Specify dependencies libs explicitly.

Such setup is better for cross compilation. Also changed Makefile to
properly make the project with these libraries.
This commit is contained in:
Vadim Vetrov
2024-07-22 22:46:16 +03:00
parent 4a4519cbac
commit 822266b74b
131 changed files with 17984 additions and 18 deletions

2
deps/libnfnetlink/include/Makefile.am vendored Normal file
View File

@@ -0,0 +1,2 @@
SUBDIRS = libnfnetlink
noinst_HEADERS = linux_list.h

View File

@@ -0,0 +1,3 @@
pkginclude_HEADERS = libnfnetlink.h linux_nfnetlink.h linux_nfnetlink_compat.h

View File

@@ -0,0 +1,267 @@
/* libnfnetlink.h: Header file for generic netfilter netlink interface
*
* (C) 2002 Harald Welte <laforge@gnumonks.org>
*
* 2005-10-29 Pablo Neira Ayuso <pablo@netfilter.org>:
* Fix NFNL_HEADER_LEN
* 2005-11-13 Pablo Neira Ayuso <pablo@netfilter.org>:
* Define NETLINK_NETFILTER if it's undefined
*/
#ifndef __LIBNFNETLINK_H
#define __LIBNFNETLINK_H
#ifndef aligned_u64
#define aligned_u64 unsigned long long __attribute__((aligned(8)))
#endif
#include <stdint.h>
#include <sys/socket.h> /* for sa_family_t */
#include <linux/netlink.h>
#include <libnfnetlink/linux_nfnetlink.h>
#ifndef NETLINK_NETFILTER
#define NETLINK_NETFILTER 12
#endif
#ifndef SOL_NETLINK
#define SOL_NETLINK 270
#endif
#ifndef NETLINK_BROADCAST_SEND_ERROR
#define NETLINK_BROADCAST_SEND_ERROR 4
#endif
#ifndef NETLINK_NO_ENOBUFS
#define NETLINK_NO_ENOBUFS 5
#endif
#define NLMSG_TAIL(nlh) \
(((void *) (nlh)) + NLMSG_ALIGN((nlh)->nlmsg_len))
#define NFNL_HEADER_LEN (NLMSG_ALIGN(sizeof(struct nlmsghdr)) \
+NLMSG_ALIGN(sizeof(struct nfgenmsg)))
#define NFNL_BUFFSIZE 8192
#ifndef NFNL_EXPORT
#define NFNL_EXPORT
#endif
#ifdef __cplusplus
extern "C" {
#endif
struct nfnlhdr {
struct nlmsghdr nlh;
struct nfgenmsg nfmsg;
};
struct nfnl_callback {
int (*call)(struct nlmsghdr *nlh, struct nfattr *nfa[], void *data);
void *data;
uint16_t attr_count;
};
struct nfnl_handle;
struct nfnl_subsys_handle;
extern NFNL_EXPORT int nfnl_fd(struct nfnl_handle *h);
extern NFNL_EXPORT unsigned int nfnl_portid(const struct nfnl_handle *h);
/* get a new library handle */
extern NFNL_EXPORT struct nfnl_handle *nfnl_open(void);
extern NFNL_EXPORT int nfnl_close(struct nfnl_handle *);
extern NFNL_EXPORT struct nfnl_subsys_handle *nfnl_subsys_open(struct nfnl_handle *,
uint8_t, uint8_t,
unsigned int);
extern NFNL_EXPORT void nfnl_subsys_close(struct nfnl_subsys_handle *);
/* set and unset sequence tracking */
extern NFNL_EXPORT void nfnl_set_sequence_tracking(struct nfnl_handle *h);
extern NFNL_EXPORT void nfnl_unset_sequence_tracking(struct nfnl_handle *h);
/* set receive buffer size (for nfnl_catch) */
extern NFNL_EXPORT void nfnl_set_rcv_buffer_size(struct nfnl_handle *h, unsigned int size);
/* sending of data */
extern NFNL_EXPORT int nfnl_send(struct nfnl_handle *, struct nlmsghdr *);
extern NFNL_EXPORT int nfnl_sendmsg(const struct nfnl_handle *, const struct msghdr *msg,
unsigned int flags);
extern NFNL_EXPORT int nfnl_sendiov(const struct nfnl_handle *nfnlh,
const struct iovec *iov, unsigned int num,
unsigned int flags);
extern NFNL_EXPORT void nfnl_fill_hdr(struct nfnl_subsys_handle *, struct nlmsghdr *,
unsigned int, uint8_t, uint16_t, uint16_t,
uint16_t);
extern NFNL_EXPORT __attribute__((deprecated)) int
nfnl_talk(struct nfnl_handle *, struct nlmsghdr *, pid_t,
unsigned, struct nlmsghdr *,
int (*)(struct sockaddr_nl *, struct nlmsghdr *, void *), void *);
/* simple challenge/response */
extern NFNL_EXPORT __attribute__((deprecated)) int
nfnl_listen(struct nfnl_handle *,
int (*)(struct sockaddr_nl *, struct nlmsghdr *, void *), void *);
/* receiving */
extern NFNL_EXPORT ssize_t nfnl_recv(const struct nfnl_handle *h, unsigned char *buf, size_t len);
extern NFNL_EXPORT int nfnl_callback_register(struct nfnl_subsys_handle *,
uint8_t type, struct nfnl_callback *cb);
extern NFNL_EXPORT int nfnl_callback_unregister(struct nfnl_subsys_handle *, uint8_t type);
extern NFNL_EXPORT int nfnl_handle_packet(struct nfnl_handle *, char *buf, int len);
