big merge

This commit is contained in:
Philippe G
2021-12-18 21:04:23 -08:00
parent 955692f8ad
commit 898998efb0
583 changed files with 84472 additions and 1965 deletions

View File

@@ -1,5 +1,5 @@
idf_component_register(
INCLUDE_DIRS . ./inc inc/alac inc/FLAC inc/helix-aac inc/mad inc/ogg inc/opus inc/opusfile inc/resample16 inc/soxr inc/vorbis
INCLUDE_DIRS . ./inc inc/alac inc/FLAC inc/helix-aac inc/mad inc/ogg inc/opus inc/opusfile inc/resample16 inc/soxr inc/vorbis
)
if (DEFINED AAC_DISABLE_SBR)

View File

@@ -243,7 +243,7 @@ struct GDS_Device* SSD1675_Detect(char *Driver, struct GDS_Device* Device) {
char *p;
struct PrivateSpace* Private = (struct PrivateSpace*) Device->Private;
Private->ReadyPin = -1;
if ((p = strcasestr(Driver, "ready")) != NULL) Private->ReadyPin = atoi(strchr(p, '=') + 1);
if ((p = strcasestr(Driver, "ready")) && (p = strchr(p, '='))) Private->ReadyPin = atoi(p + 1);
ESP_LOGI(TAG, "SSD1675 driver with ready GPIO %d", Private->ReadyPin);

View File

@@ -199,8 +199,8 @@ static void SetLayout( struct GDS_Device* Device, bool HFlip, bool VFlip, bool R
WriteByte( Device, Private->MADCtl );
if (Private->Model == ST7789) {
if (Rotate) Private->Offset.Width = HFlip ? 320 - Device->Width : 0;
else Private->Offset.Height = HFlip ? 320 - Device->Height : 0;
if (Rotate) Private->Offset.Width += HFlip ? 320 - Device->Width : 0;
else Private->Offset.Height += HFlip ? 320 - Device->Height : 0;
}
#ifdef SHADOW_BUFFER
@@ -235,7 +235,7 @@ static bool Init( struct GDS_Device* Device ) {
Private->iRAM = heap_caps_malloc( (Private->PageSize + 1) * Device->Width * Depth, MALLOC_CAP_INTERNAL | MALLOC_CAP_DMA );
#endif
ESP_LOGI(TAG, "ST77xx with bit depth %u, page %u, iRAM %p", Device->Depth, Private->PageSize, Private->iRAM);
ESP_LOGI(TAG, "ST77xx with bit depth %u, offsets %hu:%hu, page %u, iRAM %p", Device->Depth, Private->Offset.Height, Private->Offset.Width, Private->PageSize, Private->iRAM);
// Sleepout + Booster
Device->WriteCommand( Device, 0x11 );
@@ -283,8 +283,14 @@ struct GDS_Device* ST77xx_Detect(char *Driver, struct GDS_Device* Device) {
*Device = ST77xx;
sscanf(Driver, "%*[^:]:%u", &Depth);
struct PrivateSpace* Private = (struct PrivateSpace*) Device->Private;
Private->Model = Model;
if (Model == ST7735) {
sscanf(Driver, "%*[^:]%*[^x]%*[^=]=%hu", &Private->Offset.Height);
sscanf(Driver, "%*[^:]%*[^y]%*[^=]=%hu", &Private->Offset.Width);
}
if (Depth == 18) {
Device->Mode = GDS_RGB666;

View File

@@ -98,12 +98,14 @@ void GDS_FontDrawChar( struct GDS_Device* Device, char Character, int x, int y,
}
}
bool GDS_SetFont( struct GDS_Device* Display, const struct GDS_FontDef* Font ) {
const struct GDS_FontDef* GDS_SetFont( struct GDS_Device* Display, const struct GDS_FontDef* Font ) {
const struct GDS_FontDef* OldFont = Display->Font;
Display->FontForceProportional = false;
Display->FontForceMonospace = false;
Display->Font = Font;
return true;
return OldFont;
}
void GDS_FontForceProportional( struct GDS_Device* Display, bool Force ) {

View File

@@ -46,7 +46,7 @@ typedef enum {
TextAnchor_Center
} TextAnchor;
bool GDS_SetFont( struct GDS_Device* Display, const struct GDS_FontDef* Font );
const struct GDS_FontDef* GDS_SetFont( struct GDS_Device* Display, const struct GDS_FontDef* Font );
void GDS_FontForceProportional( struct GDS_Device* Display, bool Force );
void GDS_FontForceMonospace( struct GDS_Device* Display, bool Force );
@@ -59,7 +59,8 @@ int GDS_FontGetMaxCharsPerColumn( struct GDS_Device* Display );
int GDS_FontGetCharWidth( struct GDS_Device* Display, char Character );
int GDS_FontGetCharHeight( struct GDS_Device* Display );
int GDS_FontMeasureString( struct GDS_Device* Display, const char* Text );\
int GDS_FontMeasureString( struct GDS_Device* Display, const char* Text );
int GDS_FontMeasureStringLine( struct GDS_Device* Display, int Line, const char* Text );
void GDS_FontDrawChar( struct GDS_Device* Display, char Character, int x, int y, int Color );
void GDS_FontDrawString( struct GDS_Device* Display, int x, int y, const char* Text, int Color );

