Files
squeezelite-esp32/main/output_dac.c
2019-05-20 12:48:14 -07:00

164 lines
3.5 KiB
C

#include "squeezelite.h"
#include <signal.h>
static log_level loglevel;
static bool running = true;
extern struct outputstate output;
extern struct buffer *outputbuf;
#define LOCK mutex_lock(outputbuf->mutex)
#define UNLOCK mutex_unlock(outputbuf->mutex)
#define FRAME_BLOCK MAX_SILENCE_FRAMES
extern u8_t *silencebuf;
// buffer to hold output data so we can block on writing outside of output lock, allocated on init
static u8_t *buf;
static unsigned buffill;
static int bytes_per_frame;
static thread_type thread;
static int _dac_write_frames(frames_t out_frames, bool silence, s32_t gainL, s32_t gainR,
s32_t cross_gain_in, s32_t cross_gain_out, s32_t **cross_ptr);
static void *output_thread();
void set_volume(unsigned left, unsigned right) {}
void output_init_dac(log_level level, unsigned output_buf_size, char *params, unsigned rates[], unsigned rate_delay, unsigned idle) {
loglevel = level;
LOG_INFO("init output DAC");
buf = malloc(FRAME_BLOCK * BYTES_PER_FRAME);
if (!buf) {
LOG_ERROR("unable to malloc buf");
return;
}
buffill = 0;
memset(&output, 0, sizeof(output));
output.format = S32_LE;
output.start_frames = FRAME_BLOCK * 2;
output.write_cb = &_dac_write_frames;
output.rate_delay = rate_delay;
if (params) {
if (!strcmp(params, "32")) output.format = S32_LE;
if (!strcmp(params, "24")) output.format = S24_3LE;
if (!strcmp(params, "16")) output.format = S16_LE;
}
// ensure output rate is specified to avoid test open
if (!rates[0]) {
rates[0] = 44100;
}
output_init_common(level, "-", output_buf_size, rates, idle);
#if LINUX || OSX || FREEBSD || POSIX
pthread_attr_t attr;
pthread_attr_init(&attr);
#ifdef PTHREAD_STACK_MIN
pthread_attr_setstacksize(&attr, PTHREAD_STACK_MIN + OUTPUT_THREAD_STACK_SIZE);
#endif
pthread_create(&thread, &attr, output_thread, NULL);
pthread_attr_destroy(&attr);
#endif
#if WIN
thread = CreateThread(NULL, OUTPUT_THREAD_STACK_SIZE, (LPTHREAD_START_ROUTINE)&output_thread, NULL, 0, NULL);
#endif
}
void output_close_dac(void) {
LOG_INFO("close output");
LOCK;
running = false;
UNLOCK;
free(buf);
output_close_common();
}
static int _dac_write_frames(frames_t out_frames, bool silence, s32_t gainL, s32_t gainR,
s32_t cross_gain_in, s32_t cross_gain_out, s32_t **cross_ptr) {
u8_t *obuf;
if (!silence) {
if (output.fade == FADE_ACTIVE && output.fade_dir == FADE_CROSS && *cross_ptr) {
_apply_cross(outputbuf, out_frames, cross_gain_in, cross_gain_out, cross_ptr);
}
obuf = outputbuf->readp;
} else {
obuf = silencebuf;
}
_scale_and_pack_frames(buf + buffill * bytes_per_frame, (s32_t *)(void *)obuf, out_frames, gainL, gainR, output.format);
buffill += out_frames;
return (int)out_frames;
}
static void *output_thread() {
LOCK;
switch (output.format) {
case S32_LE:
bytes_per_frame = 4 * 2; break;
case S24_3LE:
bytes_per_frame = 3 * 2; break;
case S16_LE:
bytes_per_frame = 2 * 2; break;
default:
bytes_per_frame = 4 * 2; break;
break;
}
UNLOCK;
while (running) {
LOCK;
if (output.state == OUTPUT_OFF) {
UNLOCK;
usleep(500000);
continue;
}
output.device_frames = 0;
output.updated = gettime_ms();
output.frames_played_dmp = output.frames_played;
_output_frames(FRAME_BLOCK);
UNLOCK;
if (buffill) {
// do something ...
usleep((buffill * 1000 * 1000) / output.current_sample_rate);
buffill = 0;
} else {
usleep((FRAME_BLOCK * 1000 * 1000) / output.current_sample_rate);
}
}
return 0;
}