mirror of
https://github.com/sle118/squeezelite-esp32.git
synced 2025-12-06 19:47:02 +03:00
740 lines
26 KiB
C
740 lines
26 KiB
C
/*
|
|
* Squeezelite for esp32
|
|
*
|
|
* (c) Sebastien 2019
|
|
* Philippe G. 2019, philippe_44@outlook.com
|
|
*
|
|
* This software is released under the MIT License.
|
|
* https://opensource.org/licenses/MIT
|
|
*
|
|
*/
|
|
|
|
/*
|
|
Synchronisation is a bit of a hack with i2s. The esp32 driver is always
|
|
full when it starts, so there is a delay of the total length of buffers.
|
|
In other words, i2s_write blocks at first call, until at least one buffer
|
|
has been written (it uses a queue with produce / consume).
|
|
|
|
The first hack is to consume that length at the beginning of tracks when
|
|
synchronization is active. It's about ~180ms @ 44.1kHz
|
|
|
|
The second hack is that we never know exactly the number of frames in the
|
|
DMA buffers when we update the output.frames_played_dmp. We assume that
|
|
after i2s_write, these buffers are always full so by measuring the gap
|
|
between time after i2s_write and update of frames_played_dmp, we have a
|
|
good idea of the error.
|
|
|
|
The third hack is when sample rate changes, buffers are reset and we also
|
|
do the change too early, but can't do that exaclty at the right time. So
|
|
there might be a pop and a de-sync when sampling rate change happens. Not
|
|
sure that using rate_delay would fix that
|
|
*/
|
|
|
|
#include "squeezelite.h"
|
|
#include "slimproto.h"
|
|
#include "esp_pthread.h"
|
|
#include "driver/i2s.h"
|
|
#include "driver/i2c.h"
|
|
#include "driver/gpio.h"
|
|
#include "perf_trace.h"
|
|
#include <signal.h>
|
|
#include "adac.h"
|
|
#include "time.h"
|
|
#include "led.h"
|
|
#include "monitor.h"
|
|
#include "platform_config.h"
|
|
#include "gpio_exp.h"
|
|
#include "accessors.h"
|
|
#include "equalizer.h"
|
|
#include "globdefs.h"
|
|
|
|
#define LOCK mutex_lock(outputbuf->mutex)
|
|
#define UNLOCK mutex_unlock(outputbuf->mutex)
|
|
|
|
#define FRAME_BLOCK MAX_SILENCE_FRAMES
|
|
#define SPDIF_BLOCK 256
|
|
|
|
// must have an integer ratio with FRAME_BLOCK (see spdif comment)
|
|
#define DMA_BUF_LEN 512
|
|
#define DMA_BUF_COUNT 12
|
|
|
|
#define DECLARE_ALL_MIN_MAX \
|
|
DECLARE_MIN_MAX(o); \
|
|
DECLARE_MIN_MAX(s); \
|
|
DECLARE_MIN_MAX(rec); \
|
|
DECLARE_MIN_MAX(i2s_time); \
|
|
DECLARE_MIN_MAX(buffering);
|
|
|
|
#define RESET_ALL_MIN_MAX \
|
|
RESET_MIN_MAX(o); \
|
|
RESET_MIN_MAX(s); \
|
|
RESET_MIN_MAX(rec); \
|
|
RESET_MIN_MAX(i2s_time); \
|
|
RESET_MIN_MAX(buffering);
|
|
|
|
#define STATS_PERIOD_MS 5000
|
|
#define STAT_STACK_SIZE (3*1024)
|
|
|
|
extern struct outputstate output;
|
|
extern struct buffer *streambuf;
|
|
extern struct buffer *outputbuf;
|
|
extern u8_t *silencebuf;
|
|
|
|
const struct adac_s *dac_set[] = { &dac_tas57xx, &dac_tas5713, &dac_ac101, &dac_wm8978, NULL };
|
|
const struct adac_s *adac = &dac_external;
|
|
|
|
static log_level loglevel;
|
|
|
|
static bool (*slimp_handler_chain)(u8_t *data, int len);
|
|
static bool jack_mutes_amp;
|
|
static bool running, isI2SStarted, ended;
|
|
static i2s_config_t i2s_config;
|
|
static u8_t *obuf;
|
|
static frames_t oframes;
|
|
static struct {
|
|
bool enabled;
|
|
u8_t *buf;
|
|
size_t count;
|
|
} spdif;
|
|
static size_t dma_buf_frames;
|
|
static TaskHandle_t stats_task, output_i2s_task;
|
|
static bool stats;
|
|
static struct {
|
|
int gpio, active;
|
|
} amp_control = { -1, 1 },
|
|
mute_control = { CONFIG_MUTE_GPIO, CONFIG_MUTE_GPIO_LEVEL };
|
|
|
|
DECLARE_ALL_MIN_MAX;
|
|
|
|
static int _i2s_write_frames(frames_t out_frames, bool silence, s32_t gainL, s32_t gainR, u8_t flags,
|
|
s32_t cross_gain_in, s32_t cross_gain_out, ISAMPLE_T **cross_ptr);
|
|