View File

@@ -15,7 +15,7 @@
#include "gds_private.h"
#include "gds_image.h"
const char TAG[] = "ImageDec";
const static char TAG[] = "ImageDec";
#define SCRATCH_SIZE 3100

View File

@@ -121,6 +121,19 @@ bool GDS_TextLine(struct GDS_Device* Device, int N, int Pos, int Attr, char *Tex
return Width + X < Device->Width;
}
/****************************************************************************************
*
*/
int GDS_GetTextWidth(struct GDS_Device* Device, int N, int Attr, char *Text) {
struct GDS_FontDef *Font = GDS_SetFont( Device, Device->Lines[N-1].Font );
if (Attr & GDS_TEXT_MONOSPACE) GDS_FontForceMonospace( Device, true );
int Width = GDS_FontMeasureString( Device, Text );
GDS_SetFont( Device, Font );
return Width;
}
/****************************************************************************************
* Try to align string for better scrolling visual. there is probably much better to do
*/

View File

@@ -31,5 +31,6 @@ struct GDS_Device;
bool GDS_TextSetFontAuto(struct GDS_Device* Device, int N, int FontType, int Space);
bool GDS_TextSetFont(struct GDS_Device* Device, int N, const struct GDS_FontDef *Font, int Space);
bool GDS_TextLine(struct GDS_Device* Device, int N, int Pos, int Attr, char *Text);
int GDS_GetTextWidth(struct GDS_Device* Device, int N, int Attr, char *Text);
int GDS_TextStretch(struct GDS_Device* Device, int N, char *String, int Max);
void GDS_TextPos(struct GDS_Device* Device, int FontType, int Where, int Attr, char *Text, ...);