/* parsing */
extern NFNL_EXPORT struct nfattr *nfnl_parse_hdr(const struct nfnl_handle *nfnlh,
const struct nlmsghdr *nlh,
struct nfgenmsg **genmsg);
extern NFNL_EXPORT int nfnl_check_attributes(const struct nfnl_handle *nfnlh,
const struct nlmsghdr *nlh,
struct nfattr *tb[]);
extern NFNL_EXPORT struct nlmsghdr *nfnl_get_msg_first(struct nfnl_handle *h,
const unsigned char *buf,
size_t len);
extern NFNL_EXPORT struct nlmsghdr *nfnl_get_msg_next(struct nfnl_handle *h,
const unsigned char *buf,
size_t len);
/* callback verdict */
enum {
NFNL_CB_FAILURE = -1, /* failure */
NFNL_CB_STOP = 0, /* stop the query */
NFNL_CB_CONTINUE = 1, /* keep iterating */
};
/* join a certain netlink multicast group */
extern NFNL_EXPORT int nfnl_join(const struct nfnl_handle *nfnlh, unsigned int group);
/* process a netlink message */
extern NFNL_EXPORT int nfnl_process(struct nfnl_handle *h,
const unsigned char *buf,
size_t len);
/* iterator API */
extern NFNL_EXPORT struct nfnl_iterator *
nfnl_iterator_create(const struct nfnl_handle *h,
const char *buf,
size_t len);
extern NFNL_EXPORT void nfnl_iterator_destroy(struct nfnl_iterator *it);
extern NFNL_EXPORT int nfnl_iterator_process(struct nfnl_handle *h,
struct nfnl_iterator *it);
extern NFNL_EXPORT int nfnl_iterator_next(const struct nfnl_handle *h,
struct nfnl_iterator *it);
/* replacement for nfnl_listen */
extern NFNL_EXPORT int nfnl_catch(struct nfnl_handle *h);
/* replacement for nfnl_talk */
extern NFNL_EXPORT int nfnl_query(struct nfnl_handle *h, struct nlmsghdr *nlh);
#define nfnl_attr_present(tb, attr) \
(tb[attr-1])
#define nfnl_get_data(tb, attr, type) \
({ type __ret = 0; \
if (tb[attr-1]) \
__ret = *(type *)NFA_DATA(tb[attr-1]); \
__ret; \
})
#define nfnl_get_pointer_to_data(tb, attr, type) \
({ type *__ret = NULL; \
if (tb[attr-1]) \
__ret = NFA_DATA(tb[attr-1]); \
__ret; \
})
#ifndef NLA_F_NESTED
#define NLA_F_NESTED (1 << 15)
#endif
/* nfnl attribute handling functions */
extern NFNL_EXPORT int nfnl_addattr_l(struct nlmsghdr *, int, int, const void *, int);
extern NFNL_EXPORT int nfnl_addattr8(struct nlmsghdr *, int, int, uint8_t);
extern NFNL_EXPORT int nfnl_addattr16(struct nlmsghdr *, int, int, uint16_t);
extern NFNL_EXPORT int nfnl_addattr32(struct nlmsghdr *, int, int, uint32_t);
extern NFNL_EXPORT int nfnl_nfa_addattr_l(struct nfattr *, int, int, const void *, int);
extern NFNL_EXPORT int nfnl_nfa_addattr16(struct nfattr *, int, int, uint16_t);
extern NFNL_EXPORT int nfnl_nfa_addattr32(struct nfattr *, int, int, uint32_t);
extern NFNL_EXPORT int nfnl_parse_attr(struct nfattr **, int, struct nfattr *, int);
#define nfnl_parse_nested(tb, max, nfa) \
nfnl_parse_attr((tb), (max), NFA_DATA((nfa)), NFA_PAYLOAD((nfa)))
#define nfnl_nest(nlh, bufsize, type) \
({ struct nfattr *__start = NLMSG_TAIL(nlh); \
nfnl_addattr_l(nlh, bufsize, (NLA_F_NESTED | type), NULL, 0); \
__start; })
#define nfnl_nest_end(nlh, tail) \
({ (tail)->nfa_len = (void *) NLMSG_TAIL(nlh) - (void *) tail; })
extern NFNL_EXPORT void nfnl_build_nfa_iovec(struct iovec *iov, struct nfattr *nfa,
uint16_t type, uint32_t len,
unsigned char *val);
extern NFNL_EXPORT unsigned int nfnl_rcvbufsiz(const struct nfnl_handle *h,
unsigned int size);
extern NFNL_EXPORT void nfnl_dump_packet(struct nlmsghdr *, int, char *);
/*
* index to interface name API
*/
#ifndef IFNAMSIZ
#define IFNAMSIZ 16
#endif
struct nlif_handle;
extern NFNL_EXPORT struct nlif_handle *nlif_open(void);
extern NFNL_EXPORT void nlif_close(struct nlif_handle *orig);
extern NFNL_EXPORT int nlif_fd(struct nlif_handle *nlif_handle);
extern NFNL_EXPORT int nlif_query(struct nlif_handle *nlif_handle);
extern NFNL_EXPORT int nlif_catch(struct nlif_handle *nlif_handle);
extern NFNL_EXPORT int nlif_index2name(struct nlif_handle *nlif_handle,
unsigned int if_index,
char *name);
extern NFNL_EXPORT int nlif_get_ifflags(const struct nlif_handle *h,
unsigned int index,
unsigned int *flags);
#ifdef __cplusplus
} /* extern "C" */
#endif
/* Pablo: What is the equivalence of be64_to_cpu in userspace?
