mirror of
https://github.com/jomjol/AI-on-the-edge-device.git
synced 2025-12-08 12:36:52 +03:00
Compare commits
6 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
2daf6c8b3f | ||
|
|
24b46158de | ||
|
|
63d336ba28 | ||
|
|
8dd3a92671 | ||
|
|
8e8897c70d | ||
|
|
eac513411e |
@@ -11,6 +11,35 @@
|
||||
|
||||
____
|
||||
|
||||
#### #17 Direct InfluxDB connection
|
||||
|
||||
* https://github.com/jomjol/AI-on-the-edge-device/issues/534
|
||||
* Direct interface to a InfluxDB data base
|
||||
* Integrate InfluxDB interface in firmware
|
||||
* Adapt html web page for configuration
|
||||
|
||||
|
||||
#### #16 Serial Communication
|
||||
|
||||
* https://github.com/jomjol/AI-on-the-edge-device/issues/512
|
||||
* Send the readout value via RX/TX interface with a dedicated TAG
|
||||
* Make dedicated communication FlowModule
|
||||
* Modification of RX/TX communication
|
||||
* Configuration interfache
|
||||
|
||||
|
||||
#### #15 Calibration for FishEye image
|
||||
|
||||
* https://github.com/jomjol/AI-on-the-edge-device/issues/507
|
||||
|
||||
1. The development of such a correction algorithm with the libraries, that are available for the ESP32 environment.
|
||||
2. New module for integration of the flow into the image processing flow.
|
||||
3. Extension of the configuration (config.ini) and html-pages
|
||||
4. Parameter adjustment and testing for every different fish-eye module
|
||||
5. Maintenance for further updates / modules, ...
|
||||
|
||||
|
||||
|
||||
#### #14 Backup and restore option for configuration
|
||||
|
||||
* https://github.com/jomjol/AI-on-the-edge-device/issues/459
|
||||
|
||||
19
README.md
19
README.md
@@ -52,9 +52,24 @@ In other cases you can contact the developer via email: <img src="https://raw.gi
|
||||
|
||||
------
|
||||
|
||||
##### 10.0.1 - Stability Increase (2021-12-31)
|
||||
|
||||
- NEW: Correcte JSON error
|
||||
|
||||
##### 10.1.0 - Stability Increase (2022-01-09)
|
||||
|
||||
- Reduce ESP32 frequency to 160MHz
|
||||
|
||||
- Update tflite (new source: https://github.com/espressif/tflite-micro-esp-examples)
|
||||
|
||||
- Update analog neural network (ana-s3-q-20220105.tflite)
|
||||
|
||||
- Update digital neural network (dig-s1-q-20220102.tflite)
|
||||
|
||||
- Increased web-server buffers
|
||||
- bug fix: compiler compatibility
|
||||
|
||||
##### 10.0.2 - Stability Increase (2022-01-01)
|
||||
|
||||
- NEW v10.0.2: Corrected JSON error
|
||||
|
||||
- Updated compiler toolchain to ESP-IDF 4.3
|
||||
|
||||
|
||||
@@ -2,6 +2,6 @@ FILE(GLOB_RECURSE app_sources ${CMAKE_CURRENT_SOURCE_DIR}/*.*)
|
||||
|
||||
idf_component_register(SRCS ${app_sources}
|
||||
INCLUDE_DIRS "." "../../include"
|
||||
REQUIRES tfmicro esp_http_server app_update esp_http_client nvs_flash jomjol_tfliteclass jomjol_flowcontroll spiffs jomjol_helper jomjol_controlGPIO)
|
||||
REQUIRES tflite-lib esp_http_server app_update esp_http_client nvs_flash jomjol_tfliteclass jomjol_flowcontroll spiffs jomjol_helper jomjol_controlGPIO)
|
||||
|
||||
|
||||
|
||||
@@ -17,7 +17,14 @@
|
||||
#include <sys/param.h>
|
||||
#include <sys/unistd.h>
|
||||
#include <sys/stat.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
#include <dirent.h>
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#include "esp_err.h"
|
||||
#include "esp_log.h"
|
||||
@@ -58,6 +65,52 @@ struct file_server_data {
|
||||
|
||||
static const char *TAG_FILESERVER = "file_server";
|
||||
|
||||
|
||||
#include <iostream>
|
||||
#include <sys/types.h>
|
||||
#include <dirent.h>
|
||||
|
||||
using namespace std;
|
||||
|
||||
static esp_err_t get_tflite_file_handler(httpd_req_t *req){
|
||||
DIR *verzeichnis;
|
||||
struct dirent *files;
|
||||
|
||||
std::string _filename, _fileext, _result = "";
|
||||
std::string _delimiter = ".";
|
||||
size_t pos = 0;
|
||||
|
||||
verzeichnis=opendir("/sdcard/config");
|
||||
|
||||
printf("Suche TFLITE in /sdcard/config\n");
|
||||
|
||||
while((files = readdir(verzeichnis)))
|
||||
{
|
||||
_filename = files->d_name;
|
||||
_fileext = _filename;
|
||||
printf("File: %s\t", _filename.c_str());
|
||||
|
||||
while ((pos = _fileext.find(_delimiter))) {
|
||||
_fileext.erase(0, pos + _delimiter.length());
|
||||
}
|
||||
|
||||
printf(" Extension: %s\n", _fileext.c_str());
|
||||
|
||||
if ((_fileext == "tfl") || (_fileext == "tflite"))
|
||||
{
|
||||
_result = _result + _filename + "\t";
|
||||
}
|
||||
}
|
||||
closedir(verzeichnis);
|
||||
|
||||
httpd_resp_set_hdr(req, "Access-Control-Allow-Origin", "*");
|
||||
httpd_resp_set_type(req, "text/plain");
|
||||
httpd_resp_sendstr_chunk(req, _result.c_str());
|
||||
httpd_resp_sendstr_chunk(req, NULL);
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
|
||||
/* Handler to redirect incoming GET request for /index.html to /
|
||||
* This can be overridden by uploading file with same name */
|
||||
// static esp_err_t index_html_get_handler(httpd_req_t *req)
|
||||
@@ -797,4 +850,15 @@ void register_server_file_uri(httpd_handle_t server, const char *base_path)
|
||||
};
|
||||
httpd_register_uri_handler(server, &file_delete);
|
||||
|
||||
|
||||
/* URI handler for getting tflite files from server */
|
||||
/*
|
||||
httpd_uri_t file_tflite = {
|
||||
.uri = "/tflite", // Match all URIs of type /delete/path/to/file
|
||||
.method = HTTP_GET,
|
||||
.handler = get_tflite_file_handler,
|
||||
.user_ctx = server_data // Pass server data as context
|
||||
};
|
||||
httpd_register_uri_handler(server, &file_tflite);
|
||||
*/
|
||||
}
|
||||
|
||||
@@ -5,7 +5,14 @@
|
||||
#include <sys/param.h>
|
||||
#include <sys/unistd.h>
|
||||
#include <sys/stat.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
#include <dirent.h>
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#include "esp_err.h"
|
||||
#include "esp_log.h"
|
||||
|
||||
@@ -6,7 +6,15 @@
|
||||
#include "freertos/task.h"
|
||||
|
||||
#include <sys/stat.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
#include <dirent.h>
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#include "ClassLogFile.h"
|
||||
#include "time_sntp.h"
|
||||
#include "Helper.h"
|
||||
|
||||
@@ -2,7 +2,15 @@
|
||||
#include <string>
|
||||
#include <string.h>
|
||||
#include <sys/stat.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
#include <dirent.h>
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#include "time_sntp.h"
|
||||
#include "ClassLogFile.h"
|
||||
#include "CImageBasis.h"
|
||||
|
||||
@@ -192,7 +192,13 @@ bool ClassFlowMQTT::doFlow(string zwtime)
|
||||
MQTTPublish(zw, resulttimestamp);
|
||||
|
||||
|
||||
std::string json="{\"value\":"+result;
|
||||
std::string json = "";
|
||||
|
||||
if (result.length() > 0)
|
||||
json += "{\"value\":"+result;
|
||||
else
|
||||
json += "{\"value\":\"\"";
|
||||
|
||||
json += ",\"raw\":\""+resultraw;
|
||||
json += "\",\"error\":\""+resulterror;
|
||||
if (resultrate.length() > 0)
|
||||
|
||||
@@ -2,6 +2,6 @@ FILE(GLOB_RECURSE app_sources ${CMAKE_CURRENT_SOURCE_DIR}/*.*)
|
||||
|
||||
idf_component_register(SRCS ${app_sources}
|
||||
INCLUDE_DIRS "."
|
||||
REQUIRES tfmicro jomjol_logfile)
|
||||
REQUIRES tflite-lib jomjol_logfile)
|
||||
|
||||
|
||||
|
||||
@@ -6,7 +6,15 @@
|
||||
#include "Helper.h"
|
||||
#include <sys/types.h>
|
||||
#include <sys/stat.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
#include <dirent.h>
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#include <string.h>
|
||||
#include <esp_log.h>
|
||||
|
||||
|
||||
@@ -3,7 +3,15 @@
|
||||
#include <string.h>
|
||||
#include <sys/types.h>
|
||||
#include <sys/stat.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
#include <dirent.h>
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#include "Helper.h"
|
||||
|
||||
static const char *TAG = "log";
|
||||
|
||||
@@ -2,6 +2,6 @@ FILE(GLOB_RECURSE app_sources ${CMAKE_CURRENT_SOURCE_DIR}/*.*)
|
||||
|
||||
idf_component_register(SRCS ${app_sources}
|
||||
INCLUDE_DIRS "."
|
||||
REQUIRES tfmicro mqtt jomjol_logfile)
|
||||
REQUIRES tflite-lib mqtt jomjol_logfile)
|
||||
|
||||
|
||||
|
||||
@@ -2,6 +2,6 @@ FILE(GLOB_RECURSE app_sources ${CMAKE_CURRENT_SOURCE_DIR}/*.*)
|
||||
|
||||
idf_component_register(SRCS ${app_sources}
|
||||
INCLUDE_DIRS "."
|
||||
REQUIRES tfmicro jomjol_logfile)
|
||||
REQUIRES tflite-lib jomjol_logfile)
|
||||
|
||||
|
||||
|
||||
50
code/components/tflite-lib/CMakeLists.txt
Normal file
50
code/components/tflite-lib/CMakeLists.txt
Normal file
@@ -0,0 +1,50 @@
|
||||
cmake_minimum_required(VERSION 3.5)
|
||||
|
||||
set(tflite_dir "${CMAKE_CURRENT_SOURCE_DIR}/tensorflow/lite")
|
||||
set(tfmicro_dir "${tflite_dir}/micro")
|
||||
set(tfmicro_frontend_dir "${tflite_dir}/experimental/microfrontend/lib")
|
||||
set(tfmicro_kernels_dir "${tfmicro_dir}/kernels")
|
||||
|
||||
file(GLOB srcs_micro
|
||||
"${tfmicro_dir}/*.cc"
|
||||
"${tfmicro_dir}/*.c")
|
||||
|
||||
file(GLOB src_micro_frontend
|
||||
"${tfmicro_frontend_dir}/*.c"
|
||||
"${tfmicro_frontend_dir}/*.cc")
|
||||
file(GLOB srcs_kernels
|
||||
"${tfmicro_kernels_dir}/*.c"
|
||||
"${tfmicro_kernels_dir}/*.cc")
|
||||
|
||||
set(lib_srcs
|
||||
"${srcs_micro}"
|
||||
"${srcs_kernels}"
|
||||
"${src_micro_frontend}"
|
||||
"${tflite_dir}/kernels/kernel_util.cc"
|
||||
"${tflite_dir}/micro/memory_planner/greedy_memory_planner.cc"
|
||||
"${tflite_dir}/micro/memory_planner/linear_memory_planner.cc"
|
||||
"${tflite_dir}/c/common.c"
|
||||
"${tflite_dir}/core/api/error_reporter.cc"
|
||||
"${tflite_dir}/core/api/flatbuffer_conversions.cc"
|
||||
"${tflite_dir}/core/api/op_resolver.cc"
|
||||
"${tflite_dir}/core/api/tensor_utils.cc"
|
||||
"${tflite_dir}/kernels/internal/quantization_util.cc"
|
||||
"${tflite_dir}/schema/schema_utils.cc")
|
||||
|
||||
idf_component_register(
|
||||
SRCS "${lib_srcs}"
|
||||
INCLUDE_DIRS "." "third_party/gemmlowp"
|
||||
"third_party/flatbuffers/include"
|
||||
"third_party/ruy"
|
||||
"third_party/kissfft")
|
||||
|
||||
# Reduce the level of paranoia to be able to compile TF sources
|
||||
target_compile_options(${COMPONENT_LIB} PRIVATE
|
||||
-Wno-maybe-uninitialized
|
||||
-Wno-missing-field-initializers
|
||||
-Wno-type-limits)
|
||||
|
||||
target_compile_options(${COMPONENT_LIB} PRIVATE -fno-unwind-tables -ffunction-sections -fdata-sections -fmessage-length=0 -DTF_LITE_STATIC_MEMORY -DTF_LITE_DISABLE_X86_NEON -O3 -Wsign-compare -Wdouble-promotion -Wshadow -Wunused-variable -Wmissing-field-initializers -Wunused-function -Wswitch -Wvla -Wall -Wextra -Wstrict-aliasing -Wno-unused-parameter -DESP -DESP_NN -Wno-nonnull -Wno-nonnull -Wno-nonnull)
|
||||
target_compile_options(${COMPONENT_LIB} PRIVATE $<$<COMPILE_LANGUAGE:CXX>: -std=c++11 -fno-rtti -fno-exceptions -fno-threadsafe-statics -fno-unwind-tables -ffunction-sections -fdata-sections -fmessage-length=0 -DTF_LITE_STATIC_MEMORY -DTF_LITE_DISABLE_X86_NEON -O3 -Werror -Wsign-compare -Wdouble-promotion -Wshadow -Wunused-variable -Wmissing-field-initializers -Wunused-function -Wswitch -Wvla -Wall -Wextra -Wstrict-aliasing -Wno-unused-parameter -DESP -DESP_NN -Wno-return-type -Wno-strict-aliasing -std=gnu++14 -Wno-return-type -Wno-strict-aliasing -std=gnu++14 -Wno-return-type -Wno-strict-aliasing -std=gnu++14 >)
|
||||
target_compile_options(${COMPONENT_LIB} INTERFACE $<$<IN_LIST:-DTF_LITE_STATIC_MEMORY,$<TARGET_PROPERTY:${COMPONENT_LIB},COMPILE_OPTIONS>>:-DTF_LITE_STATIC_MEMORY>)
|
||||
target_link_libraries(${COMPONENT_LIB} PRIVATE -lm)
|
||||
@@ -502,6 +502,22 @@ typedef struct {
|
||||
const char* shared_name;
|
||||
} TfLiteVarHandleParams;
|
||||
|
||||
typedef struct {
|
||||
int seed;
|
||||
int seed2;
|
||||
} TfLiteRandomParams;
|
||||
|
||||
typedef struct {
|
||||
int num_boundaries;
|
||||
// This points to the memory stored in the model (flatbuffer),
|
||||
// and is not owned.
|
||||
const float* boundaries;
|
||||
} TfLiteBucketizeParams;
|
||||
|
||||
typedef struct {
|
||||
bool approximate;
|
||||
} TfLiteGeluParams;
|
||||
|
||||
#ifdef __cplusplus
|
||||
} // extern "C"
|
||||
#endif // __cplusplus
|
||||
@@ -43,6 +43,9 @@ extern "C" {
|
||||
#endif // _WIN32
|
||||
#endif // SWIG
|
||||
|
||||
// Note that new error status values may be added in future in order to
|
||||
// indicate more fine-grained internal states, therefore, applications should
|
||||
// not rely on status values being members of the enum.
|
||||
typedef enum TfLiteStatus {
|
||||
kTfLiteOk = 0,
|
||||
|
||||
@@ -54,7 +57,7 @@ typedef enum TfLiteStatus {
|
||||
|
||||
// Generally referring to an error in applying a delegate due to
|
||||
// incompatibility between runtime and delegate, e.g., this error is returned
|
||||
// when trying to apply a TfLite delegate onto a model graph that's already
|
||||
// when trying to apply a TF Lite delegate onto a model graph that's already
|
||||
// immutable.
|
||||
kTfLiteApplicationError = 3,
|
||||
|
||||
@@ -68,7 +71,12 @@ typedef enum TfLiteStatus {
|
||||
|
||||
// Generally referring to data-reading issues in delegate serialization.
|
||||
// See tflite::delegates::Serialization.
|
||||
kTfLiteDelegateDataReadError = 5,
|
||||
kTfLiteDelegateDataReadError = 6,
|
||||
|
||||
// Generally referring to issues when the TF Lite model has ops that cannot be
|
||||
// resolved at runtime. This could happen when the specific op is not
|
||||
// registered or built with the TF Lite framework.
|
||||
kTfLiteUnresolvedOps = 7,
|
||||
} TfLiteStatus;
|
||||
|
||||
// Types supported by tensor
|
||||
@@ -21,9 +21,15 @@ limitations under the License.