View File

@@ -41,7 +41,12 @@ static EXT_RAM_ATTR struct {
int offset, boundary;
char *metadata_config;
bool timer, refresh;
uint32_t elapsed, duration;
uint32_t elapsed;
struct {
uint32_t value;
char string[8]; // H:MM:SS
bool visible;
} duration;
TickType_t tick;
} displayer;
@@ -71,11 +76,11 @@ void display_init(char *welcome) {
char *config = config_alloc_get_str("display_config", CONFIG_DISPLAY_CONFIG, "N/A");
int width = -1, height = -1, backlight_pin = -1;
char *p, *drivername = strstr(config, "driver");
char *drivername = strstr(config, "driver");
if ((p = strcasestr(config, "width")) != NULL) width = atoi(strchr(p, '=') + 1);
if ((p = strcasestr(config, "height")) != NULL) height = atoi(strchr(p, '=') + 1);
if ((p = strcasestr(config, "back")) != NULL) backlight_pin = atoi(strchr(p, '=') + 1);
PARSE_PARAM(config, "width", '=', width);
PARSE_PARAM(config, "height", '=', height);
PARSE_PARAM(config, "back", '=', backlight_pin);
// query drivers to see if we have a match
ESP_LOGI(TAG, "Trying to configure display with %s", config);
@@ -89,24 +94,24 @@ void display_init(char *welcome) {
// so far so good
if (display && width > 0 && height > 0) {
int RST_pin = -1;
if ((p = strcasestr(config, "reset")) != NULL) RST_pin = atoi(strchr(p, '=') + 1);
PARSE_PARAM(config, "reset", '=', RST_pin);
// Detect driver interface
if (strstr(config, "I2C") && i2c_system_port != -1) {
if (strcasestr(config, "I2C") && i2c_system_port != -1) {
int address = 0x3C;
if ((p = strcasestr(config, "address")) != NULL) address = atoi(strchr(p, '=') + 1);
PARSE_PARAM(config, "address", '=', address);
init = true;
GDS_I2CInit( i2c_system_port, -1, -1, i2c_system_speed ) ;
GDS_I2CAttachDevice( display, width, height, address, RST_pin, backlight_pin );
ESP_LOGI(TAG, "Display is I2C on port %u", address);
} else if (strstr(config, "SPI") && spi_system_host != -1) {
} else if (strcasestr(config, "SPI") && spi_system_host != -1) {
int CS_pin = -1, speed = 0;
if ((p = strcasestr(config, "cs")) != NULL) CS_pin = atoi(strchr(p, '=') + 1);
if ((p = strcasestr(config, "speed")) != NULL) speed = atoi(strchr(p, '=') + 1);
PARSE_PARAM(config, "cs", '=', CS_pin);
PARSE_PARAM(config, "speed", '=', speed);
init = true;
GDS_SPIInit( spi_system_host, spi_system_dc_gpio );
@@ -126,7 +131,7 @@ void display_init(char *welcome) {
static DRAM_ATTR StaticTask_t xTaskBuffer __attribute__ ((aligned (4)));
static EXT_RAM_ATTR StackType_t xStack[DISPLAYER_STACK_SIZE] __attribute__ ((aligned (4)));
GDS_SetLayout( display, strcasestr(config, "HFlip"), strcasestr(config, "VFlip"), strcasestr(config, "rotate"));
GDS_SetLayout(display, strcasestr(config, "HFlip"), strcasestr(config, "VFlip"), strcasestr(config, "rotate"));
GDS_SetFont(display, &Font_droid_sans_fallback_15x17 );
GDS_TextPos(display, GDS_FONT_MEDIUM, GDS_TEXT_CENTERED, GDS_TEXT_CLEAR | GDS_TEXT_UPDATE, welcome);
@@ -193,18 +198,34 @@ static void displayer_task(void *args) {
// handler elapsed track time
if (displayer.timer && displayer.state == DISPLAYER_ACTIVE) {
char counter[16];
char line[19] = "-", *_line = line + 1; // [-]H:MM:SS / H:MM:SS
TickType_t tick = xTaskGetTickCount();
uint32_t elapsed = (tick - displayer.tick) * portTICK_PERIOD_MS;
if (elapsed >= 1000) {
xSemaphoreTake(displayer.mutex, portMAX_DELAY);
displayer.tick = tick;
displayer.elapsed += elapsed / 1000;
xSemaphoreGive(displayer.mutex);
if (displayer.elapsed < 3600) snprintf(counter, 16, "%5u:%02u", displayer.elapsed / 60, displayer.elapsed % 60);
else snprintf(counter, 16, "%2u:%02u:%02u", displayer.elapsed / 3600, (displayer.elapsed % 3600) / 60, displayer.elapsed % 60);
GDS_TextLine(display, 1, GDS_TEXT_RIGHT, (GDS_TEXT_CLEAR | GDS_TEXT_CLEAR_EOL) | GDS_TEXT_UPDATE, counter);
elapsed = displayer.elapsed += elapsed / 1000;
xSemaphoreGive(displayer.mutex);
// when we have duration but no space, display remaining time
if (displayer.duration.value && !displayer.duration.visible) elapsed = displayer.duration.value - elapsed;
if (elapsed < 3600) sprintf(_line, "%u:%02u", elapsed / 60, elapsed % 60);
else sprintf(_line, "%u:%02u:%02u", (elapsed / 3600) % 100, (elapsed % 3600) / 60, elapsed % 60);
// concatenate if we have room for elapsed / duration
if (displayer.duration.visible) {
strcat(_line, "/");
strcat(_line, displayer.duration.string);
} else if (displayer.duration.value) {
_line--;
}
// just re-write the whole line it's easier
GDS_TextLine(display, 1, GDS_TEXT_LEFT, GDS_TEXT_CLEAR, displayer.header);
GDS_TextLine(display, 1, GDS_TEXT_RIGHT, GDS_TEXT_UPDATE, _line);
timer_sleep = 1000;
} else timer_sleep = max(1000 - elapsed, 0);
} else timer_sleep = DEFAULT_SLEEP;
@@ -279,8 +300,8 @@ void displayer_metadata(char *artist, char *album, char *title) {
}
// get optional scroll speed & pause
if ((p = strcasestr(displayer.metadata_config, "speed")) != NULL) sscanf(p, "%*[^=]=%d", &displayer.speed);
if ((p = strcasestr(displayer.metadata_config, "pause")) != NULL) sscanf(p, "%*[^=]=%d", &displayer.pause);
PARSE_PARAM(displayer.metadata_config, "speed", '=', displayer.speed);
PARSE_PARAM(displayer.metadata_config, "pause", '=', displayer.pause);
displayer.offset = 0;
utf8_decode(displayer.string);
@@ -318,9 +339,27 @@ void displayer_timer(enum displayer_time_e mode, int elapsed, int duration) {
xSemaphoreTake(displayer.mutex, portMAX_DELAY);
if (elapsed >= 0) displayer.elapsed = elapsed / 1000;
if (duration >= 0) displayer.duration = duration / 1000;
if (displayer.timer) displayer.tick = xTaskGetTickCount();
if (elapsed >= 0) displayer.elapsed = elapsed / 1000;
if (duration > 0) {
displayer.duration.visible = true;
displayer.duration.value = duration / 1000;
if (displayer.duration.value > 3600) sprintf(displayer.duration.string, "%u:%02u:%02u", (displayer.duration.value / 3600) % 10,
(displayer.duration.value % 3600) / 60, displayer.duration.value % 60);
else sprintf(displayer.duration.string, "%u:%02u", displayer.duration.value / 60, displayer.duration.value % 60);
char *buf;
asprintf(&buf, "%s %s/%s", displayer.header, displayer.duration.string, displayer.duration.string);
if (GDS_GetTextWidth(display, 1, 0, buf) > GDS_GetWidth(display)) {
ESP_LOGW(TAG, "Can't fit duration %s (%d) on screen using elapsed only", buf, GDS_GetTextWidth(display, 1, 0, buf));
displayer.duration.visible = false;
}
free(buf);
} else if (!duration) {
displayer.duration.visible = false;
displayer.duration.value = 0;
}
xSemaphoreGive(displayer.mutex);
}
@@ -345,7 +384,8 @@ void displayer_control(enum displayer_cmd_e cmd, ...) {
displayer.timer = false;
displayer.refresh = true;
displayer.string[0] = '\0';
displayer.elapsed = displayer.duration = 0;
displayer.elapsed = displayer.duration.value = 0;
displayer.duration.visible = false;
displayer.offset = displayer.boundary = 0;
display_bus(&displayer, DISPLAY_BUS_TAKE);
vTaskResume(displayer.task);

