Deployed 59f87ee with MkDocs version: 1.6.1

This commit is contained in:
github-actions[bot]
2025-04-15 19:14:51 +00:00
parent 7c50778794
commit 30229a0cf4
2 changed files with 98 additions and 2 deletions

View File

@@ -303,6 +303,38 @@
</span>
</a>
</li>
<li class="md-nav__item">
<a class="md-nav__link" href="#model-naming-convention">1.4
<span class="md-ellipsis">
Model Naming Convention
</span>
</a>
<nav aria-label="Model Naming Convention" class="md-nav">
<ul class="md-nav__list">
<li class="md-nav__item">
<a class="md-nav__link" href="#version-number">1.4.1
<span class="md-ellipsis">
Version Number
</span>
</a>
</li>
<li class="md-nav__item">
<a class="md-nav__link" href="#size-indicator">1.4.2
<span class="md-ellipsis">
Size Indicator
</span>
</a>
</li>
<li class="md-nav__item">
<a class="md-nav__link" href="#quantization-indicator">1.4.3
<span class="md-ellipsis">
Quantization Indicator
</span>
</a>
</li>
</ul>
</nav>
</li>
</ul>
</nav>
</li>
@@ -761,6 +793,38 @@
</span>
</a>
</li>
<li class="md-nav__item">
<a class="md-nav__link" href="#model-naming-convention">1.4
<span class="md-ellipsis">
Model Naming Convention
</span>
</a>
<nav aria-label="Model Naming Convention" class="md-nav">
<ul class="md-nav__list">
<li class="md-nav__item">
<a class="md-nav__link" href="#version-number">1.4.1
<span class="md-ellipsis">
Version Number
</span>
</a>
</li>
<li class="md-nav__item">
<a class="md-nav__link" href="#size-indicator">1.4.2
<span class="md-ellipsis">
Size Indicator
</span>
</a>
</li>
<li class="md-nav__item">
<a class="md-nav__link" href="#quantization-indicator">1.4.3
<span class="md-ellipsis">
Quantization Indicator
</span>
</a>
</li>
</ul>
</nav>
</li>
</ul>
</nav>
</div>
@@ -782,7 +846,8 @@ For more technical/deeper explanations have a look on <a href="../Neural-Network
<li><code>dig-class11</code></li>
<li><code>dig-class100</code> and <code>dig-cont</code></li>
</ul>
<p><code>class</code> stands for <strong>classification</strong> and <code>cont</code> stands for <strong>continuous</strong>. The <code>11</code> means that there are 11 states (<code>0..9</code> and <code>N</code>). The <code>100</code> indicates that the model resolves into <code>x.1</code> steps.</p>
<p><code>class</code> stands for <strong>classification</strong> and <code>cont</code> stands for <strong>continuous</strong>. The <code>11</code> means that there are 11 states (<code>0..9</code> and <code>N</code>). The <code>100</code> indicates that the model resolves into <code>x.1</code> steps by having 100 states (0.0, 0.1, 0.2, ... 9.7, 9.8, 9.9).</p>
<p><strong>continuous</strong> means, that there is no discrete model, that has discreate states, but there is a different mechanism, that provides a not discrete value in the interval between [0, 1[.</p>
<h3 id="dig-class11"><span class="enumerate-headings-plugin enumerate-heading-plugin">1.1.1</span> <code>dig-class11</code></h3>
<p>This model can recognize <strong>full digits</strong>. It was the first model version. All intermediate states shown a <code>N</code> for not-a-number (aka. <code>NaN</code>). But in post process it uses older values to fill up the <code>N</code> values if possible.</p>
<p><img alt="" src="../img/dig-class11.png" style="width:300px"/></p>
@@ -853,6 +918,37 @@ Usually the models are distrusted therefore in both versions. They can be distin
</tr>
</tbody>
</table>
<h2 id="model-naming-convention"><span class="enumerate-headings-plugin enumerate-heading-plugin">1.4</span> Model Naming Convention</h2>
<p>Model filenames follow a specific structure composed of several parts:</p>
<ol>
<li><strong>Model Type</strong>: Indicates the kind of model, such as <code>ana/dig</code>, <code>cont</code>, <code>class11</code>, or <code>class100</code>.</li>
<li><strong>Version Number</strong>: Denotes the version of the model.</li>
<li><strong>Size Indicator</strong>: Represents the size or complexity of the model.</li>
<li><strong>Quantization Indicator</strong> (optional): Specifies whether the model was quantized after training.</li>
<li><strong>File Type</strong>: Always <code>.tflite</code>.</li>
</ol>
<h3 id="version-number"><span class="enumerate-headings-plugin enumerate-heading-plugin">1.4.1</span> Version Number</h3>
<p>The version number consists of four digits:</p>
<ul>
<li>The <strong>first two digits</strong> represent the <em>main version</em>.</li>
<li>The <strong>last two digits</strong> represent the <em>sub-version</em>.</li>
</ul>
<p>Example:
<code>0610</code> → Main version: <code>06</code>, Sub-version: <code>10</code>
In general, higher numbers correspond to newer models.</p>
<h3 id="size-indicator"><span class="enumerate-headings-plugin enumerate-heading-plugin">1.4.2</span> Size Indicator</h3>
<ul>
<li>The size indicator typically starts with <code>s</code> followed by a number, e.g., <code>s3</code>.</li>
<li>This naming is not strictly standardized yet.</li>
<li>Training usually begins with a larger model (<code>s0</code>), and successive versions (<code>s1</code>, <code>s2</code>, ...) reduce the number of parameters to create smaller, faster networks.</li>
<li>Reducing model size can improve efficiency, but may eventually lead to a drop in recognition accuracy.</li>
<li>In newer model generations, only the best-performing sizes are retained and further trained.</li>
</ul>
<h3 id="quantization-indicator"><span class="enumerate-headings-plugin enumerate-heading-plugin">1.4.3</span> Quantization Indicator</h3>
<ul>
<li>If the model name ends with <code>-q</code>, it indicates that <strong>quantization</strong> was applied after training.</li>
<li>Quantization significantly reduces the model size, typically without a noticeable impact on recognition performance.</li>
</ul>
</article>
</div>
<script>var target=document.getElementById(location.hash.slice(1));target&&target.name&&(target.checked=target.name.startsWith("__tabbed_"))</script>

File diff suppressed because one or more lines are too long