Files
squeezelite-esp32/components/spotify/cspot/bell/libhelix-aac/dequant.c
Philippe G 898998efb0 big merge
2021-12-18 21:04:23 -08:00

374 lines
12 KiB
C

/* ***** BEGIN LICENSE BLOCK *****
* Source last modified: $Id: dequant.c,v 1.2 2005/05/20 18:05:41 jrecker Exp $
*
* Portions Copyright (c) 1995-2005 RealNetworks, Inc. All Rights Reserved.
*
* The contents of this file, and the files included with this file,
* are subject to the current version of the RealNetworks Public
* Source License (the "RPSL") available at
* http://www.helixcommunity.org/content/rpsl unless you have licensed
* the file under the current version of the RealNetworks Community
* Source License (the "RCSL") available at
* http://www.helixcommunity.org/content/rcsl, in which case the RCSL
* will apply. You may also obtain the license terms directly from
* RealNetworks. You may not use this file except in compliance with
* the RPSL or, if you have a valid RCSL with RealNetworks applicable
* to this file, the RCSL. Please see the applicable RPSL or RCSL for
* the rights, obligations and limitations governing use of the
* contents of the file.
*
* This file is part of the Helix DNA Technology. RealNetworks is the
* developer of the Original Code and owns the copyrights in the
* portions it created.
*
* This file, and the files included with this file, is distributed
* and made available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY
* KIND, EITHER EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS
* ALL SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET
* ENJOYMENT OR NON-INFRINGEMENT.
*
* Technology Compatibility Kit Test Suite(s) Location:
* http://www.helixcommunity.org/content/tck
*
* Contributor(s):
*
* ***** END LICENSE BLOCK ***** */
/**************************************************************************************
* Fixed-point HE-AAC decoder
* Jon Recker (jrecker@real.com), Ken Cooke (kenc@real.com)
* February 2005
*
* dequant.c - transform coefficient dequantization and short-block deinterleaving
**************************************************************************************/
#include "coder.h"
#include "assembly.h"
#define SF_OFFSET 100
/* pow(2, i/4.0) for i = [0,1,2,3], format = Q30 */
static const int pow14[4] PROGMEM = {
0x40000000, 0x4c1bf829, 0x5a82799a, 0x6ba27e65
};
/* pow(2, i/4.0) * pow(j, 4.0/3.0) for i = [0,1,2,3], j = [0,1,2,...,15]
* format = Q28 for j = [0-3], Q25 for j = [4-15]
*/
static const int pow43_14[4][16] PROGMEM = {
{
0x00000000, 0x10000000, 0x285145f3, 0x453a5cdb, /* Q28 */
0x0cb2ff53, 0x111989d6, 0x15ce31c8, 0x1ac7f203, /* Q25 */
0x20000000, 0x257106b9, 0x2b16b4a3, 0x30ed74b4, /* Q25 */
0x36f23fa5, 0x3d227bd3, 0x437be656, 0x49fc823c, /* Q25 */
},
{
0x00000000, 0x1306fe0a, 0x2ff221af, 0x52538f52,
0x0f1a1bf4, 0x1455ccc2, 0x19ee62a8, 0x1fd92396,
0x260dfc14, 0x2c8694d8, 0x333dcb29, 0x3a2f5c7a,
0x4157aed5, 0x48b3aaa3, 0x50409f76, 0x57fc3010,
},
{
0x00000000, 0x16a09e66, 0x39047c0f, 0x61e734aa,
0x11f59ac4, 0x182ec633, 0x1ed66a45, 0x25dfc55a,
0x2d413ccd, 0x34f3462d, 0x3cefc603, 0x4531ab69,
0x4db4adf8, 0x56752054, 0x5f6fcfcd, 0x68a1eca1,
},
{
0x00000000, 0x1ae89f99, 0x43ce3e4b, 0x746d57b2,
0x155b8109, 0x1cc21cdc, 0x24ac1839, 0x2d0a479e,
0x35d13f33, 0x3ef80748, 0x48775c93, 0x524938cd,
0x5c68841d, 0x66d0df0a, 0x717e7bfe, 0x7c6e0305,
},
};
/* pow(j, 4.0 / 3.0) for j = [16,17,18,...,63], format = Q23 */
static const int pow43[48] PROGMEM = {
0x1428a2fa, 0x15db1bd6, 0x1796302c, 0x19598d85,
0x1b24e8bb, 0x1cf7fcfa, 0x1ed28af2, 0x20b4582a,
0x229d2e6e, 0x248cdb55, 0x26832fda, 0x28800000,
0x2a832287, 0x2c8c70a8, 0x2e9bc5d8, 0x30b0ff99,
0x32cbfd4a, 0x34eca001, 0x3712ca62, 0x393e6088,
0x3b6f47e0, 0x3da56717, 0x3fe0a5fc, 0x4220ed72,
0x44662758, 0x46b03e7c, 0x48ff1e87, 0x4b52b3f3,
0x4daaebfd, 0x5007b497, 0x5268fc62, 0x54ceb29c,