|
||||
#include <string.h>
|
||||
#endif // TF_LITE_STATIC_MEMORY
|
||||
|
||||
int TfLiteIntArrayGetSizeInBytes(int size) {
|
||||
size_t TfLiteIntArrayGetSizeInBytes(int size) {
|
||||
static TfLiteIntArray dummy;
|
||||
return sizeof(dummy) + sizeof(dummy.data[0]) * size;
|
||||
|
||||
size_t computed_size = sizeof(dummy) + sizeof(dummy.data[0]) * size;
|
||||
#if defined(_MSC_VER)
|
||||
// Context for why this is needed is in http://b/189926408#comment21
|
||||
computed_size -= sizeof(dummy.data[0]);
|
||||
#endif
|
||||
return computed_size;
|
||||
}
|
||||
|
||||
int TfLiteIntArrayEqual(const TfLiteIntArray* a, const TfLiteIntArray* b) {
|
||||
@@ -45,7 +51,7 @@ int TfLiteIntArrayEqualsArray(const TfLiteIntArray* a, int b_size,
|
||||
#ifndef TF_LITE_STATIC_MEMORY
|
||||
|
||||
TfLiteIntArray* TfLiteIntArrayCreate(int size) {
|
||||
int alloc_size = TfLiteIntArrayGetSizeInBytes(size);
|
||||
size_t alloc_size = TfLiteIntArrayGetSizeInBytes(size);
|
||||
if (alloc_size <= 0) return NULL;
|
||||
TfLiteIntArray* ret = (TfLiteIntArray*)malloc(alloc_size);
|
||||
if (!ret) return ret;
|
||||
@@ -68,7 +74,13 @@ void TfLiteIntArrayFree(TfLiteIntArray* a) { free(a); }
|
||||
|
||||
int TfLiteFloatArrayGetSizeInBytes(int size) {
|
||||
static TfLiteFloatArray dummy;
|
||||
return sizeof(dummy) + sizeof(dummy.data[0]) * size;
|
||||
|
||||
int computed_size = sizeof(dummy) + sizeof(dummy.data[0]) * size;
|
||||
#if defined(_MSC_VER)
|
||||
// Context for why this is needed is in http://b/189926408#comment21
|
||||
computed_size -= sizeof(dummy.data[0]);
|
||||
#endif
|
||||
return computed_size;
|
||||
}
|
||||
|
||||
#ifndef TF_LITE_STATIC_MEMORY
|
||||
@@ -176,6 +188,26 @@ void TfLiteTensorReset(TfLiteType type, const char* name, TfLiteIntArray* dims,
|
||||
tensor->quantization.params = NULL;
|
||||
}
|
||||
|
||||
TfLiteStatus TfLiteTensorCopy(const TfLiteTensor* src, TfLiteTensor* dst) {
|
||||
if (!src || !dst)
|
||||
return kTfLiteOk;
|
||||
if (src->bytes != dst->bytes)
|
||||
return kTfLiteError;
|
||||
if (src == dst)
|
||||
return kTfLiteOk;
|
||||
|
||||
dst->type = src->type;
|
||||
if (dst->dims)
|
||||
TfLiteIntArrayFree(dst->dims);
|
||||
dst->dims = TfLiteIntArrayCopy(src->dims);
|
||||
memcpy(dst->data.raw, src->data.raw, src->bytes);
|
||||
dst->buffer_handle = src->buffer_handle;
|
||||
dst->data_is_stale = src->data_is_stale;
|
||||
dst->delegate = src->delegate;
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
void TfLiteTensorRealloc(size_t num_bytes, TfLiteTensor* tensor) {
|
||||
if (tensor->allocation_type != kTfLiteDynamic &&
|
||||
tensor->allocation_type != kTfLitePersistentRo) {
|
||||
@@ -80,12 +80,16 @@ typedef struct TfLiteExternalContext {
|
||||
// indices
|
||||
typedef struct TfLiteIntArray {
|
||||
int size;
|
||||
// gcc 6.1+ have a bug where flexible members aren't properly handled
|
||||
// https://github.com/google/re2/commit/b94b7cd42e9f02673cd748c1ac1d16db4052514c
|
||||
#if (!defined(__clang__) && defined(__GNUC__) && __GNUC__ == 6 && \
|
||||
__GNUC_MINOR__ >= 1) || \
|
||||
defined(HEXAGON) || \
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
// Context for why this is needed is in http://b/189926408#comment21
|
||||
int data[1];
|
||||
#elif (!defined(__clang__) && defined(__GNUC__) && __GNUC__ == 6 && \
|
||||
__GNUC_MINOR__ >= 1) || \
|
||||
defined(HEXAGON) || \
|
||||
(defined(__clang__) && __clang_major__ == 7 && __clang_minor__ == 1)
|
||||
// gcc 6.1+ have a bug where flexible members aren't properly handled
|
||||
// https://github.com/google/re2/commit/b94b7cd42e9f02673cd748c1ac1d16db4052514c
|
||||
int data[0];
|
||||
#else
|
||||
int data[];
|
||||
@@ -94,7 +98,7 @@ typedef struct TfLiteIntArray {
|
||||
|
||||
// Given the size (number of elements) in a TfLiteIntArray, calculate its size
|
||||
// in bytes.
|
||||
int TfLiteIntArrayGetSizeInBytes(int size);
|
||||
size_t TfLiteIntArrayGetSizeInBytes(int size);
|
||||
|
||||
#ifndef TF_LITE_STATIC_MEMORY
|
||||
// Create a array of a given `size` (uninitialized entries).
|
||||
@@ -121,11 +125,15 @@ void TfLiteIntArrayFree(TfLiteIntArray* a);
|
||||
// Fixed size list of floats. Used for per-channel quantization.
|
||||
typedef struct TfLiteFloatArray {
|
||||
int size;
|
||||
// gcc 6.1+ have a bug where flexible members aren't properly handled
|
||||
// https://github.com/google/re2/commit/b94b7cd42e9f02673cd748c1ac1d16db4052514c
|
||||
// This also applies to the toolchain used for Qualcomm Hexagon DSPs.
|
||||
#if !defined(__clang__) && defined(__GNUC__) && __GNUC__ == 6 && \
|
||||
__GNUC_MINOR__ >= 1
|
||||
#if defined(_MSC_VER)
|
||||
// Context for why this is needed is in http://b/189926408#comment21
|
||||
float data[1];
|
||||
#elif (!defined(__clang__) && defined(__GNUC__) && __GNUC__ == 6 && \
|
||||
__GNUC_MINOR__ >= 1) || \
|
||||
defined(HEXAGON) || \
|
||||
(defined(__clang__) && __clang_major__ == 7 && __clang_minor__ == 1)
|
||||
// gcc 6.1+ have a bug where flexible members aren't properly handled
|
||||
// https://github.com/google/re2/commit/b94b7cd42e9f02673cd748c1ac1d16db4052514c
|
||||
float data[0];
|
||||
#else
|
||||
float data[];
|
||||
@@ -562,6 +570,10 @@ typedef struct TfLiteNode {
|
||||
// Outputs to this node expressed as indices into the simulator's tensors.
|
||||
TfLiteIntArray* outputs;
|
||||
|
||||
// intermediate tensors to this node expressed as indices into the simulator's
|
||||
// tensors.
|
||||
TfLiteIntArray* intermediates;
|
||||
|
||||
// Opaque data provided by the node implementer through `Registration.init`.
|
||||
void* user_data;
|
||||
|
||||
@@ -614,6 +626,16 @@ void TfLiteTensorReset(TfLiteType type, const char* name, TfLiteIntArray* dims,
|
||||
const void* allocation, bool is_variable,
|
||||
TfLiteTensor* tensor);
|
||||
|
||||
// Copies the contents of 'src' in 'dst'.
|
||||
// Function does nothing if either 'src' or 'dst' is passed as nullptr and
|
||||
// return kTfLiteOk.
|
||||
// Returns kTfLiteError if 'src' and 'dst' doesn't have matching data size.
|
||||
// Note function copies contents, so it won't create new data pointer
|
||||
// or change allocation type.
|
||||
// All Tensor related properties will be copied from 'src' to 'dst' like
|
||||
// quantization, sparsity, ...
|
||||
TfLiteStatus TfLiteTensorCopy(const TfLiteTensor* src, TfLiteTensor* dst);
|
||||
|
||||
// Resize the allocated data of a (dynamic) tensor. Tensors with allocation
|
||||
// types other than kTfLiteDynamic will be ignored.
|
||||
void TfLiteTensorRealloc(size_t num_bytes, TfLiteTensor* tensor);
|
||||
@@ -819,6 +841,9 @@ typedef struct TfLiteContext {
|
||||
|
||||
typedef struct TfLiteRegistration {
|
||||
// Initializes the op from serialized data.
|
||||
// Called only *once* for the lifetime of the op, so any one-time allocations
|
||||
// should be made here (unless they depend on tensor sizes).
|
||||
//
|
||||
// If a built-in op:
|
||||
// `buffer` is the op's params data (TfLiteLSTMParams*).
|
||||
// `length` is zero.
|
||||
@@ -841,6 +866,7 @@ typedef struct TfLiteRegistration {
|
||||
// prepare is called when the inputs this node depends on have been resized.
|
||||
// context->ResizeTensor() can be called to request output tensors to be
|
||||
// resized.
|
||||
// Can be called multiple times for the lifetime of the op.
|
||||
//
|
||||
// Returns kTfLiteOk on success.
|
||||
TfLiteStatus (*prepare)(TfLiteContext* context, TfLiteNode* node);
|
||||
@@ -1,4 +1,4 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
@@ -131,6 +131,17 @@ TfLitePadding ConvertPadding(Padding padding) {
|
||||
return kTfLitePaddingUnknown;
|
||||
}
|
||||
|
||||
// Converts the flatbuffer mirror padding enum to what is used at runtime.
|
||||
TfLiteMirrorPaddingMode ConvertMirrorPadding(MirrorPadMode padding) {
|
||||
switch (padding) {
|
||||
case MirrorPadMode_REFLECT:
|
||||
return kTfLiteMirrorPaddingReflect;
|
||||
case MirrorPadMode_SYMMETRIC:
|
||||
return kTfLiteMirrorPaddingSymmetric;
|
||||
}
|
||||
return kTfLiteMirrorPaddingUnknown;
|
||||
}
|
||||
|
||||
#ifndef TF_LITE_STATIC_MEMORY
|
||||
TfLiteStatus ParseOpDataTfLite(const Operator* op, BuiltinOperator op_type,
|
||||
ErrorReporter* error_reporter,
|
||||
@@ -181,6 +192,10 @@ TfLiteStatus ParseOpDataTfLite(const Operator* op, BuiltinOperator op_type,
|
||||
return ParseArgMin(op, error_reporter, allocator, builtin_data);
|
||||
}
|
||||
|
||||
case BuiltinOperator_ASSIGN_VARIABLE: {
|
||||
return ParseAssignVariable(op, error_reporter, allocator, builtin_data);
|
||||
}
|
||||
|
||||
case BuiltinOperator_AVERAGE_POOL_2D: {
|
||||
return ParsePool(op, error_reporter, allocator, builtin_data);
|
||||
}
|
||||
@@ -193,6 +208,10 @@ TfLiteStatus ParseOpDataTfLite(const Operator* op, BuiltinOperator op_type,
|
||||
return ParseBatchToSpaceNd(op, error_reporter, allocator, builtin_data);
|
||||
}
|
||||
|
||||
case BuiltinOperator_CALL_ONCE: {
|
||||
return ParseCallOnce(op, error_reporter, allocator, builtin_data);
|
||||
}
|
||||
|
||||
case BuiltinOperator_CEIL: {
|
||||
return ParseCeil(op, error_reporter, allocator, builtin_data);
|
||||
}
|
||||
@@ -325,6 +344,10 @@ TfLiteStatus ParseOpDataTfLite(const Operator* op, BuiltinOperator op_type,
|
||||
return ParsePool(op, error_reporter, allocator, builtin_data);
|
||||
}
|
||||
|
||||
case BuiltinOperator_MIRROR_PAD: {
|
||||
return ParseMirrorPad(op, error_reporter, allocator, builtin_data);
|
||||
}
|
||||
|
||||
case BuiltinOperator_MEAN: {
|
||||
return ParseReducer(op, error_reporter, allocator, builtin_data);
|
||||
}
|
||||
@@ -369,6 +392,10 @@ TfLiteStatus ParseOpDataTfLite(const Operator* op, BuiltinOperator op_type,
|
||||
return ParseQuantize(op, error_reporter, allocator, builtin_data);
|
||||
}
|
||||
|
||||
case BuiltinOperator_READ_VARIABLE: {
|
||||
return ParseReadVariable(op, error_reporter, allocator, builtin_data);
|
||||
}
|
||||
|
||||
case BuiltinOperator_REDUCE_ANY: {
|
||||
return ParseReducer(op, error_reporter, allocator, builtin_data);
|
||||
}
|
||||
@@ -486,6 +513,10 @@ TfLiteStatus ParseOpDataTfLite(const Operator* op, BuiltinOperator op_type,
|
||||
return ParseUnpack(op, error_reporter, allocator, builtin_data);
|
||||
}
|
||||
|
||||
case BuiltinOperator_VAR_HANDLE: {
|
||||
return ParseVarHandle(op, error_reporter, allocator, builtin_data);
|
||||
}
|
||||
|
||||
case BuiltinOperator_ZEROS_LIKE: {
|
||||
return ParseZerosLike(op, error_reporter, allocator, builtin_data);
|
||||
}
|
||||
@@ -606,21 +637,8 @@ TfLiteStatus ParseOpDataTfLite(const Operator* op, BuiltinOperator op_type,
|
||||
return kTfLiteOk;
|
||||
}
|
||||
case BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_LSTM: {
|
||||
auto params =
|
||||
safe_allocator.Allocate<TfLiteUnidirectionalSequenceLSTMParams>();
|
||||
TF_LITE_ENSURE(error_reporter, params != nullptr);
|
||||
if (const auto* seq_lstm_params =
|
||||
op->builtin_options_as_UnidirectionalSequenceLSTMOptions()) {
|
||||
params->activation =
|
||||
ConvertActivation(seq_lstm_params->fused_activation_function());
|
||||
params->cell_clip = seq_lstm_params->cell_clip();
|
||||
params->proj_clip = seq_lstm_params->proj_clip();
|
||||
params->time_major = seq_lstm_params->time_major();
|
||||
params->asymmetric_quantize_inputs =
|
||||
seq_lstm_params->asymmetric_quantize_inputs();
|
||||
}
|
||||
*builtin_data = params.release();
|
||||
return kTfLiteOk;
|
||||
return ParseUnidirectionalSequenceLSTM(op, error_reporter, allocator,
|
||||
builtin_data);
|
||||
}
|
||||
case BuiltinOperator_BIDIRECTIONAL_SEQUENCE_LSTM: {
|
||||
auto params =
|
||||
@@ -693,19 +711,6 @@ TfLiteStatus ParseOpDataTfLite(const Operator* op, BuiltinOperator op_type,
|
||||
*builtin_data = params.release();
|
||||
return kTfLiteOk;
|
||||
}
|
||||
case BuiltinOperator_MIRROR_PAD: {
|
||||
auto params = safe_allocator.Allocate<TfLiteMirrorPaddingParams>();
|
||||
TF_LITE_ENSURE(error_reporter, params != nullptr);
|
||||
const auto* mirror_pad_params = op->builtin_options_as_MirrorPadOptions();
|
||||
if (mirror_pad_params != nullptr) {
|
||||
params->mode =
|
||||
mirror_pad_params->mode() == tflite::MirrorPadMode_REFLECT
|
||||
? TfLiteMirrorPaddingMode::kTfLiteMirrorPaddingReflect
|
||||
: TfLiteMirrorPaddingMode::kTfLiteMirrorPaddingSymmetric;
|
||||
}
|
||||
*builtin_data = params.release();
|
||||
return kTfLiteOk;
|
||||
}
|
||||
case BuiltinOperator_UNIQUE: {
|
||||
auto params = safe_allocator.Allocate<TfLiteUniqueParams>();
|
||||
TF_LITE_ENSURE(error_reporter, params != nullptr);
|
||||
@@ -750,16 +755,6 @@ TfLiteStatus ParseOpDataTfLite(const Operator* op, BuiltinOperator op_type,
|
||||
*builtin_data = params.release();
|
||||
return kTfLiteOk;
|
||||
}
|
||||
case BuiltinOperator_CALL_ONCE: {
|
||||
auto params = safe_allocator.Allocate<TfLiteCallOnceParams>();
|
||||
TF_LITE_ENSURE(error_reporter, params != nullptr);
|
||||
if (const auto* call_once_params =
|
||||
op->builtin_options_as_CallOnceOptions()) {
|
||||
params->init_subgraph_index = call_once_params->init_subgraph_index();
|
||||
}
|
||||
*builtin_data = params.release();
|
||||
return kTfLiteOk;
|
||||
}
|
||||
case BuiltinOperator_CONV_3D:
|
||||
case BuiltinOperator_CONV_3D_TRANSPOSE: {
|
||||
auto params = safe_allocator.Allocate<TfLiteConv3DParams>();
|
||||
@@ -793,17 +788,69 @@ TfLiteStatus ParseOpDataTfLite(const Operator* op, BuiltinOperator op_type,
|
||||
*builtin_data = params.release();
|
||||
return kTfLiteOk;
|
||||
}
|
||||
case BuiltinOperator_VAR_HANDLE: {
|
||||
auto params = safe_allocator.Allocate<TfLiteVarHandleParams>();
|
||||
case BuiltinOperator_MULTINOMIAL: {
|
||||
auto params = safe_allocator.Allocate<TfLiteRandomParams>();
|
||||
TF_LITE_ENSURE(error_reporter, params != nullptr);
|
||||
params->container = nullptr;
|
||||
params->shared_name = nullptr;
|
||||
if (const auto* var_handle_params =
|
||||
op->builtin_options_as_VarHandleOptions()) {
|
||||
if (var_handle_params->container())
|
||||
params->container = var_handle_params->container()->c_str();
|
||||
if (var_handle_params->shared_name())
|
||||
params->shared_name = var_handle_params->shared_name()->c_str();
|
||||
if (const auto* multinomial_params =
|
||||
op->builtin_options_as_RandomOptions()) {
|
||||
params->seed = multinomial_params->seed();
|
||||
params->seed2 = multinomial_params->seed2();
|
||||
}
|
||||
*builtin_data = params.release();
|
||||
return kTfLiteOk;
|
||||
}
|
||||
case BuiltinOperator_RANDOM_STANDARD_NORMAL: {
|
||||
auto params = safe_allocator.Allocate<TfLiteRandomParams>();
|
||||
TF_LITE_ENSURE(error_reporter, params != nullptr);
|
||||
if (const auto* random_std_normal_params =
|
||||
op->builtin_options_as_RandomOptions()) {
|
||||
params->seed = random_std_normal_params->seed();
|
||||
params->seed2 = random_std_normal_params->seed2();
|
||||
}
|
||||
*builtin_data = params.release();
|
||||
return kTfLiteOk;
|
||||
}
|
||||
case BuiltinOperator_BUCKETIZE: {
|
||||
auto params = safe_allocator.Allocate<TfLiteBucketizeParams>();
|
||||
TF_LITE_ENSURE(error_reporter, params != nullptr);
|
||||
if (const auto* bucketize_params =
|
||||
op->builtin_options_as_BucketizeOptions()) {
|
||||
const flatbuffers::Vector<float>* boundaries =
|
||||
bucketize_params->boundaries();
|
||||
if (boundaries == nullptr) {
|
||||
TF_LITE_REPORT_ERROR(
|
||||
error_reporter,
|
||||
"boundaries array not provided for operation 'bucketize'.\n");
|
||||
return kTfLiteError;
|
||||
}
|
||||
params->num_boundaries = boundaries->size();
|
||||
if (boundaries->data() == nullptr) {
|
||||
TF_LITE_REPORT_ERROR(error_reporter,
|
||||
"boundaries.data() returned nullptr for "
|
||||
"operation 'bucketize'.\n");
|
||||
return kTfLiteError;
|
||||
}
|
||||
params->boundaries = boundaries->data();
|
||||
}
|
||||
*builtin_data = params.release();
|
||||
return kTfLiteOk;
|
||||
}
|
||||
case BuiltinOperator_RANDOM_UNIFORM: {
|
||||
auto params = safe_allocator.Allocate<TfLiteRandomParams>();
|
||||
TF_LITE_ENSURE(error_reporter, params != nullptr);
|
||||
if (const auto* random_uniform_params =
|
||||
op->builtin_options_as_RandomOptions()) {
|
||||
params->seed = random_uniform_params->seed();
|
||||
params->seed2 = random_uniform_params->seed2();
|
||||
}
|
||||
*builtin_data = params.release();
|
||||
return kTfLiteOk;
|
||||
}
|
||||
case BuiltinOperator_GELU: {
|
||||
auto params = safe_allocator.Allocate<TfLiteGeluParams>();
|
||||
TF_LITE_ENSURE(error_reporter, params != nullptr);
|
||||
if (const auto* gelu_params = op->builtin_options_as_GeluOptions()) {
|
||||
params->approximate = gelu_params->approximate();
|
||||
}
|
||||
*builtin_data = params.release();
|
||||
return kTfLiteOk;
|
||||
@@ -844,8 +891,6 @@ TfLiteStatus ParseOpDataTfLite(const Operator* op, BuiltinOperator op_type,
|
||||
case BuiltinOperator_HASHTABLE_FIND:
|
||||
case BuiltinOperator_HASHTABLE_IMPORT:
|
||||
case BuiltinOperator_HASHTABLE_SIZE:
|
||||
case BuiltinOperator_READ_VARIABLE:
|
||||
case BuiltinOperator_ASSIGN_VARIABLE:
|
||||
case BuiltinOperator_BROADCAST_ARGS:
|
||||
return kTfLiteOk;
|
||||
case BuiltinOperator_PLACEHOLDER_FOR_GREATER_OP_CODES:
|
||||
@@ -1003,6 +1048,14 @@ TfLiteStatus ParseArgMin(const Operator* op, ErrorReporter* error_reporter,
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
// We have this parse function instead of directly returning kTfLiteOk from the
|
||||
// switch-case in ParseOpData because this function is used as part of the
|
||||
// selective registration for the OpResolver implementation in micro.
