Files
AI-on-the-edge-device/code/components/jomjol_tfliteclass/CTfLiteClass.cpp
2020-11-20 19:34:55 +01:00

261 lines
5.8 KiB
C++

#include "CTfLiteClass.h"
#include "bitmap_image.hpp"
#include "ClassLogFile.h"
#include <sys/stat.h>
bool debugdetailtflite = false;
float CTfLiteClass::GetOutputValue(int nr)
{
TfLiteTensor* output2 = this->interpreter->output(0);
int numeroutput = output2->dims->data[1];
if ((nr+1) > numeroutput)
return -1000;
return output2->data.f[nr];
}
int CTfLiteClass::GetClassFromImage(std::string _fn)
{
// printf("Before Load image %s\n", _fn.c_str());
if (!LoadInputImage(_fn))
return -1000;
// printf("After Load image %s\n", _fn.c_str());
Invoke();
printf("After Invoke %s\n", _fn.c_str());
return GetOutClassification();
// return 0;
}
int CTfLiteClass::GetOutClassification()
{
TfLiteTensor* output2 = interpreter->output(0);
float zw_max = 0;
float zw;
int zw_class = -1;
if (output2 == NULL)
return -1;
int numeroutput = output2->dims->data[1];
for (int i = 0; i < numeroutput; ++i)
{
zw = output2->data.f[i];
if (zw > zw_max)
{
zw_max = zw;
zw_class = i;
}
}
// printf("Result Ziffer: %d\n", zw_class);
return zw_class;
}
void CTfLiteClass::GetInputDimension(bool silent = false)
{
TfLiteTensor* input2 = this->interpreter->input(0);
int numdim = input2->dims->size;
if (!silent) printf("NumDimension: %d\n", numdim);
int sizeofdim;
for (int j = 0; j < numdim; ++j)
{
sizeofdim = input2->dims->data[j];
if (!silent) printf("SizeOfDimension %d: %d\n", j, sizeofdim);
if (j == 1) im_height = sizeofdim;
if (j == 2) im_width = sizeofdim;
if (j == 3) im_channel = sizeofdim;
}
}
void CTfLiteClass::GetOutPut()
{
TfLiteTensor* output2 = this->interpreter->output(0);
int numdim = output2->dims->size;
printf("NumDimension: %d\n", numdim);
int sizeofdim;
for (int j = 0; j < numdim; ++j)
{
sizeofdim = output2->dims->data[j];
printf("SizeOfDimension %d: %d\n", j, sizeofdim);
}
float fo;
// Process the inference results.
int numeroutput = output2->dims->data[1];
for (int i = 0; i < numeroutput; ++i)
{
fo = output2->data.f[i];
printf("Result %d: %f\n", i, fo);
}
}
void CTfLiteClass::Invoke()
{
interpreter->Invoke();
// printf("Invoke Done.\n");
}
bool CTfLiteClass::LoadInputImage(std::string _fn)
{
std::string zw = "ClassFlowAnalog::doNeuralNetwork nach Load Image: " + _fn;
// LogFile.WriteToFile(zw);
bitmap_image image(_fn);
if (debugdetailtflite) LogFile.WriteToFile(zw);
unsigned int w = image.width();
unsigned int h = image.height();
unsigned char red, green, blue;
// printf("Image: %s size: %d x %d\n", _fn.c_str(), w, h);
input_i = 0;
float* input_data_ptr = (interpreter->input(0))->data.f;
for (int y = 0; y < h; ++y)
for (int x = 0; x < w; ++x)
{
red = image.red_channel(x, y);
green = image.green_channel(x, y);
blue = image.blue_channel(x, y);
*(input_data_ptr) = (float) red;
input_data_ptr++;
*(input_data_ptr) = (float) green;
input_data_ptr++;
*(input_data_ptr) = (float) blue;
input_data_ptr++;
// printf("BMP: %f %f %f\n", (float) red, (float) green, (float) blue);
}
if (debugdetailtflite) LogFile.WriteToFile("Nach dem Laden in input");
return true;
}
void CTfLiteClass::MakeAllocate()
{
// static tflite::ops::micro::AllOpsResolver resolver;
static tflite::AllOpsResolver resolver;
this->interpreter = new tflite::MicroInterpreter(this->model, resolver, this->tensor_arena, this->kTensorArenaSize, this->error_reporter);
TfLiteStatus allocate_status = this->interpreter->AllocateTensors();
if (allocate_status != kTfLiteOk) {
TF_LITE_REPORT_ERROR(error_reporter, "AllocateTensors() failed");
this->GetInputDimension();
return;
}
// printf("Allocate Done.\n");
}
void CTfLiteClass::GetInputTensorSize(){
float *zw = this->input;
int test = sizeof(zw);
printf("Input Tensor Dimension: %d\n", test);
printf("Input Tensor Dimension: %d\n", test);
}
long CTfLiteClass::GetFileSize(std::string filename)
{
struct stat stat_buf;
long rc = stat(filename.c_str(), &stat_buf);
return rc == 0 ? stat_buf.st_size : -1;
}
unsigned char* CTfLiteClass::ReadFileToCharArray(std::string _fn)
{
long size;
size = this->GetFileSize(_fn);
if (size == -1)
{
printf("\nFile existiert nicht.\n");
return NULL;
}
unsigned char *result = (unsigned char*) malloc(size);
if(result != NULL) {
// printf("\nSpeicher ist reserviert\n");
FILE* f = fopen(_fn.c_str(), "rb"); // vorher nur "r"
fread(result, 1, size, f);
fclose(f);
}else {
printf("\nKein freier Speicher vorhanden.\n");
}
return result;
}
void CTfLiteClass::LoadModel(std::string _fn){
#ifdef SUPRESS_TFLITE_ERRORS
this->error_reporter = new tflite::OwnMicroErrorReporter;
#else
this->error_reporter = new tflite::MicroErrorReporter;
#endif
unsigned char *rd;
rd = this->ReadFileToCharArray(_fn.c_str());
// printf("loadedfile: %d", (int) rd);
this->model = tflite::GetModel(rd);
free(rd);
TFLITE_MINIMAL_CHECK(model != nullptr);
// printf("tfile Loaded.\n");
}
CTfLiteClass::CTfLiteClass()
{
this->model = nullptr;
this->interpreter = nullptr;
this->input = nullptr;
this->output = nullptr;
this->kTensorArenaSize = 600 * 1024;
this->tensor_arena = new uint8_t[kTensorArenaSize];
}
CTfLiteClass::~CTfLiteClass()
{
delete this->tensor_arena;
delete this->interpreter;
delete this->error_reporter;
}
namespace tflite {
int OwnMicroErrorReporter::Report(const char* format, va_list args) {
return 0;
}
} // namespace tflite