FLEXBUFFERS_GENERATED_DATA_H
extern const int g_gen_data_size_circular_buffer_config;
extern const unsigned char g_gen_data_circular_buffer_config[];
#endif

View File

@@ -13,12 +13,13 @@ See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/kernels/internal/reference/conv.h"
#include "tensorflow/lite/micro/kernels/conv.h"
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/quantization_util.h"
#include "tensorflow/lite/kernels/internal/reference/conv.h"
#include "tensorflow/lite/kernels/internal/reference/integer_ops/conv.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
@@ -28,294 +29,60 @@ limitations under the License.
namespace tflite {
namespace {
constexpr int kInputTensor = 0;
constexpr int kFilterTensor = 1;
constexpr int kBiasTensor = 2;
constexpr int kOutputTensor = 0;
// Conv is quantized along dimension 0:
// https://www.tensorflow.org/lite/performance/quantization_spec
constexpr int kConvQuantizedDimension = 0;
// This file has 2 implementation of Conv.
struct OpData {
TfLitePaddingValues padding;
// Cached tensor zero point values for quantized operations.
int32_t input_zero_point;
int32_t filter_zero_point;
int32_t output_zero_point;
// The scaling factor from input to output (aka the 'real multiplier') can
// be represented as a fixed point multiplier plus a left shift.
int32_t output_multiplier;
int output_shift;
// Per channel output multiplier and shift.
int32_t* per_channel_output_multiplier;
int32_t* per_channel_output_shift;
// The range of the fused activation layer. For example for kNone and
// uint8_t these would be 0 and 255.
int32_t output_activation_min;
int32_t output_activation_max;
};
inline PaddingType RuntimePaddingType(TfLitePadding padding) {
switch (padding) {
case TfLitePadding::kTfLitePaddingSame:
return PaddingType::kSame;
case TfLitePadding::kTfLitePaddingValid:
return PaddingType::kValid;
case TfLitePadding::kTfLitePaddingUnknown:
default:
return PaddingType::kNone;
}
}
TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node,
const TfLiteConvParams* params, int width,
int height, int filter_width, int filter_height,
int out_width, int out_height,
const TfLiteType data_type, OpData* data) {
bool has_bias = node->inputs->size == 3;
// Check number of inputs/outputs
TF_LITE_ENSURE(context, has_bias || node->inputs->size == 2);
TF_LITE_ENSURE_EQ(context, node->outputs->size, 1);
// Matching GetWindowedOutputSize in TensorFlow.
auto padding = params->padding;
data->padding = ComputePaddingHeightWidth(
params->stride_height, params->stride_width,
params->dilation_height_factor, params->dilation_width_factor, height,
width, filter_height, filter_width, padding, &out_height, &out_width);
// Note that quantized inference requires that all tensors have their
// parameters set. This is usually done during quantized training.
if (data_type != kTfLiteFloat32) {
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TF_LITE_ENSURE(context, input != nullptr);
const TfLiteTensor* filter = GetInput(context, node, kFilterTensor);
TF_LITE_ENSURE(context, filter != nullptr);
const TfLiteTensor* bias =
GetOptionalInputTensor(context, node, kBiasTensor);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TF_LITE_ENSURE(context, output != nullptr);
int output_channels = filter->dims->data[kConvQuantizedDimension];
TF_LITE_ENSURE_STATUS(tflite::PopulateConvolutionQuantizationParams(
context, input, filter, bias, output, params->activation,
&data->output_multiplier, &data->output_shift,
&data->output_activation_min, &data->output_activation_max,
data->per_channel_output_multiplier,
reinterpret_cast<int*>(data->per_channel_output_shift),
output_channels));
}
return kTfLiteOk;
}
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
return context->AllocatePersistentBuffer(context, sizeof(OpData));
}
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TFLITE_DCHECK(node->user_data != nullptr);
TFLITE_DCHECK(node->builtin_data != nullptr);
OpData* data = static_cast<OpData*>(node->user_data);
const auto params = static_cast<const TfLiteConvParams*>(node->builtin_data);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TF_LITE_ENSURE(context, output != nullptr);
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TF_LITE_ENSURE(context, input != nullptr);
const TfLiteTensor* filter = GetInput(context, node, kFilterTensor);
TF_LITE_ENSURE(context, filter != nullptr);
int input_width = input->dims->data[2];
int input_height = input->dims->data[1];
int filter_width = filter->dims->data[2];
int filter_height = filter->dims->data[1];
int output_width = output->dims->data[2];
int output_height = output->dims->data[1];
// Dynimically allocate per-channel quantization parameters.
const int num_channels = filter->dims->data[kConvQuantizedDimension];
data->per_channel_output_multiplier =
static_cast<int32_t*>(context->AllocatePersistentBuffer(
context, num_channels * sizeof(int32_t)));
data->per_channel_output_shift =
static_cast<int32_t*>(context->AllocatePersistentBuffer(
context, num_channels * sizeof(int32_t)));
// All per-channel quantized tensors need valid zero point and scale arrays.
if (input->type == kTfLiteInt8) {
TF_LITE_ENSURE_EQ(context, filter->quantization.type,
kTfLiteAffineQuantization);
const auto* affine_quantization =
static_cast<TfLiteAffineQuantization*>(filter->quantization.params);
TF_LITE_ENSURE(context, affine_quantization);
TF_LITE_ENSURE(context, affine_quantization->scale);
TF_LITE_ENSURE(context, affine_quantization->zero_point);
TF_LITE_ENSURE(context,
affine_quantization->scale->size == 1 ||
affine_quantization->scale->size ==
filter->dims->data[kConvQuantizedDimension]);
TF_LITE_ENSURE_EQ(context, affine_quantization->scale->size,
affine_quantization->zero_point->size);
}
TF_LITE_ENSURE_STATUS(CalculateOpData(
context, node, params, input_width, input_height, filter_width,
filter_height, output_width, output_height, input->type, data));
data->input_zero_point = input->params.zero_point;
data->filter_zero_point = filter->params.zero_point;
data->output_zero_point = output->params.zero_point;
return kTfLiteOk;
} // namespace conv
void EvalQuantized(TfLiteContext* context, TfLiteNode* node,
TfLiteConvParams* params, const OpData& data,
const TfLiteEvalTensor* input,
const TfLiteEvalTensor* filter, const TfLiteEvalTensor* bias,
TfLiteEvalTensor* im2col, TfLiteEvalTensor* hwcn_weights,
TfLiteEvalTensor* output) {
const int32_t input_offset = -data.input_zero_point;
const int32_t filter_offset = -data.filter_zero_point;
const int32_t output_offset = data.output_zero_point;
// TODO(b/154032858): Investigate removing extra copies.
ConvParams op_params;
op_params.padding_type = RuntimePaddingType(params->padding);
op_params.padding_values.width = data.padding.width;
op_params.padding_values.height = data.padding.height;