|
||||
TfLiteStatus ParseAssignVariable(const Operator*, ErrorReporter*,
|
||||
BuiltinDataAllocator*, void**) {
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
// We have this parse function instead of directly returning kTfLiteOk from the
|
||||
// switch-case in ParseOpData because this function is used as part of the
|
||||
// selective registration for the OpResolver implementation in micro.
|
||||
@@ -1032,6 +1085,33 @@ TfLiteStatus ParseBatchToSpaceNd(const Operator*, ErrorReporter*,
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus ParseCallOnce(const Operator* op, ErrorReporter* error_reporter,
|
||||
BuiltinDataAllocator* allocator,
|
||||
void** builtin_data) {
|
||||
CheckParsePointerParams(op, error_reporter, allocator, builtin_data);
|
||||
|
||||
SafeBuiltinDataAllocator safe_allocator(allocator);
|
||||
std::unique_ptr<TfLiteCallOnceParams,
|
||||
SafeBuiltinDataAllocator::BuiltinDataDeleter>
|
||||
params = safe_allocator.Allocate<TfLiteCallOnceParams>();
|
||||
TF_LITE_ENSURE(error_reporter, params != nullptr);
|
||||
|
||||
const CallOnceOptions* schema_params =
|
||||
op->builtin_options_as_CallOnceOptions();
|
||||
|
||||
if (schema_params != nullptr) {
|
||||
params->init_subgraph_index = schema_params->init_subgraph_index();
|
||||
|
||||
} else {
|
||||
// TODO(b/157480169): We should either return kTfLiteError or fill in some
|
||||
// reasonable defaults in the params struct. We are not doing so until we
|
||||
// better undertand the ramifications of changing the legacy behavior.
|
||||
}
|
||||
|
||||
*builtin_data = params.release();
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
// We have this parse function instead of directly returning kTfLiteOk from the
|
||||
// switch-case in ParseOpData because this function is used as part of the
|
||||
// selective registration for the OpResolver implementation in micro.
|
||||
@@ -1541,6 +1621,32 @@ TfLiteStatus ParseMinimum(const Operator*, ErrorReporter*,
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus ParseMirrorPad(const Operator* op, ErrorReporter* error_reporter,
|
||||
BuiltinDataAllocator* allocator,
|
||||
void** builtin_data) {
|
||||
CheckParsePointerParams(op, error_reporter, allocator, builtin_data);
|
||||
|
||||
SafeBuiltinDataAllocator safe_allocator(allocator);
|
||||
std::unique_ptr<TfLiteMirrorPaddingParams,
|
||||
SafeBuiltinDataAllocator::BuiltinDataDeleter>
|
||||
params = safe_allocator.Allocate<TfLiteMirrorPaddingParams>();
|
||||
TF_LITE_ENSURE(error_reporter, params != nullptr);
|
||||
|
||||
const MirrorPadOptions* schema_params =
|
||||
op->builtin_options_as_MirrorPadOptions();
|
||||
|
||||
if (schema_params != nullptr) {
|
||||
params->mode = ConvertMirrorPadding(schema_params->mode());
|
||||
} else {
|
||||
// TODO(b/157480169): We should either return kTfLiteError or fill in some
|
||||
// reasonable defaults in the params struct. We are not doing so until we
|
||||
// better undertand the ramifications of changing the legacy behavior.
|
||||
}
|
||||
|
||||
*builtin_data = params.release();
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus ParseMul(const Operator* op, ErrorReporter* error_reporter,
|
||||
BuiltinDataAllocator* allocator, void** builtin_data) {
|
||||
CheckParsePointerParams(op, error_reporter, allocator, builtin_data);
|
||||
@@ -1676,6 +1782,14 @@ TfLiteStatus ParseQuantize(const Operator*, ErrorReporter*,
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
// We have this parse function instead of directly returning kTfLiteOk from the
|
||||
// switch-case in ParseOpData because this function is used as part of the
|
||||
// selective registration for the OpResolver implementation in micro.
|
||||
TfLiteStatus ParseReadVariable(const Operator*, ErrorReporter*,
|
||||
BuiltinDataAllocator*, void**) {
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus ParseReducer(const Operator* op, ErrorReporter* error_reporter,
|
||||
BuiltinDataAllocator* allocator,
|
||||
void** builtin_data) {
|
||||
@@ -1856,6 +1970,14 @@ TfLiteStatus ParseSin(const Operator*, ErrorReporter*, BuiltinDataAllocator*,
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
// We have this parse function instead of directly returning kTfLiteOk from the
|
||||
// switch-case in ParseOpData because this function is used as part of the
|
||||
// selective registration for the OpResolver implementation in micro.
|
||||
TfLiteStatus ParseSlice(const Operator*, ErrorReporter*, BuiltinDataAllocator*,
|
||||
void**) {
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus ParseSoftmax(const Operator* op, ErrorReporter* error_reporter,
|
||||
BuiltinDataAllocator* allocator,
|
||||
void** builtin_data) {
|
||||
@@ -1962,6 +2084,29 @@ TfLiteStatus ParseSplitV(const Operator* op, ErrorReporter* error_reporter,
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus ParseUnidirectionalSequenceLSTM(const Operator* op,
|
||||
ErrorReporter* error_reporter,
|
||||
BuiltinDataAllocator* allocator,
|
||||
void** builtin_data) {
|
||||
CheckParsePointerParams(op, error_reporter, allocator, builtin_data);
|
||||
SafeBuiltinDataAllocator safe_allocator(allocator);
|
||||
auto params =
|
||||
safe_allocator.Allocate<TfLiteUnidirectionalSequenceLSTMParams>();
|
||||
TF_LITE_ENSURE(error_reporter, params != nullptr);
|
||||
if (const auto* seq_lstm_params =
|
||||
op->builtin_options_as_UnidirectionalSequenceLSTMOptions()) {
|
||||
params->activation =
|
||||
ConvertActivation(seq_lstm_params->fused_activation_function());
|
||||
params->cell_clip = seq_lstm_params->cell_clip();
|
||||
params->proj_clip = seq_lstm_params->proj_clip();
|
||||
params->time_major = seq_lstm_params->time_major();
|
||||
params->asymmetric_quantize_inputs =
|
||||
seq_lstm_params->asymmetric_quantize_inputs();
|
||||
}
|
||||
*builtin_data = params.release();
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus ParseSqueeze(const Operator* op, ErrorReporter* error_reporter,
|
||||
BuiltinDataAllocator* allocator,
|
||||
void** builtin_data) {
|
||||
@@ -2161,6 +2306,37 @@ TfLiteStatus ParseUnpack(const Operator* op, ErrorReporter* error_reporter,
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus ParseVarHandle(const Operator* op, ErrorReporter* error_reporter,
|
||||
BuiltinDataAllocator* allocator,
|
||||
void** builtin_data) {
|
||||
CheckParsePointerParams(op, error_reporter, allocator, builtin_data);
|
||||
|
||||
SafeBuiltinDataAllocator safe_allocator(allocator);
|
||||
std::unique_ptr<TfLiteVarHandleParams,
|
||||
SafeBuiltinDataAllocator::BuiltinDataDeleter>
|
||||
params = safe_allocator.Allocate<TfLiteVarHandleParams>();
|
||||
TF_LITE_ENSURE(error_reporter, params != nullptr);
|
||||
|
||||
const VarHandleOptions* schema_params =
|
||||
op->builtin_options_as_VarHandleOptions();
|
||||
|
||||
if (schema_params != nullptr) {
|
||||
if (schema_params->container()) {
|
||||
params->container = schema_params->container()->c_str();
|
||||
}
|
||||
if (schema_params->shared_name()) {
|
||||
params->shared_name = schema_params->shared_name()->c_str();
|
||||
}
|
||||
} else {
|
||||
// TODO(b/157480169): We should either return kTfLiteError or fill in some
|
||||
// reasonable defaults in the params struct. We are not doing so until we
|
||||
// better undertand the ramifications of changing the legacy behavior.
|
||||
}
|
||||
|
||||
*builtin_data = params.release();
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
// We have this parse function instead of directly returning kTfLiteOk from the
|
||||
// switch-case in ParseOpData because this function is used as part of the
|
||||
// selective registration for the OpResolver implementation in micro.
|
||||
@@ -1,4 +1,4 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
@@ -84,6 +84,11 @@ TfLiteStatus ParseArgMax(const Operator* op, ErrorReporter* error_reporter,
|
||||
TfLiteStatus ParseArgMin(const Operator* op, ErrorReporter* error_reporter,
|
||||
BuiltinDataAllocator* allocator, void** builtin_data);
|
||||
|
||||
TfLiteStatus ParseAssignVariable(const Operator* op,
|
||||
ErrorReporter* error_reporter,
|
||||
BuiltinDataAllocator* allocator,
|
||||
void** builtin_data);
|
||||
|
||||
TfLiteStatus ParseBatchMatMul(const Operator* op, ErrorReporter* error_reporter,
|
||||
BuiltinDataAllocator* allocator,
|
||||
void** builtin_data);
|
||||
@@ -93,6 +98,10 @@ TfLiteStatus ParseBatchToSpaceNd(const Operator* op,
|
||||
BuiltinDataAllocator* allocator,
|
||||
void** builtin_data);
|
||||
|
||||
TfLiteStatus ParseCallOnce(const Operator* op, ErrorReporter* error_reporter,
|
||||
BuiltinDataAllocator* allocator,
|
||||
void** builtin_data);
|
||||
|
||||
TfLiteStatus ParseCeil(const Operator* op, ErrorReporter* error_reporter,
|
||||
BuiltinDataAllocator* allocator, void** builtin_data);
|
||||
|
||||
@@ -229,6 +238,10 @@ TfLiteStatus ParseMaximum(const Operator* op, ErrorReporter* error_reporter,
|
||||
TfLiteStatus ParseMinimum(const Operator* op, ErrorReporter* error_reporter,
|
||||
BuiltinDataAllocator* allocator, void** builtin_data);
|
||||
|
||||
TfLiteStatus ParseMirrorPad(const Operator* op, ErrorReporter* error_reporter,
|
||||
BuiltinDataAllocator* allocator,
|
||||
void** builtin_data);
|
||||
|
||||
TfLiteStatus ParseMul(const Operator* op, ErrorReporter* error_reporter,
|
||||
BuiltinDataAllocator* allocator, void** builtin_data);
|
||||
|
||||
@@ -261,6 +274,11 @@ TfLiteStatus ParseQuantize(const Operator* op, ErrorReporter* error_reporter,
|
||||
BuiltinDataAllocator* allocator,
|
||||
void** builtin_data);
|
||||
|
||||
TfLiteStatus ParseReadVariable(const Operator* op,
|
||||
ErrorReporter* error_reporter,
|
||||
BuiltinDataAllocator* allocator,
|
||||
void** builtin_data);
|
||||
|
||||
TfLiteStatus ParseReducer(const Operator* op, ErrorReporter* error_reporter,
|
||||
BuiltinDataAllocator* allocator, void** builtin_data);
|
||||
|
||||
@@ -295,6 +313,9 @@ TfLiteStatus ParseShape(const Operator* op, ErrorReporter* error_reporter,
|
||||
TfLiteStatus ParseSin(const Operator* op, ErrorReporter* error_reporter,
|
||||
BuiltinDataAllocator* allocator, void** builtin_data);
|
||||
|
||||
TfLiteStatus ParseSlice(const Operator* op, ErrorReporter* error_reporter,
|
||||
BuiltinDataAllocator* allocator, void** builtin_data);
|
||||
|
||||
TfLiteStatus ParseSoftmax(const Operator* op, ErrorReporter* error_reporter,
|
||||
BuiltinDataAllocator* allocator, void** builtin_data);
|
||||
|
||||
@@ -349,6 +370,15 @@ TfLiteStatus ParseTransposeConv(const Operator* op,
|
||||
TfLiteStatus ParseUnpack(const Operator* op, ErrorReporter* error_reporter,
|
||||
BuiltinDataAllocator* allocator, void** builtin_data);
|
||||
|
||||
TfLiteStatus ParseUnidirectionalSequenceLSTM(const Operator* op,
|
||||
ErrorReporter* error_reporter,
|
||||
BuiltinDataAllocator* allocator,
|
||||
void** builtin_data);
|
||||
|
||||
TfLiteStatus ParseVarHandle(const Operator* op, ErrorReporter* error_reporter,
|
||||
BuiltinDataAllocator* allocator,
|
||||
void** builtin_data);
|
||||
|
||||
TfLiteStatus ParseZerosLike(const Operator* op, ErrorReporter* error_reporter,
|
||||
BuiltinDataAllocator* allocator,
|
||||
void** builtin_data);
|
||||
@@ -15,6 +15,7 @@ limitations under the License.
|
||||
#ifndef TENSORFLOW_LITE_CORE_API_OP_RESOLVER_H_
|
||||
#define TENSORFLOW_LITE_CORE_API_OP_RESOLVER_H_
|
||||
|
||||
#include <functional>
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
|
||||
@@ -36,15 +37,26 @@ class OpResolver {
|
||||
virtual const TfLiteRegistration* FindOp(const char* op,
|
||||
int version) const = 0;
|
||||
|
||||
using TfLiteDelegatePtrVector =
|
||||
std::vector<std::unique_ptr<TfLiteDelegate, void (*)(TfLiteDelegate*)>>;
|
||||
// Returns optional delegates for resolving and handling ops in the flatbuffer
|
||||
// model. This may be used in addition to the standard TfLiteRegistration
|
||||
// lookup for graph resolution.
