Files
squeezelite-esp32/components/services/infrared.c

499 lines
18 KiB
C

/*
* infrared receiver (using espressif's example)
*
* (c) Philippe G. 2020, philippe_44@outlook.com
*
* This software is released under the MIT License.
* https://opensource.org/licenses/MIT
*
*/
#include <stdio.h>
#include <string.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_err.h"
#include "esp_log.h"
#include "driver/rmt.h"
#include "globdefs.h"
#include "infrared.h"
static const char* TAG = "IR";
#define IR_TOOLS_FLAGS_PROTO_EXT (1 << 0) /*!< Enable Extended IR protocol */
#define IR_TOOLS_FLAGS_INVERSE (1 << 1) /*!< Inverse the IR signal, i.e. take high level as low, and vice versa */
/**
* @brief IR device type
*
*/
typedef void *ir_dev_t;
/**
* @brief IR parser type
*
*/
typedef struct ir_parser_s ir_parser_t;
/**
* @brief Type definition of IR parser
*
*/
struct ir_parser_s {
/**
* @brief Input raw data to IR parser
*
* @param[in] parser: Handle of IR parser
* @param[in] raw_data: Raw data which need decoding by IR parser
* @param[in] length: Length of raw data
*
* @return
* - ESP_OK: Input raw data successfully
* - ESP_ERR_INVALID_ARG: Input raw data failed because of invalid argument
* - ESP_FAIL: Input raw data failed because some other error occurred
*/
esp_err_t (*input)(ir_parser_t *parser, void *raw_data, uint32_t length);
/**
* @brief Get the scan code after decoding of raw data
*
* @param[in] parser: Handle of IR parser
* @param[out] address: Address of the scan code
* @param[out] command: Command of the scan code
* @param[out] repeat: Indicate if it's a repeat code
*
* @return
* - ESP_OK: Get scan code successfully
* - ESP_ERR_INVALID_ARG: Get scan code failed because of invalid arguments
* - ESP_FAIL: Get scan code failed because some error occurred
*/
esp_err_t (*get_scan_code)(ir_parser_t *parser, uint32_t *address, uint32_t *command, bool *repeat);
};
typedef struct {
ir_dev_t dev_hdl; /*!< IR device handle */
uint32_t flags; /*!< Flags for IR parser, different flags will enable different features */
uint32_t margin_us; /*!< Timing parameter, indicating the tolerance to environment noise */
} ir_parser_config_t;
#define IR_PARSER_DEFAULT_CONFIG(dev) \
{ \
.dev_hdl = dev, \
.flags = 0, \
.margin_us = 200, \
}
ir_parser_t *ir_parser = NULL;
#define RMT_CHECK(a, str, goto_tag, ret_value, ...) \
do \
{ \
if (!(a)) \
{ \
ESP_LOGE(TAG, "%s(%d): " str, __FUNCTION__, __LINE__, ##__VA_ARGS__); \
ret = ret_value; \
goto goto_tag; \
} \
} while (0)
/****************************************************************************************
* NEC protocol
****************************************************************************************/
#define NEC_DATA_FRAME_RMT_WORDS (34)
#define NEC_REPEAT_FRAME_RMT_WORDS (2)
#define NEC_LEADING_CODE_HIGH_US (9000)
#define NEC_LEADING_CODE_LOW_US (4500)
#define NEC_PAYLOAD_ONE_HIGH_US (560)
#define NEC_PAYLOAD_ONE_LOW_US (1690)
#define NEC_PAYLOAD_ZERO_HIGH_US (560)
#define NEC_PAYLOAD_ZERO_LOW_US (560)
#define NEC_REPEAT_CODE_HIGH_US (9000)
#define NEC_REPEAT_CODE_LOW_US (2250)
#define NEC_ENDING_CODE_HIGH_US (560)
typedef struct {
ir_parser_t parent;
uint32_t flags;
uint32_t leading_code_high_ticks;
uint32_t leading_code_low_ticks;
uint32_t repeat_code_high_ticks;