View File

@@ -26,7 +26,7 @@ static const uint8_t Square721_BT11x14[] = {
0x02, 0x00, 0x00, 0x00, 0x0C, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // Code for char ,
0x04, 0x00, 0x00, 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // Code for char -
0x02, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // Code for char .
0x04, 0x00, 0x0C, 0x80, 0x03, 0x70, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // Code for char /
0x06, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x80, 0x03, 0x70, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // Code for char /
0x08, 0x00, 0x00, 0x00, 0x00, 0xF0, 0x03, 0x08, 0x04, 0x08, 0x04, 0x08, 0x04, 0x08, 0x04, 0xF0, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // Code for char 0
0x08, 0x00, 0x00, 0x00, 0x00, 0x20, 0x00, 0x10, 0x04, 0x08, 0x04, 0xF8, 0x07, 0x00, 0x04, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // Code for char 1
0x08, 0x00, 0x00, 0x00, 0x00, 0x30, 0x07, 0x08, 0x05, 0x88, 0x04, 0x88, 0x04, 0x88, 0x04, 0x70, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // Code for char 2

View File

@@ -17,7 +17,7 @@
#include "freertos/FreeRTOS.h"
#include "freertos/queue.h"
#include "freertos/task.h"
#include "globdefs.h"
#include "tools.h"
static const char * TAG = "btappcore";

View File

@@ -25,7 +25,7 @@
#include "platform_config.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "trace.h"
#include "tools.h"
#include "audio_controls.h"
#include "sys/lock.h"
#include "display.h"

View File

@@ -17,10 +17,9 @@
#include "freertos/timers.h"
#include "argtable3/argtable3.h"
#include "platform_config.h"
#include "trace.h"
#include "messaging.h"
#include "cJSON.h"
#include "globdefs.h"
#include "tools.h"
static const char * TAG = "bt_app_source";
static const char * BT_RC_CT_TAG="RCCT";

View File

@@ -0,0 +1,10 @@
idf_build_get_property(prefix IDF_PATH)
string(CONCAT prefix "${prefix}" "/components/esp_http_server")
idf_component_register(
SRC_DIRS "${prefix}/src" "${prefix}/src/util"
INCLUDE_DIRS "${prefix}/include"
PRIV_INCLUDE_DIRS "." "${prefix}/src/port/esp32" "${prefix}/src/util"
REQUIRES nghttp # for http_parser.h
PRIV_REQUIRES lwip mbedtls esp_timer
)

View File

@@ -0,0 +1 @@
source "$IDF_PATH/components/esp_http_server/Kconfig"

View File

@@ -0,0 +1,68 @@
// Copyright 2018 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _OSAL_H_
#define _OSAL_H_
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
#include <unistd.h>
#include <stdint.h>
#include <esp_timer.h>
#ifdef __cplusplus
extern "C" {
#endif
#define OS_SUCCESS ESP_OK
#define OS_FAIL ESP_FAIL
typedef TaskHandle_t othread_t;
static inline int httpd_os_thread_create(othread_t *thread,
const char *name, uint16_t stacksize, int prio,
void (*thread_routine)(void *arg), void *arg,
BaseType_t core_id)
{
StaticTask_t *xTaskBuffer = (StaticTask_t*) heap_caps_malloc(sizeof(StaticTask_t), (MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT));
StackType_t *xStack = heap_caps_malloc(stacksize,(MALLOC_CAP_SPIRAM|MALLOC_CAP_8BIT));
*thread = xTaskCreateStaticPinnedToCore(thread_routine, name, stacksize, arg, prio, xStack,xTaskBuffer,core_id);
if (*thread) {
return OS_SUCCESS;
}
return OS_FAIL;
}
/* Only self delete is supported */
static inline void httpd_os_thread_delete(void)
{
vTaskDelete(xTaskGetCurrentTaskHandle());
}
static inline void httpd_os_thread_sleep(int msecs)
{
vTaskDelay(msecs / portTICK_RATE_MS);
}
static inline othread_t httpd_os_thread_handle(void)
{
return xTaskGetCurrentTaskHandle();
}
#ifdef __cplusplus
}
#endif
#endif /* ! _OSAL_H_ */