static void output_thread_i2s(void *arg);
|
|
static void output_thread_i2s_stats(void *arg);
|
|
static void spdif_convert(ISAMPLE_T *src, size_t frames, u32_t *dst, size_t *count);
|
|
static void (*jack_handler_chain)(bool inserted);
|
|
|
|
#define I2C_PORT 0
|
|
|
|
/****************************************************************************************
|
|
* AUDO packet handler
|
|
*/
|
|
static bool handler(u8_t *data, int len){
|
|
bool res = true;
|
|
|
|
if (!strncmp((char*) data, "audo", 4)) {
|
|
struct audo_packet *pkt = (struct audo_packet*) data;
|
|
// 0 = headphone (internal speakers off), 1 = sub out,
|
|
// 2 = always on (internal speakers on), 3 = always off
|
|
|
|
if (jack_mutes_amp != (pkt->config == 0)) {
|
|
jack_mutes_amp = pkt->config == 0;
|
|
config_set_value(NVS_TYPE_STR, "jack_mutes_amp", jack_mutes_amp ? "y" : "n");
|
|
|
|
if (jack_mutes_amp && jack_inserted_svc()) {
|
|
adac->speaker(false);
|
|
if (amp_control.gpio != -1) gpio_set_level_u(amp_control.gpio, !amp_control.active);
|
|
} else {
|
|
adac->speaker(true);
|
|
if (amp_control.gpio != -1) gpio_set_level_u(amp_control.gpio, amp_control.active);
|
|
}
|
|
}
|
|
|
|
LOG_INFO("got AUDO %02x", pkt->config);
|
|
} else {
|
|
res = false;
|
|
}
|
|
|
|
// chain protocol handlers (bitwise or is fine)
|
|
if (*slimp_handler_chain) res |= (*slimp_handler_chain)(data, len);
|
|
|
|
return res;
|
|
}
|
|
|
|
/****************************************************************************************
|
|
* jack insertion handler
|
|
*/
|
|
static void jack_handler(bool inserted) {
|
|
// jack detection bounces a bit but that seems fine
|
|
if (jack_mutes_amp) {
|
|
LOG_INFO("switching amplifier %s", inserted ? "OFF" : "ON");
|
|
adac->speaker(!inserted);
|
|
if (amp_control.gpio != -1) gpio_set_level_u(amp_control.gpio, inserted ? !amp_control.active : amp_control.active);
|
|
}
|
|
|
|
// activate headset
|
|
adac->headset(inserted);
|
|
|
|
// and chain if any
|
|
if (jack_handler_chain) (jack_handler_chain)(inserted);
|
|
}
|
|
|
|
/****************************************************************************************
|
|
* amp GPIO
|
|
*/
|
|
static void set_amp_gpio(int gpio, char *value) {
|
|
char *p;
|
|
|
|
if (strcasestr(value, "amp")) {
|
|
amp_control.gpio = gpio;
|
|
if ((p = strchr(value, ':')) != NULL) amp_control.active = atoi(p + 1);
|
|
|
|
gpio_pad_select_gpio(amp_control.gpio);
|
|
gpio_set_direction(amp_control.gpio, GPIO_MODE_OUTPUT);
|
|
gpio_set_level_u(amp_control.gpio, !amp_control.active);
|
|
|
|
LOG_INFO("setting amplifier GPIO %d (active:%d)", amp_control.gpio, amp_control.active);
|
|
}
|
|
}
|
|
|
|
/****************************************************************************************
|
|
* Set pin from config string
|
|
*/
|
|
static void set_i2s_pin(char *config, i2s_pin_config_t *pin_config) {
|
|
char *p;
|
|
pin_config->bck_io_num = pin_config->ws_io_num = pin_config->data_out_num = pin_config->data_in_num = -1;
|
|
if ((p = strcasestr(config, "bck")) != NULL) pin_config->bck_io_num = atoi(strchr(p, '=') + 1);
|
|
if ((p = strcasestr(config, "ws")) != NULL) pin_config->ws_io_num = atoi(strchr(p, '=') + 1);
|
|
if ((p = strcasestr(config, "do")) != NULL) pin_config->data_out_num = atoi(strchr(p, '=') + 1);
|
|
}
|
|
|
|
/****************************************************************************************
|
|
* Initialize the DAC output
|
|
*/
|
|
void output_init_i2s(log_level level, char *device, unsigned output_buf_size, char *params, unsigned rates[], unsigned rate_delay, unsigned idle) {
|
|
loglevel = level;
|
|
int silent_do = -1;
|
|
char *p;
|
|
esp_err_t res;
|
|
|
|
// chain SLIMP handlers
|
|
slimp_handler_chain = slimp_handler;
|
|
