compatibitly mit esp-idf pure

This commit is contained in:
jomjol
2020-11-20 19:34:55 +01:00
parent 1cba7d3e1d
commit 1a0feb4f19
308 changed files with 4163 additions and 4382 deletions

View File

@@ -0,0 +1,7 @@
FILE(GLOB_RECURSE app_sources ${CMAKE_CURRENT_SOURCE_DIR}/*.*)
idf_component_register(SRCS ${app_sources}
INCLUDE_DIRS "."
REQUIRES jomjol_image_proc jomjol_logfile esp_http_server esp32-camera-master jomjol_controlcamera jomjol_flowcontroll)

View File

@@ -0,0 +1,254 @@
#include "CTfLiteClass.h"
#include "bitmap_image.hpp"
#include <sys/stat.h>
float CTfLiteClass::GetOutputValue(int nr)
{
TfLiteTensor* output2 = this->interpreter->output(0);
int numeroutput = output2->dims->data[1];
if ((nr+1) > numeroutput)
return -1000;
return output2->data.f[nr];
}
int CTfLiteClass::GetClassFromImage(std::string _fn)
{
// printf("Before Load image %s\n", _fn.c_str());
if (!LoadInputImage(_fn))
return -1000;
// printf("After Load image %s\n", _fn.c_str());
Invoke();
printf("After Invoke %s\n", _fn.c_str());
return GetOutClassification();
// return 0;
}
int CTfLiteClass::GetOutClassification()
{
TfLiteTensor* output2 = interpreter->output(0);
float zw_max = 0;
float zw;
int zw_class = -1;
if (output2 == NULL)
return -1;
int numeroutput = output2->dims->data[1];
for (int i = 0; i < numeroutput; ++i)
{
zw = output2->data.f[i];
if (zw > zw_max)
{
zw_max = zw;
zw_class = i;
}
}
// printf("Result Ziffer: %d\n", zw_class);
return zw_class;
}
void CTfLiteClass::GetInputDimension(bool silent = false)
{
TfLiteTensor* input2 = this->interpreter->input(0);
int numdim = input2->dims->size;
if (!silent) printf("NumDimension: %d\n", numdim);
int sizeofdim;
for (int j = 0; j < numdim; ++j)
{
sizeofdim = input2->dims->data[j];
if (!silent) printf("SizeOfDimension %d: %d\n", j, sizeofdim);
if (j == 1) im_height = sizeofdim;
if (j == 2) im_width = sizeofdim;
if (j == 3) im_channel = sizeofdim;
}
}
void CTfLiteClass::GetOutPut()
{
TfLiteTensor* output2 = this->interpreter->output(0);
int numdim = output2->dims->size;
printf("NumDimension: %d\n", numdim);
int sizeofdim;
for (int j = 0; j < numdim; ++j)
{
sizeofdim = output2->dims->data[j];
printf("SizeOfDimension %d: %d\n", j, sizeofdim);
}
float fo;
// Process the inference results.
int numeroutput = output2->dims->data[1];
for (int i = 0; i < numeroutput; ++i)
{
fo = output2->data.f[i];
printf("Result %d: %f\n", i, fo);
}
}
void CTfLiteClass::Invoke()
{
interpreter->Invoke();
// printf("Invoke Done.\n");
}
bool CTfLiteClass::LoadInputImage(std::string _fn)
{
bitmap_image image(_fn);
unsigned int w = image.width();
unsigned int h = image.height();
unsigned char red, green, blue;
input_i = 0;
float* input_data_ptr = (interpreter->input(0))->data.f;
for (int y = 0; y < h; ++y)
for (int x = 0; x < w; ++x)
{
red = image.red_channel(x, y);
green = image.green_channel(x, y);
blue = image.blue_channel(x, y);
*(input_data_ptr) = (float) red;
input_data_ptr++;