op_params.stride_width = params->stride_width;
op_params.stride_height = params->stride_height;
op_params.dilation_width_factor = params->dilation_width_factor;
op_params.dilation_height_factor = params->dilation_height_factor;
op_params.input_offset = input_offset;
op_params.weights_offset = filter_offset;
op_params.output_offset = output_offset;
op_params.output_multiplier = data.output_multiplier;
op_params.output_shift = -data.output_shift;
op_params.quantized_activation_min = data.output_activation_min;
op_params.quantized_activation_max = data.output_activation_max;
reference_ops::Conv(op_params, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<uint8_t>(input),
tflite::micro::GetTensorShape(filter),
tflite::micro::GetTensorData<uint8_t>(filter),
tflite::micro::GetTensorShape(bias),
tflite::micro::GetTensorData<int32_t>(bias),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<uint8_t>(output),
tflite::micro::GetTensorShape(im2col),
tflite::micro::GetTensorData<uint8_t>(im2col), nullptr);
}
void EvalQuantizedPerChannel(TfLiteContext* context, TfLiteNode* node,
TfLiteConvParams* params, const OpData& data,
const TfLiteEvalTensor* input,
const TfLiteEvalTensor* filter,
const TfLiteEvalTensor* bias,
TfLiteEvalTensor* output,
TfLiteEvalTensor* im2col) {
// TODO(b/154032858): Investigate removing extra copies.
ConvParams op_params;
op_params.input_offset = -data.input_zero_point;
op_params.output_offset = data.output_zero_point;
op_params.stride_height = params->stride_height;
op_params.stride_width = params->stride_width;
op_params.dilation_height_factor = params->dilation_height_factor;
op_params.dilation_width_factor = params->dilation_width_factor;
op_params.padding_values.height = data.padding.height;
op_params.padding_values.width = data.padding.width;
op_params.quantized_activation_min = data.output_activation_min;
op_params.quantized_activation_max = data.output_activation_max;
reference_integer_ops::ConvPerChannel(
op_params, data.per_channel_output_multiplier,
data.per_channel_output_shift, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<int8_t>(input),
tflite::micro::GetTensorShape(filter),
tflite::micro::GetTensorData<int8_t>(filter),
tflite::micro::GetTensorShape(bias),
tflite::micro::GetTensorData<int32_t>(bias),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int8_t>(output));
}
void EvalFloat(TfLiteContext* context, TfLiteNode* node,
TfLiteConvParams* params, const OpData& data,
const TfLiteEvalTensor* input, const TfLiteEvalTensor* filter,
const TfLiteEvalTensor* bias, TfLiteEvalTensor* im2col,
TfLiteEvalTensor* hwcn_weights, TfLiteEvalTensor* output) {
float output_activation_min, output_activation_max;
CalculateActivationRange(params->activation, &output_activation_min,
&output_activation_max);
// TODO(b/154032858): Investigate removing extra copies.
ConvParams op_params;
op_params.padding_type = RuntimePaddingType(params->padding);
op_params.padding_values.width = data.padding.width;
op_params.padding_values.height = data.padding.height;
op_params.stride_width = params->stride_width;
op_params.stride_height = params->stride_height;
op_params.dilation_width_factor = params->dilation_width_factor;
op_params.dilation_height_factor = params->dilation_height_factor;
op_params.float_activation_min = output_activation_min;
op_params.float_activation_max = output_activation_max;
reference_ops::Conv(op_params, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<float>(input),
tflite::micro::GetTensorShape(filter),
tflite::micro::GetTensorData<float>(filter),
tflite::micro::GetTensorShape(bias),
tflite::micro::GetTensorData<float>(bias),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output),
tflite::micro::GetTensorShape(im2col),
tflite::micro::GetTensorData<float>(im2col));
return context->AllocatePersistentBuffer(context, sizeof(OpDataConv));
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
auto* params = reinterpret_cast<TfLiteConvParams*>(node->builtin_data);
const TfLiteEvalTensor* input =
tflite::micro::GetEvalInput(context, node, kInputTensor);
tflite::micro::GetEvalInput(context, node, kConvInputTensor);
const TfLiteEvalTensor* filter =
tflite::micro::GetEvalInput(context, node, kFilterTensor);
tflite::micro::GetEvalInput(context, node, kConvWeightsTensor);
const TfLiteEvalTensor* bias =
(NumInputs(node) == 3)
? tflite::micro::GetEvalInput(context, node, kBiasTensor)
? tflite::micro::GetEvalInput(context, node, kConvBiasTensor)
: nullptr;
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
tflite::micro::GetEvalOutput(context, node, kConvOutputTensor);
TFLITE_DCHECK(node->builtin_data != nullptr);
const auto& params =
*(reinterpret_cast<TfLiteConvParams*>(node->builtin_data));
TFLITE_DCHECK(node->user_data != nullptr);
const OpData& data = *(static_cast<const OpData*>(node->user_data));
const auto& data = *(static_cast<const OpDataConv*>(node->user_data));
TF_LITE_ENSURE_EQ(context, input->type, output->type);
TF_LITE_ENSURE_MSG(context, input->type == filter->type,
"Hybrid models are not supported on TFLite Micro.");
switch (input->type) { // Already know in/out types are same.
case kTfLiteFloat32:
EvalFloat(context, node, params, data, input, filter, bias, nullptr,
nullptr, output);
case kTfLiteFloat32: {
tflite::reference_ops::Conv(
ConvParamsFloat(params, data), tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<float>(input),
tflite::micro::GetTensorShape(filter),
tflite::micro::GetTensorData<float>(filter),
tflite::micro::GetTensorShape(bias),
tflite::micro::GetTensorData<float>(bias),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output),
tflite::micro::GetTensorShape(nullptr), nullptr);
break;
case kTfLiteInt8:
EvalQuantizedPerChannel(context, node, params, data, input, filter, bias,
output, nullptr);
break;
case kTfLiteUInt8:
EvalQuantized(context, node, params, data, input, filter, bias, nullptr,
nullptr, output);
}
case kTfLiteInt8: {
reference_integer_ops::ConvPerChannel(
ConvParamsQuantized(params, data), data.per_channel_output_multiplier,
data.per_channel_output_shift, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<int8_t>(input),
tflite::micro::GetTensorShape(filter),
tflite::micro::GetTensorData<int8_t>(filter),
tflite::micro::GetTensorShape(bias),
tflite::micro::GetTensorData<int32_t>(bias),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int8_t>(output));
break;
}
default:
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
TfLiteTypeGetName(input->type), input->type);
@@ -329,7 +96,7 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
TfLiteRegistration Register_CONV_2D() {
return {/*init=*/Init,
/*free=*/nullptr,
/*prepare=*/Prepare,
/*prepare=*/ConvPrepare,
/*invoke=*/Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,