slimp_handler = handler;
|
|
|
|
p = config_alloc_get_default(NVS_TYPE_STR, "jack_mutes_amp", "n", 0);
|
|
jack_mutes_amp = (strcmp(p,"1") == 0 ||strcasecmp(p,"y") == 0);
|
|
free(p);
|
|
|
|
#if BYTES_PER_FRAME == 8
|
|
output.format = S32_LE;
|
|
#else
|
|
output.format = S16_LE;
|
|
#endif
|
|
|
|
output.write_cb = &_i2s_write_frames;
|
|
|
|
obuf = malloc(FRAME_BLOCK * BYTES_PER_FRAME);
|
|
if (!obuf) {
|
|
LOG_ERROR("Cannot allocate i2s buffer");
|
|
return;
|
|
}
|
|
|
|
running = true;
|
|
|
|
// get SPDIF configuration from NVS or compile
|
|
char *spdif_config = config_alloc_get_str("spdif_config", CONFIG_SPDIF_CONFIG, "bck=" STR(CONFIG_SPDIF_BCK_IO)
|
|
",ws=" STR(CONFIG_SPDIF_WS_IO) ",do=" STR(CONFIG_SPDIF_DO_IO));
|
|
|
|
char *dac_config = config_alloc_get_str("dac_config", CONFIG_DAC_CONFIG, "model=i2s,bck=" STR(CONFIG_I2S_BCK_IO)
|
|
",ws=" STR(CONFIG_I2S_WS_IO) ",do=" STR(CONFIG_I2S_DO_IO)
|
|
",sda=" STR(CONFIG_I2C_SDA) ",scl=" STR(CONFIG_I2C_SCL)
|
|
",mute=" STR(CONFIG_MUTE_GPIO));
|
|
|
|
i2s_pin_config_t i2s_dac_pin, i2s_spdif_pin;
|
|
set_i2s_pin(spdif_config, &i2s_spdif_pin);
|
|
set_i2s_pin(dac_config, &i2s_dac_pin);
|
|
|
|
/* BEWARE: i2s.c must be patched otherwise L/R are swapped in 32 bits mode */
|
|
|
|
// common I2S initialization
|
|
i2s_config.mode = I2S_MODE_MASTER | I2S_MODE_TX;
|
|
i2s_config.channel_format = I2S_CHANNEL_FMT_RIGHT_LEFT;
|
|
i2s_config.communication_format = I2S_COMM_FORMAT_I2S| I2S_COMM_FORMAT_I2S_MSB;
|
|
// in case of overflow, do not replay old buffer
|
|
i2s_config.tx_desc_auto_clear = true;
|
|
i2s_config.use_apll = true;
|
|
i2s_config.intr_alloc_flags = ESP_INTR_FLAG_LEVEL1; //Interrupt level 1
|
|
|
|
if (strcasestr(device, "spdif")) {
|
|
spdif.enabled = true;
|
|
if ((spdif.buf = heap_caps_malloc(SPDIF_BLOCK * 16, MALLOC_CAP_INTERNAL)) == NULL) {
|
|
LOG_ERROR("Cannot allocate SPDIF buffer");
|
|
}
|
|
|
|
if (i2s_spdif_pin.bck_io_num == -1 || i2s_spdif_pin.ws_io_num == -1 || i2s_spdif_pin.data_out_num == -1) {
|
|
LOG_WARN("Cannot initialize I2S for SPDIF bck:%d ws:%d do:%d", i2s_spdif_pin.bck_io_num,
|
|
i2s_spdif_pin.ws_io_num,
|
|
i2s_spdif_pin.data_out_num);
|
|
}
|
|
|
|
i2s_config.sample_rate = output.current_sample_rate * 2;
|
|
i2s_config.bits_per_sample = 32;
|
|
// Normally counted in frames, but 16 sample are transformed into 32 bits in spdif
|
|
i2s_config.dma_buf_len = DMA_BUF_LEN / 2;
|
|
i2s_config.dma_buf_count = DMA_BUF_COUNT * 2;
|
|
/*
|
|
In DMA, we have room for (LEN * COUNT) frames of 32 bits samples that
|
|
we push at sample_rate * 2. Each of these peuso-frames is a single true
|
|
audio frame. So the real depth is true frames is (LEN * COUNT / 2)
|
|
*/
|
|
dma_buf_frames = DMA_BUF_COUNT * DMA_BUF_LEN / 2;
|
|
|
|
// silence DAC output if sharing the same ws/bck
|
|
if (i2s_dac_pin.ws_io_num == i2s_spdif_pin.ws_io_num && i2s_dac_pin.bck_io_num == i2s_spdif_pin.bck_io_num) silent_do = i2s_dac_pin.data_out_num;
|
|
|
|
res = i2s_driver_install(CONFIG_I2S_NUM, &i2s_config, 0, NULL);
|
|
res |= i2s_set_pin(CONFIG_I2S_NUM, &i2s_spdif_pin);
|
|
LOG_INFO("SPDIF using I2S bck:%u, ws:%u, do:%u", i2s_spdif_pin.bck_io_num, i2s_spdif_pin.ws_io_num, i2s_spdif_pin.data_out_num);
|
|
} else {
|
|
i2s_config.sample_rate = output.current_sample_rate;
|
|
i2s_config.bits_per_sample = BYTES_PER_FRAME * 8 / 2;
|
|
// Counted in frames (but i2s allocates a buffer <= 4092 bytes)
|
|
i2s_config.dma_buf_len = DMA_BUF_LEN;
|
|
i2s_config.dma_buf_count = DMA_BUF_COUNT;
|
|
dma_buf_frames = DMA_BUF_COUNT * DMA_BUF_LEN;
|
|
|
|
// silence SPDIF output
|
|
silent_do = i2s_spdif_pin.data_out_num;
|
|
|
|
char model[32] = "i2s";
|
|
if ((p = strcasestr(dac_config, "model")) != NULL) sscanf(p, "%*[^=]=%31[^,]", model);
