Files
squeezelite-esp32/components/spotify/cspot/bell/libhelix-aac/fft.c
Philippe G 898998efb0 big merge
2021-12-18 21:04:23 -08:00

394 lines
12 KiB
C

/* ***** BEGIN LICENSE BLOCK *****
* Source last modified: $Id: fft.c,v 1.1 2005/02/26 01:47:34 jrecker Exp $
*
* Portions Copyright (c) 1995-2005 RealNetworks, Inc. All Rights Reserved.
*
* The contents of this file, and the files included with this file,
* are subject to the current version of the RealNetworks Public
* Source License (the "RPSL") available at
* http://www.helixcommunity.org/content/rpsl unless you have licensed
* the file under the current version of the RealNetworks Community
* Source License (the "RCSL") available at
* http://www.helixcommunity.org/content/rcsl, in which case the RCSL
* will apply. You may also obtain the license terms directly from
* RealNetworks. You may not use this file except in compliance with
* the RPSL or, if you have a valid RCSL with RealNetworks applicable
* to this file, the RCSL. Please see the applicable RPSL or RCSL for
* the rights, obligations and limitations governing use of the
* contents of the file.
*
* This file is part of the Helix DNA Technology. RealNetworks is the
* developer of the Original Code and owns the copyrights in the
* portions it created.
*
* This file, and the files included with this file, is distributed
* and made available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY
* KIND, EITHER EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS
* ALL SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET
* ENJOYMENT OR NON-INFRINGEMENT.
*
* Technology Compatibility Kit Test Suite(s) Location:
* http://www.helixcommunity.org/content/tck
*
* Contributor(s):
*
* ***** END LICENSE BLOCK ***** */
/**************************************************************************************
* Fixed-point HE-AAC decoder
* Jon Recker (jrecker@real.com), Ken Cooke (kenc@real.com)
* February 2005
*
* fft.c - Ken's optimized radix-4 DIT FFT, optional radix-8 first pass for odd log2(N)
**************************************************************************************/
#include "coder.h"
#include "assembly.h"
#define NUM_FFT_SIZES 2
static const int nfftTab[NUM_FFT_SIZES] PROGMEM ={64, 512};
static const int nfftlog2Tab[NUM_FFT_SIZES] PROGMEM = {6, 9};
#define SQRT1_2 0x5a82799a /* sqrt(1/2) in Q31 */
#define swapcplx(p0,p1) \
t = p0; t1 = *(&(p0)+1); p0 = p1; *(&(p0)+1) = *(&(p1)+1); p1 = t; *(&(p1)+1) = t1
/**************************************************************************************
* Function: BitReverse
*
* Description: Ken's fast in-place bit reverse, using super-small table
*
* Inputs: buffer of samples
* table index (for transform size)
*
* Outputs: bit-reversed samples in same buffer
*
* Return: none
**************************************************************************************/
/*__attribute__ ((section (".data"))) */ static void BitReverse(int *inout, int tabidx)
{
int *part0, *part1;
int a,b, t,t1;
const unsigned char* tab = bitrevtab + bitrevtabOffset[tabidx];
int nbits = nfftlog2Tab[tabidx];
part0 = inout;
part1 = inout + (1 << nbits);
while ((a = pgm_read_byte(tab++)) != 0) {
b = pgm_read_byte(tab++);
swapcplx(part0[4*a+0], part0[4*b+0]); /* 0xxx0 <-> 0yyy0 */
swapcplx(part0[4*a+2], part1[4*b+0]); /* 0xxx1 <-> 1yyy0 */
swapcplx(part1[4*a+0], part0[4*b+2]); /* 1xxx0 <-> 0yyy1 */
swapcplx(part1[4*a+2], part1[4*b+2]); /* 1xxx1 <-> 1yyy1 */
}
do {
swapcplx(part0[4*a+2], part1[4*a+0]); /* 0xxx1 <-> 1xxx0 */
} while ((a = pgm_read_byte(tab++)) != 0);
}