*
* Harald: Good question. I don't think there's a standard way [yet?],
* so I'd suggest manually implementing it by "#if little endian" bitshift
* operations in C (at least for now).
*
* All the payload of any nfattr will always be in network byte order.
* This would allow easy transport over a real network in the future
* (e.g. jamal's netlink2).
*
* Pablo: I've called it __be64_to_cpu instead of be64_to_cpu, since maybe
* there will one in the userspace headers someday. We don't want to
* pollute POSIX space naming,
*/
#include <byteswap.h>
#if __BYTE_ORDER == __BIG_ENDIAN
# ifndef __be64_to_cpu
# define __be64_to_cpu(x) (x)
# endif
# else
# if __BYTE_ORDER == __LITTLE_ENDIAN
# ifndef __be64_to_cpu
# define __be64_to_cpu(x) __bswap_64(x)
# endif
# endif
#endif
#endif /* __LIBNFNETLINK_H */

View File

@@ -0,0 +1,53 @@
#ifndef _NFNETLINK_H
#define _NFNETLINK_H
#include <linux/types.h>
#include <libnfnetlink/linux_nfnetlink_compat.h>
enum nfnetlink_groups {
NFNLGRP_NONE,
#define NFNLGRP_NONE NFNLGRP_NONE
NFNLGRP_CONNTRACK_NEW,
#define NFNLGRP_CONNTRACK_NEW NFNLGRP_CONNTRACK_NEW
NFNLGRP_CONNTRACK_UPDATE,
#define NFNLGRP_CONNTRACK_UPDATE NFNLGRP_CONNTRACK_UPDATE
NFNLGRP_CONNTRACK_DESTROY,
#define NFNLGRP_CONNTRACK_DESTROY NFNLGRP_CONNTRACK_DESTROY
NFNLGRP_CONNTRACK_EXP_NEW,
#define NFNLGRP_CONNTRACK_EXP_NEW NFNLGRP_CONNTRACK_EXP_NEW
NFNLGRP_CONNTRACK_EXP_UPDATE,
#define NFNLGRP_CONNTRACK_EXP_UPDATE NFNLGRP_CONNTRACK_EXP_UPDATE
NFNLGRP_CONNTRACK_EXP_DESTROY,
#define NFNLGRP_CONNTRACK_EXP_DESTROY NFNLGRP_CONNTRACK_EXP_DESTROY
__NFNLGRP_MAX,
};
#define NFNLGRP_MAX (__NFNLGRP_MAX - 1)
/* General form of address family dependent message.
*/
struct nfgenmsg {
__u8 nfgen_family; /* AF_xxx */
__u8 version; /* nfnetlink version */
__be16 res_id; /* resource id */
};
#define NFNETLINK_V0 0
/* netfilter netlink message types are split in two pieces:
* 8 bit subsystem, 8bit operation.