|
|
if ((p = strcasestr(dac_config, "mute")) != NULL) {
|
|
char mute[8] = "";
|
|
sscanf(p, "%*[^=]=%7[^,]", mute);
|
|
mute_control.gpio = atoi(mute);
|
|
if ((p = strchr(mute, ':')) != NULL) mute_control.active = atoi(p + 1);
|
|
}
|
|
|
|
for (int i = 0; adac == &dac_external && dac_set[i]; i++) if (strcasestr(dac_set[i]->model, model)) adac = dac_set[i];
|
|
res = adac->init(dac_config, I2C_PORT, &i2s_config) ? ESP_OK : ESP_FAIL;
|
|
|
|
res |= i2s_driver_install(CONFIG_I2S_NUM, &i2s_config, 0, NULL);
|
|
res |= i2s_set_pin(CONFIG_I2S_NUM, &i2s_dac_pin);
|
|
|
|
if (res == ESP_OK && mute_control.gpio >= 0) {
|
|
gpio_pad_select_gpio(mute_control.gpio);
|
|
gpio_set_direction(mute_control.gpio, GPIO_MODE_OUTPUT);
|
|
gpio_set_level(mute_control.gpio, mute_control.active);
|
|
}
|
|
|
|
LOG_INFO("%s DAC using I2S bck:%d, ws:%d, do:%d, mute:%d:%d (res:%d)", model, i2s_dac_pin.bck_io_num, i2s_dac_pin.ws_io_num,
|
|
i2s_dac_pin.data_out_num, mute_control.gpio, mute_control.active, res);
|
|
}
|
|
|
|
free(dac_config);
|
|
free(spdif_config);
|
|
|
|
if (res != ESP_OK) {
|
|
LOG_WARN("no DAC configured");
|
|
return;
|
|
}
|
|
|
|
// turn off GPIO than is not used (SPDIF of DAC DO when shared)
|
|
if (silent_do >= 0) {
|
|
gpio_pad_select_gpio(silent_do);
|
|
gpio_set_direction(silent_do, GPIO_MODE_OUTPUT);
|
|
gpio_set_level(silent_do, 0);
|
|
}
|
|
|
|
LOG_INFO("Initializing I2S mode %s with rate: %d, bits per sample: %d, buffer frames: %d, number of buffers: %d ",
|
|
spdif.enabled ? "S/PDIF" : "normal",
|
|
i2s_config.sample_rate, i2s_config.bits_per_sample, i2s_config.dma_buf_len, i2s_config.dma_buf_count);
|
|
|
|
i2s_stop(CONFIG_I2S_NUM);
|
|
i2s_zero_dma_buffer(CONFIG_I2S_NUM);
|
|
isI2SStarted=false;
|
|
|
|
adac->power(ADAC_STANDBY);
|
|
|
|
jack_handler_chain = jack_handler_svc;
|
|
jack_handler_svc = jack_handler;
|
|
|
|
parse_set_GPIO(set_amp_gpio);
|
|
|
|
if (jack_mutes_amp && jack_inserted_svc()) adac->speaker(false);
|
|
else adac->speaker(true);
|
|
|
|
adac->headset(jack_inserted_svc());
|
|
|
|
|
|
// create task as a FreeRTOS task but uses stack in internal RAM
|
|
{
|
|
static DRAM_ATTR StaticTask_t xTaskBuffer __attribute__ ((aligned (4)));
|
|
static DRAM_ATTR StackType_t xStack[OUTPUT_THREAD_STACK_SIZE] __attribute__ ((aligned (4)));
|
|
output_i2s_task = xTaskCreateStaticPinnedToCore( (TaskFunction_t) output_thread_i2s, "output_i2s", OUTPUT_THREAD_STACK_SIZE,
|
|
NULL, CONFIG_ESP32_PTHREAD_TASK_PRIO_DEFAULT + 1, xStack, &xTaskBuffer, 0 );
|
|
}
|
|
|
|
// do we want stats
|
|
p = config_alloc_get_default(NVS_TYPE_STR, "stats", "n", 0);
|
|
stats = p && (*p == '1' || *p == 'Y' || *p == 'y');
|
|
free(p);
|
|
|
|
// memory still used but at least task is not created
|
|
if (stats) {
|
|
// we allocate TCB but stack is staic to avoid SPIRAM fragmentation
|
|
StaticTask_t* xTaskBuffer = (StaticTask_t*) heap_caps_malloc(sizeof(StaticTask_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
|
|
static EXT_RAM_ATTR StackType_t xStack[STAT_STACK_SIZE] __attribute__ ((aligned (4)));
|
|
stats_task = xTaskCreateStatic( (TaskFunction_t) output_thread_i2s_stats, "output_i2s_sts", STAT_STACK_SIZE,
|
|
NULL, ESP_TASK_PRIO_MIN, xStack, xTaskBuffer);
|
|
}
|
|
}
|
|
|
|
|
|
/****************************************************************************************
|
|
* Terminate DAC output
|
|
*/
|
|
void output_close_i2s(void) {
|
|
LOCK;
|
|
running = false;
|
|
UNLOCK;
|
|
|
|
while (!ended) vTaskDelay(20 / portTICK_PERIOD_MS);
|
|
if (stats) vTaskDelete(stats_task);
|
|
|
|
i2s_driver_uninstall(CONFIG_I2S_NUM);
|
|
free(obuf);
|
|
|
|
equalizer_close();
|
|
|
|
adac->deinit();
|
|
}
|
|
|
|
/****************************************************************************************