*(input_data_ptr) = (float) green;
input_data_ptr++;
*(input_data_ptr) = (float) blue;
input_data_ptr++;
// printf("BMP: %f %f %f\n", (float) red, (float) green, (float) blue);
}
return true;
}
void CTfLiteClass::MakeAllocate()
{
/*
this->micro_op_resolver.AddBuiltin(
tflite::BuiltinOperator_RESHAPE,
tflite::ops::micro::Register_RESHAPE());
this->micro_op_resolver.AddBuiltin(tflite::BuiltinOperator_CONV_2D,
tflite::ops::micro::Register_CONV_2D());
this->micro_op_resolver.AddBuiltin(tflite::BuiltinOperator_FULLY_CONNECTED,
tflite::ops::micro::Register_FULLY_CONNECTED());
this->micro_op_resolver.AddBuiltin(tflite::BuiltinOperator_SOFTMAX,
tflite::ops::micro::Register_SOFTMAX());
this->micro_op_resolver.AddBuiltin(tflite::BuiltinOperator_DEPTHWISE_CONV_2D,
tflite::ops::micro::Register_DEPTHWISE_CONV_2D());
this->interpreter = new tflite::MicroInterpreter(this->model, this->micro_op_resolver, this->tensor_arena, this->kTensorArenaSize, this->error_reporter);
*/
static tflite::ops::micro::AllOpsResolver resolver;
this->interpreter = new tflite::MicroInterpreter(this->model, resolver, this->tensor_arena, this->kTensorArenaSize, this->error_reporter);
TfLiteStatus allocate_status = this->interpreter->AllocateTensors();
if (allocate_status != kTfLiteOk) {
TF_LITE_REPORT_ERROR(error_reporter, "AllocateTensors() failed");
this->GetInputDimension();
return;
}
printf("Allocate Done.\n");
}
void CTfLiteClass::GetInputTensorSize(){
float *zw = this->input;
int test = sizeof(zw);
printf("Input Tensor Dimension: %d\n", test);
printf("Input Tensor Dimension: %d\n", test);
}
long CTfLiteClass::GetFileSize(std::string filename)
{
struct stat stat_buf;
long rc = stat(filename.c_str(), &stat_buf);
return rc == 0 ? stat_buf.st_size : -1;
}
unsigned char* CTfLiteClass::ReadFileToCharArray(std::string _fn)
{
long size;
size = this->GetFileSize(_fn);
if (size == -1)
{
printf("\nFile existiert nicht.\n");
return NULL;
}
unsigned char *result = (unsigned char*) malloc(size);
if(result != NULL) {
// printf("\nSpeicher ist reserviert\n");
FILE* f = fopen(_fn.c_str(), "rb"); // vorher nur "r"
fread(result, 1, size, f);
fclose(f);
}else {
printf("\nKein freier Speicher vorhanden.\n");
}
return result;
}
void CTfLiteClass::LoadModel(std::string _fn){
this->error_reporter = new tflite::MicroErrorReporter;
unsigned char *rd;
rd = this->ReadFileToCharArray(_fn.c_str());
// printf("loadedfile: %d", (int) rd);
this->model = tflite::GetModel(rd);
free(rd);
TFLITE_MINIMAL_CHECK(model != nullptr);
printf("tfile Loaded.\n");
}
CTfLiteClass::CTfLiteClass()
{
// this->accessSD = _accessSD;
this->model = nullptr;
this->interpreter = nullptr;
this->input = nullptr;
this->output = nullptr;
this->kTensorArenaSize = 600 * 1024;
this->tensor_arena = new uint8_t[kTensorArenaSize];
// micro_op_resolver.AddBuiltin(tflite::BuiltinOperator_CONV_2D,
// tflite::ops::micro::Register_CONV_2D());
}
CTfLiteClass::~CTfLiteClass()
{
delete this->tensor_arena;
}