*/
#define NFNL_SUBSYS_ID(x) ((x & 0xff00) >> 8)
#define NFNL_MSG_TYPE(x) (x & 0x00ff)
/* No enum here, otherwise __stringify() trick of MODULE_ALIAS_NFNL_SUBSYS()
* won't work anymore */
#define NFNL_SUBSYS_NONE 0
#define NFNL_SUBSYS_CTNETLINK 1
#define NFNL_SUBSYS_CTNETLINK_EXP 2
#define NFNL_SUBSYS_QUEUE 3
#define NFNL_SUBSYS_ULOG 4
#define NFNL_SUBSYS_OSF 5
#define NFNL_SUBSYS_IPSET 6
#define NFNL_SUBSYS_COUNT 7
#endif /* _NFNETLINK_H */

View File

@@ -0,0 +1,61 @@
#ifndef _NFNETLINK_COMPAT_H
#define _NFNETLINK_COMPAT_H
#include <linux/types.h>
/* Old nfnetlink macros for userspace */
/* nfnetlink groups: Up to 32 maximum */
#define NF_NETLINK_CONNTRACK_NEW 0x00000001
#define NF_NETLINK_CONNTRACK_UPDATE 0x00000002
#define NF_NETLINK_CONNTRACK_DESTROY 0x00000004
#define NF_NETLINK_CONNTRACK_EXP_NEW 0x00000008
#define NF_NETLINK_CONNTRACK_EXP_UPDATE 0x00000010
#define NF_NETLINK_CONNTRACK_EXP_DESTROY 0x00000020
/* Generic structure for encapsulation optional netfilter information.
* It is reminiscent of sockaddr, but with sa_family replaced
* with attribute type.
* ! This should someday be put somewhere generic as now rtnetlink and
* ! nfnetlink use the same attributes methods. - J. Schulist.
*/
struct nfattr {
__u16 nfa_len;
__u16 nfa_type; /* we use 15 bits for the type, and the highest
* bit to indicate whether the payload is nested */
};
/* FIXME: Apart from NFNL_NFA_NESTED shamelessly copy and pasted from
* rtnetlink.h, it's time to put this in a generic file */
#define NFNL_NFA_NEST 0x8000
#define NFA_TYPE(attr) ((attr)->nfa_type & 0x7fff)
#define NFA_ALIGNTO 4
#define NFA_ALIGN(len) (((len) + NFA_ALIGNTO - 1) & ~(NFA_ALIGNTO - 1))
#define NFA_OK(nfa,len) ((len) > 0 && (nfa)->nfa_len >= sizeof(struct nfattr) \
&& (nfa)->nfa_len <= (len))
#define NFA_NEXT(nfa,attrlen) ((attrlen) -= NFA_ALIGN((nfa)->nfa_len), \
(struct nfattr *)(((char *)(nfa)) + NFA_ALIGN((nfa)->nfa_len)))
#define NFA_LENGTH(len) (NFA_ALIGN(sizeof(struct nfattr)) + (len))
#define NFA_SPACE(len) NFA_ALIGN(NFA_LENGTH(len))
#define NFA_DATA(nfa) ((void *)(((char *)(nfa)) + NFA_LENGTH(0)))
#define NFA_PAYLOAD(nfa) ((int)((nfa)->nfa_len) - NFA_LENGTH(0))
#define NFA_NEST(skb, type) \
({ struct nfattr *__start = (struct nfattr *)skb_tail_pointer(skb); \
NFA_PUT(skb, (NFNL_NFA_NEST | type), 0, NULL); \
__start; })
#define NFA_NEST_END(skb, start) \
({ (start)->nfa_len = skb_tail_pointer(skb) - (unsigned char *)(start); \
(skb)->len; })
#define NFA_NEST_CANCEL(skb, start) \
({ if (start) \
skb_trim(skb, (unsigned char *) (start) - (skb)->data); \
-1; })
#define NFM_NFA(n) ((struct nfattr *)(((char *)(n)) \
+ NLMSG_ALIGN(sizeof(struct nfgenmsg))))
#define NFM_PAYLOAD(n) NLMSG_PAYLOAD(n, sizeof(struct nfgenmsg))
#endif /* _NFNETLINK_COMPAT_H */

727
deps/libnfnetlink/include/linux_list.h vendored Normal file
View File

@@ -0,0 +1,727 @@
#ifndef _LINUX_LIST_H
#define _LINUX_LIST_H
#include <stddef.h>
#undef offsetof
#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
/**
* container_of - cast a member of a structure out to the containing structure
*
* @ptr: the pointer to the member.
* @type: the type of the container struct this is embedded in.
* @member: the name of the member within the struct.
*
*/
#define container_of(ptr, type, member) ({ \
typeof( ((type *)0)->member ) *__mptr = (ptr); \
(type *)( (char *)__mptr - offsetof(type,member) );})
/*
* Check at compile time that something is of a particular type.
* Always evaluates to 1 so you may use it easily in comparisons.
*/
#define typecheck(type,x) \
({ type __dummy; \
typeof(x) __dummy2; \
(void)(&__dummy == &__dummy2); \
1; \
})
#define prefetch(x) ((void)0)
/* empty define to make this work in userspace -HW */
#ifndef smp_wmb
#define smp_wmb()
#endif
/*
* These are non-NULL pointers that will result in page faults
* under normal circumstances, used to verify that nobody uses
* non-initialized list entries.
*/
#define LIST_POISON1 ((void *) 0x00100100)
#define LIST_POISON2 ((void *) 0x00200200)
/*
* Simple doubly linked list implementation.
*
* Some of the internal functions ("__xxx") are useful when
* manipulating whole lists rather than single entries, as
* sometimes we already know the next/prev entries and we can
* generate better code by using them directly rather than
* using the generic single-entry routines.