|
|
* change volume
|
|
*/
|
|
bool output_volume_i2s(unsigned left, unsigned right) {
|
|
if (mute_control.gpio >= 0) gpio_set_level(mute_control.gpio, (left | right) ? !mute_control.active : mute_control.active);
|
|
return adac->volume(left, right);
|
|
}
|
|
|
|
/****************************************************************************************
|
|
* Write frames to the output buffer
|
|
*/
|
|
static int _i2s_write_frames(frames_t out_frames, bool silence, s32_t gainL, s32_t gainR, u8_t flags,
|
|
s32_t cross_gain_in, s32_t cross_gain_out, ISAMPLE_T **cross_ptr) {
|
|
if (!silence) {
|
|
if (output.fade == FADE_ACTIVE && output.fade_dir == FADE_CROSS && *cross_ptr) {
|
|
_apply_cross(outputbuf, out_frames, cross_gain_in, cross_gain_out, cross_ptr);
|
|
}
|
|
|
|
_apply_gain(outputbuf, out_frames, gainL, gainR, flags);
|
|
memcpy(obuf + oframes * BYTES_PER_FRAME, outputbuf->readp, out_frames * BYTES_PER_FRAME);
|
|
} else {
|
|
memcpy(obuf + oframes * BYTES_PER_FRAME, silencebuf, out_frames * BYTES_PER_FRAME);
|
|
}
|
|
|
|
// don't update visu if we don't have enough data in buffer
|
|
if (silence || output.external || _buf_used(outputbuf) > outputbuf->size >> 2 ) {
|
|
output_visu_export(obuf + oframes * BYTES_PER_FRAME, out_frames, output.current_sample_rate, silence, (gainL + gainR) / 2);
|
|
}
|
|
|
|
oframes += out_frames;
|
|
|
|
return out_frames;
|
|
}
|
|
|
|
/****************************************************************************************
|
|
* Main output thread
|
|
*/
|
|
static void output_thread_i2s(void *arg) {
|
|
size_t bytes;
|
|
frames_t iframes = FRAME_BLOCK;
|
|
uint32_t timer_start = 0;
|
|
int discard = 0;
|
|
uint32_t fullness = gettime_ms();
|
|
bool synced;
|
|
output_state state = OUTPUT_OFF - 1;
|
|
|
|
while (running) {
|
|
|
|
TIME_MEASUREMENT_START(timer_start);
|
|
|
|
LOCK;
|
|
|
|
// manage led display & analogue
|
|
if (state != output.state) {
|
|
LOG_INFO("Output state is %d", output.state);
|
|
if (output.state == OUTPUT_OFF) {
|
|
led_blink(LED_GREEN, 100, 2500);
|
|
if (amp_control.gpio != -1) gpio_set_level_u(amp_control.gpio, !amp_control.active);
|
|
LOG_INFO("switching off amp GPIO %d", amp_control.gpio);
|
|
} else if (output.state == OUTPUT_STOPPED) {
|
|
adac->speaker(false);
|
|
led_blink(LED_GREEN, 200, 1000);
|
|
} else if (output.state == OUTPUT_RUNNING) {
|
|
if (!jack_mutes_amp || !jack_inserted_svc()) {
|
|
if (amp_control.gpio != -1) gpio_set_level_u(amp_control.gpio, amp_control.active);
|
|
adac->speaker(true);
|
|
}
|
|
led_on(LED_GREEN);
|
|
}
|
|
}
|
|
state = output.state;
|
|
|
|
if (output.state == OUTPUT_OFF) {
|
|
UNLOCK;
|
|
if (isI2SStarted) {
|
|
isI2SStarted = false;
|
|
i2s_stop(CONFIG_I2S_NUM);
|
|
adac->power(ADAC_STANDBY);
|
|
spdif.count = 0;
|
|
}
|
|
usleep(100000);
|
|
continue;
|
|
} else if (output.state == OUTPUT_STOPPED) {
|
|
synced = false;
|
|
}
|
|
|
|
oframes = 0;
|
|
output.updated = gettime_ms();
|
|
output.frames_played_dmp = output.frames_played;
|
|
// try to estimate how much we have consumed from the DMA buffer (calculation is incorrect at the very beginning ...)
|
|
output.device_frames = dma_buf_frames - ((output.updated - fullness) * output.current_sample_rate) / 1000;
|
|
_output_frames( iframes );
|
|
// oframes must be a global updated by the write callback
|
|
output.frames_in_process = oframes;
|
|
|
|
SET_MIN_MAX_SIZED(oframes,rec,iframes);
|
|
SET_MIN_MAX_SIZED(_buf_used(outputbuf),o,outputbuf->size);
|
|
SET_MIN_MAX_SIZED(_buf_used(streambuf),s,streambuf->size);
|
|
SET_MIN_MAX( TIME_MEASUREMENT_GET(timer_start),buffering);
|
|
|
|
/* must skip first whatever is in the pipe (but not when resuming).