View File

@@ -0,0 +1,77 @@
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_MICRO_KERNELS_CONV_H_
#define TENSORFLOW_LITE_MICRO_KERNELS_CONV_H_
#include <cstdint>
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
struct OpDataConv {
TfLitePaddingValues padding;
// Cached tensor zero point values for quantized operations.
int32_t input_zero_point;
int32_t filter_zero_point;
int32_t output_zero_point;
// The scaling factor from input to output (aka the 'real multiplier') can
// be represented as a fixed point multiplier plus a left shift.
int32_t output_multiplier;
int output_shift;
// Per channel output multiplier and shift.
int32_t* per_channel_output_multiplier;
int32_t* per_channel_output_shift;
// The range of the fused activation layer. For example for kNone and
// uint8_t these would be 0 and 255.
int32_t output_activation_min;
int32_t output_activation_max;
};
extern const int kConvInputTensor;
extern const int kConvWeightsTensor;
extern const int kConvBiasTensor;
extern const int kConvOutputTensor;
extern const int kConvQuantizedDimension;
// Returns a ConvParams struct with all the parameters needed for a
// float computation.
ConvParams ConvParamsFloat(const TfLiteConvParams& params,
const OpDataConv& data);
// Returns a ConvParams struct with all the parameters needed for a
// quantized computation.
ConvParams ConvParamsQuantized(const TfLiteConvParams& params,
const OpDataConv& data);
TfLiteStatus CalculateOpDataConv(TfLiteContext* context, TfLiteNode* node,
const TfLiteConvParams& params, int width,
int height, int filter_width,
int filter_height, int out_width,
int out_height, const TfLiteType data_type,
OpDataConv* data);
TfLiteStatus ConvPrepare(TfLiteContext* context, TfLiteNode* node);
} // namespace tflite
#endif // TENSORFLOW_LITE_MICRO_KERNELS_CONV_H_