View File

@@ -0,0 +1,49 @@
set(srcs
"heap_caps.c"
"heap_caps_init.c"
"multi_heap.c"
"heap_tlsf.c")
if(NOT CONFIG_HEAP_POISONING_DISABLED)
list(APPEND srcs "multi_heap_poisoning.c")
endif()
if(CONFIG_HEAP_TASK_TRACKING)
list(APPEND srcs "heap_task_info.c")
endif()
if(CONFIG_HEAP_TRACING_STANDALONE)
list(APPEND srcs "heap_trace_standalone.c")
set_source_files_properties(heap_trace_standalone.c
PROPERTIES COMPILE_FLAGS
-Wno-frame-address)
endif()
idf_component_register(SRCS "${srcs}"
INCLUDE_DIRS include
LDFRAGMENTS linker.lf
PRIV_REQUIRES soc)
if(CONFIG_HEAP_TRACING)
set(WRAP_FUNCTIONS
calloc
malloc
free
realloc
heap_caps_malloc
heap_caps_free
heap_caps_realloc
heap_caps_malloc_default
heap_caps_realloc_default)
foreach(wrap ${WRAP_FUNCTIONS})
target_link_libraries(${COMPONENT_LIB} INTERFACE "-Wl,--wrap=${wrap}")
endforeach()
endif()
if(NOT CMAKE_BUILD_EARLY_EXPANSION)
idf_build_get_property(build_components BUILD_COMPONENTS)
if(freertos IN_LIST build_components)
target_compile_options(${COMPONENT_TARGET} PRIVATE "-DMULTI_HEAP_FREERTOS")
endif()
endif()

74
components/heap/Kconfig Normal file
View File

@@ -0,0 +1,74 @@
menu "Heap memory debugging"
choice HEAP_CORRUPTION_DETECTION
prompt "Heap corruption detection"
default HEAP_POISONING_DISABLED
help
Enable heap poisoning features to detect heap corruption caused by out-of-bounds access to heap memory.
See the "Heap Memory Debugging" page of the IDF documentation
for a description of each level of heap corruption detection.
config HEAP_POISONING_DISABLED
bool "Basic (no poisoning)"
config HEAP_POISONING_LIGHT
bool "Light impact"
config HEAP_POISONING_COMPREHENSIVE
bool "Comprehensive"
endchoice
choice HEAP_TRACING_DEST
bool "Heap tracing"
default HEAP_TRACING_OFF
help
Enables the heap tracing API defined in esp_heap_trace.h.
This function causes a moderate increase in IRAM code side and a minor increase in heap function
(malloc/free/realloc) CPU overhead, even when the tracing feature is not used.
So it's best to keep it disabled unless tracing is being used.
config HEAP_TRACING_OFF
bool "Disabled"
config HEAP_TRACING_STANDALONE
bool "Standalone"
select HEAP_TRACING
config HEAP_TRACING_TOHOST
bool "Host-based"
select HEAP_TRACING
endchoice
config HEAP_TRACING
bool
default F
help
Enables/disables heap tracing API.
config HEAP_TRACING_STACK_DEPTH
int "Heap tracing stack depth"
range 0 0 if IDF_TARGET_ARCH_RISCV # Disabled for RISC-V due to `__builtin_return_address` limitation
default 0 if IDF_TARGET_ARCH_RISCV
range 0 10
default 2
depends on HEAP_TRACING
help
Number of stack frames to save when tracing heap operation callers.
More stack frames uses more memory in the heap trace buffer (and slows down allocation), but
can provide useful information.
config HEAP_TASK_TRACKING
bool "Enable heap task tracking"
depends on !HEAP_POISONING_DISABLED
help
Enables tracking the task responsible for each heap allocation.
This function depends on heap poisoning being enabled and adds four more bytes of overhead for each block
allocated.
config HEAP_ABORT_WHEN_ALLOCATION_FAILS
bool "Abort if memory allocation fails"
default n
help
When enabled, if a memory allocation operation fails it will cause a system abort.
endmenu

View File

@@ -0,0 +1,32 @@
#
# Component Makefile
#
COMPONENT_OBJS := heap_caps_init.o heap_caps.o multi_heap.o heap_tlsf.o
ifndef CONFIG_HEAP_POISONING_DISABLED
COMPONENT_OBJS += multi_heap_poisoning.o
ifdef CONFIG_HEAP_TASK_TRACKING
COMPONENT_OBJS += heap_task_info.o
endif
endif
ifdef CONFIG_HEAP_TRACING_STANDALONE
COMPONENT_OBJS += heap_trace_standalone.o
endif
ifdef CONFIG_HEAP_TRACING
WRAP_FUNCTIONS = calloc malloc free realloc heap_caps_malloc heap_caps_free heap_caps_realloc heap_caps_malloc_default heap_caps_realloc_default
WRAP_ARGUMENT := -Wl,--wrap=
COMPONENT_ADD_LDFLAGS = -l$(COMPONENT_NAME) $(addprefix $(WRAP_ARGUMENT),$(WRAP_FUNCTIONS))
endif
COMPONENT_ADD_LDFRAGMENTS += linker.lf
CFLAGS += -DMULTI_HEAP_FREERTOS