View File

@@ -0,0 +1,72 @@
#pragma once
#ifndef __CFINDTEMPLATE
#define __CFINGTEMPLATE
#define TFLITE_MINIMAL_CHECK(x) \
if (!(x)) { \
fprintf(stderr, "Error at %s:%d\n", __FILE__, __LINE__); \
exit(1); \
}
//#include "CAccessSD.h"
#include "CFindTemplate.h"
#include "tensorflow/lite/micro/kernels/all_ops_resolver.h"
#include "tensorflow/lite/micro/micro_error_reporter.h"
#include "tensorflow/lite/micro/micro_interpreter.h"
#include "tensorflow/lite/schema/schema_generated.h"
#include "tensorflow/lite/version.h"
#include "tensorflow/lite/micro/kernels/micro_ops.h"
#include "esp_err.h"
#include "esp_log.h"
//extern CAccessSDClass accessSD;
class CTfLiteClass
{
protected:
// CAccessSDClass *accessSD;
tflite::ErrorReporter* error_reporter;
const tflite::Model* model;
tflite::MicroInterpreter* interpreter;
// TfLiteTensor* input = nullptr;
TfLiteTensor* output = nullptr;
static tflite::ops::micro::AllOpsResolver *resolver;
tflite::MicroOpResolver<5> micro_op_resolver;
int kTensorArenaSize;
uint8_t *tensor_arena;
float* input;
int input_i;
int im_height, im_width, im_channel;
long GetFileSize(std::string filename);
unsigned char* ReadFileToCharArray(std::string _fn);
public:
// CTfLiteClass(CAccessSDClass *_accessSD);
CTfLiteClass();
~CTfLiteClass();
void LoadModel(std::string _fn);
void MakeAllocate();
void GetInputTensorSize();
bool LoadInputImage(std::string _fn);
void Invoke();
void GetOutPut();
int GetOutClassification();
int GetClassFromImage(std::string _fn);
float GetOutputValue(int nr);
void GetInputDimension(bool silent);
};
#endif