*/
struct list_head {
struct list_head *next, *prev;
};
#define LIST_HEAD_INIT(name) { &(name), &(name) }
#define LIST_HEAD(name) \
struct list_head name = LIST_HEAD_INIT(name)
#define INIT_LIST_HEAD(ptr) do { \
(ptr)->next = (ptr); (ptr)->prev = (ptr); \
} while (0)
/*
* Insert a new entry between two known consecutive entries.
*
* This is only for internal list manipulation where we know
* the prev/next entries already!
*/
static inline void __list_add(struct list_head *new,
struct list_head *prev,
struct list_head *next)
{
next->prev = new;
new->next = next;
new->prev = prev;
prev->next = new;
}
/**
* list_add - add a new entry
* @new: new entry to be added
* @head: list head to add it after
*
* Insert a new entry after the specified head.
* This is good for implementing stacks.
*/
static inline void list_add(struct list_head *new, struct list_head *head)
{
__list_add(new, head, head->next);
}
/**
* list_add_tail - add a new entry
* @new: new entry to be added
* @head: list head to add it before
*
* Insert a new entry before the specified head.
* This is useful for implementing queues.
*/
static inline void list_add_tail(struct list_head *new, struct list_head *head)
{
__list_add(new, head->prev, head);
}
/*
* Insert a new entry between two known consecutive entries.
*
* This is only for internal list manipulation where we know
* the prev/next entries already!
*/
static inline void __list_add_rcu(struct list_head * new,
struct list_head * prev, struct list_head * next)
{
new->next = next;
new->prev = prev;
smp_wmb();
next->prev = new;
prev->next = new;
}
/**
* list_add_rcu - add a new entry to rcu-protected list
* @new: new entry to be added
* @head: list head to add it after
*
* Insert a new entry after the specified head.
* This is good for implementing stacks.
*
* The caller must take whatever precautions are necessary
* (such as holding appropriate locks) to avoid racing
* with another list-mutation primitive, such as list_add_rcu()
* or list_del_rcu(), running on this same list.
* However, it is perfectly legal to run concurrently with
* the _rcu list-traversal primitives, such as
* list_for_each_entry_rcu().
*/
static inline void list_add_rcu(struct list_head *new, struct list_head *head)
{
__list_add_rcu(new, head, head->next);
}
/**
* list_add_tail_rcu - add a new entry to rcu-protected list
* @new: new entry to be added
* @head: list head to add it before
*
* Insert a new entry before the specified head.
* This is useful for implementing queues.
*
* The caller must take whatever precautions are necessary
* (such as holding appropriate locks) to avoid racing
* with another list-mutation primitive, such as list_add_tail_rcu()
* or list_del_rcu(), running on this same list.
* However, it is perfectly legal to run concurrently with
* the _rcu list-traversal primitives, such as
* list_for_each_entry_rcu().
*/
static inline void list_add_tail_rcu(struct list_head *new,
struct list_head *head)
{
__list_add_rcu(new, head->prev, head);
}
/*
* Delete a list entry by making the prev/next entries
* point to each other.
*
* This is only for internal list manipulation where we know
* the prev/next entries already!
*/
static inline void __list_del(struct list_head * prev, struct list_head * next)
{
next->prev = prev;
prev->next = next;
}
/**
* list_del - deletes entry from list.
* @entry: the element to delete from the list.
* Note: list_empty on entry does not return true after this, the entry is
* in an undefined state.
*/
static inline void list_del(struct list_head *entry)
{
__list_del(entry->prev, entry->next);
entry->next = LIST_POISON1;
entry->prev = LIST_POISON2;
}
/**
* list_del_rcu - deletes entry from list without re-initialization
* @entry: the element to delete from the list.
*
* Note: list_empty on entry does not return true after this,
* the entry is in an undefined state. It is useful for RCU based
* lockfree traversal.
*
* In particular, it means that we can not poison the forward
* pointers that may still be used for walking the list.
*
* The caller must take whatever precautions are necessary
* (such as holding appropriate locks) to avoid racing
* with another list-mutation primitive, such as list_del_rcu()
* or list_add_rcu(), running on this same list.
* However, it is perfectly legal to run concurrently with
* the _rcu list-traversal primitives, such as
* list_for_each_entry_rcu().
*
* Note that the caller is not permitted to immediately free
* the newly deleted entry. Instead, either synchronize_kernel()
* or call_rcu() must be used to defer freeing until an RCU
* grace period has elapsed.
*/
static inline void list_del_rcu(struct list_head *entry)
{
__list_del(entry->prev, entry->next);
entry->prev = LIST_POISON2;
}
/**
* list_del_init - deletes entry from list and reinitialize it.
* @entry: the element to delete from the list.