|
||||
using TfLiteDelegatePtrVector =
|
||||
std::vector<std::unique_ptr<TfLiteDelegate, void (*)(TfLiteDelegate*)>>;
|
||||
// WARNING: This API is deprecated, GetDelegateCreators is preferred.
|
||||
virtual TfLiteDelegatePtrVector GetDelegates(int num_threads) const {
|
||||
return TfLiteDelegatePtrVector();
|
||||
return {};
|
||||
}
|
||||
|
||||
// Represent a function that creates a TfLite delegate instance.
|
||||
using TfLiteDelegateCreator =
|
||||
std::function<std::unique_ptr<TfLiteDelegate, void (*)(TfLiteDelegate*)>(
|
||||
int /*num_threads*/)>;
|
||||
using TfLiteDelegateCreators = std::vector<TfLiteDelegateCreator>;
|
||||
// Returns a vector of delegate creators to create optional delegates for
|
||||
// resolving and handling ops in the flatbuffer model. This may be used in
|
||||
// addition to the standard TfLiteRegistration lookup for graph resolution.
|
||||
virtual TfLiteDelegateCreators GetDelegateCreators() const { return {}; }
|
||||
|
||||
virtual ~OpResolver() {}
|
||||
|
||||
private:
|
||||
@@ -0,0 +1,102 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#ifndef TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_BITS_H_
|
||||
#define TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_BITS_H_
|
||||
|
||||
#ifdef __cplusplus
|
||||
#include <cstdint>
|
||||
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
static inline int CountLeadingZeros32Slow(uint64_t n) {
|
||||
int zeroes = 28;
|
||||
if (n >> 16) zeroes -= 16, n >>= 16;
|
||||
if (n >> 8) zeroes -= 8, n >>= 8;
|
||||
if (n >> 4) zeroes -= 4, n >>= 4;
|
||||
return "\4\3\2\2\1\1\1\1\0\0\0\0\0\0\0"[n] + zeroes;
|
||||
}
|
||||
|
||||
static inline int CountLeadingZeros32(uint32_t n) {
|
||||
#if defined(_MSC_VER)
|
||||
unsigned long result = 0; // NOLINT(runtime/int)
|
||||
if (_BitScanReverse(&result, n)) {
|
||||
return 31 - result;
|
||||
}
|
||||
return 32;
|
||||
#elif defined(__GNUC__)
|
||||
|
||||
// Handle 0 as a special case because __builtin_clz(0) is undefined.
|
||||
if (n == 0) {
|
||||
return 32;
|
||||
}
|
||||
return __builtin_clz(n);
|
||||
#else
|
||||
return CountLeadingZeros32Slow(n);
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline int MostSignificantBit32(uint32_t n) {
|
||||
return 32 - CountLeadingZeros32(n);
|
||||
}
|
||||
|
||||
static inline int CountLeadingZeros64Slow(uint64_t n) {
|
||||
int zeroes = 60;
|
||||
if (n >> 32) zeroes -= 32, n >>= 32;
|
||||
if (n >> 16) zeroes -= 16, n >>= 16;
|
||||
if (n >> 8) zeroes -= 8, n >>= 8;
|
||||
if (n >> 4) zeroes -= 4, n >>= 4;
|
||||
return "\4\3\2\2\1\1\1\1\0\0\0\0\0\0\0"[n] + zeroes;
|
||||
}
|
||||
|
||||
static inline int CountLeadingZeros64(uint64_t n) {
|
||||
#if defined(_MSC_VER) && defined(_M_X64)
|
||||
// MSVC does not have __builtin_clzll. Use _BitScanReverse64.
|
||||
unsigned long result = 0; // NOLINT(runtime/int)
|
||||
if (_BitScanReverse64(&result, n)) {
|
||||
return 63 - result;
|
||||
}
|
||||
return 64;
|
||||
#elif defined(_MSC_VER)
|
||||
// MSVC does not have __builtin_clzll. Compose two calls to _BitScanReverse
|
||||
unsigned long result = 0; // NOLINT(runtime/int)
|
||||
if ((n >> 32) && _BitScanReverse(&result, n >> 32)) {
|
||||
return 31 - result;
|
||||
}
|
||||
if (_BitScanReverse(&result, n)) {
|
||||
return 63 - result;
|
||||
}
|
||||
return 64;
|
||||
#elif defined(__GNUC__)
|
||||
|
||||
// Handle 0 as a special case because __builtin_clzll(0) is undefined.
|
||||
if (n == 0) {
|
||||
return 64;
|
||||
}
|
||||
return __builtin_clzll(n);
|
||||
#else
|
||||
return CountLeadingZeros64Slow(n);
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline int MostSignificantBit64(uint64_t n) {
|
||||
return 64 - CountLeadingZeros64(n);
|
||||
}
|
||||
|
||||
#ifdef __cplusplus
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif // TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_BITS_H_
|
||||
@@ -0,0 +1,52 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/fft.h"
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/kiss_fft_int16.h"
|
||||
|
||||
#include <string.h>
|
||||
|
||||
|
||||
void FftCompute(struct FftState* state, const int16_t* input,
|
||||
int input_scale_shift) {
|
||||
const size_t input_size = state->input_size;
|
||||
const size_t fft_size = state->fft_size;
|
||||
|
||||
int16_t* fft_input = state->input;
|
||||
// First, scale the input by the given shift.
|
||||
size_t i;
|
||||
for (i = 0; i < input_size; ++i) {
|
||||
fft_input[i] = static_cast<int16_t>(static_cast<uint16_t>(input[i])
|
||||
<< input_scale_shift);
|
||||
}
|
||||
// Zero out whatever else remains in the top part of the input.
|
||||
for (; i < fft_size; ++i) {
|
||||
fft_input[i] = 0;
|
||||
}
|
||||
|
||||
// Apply the FFT.
|
||||
kissfft_fixed16::kiss_fftr(
|
||||
reinterpret_cast<kissfft_fixed16::kiss_fftr_cfg>(state->scratch),
|
||||
state->input,
|
||||
reinterpret_cast<kissfft_fixed16::kiss_fft_cpx*>(state->output));
|
||||
}
|
||||
|
||||
void FftInit(struct FftState* state) {
|
||||
// All the initialization is done in FftPopulateState()
|
||||
}
|
||||
|
||||
void FftReset(struct FftState* state) {
|
||||
memset(state->input, 0, state->fft_size * sizeof(*state->input));
|
||||
memset(state->output, 0, (state->fft_size / 2 + 1) * sizeof(*state->output));
|
||||
}
|
||||
@@ -0,0 +1,50 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#ifndef TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_FFT_H_
|
||||
#define TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_FFT_H_
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct complex_int16_t {
|
||||
int16_t real;
|
||||
int16_t imag;
|
||||
};
|
||||
|
||||
struct FftState {
|
||||
int16_t* input;
|
||||
struct complex_int16_t* output;
|
||||
size_t fft_size;
|
||||
size_t input_size;
|
||||
void* scratch;
|
||||
size_t scratch_size;
|
||||
};
|
||||
|
||||
void FftCompute(struct FftState* state, const int16_t* input,
|
||||
int input_scale_shift);
|
||||
|
||||
void FftInit(struct FftState* state);
|
||||
|
||||
void FftReset(struct FftState* state);
|
||||
|
||||
#ifdef __cplusplus
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif // TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_FFT_H_
|
||||
@@ -0,0 +1,69 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/fft_util.h"
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/kiss_fft_int16.h"
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
int FftPopulateState(struct FftState* state, size_t input_size) {
|
||||
state->input_size = input_size;
|
||||
state->fft_size = 1;
|
||||
while (state->fft_size < state->input_size) {
|
||||
state->fft_size <<= 1;
|
||||
}
|
||||
|
||||
state->input = reinterpret_cast<int16_t*>(
|
||||
malloc(state->fft_size * sizeof(*state->input)));
|
||||
if (state->input == nullptr) {
|
||||
fprintf(stderr, "Failed to alloc fft input buffer\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
state->output = reinterpret_cast<complex_int16_t*>(
|
||||
malloc((state->fft_size / 2 + 1) * sizeof(*state->output) * 2));
|
||||
if (state->output == nullptr) {
|
||||
fprintf(stderr, "Failed to alloc fft output buffer\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Ask kissfft how much memory it wants.
|
||||
size_t scratch_size = 0;
|
||||
kissfft_fixed16::kiss_fftr_cfg kfft_cfg = kissfft_fixed16::kiss_fftr_alloc(
|
||||
state->fft_size, 0, nullptr, &scratch_size);
|
||||
if (kfft_cfg != nullptr) {
|
||||
fprintf(stderr, "Kiss memory sizing failed.\n");
|
||||
return 0;
|
||||
}
|
||||
state->scratch = malloc(scratch_size);
|
||||
if (state->scratch == nullptr) {
|
||||
fprintf(stderr, "Failed to alloc fft scratch buffer\n");
|
||||
return 0;
|
||||
}
|
||||
state->scratch_size = scratch_size;
|
||||
// Let kissfft configure the scratch space we just allocated
|
||||
kfft_cfg = kissfft_fixed16::kiss_fftr_alloc(state->fft_size, 0,
|
||||
state->scratch, &scratch_size);
|
||||
if (kfft_cfg != state->scratch) {
|
||||
fprintf(stderr, "Kiss memory preallocation strategy failed.\n");
|
||||
return 0;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
void FftFreeStateContents(struct FftState* state) {
|
||||
free(state->input);
|
||||
free(state->output);
|
||||
free(state->scratch);
|
||||
}
|
||||
@@ -0,0 +1,34 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#ifndef TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_FFT_UTIL_H_
|
||||
#define TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_FFT_UTIL_H_
|
||||
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/fft.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// Prepares and FFT for the given input size.
|
||||
int FftPopulateState(struct FftState* state, size_t input_size);
|
||||
|
||||
// Frees any allocated buffers.
|
||||
void FftFreeStateContents(struct FftState* state);
|
||||
|
||||
#ifdef __cplusplus
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif // TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_FFT_UTIL_H_
|
||||
@@ -0,0 +1,134 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/filterbank.h"
|
||||
|
||||
#include <string.h>
|
||||
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/bits.h"
|
||||
|
||||
void FilterbankConvertFftComplexToEnergy(struct FilterbankState* state,
|
||||
struct complex_int16_t* fft_output,
|
||||
int32_t* energy) {
|
||||
const int end_index = state->end_index;
|
||||
int i;
|
||||
energy += state->start_index;
|
||||
fft_output += state->start_index;
|
||||
for (i = state->start_index; i < end_index; ++i) {
|
||||
const int32_t real = fft_output->real;
|
||||
const int32_t imag = fft_output->imag;
|
||||
fft_output++;
|
||||
const uint32_t mag_squared = (real * real) + (imag * imag);
|
||||
*energy++ = mag_squared;
|
||||
}
|
||||
}
|
||||
|
||||
void FilterbankAccumulateChannels(struct FilterbankState* state,
|
||||
const int32_t* energy) {
|
||||
uint64_t* work = state->work;
|
||||
uint64_t weight_accumulator = 0;
|
||||
uint64_t unweight_accumulator = 0;
|
||||
|
||||
const int16_t* channel_frequency_starts = state->channel_frequency_starts;
|
||||
const int16_t* channel_weight_starts = state->channel_weight_starts;
|
||||
const int16_t* channel_widths = state->channel_widths;
|
||||
|
||||
int num_channels_plus_1 = state->num_channels + 1;
|
||||
int i;
|
||||
for (i = 0; i < num_channels_plus_1; ++i) {
|
||||
const int32_t* magnitudes = energy + *channel_frequency_starts++;
|
||||
const int16_t* weights = state->weights + *channel_weight_starts;
|
||||
const int16_t* unweights = state->unweights + *channel_weight_starts++;
|
||||
const int width = *channel_widths++;
|
||||
int j;
|
||||
for (j = 0; j < width; ++j) {
|
||||
weight_accumulator += *weights++ * ((uint64_t)*magnitudes);
|
||||
unweight_accumulator += *unweights++ * ((uint64_t)*magnitudes);
|
||||
++magnitudes;
|
||||
}
|
||||
*work++ = weight_accumulator;
|
||||
weight_accumulator = unweight_accumulator;
|
||||
unweight_accumulator = 0;
|
||||
}
|
||||
}
|
||||
|
||||
static uint16_t Sqrt32(uint32_t num) {
|
||||
if (num == 0) {
|
||||
return 0;
|
||||
}
|
||||
uint32_t res = 0;
|
||||
int max_bit_number = 32 - MostSignificantBit32(num);
|
||||
max_bit_number |= 1;
|
||||
uint32_t bit = 1U << (31 - max_bit_number);
|
||||
int iterations = (31 - max_bit_number) / 2 + 1;
|
||||
while (iterations--) {
|
||||
if (num >= res + bit) {
|
||||
num -= res + bit;
|
||||
res = (res >> 1U) + bit;
|
||||
} else {
|
||||
res >>= 1U;
|
||||
}
|
||||
bit >>= 2U;
|
||||
}
|
||||
// Do rounding - if we have the bits.
|
||||
if (num > res && res != 0xFFFF) {
|
||||
++res;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
static uint32_t Sqrt64(uint64_t num) {
|
||||
// Take a shortcut and just use 32 bit operations if the upper word is all
|
||||
// clear. This will cause a slight off by one issue for numbers close to 2^32,
|
||||
// but it probably isn't going to matter (and gives us a big performance win).
|
||||
if ((num >> 32) == 0) {
|
||||
return Sqrt32((uint32_t)num);
|
||||
}
|
||||
uint64_t res = 0;
|
||||
int max_bit_number = 64 - MostSignificantBit64(num);
|
||||
max_bit_number |= 1;
|
||||
uint64_t bit = 1ULL << (63 - max_bit_number);
|
||||
int iterations = (63 - max_bit_number) / 2 + 1;
|
||||
while (iterations--) {
|
||||
if (num >= res + bit) {
|
||||
num -= res + bit;
|
||||
res = (res >> 1U) + bit;
|
||||
} else {
|
||||
res >>= 1U;
|
||||
}
|
||||
bit >>= 2U;
|
||||
}
|
||||
// Do rounding - if we have the bits.
|
||||
if (num > res && res != 0xFFFFFFFFLL) {
|
||||
++res;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
uint32_t* FilterbankSqrt(struct FilterbankState* state, int scale_down_shift) {
|
||||
const int num_channels = state->num_channels;
|
||||
const uint64_t* work = state->work + 1;
|
||||
// Reuse the work buffer since we're fine clobbering it at this point to hold
|
||||
// the output.
|
||||
uint32_t* output = (uint32_t*)state->work;
|
||||
int i;
|
||||
for (i = 0; i < num_channels; ++i) {
|
||||
*output++ = Sqrt64(*work++) >> scale_down_shift;
|
||||
}
|
||||
return (uint32_t*)state->work;
|
||||
}
|
||||
|
||||
void FilterbankReset(struct FilterbankState* state) {
|
||||
memset(state->work, 0, (state->num_channels + 1) * sizeof(*state->work));
|
||||
}
|
||||
@@ -0,0 +1,63 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#ifndef TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_FILTERBANK_H_
|
||||
#define TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_FILTERBANK_H_
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/fft.h"
|
||||
|
||||
#define kFilterbankBits 12
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct FilterbankState {
|
||||
int num_channels;
|
||||
int start_index;
|
||||
int end_index;
|
||||
int16_t* channel_frequency_starts;
|
||||
int16_t* channel_weight_starts;
|
||||
int16_t* channel_widths;
|
||||
int16_t* weights;
|
||||
int16_t* unweights;
|
||||
uint64_t* work;
|
||||
};
|
||||
|
||||
// Converts the relevant complex values of an FFT output into energy (the
|
||||
// square magnitude).
|
||||
void FilterbankConvertFftComplexToEnergy(struct FilterbankState* state,
|
||||
struct complex_int16_t* fft_output,
|
||||
int32_t* energy);
|
||||
|
||||
// Computes the mel-scale filterbank on the given energy array. Output is cached
|
||||
// internally - to fetch it, you need to call FilterbankSqrt.
|
||||
void FilterbankAccumulateChannels(struct FilterbankState* state,
|
||||
const int32_t* energy);
|
||||
|
||||
// Applies an integer square root to the 64 bit intermediate values of the
|
||||
// filterbank, and returns a pointer to them. Memory will be invalidated the
|
||||
// next time FilterbankAccumulateChannels is called.
|
||||
uint32_t* FilterbankSqrt(struct FilterbankState* state, int scale_down_shift);
|
||||
|
||||
void FilterbankReset(struct FilterbankState* state);
|
||||
|
||||
#ifdef __cplusplus
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif // TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_FILTERBANK_H_
|
||||
@@ -0,0 +1,220 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/filterbank_util.h"
|
||||
|
||||
#include <assert.h>
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
|
||||
#define kFilterbankIndexAlignment 4
|
||||
#define kFilterbankChannelBlockSize 4
|
||||
|
||||
void FilterbankFillConfigWithDefaults(struct FilterbankConfig* config) {
|
||||
config->num_channels = 32;
|
||||
config->lower_band_limit = 125.0f;
|
||||
config->upper_band_limit = 7500.0f;
|
||||
config->output_scale_shift = 7;
|
||||
}
|
||||
|
||||
static float FreqToMel(float freq) { return 1127.0 * log1p(freq / 700.0); }
|
||||
|
||||
static void CalculateCenterFrequencies(const int num_channels,
|
||||
const float lower_frequency_limit,
|
||||
const float upper_frequency_limit,
|
||||
float* center_frequencies) {
|
||||
assert(lower_frequency_limit >= 0.0f);
|
||||
assert(upper_frequency_limit > lower_frequency_limit);
|
||||
|
||||
const float mel_low = FreqToMel(lower_frequency_limit);
|
||||
const float mel_hi = FreqToMel(upper_frequency_limit);
|
||||
const float mel_span = mel_hi - mel_low;
|
||||
const float mel_spacing = mel_span / ((float)num_channels);
|
||||
int i;
|
||||
for (i = 0; i < num_channels; ++i) {
|
||||
center_frequencies[i] = mel_low + (mel_spacing * (i + 1));
|
||||
}
|
||||
}
|
||||
|
||||
static void QuantizeFilterbankWeights(const float float_weight, int16_t* weight,
|
||||
int16_t* unweight) {
|
||||
*weight = floor(float_weight * (1 << kFilterbankBits) + 0.5);
|
||||
*unweight = floor((1.0 - float_weight) * (1 << kFilterbankBits) + 0.5);
|
||||
}
|
||||
|
||||
int FilterbankPopulateState(const struct FilterbankConfig* config,
|
||||
struct FilterbankState* state, int sample_rate,
|
||||
int spectrum_size) {
|
||||
state->num_channels = config->num_channels;
|
||||
const int num_channels_plus_1 = config->num_channels + 1;
|
||||
|
||||
// How should we align things to index counts given the byte alignment?