View File

@@ -0,0 +1,260 @@
#include "CTfLiteClass.h"
#include "bitmap_image.hpp"
#include "ClassLogFile.h"
#include <sys/stat.h>
bool debugdetailtflite = false;
float CTfLiteClass::GetOutputValue(int nr)
{
TfLiteTensor* output2 = this->interpreter->output(0);
int numeroutput = output2->dims->data[1];
if ((nr+1) > numeroutput)
return -1000;
return output2->data.f[nr];
}
int CTfLiteClass::GetClassFromImage(std::string _fn)
{
// printf("Before Load image %s\n", _fn.c_str());
if (!LoadInputImage(_fn))
return -1000;
// printf("After Load image %s\n", _fn.c_str());
Invoke();
printf("After Invoke %s\n", _fn.c_str());
return GetOutClassification();
// return 0;
}
int CTfLiteClass::GetOutClassification()
{
TfLiteTensor* output2 = interpreter->output(0);
float zw_max = 0;
float zw;
int zw_class = -1;
if (output2 == NULL)
return -1;
int numeroutput = output2->dims->data[1];
for (int i = 0; i < numeroutput; ++i)
{
zw = output2->data.f[i];
if (zw > zw_max)
{
zw_max = zw;
zw_class = i;
}
}
// printf("Result Ziffer: %d\n", zw_class);
return zw_class;
}
void CTfLiteClass::GetInputDimension(bool silent = false)
{
TfLiteTensor* input2 = this->interpreter->input(0);
int numdim = input2->dims->size;
if (!silent) printf("NumDimension: %d\n", numdim);
int sizeofdim;
for (int j = 0; j < numdim; ++j)
{
sizeofdim = input2->dims->data[j];
if (!silent) printf("SizeOfDimension %d: %d\n", j, sizeofdim);
if (j == 1) im_height = sizeofdim;
if (j == 2) im_width = sizeofdim;
if (j == 3) im_channel = sizeofdim;
}
}
void CTfLiteClass::GetOutPut()
{
TfLiteTensor* output2 = this->interpreter->output(0);
int numdim = output2->dims->size;
printf("NumDimension: %d\n", numdim);
int sizeofdim;
for (int j = 0; j < numdim; ++j)
{
sizeofdim = output2->dims->data[j];
printf("SizeOfDimension %d: %d\n", j, sizeofdim);
}
float fo;
// Process the inference results.
int numeroutput = output2->dims->data[1];
for (int i = 0; i < numeroutput; ++i)
{
fo = output2->data.f[i];
printf("Result %d: %f\n", i, fo);
}
}
void CTfLiteClass::Invoke()
{
interpreter->Invoke();
// printf("Invoke Done.\n");
}
bool CTfLiteClass::LoadInputImage(std::string _fn)
{
std::string zw = "ClassFlowAnalog::doNeuralNetwork nach Load Image: " + _fn;
// LogFile.WriteToFile(zw);
bitmap_image image(_fn);
if (debugdetailtflite) LogFile.WriteToFile(zw);
unsigned int w = image.width();
unsigned int h = image.height();
unsigned char red, green, blue;
// printf("Image: %s size: %d x %d\n", _fn.c_str(), w, h);
input_i = 0;
float* input_data_ptr = (interpreter->input(0))->data.f;
for (int y = 0; y < h; ++y)
for (int x = 0; x < w; ++x)
{
red = image.red_channel(x, y);
green = image.green_channel(x, y);
blue = image.blue_channel(x, y);
*(input_data_ptr) = (float) red;
input_data_ptr++;
*(input_data_ptr) = (float) green;
input_data_ptr++;
*(input_data_ptr) = (float) blue;
input_data_ptr++;
// printf("BMP: %f %f %f\n", (float) red, (float) green, (float) blue);
}
if (debugdetailtflite) LogFile.WriteToFile("Nach dem Laden in input");
return true;
}
void CTfLiteClass::MakeAllocate()
{
// static tflite::ops::micro::AllOpsResolver resolver;
static tflite::AllOpsResolver resolver;
this->interpreter = new tflite::MicroInterpreter(this->model, resolver, this->tensor_arena, this->kTensorArenaSize, this->error_reporter);
TfLiteStatus allocate_status = this->interpreter->AllocateTensors();
if (allocate_status != kTfLiteOk) {
TF_LITE_REPORT_ERROR(error_reporter, "AllocateTensors() failed");
this->GetInputDimension();
return;
}
// printf("Allocate Done.\n");
}
void CTfLiteClass::GetInputTensorSize(){
float *zw = this->input;
int test = sizeof(zw);
printf("Input Tensor Dimension: %d\n", test);
printf("Input Tensor Dimension: %d\n", test);
}
long CTfLiteClass::GetFileSize(std::string filename)
{
struct stat stat_buf;
long rc = stat(filename.c_str(), &stat_buf);
return rc == 0 ? stat_buf.st_size : -1;
}
unsigned char* CTfLiteClass::ReadFileToCharArray(std::string _fn)
{
long size;
size = this->GetFileSize(_fn);
if (size == -1)
{
printf("\nFile existiert nicht.\n");
return NULL;
}
unsigned char *result = (unsigned char*) malloc(size);
if(result != NULL) {
// printf("\nSpeicher ist reserviert\n");
FILE* f = fopen(_fn.c_str(), "rb"); // vorher nur "r"
fread(result, 1, size, f);
fclose(f);
}else {
printf("\nKein freier Speicher vorhanden.\n");
}
return result;
}
void CTfLiteClass::LoadModel(std::string _fn){
#ifdef SUPRESS_TFLITE_ERRORS
this->error_reporter = new tflite::OwnMicroErrorReporter;
#else
this->error_reporter = new tflite::MicroErrorReporter;
#endif
unsigned char *rd;
rd = this->ReadFileToCharArray(_fn.c_str());
// printf("loadedfile: %d", (int) rd);
this->model = tflite::GetModel(rd);
free(rd);
TFLITE_MINIMAL_CHECK(model != nullptr);
// printf("tfile Loaded.\n");
}
CTfLiteClass::CTfLiteClass()
{
this->model = nullptr;
this->interpreter = nullptr;
this->input = nullptr;
this->output = nullptr;
this->kTensorArenaSize = 600 * 1024;
this->tensor_arena = new uint8_t[kTensorArenaSize];
}
CTfLiteClass::~CTfLiteClass()
{
delete this->tensor_arena;
delete this->interpreter;
delete this->error_reporter;
}
namespace tflite {
int OwnMicroErrorReporter::Report(const char* format, va_list args) {
return 0;
}
} // namespace tflite