/**************************************************************************************
* Function: R4FirstPass
*
* Description: radix-4 trivial pass for decimation-in-time FFT
*
* Inputs: buffer of (bit-reversed) samples
* number of R4 butterflies per group (i.e. nfft / 4)
*
* Outputs: processed samples in same buffer
*
* Return: none
*
* Notes: assumes 2 guard bits, gains no integer bits,
* guard bits out = guard bits in - 2
**************************************************************************************/
/* __attribute__ ((section (".data"))) */ static void R4FirstPass(int *x, int bg)
{
int ar, ai, br, bi, cr, ci, dr, di;
for (; bg != 0; bg--) {
ar = x[0] + x[2];
br = x[0] - x[2];
ai = x[1] + x[3];
bi = x[1] - x[3];
cr = x[4] + x[6];
dr = x[4] - x[6];
ci = x[5] + x[7];
di = x[5] - x[7];
/* max per-sample gain = 4.0 (adding 4 inputs together) */
x[0] = ar + cr;
x[4] = ar - cr;
x[1] = ai + ci;
x[5] = ai - ci;
x[2] = br + di;
x[6] = br - di;
x[3] = bi - dr;
x[7] = bi + dr;
x += 8;
}
}
/**************************************************************************************
* Function: R8FirstPass
*
* Description: radix-8 trivial pass for decimation-in-time FFT
*
* Inputs: buffer of (bit-reversed) samples
* number of R8 butterflies per group (i.e. nfft / 8)
*
* Outputs: processed samples in same buffer
*
* Return: none
*
* Notes: assumes 3 guard bits, gains 1 integer bit
* guard bits out = guard bits in - 3 (if inputs are full scale)
* or guard bits in - 2 (if inputs bounded to +/- sqrt(2)/2)
* see scaling comments in code
**************************************************************************************/
/* __attribute__ ((section (".data"))) */ static void R8FirstPass(int *x, int bg)
{
int ar, ai, br, bi, cr, ci, dr, di;
int sr, si, tr, ti, ur, ui, vr, vi;
int wr, wi, xr, xi, yr, yi, zr, zi;
for (; bg != 0; bg--) {
ar = x[0] + x[2];
br = x[0] - x[2];
ai = x[1] + x[3];
bi = x[1] - x[3];
cr = x[4] + x[6];
dr = x[4] - x[6];
ci = x[5] + x[7];
di = x[5] - x[7];
sr = ar + cr;
ur = ar - cr;
si = ai + ci;
ui = ai - ci;
tr = br - di;
vr = br + di;
ti = bi + dr;
vi = bi - dr;
ar = x[ 8] + x[10];
br = x[ 8] - x[10];
ai = x[ 9] + x[11];
bi = x[ 9] - x[11];
cr = x[12] + x[14];
dr = x[12] - x[14];
ci = x[13] + x[15];
di = x[13] - x[15];
/* max gain of wr/wi/yr/yi vs input = 2
* (sum of 4 samples >> 1)
*/
wr = (ar + cr) >> 1;
yr = (ar - cr) >> 1;
wi = (ai + ci) >> 1;
yi = (ai - ci) >> 1;
/* max gain of output vs input = 4
* (sum of 4 samples >> 1 + sum of 4 samples >> 1)
*/
x[ 0] = (sr >> 1) + wr;
x[ 8] = (sr >> 1) - wr;
x[ 1] = (si >> 1) + wi;
x[ 9] = (si >> 1) - wi;
x[ 4] = (ur >> 1) + yi;
x[12] = (ur >> 1) - yi;
x[ 5] = (ui >> 1) - yr;
x[13] = (ui >> 1) + yr;
ar = br - di;
cr = br + di;
ai = bi + dr;
ci = bi - dr;
/* max gain of xr/xi/zr/zi vs input = 4*sqrt(2)/2 = 2*sqrt(2)
* (sum of 8 samples, multiply by sqrt(2)/2, implicit >> 1 from Q31)
*/
xr = MULSHIFT32(SQRT1_2, ar - ai);
xi = MULSHIFT32(SQRT1_2, ar + ai);
zr = MULSHIFT32(SQRT1_2, cr - ci);
zi = MULSHIFT32(SQRT1_2, cr + ci);
/* max gain of output vs input = (2 + 2*sqrt(2) ~= 4.83)
* (sum of 4 samples >> 1, plus xr/xi/zr/zi with gain of 2*sqrt(2))
* in absolute terms, we have max gain of appx 9.656 (4 + 0.707*8)
* but we also gain 1 int bit (from MULSHIFT32 or from explicit >> 1)
*/
x[ 6] = (tr >> 1) - xr;
x[14] = (tr >> 1) + xr;
x[ 7] = (ti >> 1) - xi;
x[15] = (ti >> 1) + xi;
x[ 2] = (vr >> 1) + zi;
x[10] = (vr >> 1) - zi;
x[ 3] = (vi >> 1) - zr;
x[11] = (vi >> 1) + zr;
x += 16;
}
}
/**************************************************************************************