609
components/heap/heap_caps.c Normal file
View File

@@ -0,0 +1,609 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdbool.h>
#include <string.h>
#include <assert.h>
#include <stdio.h>
#include <sys/param.h>
#include "esp_attr.h"
#include "esp_heap_caps.h"
#include "multi_heap.h"
#include "esp_log.h"
#include "heap_private.h"
#include "esp_system.h"
/*
This file, combined with a region allocator that supports multiple heaps, solves the problem that the ESP32 has RAM
that's slightly heterogeneous. Some RAM can be byte-accessed, some allows only 32-bit accesses, some can execute memory,
some can be remapped by the MMU to only be accessed by a certain PID etc. In order to allow the most flexible memory
allocation possible, this code makes it possible to request memory that has certain capabilities. The code will then use
its knowledge of how the memory is configured along with a priority scheme to allocate that memory in the most sane way
possible. This should optimize the amount of RAM accessible to the code without hardwiring addresses.
*/
static esp_alloc_failed_hook_t alloc_failed_callback;
/*
This takes a memory chunk in a region that can be addressed as both DRAM as well as IRAM. It will convert it to
IRAM in such a way that it can be later freed. It assumes both the address as well as the length to be word-aligned.
It returns a region that's 1 word smaller than the region given because it stores the original Dram address there.
*/
IRAM_ATTR static void *dram_alloc_to_iram_addr(void *addr, size_t len)
{
uintptr_t dstart = (uintptr_t)addr; //First word
uintptr_t dend = dstart + len - 4; //Last word
assert(esp_ptr_in_diram_dram((void *)dstart));
assert(esp_ptr_in_diram_dram((void *)dend));
assert((dstart & 3) == 0);
assert((dend & 3) == 0);
#if SOC_DIRAM_INVERTED // We want the word before the result to hold the DRAM address
uint32_t *iptr = esp_ptr_diram_dram_to_iram((void *)dend);
#else
uint32_t *iptr = esp_ptr_diram_dram_to_iram((void *)dstart);
#endif
*iptr = dstart;
return iptr + 1;
}
static void heap_caps_alloc_failed(size_t requested_size, uint32_t caps, const char *function_name)
{
if (alloc_failed_callback) {
alloc_failed_callback(requested_size, caps, function_name);
}
#ifdef CONFIG_HEAP_ABORT_WHEN_ALLOCATION_FAILS
esp_system_abort("Memory allocation failed");
#endif
}
esp_err_t heap_caps_register_failed_alloc_callback(esp_alloc_failed_hook_t callback)
{
if (callback == NULL) {
return ESP_ERR_INVALID_ARG;
}
alloc_failed_callback = callback;
return ESP_OK;
}
bool heap_caps_match(const heap_t *heap, uint32_t caps)
{
return heap->heap != NULL && ((get_all_caps(heap) & caps) == caps);
}
/*
Routine to allocate a bit of memory with certain capabilities. caps is a bitfield of MALLOC_CAP_* bits.
*/
IRAM_ATTR void *heap_caps_malloc( size_t size, uint32_t caps )
{
void *ret = NULL;
if (size > HEAP_SIZE_MAX) {
// Avoids int overflow when adding small numbers to size, or
// calculating 'end' from start+size, by limiting 'size' to the possible range
heap_caps_alloc_failed(size, caps, __func__);
return NULL;
}
if (caps & MALLOC_CAP_EXEC) {
//MALLOC_CAP_EXEC forces an alloc from IRAM. There is a region which has both this as well as the following
//caps, but the following caps are not possible for IRAM. Thus, the combination is impossible and we return
//NULL directly, even although our heap capabilities (based on soc_memory_tags & soc_memory_regions) would
//indicate there is a tag for this.
if ((caps & MALLOC_CAP_8BIT) || (caps & MALLOC_CAP_DMA)) {
heap_caps_alloc_failed(size, caps, __func__);
return NULL;
}
caps |= MALLOC_CAP_32BIT; // IRAM is 32-bit accessible RAM
}
if (caps & MALLOC_CAP_32BIT) {
/* 32-bit accessible RAM should allocated in 4 byte aligned sizes
* (Future versions of ESP-IDF should possibly fail if an invalid size is requested)
*/
size = (size + 3) & (~3); // int overflow checked above
}
for (int prio = 0; prio < SOC_MEMORY_TYPE_NO_PRIOS; prio++) {
//Iterate over heaps and check capabilities at this priority
heap_t *heap;