uint32_t repeat_code_low_ticks;
uint32_t payload_logic0_high_ticks;
uint32_t payload_logic0_low_ticks;
uint32_t payload_logic1_high_ticks;
uint32_t payload_logic1_low_ticks;
uint32_t margin_ticks;
rmt_item32_t *buffer;
uint32_t cursor;
uint32_t last_address;
uint32_t last_command;
bool repeat;
bool inverse;
} nec_parser_t;
/****************************************************************************************
*
*/
static inline bool nec_check_in_range(uint32_t raw_ticks, uint32_t target_ticks, uint32_t margin_ticks) {
return (raw_ticks < (target_ticks + margin_ticks)) && (raw_ticks > (target_ticks - margin_ticks));
}
/****************************************************************************************
*
*/
static bool nec_parse_head(nec_parser_t *nec_parser) {
nec_parser->cursor = 0;
rmt_item32_t item = nec_parser->buffer[nec_parser->cursor];
bool ret = (item.level0 == nec_parser->inverse) && (item.level1 != nec_parser->inverse) &&
nec_check_in_range(item.duration0, nec_parser->leading_code_high_ticks, nec_parser->margin_ticks) &&
nec_check_in_range(item.duration1, nec_parser->leading_code_low_ticks, nec_parser->margin_ticks);
nec_parser->cursor += 1;
return ret;
}
/****************************************************************************************
*
*/
static bool nec_parse_logic0(nec_parser_t *nec_parser) {
rmt_item32_t item = nec_parser->buffer[nec_parser->cursor];
bool ret = (item.level0 == nec_parser->inverse) && (item.level1 != nec_parser->inverse) &&
nec_check_in_range(item.duration0, nec_parser->payload_logic0_high_ticks, nec_parser->margin_ticks) &&
nec_check_in_range(item.duration1, nec_parser->payload_logic0_low_ticks, nec_parser->margin_ticks);
return ret;
}
/****************************************************************************************
*
*/
static bool nec_parse_logic1(nec_parser_t *nec_parser) {
rmt_item32_t item = nec_parser->buffer[nec_parser->cursor];
bool ret = (item.level0 == nec_parser->inverse) && (item.level1 != nec_parser->inverse) &&
nec_check_in_range(item.duration0, nec_parser->payload_logic1_high_ticks, nec_parser->margin_ticks) &&
nec_check_in_range(item.duration1, nec_parser->payload_logic1_low_ticks, nec_parser->margin_ticks);
return ret;
}
/****************************************************************************************
*
*/
static esp_err_t nec_parse_logic(ir_parser_t *parser, bool *logic) {
esp_err_t ret = ESP_FAIL;
bool logic_value = false;
nec_parser_t *nec_parser = __containerof(parser, nec_parser_t, parent);
if (nec_parse_logic0(nec_parser)) {
logic_value = false;
ret = ESP_OK;
} else if (nec_parse_logic1(nec_parser)) {
logic_value = true;
ret = ESP_OK;
}
if (ret == ESP_OK) {
*logic = logic_value;
}
nec_parser->cursor += 1;
return ret;
}
/****************************************************************************************
*
*/
static bool nec_parse_repeat_frame(nec_parser_t *nec_parser) {
nec_parser->cursor = 0;
rmt_item32_t item = nec_parser->buffer[nec_parser->cursor];
bool ret = (item.level0 == nec_parser->inverse) && (item.level1 != nec_parser->inverse) &&
nec_check_in_range(item.duration0, nec_parser->repeat_code_high_ticks, nec_parser->margin_ticks) &&
nec_check_in_range(item.duration1, nec_parser->repeat_code_low_ticks, nec_parser->margin_ticks);