* Function: R4Core
*
* Description: radix-4 pass for decimation-in-time FFT
*
* Inputs: buffer of samples
* number of R4 butterflies per group
* number of R4 groups per pass
* pointer to twiddle factors tables
*
* Outputs: processed samples in same buffer
*
* Return: none
*
* Notes: gain 2 integer bits per pass (see scaling comments in code)
* min 1 GB in
* gbOut = gbIn - 1 (short block) or gbIn - 2 (long block)
* uses 3-mul, 3-add butterflies instead of 4-mul, 2-add
**************************************************************************************/
/* __attribute__ ((section (".data"))) */ static void R4Core(int *x, int bg, int gp, int *wtab)
{
int ar, ai, br, bi, cr, ci, dr, di, tr, ti;
int wd, ws, wi;
int i, j, step;
int *xptr, *wptr;
for (; bg != 0; gp <<= 2, bg >>= 2) {
step = 2*gp;
xptr = x;
/* max per-sample gain, per group < 1 + 3*sqrt(2) ~= 5.25 if inputs x are full-scale
* do 3 groups for long block, 2 groups for short block (gain 2 int bits per group)
*
* very conservative scaling:
* group 1: max gain = 5.25, int bits gained = 2, gb used = 1 (2^3 = 8)
* group 2: max gain = 5.25^2 = 27.6, int bits gained = 4, gb used = 1 (2^5 = 32)
* group 3: max gain = 5.25^3 = 144.7, int bits gained = 6, gb used = 2 (2^8 = 256)
*/
for (i = bg; i != 0; i--) {
wptr = wtab;
for (j = gp; j != 0; j--) {
ar = xptr[0];
ai = xptr[1];
xptr += step;
/* gain 2 int bits for br/bi, cr/ci, dr/di (MULSHIFT32 by Q30)
* gain 1 net GB
*/
ws = wptr[0];
wi = wptr[1];
br = xptr[0];
bi = xptr[1];
wd = ws + 2*wi;
tr = MULSHIFT32(wi, br + bi);
br = MULSHIFT32(wd, br) - tr; /* cos*br + sin*bi */
bi = MULSHIFT32(ws, bi) + tr; /* cos*bi - sin*br */
xptr += step;
ws = wptr[2];
wi = wptr[3];
cr = xptr[0];
ci = xptr[1];
wd = ws + 2*wi;
tr = MULSHIFT32(wi, cr + ci);
cr = MULSHIFT32(wd, cr) - tr;
ci = MULSHIFT32(ws, ci) + tr;
xptr += step;
ws = wptr[4];
wi = wptr[5];
dr = xptr[0];
di = xptr[1];
wd = ws + 2*wi;
tr = MULSHIFT32(wi, dr + di);
dr = MULSHIFT32(wd, dr) - tr;
di = MULSHIFT32(ws, di) + tr;
wptr += 6;
tr = ar;
ti = ai;
ar = (tr >> 2) - br;
ai = (ti >> 2) - bi;
br = (tr >> 2) + br;
bi = (ti >> 2) + bi;
tr = cr;
ti = ci;
cr = tr + dr;
ci = di - ti;
dr = tr - dr;
di = di + ti;
xptr[0] = ar + ci;
xptr[1] = ai + dr;
xptr -= step;
xptr[0] = br - cr;
xptr[1] = bi - di;
xptr -= step;
xptr[0] = ar - ci;
xptr[1] = ai - dr;
xptr -= step;
xptr[0] = br + cr;
xptr[1] = bi + di;
xptr += 2;
}
xptr += 3*step;
}
wtab += 3*step;
}
}
/**************************************************************************************
* Function: R4FFT
*
* Description: Ken's very fast in-place radix-4 decimation-in-time FFT
*
* Inputs: table index (for transform size)
* buffer of samples (non bit-reversed)
*
* Outputs: processed samples in same buffer
*
* Return: none
*
* Notes: assumes 5 guard bits in for nfft <= 512
* gbOut = gbIn - 4 (assuming input is from PreMultiply)
* gains log2(nfft) - 2 int bits total
* so gain 7 int bits (LONG), 4 int bits (SHORT)
**************************************************************************************/
void R4FFT(int tabidx, int *x)
{
int order = nfftlog2Tab[tabidx];
int nfft = nfftTab[tabidx];
/* decimation in time */
BitReverse(x, tabidx);
if (order & 0x1) {
/* long block: order = 9, nfft = 512 */
R8FirstPass(x, nfft >> 3); /* gain 1 int bit, lose 2 GB */
R4Core(x, nfft >> 5, 8, (int *)twidTabOdd); /* gain 6 int bits, lose 2 GB */
} else {
/* short block: order = 6, nfft = 64 */
R4FirstPass(x, nfft >> 2); /* gain 0 int bits, lose 2 GB */
R4Core(x, nfft >> 4, 4, (int *)twidTabEven); /* gain 4 int bits, lose 1 GB */
}
}