|
||||
const int index_alignment =
|
||||
(kFilterbankIndexAlignment < sizeof(int16_t)
|
||||
? 1
|
||||
: kFilterbankIndexAlignment / sizeof(int16_t));
|
||||
|
||||
state->channel_frequency_starts =
|
||||
malloc(num_channels_plus_1 * sizeof(*state->channel_frequency_starts));
|
||||
state->channel_weight_starts =
|
||||
malloc(num_channels_plus_1 * sizeof(*state->channel_weight_starts));
|
||||
state->channel_widths =
|
||||
malloc(num_channels_plus_1 * sizeof(*state->channel_widths));
|
||||
state->work = malloc(num_channels_plus_1 * sizeof(*state->work));
|
||||
|
||||
float* center_mel_freqs =
|
||||
malloc(num_channels_plus_1 * sizeof(*center_mel_freqs));
|
||||
int16_t* actual_channel_starts =
|
||||
malloc(num_channels_plus_1 * sizeof(*actual_channel_starts));
|
||||
int16_t* actual_channel_widths =
|
||||
malloc(num_channels_plus_1 * sizeof(*actual_channel_widths));
|
||||
|
||||
if (state->channel_frequency_starts == NULL ||
|
||||
state->channel_weight_starts == NULL || state->channel_widths == NULL ||
|
||||
center_mel_freqs == NULL || actual_channel_starts == NULL ||
|
||||
actual_channel_widths == NULL) {
|
||||
free(center_mel_freqs);
|
||||
free(actual_channel_starts);
|
||||
free(actual_channel_widths);
|
||||
fprintf(stderr, "Failed to allocate channel buffers\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
CalculateCenterFrequencies(num_channels_plus_1, config->lower_band_limit,
|
||||
config->upper_band_limit, center_mel_freqs);
|
||||
|
||||
// Always exclude DC.
|
||||
const float hz_per_sbin = 0.5 * sample_rate / ((float)spectrum_size - 1);
|
||||
state->start_index = 1.5 + config->lower_band_limit / hz_per_sbin;
|
||||
state->end_index = 0; // Initialized to zero here, but actually set below.
|
||||
|
||||
// For each channel, we need to figure out what frequencies belong to it, and
|
||||
// how much padding we need to add so that we can efficiently multiply the
|
||||
// weights and unweights for accumulation. To simplify the multiplication
|
||||
// logic, all channels will have some multiplication to do (even if there are
|
||||
// no frequencies that accumulate to that channel) - they will be directed to
|
||||
// a set of zero weights.
|
||||
int chan_freq_index_start = state->start_index;
|
||||
int weight_index_start = 0;
|
||||
int needs_zeros = 0;
|
||||
|
||||
int chan;
|
||||
for (chan = 0; chan < num_channels_plus_1; ++chan) {
|
||||
// Keep jumping frequencies until we overshoot the bound on this channel.
|
||||
int freq_index = chan_freq_index_start;
|
||||
while (FreqToMel((freq_index)*hz_per_sbin) <= center_mel_freqs[chan]) {
|
||||
++freq_index;
|
||||
}
|
||||
|
||||
const int width = freq_index - chan_freq_index_start;
|
||||
actual_channel_starts[chan] = chan_freq_index_start;
|
||||
actual_channel_widths[chan] = width;
|
||||
|
||||
if (width == 0) {
|
||||
// This channel doesn't actually get anything from the frequencies, it's
|
||||
// always zero. We need then to insert some 'zero' weights into the
|
||||
// output, and just redirect this channel to do a single multiplication at
|
||||
// this point. For simplicity, the zeros are placed at the beginning of
|
||||
// the weights arrays, so we have to go and update all the other
|
||||
// weight_starts to reflect this shift (but only once).
|
||||
state->channel_frequency_starts[chan] = 0;
|
||||
state->channel_weight_starts[chan] = 0;
|
||||
state->channel_widths[chan] = kFilterbankChannelBlockSize;
|
||||
if (!needs_zeros) {
|
||||
needs_zeros = 1;
|
||||
int j;
|
||||
for (j = 0; j < chan; ++j) {
|
||||
state->channel_weight_starts[j] += kFilterbankChannelBlockSize;
|
||||
}
|
||||
weight_index_start += kFilterbankChannelBlockSize;
|
||||
}
|
||||
} else {
|
||||
// How far back do we need to go to ensure that we have the proper
|
||||
// alignment?
|
||||
const int aligned_start =
|
||||
(chan_freq_index_start / index_alignment) * index_alignment;
|
||||
const int aligned_width = (chan_freq_index_start - aligned_start + width);
|
||||
const int padded_width =
|
||||
(((aligned_width - 1) / kFilterbankChannelBlockSize) + 1) *
|
||||
kFilterbankChannelBlockSize;
|
||||
|
||||
state->channel_frequency_starts[chan] = aligned_start;
|
||||
state->channel_weight_starts[chan] = weight_index_start;
|
||||
state->channel_widths[chan] = padded_width;
|
||||
weight_index_start += padded_width;
|
||||
}
|
||||
chan_freq_index_start = freq_index;
|
||||
}
|
||||
|
||||
// Allocate the two arrays to store the weights - weight_index_start contains
|
||||
// the index of what would be the next set of weights that we would need to
|
||||
// add, so that's how many weights we need to allocate.
|
||||
state->weights = calloc(weight_index_start, sizeof(*state->weights));
|
||||
state->unweights = calloc(weight_index_start, sizeof(*state->unweights));
|
||||
|
||||
// If the alloc failed, we also need to nuke the arrays.
|
||||
if (state->weights == NULL || state->unweights == NULL) {
|
||||
free(center_mel_freqs);
|
||||
free(actual_channel_starts);
|
||||
free(actual_channel_widths);
|
||||
fprintf(stderr, "Failed to allocate weights or unweights\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Next pass, compute all the weights. Since everything has been memset to
|
||||
// zero, we only need to fill in the weights that correspond to some frequency
|
||||
// for a channel.
|
||||
const float mel_low = FreqToMel(config->lower_band_limit);
|
||||
for (chan = 0; chan < num_channels_plus_1; ++chan) {
|
||||
int frequency = actual_channel_starts[chan];
|
||||
const int num_frequencies = actual_channel_widths[chan];
|
||||
const int frequency_offset =
|
||||
frequency - state->channel_frequency_starts[chan];
|
||||
const int weight_start = state->channel_weight_starts[chan];
|
||||
const float denom_val = (chan == 0) ? mel_low : center_mel_freqs[chan - 1];
|
||||
|
||||
int j;
|
||||
for (j = 0; j < num_frequencies; ++j, ++frequency) {
|
||||
const float weight =
|
||||
(center_mel_freqs[chan] - FreqToMel(frequency * hz_per_sbin)) /
|
||||
(center_mel_freqs[chan] - denom_val);
|
||||
|
||||
// Make the float into an integer for the weights (and unweights).
|
||||
const int weight_index = weight_start + frequency_offset + j;
|
||||
QuantizeFilterbankWeights(weight, state->weights + weight_index,
|
||||
state->unweights + weight_index);
|
||||
}
|
||||
if (frequency > state->end_index) {
|
||||
state->end_index = frequency;
|
||||
}
|
||||
}
|
||||
|
||||
free(center_mel_freqs);
|
||||
free(actual_channel_starts);
|
||||
free(actual_channel_widths);
|
||||
if (state->end_index >= spectrum_size) {
|
||||
fprintf(stderr, "Filterbank end_index is above spectrum size.\n");
|
||||
return 0;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
void FilterbankFreeStateContents(struct FilterbankState* state) {
|
||||
free(state->channel_frequency_starts);
|
||||
free(state->channel_weight_starts);
|
||||
free(state->channel_widths);
|
||||
free(state->weights);
|
||||
free(state->unweights);
|
||||
free(state->work);
|
||||
}
|
||||
@@ -0,0 +1,50 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#ifndef TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_FILTERBANK_UTIL_H_
|
||||
#define TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_FILTERBANK_UTIL_H_
|
||||
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/filterbank.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct FilterbankConfig {
|
||||
// number of frequency channel buckets for filterbank
|
||||
int num_channels;
|
||||
// maximum frequency to include
|
||||
float upper_band_limit;
|
||||
// minimum frequency to include
|
||||
float lower_band_limit;
|
||||
// unused
|
||||
int output_scale_shift;
|
||||
};
|
||||
|
||||
// Fills the frontendConfig with "sane" defaults.
|
||||
void FilterbankFillConfigWithDefaults(struct FilterbankConfig* config);
|
||||
|
||||
// Allocates any buffers.
|
||||
int FilterbankPopulateState(const struct FilterbankConfig* config,
|
||||
struct FilterbankState* state, int sample_rate,
|
||||
int spectrum_size);
|
||||
|
||||
// Frees any allocated buffers.
|
||||
void FilterbankFreeStateContents(struct FilterbankState* state);
|
||||
|
||||
#ifdef __cplusplus
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif // TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_FILTERBANK_UTIL_H_
|
||||
@@ -0,0 +1,72 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/frontend.h"
|
||||
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/bits.h"
|
||||
|
||||
struct FrontendOutput FrontendProcessSamples(struct FrontendState* state,
|
||||
const int16_t* samples,
|
||||
size_t num_samples,
|
||||
size_t* num_samples_read) {
|
||||
struct FrontendOutput output;
|
||||
output.values = NULL;
|
||||
output.size = 0;
|
||||
|
||||
// Try to apply the window - if it fails, return and wait for more data.
|
||||
if (!WindowProcessSamples(&state->window, samples, num_samples,
|
||||
num_samples_read)) {
|
||||
return output;
|
||||
}
|
||||
|
||||
// Apply the FFT to the window's output (and scale it so that the fixed point
|
||||
// FFT can have as much resolution as possible).
|
||||
int input_shift =
|
||||
15 - MostSignificantBit32(state->window.max_abs_output_value);
|
||||
FftCompute(&state->fft, state->window.output, input_shift);
|
||||
|
||||
// We can re-ruse the fft's output buffer to hold the energy.
|
||||
int32_t* energy = (int32_t*)state->fft.output;
|
||||
|
||||
FilterbankConvertFftComplexToEnergy(&state->filterbank, state->fft.output,
|
||||
energy);
|
||||
|
||||
FilterbankAccumulateChannels(&state->filterbank, energy);
|
||||
uint32_t* scaled_filterbank = FilterbankSqrt(&state->filterbank, input_shift);
|
||||
|
||||
// Apply noise reduction.
|
||||
NoiseReductionApply(&state->noise_reduction, scaled_filterbank);
|
||||
|
||||
if (state->pcan_gain_control.enable_pcan) {
|
||||
PcanGainControlApply(&state->pcan_gain_control, scaled_filterbank);
|
||||
}
|
||||
|
||||
// Apply the log and scale.
|
||||
int correction_bits =
|
||||
MostSignificantBit32(state->fft.fft_size) - 1 - (kFilterbankBits / 2);
|
||||
uint16_t* logged_filterbank =
|
||||
LogScaleApply(&state->log_scale, scaled_filterbank,
|
||||
state->filterbank.num_channels, correction_bits);
|
||||
|
||||
output.size = state->filterbank.num_channels;
|
||||
output.values = logged_filterbank;
|
||||
return output;
|
||||
}
|
||||
|
||||
void FrontendReset(struct FrontendState* state) {
|
||||
WindowReset(&state->window);
|
||||
FftReset(&state->fft);
|
||||
FilterbankReset(&state->filterbank);
|
||||
NoiseReductionReset(&state->noise_reduction);
|
||||
}
|
||||
@@ -0,0 +1,64 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#ifndef TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_FRONTEND_H_
|
||||
#define TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_FRONTEND_H_
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/fft.h"
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/filterbank.h"
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/log_scale.h"
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/noise_reduction.h"
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/pcan_gain_control.h"
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/window.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct FrontendState {
|
||||
struct WindowState window;
|
||||
struct FftState fft;
|
||||
struct FilterbankState filterbank;
|
||||
struct NoiseReductionState noise_reduction;
|
||||
struct PcanGainControlState pcan_gain_control;
|
||||
struct LogScaleState log_scale;
|
||||
};
|
||||
|
||||
struct FrontendOutput {
|
||||
const uint16_t* values;
|
||||
size_t size;
|
||||
};
|
||||
|
||||
// Main entry point to processing frontend samples. Updates num_samples_read to
|
||||
// contain the number of samples that have been consumed from the input array.
|
||||
// Returns a struct containing the generated output. If not enough samples were
|
||||
// added to generate a feature vector, the returned size will be 0 and the
|
||||
// values pointer will be NULL. Note that the output pointer will be invalidated
|
||||
// as soon as FrontendProcessSamples is called again, so copy the contents
|
||||
// elsewhere if you need to use them later.
|
||||
struct FrontendOutput FrontendProcessSamples(struct FrontendState* state,
|
||||
const int16_t* samples,
|
||||
size_t num_samples,
|
||||
size_t* num_samples_read);
|
||||
|
||||
void FrontendReset(struct FrontendState* state);
|
||||
|
||||
#ifdef __cplusplus
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif // TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_FRONTEND_H_
|
||||
@@ -0,0 +1,85 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/frontend_util.h"
|
||||
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/bits.h"
|
||||
|
||||
void FrontendFillConfigWithDefaults(struct FrontendConfig* config) {
|
||||
WindowFillConfigWithDefaults(&config->window);
|
||||
FilterbankFillConfigWithDefaults(&config->filterbank);
|
||||
NoiseReductionFillConfigWithDefaults(&config->noise_reduction);
|
||||
PcanGainControlFillConfigWithDefaults(&config->pcan_gain_control);
|
||||
LogScaleFillConfigWithDefaults(&config->log_scale);
|
||||
}
|
||||
|
||||
int FrontendPopulateState(const struct FrontendConfig* config,
|
||||
struct FrontendState* state, int sample_rate) {
|
||||
memset(state, 0, sizeof(*state));
|
||||
|
||||
if (!WindowPopulateState(&config->window, &state->window, sample_rate)) {
|
||||
fprintf(stderr, "Failed to populate window state\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (!FftPopulateState(&state->fft, state->window.size)) {
|
||||
fprintf(stderr, "Failed to populate fft state\n");
|
||||
return 0;
|
||||
}
|
||||
FftInit(&state->fft);
|
||||
|
||||
if (!FilterbankPopulateState(&config->filterbank, &state->filterbank,
|
||||
sample_rate, state->fft.fft_size / 2 + 1)) {
|
||||
fprintf(stderr, "Failed to populate filterbank state\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (!NoiseReductionPopulateState(&config->noise_reduction,
|
||||
&state->noise_reduction,
|
||||
state->filterbank.num_channels)) {
|
||||
fprintf(stderr, "Failed to populate noise reduction state\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
int input_correction_bits =
|
||||
MostSignificantBit32(state->fft.fft_size) - 1 - (kFilterbankBits / 2);
|
||||
if (!PcanGainControlPopulateState(
|
||||
&config->pcan_gain_control, &state->pcan_gain_control,
|
||||
state->noise_reduction.estimate, state->filterbank.num_channels,
|
||||
state->noise_reduction.smoothing_bits, input_correction_bits)) {
|
||||
fprintf(stderr, "Failed to populate pcan gain control state\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (!LogScalePopulateState(&config->log_scale, &state->log_scale)) {
|
||||
fprintf(stderr, "Failed to populate log scale state\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
FrontendReset(state);
|
||||
|
||||
// All good, return a true value.
|
||||
return 1;
|
||||
}
|
||||
|
||||
void FrontendFreeStateContents(struct FrontendState* state) {
|
||||
WindowFreeStateContents(&state->window);
|
||||
FftFreeStateContents(&state->fft);
|
||||
FilterbankFreeStateContents(&state->filterbank);
|
||||
NoiseReductionFreeStateContents(&state->noise_reduction);
|
||||
PcanGainControlFreeStateContents(&state->pcan_gain_control);
|
||||
}
|
||||
@@ -0,0 +1,52 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#ifndef TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_FRONTEND_UTIL_H_
|
||||
#define TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_FRONTEND_UTIL_H_
|
||||
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/fft_util.h"
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/filterbank_util.h"
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/frontend.h"
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/log_scale_util.h"
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/noise_reduction_util.h"
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/pcan_gain_control_util.h"
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/window_util.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct FrontendConfig {
|
||||
struct WindowConfig window;
|
||||
struct FilterbankConfig filterbank;
|
||||
struct NoiseReductionConfig noise_reduction;
|
||||
struct PcanGainControlConfig pcan_gain_control;
|
||||
struct LogScaleConfig log_scale;
|
||||
};
|
||||
|
||||
// Fills the frontendConfig with "sane" defaults.