nec_parser->cursor += 1;
return ret;
}
/****************************************************************************************
*
*/
static esp_err_t nec_parser_input(ir_parser_t *parser, void *raw_data, uint32_t length) {
esp_err_t ret = ESP_OK;
nec_parser_t *nec_parser = __containerof(parser, nec_parser_t, parent);
RMT_CHECK(raw_data, "input data can't be null", err, ESP_ERR_INVALID_ARG);
nec_parser->buffer = raw_data;
// Data Frame costs 34 items and Repeat Frame costs 2 items
if (length == NEC_DATA_FRAME_RMT_WORDS) {
nec_parser->repeat = false;
} else if (length == NEC_REPEAT_FRAME_RMT_WORDS) {
nec_parser->repeat = true;
} else {
ret = ESP_FAIL;
}
return ret;
err:
return ret;
}
/****************************************************************************************
*
*/
static esp_err_t nec_parser_get_scan_code(ir_parser_t *parser, uint32_t *address, uint32_t *command, bool *repeat) {
esp_err_t ret = ESP_FAIL;
uint32_t addr = 0;
uint32_t cmd = 0;
bool logic_value = false;
nec_parser_t *nec_parser = __containerof(parser, nec_parser_t, parent);
if (nec_parser->repeat) {
if (nec_parse_repeat_frame(nec_parser)) {
*address = nec_parser->last_address;
*command = nec_parser->last_command;
*repeat = true;
ret = ESP_OK;
}
} else {
if (nec_parse_head(nec_parser)) {
// for the forgetful, need to do a bitreverse
for (int i = 15; i >= 0; i--) {
if (nec_parse_logic(parser, &logic_value) == ESP_OK) {
addr |= (logic_value << i);
}
}
for (int i = 15; i >= 0; i--) {
if (nec_parse_logic(parser, &logic_value) == ESP_OK) {
cmd |= (logic_value << i);
}
}
*address = addr;
*command = cmd;
*repeat = false;
// keep it as potential repeat code
nec_parser->last_address = addr;
nec_parser->last_command = cmd;
ret = ESP_OK;
}
}
return ret;
}
/****************************************************************************************
*
*/
ir_parser_t *ir_parser_rmt_new_nec(const ir_parser_config_t *config) {
ir_parser_t *ret = NULL;
nec_parser_t *nec_parser = calloc(1, sizeof(nec_parser_t));
nec_parser->flags = config->flags;
if (config->flags & IR_TOOLS_FLAGS_INVERSE) {
nec_parser->inverse = true;
}
uint32_t counter_clk_hz = 0;
RMT_CHECK(rmt_get_counter_clock((rmt_channel_t)config->dev_hdl, &counter_clk_hz) == ESP_OK,
"get rmt counter clock failed", err, NULL);
float ratio = (float)counter_clk_hz / 1e6;
nec_parser->leading_code_high_ticks = (uint32_t)(ratio * NEC_LEADING_CODE_HIGH_US);
nec_parser->leading_code_low_ticks = (uint32_t)(ratio * NEC_LEADING_CODE_LOW_US);
nec_parser->repeat_code_high_ticks = (uint32_t)(ratio * NEC_REPEAT_CODE_HIGH_US);
nec_parser->repeat_code_low_ticks = (uint32_t)(ratio * NEC_REPEAT_CODE_LOW_US);
nec_parser->payload_logic0_high_ticks = (uint32_t)(ratio * NEC_PAYLOAD_ZERO_HIGH_US);
nec_parser->payload_logic0_low_ticks = (uint32_t)(ratio * NEC_PAYLOAD_ZERO_LOW_US);
nec_parser->payload_logic1_high_ticks = (uint32_t)(ratio * NEC_PAYLOAD_ONE_HIGH_US);
nec_parser->payload_logic1_low_ticks = (uint32_t)(ratio * NEC_PAYLOAD_ONE_LOW_US);
nec_parser->margin_ticks = (uint32_t)(ratio * config->margin_us);
nec_parser->parent.input = nec_parser_input;
nec_parser->parent.get_scan_code = nec_parser_get_scan_code;
return &nec_parser->parent;
err:
return ret;