View File

@@ -0,0 +1,70 @@
#define TFLITE_MINIMAL_CHECK(x) \
if (!(x)) { \
fprintf(stderr, "Error at %s:%d\n", __FILE__, __LINE__); \
exit(1); \
}
#include "tensorflow/lite/micro/all_ops_resolver.h"
#include "tensorflow/lite/micro/micro_error_reporter.h"
#include "tensorflow/lite/micro/micro_interpreter.h"
#include "tensorflow/lite/schema/schema_generated.h"
#include "tensorflow/lite/version.h"
#include "tensorflow/lite/micro/kernels/micro_ops.h"
#include "esp_err.h"
#include "esp_log.h"
#define SUPRESS_TFLITE_ERRORS // use, to avoid error messages from TFLITE
#ifdef SUPRESS_TFLITE_ERRORS
#include "tensorflow/lite/core/api/error_reporter.h"
#include "tensorflow/lite/micro/compatibility.h"
#include "tensorflow/lite/micro/debug_log.h"
///// OwnErrorReporter to prevent printing of Errors (especially unavoidable in CalculateActivationRangeQuantized@kerne_util.cc)
namespace tflite {
class OwnMicroErrorReporter : public ErrorReporter {
public:
int Report(const char* format, va_list args) override;
};
} // namespace tflite
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
#endif
class CTfLiteClass
{
protected:
tflite::ErrorReporter *error_reporter;
const tflite::Model* model;
tflite::MicroInterpreter* interpreter;
TfLiteTensor* output = nullptr;
// static tflite::ops::micro::AllOpsResolver *resolver;
static tflite::AllOpsResolver resolver;
int kTensorArenaSize;
uint8_t *tensor_arena;
float* input;
int input_i;
int im_height, im_width, im_channel;
long GetFileSize(std::string filename);
unsigned char* ReadFileToCharArray(std::string _fn);
public:
CTfLiteClass();
~CTfLiteClass();
void LoadModel(std::string _fn);
void MakeAllocate();
void GetInputTensorSize();
bool LoadInputImage(std::string _fn);
void Invoke();
void GetOutPut();
int GetOutClassification();
int GetClassFromImage(std::string _fn);
float GetOutputValue(int nr);
void GetInputDimension(bool silent);
};