|
||||
void FrontendFillConfigWithDefaults(struct FrontendConfig* config);
|
||||
|
||||
// Allocates any buffers.
|
||||
int FrontendPopulateState(const struct FrontendConfig* config,
|
||||
struct FrontendState* state, int sample_rate);
|
||||
|
||||
// Frees any allocated buffers.
|
||||
void FrontendFreeStateContents(struct FrontendState* state);
|
||||
|
||||
#ifdef __cplusplus
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif // TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_FRONTEND_UTIL_H_
|
||||
@@ -0,0 +1,48 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_KISS_FFT_COMMON_H_
|
||||
#define TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_KISS_FFT_COMMON_H_
|
||||
|
||||
// This header file should be included in all variants of kiss_fft_$type.{h,cc}
|
||||
// so that their sub-included source files do not mistakenly wrap libc header
|
||||
// files within their kissfft_$type namespaces.
|
||||
// E.g, This header avoids kissfft_int16.h containing:
|
||||
// namespace kiss_fft_int16 {
|
||||
// #include "kiss_fft.h"
|
||||
// }
|
||||
// where kiss_fft_.h contains:
|
||||
// #include <math.h>
|
||||
//
|
||||
// TRICK: By including the following header files here, their preprocessor
|
||||
// header guards prevent them being re-defined inside of the kiss_fft_$type
|
||||
// namespaces declared within the kiss_fft_$type.{h,cc} sources.
|
||||
// Note that the original kiss_fft*.h files are untouched since they
|
||||
// may be used in libraries that include them directly.
|
||||
|
||||
#include <limits.h>
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
#ifdef FIXED_POINT
|
||||
#include <sys/types.h>
|
||||
#endif
|
||||
|
||||
#ifdef USE_SIMD
|
||||
#include <xmmintrin.h>
|
||||
#endif
|
||||
#endif // TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_KISS_FFT_COMMON_H_
|
||||
@@ -0,0 +1,8 @@
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/kiss_fft_common.h"
|
||||
|
||||
#define FIXED_POINT 16
|
||||
namespace kissfft_fixed16 {
|
||||
#include "kiss_fft.c"
|
||||
#include "tools/kiss_fftr.c"
|
||||
} // namespace kissfft_fixed16
|
||||
#undef FIXED_POINT
|
||||
@@ -0,0 +1,34 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_KISS_FFT_INT16_H_
|
||||
#define TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_KISS_FFT_INT16_H_
|
||||
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/kiss_fft_common.h"
|
||||
|
||||
// Wrap 16-bit kiss fft in its own namespace. Enables us to link an application
|
||||
// with different kiss fft resultions (16/32 bit interger, float, double)
|
||||
// without getting a linker error.
|
||||
#define FIXED_POINT 16
|
||||
namespace kissfft_fixed16 {
|
||||
#include "kiss_fft.h"
|
||||
#include "tools/kiss_fftr.h"
|
||||
} // namespace kissfft_fixed16
|
||||
#undef FIXED_POINT
|
||||
#undef kiss_fft_scalar
|
||||
#undef KISS_FFT_H
|
||||
|
||||
#endif // TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_KISS_FFT_INT16_H_
|
||||
|
||||
@@ -0,0 +1,30 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/log_lut.h"
|
||||
const uint16_t kLogLut[]
|
||||
#ifndef _MSC_VER
|
||||
__attribute__((aligned(4)))
|
||||
#endif // _MSV_VER
|
||||
= {0, 224, 442, 654, 861, 1063, 1259, 1450, 1636, 1817, 1992, 2163,
|
||||
2329, 2490, 2646, 2797, 2944, 3087, 3224, 3358, 3487, 3611, 3732, 3848,
|
||||
3960, 4068, 4172, 4272, 4368, 4460, 4549, 4633, 4714, 4791, 4864, 4934,
|
||||
5001, 5063, 5123, 5178, 5231, 5280, 5326, 5368, 5408, 5444, 5477, 5507,
|
||||
5533, 5557, 5578, 5595, 5610, 5622, 5631, 5637, 5640, 5641, 5638, 5633,
|
||||
5626, 5615, 5602, 5586, 5568, 5547, 5524, 5498, 5470, 5439, 5406, 5370,
|
||||
5332, 5291, 5249, 5203, 5156, 5106, 5054, 5000, 4944, 4885, 4825, 4762,
|
||||
4697, 4630, 4561, 4490, 4416, 4341, 4264, 4184, 4103, 4020, 3935, 3848,
|
||||
3759, 3668, 3575, 3481, 3384, 3286, 3186, 3084, 2981, 2875, 2768, 2659,
|
||||
2549, 2437, 2323, 2207, 2090, 1971, 1851, 1729, 1605, 1480, 1353, 1224,
|
||||
1094, 963, 830, 695, 559, 421, 282, 142, 0, 0};
|
||||
@@ -0,0 +1,40 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#ifndef TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_LOG_LUT_H_
|
||||
#define TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_LOG_LUT_H_
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// Number of segments in the log lookup table. The table will be kLogSegments+1
|
||||
// in length (with some padding).
|
||||
#define kLogSegments 128
|
||||
#define kLogSegmentsLog2 7
|
||||
|
||||
// Scale used by lookup table.
|
||||
#define kLogScale 65536
|
||||
#define kLogScaleLog2 16
|
||||
#define kLogCoeff 45426
|
||||
|
||||
extern const uint16_t kLogLut[];
|
||||
|
||||
#ifdef __cplusplus
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif // TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_LOG_LUT_H_
|
||||
@@ -0,0 +1,83 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/log_scale.h"
|
||||
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/bits.h"
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/log_lut.h"
|
||||
|
||||
#define kuint16max 0x0000FFFF
|
||||
|
||||
// The following functions implement integer logarithms of various sizes. The
|
||||
// approximation is calculated according to method described in
|
||||
// www.inti.gob.ar/electronicaeinformatica/instrumentacion/utic/
|
||||
// publicaciones/SPL2007/Log10-spl07.pdf
|
||||
// It first calculates log2 of the input and then converts it to natural
|
||||
// logarithm.
|
||||
|
||||
static uint32_t Log2FractionPart(const uint32_t x, const uint32_t log2x) {
|
||||
// Part 1
|
||||
int32_t frac = x - (1LL << log2x);
|
||||
if (log2x < kLogScaleLog2) {
|
||||
frac <<= kLogScaleLog2 - log2x;
|
||||
} else {
|
||||
frac >>= log2x - kLogScaleLog2;
|
||||
}
|
||||
// Part 2
|
||||
const uint32_t base_seg = frac >> (kLogScaleLog2 - kLogSegmentsLog2);
|
||||
const uint32_t seg_unit =
|
||||
(((uint32_t)1) << kLogScaleLog2) >> kLogSegmentsLog2;
|
||||
|
||||
const int32_t c0 = kLogLut[base_seg];
|
||||
const int32_t c1 = kLogLut[base_seg + 1];
|
||||
const int32_t seg_base = seg_unit * base_seg;
|
||||
const int32_t rel_pos = ((c1 - c0) * (frac - seg_base)) >> kLogScaleLog2;
|
||||
return frac + c0 + rel_pos;
|
||||
}
|
||||
|
||||
static uint32_t Log(const uint32_t x, const uint32_t scale_shift) {
|
||||
const uint32_t integer = MostSignificantBit32(x) - 1;
|
||||
const uint32_t fraction = Log2FractionPart(x, integer);
|
||||
const uint32_t log2 = (integer << kLogScaleLog2) + fraction;
|
||||
const uint32_t round = kLogScale / 2;
|
||||
const uint32_t loge = (((uint64_t)kLogCoeff) * log2 + round) >> kLogScaleLog2;
|
||||
// Finally scale to our output scale
|
||||
const uint32_t loge_scaled = ((loge << scale_shift) + round) >> kLogScaleLog2;
|
||||
return loge_scaled;
|
||||
}
|
||||
|
||||
uint16_t* LogScaleApply(struct LogScaleState* state, uint32_t* signal,
|
||||
int signal_size, int correction_bits) {
|
||||
const int scale_shift = state->scale_shift;
|
||||
uint16_t* output = (uint16_t*)signal;
|
||||
uint16_t* ret = output;
|
||||
int i;
|
||||
for (i = 0; i < signal_size; ++i) {
|
||||
uint32_t value = *signal++;
|
||||
if (state->enable_log) {
|
||||
if (correction_bits < 0) {
|
||||
value >>= -correction_bits;
|
||||
} else {
|
||||
value <<= correction_bits;
|
||||
}
|
||||
if (value > 1) {
|
||||
value = Log(value, scale_shift);
|
||||
} else {
|
||||
value = 0;
|
||||
}
|
||||
}
|
||||
*output++ = (value < kuint16max) ? value : kuint16max;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
@@ -0,0 +1,39 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#ifndef TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_LOG_SCALE_H_
|
||||
#define TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_LOG_SCALE_H_
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct LogScaleState {
|
||||
int enable_log;
|
||||
int scale_shift;
|
||||
};
|
||||
|
||||
// Applies a fixed point logarithm to the signal and converts it to 16 bit. Note
|
||||
// that the signal array will be modified.
|
||||
uint16_t* LogScaleApply(struct LogScaleState* state, uint32_t* signal,
|
||||
int signal_size, int correction_bits);
|
||||
|
||||
#ifdef __cplusplus
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif // TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_LOG_SCALE_H_
|
||||
@@ -1,4 +1,4 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
@@ -12,11 +12,16 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/log_scale_util.h"
|
||||
|
||||
#ifndef TENSORFLOW_LITE_MICRO_BENCHMARKS_KEYWORD_SCRAMBLED_MODEL_DATA_H_
|
||||
#define TENSORFLOW_LITE_MICRO_BENCHMARKS_KEYWORD_SCRAMBLED_MODEL_DATA_H_
|
||||
void LogScaleFillConfigWithDefaults(struct LogScaleConfig* config) {
|
||||
config->enable_log = 1;
|
||||
config->scale_shift = 6;
|
||||
}
|
||||
|
||||
extern const unsigned char g_keyword_scrambled_model_data[];
|
||||
extern const unsigned int g_keyword_scrambled_model_data_length;
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_BENCHMARKS_KEYWORD_SCRAMBLED_MODEL_DATA_H_
|
||||
int LogScalePopulateState(const struct LogScaleConfig* config,
|
||||
struct LogScaleState* state) {
|
||||
state->enable_log = config->enable_log;
|
||||
state->scale_shift = config->scale_shift;
|
||||
return 1;
|
||||
}
|
||||
@@ -0,0 +1,45 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#ifndef TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_LOG_SCALE_UTIL_H_
|
||||
#define TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_LOG_SCALE_UTIL_H_
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/log_scale.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct LogScaleConfig {
|
||||
// set to false (0) to disable this module
|
||||
int enable_log;
|
||||
// scale results by 2^(scale_shift)
|
||||
int scale_shift;
|
||||
};
|
||||
|
||||
// Populates the LogScaleConfig with "sane" default values.
|
||||
void LogScaleFillConfigWithDefaults(struct LogScaleConfig* config);
|
||||
|
||||
// Allocates any buffers.
|
||||
int LogScalePopulateState(const struct LogScaleConfig* config,
|
||||
struct LogScaleState* state);
|
||||
|
||||
#ifdef __cplusplus
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif // TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_LOG_SCALE_UTIL_H_
|
||||
@@ -0,0 +1,51 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/noise_reduction.h"
|
||||
|
||||
#include <string.h>
|
||||
|
||||
void NoiseReductionApply(struct NoiseReductionState* state, uint32_t* signal) {
|
||||
int i;
|
||||
for (i = 0; i < state->num_channels; ++i) {
|
||||
const uint32_t smoothing =
|
||||
((i & 1) == 0) ? state->even_smoothing : state->odd_smoothing;
|
||||
const uint32_t one_minus_smoothing = (1 << kNoiseReductionBits) - smoothing;
|
||||
|
||||
// Update the estimate of the noise.
|
||||
const uint32_t signal_scaled_up = signal[i] << state->smoothing_bits;
|
||||
uint32_t estimate =
|
||||
(((uint64_t)signal_scaled_up * smoothing) +
|
||||
((uint64_t)state->estimate[i] * one_minus_smoothing)) >>
|
||||
kNoiseReductionBits;
|
||||
state->estimate[i] = estimate;
|
||||
|
||||
// Make sure that we can't get a negative value for the signal - estimate.
|
||||
if (estimate > signal_scaled_up) {
|
||||
estimate = signal_scaled_up;
|
||||
}
|
||||
|
||||
const uint32_t floor =
|
||||
((uint64_t)signal[i] * state->min_signal_remaining) >>
|
||||
kNoiseReductionBits;
|
||||
const uint32_t subtracted =
|
||||
(signal_scaled_up - estimate) >> state->smoothing_bits;
|
||||
const uint32_t output = subtracted > floor ? subtracted : floor;
|
||||
signal[i] = output;
|
||||
}
|
||||
}
|
||||
|
||||
void NoiseReductionReset(struct NoiseReductionState* state) {
|
||||
memset(state->estimate, 0, sizeof(*state->estimate) * state->num_channels);
|
||||
}
|
||||
@@ -0,0 +1,46 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#ifndef TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_NOISE_REDUCTION_H_
|
||||
#define TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_NOISE_REDUCTION_H_
|
||||
|
||||
#define kNoiseReductionBits 14
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct NoiseReductionState {
|
||||
int smoothing_bits;
|
||||
uint16_t even_smoothing;
|
||||
uint16_t odd_smoothing;
|
||||
uint16_t min_signal_remaining;
|
||||
int num_channels;
|
||||
uint32_t* estimate;
|
||||
};
|
||||
|
||||
// Removes stationary noise from each channel of the signal using a low pass
|
||||
// filter.
|
||||
void NoiseReductionApply(struct NoiseReductionState* state, uint32_t* signal);
|
||||
|
||||
void NoiseReductionReset(struct NoiseReductionState* state);
|
||||
|
||||
#ifdef __cplusplus
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif // TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_NOISE_REDUCTION_H_
|
||||
@@ -0,0 +1,45 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/noise_reduction_util.h"
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
void NoiseReductionFillConfigWithDefaults(struct NoiseReductionConfig* config) {
|
||||
config->smoothing_bits = 10;
|
||||
config->even_smoothing = 0.025;
|
||||
config->odd_smoothing = 0.06;
|
||||
config->min_signal_remaining = 0.05;
|
||||
}
|
||||
|
||||
int NoiseReductionPopulateState(const struct NoiseReductionConfig* config,
|
||||
struct NoiseReductionState* state,
|
||||
int num_channels) {
|
||||
state->smoothing_bits = config->smoothing_bits;
|
||||
state->odd_smoothing = config->odd_smoothing * (1 << kNoiseReductionBits);
|
||||
state->even_smoothing = config->even_smoothing * (1 << kNoiseReductionBits);
|
||||
state->min_signal_remaining =
|
||||
config->min_signal_remaining * (1 << kNoiseReductionBits);
|
||||
state->num_channels = num_channels;
|
||||
state->estimate = calloc(state->num_channels, sizeof(*state->estimate));
|
||||
if (state->estimate == NULL) {
|
||||
fprintf(stderr, "Failed to alloc estimate buffer\n");
|
||||
return 0;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
void NoiseReductionFreeStateContents(struct NoiseReductionState* state) {
|
||||
free(state->estimate);
|
||||
}
|
||||
@@ -0,0 +1,50 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#ifndef TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_NOISE_REDUCTION_UTIL_H_
|
||||
#define TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_NOISE_REDUCTION_UTIL_H_
|
||||
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/noise_reduction.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct NoiseReductionConfig {
|
||||
// scale the signal up by 2^(smoothing_bits) before reduction
|
||||
int smoothing_bits;
|
||||
// smoothing coefficient for even-numbered channels
|
||||
float even_smoothing;
|
||||
// smoothing coefficient for odd-numbered channels
|
||||
float odd_smoothing;
|
||||
// fraction of signal to preserve (1.0 disables this module)
|
||||
float min_signal_remaining;
|
||||
};
|
||||
|
||||
// Populates the NoiseReductionConfig with "sane" default values.
|
||||
void NoiseReductionFillConfigWithDefaults(struct NoiseReductionConfig* config);
|
||||
|
||||
// Allocates any buffers.
|
||||
int NoiseReductionPopulateState(const struct NoiseReductionConfig* config,
|
||||
struct NoiseReductionState* state,
|
||||
int num_channels);
|
||||
|
||||
// Frees any allocated buffers.