View File

@@ -0,0 +1,182 @@
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/quantization_util.h"
#include "tensorflow/lite/kernels/internal/reference/conv.h"
#include "tensorflow/lite/kernels/internal/reference/integer_ops/conv.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/kernels/padding.h"
#include "tensorflow/lite/micro/kernels/conv.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
namespace tflite {
const int kConvInputTensor = 0;
const int kConvWeightsTensor = 1;
const int kConvBiasTensor = 2;
const int kConvOutputTensor = 0;
// Conv is quantized along dimension 0:
// https://www.tensorflow.org/lite/performance/quantization_spec
const int kConvQuantizedDimension = 0;
// Returns a ConvParams struct with all the parameters needed for a
// float computation.
ConvParams ConvParamsFloat(const TfLiteConvParams& params,
const OpDataConv& data) {
ConvParams op_params;
CalculateActivationRange(params.activation, &op_params.float_activation_min,
&op_params.float_activation_max);
op_params.padding_type = tflite::micro::RuntimePaddingType(params.padding);
op_params.padding_values.width = data.padding.width;
op_params.padding_values.height = data.padding.height;
op_params.stride_width = params.stride_width;
op_params.stride_height = params.stride_height;
op_params.dilation_width_factor = params.dilation_width_factor;
op_params.dilation_height_factor = params.dilation_height_factor;
return op_params;
}
// Returns a ConvParams struct with all the parameters needed for a
// quantized computation.
ConvParams ConvParamsQuantized(const TfLiteConvParams& params,
const OpDataConv& data) {
ConvParams op_params;
op_params.input_offset = -data.input_zero_point;
op_params.weights_offset = -data.filter_zero_point;
op_params.output_offset = data.output_zero_point;
op_params.output_multiplier = data.output_multiplier;
op_params.output_shift = -data.output_shift;
op_params.padding_type = tflite::micro::RuntimePaddingType(params.padding);
op_params.padding_values.height = data.padding.height;
op_params.padding_values.width = data.padding.width;
op_params.stride_height = params.stride_height;
op_params.stride_width = params.stride_width;
op_params.dilation_height_factor = params.dilation_height_factor;
op_params.dilation_width_factor = params.dilation_width_factor;
op_params.quantized_activation_min = data.output_activation_min;
op_params.quantized_activation_max = data.output_activation_max;
return op_params;
}
TfLiteStatus CalculateOpDataConv(TfLiteContext* context, TfLiteNode* node,
const TfLiteConvParams& params, int width,
int height, int filter_width,
int filter_height, int out_width,
int out_height, const TfLiteType data_type,
OpDataConv* data) {
bool has_bias = node->inputs->size == 3;
// Check number of inputs/outputs
TF_LITE_ENSURE(context, has_bias || node->inputs->size == 2);
TF_LITE_ENSURE_EQ(context, node->outputs->size, 1);
// Matching GetWindowedOutputSize in TensorFlow.
auto padding = params.padding;
data->padding = ComputePaddingHeightWidth(
params.stride_height, params.stride_width, params.dilation_height_factor,
params.dilation_width_factor, height, width, filter_height, filter_width,
padding, &out_height, &out_width);
const TfLiteTensor* input = GetInput(context, node, kConvInputTensor);
TF_LITE_ENSURE(context, input != nullptr);
const TfLiteTensor* filter = GetInput(context, node, kConvWeightsTensor);
TF_LITE_ENSURE(context, filter != nullptr);
const TfLiteTensor* bias =
GetOptionalInputTensor(context, node, kConvBiasTensor);
TfLiteTensor* output = GetOutput(context, node, kConvOutputTensor);
TF_LITE_ENSURE(context, output != nullptr);
// Note that quantized inference requires that all tensors have their
// parameters set. This is usually done during quantized training.
if (data_type != kTfLiteFloat32) {
int output_channels = filter->dims->data[kConvQuantizedDimension];
TF_LITE_ENSURE_STATUS(tflite::PopulateConvolutionQuantizationParams(
context, input, filter, bias, output, params.activation,
&data->output_multiplier, &data->output_shift,
&data->output_activation_min, &data->output_activation_max,
data->per_channel_output_multiplier,
reinterpret_cast<int*>(data->per_channel_output_shift),
output_channels));
}
data->input_zero_point = input->params.zero_point;
data->filter_zero_point = filter->params.zero_point;
data->output_zero_point = output->params.zero_point;
return kTfLiteOk;
}
TfLiteStatus ConvPrepare(TfLiteContext* context, TfLiteNode* node) {
TFLITE_DCHECK(node->user_data != nullptr);
TFLITE_DCHECK(node->builtin_data != nullptr);
OpDataConv* data = static_cast<OpDataConv*>(node->user_data);
const auto& params =
*(static_cast<const TfLiteConvParams*>(node->builtin_data));
TfLiteTensor* output = GetOutput(context, node, kConvOutputTensor);
TF_LITE_ENSURE(context, output != nullptr);
const TfLiteTensor* input = GetInput(context, node, kConvInputTensor);
TF_LITE_ENSURE(context, input != nullptr);
const TfLiteTensor* filter = GetInput(context, node, kConvWeightsTensor);
TF_LITE_ENSURE(context, filter != nullptr);
const int input_width = input->dims->data[2];
const int input_height = input->dims->data[1];
const int filter_width = filter->dims->data[2];
const int filter_height = filter->dims->data[1];
const int output_width = output->dims->data[2];
const int output_height = output->dims->data[1];
// Dynamically allocate per-channel quantization parameters.
const int num_channels = filter->dims->data[kConvQuantizedDimension];
data->per_channel_output_multiplier =
static_cast<int32_t*>(context->AllocatePersistentBuffer(
context, num_channels * sizeof(int32_t)));
data->per_channel_output_shift =
static_cast<int32_t*>(context->AllocatePersistentBuffer(
context, num_channels * sizeof(int32_t)));
// All per-channel quantized tensors need valid zero point and scale arrays.
if (input->type == kTfLiteInt8) {
TF_LITE_ENSURE_EQ(context, filter->quantization.type,
kTfLiteAffineQuantization);
const auto* affine_quantization =
static_cast<TfLiteAffineQuantization*>(filter->quantization.params);
TFLITE_DCHECK(affine_quantization != nullptr);
TFLITE_DCHECK(affine_quantization->scale != nullptr);
TFLITE_DCHECK(affine_quantization->zero_point != nullptr);
TF_LITE_ENSURE(context,
affine_quantization->scale->size == 1 ||
affine_quantization->scale->size ==
filter->dims->data[kConvQuantizedDimension]);
TF_LITE_ENSURE_EQ(context, affine_quantization->scale->size,
affine_quantization->zero_point->size);
}
TF_LITE_ENSURE_STATUS(CalculateOpDataConv(
context, node, params, input_width, input_height, filter_width,
filter_height, output_width, output_height, input->type, data));
return kTfLiteOk;
}
} // namespace tflite

View File

@@ -0,0 +1,94 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_MICRO_KERNELS_CONV_H_
#define TENSORFLOW_LITE_MICRO_KERNELS_CONV_H_
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/micro/kernels/kernel_runner.h"
#include "tensorflow/lite/micro/kernels/micro_ops.h"
#include "tensorflow/lite/micro/test_helpers.h"
#include "tensorflow/lite/micro/testing/micro_test.h"
namespace tflite {
namespace testing {
TfLiteStatus InvokeConv(TfLiteTensor* tensors, int tensors_size,
int output_length, TfLiteConvParams* conv_params,
TfLiteRegistration registration, float* output_data);
TfLiteStatus InvokeConv(TfLiteTensor* tensors, int tensors_size,
int output_length, TfLiteConvParams* conv_params,
TfLiteRegistration registration, int8_t* output_data);
TfLiteStatus InvokeConv(TfLiteTensor* tensors, int tensors_size,
int output_length, TfLiteConvParams* conv_params,
TfLiteRegistration registration, uint8_t* output_data);
TfLiteStatus ValidateConvGoldens(TfLiteTensor* tensors, int tensors_size,
const float* expected_output_data,
int output_length,
TfLiteConvParams* conv_params,
TfLiteRegistration registration,
float* output_data, float tolerance = 1e-5);
TfLiteStatus ValidateConvGoldens(TfLiteTensor* tensors, int tensors_size,
const int8_t* expected_output_data,
int output_length,
TfLiteConvParams* conv_params,
TfLiteRegistration registration,
int8_t* output_data, float tolerance = 1e-5);
TfLiteStatus ValidateConvGoldens(TfLiteTensor* tensors, int tensors_size,
const uint8_t* expected_output_data,
int output_length,
TfLiteConvParams* conv_params,
TfLiteRegistration registration,
uint8_t* output_data, float tolerance = 1e-5);
TfLiteStatus TestConvFloat(const int* input_dims_data, const float* input_data,
const int* filter_dims_data,
const float* filter_data, const int* bias_dims_data,
const float* bias_data, const int* output_dims_data,
const float* expected_output_data,
TfLiteConvParams* conv_params,
TfLiteRegistration registration, float* output_data);
TfLiteStatus TestConvQuantizedPerLayer(
const int* input_dims_data, const float* input_data,
uint8_t* input_quantized, float input_scale, const int* filter_dims_data,
const float* filter_data, uint8_t* filter_quantized, float filter_scale,
const int* bias_dims_data, const float* bias_data, int32_t* bias_quantized,
const int* output_dims_data, const float* expected_output_data,
uint8_t* expected_output_quantized, float output_scale,
TfLiteConvParams* conv_params, TfLiteRegistration registration,
uint8_t* output_data);
TfLiteStatus TestConvQuantizedPerChannel(
const int* input_dims_data, const float* input_data,
int8_t* input_quantized, float input_scale, int input_zero_point,
const int* filter_dims_data, const float* filter_data,
int8_t* filter_data_quantized, const int* bias_dims_data,
const float* bias_data, int32_t* bias_data_quantized, float* bias_scales,
int* bias_zero_points, const int* output_dims_data,
const float* expected_output_data, int8_t* expected_output_data_quantized,
float output_scale, int output_zero_point, TfLiteConvParams* conv_params,
TfLiteRegistration registration, int8_t* output_data);
} // namespace testing
} // namespace tflite
#endif // TENSORFLOW_LITE_MICRO_KERNELS_CONV_H_