SLIST_FOREACH(heap, &registered_heaps, next) {
if (heap->heap == NULL) {
continue;
}
if ((heap->caps[prio] & caps) != 0) {
//Heap has at least one of the caps requested. If caps has other bits set that this prio
//doesn't cover, see if they're available in other prios.
if ((get_all_caps(heap) & caps) == caps) {
//This heap can satisfy all the requested capabilities. See if we can grab some memory using it.
if ((caps & MALLOC_CAP_EXEC) && esp_ptr_in_diram_dram((void *)heap->start)) {
//This is special, insofar that what we're going to get back is a DRAM address. If so,
//we need to 'invert' it (lowest address in DRAM == highest address in IRAM and vice-versa) and
//add a pointer to the DRAM equivalent before the address we're going to return.
ret = multi_heap_malloc(heap->heap, size + 4); // int overflow checked above
if (ret != NULL) {
return dram_alloc_to_iram_addr(ret, size + 4); // int overflow checked above
}
} else {
//Just try to alloc, nothing special.
ret = multi_heap_malloc(heap->heap, size);
if (ret != NULL) {
return ret;
}
}
}
}
}
}
heap_caps_alloc_failed(size, caps, __func__);
//Nothing usable found.
return NULL;
}
#define MALLOC_DISABLE_EXTERNAL_ALLOCS -1
//Dual-use: -1 (=MALLOC_DISABLE_EXTERNAL_ALLOCS) disables allocations in external memory, >=0 sets the limit for allocations preferring internal memory.
static int malloc_alwaysinternal_limit=MALLOC_DISABLE_EXTERNAL_ALLOCS;
void heap_caps_malloc_extmem_enable(size_t limit)
{
malloc_alwaysinternal_limit=limit;
}
/*
Default memory allocation implementation. Should return standard 8-bit memory. malloc() essentially resolves to this function.
*/
IRAM_ATTR void *heap_caps_malloc_default( size_t size )
{
if (malloc_alwaysinternal_limit==MALLOC_DISABLE_EXTERNAL_ALLOCS) {
return heap_caps_malloc( size, MALLOC_CAP_DEFAULT | MALLOC_CAP_INTERNAL);
} else {
void *r;
if (size <= (size_t)malloc_alwaysinternal_limit) {
r=heap_caps_malloc( size, MALLOC_CAP_DEFAULT | MALLOC_CAP_INTERNAL );
} else {
r=heap_caps_malloc( size, MALLOC_CAP_DEFAULT | MALLOC_CAP_SPIRAM );
}
if (r==NULL) {
//try again while being less picky
r=heap_caps_malloc( size, MALLOC_CAP_DEFAULT );
}
return r;
}
}
/*
Same for realloc()
Note: keep the logic in here the same as in heap_caps_malloc_default (or merge the two as soon as this gets more complex...)
*/
IRAM_ATTR void *heap_caps_realloc_default( void *ptr, size_t size )
{
if (malloc_alwaysinternal_limit==MALLOC_DISABLE_EXTERNAL_ALLOCS) {
return heap_caps_realloc( ptr, size, MALLOC_CAP_DEFAULT | MALLOC_CAP_INTERNAL );
} else {
void *r;
if (size <= (size_t)malloc_alwaysinternal_limit) {
r=heap_caps_realloc( ptr, size, MALLOC_CAP_DEFAULT | MALLOC_CAP_INTERNAL );
} else {
r=heap_caps_realloc( ptr, size, MALLOC_CAP_DEFAULT | MALLOC_CAP_SPIRAM );
}
if (r==NULL && size>0) {
//We needed to allocate memory, but we didn't. Try again while being less picky.
r=heap_caps_realloc( ptr, size, MALLOC_CAP_DEFAULT );
}
return r;
}
}
/*
Memory allocation as preference in decreasing order.
*/
IRAM_ATTR void *heap_caps_malloc_prefer( size_t size, size_t num, ... )
{
va_list argp;
va_start( argp, num );
void *r = NULL;
while (num--) {
uint32_t caps = va_arg( argp, uint32_t );
r = heap_caps_malloc( size, caps );
if (r != NULL) {
break;
}
}
va_end( argp );
return r;
}
/*
Memory reallocation as preference in decreasing order.
*/
IRAM_ATTR void *heap_caps_realloc_prefer( void *ptr, size_t size, size_t num, ... )
{
va_list argp;
va_start( argp, num );
void *r = NULL;
while (num--) {
uint32_t caps = va_arg( argp, uint32_t );
r = heap_caps_realloc( ptr, size, caps );
if (r != NULL || size == 0) {
break;
}
}
va_end( argp );
return r;
}
/*
Memory callocation as preference in decreasing order.
*/
IRAM_ATTR void *heap_caps_calloc_prefer( size_t n, size_t size, size_t num, ... )
{
va_list argp;
va_start( argp, num );
void *r = NULL;
while (num--) {
uint32_t caps = va_arg( argp, uint32_t );
r = heap_caps_calloc( n, size, caps );
if (r != NULL) break;
}
va_end( argp );
return r;
}
/* Find the heap which belongs to ptr, or return NULL if it's
not in any heap.