View File

@@ -0,0 +1,498 @@
#include "server_tflite.h"
#include <string>
#include <vector>
#include "string.h"
#include "esp_log.h"
#include <iomanip>
#include <sstream>
#include "Helper.h"
#include "esp_camera.h"
#include "time_sntp.h"
#include "ClassControllCamera.h"
#include "ClassFlowControll.h"
#include "ClassLogFile.h"
ClassFlowControll tfliteflow;
TaskHandle_t xHandleblink_task_doFlow = NULL;
TaskHandle_t xHandletask_autodoFlow = NULL;
bool flowisrunning = false;
long auto_intervall = 0;
bool auto_isrunning = false;
void KillTFliteTasks()
{
printf("Handle: xHandleblink_task_doFlow: %ld\n", (long) xHandleblink_task_doFlow);
if (xHandleblink_task_doFlow)
{
vTaskDelete(xHandleblink_task_doFlow);
printf("Killed: xHandleblink_task_doFlow\n");
}
printf("Handle: xHandletask_autodoFlow: %ld\n", (long) xHandletask_autodoFlow);
if (xHandletask_autodoFlow)
{
vTaskDelete(xHandletask_autodoFlow);
printf("Killed: xHandletask_autodoFlow\n");
}
}
void doInit(void)
{
string config = "/sdcard/config/config.ini";
printf("Start tfliteflow.InitFlow(config);\n");
tfliteflow.InitFlow(config);
printf("Finished tfliteflow.InitFlow(config);\n");
}
bool doflow(void)
{
std::string zw_time = gettimestring(LOGFILE_TIME_FORMAT);
printf("doflow - start %s\n", zw_time.c_str());
flowisrunning = true;
tfliteflow.doFlow(zw_time);
flowisrunning = false;
printf("doflow - end %s\n", zw_time.c_str());
return true;
}
void blink_task_doFlow(void *pvParameter)
{
printf("blink_task_doFlow\n");
if (!flowisrunning)
{
flowisrunning = true;
doflow();
flowisrunning = false;
}
vTaskDelete(NULL); //Delete this task if it exits from the loop above
xHandleblink_task_doFlow = NULL;
}
esp_err_t handler_init(httpd_req_t *req)
{
LogFile.WriteToFile("handler_init");
printf("handler_doinit uri:\n"); printf(req->uri); printf("\n");
char* resp_str = "Init started<br>";
httpd_resp_send(req, resp_str, strlen(resp_str));
doInit();
resp_str = "Init done<br>";
httpd_resp_send(req, resp_str, strlen(resp_str));
/* Respond with an empty chunk to signal HTTP response completion */
httpd_resp_send_chunk(req, NULL, 0);
return ESP_OK;
};
esp_err_t handler_doflow(httpd_req_t *req)
{
LogFile.WriteToFile("handler_doflow");
char* resp_str;
printf("handler_doFlow uri: "); printf(req->uri); printf("\n");
if (flowisrunning)
{
const char* resp_str = "doFlow läuft bereits und kann nicht nochmal gestartet werden";
httpd_resp_send(req, resp_str, strlen(resp_str));
return 2;
}
else
{
xTaskCreate(&blink_task_doFlow, "blink_doFlow", configMINIMAL_STACK_SIZE * 64, NULL, tskIDLE_PRIORITY+1, &xHandleblink_task_doFlow);
}
resp_str = "doFlow gestartet - dauert ca. 60 Sekunden";
httpd_resp_send(req, resp_str, strlen(resp_str));
/* Respond with an empty chunk to signal HTTP response completion */
httpd_resp_send_chunk(req, NULL, 0);
return ESP_OK;
};
esp_err_t handler_wasserzaehler(httpd_req_t *req)
{
LogFile.WriteToFile("handler_wasserzaehler");
bool _rawValue = false;
bool _noerror = false;
string zw;
printf("handler_wasserzaehler uri:\n"); printf(req->uri); printf("\n");
char _query[100];
char _size[10];
if (httpd_req_get_url_query_str(req, _query, 100) == ESP_OK)
{
// printf("Query: "); printf(_query); printf("\n");
if (httpd_query_key_value(_query, "rawvalue", _size, 10) == ESP_OK)
{
printf("rawvalue is found"); printf(_size); printf("\n");
_rawValue = true;
}
if (httpd_query_key_value(_query, "noerror", _size, 10) == ESP_OK)
{
printf("noerror is found"); printf(_size); printf("\n");
_noerror = true;
}
}
zw = tfliteflow.getReadout(_rawValue, _noerror);
if (zw.length() > 0)
httpd_resp_sendstr_chunk(req, zw.c_str());
string query = std::string(_query);
// printf("Query: %s\n", query.c_str());
if (query.find("full") != std::string::npos)
{
string txt, zw;
txt = "<p>Aligned Image: <p><img src=\"/img_tmp/alg.jpg\"> <p>\n";
txt = txt + "Digital Counter: <p> ";
httpd_resp_sendstr_chunk(req, txt.c_str());
std::vector<HTMLInfo*> htmlinfo;
htmlinfo = tfliteflow.GetAllDigital();
for (int i = 0; i < htmlinfo.size(); ++i)
{
if (htmlinfo[i]->val == 10)
zw = "NaN";