|
|
This test is incorrect when we pause a track that has just started,
|
|
but this is higly unlikely and I don't have a better one for now */
|
|
if (output.state == OUTPUT_START_AT) {
|
|
discard = output.frames_played_dmp ? 0 : output.device_frames;
|
|
synced = true;
|
|
} else if (discard) {
|
|
discard -= oframes;
|
|
iframes = discard ? min(FRAME_BLOCK, discard) : FRAME_BLOCK;
|
|
UNLOCK;
|
|
continue;
|
|
}
|
|
|
|
UNLOCK;
|
|
|
|
// now send all the data
|
|
TIME_MEASUREMENT_START(timer_start);
|
|
|
|
if (!isI2SStarted ) {
|
|
isI2SStarted = true;
|
|
LOG_INFO("Restarting I2S.");
|
|
i2s_zero_dma_buffer(CONFIG_I2S_NUM);
|
|
i2s_start(CONFIG_I2S_NUM);
|
|
adac->power(ADAC_ON);
|
|
}
|
|
|
|
// this does not work well as set_sample_rates resets the fifos (and it's too early)
|
|
if (i2s_config.sample_rate != output.current_sample_rate) {
|
|
LOG_INFO("changing sampling rate %u to %u", i2s_config.sample_rate, output.current_sample_rate);
|
|
if (synced) {
|
|
/*
|
|
// can sleep for a buffer_queue - 1 and then eat a buffer (discard) if we are synced
|
|
usleep(((DMA_BUF_COUNT - 1) * DMA_BUF_LEN * BYTES_PER_FRAME * 1000) / 44100 * 1000);
|
|
discard = DMA_BUF_COUNT * DMA_BUF_LEN * BYTES_PER_FRAME;
|
|
*/
|
|
}
|
|
i2s_config.sample_rate = output.current_sample_rate;
|
|
i2s_set_sample_rates(CONFIG_I2S_NUM, spdif.enabled ? i2s_config.sample_rate * 2 : i2s_config.sample_rate);
|
|
i2s_zero_dma_buffer(CONFIG_I2S_NUM);
|
|
|
|
#if BYTES_PER_FRAME == 4
|
|
equalizer_close();
|
|
equalizer_open(output.current_sample_rate);
|
|
#endif
|
|
}
|
|
|
|
#if BYTES_PER_FRAME == 4
|
|
// run equalizer
|
|
equalizer_process(obuf, oframes * BYTES_PER_FRAME, output.current_sample_rate);
|
|
#endif
|
|
|
|
// we assume that here we have been able to entirely fill the DMA buffers
|
|
if (spdif.enabled) {
|
|
size_t obytes, count = 0;
|
|
bytes = 0;
|
|
// need IRAM for speed but can't allocate a FRAME_BLOCK * 16, so process by smaller chunks
|
|
while (count < oframes) {
|
|
size_t chunk = min(SPDIF_BLOCK, oframes - count);
|
|
spdif_convert((ISAMPLE_T*) obuf + count * 2, chunk, (u32_t*) spdif.buf, &spdif.count);
|
|
i2s_write(CONFIG_I2S_NUM, spdif.buf, chunk * 16, &obytes, portMAX_DELAY);
|
|
bytes += obytes / (16 / BYTES_PER_FRAME);
|
|
count += chunk;
|
|
}
|
|
#if BYTES_PER_FRAME == 4
|
|
} else if (i2s_config.bits_per_sample == 32) {
|
|
i2s_write_expand(CONFIG_I2S_NUM, obuf, oframes * BYTES_PER_FRAME, 16, 32, &bytes, portMAX_DELAY);
|
|
#endif
|
|
} else {
|
|
i2s_write(CONFIG_I2S_NUM, obuf, oframes * BYTES_PER_FRAME, &bytes, portMAX_DELAY);
|
|
}
|
|
|
|
fullness = gettime_ms();
|
|
|
|
if (bytes != oframes * BYTES_PER_FRAME) {
|
|
LOG_WARN("I2S DMA Overflow! available bytes: %d, I2S wrote %d bytes", oframes * BYTES_PER_FRAME, bytes);
|
|
}
|
|
|
|
SET_MIN_MAX( TIME_MEASUREMENT_GET(timer_start),i2s_time);
|
|
|
|
}
|
|
|
|
if (spdif.enabled) free(spdif.buf);
|
|
ended = true;
|
|
|
|
vTaskDelete(NULL);
|
|
}
|
|
|
|
/****************************************************************************************
|
|
* Stats output thread
|
|
*/
|
|
static void output_thread_i2s_stats(void *arg) {
|
|
while (1) {
|
|
// no need to lock
|
|
output_state state = output.state;
|
|
|
|
if(stats && state>OUTPUT_STOPPED){
|
|
LOG_INFO( "Output State: %d, current sample rate: %d, bytes per frame: %d",state,output.current_sample_rate, BYTES_PER_FRAME);
|
|
LOG_INFO( LINE_MIN_MAX_FORMAT_HEAD1);
|
|
LOG_INFO( LINE_MIN_MAX_FORMAT_HEAD2);
|
|
LOG_INFO( LINE_MIN_MAX_FORMAT_HEAD3);
|
|
LOG_INFO( LINE_MIN_MAX_FORMAT_HEAD4);
|
|
LOG_INFO(LINE_MIN_MAX_FORMAT_STREAM, LINE_MIN_MAX_STREAM("stream",s));
|
|
LOG_INFO(LINE_MIN_MAX_FORMAT,LINE_MIN_MAX("output",o));
|
|
LOG_INFO(LINE_MIN_MAX_FORMAT_FOOTER);
|
|
LOG_INFO(LINE_MIN_MAX_FORMAT,LINE_MIN_MAX("received",rec));
|
|
LOG_INFO(LINE_MIN_MAX_FORMAT_FOOTER);
|
|
LOG_INFO("");
|
|
LOG_INFO(" ----------+----------+-----------+-----------+ ");
|
|
LOG_INFO(" max (us) | min (us) | avg(us) | count | ");
|
|
LOG_INFO(" ----------+----------+-----------+-----------+ ");
|
|
LOG_INFO(LINE_MIN_MAX_DURATION_FORMAT,LINE_MIN_MAX_DURATION("Buffering(us)",buffering));
|
|
LOG_INFO(LINE_MIN_MAX_DURATION_FORMAT,LINE_MIN_MAX_DURATION("i2s tfr(us)",i2s_time));
|
|
LOG_INFO(" ----------+----------+-----------+-----------+");
|
|
RESET_ALL_MIN_MAX;
|
|
}
|
|
vTaskDelay( pdMS_TO_TICKS( STATS_PERIOD_MS ) );
|
|
}
|
|
}
|
|
|
|
/****************************************************************************************
|
|
* SPDIF support
|
|
*/
|
|
|
|
#define PREAMBLE_B (0xE8) //11101000
|
|
#define PREAMBLE_M (0xE2) //11100010
|
|
#define PREAMBLE_W (0xE4) //11100100
|
|
|
|
#define VUCP ((0xCC) << 24)
|
|
#define VUCP_MUTE ((0xD4) << 24) // To mute PCM, set VUCP = invalid.