0x5738c721, 0x59a72a59, 0x5c19cd35, 0x5e90a129,
0x610b9821, 0x638aa47f, 0x660db90f, 0x6894c90b,
0x6b1fc80c, 0x6daeaa0d, 0x70416360, 0x72d7e8b0,
0x75722ef9, 0x78102b85, 0x7ab1d3ec, 0x7d571e09,
};
/* sqrt(0.5), format = Q31 */
#define SQRTHALF 0x5a82799a
/* Minimax polynomial approximation to pow(x, 4/3), over the range
* poly43lo: x = [0.5, 0.7071]
* poly43hi: x = [0.7071, 1.0]
*
* Relative error < 1E-7
* Coefs are scaled by 4, 2, 1, 0.5, 0.25
*/
//fb
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wnarrowing"
static const int poly43lo[5] PROGMEM = { 0x29a0bda9, 0xb02e4828, 0x5957aa1b, 0x236c498d, 0xff581859 };
static const int poly43hi[5] PROGMEM = { 0x10852163, 0xd333f6a4, 0x46e9408b, 0x27c2cef0, 0xfef577b4 };
#pragma GCC diagnostic pop
/* pow2exp[i] = pow(2, i*4/3) exponent */
static const int pow2exp[8] PROGMEM = { 14, 13, 11, 10, 9, 7, 6, 5 };
/* pow2exp[i] = pow(2, i*4/3) fraction */
static const int pow2frac[8] PROGMEM = {
0x6597fa94, 0x50a28be6, 0x7fffffff, 0x6597fa94,
0x50a28be6, 0x7fffffff, 0x6597fa94, 0x50a28be6
};
/**************************************************************************************
* Function: DequantBlock
*
* Description: dequantize one block of transform coefficients (in-place)
*
* Inputs: quantized transform coefficients, range = [0, 8191]
* number of samples to dequantize
* scalefactor for this block of data, range = [0, 256]
*
* Outputs: dequantized transform coefficients in Q(FBITS_OUT_DQ_OFF)
*
* Return: guard bit mask (OR of abs value of all dequantized coefs)
*
* Notes: applies dequant formula y = pow(x, 4.0/3.0) * pow(2, (scale - 100)/4.0)
* * pow(2, FBITS_OUT_DQ_OFF)
* clips outputs to Q(FBITS_OUT_DQ_OFF)
* output has no minimum number of guard bits
**************************************************************************************/
static int DequantBlock(int *inbuf, int nSamps, int scale)
{
int iSamp, scalef, scalei, x, y, gbMask, shift, tab4[4];
const int *tab16, *coef;
if (nSamps <= 0)
return 0;
scale -= SF_OFFSET; /* new range = [-100, 156] */
/* with two's complement numbers, scalei/scalef factorization works for pos and neg values of scale:
* [+4...+7] >> 2 = +1, [ 0...+3] >> 2 = 0, [-4...-1] >> 2 = -1, [-8...-5] >> 2 = -2 ...
* (-1 & 0x3) = 3, (-2 & 0x3) = 2, (-3 & 0x3) = 1, (0 & 0x3) = 0
*
* Example: 2^(-5/4) = 2^(-1) * 2^(-1/4) = 2^-2 * 2^(3/4)
*/
tab16 = pow43_14[scale & 0x3];
scalef = pow14[scale & 0x3];
scalei = (scale >> 2) + FBITS_OUT_DQ_OFF;
/* cache first 4 values:
* tab16[j] = Q28 for j = [0,3]
* tab4[x] = x^(4.0/3.0) * 2^(0.25*scale), Q(FBITS_OUT_DQ_OFF)
*/
shift = 28 - scalei;
if (shift > 31) {
tab4[0] = tab4[1] = tab4[2] = tab4[3] = 0;
} else if (shift <= 0) {
shift = -shift;
if (shift > 31)
shift = 31;
for (x = 0; x < 4; x++) {
y = tab16[x];
if (y > (0x7fffffff >> shift))
y = 0x7fffffff; /* clip (rare) */
else
y <<= shift;
tab4[x] = y;
}
} else {
tab4[0] = 0;
tab4[1] = tab16[1] >> shift;
tab4[2] = tab16[2] >> shift;
tab4[3] = tab16[3] >> shift;
}
gbMask = 0;
do {
iSamp = *inbuf;
x = FASTABS(iSamp);
if (x < 4) {
y = tab4[x];
} else {
if (x < 16) {
/* result: y = Q25 (tab16 = Q25) */
y = tab16[x];
shift = 25 - scalei;
} else if (x < 64) {
/* result: y = Q21 (pow43tab[j] = Q23, scalef = Q30) */
y = pow43[x-16];
shift = 21 - scalei;
y = MULSHIFT32(y, scalef);
} else {
/* normalize to [0x40000000, 0x7fffffff]
* input x = [64, 8191] = [64, 2^13-1]
* ranges:
* shift = 7: 64 - 127
* shift = 6: 128 - 255
* shift = 5: 256 - 511
* shift = 4: 512 - 1023
* shift = 3: 1024 - 2047
* shift = 2: 2048 - 4095
* shift = 1: 4096 - 8191
*/
x <<= 17;
shift = 0;
if (x < 0x08000000)
x <<= 4, shift += 4;
if (x < 0x20000000)
x <<= 2, shift += 2;
if (x < 0x40000000)
x <<= 1, shift += 1;
coef = (x < SQRTHALF) ? poly43lo : poly43hi;
/* polynomial */
y = coef[0];
y = MULSHIFT32(y, x) + coef[1];
y = MULSHIFT32(y, x) + coef[2];
y = MULSHIFT32(y, x) + coef[3];