*/
static inline void list_del_init(struct list_head *entry)
{
__list_del(entry->prev, entry->next);
INIT_LIST_HEAD(entry);
}
/**
* list_move - delete from one list and add as another's head
* @list: the entry to move
* @head: the head that will precede our entry
*/
static inline void list_move(struct list_head *list, struct list_head *head)
{
__list_del(list->prev, list->next);
list_add(list, head);
}
/**
* list_move_tail - delete from one list and add as another's tail
* @list: the entry to move
* @head: the head that will follow our entry
*/
static inline void list_move_tail(struct list_head *list,
struct list_head *head)
{
__list_del(list->prev, list->next);
list_add_tail(list, head);
}
/**
* list_empty - tests whether a list is empty
* @head: the list to test.
*/
static inline int list_empty(const struct list_head *head)
{
return head->next == head;
}
/**
* list_empty_careful - tests whether a list is
* empty _and_ checks that no other CPU might be
* in the process of still modifying either member
*
* NOTE: using list_empty_careful() without synchronization
* can only be safe if the only activity that can happen
* to the list entry is list_del_init(). Eg. it cannot be used
* if another CPU could re-list_add() it.
*
* @head: the list to test.
*/
static inline int list_empty_careful(const struct list_head *head)
{
struct list_head *next = head->next;
return (next == head) && (next == head->prev);
}
static inline void __list_splice(struct list_head *list,
struct list_head *head)
{
struct list_head *first = list->next;
struct list_head *last = list->prev;
struct list_head *at = head->next;
first->prev = head;
head->next = first;
last->next = at;
at->prev = last;
}
/**
* list_splice - join two lists
* @list: the new list to add.
* @head: the place to add it in the first list.
*/
static inline void list_splice(struct list_head *list, struct list_head *head)
{
if (!list_empty(list))
__list_splice(list, head);
}
/**
* list_splice_init - join two lists and reinitialise the emptied list.
* @list: the new list to add.
* @head: the place to add it in the first list.
*
* The list at @list is reinitialised
*/
static inline void list_splice_init(struct list_head *list,
struct list_head *head)
{
if (!list_empty(list)) {
__list_splice(list, head);
INIT_LIST_HEAD(list);
}
}
/**
* list_entry - get the struct for this entry
* @ptr: the &struct list_head pointer.
* @type: the type of the struct this is embedded in.
* @member: the name of the list_struct within the struct.
*/
#define list_entry(ptr, type, member) \
container_of(ptr, type, member)
/**
* list_for_each - iterate over a list
* @pos: the &struct list_head to use as a loop counter.
* @head: the head for your list.
*/
#define list_for_each(pos, head) \
for (pos = (head)->next, prefetch(pos->next); pos != (head); \
pos = pos->next, prefetch(pos->next))
/**
* __list_for_each - iterate over a list
* @pos: the &struct list_head to use as a loop counter.
* @head: the head for your list.
*
* This variant differs from list_for_each() in that it's the
* simplest possible list iteration code, no prefetching is done.
* Use this for code that knows the list to be very short (empty
* or 1 entry) most of the time.
*/
#define __list_for_each(pos, head) \
for (pos = (head)->next; pos != (head); pos = pos->next)
/**
* list_for_each_prev - iterate over a list backwards
* @pos: the &struct list_head to use as a loop counter.
* @head: the head for your list.
*/
#define list_for_each_prev(pos, head) \
for (pos = (head)->prev, prefetch(pos->prev); pos != (head); \
pos = pos->prev, prefetch(pos->prev))
/**
* list_for_each_safe - iterate over a list safe against removal of list entry
* @pos: the &struct list_head to use as a loop counter.
* @n: another &struct list_head to use as temporary storage
* @head: the head for your list.
*/
#define list_for_each_safe(pos, n, head) \
for (pos = (head)->next, n = pos->next; pos != (head); \
pos = n, n = pos->next)
/**
* list_for_each_entry - iterate over list of given type
* @pos: the type * to use as a loop counter.
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*/
#define list_for_each_entry(pos, head, member) \
for (pos = list_entry((head)->next, typeof(*pos), member), \
prefetch(pos->member.next); \
&pos->member != (head); \
pos = list_entry(pos->member.next, typeof(*pos), member), \
prefetch(pos->member.next))
/**
* list_for_each_entry_reverse - iterate backwards over list of given type.
* @pos: the type * to use as a loop counter.
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*/
#define list_for_each_entry_reverse(pos, head, member) \
for (pos = list_entry((head)->prev, typeof(*pos), member), \
prefetch(pos->member.prev); \
&pos->member != (head); \
pos = list_entry(pos->member.prev, typeof(*pos), member), \
prefetch(pos->member.prev))
/**
* list_prepare_entry - prepare a pos entry for use as a start point in
* list_for_each_entry_continue
* @pos: the type * to use as a start point
* @head: the head of the list
* @member: the name of the list_struct within the struct.
*/
#define list_prepare_entry(pos, head, member) \
((pos) ? : list_entry(head, typeof(*pos), member))
/**
* list_for_each_entry_continue - iterate over list of given type
* continuing after existing point
* @pos: the type * to use as a loop counter.