View File

@@ -13,7 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/kernels/internal/reference/integer_ops/depthwise_conv.h"
#include "tensorflow/lite/micro/kernels/depthwise_conv.h"
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
@@ -21,6 +21,7 @@ limitations under the License.
#include "tensorflow/lite/kernels/internal/quantization_util.h"
#include "tensorflow/lite/kernels/internal/reference/depthwiseconv_float.h"
#include "tensorflow/lite/kernels/internal/reference/depthwiseconv_uint8.h"
#include "tensorflow/lite/kernels/internal/reference/integer_ops/depthwise_conv.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/kernels/padding.h"
@@ -29,279 +30,58 @@ limitations under the License.
namespace tflite {
namespace {
constexpr int kInputTensor = 0;
constexpr int kFilterTensor = 1;
constexpr int kBiasTensor = 2;
constexpr int kOutputTensor = 0;
// Depthwise conv is quantized along dimension 3:
// https://www.tensorflow.org/lite/performance/quantization_spec
constexpr int kDepthwiseConvQuantizedDimension = 3;
struct OpData {
TfLitePaddingValues padding;
// Cached tensor zero point values for quantized operations.
int32_t input_zero_point;
int32_t filter_zero_point;
int32_t output_zero_point;
// The scaling factor from input to output (aka the 'real multiplier') can
// be represented as a fixed point multiplier plus a left shift.
int32_t output_multiplier;
int output_shift;
// Per channel output multiplier and shift.
int32_t* per_channel_output_multiplier;
int32_t* per_channel_output_shift;
// The range of the fused activation layer. For example for kNone and
// uint8_t these would be 0 and 255.
int32_t output_activation_min;
int32_t output_activation_max;
};
TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node,
TfLiteDepthwiseConvParams* params, int width,
int height, int filter_width, int filter_height,
const TfLiteType data_type, OpData* data) {
bool has_bias = node->inputs->size == 3;
// Check number of inputs/outputs
TF_LITE_ENSURE(context, has_bias || node->inputs->size == 2);
TF_LITE_ENSURE_EQ(context, node->outputs->size, 1);
int unused_output_height, unused_output_width;
data->padding = ComputePaddingHeightWidth(
params->stride_height, params->stride_width, 1, 1, height, width,
filter_height, filter_width, params->padding, &unused_output_height,
&unused_output_width);
// Note that quantized inference requires that all tensors have their
// parameters set. This is usually done during quantized training.
if (data_type != kTfLiteFloat32) {
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TF_LITE_ENSURE(context, input != nullptr);
const TfLiteTensor* filter = GetInput(context, node, kFilterTensor);
TF_LITE_ENSURE(context, filter != nullptr);
const TfLiteTensor* bias =
GetOptionalInputTensor(context, node, kBiasTensor);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TF_LITE_ENSURE(context, output != nullptr);
int num_channels = filter->dims->data[kDepthwiseConvQuantizedDimension];
return tflite::PopulateConvolutionQuantizationParams(
context, input, filter, bias, output, params->activation,
&data->output_multiplier, &data->output_shift,
&data->output_activation_min, &data->output_activation_max,
data->per_channel_output_multiplier,
reinterpret_cast<int*>(data->per_channel_output_shift), num_channels);
}
return kTfLiteOk;
}
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
return context->AllocatePersistentBuffer(context, sizeof(OpData));
}
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TFLITE_DCHECK(node->user_data != nullptr);
TFLITE_DCHECK(node->builtin_data != nullptr);
auto* params =
reinterpret_cast<TfLiteDepthwiseConvParams*>(node->builtin_data);
OpData* data = static_cast<OpData*>(node->user_data);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TF_LITE_ENSURE(context, output != nullptr);
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TF_LITE_ENSURE(context, input != nullptr);
const TfLiteTensor* filter = GetInput(context, node, kFilterTensor);
TF_LITE_ENSURE(context, filter != nullptr);
const TfLiteType data_type = input->type;
int width = SizeOfDimension(input, 2);
int height = SizeOfDimension(input, 1);
int filter_width = SizeOfDimension(filter, 2);
int filter_height = SizeOfDimension(filter, 1);
// Per channel quantization is only needed for int8_t inference. For other
// quantized types, only a single scale and zero point is needed.
const int num_channels = filter->dims->data[kDepthwiseConvQuantizedDimension];
// Dynimically allocate per-channel quantization parameters.
data->per_channel_output_multiplier =
reinterpret_cast<int32_t*>(context->AllocatePersistentBuffer(
context, num_channels * sizeof(int32_t)));
data->per_channel_output_shift =
reinterpret_cast<int32_t*>(context->AllocatePersistentBuffer(
context, num_channels * sizeof(int32_t)));
// All per-channel quantized tensors need valid zero point and scale arrays.
if (input->type == kTfLiteInt8) {
TF_LITE_ENSURE_EQ(context, filter->quantization.type,
kTfLiteAffineQuantization);
const auto* affine_quantization =
reinterpret_cast<TfLiteAffineQuantization*>(
filter->quantization.params);
TF_LITE_ENSURE(context, affine_quantization);
TF_LITE_ENSURE(context, affine_quantization->scale);
TF_LITE_ENSURE(context, affine_quantization->zero_point);
TF_LITE_ENSURE(
context, affine_quantization->scale->size == 1 ||
affine_quantization->scale->size ==
filter->dims->data[kDepthwiseConvQuantizedDimension]);
TF_LITE_ENSURE_EQ(context, affine_quantization->scale->size,
affine_quantization->zero_point->size);
}
TF_LITE_ENSURE_STATUS(CalculateOpData(context, node, params, width, height,
filter_width, filter_height, data_type,
data));
data->input_zero_point = input->params.zero_point;
data->filter_zero_point = filter->params.zero_point;
data->output_zero_point = output->params.zero_point;
return kTfLiteOk;
}
void EvalFloat(TfLiteContext* context, TfLiteNode* node,
TfLiteDepthwiseConvParams* params, const OpData& data,
const TfLiteEvalTensor* input, const TfLiteEvalTensor* filter,
const TfLiteEvalTensor* bias, TfLiteEvalTensor* output) {
float output_activation_min, output_activation_max;
CalculateActivationRange(params->activation, &output_activation_min,
&output_activation_max);
tflite::DepthwiseParams op_params;
// Padding type is ignored, but still set.
op_params.padding_type = PaddingType::kSame;
op_params.padding_values.width = data.padding.width;
op_params.padding_values.height = data.padding.height;
op_params.stride_width = params->stride_width;
op_params.stride_height = params->stride_height;
op_params.dilation_width_factor = params->dilation_width_factor;
op_params.dilation_height_factor = params->dilation_height_factor;