|
||||
void NoiseReductionFreeStateContents(struct NoiseReductionState* state);
|
||||
|
||||
#ifdef __cplusplus
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif // TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_NOISE_REDUCTION_UTIL_H_
|
||||
@@ -0,0 +1,56 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/pcan_gain_control.h"
|
||||
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/bits.h"
|
||||
|
||||
int16_t WideDynamicFunction(const uint32_t x, const int16_t* lut) {
|
||||
if (x <= 2) {
|
||||
return lut[x];
|
||||
}
|
||||
|
||||
const int16_t interval = MostSignificantBit32(x);
|
||||
lut += 4 * interval - 6;
|
||||
|
||||
const int16_t frac =
|
||||
((interval < 11) ? (x << (11 - interval)) : (x >> (interval - 11))) &
|
||||
0x3FF;
|
||||
|
||||
int32_t result = ((int32_t)lut[2] * frac) >> 5;
|
||||
result += (int32_t)((uint32_t)lut[1] << 5);
|
||||
result *= frac;
|
||||
result = (result + (1 << 14)) >> 15;
|
||||
result += lut[0];
|
||||
return (int16_t)result;
|
||||
}
|
||||
|
||||
uint32_t PcanShrink(const uint32_t x) {
|
||||
if (x < (2 << kPcanSnrBits)) {
|
||||
return (x * x) >> (2 + 2 * kPcanSnrBits - kPcanOutputBits);
|
||||
} else {
|
||||
return (x >> (kPcanSnrBits - kPcanOutputBits)) - (1 << kPcanOutputBits);
|
||||
}
|
||||
}
|
||||
|
||||
void PcanGainControlApply(struct PcanGainControlState* state,
|
||||
uint32_t* signal) {
|
||||
int i;
|
||||
for (i = 0; i < state->num_channels; ++i) {
|
||||
const uint32_t gain =
|
||||
WideDynamicFunction(state->noise_estimate[i], state->gain_lut);
|
||||
const uint32_t snr = ((uint64_t)signal[i] * gain) >> state->snr_shift;
|
||||
signal[i] = PcanShrink(snr);
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,47 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#ifndef TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_PCAN_GAIN_CONTROL_H_
|
||||
#define TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_PCAN_GAIN_CONTROL_H_
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#define kPcanSnrBits 12
|
||||
#define kPcanOutputBits 6
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// Details at https://research.google/pubs/pub45911.pdf
|
||||
struct PcanGainControlState {
|
||||
int enable_pcan;
|
||||
uint32_t* noise_estimate;
|
||||
int num_channels;
|
||||
int16_t* gain_lut;
|
||||
int32_t snr_shift;
|
||||
};
|
||||
|
||||
int16_t WideDynamicFunction(const uint32_t x, const int16_t* lut);
|
||||
|
||||
uint32_t PcanShrink(const uint32_t x);
|
||||
|
||||
void PcanGainControlApply(struct PcanGainControlState* state, uint32_t* signal);
|
||||
|
||||
#ifdef __cplusplus
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif // TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_PCAN_GAIN_CONTROL_H_
|
||||
@@ -0,0 +1,92 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/pcan_gain_control_util.h"
|
||||
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
|
||||
#define kint16max 0x00007FFF
|
||||
|
||||
void PcanGainControlFillConfigWithDefaults(
|
||||
struct PcanGainControlConfig* config) {
|
||||
config->enable_pcan = 0;
|
||||
config->strength = 0.95;
|
||||
config->offset = 80.0;
|
||||
config->gain_bits = 21;
|
||||
}
|
||||
|
||||
int16_t PcanGainLookupFunction(const struct PcanGainControlConfig* config,
|
||||
int32_t input_bits, uint32_t x) {
|
||||
const float x_as_float = ((float)x) / ((uint32_t)1 << input_bits);
|
||||
const float gain_as_float =
|
||||
((uint32_t)1 << config->gain_bits) *
|
||||
powf(x_as_float + config->offset, -config->strength);
|
||||
|
||||
if (gain_as_float > kint16max) {
|
||||
return kint16max;
|
||||
}
|
||||
return (int16_t)(gain_as_float + 0.5f);
|
||||
}
|
||||
|
||||
int PcanGainControlPopulateState(const struct PcanGainControlConfig* config,
|
||||
struct PcanGainControlState* state,
|
||||
uint32_t* noise_estimate,
|
||||
const int num_channels,
|
||||
const uint16_t smoothing_bits,
|
||||
const int32_t input_correction_bits) {
|
||||
state->enable_pcan = config->enable_pcan;
|
||||
if (!state->enable_pcan) {
|
||||
return 1;
|
||||
}
|
||||
state->noise_estimate = noise_estimate;
|
||||
state->num_channels = num_channels;
|
||||
state->gain_lut = malloc(kWideDynamicFunctionLUTSize * sizeof(int16_t));
|
||||
if (state->gain_lut == NULL) {
|
||||
fprintf(stderr, "Failed to allocate gain LUT\n");
|
||||
return 0;
|
||||
}
|
||||
state->snr_shift = config->gain_bits - input_correction_bits - kPcanSnrBits;
|
||||
|
||||
const int32_t input_bits = smoothing_bits - input_correction_bits;
|
||||
state->gain_lut[0] = PcanGainLookupFunction(config, input_bits, 0);
|
||||
state->gain_lut[1] = PcanGainLookupFunction(config, input_bits, 1);
|
||||
state->gain_lut -= 6;
|
||||
int interval;
|
||||
for (interval = 2; interval <= kWideDynamicFunctionBits; ++interval) {
|
||||
const uint32_t x0 = (uint32_t)1 << (interval - 1);
|
||||
const uint32_t x1 = x0 + (x0 >> 1);
|
||||
const uint32_t x2 =
|
||||
(interval == kWideDynamicFunctionBits) ? x0 + (x0 - 1) : 2 * x0;
|
||||
|
||||
const int16_t y0 = PcanGainLookupFunction(config, input_bits, x0);
|
||||
const int16_t y1 = PcanGainLookupFunction(config, input_bits, x1);
|
||||
const int16_t y2 = PcanGainLookupFunction(config, input_bits, x2);
|
||||
|
||||
const int32_t diff1 = (int32_t)y1 - y0;
|
||||
const int32_t diff2 = (int32_t)y2 - y0;
|
||||
const int32_t a1 = 4 * diff1 - diff2;
|
||||
const int32_t a2 = diff2 - a1;
|
||||
|
||||
state->gain_lut[4 * interval] = y0;
|
||||
state->gain_lut[4 * interval + 1] = (int16_t)a1;
|
||||
state->gain_lut[4 * interval + 2] = (int16_t)a2;
|
||||
}
|
||||
state->gain_lut += 6;
|
||||
return 1;
|
||||
}
|
||||
|
||||
void PcanGainControlFreeStateContents(struct PcanGainControlState* state) {
|
||||
free(state->gain_lut);
|
||||
}
|
||||
@@ -0,0 +1,57 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#ifndef TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_PCAN_GAIN_CONTROL_UTIL_H_
|
||||
#define TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_PCAN_GAIN_CONTROL_UTIL_H_
|
||||
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/pcan_gain_control.h"
|
||||
|
||||
#define kWideDynamicFunctionBits 32
|
||||
#define kWideDynamicFunctionLUTSize (4 * kWideDynamicFunctionBits - 3)
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct PcanGainControlConfig {
|
||||
// set to false (0) to disable this module
|
||||
int enable_pcan;
|
||||
// gain normalization exponent (0.0 disables, 1.0 full strength)
|
||||
float strength;
|
||||
// positive value added in the normalization denominator
|
||||
float offset;
|
||||
// number of fractional bits in the gain
|
||||
int gain_bits;
|
||||
};
|
||||
|
||||
void PcanGainControlFillConfigWithDefaults(
|
||||
struct PcanGainControlConfig* config);
|
||||
|
||||
int16_t PcanGainLookupFunction(const struct PcanGainControlConfig* config,
|
||||
int32_t input_bits, uint32_t x);
|
||||
|
||||
int PcanGainControlPopulateState(const struct PcanGainControlConfig* config,
|
||||
struct PcanGainControlState* state,
|
||||
uint32_t* noise_estimate,
|
||||
const int num_channels,
|
||||
const uint16_t smoothing_bits,
|
||||
const int32_t input_correction_bits);
|
||||
|
||||
void PcanGainControlFreeStateContents(struct PcanGainControlState* state);
|
||||
|
||||
#ifdef __cplusplus
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif // TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_PCAN_GAIN_CONTROL_UTIL_H_
|
||||
@@ -0,0 +1,70 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/window.h"
|
||||
|
||||
#include <string.h>
|
||||
|
||||
int WindowProcessSamples(struct WindowState* state, const int16_t* samples,
|
||||
size_t num_samples, size_t* num_samples_read) {
|
||||
const int size = state->size;
|
||||
|
||||
// Copy samples from the samples buffer over to our local input.
|
||||
size_t max_samples_to_copy = state->size - state->input_used;
|
||||
if (max_samples_to_copy > num_samples) {
|
||||
max_samples_to_copy = num_samples;
|
||||
}
|
||||
memcpy(state->input + state->input_used, samples,
|
||||
max_samples_to_copy * sizeof(*samples));
|
||||
*num_samples_read = max_samples_to_copy;
|
||||
state->input_used += max_samples_to_copy;
|
||||
|
||||
if (state->input_used < state->size) {
|
||||
// We don't have enough samples to compute a window.
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Apply the window to the input.
|
||||
const int16_t* coefficients = state->coefficients;
|
||||
const int16_t* input = state->input;
|
||||
int16_t* output = state->output;
|
||||
int i;
|
||||
int16_t max_abs_output_value = 0;
|
||||
for (i = 0; i < size; ++i) {
|
||||
int16_t new_value =
|
||||
(((int32_t)*input++) * *coefficients++) >> kFrontendWindowBits;
|
||||
*output++ = new_value;
|
||||
if (new_value < 0) {
|
||||
new_value = -new_value;
|
||||
}
|
||||
if (new_value > max_abs_output_value) {
|
||||
max_abs_output_value = new_value;
|
||||
}
|
||||
}
|
||||
// Shuffle the input down by the step size, and update how much we have used.
|
||||
memmove(state->input, state->input + state->step,
|
||||
sizeof(*state->input) * (state->size - state->step));
|
||||
state->input_used -= state->step;
|
||||
state->max_abs_output_value = max_abs_output_value;
|
||||
|
||||
// Indicate that the output buffer is valid for the next stage.
|
||||
return 1;
|
||||
}
|
||||
|
||||
void WindowReset(struct WindowState* state) {
|
||||
memset(state->input, 0, state->size * sizeof(*state->input));
|
||||
memset(state->output, 0, state->size * sizeof(*state->output));
|
||||
state->input_used = 0;
|
||||
state->max_abs_output_value = 0;
|
||||
}
|
||||
@@ -0,0 +1,49 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#ifndef TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_WINDOW_H_
|
||||
#define TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_WINDOW_H_
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#define kFrontendWindowBits 12
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct WindowState {
|
||||
size_t size;
|
||||
int16_t* coefficients;
|
||||
size_t step;
|
||||
|
||||
int16_t* input;
|
||||
size_t input_used;
|
||||
int16_t* output;
|
||||
int16_t max_abs_output_value;
|
||||
};
|
||||
|
||||
// Applies a window to the samples coming in, stepping forward at the given
|
||||
// rate.
|
||||
int WindowProcessSamples(struct WindowState* state, const int16_t* samples,
|
||||
size_t num_samples, size_t* num_samples_read);
|
||||
|
||||
void WindowReset(struct WindowState* state);
|
||||
|
||||
#ifdef __cplusplus
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif // TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_WINDOW_H_
|
||||
@@ -0,0 +1,73 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/window_util.h"
|
||||
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
// Some platforms don't have M_PI
|
||||
#ifndef M_PI
|
||||
#define M_PI 3.14159265358979323846
|
||||
#endif
|
||||
|
||||
void WindowFillConfigWithDefaults(struct WindowConfig* config) {
|
||||
config->size_ms = 25;
|
||||
config->step_size_ms = 10;
|
||||
}
|
||||
|
||||
int WindowPopulateState(const struct WindowConfig* config,
|
||||
struct WindowState* state, int sample_rate) {
|
||||
state->size = config->size_ms * sample_rate / 1000;
|
||||
state->step = config->step_size_ms * sample_rate / 1000;
|
||||
|
||||
state->coefficients = malloc(state->size * sizeof(*state->coefficients));
|
||||
if (state->coefficients == NULL) {
|
||||
fprintf(stderr, "Failed to allocate window coefficients\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Populate the window values.
|
||||
const float arg = M_PI * 2.0 / ((float)state->size);
|
||||
int i;
|
||||
for (i = 0; i < state->size; ++i) {
|
||||
float float_value = 0.5 - (0.5 * cos(arg * (i + 0.5)));
|
||||
// Scale it to fixed point and round it.
|
||||
state->coefficients[i] =
|
||||
floor(float_value * (1 << kFrontendWindowBits) + 0.5);
|
||||
}
|
||||
|
||||
state->input_used = 0;
|
||||
state->input = malloc(state->size * sizeof(*state->input));
|
||||
if (state->input == NULL) {
|
||||
fprintf(stderr, "Failed to allocate window input\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
state->output = malloc(state->size * sizeof(*state->output));
|
||||
if (state->output == NULL) {
|
||||
fprintf(stderr, "Failed to allocate window output\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
void WindowFreeStateContents(struct WindowState* state) {
|
||||
free(state->coefficients);
|
||||
free(state->input);
|
||||
free(state->output);
|
||||
}
|
||||
@@ -0,0 +1,45 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#ifndef TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_WINDOW_UTIL_H_
|
||||
#define TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_WINDOW_UTIL_H_
|
||||
|
||||
#include "tensorflow/lite/experimental/microfrontend/lib/window.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct WindowConfig {
|
||||
// length of window frame in milliseconds
|
||||
size_t size_ms;
|
||||
// length of step for next frame in milliseconds
|
||||
size_t step_size_ms;
|
||||
};
|
||||
|
||||
// Populates the WindowConfig with "sane" default values.
|
||||
void WindowFillConfigWithDefaults(struct WindowConfig* config);
|
||||
|
||||
// Allocates any buffers.
|
||||
int WindowPopulateState(const struct WindowConfig* config,
|
||||
struct WindowState* state, int sample_rate);
|
||||
|
||||
// Frees any allocated buffers.
|
||||
void WindowFreeStateContents(struct WindowState* state);
|
||||
|
||||
#ifdef __cplusplus
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif // TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_WINDOW_UTIL_H_
|
||||
@@ -75,6 +75,7 @@ float ActivationFunction(float x) {
|
||||
inline void BiasAndClamp(float clamp_min, float clamp_max, int bias_size,
|
||||
const float* bias_data, int array_size,
|
||||
float* array_data) {
|
||||
if (bias_size == 0) return;
|
||||
// Note: see b/132215220: in May 2019 we thought it would be OK to replace
|
||||
// this with the Eigen one-liner:
|
||||
// return (array.colwise() + bias).cwiseMin(clamp_max).cwiseMin(clamp_max).
|
||||
@@ -138,6 +139,100 @@ inline void BiasAndClamp(float clamp_min, float clamp_max, int bias_size,
|
||||
#endif
|
||||
}
|
||||
|
||||
// Single-rounding MultiplyByQuantizedMultiplier
|
||||
#if TFLITE_SINGLE_ROUNDING
|
||||
inline int32_t MultiplyByQuantizedMultiplier(int32_t x,
|
||||
int32_t quantized_multiplier,
|
||||
int shift) {
|
||||
TFLITE_DCHECK(quantized_multiplier >= 0);
|
||||
TFLITE_DCHECK(shift >= -31 && shift <= 30);
|
||||
|
||||
const int64_t total_shift = 31 - shift;
|
||||
const int64_t round = static_cast<int64_t>(1) << (total_shift - 1);
|
||||
int64_t result = x * static_cast<int64_t>(quantized_multiplier) + round;
|
||||
result = result >> total_shift;
|
||||
|
||||
TFLITE_DCHECK(result >= std::numeric_limits<int32_t>::min() &&
|
||||
result <= std::numeric_limits<int32_t>::max());
|
||||
return static_cast<int32_t>(result);
|
||||
}
|
||||
|
||||
inline int32_t MultiplyByQuantizedMultiplierSmallerThanOneExp(
|
||||
int32_t x, int32_t quantized_multiplier, int shift) {
|
||||
TFLITE_DCHECK_LE(shift, 0);
|
||||
return MultiplyByQuantizedMultiplier(x, quantized_multiplier, shift);
|
||||
}
|
||||
|
||||
inline int32_t MultiplyByQuantizedMultiplierGreaterThanOne(
|
||||
int32_t x, int32_t quantized_multiplier, int shift) {
|
||||
TFLITE_DCHECK_GE(shift, 0);
|
||||
return MultiplyByQuantizedMultiplier(x, quantized_multiplier, shift);
|
||||
}
|
||||
|
||||
inline int32_t MultiplyByQuantizedMultiplier(int64_t x,
|
||||
int32_t quantized_multiplier,
|
||||
int shift) {
|
||||
// Inputs:
|
||||
// - quantized_multiplier has fixed point at bit 31
|
||||
// - shift is -31 to +7 (negative for right shift)
|
||||
//
|
||||
// Assumptions: The following input ranges are assumed
|
||||
// - quantize_scale>=0 (the usual range is (1<<30) to (1>>31)-1)
|
||||
// - scaling is chosen so final scaled result fits in int32_t
|
||||
// - input x is in the range -(1<<47) <= x < (1<<47)
|
||||
TFLITE_DCHECK(quantized_multiplier >= 0);
|
||||
TFLITE_DCHECK(shift >= -31 && shift < 8);
|
||||
TFLITE_DCHECK(x >= -(static_cast<int64_t>(1) << 47) &&
|
||||
x < (static_cast<int64_t>(1) << 47));
|
||||
|
||||
const int32_t reduced_multiplier =
|
||||
(quantized_multiplier < 0x7FFF0000)
|
||||
? ((quantized_multiplier + (1 << 15)) >> 16)
|
||||
: 0x7FFF;
|
||||
const int64_t total_shift = 15 - shift;
|
||||
const int64_t round = static_cast<int64_t>(1) << (total_shift - 1);
|
||||
int64_t result = x * static_cast<int64_t>(reduced_multiplier) + round;
|
||||
result = result >> total_shift;
|
||||
|
||||
TFLITE_DCHECK(result >= std::numeric_limits<int32_t>::min() &&
|
||||
result <= std::numeric_limits<int32_t>::max());
|
||||
return static_cast<int32_t>(result);
|
||||
}
|
||||
|
||||
#ifdef USE_NEON
|
||||
inline int32x4x4_t MultiplyByQuantizedMultiplier4Rows(
|
||||
int32x4x4_t input_val, int32_t quantized_multiplier, int shift) {
|
||||
TFLITE_DCHECK(quantized_multiplier >= 0);
|
||||
|
||||
const int right_shift = std::min(-1, shift);
|
||||
const int left_shift = shift - right_shift;
|
||||
|
||||
const int32x4_t multiplier_dup = vdupq_n_s32(quantized_multiplier);
|
||||
const int32x4_t left_shift_dup = vdupq_n_s32(left_shift);
|
||||
const int32x4_t right_shift_dup = vdupq_n_s32(right_shift);
|
||||
|
||||
int32x4x4_t result;
|
||||
result.val[0] = vrshlq_s32(
|
||||
vqdmulhq_s32(vshlq_s32(input_val.val[0], left_shift_dup), multiplier_dup),
|
||||
right_shift_dup);
|
||||
|
||||
result.val[1] = vrshlq_s32(
|
||||
vqdmulhq_s32(vshlq_s32(input_val.val[1], left_shift_dup), multiplier_dup),
|
||||
right_shift_dup);
|
||||
|
||||
result.val[2] = vrshlq_s32(
|
||||
vqdmulhq_s32(vshlq_s32(input_val.val[2], left_shift_dup), multiplier_dup),
|
||||
right_shift_dup);
|
||||
|
||||
result.val[3] = vrshlq_s32(
|
||||
vqdmulhq_s32(vshlq_s32(input_val.val[3], left_shift_dup), multiplier_dup),
|
||||
right_shift_dup);
|
||||
|
||||
return result;
|
||||
}
|
||||
#endif // USE_NEON
|
||||
// Double-rounding MultiplyByQuantizedMultiplier
|
||||
#else
|
||||
inline int32_t MultiplyByQuantizedMultiplierSmallerThanOneExp(
|
||||
int32_t x, int32_t quantized_multiplier, int left_shift) {
|
||||
using gemmlowp::RoundingDivideByPOT;
|
||||
@@ -224,7 +319,8 @@ inline int32x4x4_t MultiplyByQuantizedMultiplier4Rows(
|
||||
|
||||
return result;
|
||||
}
|
||||
#endif
|
||||
#endif // USE_NEON
|
||||
#endif // TFLITE_SINGLE_ROUNDING
|
||||
|
||||
template <typename T>
|
||||
int CountLeadingZeros(T integer_input) {
|
||||
@@ -0,0 +1,124 @@
|
||||
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_PORTABLE_TENSOR_UTILS_H_
|
||||
#define TENSORFLOW_LITE_KERNELS_INTERNAL_PORTABLE_TENSOR_UTILS_H_
|
||||
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <cstdint>
|
||||
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#define __restrict__ __restrict
|
||||
#endif
|
||||
|
||||
namespace tflite {
|
||||
|
||||
namespace tensor_utils {
|
||||
|
||||
// Multiplies a matrix with a scalar and reduce the result on each row to a
|
||||
// scalar.