|
|
|
|
static const u16_t spdif_bmclookup[256] = { //biphase mark encoded values (least significant bit first)
|
|
0xcccc, 0x4ccc, 0x2ccc, 0xaccc, 0x34cc, 0xb4cc, 0xd4cc, 0x54cc,
|
|
0x32cc, 0xb2cc, 0xd2cc, 0x52cc, 0xcacc, 0x4acc, 0x2acc, 0xaacc,
|
|
0x334c, 0xb34c, 0xd34c, 0x534c, 0xcb4c, 0x4b4c, 0x2b4c, 0xab4c,
|
|
0xcd4c, 0x4d4c, 0x2d4c, 0xad4c, 0x354c, 0xb54c, 0xd54c, 0x554c,
|
|
0x332c, 0xb32c, 0xd32c, 0x532c, 0xcb2c, 0x4b2c, 0x2b2c, 0xab2c,
|
|
0xcd2c, 0x4d2c, 0x2d2c, 0xad2c, 0x352c, 0xb52c, 0xd52c, 0x552c,
|
|
0xccac, 0x4cac, 0x2cac, 0xacac, 0x34ac, 0xb4ac, 0xd4ac, 0x54ac,
|
|
0x32ac, 0xb2ac, 0xd2ac, 0x52ac, 0xcaac, 0x4aac, 0x2aac, 0xaaac,
|
|
0x3334, 0xb334, 0xd334, 0x5334, 0xcb34, 0x4b34, 0x2b34, 0xab34,
|
|
0xcd34, 0x4d34, 0x2d34, 0xad34, 0x3534, 0xb534, 0xd534, 0x5534,
|
|
0xccb4, 0x4cb4, 0x2cb4, 0xacb4, 0x34b4, 0xb4b4, 0xd4b4, 0x54b4,
|
|
0x32b4, 0xb2b4, 0xd2b4, 0x52b4, 0xcab4, 0x4ab4, 0x2ab4, 0xaab4,
|
|
0xccd4, 0x4cd4, 0x2cd4, 0xacd4, 0x34d4, 0xb4d4, 0xd4d4, 0x54d4,
|
|
0x32d4, 0xb2d4, 0xd2d4, 0x52d4, 0xcad4, 0x4ad4, 0x2ad4, 0xaad4,
|
|
0x3354, 0xb354, 0xd354, 0x5354, 0xcb54, 0x4b54, 0x2b54, 0xab54,
|
|
0xcd54, 0x4d54, 0x2d54, 0xad54, 0x3554, 0xb554, 0xd554, 0x5554,
|
|
0x3332, 0xb332, 0xd332, 0x5332, 0xcb32, 0x4b32, 0x2b32, 0xab32,
|
|
0xcd32, 0x4d32, 0x2d32, 0xad32, 0x3532, 0xb532, 0xd532, 0x5532,
|
|
0xccb2, 0x4cb2, 0x2cb2, 0xacb2, 0x34b2, 0xb4b2, 0xd4b2, 0x54b2,
|
|
0x32b2, 0xb2b2, 0xd2b2, 0x52b2, 0xcab2, 0x4ab2, 0x2ab2, 0xaab2,
|
|
0xccd2, 0x4cd2, 0x2cd2, 0xacd2, 0x34d2, 0xb4d2, 0xd4d2, 0x54d2,
|
|
0x32d2, 0xb2d2, 0xd2d2, 0x52d2, 0xcad2, 0x4ad2, 0x2ad2, 0xaad2,
|
|
0x3352, 0xb352, 0xd352, 0x5352, 0xcb52, 0x4b52, 0x2b52, 0xab52,
|
|
0xcd52, 0x4d52, 0x2d52, 0xad52, 0x3552, 0xb552, 0xd552, 0x5552,
|
|
0xccca, 0x4cca, 0x2cca, 0xacca, 0x34ca, 0xb4ca, 0xd4ca, 0x54ca,
|
|
0x32ca, 0xb2ca, 0xd2ca, 0x52ca, 0xcaca, 0x4aca, 0x2aca, 0xaaca,
|
|
0x334a, 0xb34a, 0xd34a, 0x534a, 0xcb4a, 0x4b4a, 0x2b4a, 0xab4a,
|
|
0xcd4a, 0x4d4a, 0x2d4a, 0xad4a, 0x354a, 0xb54a, 0xd54a, 0x554a,
|
|
0x332a, 0xb32a, 0xd32a, 0x532a, 0xcb2a, 0x4b2a, 0x2b2a, 0xab2a,
|
|
0xcd2a, 0x4d2a, 0x2d2a, 0xad2a, 0x352a, 0xb52a, 0xd52a, 0x552a,
|
|
0xccaa, 0x4caa, 0x2caa, 0xacaa, 0x34aa, 0xb4aa, 0xd4aa, 0x54aa,
|
|
0x32aa, 0xb2aa, 0xd2aa, 0x52aa, 0xcaaa, 0x4aaa, 0x2aaa, 0xaaaa
|
|
};
|
|
|
|
/*
|
|
SPDIF is supposed to be (before BMC encoding, from LSB to MSB)
|
|
PPPP AAAA SSSS SSSS SSSS SSSS SSSS VUCP