op_params.depth_multiplier = params->depth_multiplier;
op_params.float_activation_min = output_activation_min;
op_params.float_activation_max = output_activation_max;
tflite::reference_ops::DepthwiseConv(
op_params, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<float>(input),
tflite::micro::GetTensorShape(filter),
tflite::micro::GetTensorData<float>(filter),
tflite::micro::GetTensorShape(bias),
tflite::micro::GetTensorData<float>(bias),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output));
}
void EvalQuantizedPerChannel(TfLiteContext* context, TfLiteNode* node,
TfLiteDepthwiseConvParams* params,
const OpData& data, const TfLiteEvalTensor* input,
const TfLiteEvalTensor* filter,
const TfLiteEvalTensor* bias,
TfLiteEvalTensor* output) {
DepthwiseParams op_params;
op_params.padding_type = PaddingType::kSame;
op_params.padding_values.width = data.padding.width;
op_params.padding_values.height = data.padding.height;
op_params.stride_width = params->stride_width;
op_params.stride_height = params->stride_height;
op_params.dilation_width_factor = params->dilation_width_factor;
op_params.dilation_height_factor = params->dilation_height_factor;
op_params.depth_multiplier = params->depth_multiplier;
op_params.input_offset = -data.input_zero_point;
op_params.weights_offset = 0;
op_params.output_offset = data.output_zero_point;
// TODO(b/130439627): Use calculated value for clamping.
op_params.quantized_activation_min = std::numeric_limits<int8_t>::min();
op_params.quantized_activation_max = std::numeric_limits<int8_t>::max();
reference_integer_ops::DepthwiseConvPerChannel(
op_params, data.per_channel_output_multiplier,
data.per_channel_output_shift, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<int8_t>(input),
tflite::micro::GetTensorShape(filter),
tflite::micro::GetTensorData<int8_t>(filter),
tflite::micro::GetTensorShape(bias),
tflite::micro::GetTensorData<int32_t>(bias),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int8_t>(output));
}
void EvalQuantized(TfLiteContext* context, TfLiteNode* node,
TfLiteDepthwiseConvParams* params, const OpData& data,
const TfLiteEvalTensor* input,
const TfLiteEvalTensor* filter, const TfLiteEvalTensor* bias,
TfLiteEvalTensor* output) {
const int32_t input_offset = -data.input_zero_point;
const int32_t filter_offset = -data.filter_zero_point;
const int32_t output_offset = data.output_zero_point;
tflite::DepthwiseParams op_params;
// Padding type is ignored, but still set.
op_params.padding_type = PaddingType::kSame;
op_params.padding_values.width = data.padding.width;
op_params.padding_values.height = data.padding.height;
op_params.stride_width = params->stride_width;
op_params.stride_height = params->stride_height;
op_params.dilation_width_factor = params->dilation_width_factor;
op_params.dilation_height_factor = params->dilation_height_factor;
op_params.depth_multiplier = params->depth_multiplier;
op_params.quantized_activation_min = data.output_activation_min;
op_params.quantized_activation_max = data.output_activation_max;
op_params.input_offset = input_offset;
op_params.weights_offset = filter_offset;
op_params.output_offset = output_offset;
op_params.output_multiplier = data.output_multiplier;
// Legacy ops used mixed left and right shifts. Now all are +ve-means-left.
op_params.output_shift = -data.output_shift;
tflite::reference_ops::DepthwiseConv(
op_params, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<uint8_t>(input),
tflite::micro::GetTensorShape(filter),
tflite::micro::GetTensorData<uint8_t>(filter),
tflite::micro::GetTensorShape(bias),
tflite::micro::GetTensorData<int32_t>(bias),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<uint8_t>(output));
return context->AllocatePersistentBuffer(context, sizeof(OpDataConv));
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
TFLITE_DCHECK(node->user_data != nullptr);
TFLITE_DCHECK(node->builtin_data != nullptr);
auto* params =
reinterpret_cast<TfLiteDepthwiseConvParams*>(node->builtin_data);
const OpData& data = *(static_cast<const OpData*>(node->user_data));
auto& params =
*(reinterpret_cast<TfLiteDepthwiseConvParams*>(node->builtin_data));
const OpDataConv& data = *(static_cast<const OpDataConv*>(node->user_data));
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
tflite::micro::GetEvalOutput(context, node, kDepthwiseConvOutputTensor);
const TfLiteEvalTensor* input =
tflite::micro::GetEvalInput(context, node, kInputTensor);
tflite::micro::GetEvalInput(context, node, kDepthwiseConvInputTensor);
const TfLiteEvalTensor* filter =
tflite::micro::GetEvalInput(context, node, kFilterTensor);
tflite::micro::GetEvalInput(context, node, kDepthwiseConvWeightsTensor);
const TfLiteEvalTensor* bias =
(NumInputs(node) == 3)
? tflite::micro::GetEvalInput(context, node, kBiasTensor)
? tflite::micro::GetEvalInput(context, node, kDepthwiseConvBiasTensor)
: nullptr;
// TODO(aselle): Consider whether float conv and quantized conv should be
// separate ops to avoid dispatch overhead here.
switch (input->type) { // Already know in/out types are same.
case kTfLiteFloat32:
EvalFloat(context, node, params, data, input, filter, bias, output);
case kTfLiteFloat32: {
tflite::reference_ops::DepthwiseConv(
DepthwiseConvParamsFloat(params, data),
tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<float>(input),
tflite::micro::GetTensorShape(filter),
tflite::micro::GetTensorData<float>(filter),
tflite::micro::GetTensorShape(bias),
tflite::micro::GetTensorData<float>(bias),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output));
break;
case kTfLiteInt8:
EvalQuantizedPerChannel(context, node, params, data, input, filter, bias,
output);
break;
case kTfLiteUInt8:
EvalQuantized(context, node, params, data, input, filter, bias, output);
}
case kTfLiteInt8: {
reference_integer_ops::DepthwiseConvPerChannel(
DepthwiseConvParamsQuantized(params, data),
data.per_channel_output_multiplier, data.per_channel_output_shift,
tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<int8_t>(input),
tflite::micro::GetTensorShape(filter),
tflite::micro::GetTensorData<int8_t>(filter),
tflite::micro::GetTensorShape(bias),
tflite::micro::GetTensorData<int32_t>(bias),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int8_t>(output));
break;
}
default:
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
TfLiteTypeGetName(input->type), input->type);
@@ -315,7 +95,7 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
TfLiteRegistration Register_DEPTHWISE_CONV_2D() {
return {/*init=*/Init,
/*free=*/nullptr,
/*prepare=*/Prepare,
/*prepare=*/DepthwiseConvPrepare,
/*invoke=*/Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,