}
/****************************************************************************************
* RC5 protocol
****************************************************************************************/
#define RC5_MAX_FRAME_RMT_WORDS (14) // S1+S2+T+ADDR(5)+CMD(6)
#define RC5_PULSE_DURATION_US (889)
typedef struct {
ir_parser_t parent;
uint32_t flags;
uint32_t pulse_duration_ticks;
uint32_t margin_ticks;
rmt_item32_t *buffer;
uint32_t buffer_len;
uint32_t last_command;
uint32_t last_address;
bool last_t_bit;
} rc5_parser_t;
/****************************************************************************************
*
*/
static inline bool rc5_check_in_range(uint32_t raw_ticks, uint32_t target_ticks, uint32_t margin_ticks) {
return (raw_ticks < (target_ticks + margin_ticks)) && (raw_ticks > (target_ticks - margin_ticks));
}
/****************************************************************************************
*
*/
static esp_err_t rc5_parser_input(ir_parser_t *parser, void *raw_data, uint32_t length) {
esp_err_t ret = ESP_OK;
rc5_parser_t *rc5_parser = __containerof(parser, rc5_parser_t, parent);
rc5_parser->buffer = raw_data;
rc5_parser->buffer_len = length;
if (length > RC5_MAX_FRAME_RMT_WORDS) {
ret = ESP_FAIL;
}
return ret;
}
/****************************************************************************************
*
*/
static inline bool rc5_duration_one_unit(rc5_parser_t *rc5_parser, uint32_t duration) {
return (duration < (rc5_parser->pulse_duration_ticks + rc5_parser->margin_ticks)) &&
(duration > (rc5_parser->pulse_duration_ticks - rc5_parser->margin_ticks));
}
/****************************************************************************************
*
*/
static inline bool rc5_duration_two_unit(rc5_parser_t *rc5_parser, uint32_t duration) {
return (duration < (rc5_parser->pulse_duration_ticks * 2 + rc5_parser->margin_ticks)) &&
(duration > (rc5_parser->pulse_duration_ticks * 2 - rc5_parser->margin_ticks));
}
/****************************************************************************************
*
*/
static esp_err_t rc5_parser_get_scan_code(ir_parser_t *parser, uint32_t *address, uint32_t *command, bool *repeat) {
esp_err_t ret = ESP_FAIL;
uint32_t parse_result = 0; // 32 bit is enough to hold the parse result of one RC5 frame
uint32_t addr = 0;
uint32_t cmd = 0;
bool s1 = true;
bool s2 = true;
bool t = false;
bool exchange = false;
rc5_parser_t *rc5_parser = __containerof(parser, rc5_parser_t, parent);
for (int i = 0; i < rc5_parser->buffer_len; i++) {
if (rc5_duration_one_unit(rc5_parser, rc5_parser->buffer[i].duration0)) {
parse_result <<= 1;
parse_result |= exchange;
if (rc5_duration_two_unit(rc5_parser, rc5_parser->buffer[i].duration1)) {
exchange = !exchange;
}
} else if (rc5_duration_two_unit(rc5_parser, rc5_parser->buffer[i].duration0)) {
parse_result <<= 1;
parse_result |= rc5_parser->buffer[i].level0;
parse_result <<= 1;
parse_result |= !rc5_parser->buffer[i].level0;
if (rc5_duration_one_unit(rc5_parser, rc5_parser->buffer[i].duration1)) {
exchange = !exchange;
}
} else {
goto out;
}
}
if (!(rc5_parser->flags & IR_TOOLS_FLAGS_INVERSE)) {
parse_result = ~parse_result;
}
s1 = ((parse_result & 0x2000) >> 13) & 0x01;
s2 = ((parse_result & 0x1000) >> 12) & 0x01;