else
{
zw = to_string((int) htmlinfo[i]->val);
}
txt = "<img src=\"/img_tmp/" + htmlinfo[i]->filename + "\"> " + zw;
httpd_resp_sendstr_chunk(req, txt.c_str());
delete htmlinfo[i];
}
htmlinfo.clear();
txt = " <p> Analog Meter: <p> ";
httpd_resp_sendstr_chunk(req, txt.c_str());
htmlinfo = tfliteflow.GetAllAnalog();
for (int i = 0; i < htmlinfo.size(); ++i)
{
std::stringstream stream;
stream << std::fixed << std::setprecision(1) << htmlinfo[i]->val;
zw = stream.str();
txt = "<img src=\"/img_tmp/" + htmlinfo[i]->filename + "\"> " + zw;
httpd_resp_sendstr_chunk(req, txt.c_str());
delete htmlinfo[i];
}
htmlinfo.clear();
}
/* Respond with an empty chunk to signal HTTP response completion */
httpd_resp_sendstr_chunk(req, NULL);
return ESP_OK;
};
esp_err_t handler_editflow(httpd_req_t *req)
{
LogFile.WriteToFile("handler_editflow");
printf("handler_editflow uri: "); printf(req->uri); printf("\n");
char _query[200];
char _valuechar[30];
string _task;
if (httpd_req_get_url_query_str(req, _query, 200) == ESP_OK)
{
if (httpd_query_key_value(_query, "task", _valuechar, 30) == ESP_OK)
{
printf("task is found: %s\n", _valuechar);
_task = string(_valuechar);
}
}
if (_task.compare("copy") == 0)
{
string in, out, zw;
httpd_query_key_value(_query, "in", _valuechar, 30);
in = string(_valuechar);
printf("in: "); printf(in.c_str()); printf("\n");
httpd_query_key_value(_query, "out", _valuechar, 30);
out = string(_valuechar);
printf("out: "); printf(out.c_str()); printf("\n");
in = "/sdcard" + in;
out = "/sdcard" + out;
CopyFile(in, out);
zw = "Copy Done";
httpd_resp_sendstr_chunk(req, zw.c_str());
}
if (_task.compare("cutref") == 0)
{
string in, out, zw;
int x, y, dx, dy;
bool enhance = false;
httpd_query_key_value(_query, "in", _valuechar, 30);
in = string(_valuechar);
printf("in: "); printf(in.c_str()); printf("\n");
httpd_query_key_value(_query, "out", _valuechar, 30);
out = string(_valuechar);
printf("out: "); printf(out.c_str()); printf("\n");
httpd_query_key_value(_query, "x", _valuechar, 30);
zw = string(_valuechar);
x = stoi(zw);
printf("x: "); printf(zw.c_str()); printf("\n");
httpd_query_key_value(_query, "y", _valuechar, 30);
zw = string(_valuechar);
y = stoi(zw);
printf("y: "); printf(zw.c_str()); printf("\n");
httpd_query_key_value(_query, "dx", _valuechar, 30);
zw = string(_valuechar);
dx = stoi(zw);
printf("dx: "); printf(zw.c_str()); printf("\n");
httpd_query_key_value(_query, "dy", _valuechar, 30);
zw = string(_valuechar);
dy = stoi(zw);
printf("dy: "); printf(zw.c_str()); printf("\n");
if (httpd_query_key_value(_query, "enhance", _valuechar, 10) == ESP_OK)
{
zw = string(_valuechar);
if (zw.compare("true") == 0)
{
enhance = true;
}
}
in = "/sdcard" + in;
out = "/sdcard" + out;
string out2 = out.substr(0, out.length() - 4) + "_org.jpg";
CAlignAndCutImage *caic = new CAlignAndCutImage(in);
caic->CutAndSave(out2, x, y, dx, dy);
delete caic;
CImageBasis *cim = new CImageBasis(out2);
if (enhance)
{
cim->Contrast(90);
}
cim->SaveToFile(out);
delete cim;
zw = "CutImage Done";
httpd_resp_sendstr_chunk(req, zw.c_str());
}
if (_task.compare("test_take") == 0)
{
std::string _host = "";
if (httpd_query_key_value(_query, "host", _valuechar, 30) == ESP_OK) {
_host = std::string(_valuechar);
}
// printf("Parameter host: "); printf(_host.c_str()); printf("\n");
// string zwzw = "Do " + _task + " start\n"; printf(zwzw.c_str());
std::string zw = tfliteflow.doSingleStep("[MakeImage]", _host);
httpd_resp_sendstr_chunk(req, zw.c_str());
}
if (_task.compare("test_align") == 0)
{
std::string _host = "";
if (httpd_query_key_value(_query, "host", _valuechar, 30) == ESP_OK) {
_host = std::string(_valuechar);
}
// printf("Parameter host: "); printf(_host.c_str()); printf("\n");
// string zwzw = "Do " + _task + " start\n"; printf(zwzw.c_str());
std::string zw = tfliteflow.doSingleStep("[Alignment]", _host);
httpd_resp_sendstr_chunk(req, zw.c_str());
}
if (_task.compare("test_analog") == 0)
{
std::string _host = "";
if (httpd_query_key_value(_query, "host", _valuechar, 30) == ESP_OK) {