View File

@@ -0,0 +1,54 @@
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_MICRO_KERNELS_DEPTHWISE_CONV_H_
#define TENSORFLOW_LITE_MICRO_KERNELS_DEPTHWISE_CONV_H_
#include <cstdint>
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/types.h"
#include "tensorflow/lite/micro/kernels/conv.h"
namespace tflite {
extern const int kDepthwiseConvInputTensor;
extern const int kDepthwiseConvWeightsTensor;
extern const int kDepthwiseConvBiasTensor;
extern const int kDepthwiseConvOutputTensor;
extern const int kDepthwiseConvQuantizedDimension;
// Returns a DepthwiseParams struct with all the parameters needed for a
// float computation.
DepthwiseParams DepthwiseConvParamsFloat(
const TfLiteDepthwiseConvParams& params, const OpDataConv& data);
// Returns a DepthwiseParams struct with all the parameters needed for a
// quantized computation.
DepthwiseParams DepthwiseConvParamsQuantized(
const TfLiteDepthwiseConvParams& params, const OpDataConv& data);
TfLiteStatus CalculateOpDataDepthwiseConv(
TfLiteContext* context, TfLiteNode* node,
const TfLiteDepthwiseConvParams& params, int width, int height,
int filter_width, int filter_height, int out_width, int out_height,
const TfLiteType data_type, OpDataConv* data);
TfLiteStatus DepthwiseConvPrepare(TfLiteContext* context, TfLiteNode* node);
} // namespace tflite
#endif // TENSORFLOW_LITE_MICRO_KERNELS_DEPTHWISE_CONV_H_