|
|
after BMC encoding, each bits becomes 2 hence this becomes a 64 bits word. The
|
|
the trick is to start not with a PPPP sequence but with an VUCP sequence to that
|
|
the 16 bits samples are aligned with a BMC word boundary. Note that the LSB of the
|
|
audio is transmitted first (not the MSB) and that ESP32 libray sends R then L,
|
|
contrary to what seems to be usually done, so (dst) order had to be changed
|
|
*/
|
|
void spdif_convert(ISAMPLE_T *src, size_t frames, u32_t *dst, size_t *count) {
|
|
register u16_t hi, lo, aux;
|
|
size_t cnt = *count;
|
|
|
|
while (frames--) {
|
|
// start with left channel
|
|
#if BYTES_PER_FRAME == 4
|
|
hi = spdif_bmclookup[(u8_t)(*src >> 8)];
|
|
lo = spdif_bmclookup[(u8_t) *src++];
|
|
|
|
// invert if last preceeding bit is 1
|
|
lo ^= ~((s16_t)hi) >> 16;
|
|
// first 16 bits
|
|
*dst++ = ((u32_t)lo << 16) | hi;
|
|
aux = 0xb333 ^ (((u32_t)((s16_t)lo)) >> 17);
|
|
#else
|
|
hi = spdif_bmclookup[(u8_t)(*src >> 24)];
|
|
lo = spdif_bmclookup[(u8_t)(*src >> 16)];
|
|
|
|
// invert if last preceeding bit is 1
|
|
lo ^= ~((s16_t)hi) >> 16;
|
|
// first 16 bits
|
|
*dst++ = ((u32_t)lo << 16) | hi;
|
|
// we use 20 bits samples as we need to force parity
|
|
aux = spdif_bmclookup[(u8_t)(*src++ >> 12)];
|
|
aux = (u8_t) (aux ^ (~((s16_t)lo) >> 16));
|
|
aux |= (0xb3 ^ (((u16_t)((s8_t)aux)) >> 9)) << 8;
|
|
#endif
|
|
|
|
// VUCP-Bits: Valid, Subcode, Channelstatus, Parity = 0
|
|
// As parity is always 0, we can use fixed preambles
|
|
if (++cnt > 191) {
|
|
*dst++ = VUCP | (PREAMBLE_B << 16 ) | aux; //special preamble for one of 192 frames
|
|
cnt = 0;
|
|
} else {
|
|
*dst++ = VUCP | (PREAMBLE_M << 16) | aux;
|
|
}
|
|
|
|
// then do right channel, no need to check PREAMBLE_B
|
|
#if BYTES_PER_FRAME == 4
|
|
hi = spdif_bmclookup[(u8_t)(*src >> 8)];
|
|
lo = spdif_bmclookup[(u8_t) *src++];
|
|
lo ^= ~((s16_t)hi) >> 16;
|
|
*dst++ = ((u32_t)lo << 16) | hi;
|
|
aux = 0xb333 ^ (((u32_t)((s16_t)lo)) >> 17);
|
|
#else
|
|
hi = spdif_bmclookup[(u8_t)(*src >> 24)];
|
|
lo = spdif_bmclookup[(u8_t)(*src >> 16)];
|
|
lo ^= ~((s16_t)hi) >> 16;
|
|
*dst++ = ((u32_t)lo << 16) | hi;
|
|
aux = spdif_bmclookup[(u8_t)(*src++ >> 12)];
|
|
aux = (u8_t) (aux ^ (~((s16_t)lo) >> 16));
|
|
aux |= (0xb3 ^ (((u16_t)((s8_t)aux)) >> 9)) << 8;
|
|
#endif
|
|
*dst++ = VUCP | (PREAMBLE_W << 16) | aux;
|
|
}
|
|
|
|
*count = cnt;
|
|
}
|
|
|
|
|
|
|
|
|
|
|