y = MULSHIFT32(y, x) + coef[4];
y = MULSHIFT32(y, pow2frac[shift]) << 3;
/* fractional scale
* result: y = Q21 (pow43tab[j] = Q23, scalef = Q30)
*/
y = MULSHIFT32(y, scalef); /* now y is Q24 */
shift = 24 - scalei - pow2exp[shift];
}
/* integer scale */
if (shift <= 0) {
shift = -shift;
if (shift > 31)
shift = 31;
if (y > (0x7fffffff >> shift))
y = 0x7fffffff; /* clip (rare) */
else
y <<= shift;
} else {
if (shift > 31)
shift = 31;
y >>= shift;
}
}
/* sign and store (gbMask used to count GB's) */
gbMask |= y;
/* apply sign */
iSamp >>= 31;
y ^= iSamp;
y -= iSamp;
*inbuf++ = y;
} while (--nSamps);
return gbMask;
}
/**************************************************************************************
* Function: Dequantize
*
* Description: dequantize all transform coefficients for one channel
*
* Inputs: valid AACDecInfo struct (including unpacked, quantized coefficients)
* index of current channel
*
* Outputs: dequantized coefficients, including short-block deinterleaving
* flags indicating if intensity and/or PNS is active
* minimum guard bit count for dequantized coefficients
*
* Return: 0 if successful, error code (< 0) if error
**************************************************************************************/
int Dequantize(AACDecInfo *aacDecInfo, int ch)
{
int gp, cb, sfb, win, width, nSamps, gbMask;
int *coef;
const int /*short*/ *sfbTab;
unsigned char *sfbCodeBook;
short *scaleFactors;
PSInfoBase *psi;
ICSInfo *icsInfo;
/* validate pointers */
if (!aacDecInfo || !aacDecInfo->psInfoBase)
return ERR_AAC_NULL_POINTER;
psi = (PSInfoBase *)(aacDecInfo->psInfoBase);
icsInfo = (ch == 1 && psi->commonWin == 1) ? &(psi->icsInfo[0]) : &(psi->icsInfo[ch]);
if (icsInfo->winSequence == 2) {
sfbTab = sfBandTabShort + sfBandTabShortOffset[psi->sampRateIdx];
nSamps = NSAMPS_SHORT;
} else {
sfbTab = sfBandTabLong + sfBandTabLongOffset[psi->sampRateIdx];
nSamps = NSAMPS_LONG;
}
coef = psi->coef[ch];
sfbCodeBook = psi->sfbCodeBook[ch];
scaleFactors = psi->scaleFactors[ch];
psi->intensityUsed[ch] = 0;
psi->pnsUsed[ch] = 0;
gbMask = 0;
for (gp = 0; gp < icsInfo->numWinGroup; gp++) {
for (win = 0; win < icsInfo->winGroupLen[gp]; win++) {
for (sfb = 0; sfb < icsInfo->maxSFB; sfb++) {
/* dequantize one scalefactor band (not necessary if codebook is intensity or PNS)
* for zero codebook, still run dequantizer in case non-zero pulse data was added
*/
cb = (int)(sfbCodeBook[sfb]);
width = sfbTab[sfb+1] - sfbTab[sfb];
if (cb >= 0 && cb <= 11)
gbMask |= DequantBlock(coef, width, scaleFactors[sfb]);
else if (cb == 13)
psi->pnsUsed[ch] = 1;
else if (cb == 14 || cb == 15)
psi->intensityUsed[ch] = 1; /* should only happen if ch == 1 */
coef += width;
}
coef += (nSamps - sfbTab[icsInfo->maxSFB]);
}
sfbCodeBook += icsInfo->maxSFB;
scaleFactors += icsInfo->maxSFB;
}
aacDecInfo->pnsUsed |= psi->pnsUsed[ch]; /* set flag if PNS used for any channel */
/* calculate number of guard bits in dequantized data */
psi->gbCurrent[ch] = CLZ(gbMask) - 1;
return ERR_AAC_NONE;
}
/**************************************************************************************
* Function: DeinterleaveShortBlocks
*
* Description: deinterleave transform coefficients in short blocks for one channel
*
* Inputs: valid AACDecInfo struct (including unpacked, quantized coefficients)
* index of current channel
*
* Outputs: deinterleaved coefficients (window groups into 8 separate windows)
*
* Return: 0 if successful, error code (< 0) if error
*
* Notes: only necessary if deinterleaving not part of Huffman decoding
**************************************************************************************/
int DeinterleaveShortBlocks(AACDecInfo *aacDecInfo, int ch)
{
(void)aacDecInfo;
(void)ch;
/* not used for this implementation - short block deinterleaving performed during Huffman decoding */
return ERR_AAC_NONE;
}