|
||||
// Parameters:
|
||||
// - matrix: matrix of size n_row * n_col
|
||||
// - scalar: the scalar that is multiplied to each element in the matrix
|
||||
// - n_row: the row count of the matrix
|
||||
// - n_col: the column count of the matrix
|
||||
// - output: the 32bit output
|
||||
// Note: We do not need saturation because the int8 * int8 is safe from overflow
|
||||
// in (2^31-1) / (2^14) = 131072, which is bigger than the n_row. Non-zero
|
||||
// initial output value is not exceptionally large.
|
||||
void MatrixScalarMultiplyAccumulate(const int8_t* matrix, int32_t scalar,
|
||||
int32_t n_row, int32_t n_col,
|
||||
int32_t* output);
|
||||
|
||||
// Add another vector for each batch in the batch vector.
|
||||
template <typename T>
|
||||
void VectorBatchVectorAdd(const T* vector, int v_size, int n_batch,
|
||||
T* batch_vector) {
|
||||
for (int b = 0; b < n_batch; b++) {
|
||||
for (int i = 0; i < v_size; ++i) {
|
||||
batch_vector[i] += vector[i];
|
||||
}
|
||||
batch_vector += v_size;
|
||||
}
|
||||
}
|
||||
|
||||
// Cwise product of two vectors.
|
||||
template <typename T>
|
||||
inline void VectorVectorCwiseProduct(const T* __restrict__ vector1,
|
||||
const T* __restrict__ vector2, int v_size,
|
||||
T* __restrict__ result) {
|
||||
for (int v = 0; v < v_size; v++) {
|
||||
*result++ = *vector1++ * *vector2++;
|
||||
}
|
||||
}
|
||||
|
||||
// Cwise product of a vector and a batch-vector.
|
||||
template <typename T>
|
||||
inline void VectorBatchVectorCwiseProduct(const T* vector, int v_size,
|
||||
const T* batch_vector, int n_batch,
|
||||
T* result) {
|
||||
for (int b = 0; b < n_batch; b++) {
|
||||
VectorVectorCwiseProduct(vector, batch_vector, v_size, result);
|
||||
// Update the pointers.
|
||||
result += v_size;
|
||||
batch_vector += v_size;
|
||||
}
|
||||
}
|
||||
|
||||
// Cwise product and accumulate of two vectors. Since it's a MAC operation, the
|
||||
// assumption here is that result array is initialized to valid values.
|
||||
template <typename T>
|
||||
inline void VectorVectorCwiseProductAccumulate(const T* __restrict__ vector1,
|
||||
const T* __restrict__ vector2,
|
||||
int v_size,
|
||||
T* __restrict__ result) {
|
||||
for (int v = 0; v < v_size; v++) {
|
||||
*result++ += *vector1++ * *vector2++;
|
||||
}
|
||||
}
|
||||
|
||||
// Cwise product and accumulate of a vector and a batch-vector. Since it's a MAC
|
||||
// operation, the assumption here is that result array is initialized to valid
|
||||
// values.
|
||||
template <typename T>
|
||||
inline void VectorBatchVectorCwiseProductAccumulate(const T* vector, int v_size,
|
||||
const T* batch_vector,
|
||||
int n_batch, T* result) {
|
||||
for (int b = 0; b < n_batch; b++) {
|
||||
VectorVectorCwiseProductAccumulate(vector, batch_vector, v_size, result);
|
||||
// Update the pointers.
|
||||
result += v_size;
|
||||
batch_vector += v_size;
|
||||
}
|
||||
}
|
||||
|
||||
// Batch vector initialization with another vector.
|
||||
template <typename T>
|
||||
void VectorBatchVectorAssign(const T* vector, int v_size, int n_batch,
|
||||
T* batch_vector) {
|
||||
for (int b = 0; b < n_batch; b++) {
|
||||
std::copy_n(vector, v_size, batch_vector + b * v_size);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace tensor_utils
|
||||
|
||||
} // namespace tflite
|
||||
|
||||
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_PORTABLE_TENSOR_UTILS_H_
|
||||
@@ -52,6 +52,11 @@ constexpr uint32_t kFractionRoundingThreshold = 0x00200000;
|
||||
|
||||
void QuantizeMultiplier(double double_multiplier, int32_t* quantized_multiplier,
|
||||
int* shift) {
|
||||
#if TFLITE_SINGLE_ROUNDING
|
||||
// Single-rounding MultiplyByQuantizedMultiplier only supports positive
|
||||
// multipliers.
|
||||
// TFLITE_DCHECK(double_multiplier >= 0);
|
||||
#endif
|
||||
if (double_multiplier == 0.) {
|
||||
*quantized_multiplier = 0;
|
||||
*shift = 0;
|
||||
@@ -65,10 +70,10 @@ void QuantizeMultiplier(double double_multiplier, int32_t* quantized_multiplier,
|
||||
int64_t q_fixed = IntegerFrExp(double_multiplier, shift);
|
||||
#else // TFLITE_EMULATE_FLOAT
|
||||
const double q = std::frexp(double_multiplier, shift);
|
||||
auto q_fixed = static_cast<int64_t>(TfLiteRound(q * (1ll << 31)));
|
||||
auto q_fixed = static_cast<int64_t>(TfLiteRound(q * (1LL << 31)));
|
||||
#endif // TFLITE_EMULATE_FLOAT
|
||||
TFLITE_CHECK(q_fixed <= (1ll << 31));
|
||||
if (q_fixed == (1ll << 31)) {
|
||||
TFLITE_CHECK(q_fixed <= (1LL << 31));
|
||||
if (q_fixed == (1LL << 31)) {
|
||||
q_fixed /= 2;
|
||||
++*shift;
|
||||
}
|
||||
@@ -87,6 +92,14 @@ void QuantizeMultiplier(double double_multiplier, int32_t* quantized_multiplier,
|
||||
*shift = 0;
|
||||
q_fixed = 0;
|
||||
}
|
||||
#if TFLITE_SINGLE_ROUNDING
|
||||
// Single-rounding MultiplyByQuantizedMultiplier doesn't support a shift > 30,
|
||||
// saturate it.
|
||||
if (*shift > 30) {
|
||||
*shift = 30;
|
||||
q_fixed = (1LL << 31) - 1;
|
||||
}
|
||||
#endif
|
||||
*quantized_multiplier = static_cast<int32_t>(q_fixed);
|
||||
}
|
||||
|
||||
@@ -278,6 +291,12 @@ void PreprocessSoftmaxScaling(double beta, double input_scale,
|
||||
// result is double equivalent of Q0.31 (actually with more precision). Thus
|
||||
// this generates a Q(input_integer_bits).(31-input_integer_bits)
|
||||
// representation.
|
||||
#if TFLITE_SINGLE_ROUNDING
|
||||
const double max_real_multiplier = (1LL << 30) - 1.0;
|
||||
#else
|
||||
const double max_real_multiplier = (1LL << 31) - 1.0;
|
||||
#endif
|
||||
|
||||
#ifdef TFLITE_EMULATE_FLOAT
|
||||
const double input_beta = IntegerDoubleMultiply(beta, input_scale);
|
||||
int shift;
|
||||
@@ -285,12 +304,14 @@ void PreprocessSoftmaxScaling(double beta, double input_scale,
|
||||
shift += (31 - input_integer_bits);
|
||||
double input_beta_real_multiplier =
|
||||
DoubleFromFractionAndShift(fraction, shift);
|
||||
if (IntegerDoubleCompare(input_beta_real_multiplier, (1ll << 31) - 1.0) > 0) {
|
||||
input_beta_real_multiplier = (1ll << 31) - 1.0;
|
||||
if (IntegerDoubleCompare(input_beta_real_multiplier, max_real_multiplier) >
|
||||
0) {
|
||||
input_beta_real_multiplier = max_real_multiplier;
|
||||
}
|
||||
#else // TFLITE_EMULATE_FLOAT
|
||||
const double input_beta_real_multiplier = std::min<double>(
|
||||
beta * input_scale * (1 << (31 - input_integer_bits)), (1ll << 31) - 1.0);
|
||||
const double input_beta_real_multiplier =
|
||||
std::min<double>(beta * input_scale * (1 << (31 - input_integer_bits)),
|
||||
max_real_multiplier);
|
||||
#endif // TFLITE_EMULATE_FLOAT
|
||||
|
||||
QuantizeMultiplierGreaterThanOne(input_beta_real_multiplier,
|
||||
@@ -324,8 +345,8 @@ int CalculateInputRadius(int input_integer_bits, int input_left_shift,
|
||||
#else // TFLITE_EMULATE_FLOAT
|
||||
const double max_input_rescaled =
|
||||
1.0 * ((1 << input_integer_bits) - 1) *
|
||||
(1ll << (total_signed_bits - input_integer_bits)) /
|
||||
(1ll << input_left_shift);
|
||||
(1LL << (total_signed_bits - input_integer_bits)) /
|
||||
(1LL << input_left_shift);
|
||||
// Tighten bound using floor. Suppose that we could use the exact value.
|
||||
// After scaling the difference, the result would be at the maximum. Thus we
|
||||
// must ensure that our value has lower magnitude.
|
||||
@@ -43,16 +43,27 @@ inline void BroadcastBinaryFunction4DSlow(
|
||||
NdArrayDescsForElementwiseBroadcast(unextended_input1_shape,
|
||||
unextended_input2_shape, &desc1, &desc2);
|
||||
|
||||
const int* dims_data =
|
||||
reinterpret_cast<const int*>(output_shape.DimsDataUpTo5D());
|
||||
for (int b = 0; b < output_shape.Dims(0); ++b) {
|
||||
int out_idx_b = b * dims_data[1];
|
||||
int in_idx1_b = desc1.strides[0] * b;
|
||||
int in_idx2_b = desc2.strides[0] * b;
|
||||
for (int y = 0; y < output_shape.Dims(1); ++y) {
|
||||
int out_idx_y = (out_idx_b + y) * dims_data[2];
|
||||
int in_idx1_y = in_idx1_b + desc1.strides[1] * y;
|
||||
int in_idx2_y = in_idx2_b + desc2.strides[1] * y;
|
||||
for (int x = 0; x < output_shape.Dims(2); ++x) {
|
||||
int out_idx_x = (out_idx_y + x) * dims_data[3];
|
||||
int in1_idx = in_idx1_y + desc1.strides[2] * x;
|
||||
int in2_idx = in_idx2_y + desc2.strides[2] * x;
|
||||
for (int c = 0; c < output_shape.Dims(3); ++c) {
|
||||
auto out_idx = Offset(output_shape, b, y, x, c);
|
||||
auto in1_idx = SubscriptToIndex(desc1, b, y, x, c);
|
||||
auto in2_idx = SubscriptToIndex(desc2, b, y, x, c);
|
||||
auto out_idx = out_idx_x + c;
|
||||
auto in1_val = input1_data[in1_idx];
|
||||
auto in2_val = input2_data[in2_idx];
|
||||
output_data[out_idx] = func(in1_val, in2_val);
|
||||
in1_idx += desc1.strides[3];
|
||||
in2_idx += desc2.strides[3];
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -68,6 +68,27 @@ inline int32_t DepthwiseConvRound(int32_t x, int32_t quantized_multiplier,
|
||||
return MultiplyByQuantizedMultiplier(x, quantized_multiplier, shift);
|
||||
}
|
||||
|
||||
// Single-rounding MultiplyByQuantizedMultiplier
|
||||
#if TFLITE_SINGLE_ROUNDING
|
||||
template <>
|
||||
inline int32_t DepthwiseConvRound<DepthwiseConvOutputRounding::kAwayFromZero>(
|
||||
int32_t x, int32_t quantized_multiplier, int shift) {
|
||||
using gemmlowp::RoundingDivideByPOT;
|
||||
using gemmlowp::SaturatingRoundingDoublingHighMul;
|
||||
int left_shift = shift > 0 ? shift : 0;
|
||||
int right_shift = shift > 0 ? 0 : -shift;
|
||||
return RoundingDivideByPOT(SaturatingRoundingDoublingHighMul(
|
||||
x * (1 << left_shift), quantized_multiplier),
|
||||
right_shift);
|
||||
}
|
||||
|
||||
template <>
|
||||
inline int32_t DepthwiseConvRound<DepthwiseConvOutputRounding::kUpward>(
|
||||
int32_t x, int32_t quantized_multiplier, int shift) {
|
||||
return MultiplyByQuantizedMultiplier(x, quantized_multiplier, shift);
|
||||
}
|
||||
// Double-rounding MultiplyByQuantizedMultiplier
|
||||
#else
|
||||
template <>
|
||||
inline int32_t DepthwiseConvRound<DepthwiseConvOutputRounding::kAwayFromZero>(
|
||||
int32_t x, int32_t quantized_multiplier, int shift) {
|
||||
@@ -86,6 +107,7 @@ inline int32_t DepthwiseConvRound<DepthwiseConvOutputRounding::kUpward>(
|
||||
rounding_offset) >>
|
||||
right_shift;
|
||||
}
|
||||
#endif // TFLITE_SINGLE_ROUNDING
|
||||
|
||||
template <DepthwiseConvOutputRounding output_rounding>
|
||||
struct DepthwiseConvBasicKernel {
|
||||
@@ -15,6 +15,7 @@ limitations under the License.
|
||||
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_FULLY_CONNECTED_H_
|
||||
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_FULLY_CONNECTED_H_
|
||||
|
||||
#include "ruy/profiler/instrumentation.h" // from @ruy
|
||||
#include "tensorflow/lite/kernels/internal/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/cppmath.h"
|
||||
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
||||
@@ -74,12 +74,13 @@ inline void FullyConnected(
|
||||
const int32_t output_activation_min = params.quantized_activation_min;
|
||||
const int32_t output_activation_max = params.quantized_activation_max;
|
||||
TFLITE_DCHECK_GE(filter_shape.DimensionsCount(), 2);
|
||||
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 2);
|
||||
TFLITE_DCHECK_GE(output_shape.DimensionsCount(), 1);
|
||||
|
||||
TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
|
||||
const int filter_dim_count = filter_shape.DimensionsCount();
|
||||
const int batches = output_shape.Dims(0);
|
||||
const int output_depth = output_shape.Dims(1);
|
||||
const int output_dim_count = output_shape.DimensionsCount();
|
||||
const int batches = FlatSizeSkipDim(output_shape, output_dim_count - 1);
|
||||
const int output_depth = output_shape.Dims(output_dim_count - 1);
|
||||
TFLITE_DCHECK_LE(output_depth, filter_shape.Dims(filter_dim_count - 2));
|
||||
const int accum_depth = filter_shape.Dims(filter_dim_count - 1);
|
||||
for (int b = 0; b < batches; ++b) {
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user