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*/
#define list_for_each_entry_continue(pos, head, member) \
for (pos = list_entry(pos->member.next, typeof(*pos), member), \
prefetch(pos->member.next); \
&pos->member != (head); \
pos = list_entry(pos->member.next, typeof(*pos), member), \
prefetch(pos->member.next))
/**
* list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
* @pos: the type * to use as a loop counter.
* @n: another type * to use as temporary storage
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*/
#define list_for_each_entry_safe(pos, n, head, member) \
for (pos = list_entry((head)->next, typeof(*pos), member), \
n = list_entry(pos->member.next, typeof(*pos), member); \
&pos->member != (head); \
pos = n, n = list_entry(n->member.next, typeof(*n), member))
/**
* list_for_each_rcu - iterate over an rcu-protected list
* @pos: the &struct list_head to use as a loop counter.
* @head: the head for your list.
*
* This list-traversal primitive may safely run concurrently with
* the _rcu list-mutation primitives such as list_add_rcu()
* as long as the traversal is guarded by rcu_read_lock().
*/
#define list_for_each_rcu(pos, head) \
for (pos = (head)->next, prefetch(pos->next); pos != (head); \
pos = pos->next, ({ smp_read_barrier_depends(); 0;}), prefetch(pos->next))
#define __list_for_each_rcu(pos, head) \
for (pos = (head)->next; pos != (head); \
pos = pos->next, ({ smp_read_barrier_depends(); 0;}))
/**
* list_for_each_safe_rcu - iterate over an rcu-protected list safe
* against removal of list entry
* @pos: the &struct list_head to use as a loop counter.
* @n: another &struct list_head to use as temporary storage
* @head: the head for your list.
*
* This list-traversal primitive may safely run concurrently with
* the _rcu list-mutation primitives such as list_add_rcu()
* as long as the traversal is guarded by rcu_read_lock().
*/
#define list_for_each_safe_rcu(pos, n, head) \
for (pos = (head)->next, n = pos->next; pos != (head); \
pos = n, ({ smp_read_barrier_depends(); 0;}), n = pos->next)
/**
* list_for_each_entry_rcu - iterate over rcu list of given type
* @pos: the type * to use as a loop counter.
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*
* This list-traversal primitive may safely run concurrently with
* the _rcu list-mutation primitives such as list_add_rcu()
* as long as the traversal is guarded by rcu_read_lock().
*/
#define list_for_each_entry_rcu(pos, head, member) \
for (pos = list_entry((head)->next, typeof(*pos), member), \
prefetch(pos->member.next); \
&pos->member != (head); \
pos = list_entry(pos->member.next, typeof(*pos), member), \
({ smp_read_barrier_depends(); 0;}), \
prefetch(pos->member.next))
/**
* list_for_each_continue_rcu - iterate over an rcu-protected list
* continuing after existing point.
* @pos: the &struct list_head to use as a loop counter.
* @head: the head for your list.
*
* This list-traversal primitive may safely run concurrently with
* the _rcu list-mutation primitives such as list_add_rcu()
* as long as the traversal is guarded by rcu_read_lock().
*/
#define list_for_each_continue_rcu(pos, head) \
for ((pos) = (pos)->next, prefetch((pos)->next); (pos) != (head); \
(pos) = (pos)->next, ({ smp_read_barrier_depends(); 0;}), prefetch((pos)->next))
/*
* Double linked lists with a single pointer list head.
* Mostly useful for hash tables where the two pointer list head is
* too wasteful.
* You lose the ability to access the tail in O(1).
*/
struct hlist_head {
struct hlist_node *first;
};
struct hlist_node {
struct hlist_node *next, **pprev;
};
#define HLIST_HEAD_INIT { .first = NULL }
#define HLIST_HEAD(name) struct hlist_head name = { .first = NULL }
#define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
#define INIT_HLIST_NODE(ptr) ((ptr)->next = NULL, (ptr)->pprev = NULL)
static inline int hlist_unhashed(const struct hlist_node *h)
{
return !h->pprev;
}
static inline int hlist_empty(const struct hlist_head *h)
{
return !h->first;
}
static inline void __hlist_del(struct hlist_node *n)
{
struct hlist_node *next = n->next;
struct hlist_node **pprev = n->pprev;
*pprev = next;
if (next)
next->pprev = pprev;
}
static inline void hlist_del(struct hlist_node *n)
{
__hlist_del(n);
n->next = LIST_POISON1;
n->pprev = LIST_POISON2;
}
/**
* hlist_del_rcu - deletes entry from hash list without re-initialization
* @n: the element to delete from the hash list.
*
* Note: list_unhashed() on entry does not return true after this,
* the entry is in an undefined state. It is useful for RCU based
* lockfree traversal.
*
* In particular, it means that we can not poison the forward
* pointers that may still be used for walking the hash list.
*
* The caller must take whatever precautions are necessary
* (such as holding appropriate locks) to avoid racing
* with another list-mutation primitive, such as hlist_add_head_rcu()
* or hlist_del_rcu(), running on this same list.