t = ((parse_result & 0x800) >> 11) & 0x01;
// Check S1, must be 1
if (s1) {
if (!(rc5_parser->flags & IR_TOOLS_FLAGS_PROTO_EXT) && !s2) {
// Not standard RC5 protocol, but S2 is 0
goto out;
}
addr = (parse_result & 0x7C0) >> 6;
cmd = (parse_result & 0x3F);
if (!s2) {
cmd |= 1 << 6;
}
*repeat = (t == rc5_parser->last_t_bit && addr == rc5_parser->last_address && cmd == rc5_parser->last_command);
*address = addr;
*command = cmd;
rc5_parser->last_address = addr;
rc5_parser->last_command = cmd;
rc5_parser->last_t_bit = t;
ret = ESP_OK;
}
out:
return ret;
}
/****************************************************************************************
*
*/
ir_parser_t *ir_parser_rmt_new_rc5(const ir_parser_config_t *config) {
ir_parser_t *ret = NULL;
rc5_parser_t *rc5_parser = calloc(1, sizeof(rc5_parser_t));
rc5_parser->flags = config->flags;
uint32_t counter_clk_hz = 0;
RMT_CHECK(rmt_get_counter_clock((rmt_channel_t)config->dev_hdl, &counter_clk_hz) == ESP_OK,
"get rmt counter clock failed", err, NULL);
float ratio = (float)counter_clk_hz / 1e6;
rc5_parser->pulse_duration_ticks = (uint32_t)(ratio * RC5_PULSE_DURATION_US);
rc5_parser->margin_ticks = (uint32_t)(ratio * config->margin_us);
rc5_parser->parent.input = rc5_parser_input;
rc5_parser->parent.get_scan_code = rc5_parser_get_scan_code;
return &rc5_parser->parent;
err:
return ret;
}
/****************************************************************************************
*
*/
void infrared_receive(RingbufHandle_t rb, infrared_handler handler) {
size_t rx_size = 0;
rmt_item32_t* item = (rmt_item32_t*) xRingbufferReceive(rb, &rx_size, 10 / portTICK_RATE_MS);
if (item) {
uint32_t addr, cmd;
bool repeat = false;
bool decoded = false;
rx_size /= 4; // one RMT = 4 Bytes
if (ir_parser->input(ir_parser, item, rx_size) == ESP_OK) {
if (ir_parser->get_scan_code(ir_parser, &addr, &cmd, &repeat) == ESP_OK) {
decoded = true;
handler(addr, cmd);
ESP_LOGI(TAG, "Scan Code %s --- addr: 0x%04x cmd: 0x%04x", repeat ? "(repeat)" : "", addr, cmd);
}
}
// if we have not decoded data but lenght is reasonnable, dump it
if (!decoded && rx_size > RC5_MAX_FRAME_RMT_WORDS) {
ESP_LOGI(TAG, "can't decode IR signal of len %d", rx_size);
ESP_LOG_BUFFER_HEX(TAG, item, rx_size * 4);
}
// after parsing the data, return spaces to ringbuffer.
vRingbufferReturnItem(rb, (void*) item);
}
}
/****************************************************************************************
*
*/
void infrared_init(RingbufHandle_t *rb, int gpio, infrared_mode_t mode) {
int rmt_channel = rmt_system_base_channel++;
rmt_config_t rmt_rx_config = RMT_DEFAULT_CONFIG_RX(gpio, rmt_channel);
rmt_config(&rmt_rx_config);
rmt_driver_install(rmt_rx_config.channel, 1000, 0);
ir_parser_config_t ir_parser_config = IR_PARSER_DEFAULT_CONFIG((ir_dev_t) rmt_rx_config.channel);
ir_parser_config.flags |= IR_TOOLS_FLAGS_PROTO_EXT; // Using extended IR protocols (both NEC and RC5 have extended version)
ir_parser = (mode == IR_NEC) ? ir_parser_rmt_new_nec(&ir_parser_config) : ir_parser_rmt_new_rc5(&ir_parser_config);
// get RMT RX ringbuffer
rmt_get_ringbuf_handle(rmt_channel, rb);
rmt_rx_start(rmt_channel, 1);
ESP_LOGI(TAG, "Starting Infrared Receiver mode %s on gpio %d and channel %d", mode == IR_NEC ? "nec" : "rc5", gpio, rmt_channel);
}