_host = std::string(_valuechar);
}
// printf("Parameter host: "); printf(_host.c_str()); printf("\n");
// string zwzw = "Do " + _task + " start\n"; printf(zwzw.c_str());
std::string zw = tfliteflow.doSingleStep("[Analog]", _host);
httpd_resp_sendstr_chunk(req, zw.c_str());
}
if (_task.compare("test_digits") == 0)
{
std::string _host = "";
if (httpd_query_key_value(_query, "host", _valuechar, 30) == ESP_OK) {
_host = std::string(_valuechar);
}
// printf("Parameter host: "); printf(_host.c_str()); printf("\n");
// string zwzw = "Do " + _task + " start\n"; printf(zwzw.c_str());
std::string zw = tfliteflow.doSingleStep("[Digits]", _host);
httpd_resp_sendstr_chunk(req, zw.c_str());
}
/* Respond with an empty chunk to signal HTTP response completion */
httpd_resp_sendstr_chunk(req, NULL);
return ESP_OK;
};
esp_err_t handler_prevalue(httpd_req_t *req)
{
LogFile.WriteToFile("handler_prevalue");
const char* resp_str;
string zw;
// printf("handler_prevalue:\n"); printf(req->uri); printf("\n");
char _query[100];
char _size[10] = "";
if (httpd_req_get_url_query_str(req, _query, 100) == ESP_OK)
{
// printf("Query: "); printf(_query); printf("\n");
if (httpd_query_key_value(_query, "value", _size, 10) == ESP_OK)
{
printf("Value: "); printf(_size); printf("\n");
}
}
if (strlen(_size) == 0)
zw = tfliteflow.GetPrevalue();
else
zw = "SetPrevalue to " + tfliteflow.UpdatePrevalue(_size);
resp_str = zw.c_str();
httpd_resp_send(req, resp_str, strlen(resp_str));
/* Respond with an empty chunk to signal HTTP response completion */
httpd_resp_send_chunk(req, NULL, 0);
return ESP_OK;
};
void task_autodoFlow(void *pvParameter)
{
int64_t fr_start, fr_delta_ms;
doInit();
auto_isrunning = tfliteflow.isAutoStart(auto_intervall);
while (auto_isrunning)
{
LogFile.WriteToFile("task_autodoFlow - next round");
printf("Autoflow: start\n");
fr_start = esp_timer_get_time();
if (flowisrunning)
{
printf("Autoflow: doFLow laeuft bereits!\n");
}
else
{
printf("Autoflow: doFLow wird gestartet\n");
flowisrunning = true;
doflow();
printf("Remove older log files\n");
LogFile.RemoveOld();
}
LogFile.WriteToFile("task_autodoFlow - round done");
//CPU Temp
float cputmp = temperatureRead();
std::stringstream stream;
stream << std::fixed << std::setprecision(1) << cputmp;
string zwtemp = "CPU Temperature: " + stream.str();
LogFile.WriteToFile(zwtemp);
printf("CPU Temperature: %.2f\n", cputmp);
fr_delta_ms = (esp_timer_get_time() - fr_start) / 1000;
const TickType_t xDelay = (auto_intervall - fr_delta_ms) / portTICK_PERIOD_MS;
printf("Autoflow: sleep for : %ldms\n", (long) xDelay);
vTaskDelay( xDelay );
}
vTaskDelete(NULL); //Delete this task if it exits from the loop above
xHandletask_autodoFlow = NULL;
}
void TFliteDoAutoStart()
{
xTaskCreate(&task_autodoFlow, "task_autodoFlow", configMINIMAL_STACK_SIZE * 64, NULL, tskIDLE_PRIORITY+1, &xHandletask_autodoFlow);
}
void register_server_tflite_uri(httpd_handle_t server)
{
ESP_LOGI(TAGTFLITE, "server_part_camera - Registering URI handlers");
httpd_uri_t camuri = { };
camuri.method = HTTP_GET;
camuri.uri = "/doinit";
camuri.handler = handler_init;
camuri.user_ctx = (void*) "Light On";
httpd_register_uri_handler(server, &camuri);
camuri.uri = "/setPreValue.html";
camuri.handler = handler_prevalue;
camuri.user_ctx = (void*) "Prevalue";
httpd_register_uri_handler(server, &camuri);
camuri.uri = "/doflow";
camuri.handler = handler_doflow;
camuri.user_ctx = (void*) "Light Off";
httpd_register_uri_handler(server, &camuri);
camuri.uri = "/editflow.html";
camuri.handler = handler_editflow;
camuri.user_ctx = (void*) "EditFlow";
httpd_register_uri_handler(server, &camuri);
camuri.uri = "/wasserzaehler.html";
camuri.handler = handler_wasserzaehler;
camuri.user_ctx = (void*) "Wasserzaehler";
httpd_register_uri_handler(server, &camuri);
}

View File

@@ -0,0 +1,13 @@
#include <esp_log.h>
#include <esp_http_server.h>
//#include "ClassControllCamera.h"
static const char *TAGTFLITE = "server_tflite";
void register_server_tflite_uri(httpd_handle_t server);
void KillTFliteTasks();
void TFliteDoAutoStart();