View File

@@ -0,0 +1,188 @@
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/quantization_util.h"
#include "tensorflow/lite/kernels/internal/reference/depthwiseconv_float.h"
#include "tensorflow/lite/kernels/internal/reference/depthwiseconv_uint8.h"
#include "tensorflow/lite/kernels/internal/reference/integer_ops/depthwise_conv.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/kernels/padding.h"
#include "tensorflow/lite/micro/kernels/depthwise_conv.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
namespace tflite {
const int kDepthwiseConvInputTensor = 0;
const int kDepthwiseConvWeightsTensor = 1;
const int kDepthwiseConvBiasTensor = 2;
const int kDepthwiseConvOutputTensor = 0;
// DepthwiseConv is quantized along dimension 3:
// https://www.tensorflow.org/lite/performance/quantization_spec
const int kDepthwiseConvQuantizedDimension = 3;
// Returns a DepthwiseParams struct with all the parameters needed for a
// float computation.
DepthwiseParams DepthwiseConvParamsFloat(
const TfLiteDepthwiseConvParams& params, const OpDataConv& data) {
DepthwiseParams op_params;
CalculateActivationRange(params.activation, &op_params.float_activation_min,
&op_params.float_activation_max);
op_params.padding_type = tflite::micro::RuntimePaddingType(params.padding);
op_params.padding_values.width = data.padding.width;
op_params.padding_values.height = data.padding.height;
op_params.stride_width = params.stride_width;
op_params.stride_height = params.stride_height;
op_params.dilation_width_factor = params.dilation_width_factor;
op_params.dilation_height_factor = params.dilation_height_factor;
op_params.depth_multiplier = params.depth_multiplier;
return op_params;
}
// Returns a DepthwiseParams struct with all the parameters needed for a
// quantized computation.
DepthwiseParams DepthwiseConvParamsQuantized(
const TfLiteDepthwiseConvParams& params, const OpDataConv& data) {
DepthwiseParams op_params;
op_params.input_offset = -data.input_zero_point;
op_params.weights_offset = -data.filter_zero_point;
op_params.output_offset = data.output_zero_point;
op_params.output_multiplier = data.output_multiplier;
op_params.output_shift = -data.output_shift;
op_params.padding_type = tflite::micro::RuntimePaddingType(params.padding);
op_params.padding_values.height = data.padding.height;
op_params.padding_values.width = data.padding.width;
op_params.stride_height = params.stride_height;
op_params.stride_width = params.stride_width;
op_params.dilation_height_factor = params.dilation_height_factor;
op_params.dilation_width_factor = params.dilation_width_factor;
op_params.depth_multiplier = params.depth_multiplier;
op_params.quantized_activation_min = data.output_activation_min;
op_params.quantized_activation_max = data.output_activation_max;
return op_params;
}
TfLiteStatus CalculateOpDataDepthwiseConv(
TfLiteContext* context, TfLiteNode* node,
const TfLiteDepthwiseConvParams& params, int width, int height,
int filter_width, int filter_height, int out_width, int out_height,
const TfLiteType data_type, OpDataConv* data) {
bool has_bias = node->inputs->size == 3;
// Check number of inputs/outputs
TF_LITE_ENSURE(context, has_bias || node->inputs->size == 2);
TF_LITE_ENSURE_EQ(context, node->outputs->size, 1);
// Matching GetWindowedOutputSize in TensorFlow.
auto padding = params.padding;
data->padding = ComputePaddingHeightWidth(
params.stride_height, params.stride_width, params.dilation_height_factor,
params.dilation_width_factor, height, width, filter_height, filter_width,
padding, &out_height, &out_width);
const TfLiteTensor* input = GetInput(context, node, kConvInputTensor);
TF_LITE_ENSURE(context, input != nullptr);
const TfLiteTensor* filter = GetInput(context, node, kConvWeightsTensor);
TF_LITE_ENSURE(context, filter != nullptr);
const TfLiteTensor* bias =
GetOptionalInputTensor(context, node, kConvBiasTensor);
TfLiteTensor* output = GetOutput(context, node, kConvOutputTensor);
TF_LITE_ENSURE(context, output != nullptr);
// Note that quantized inference requires that all tensors have their
// parameters set. This is usually done during quantized training.
if (data_type != kTfLiteFloat32) {
int output_channels = filter->dims->data[kDepthwiseConvQuantizedDimension];
TF_LITE_ENSURE_STATUS(tflite::PopulateConvolutionQuantizationParams(
context, input, filter, bias, output, params.activation,
&data->output_multiplier, &data->output_shift,
&data->output_activation_min, &data->output_activation_max,
data->per_channel_output_multiplier,
reinterpret_cast<int*>(data->per_channel_output_shift),
output_channels));
}
data->input_zero_point = input->params.zero_point;
data->filter_zero_point = filter->params.zero_point;
data->output_zero_point = output->params.zero_point;
return kTfLiteOk;
}
TfLiteStatus DepthwiseConvPrepare(TfLiteContext* context, TfLiteNode* node) {
TFLITE_DCHECK(node->user_data != nullptr);
TFLITE_DCHECK(node->builtin_data != nullptr);
OpDataConv* data = static_cast<OpDataConv*>(node->user_data);
const auto& params =
*(static_cast<const TfLiteDepthwiseConvParams*>(node->builtin_data));
TfLiteTensor* output = GetOutput(context, node, kDepthwiseConvOutputTensor);
TF_LITE_ENSURE(context, output != nullptr);
const TfLiteTensor* input =
GetInput(context, node, kDepthwiseConvInputTensor);
TF_LITE_ENSURE(context, input != nullptr);
const TfLiteTensor* filter =
GetInput(context, node, kDepthwiseConvWeightsTensor);
TF_LITE_ENSURE(context, filter != nullptr);
const int input_width = input->dims->data[2];
const int input_height = input->dims->data[1];
const int filter_width = filter->dims->data[2];
const int filter_height = filter->dims->data[1];
const int output_width = output->dims->data[2];
const int output_height = output->dims->data[1];
// Dynamically allocate per-channel quantization parameters.
const int num_channels = filter->dims->data[kDepthwiseConvQuantizedDimension];
data->per_channel_output_multiplier =
static_cast<int32_t*>(context->AllocatePersistentBuffer(
context, num_channels * sizeof(int32_t)));
data->per_channel_output_shift =
static_cast<int32_t*>(context->AllocatePersistentBuffer(
context, num_channels * sizeof(int32_t)));
// All per-channel quantized tensors need valid zero point and scale arrays.
if (input->type == kTfLiteInt8) {
TF_LITE_ENSURE_EQ(context, filter->quantization.type,
kTfLiteAffineQuantization);
const auto* affine_quantization =
static_cast<TfLiteAffineQuantization*>(filter->quantization.params);
TFLITE_DCHECK(affine_quantization != nullptr);
TFLITE_DCHECK(affine_quantization->scale != nullptr);
TFLITE_DCHECK(affine_quantization->zero_point != nullptr);
TF_LITE_ENSURE(
context, affine_quantization->scale->size == 1 ||
affine_quantization->scale->size ==
filter->dims->data[kDepthwiseConvQuantizedDimension]);
TF_LITE_ENSURE_EQ(context, affine_quantization->scale->size,
affine_quantization->zero_point->size);
}
TF_LITE_ENSURE_STATUS(CalculateOpDataDepthwiseConv(
context, node, params, input_width, input_height, filter_width,
filter_height, output_width, output_height, input->type, data));
return kTfLiteOk;
}
} // namespace tflite

View File

@@ -59,8 +59,7 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE(context, input->type == kTfLiteUInt8 ||
input->type == kTfLiteInt8 ||
input->type == kTfLiteInt16);
TF_LITE_ENSURE(
context, output->type == kTfLiteFloat32 || output->type == kTfLiteInt32);
TF_LITE_ENSURE(context, output->type == kTfLiteFloat32);
if (output->type == kTfLiteInt32) {
const double effective_output_scale =
@@ -112,32 +111,6 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
TfLiteTypeGetName(output->type));
return kTfLiteError;
}
} else if (output->type == kTfLiteInt32) {
int flat_size = MatchingFlatSize(tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorShape(output));
switch (input->type) {
case kTfLiteInt16: {
reference_ops::Requantize(
tflite::micro::GetTensorData<int16_t>(input), flat_size,
data->output_multiplier, data->output_shift,
data->quantization_params.zero_point, data->output_zero_point,
tflite::micro::GetTensorData<int32_t>(output));
break;
}
case kTfLiteInt8: {
reference_ops::Requantize(
tflite::micro::GetTensorData<int8_t>(input), flat_size,
data->output_multiplier, data->output_shift,
data->quantization_params.zero_point, data->output_zero_point,
tflite::micro::GetTensorData<int32_t>(output));
break;
}
default:
TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
TfLiteTypeGetName(input->type),
TfLiteTypeGetName(output->type));
return kTfLiteError;
}
} else {
TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
TfLiteTypeGetName(input->type),

Some files were not shown because too many files have changed in this diff Show More