* However, it is perfectly legal to run concurrently with
* the _rcu list-traversal primitives, such as
* hlist_for_each_entry().
*/
static inline void hlist_del_rcu(struct hlist_node *n)
{
__hlist_del(n);
n->pprev = LIST_POISON2;
}
static inline void hlist_del_init(struct hlist_node *n)
{
if (n->pprev) {
__hlist_del(n);
INIT_HLIST_NODE(n);
}
}
#define hlist_del_rcu_init hlist_del_init
static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
{
struct hlist_node *first = h->first;
n->next = first;
if (first)
first->pprev = &n->next;
h->first = n;
n->pprev = &h->first;
}
/**
* hlist_add_head_rcu - adds the specified element to the specified hlist,
* while permitting racing traversals.
* @n: the element to add to the hash list.
* @h: the list to add to.
*
* The caller must take whatever precautions are necessary
* (such as holding appropriate locks) to avoid racing
* with another list-mutation primitive, such as hlist_add_head_rcu()
* or hlist_del_rcu(), running on this same list.
* However, it is perfectly legal to run concurrently with
* the _rcu list-traversal primitives, such as
* hlist_for_each_entry(), but only if smp_read_barrier_depends()
* is used to prevent memory-consistency problems on Alpha CPUs.
* Regardless of the type of CPU, the list-traversal primitive
* must be guarded by rcu_read_lock().
*
* OK, so why don't we have an hlist_for_each_entry_rcu()???
*/
static inline void hlist_add_head_rcu(struct hlist_node *n,
struct hlist_head *h)
{
struct hlist_node *first = h->first;
n->next = first;
n->pprev = &h->first;
smp_wmb();
if (first)
first->pprev = &n->next;
h->first = n;
}
/* next must be != NULL */
static inline void hlist_add_before(struct hlist_node *n,
struct hlist_node *next)
{
n->pprev = next->pprev;
n->next = next;
next->pprev = &n->next;
*(n->pprev) = n;
}
static inline void hlist_add_after(struct hlist_node *n,
struct hlist_node *next)
{
next->next = n->next;
n->next = next;
next->pprev = &n->next;
if(next->next)
next->next->pprev = &next->next;
}
#define hlist_entry(ptr, type, member) container_of(ptr,type,member)
#define hlist_for_each(pos, head) \
for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; }); \
pos = pos->next)
#define hlist_for_each_safe(pos, n, head) \
for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
pos = n)
/**
* hlist_for_each_entry - iterate over list of given type
* @tpos: the type * to use as a loop counter.
* @pos: the &struct hlist_node to use as a loop counter.
* @head: the head for your list.
* @member: the name of the hlist_node within the struct.
*/
#define hlist_for_each_entry(tpos, pos, head, member) \
for (pos = (head)->first; \
pos && ({ prefetch(pos->next); 1;}) && \
({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
pos = pos->next)
/**
* hlist_for_each_entry_continue - iterate over a hlist continuing after existing point
* @tpos: the type * to use as a loop counter.
* @pos: the &struct hlist_node to use as a loop counter.
* @member: the name of the hlist_node within the struct.
*/
#define hlist_for_each_entry_continue(tpos, pos, member) \
for (pos = (pos)->next; \
pos && ({ prefetch(pos->next); 1;}) && \
({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
pos = pos->next)
/**
* hlist_for_each_entry_from - iterate over a hlist continuing from existing point
* @tpos: the type * to use as a loop counter.
* @pos: the &struct hlist_node to use as a loop counter.
* @member: the name of the hlist_node within the struct.
*/
#define hlist_for_each_entry_from(tpos, pos, member) \
for (; pos && ({ prefetch(pos->next); 1;}) && \
({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
pos = pos->next)
/**
* hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
* @tpos: the type * to use as a loop counter.
* @pos: the &struct hlist_node to use as a loop counter.
* @n: another &struct hlist_node to use as temporary storage
* @head: the head for your list.
* @member: the name of the hlist_node within the struct.
*/
#define hlist_for_each_entry_safe(tpos, pos, n, head, member) \
for (pos = (head)->first; \
pos && ({ n = pos->next; 1; }) && \
({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
pos = n)
/**
* hlist_for_each_entry_rcu - iterate over rcu list of given type
* @pos: the type * to use as a loop counter.
* @pos: the &struct hlist_node to use as a loop counter.
* @head: the head for your list.
* @member: the name of the hlist_node within the struct.
*
* This list-traversal primitive may safely run concurrently with
* the _rcu list-mutation primitives such as hlist_add_rcu()
* as long as the traversal is guarded by rcu_read_lock().
*/
#define hlist_for_each_entry_rcu(tpos, pos, head, member) \
for (pos = (head)->first; \
pos && ({ prefetch(pos->next); 1;}) && \
({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
pos = pos->next, ({ smp_read_barrier_depends(); 0; }) )
#endif