(This confirms if ptr is inside the heap's region, doesn't confirm if 'ptr'
is an allocated block or is some other random address inside the heap.)
*/
IRAM_ATTR static heap_t *find_containing_heap(void *ptr )
{
intptr_t p = (intptr_t)ptr;
heap_t *heap;
SLIST_FOREACH(heap, &registered_heaps, next) {
if (heap->heap != NULL && p >= heap->start && p < heap->end) {
return heap;
}
}
return NULL;
}
IRAM_ATTR void heap_caps_free( void *ptr)
{
if (ptr == NULL) {
return;
}
if (esp_ptr_in_diram_iram(ptr)) {
//Memory allocated here is actually allocated in the DRAM alias region and
//cannot be de-allocated as usual. dram_alloc_to_iram_addr stores a pointer to
//the equivalent DRAM address, though; free that.
uint32_t *dramAddrPtr = (uint32_t *)ptr;
ptr = (void *)dramAddrPtr[-1];
}
heap_t *heap = find_containing_heap(ptr);
assert(heap != NULL && "free() target pointer is outside heap areas");
multi_heap_free(heap->heap, ptr);
}
IRAM_ATTR void *heap_caps_realloc( void *ptr, size_t size, uint32_t caps)
{
bool ptr_in_diram_case = false;
heap_t *heap = NULL;
void *dram_ptr = NULL;
if (ptr == NULL) {
return heap_caps_malloc(size, caps);
}
if (size == 0) {
heap_caps_free(ptr);
return NULL;
}
if (size > HEAP_SIZE_MAX) {
heap_caps_alloc_failed(size, caps, __func__);
return NULL;
}
//The pointer to memory may be aliased, we need to
//recover the corresponding address before to manage a new allocation:
if(esp_ptr_in_diram_iram((void *)ptr)) {
uint32_t *dram_addr = (uint32_t *)ptr;
dram_ptr = (void *)dram_addr[-1];
heap = find_containing_heap(dram_ptr);
assert(heap != NULL && "realloc() pointer is outside heap areas");
//with pointers that reside on diram space, we avoid using
//the realloc implementation due to address translation issues,
//instead force a malloc/copy/free
ptr_in_diram_case = true;
} else {
heap = find_containing_heap(ptr);
assert(heap != NULL && "realloc() pointer is outside heap areas");
}
// are the existing heap's capabilities compatible with the
// requested ones?
bool compatible_caps = (caps & get_all_caps(heap)) == caps;
if (compatible_caps && !ptr_in_diram_case) {
// try to reallocate this memory within the same heap
// (which will resize the block if it can)
void *r = multi_heap_realloc(heap->heap, ptr, size);
if (r != NULL) {
return r;
}
}
// if we couldn't do that, try to see if we can reallocate
// in a different heap with requested capabilities.
void *new_p = heap_caps_malloc(size, caps);
if (new_p != NULL) {
size_t old_size = 0;
//If we're dealing with aliased ptr, information regarding its containing
//heap can only be obtained with translated address.
if(ptr_in_diram_case) {
old_size = multi_heap_get_allocated_size(heap->heap, dram_ptr);
} else {
old_size = multi_heap_get_allocated_size(heap->heap, ptr);
}
assert(old_size > 0);
memcpy(new_p, ptr, MIN(size, old_size));
heap_caps_free(ptr);
return new_p;
}
heap_caps_alloc_failed(size, caps, __func__);
return NULL;
}
IRAM_ATTR void *heap_caps_calloc( size_t n, size_t size, uint32_t caps)
{
void *result;
size_t size_bytes;
if (__builtin_mul_overflow(n, size, &size_bytes)) {
return NULL;
}
result = heap_caps_malloc(size_bytes, caps);
if (result != NULL) {
bzero(result, size_bytes);
}
return result;
}
size_t heap_caps_get_total_size(uint32_t caps)
{
size_t total_size = 0;
heap_t *heap;
SLIST_FOREACH(heap, &registered_heaps, next) {
if (heap_caps_match(heap, caps)) {
total_size += (heap->end - heap->start);
}
}
return total_size;
}
size_t heap_caps_get_free_size( uint32_t caps )
{
size_t ret = 0;
heap_t *heap;
SLIST_FOREACH(heap, &registered_heaps, next) {
if (heap_caps_match(heap, caps)) {
ret += multi_heap_free_size(heap->heap);
}
}
return ret;
}
size_t heap_caps_get_minimum_free_size( uint32_t caps )
{
size_t ret = 0;
heap_t *heap;
SLIST_FOREACH(heap, &registered_heaps, next) {
if (heap_caps_match(heap, caps)) {
ret += multi_heap_minimum_free_size(heap->heap);
}
}
return ret;
}
size_t heap_caps_get_largest_free_block( uint32_t caps )
{
multi_heap_info_t info;
heap_caps_get_info(&info, caps);
return info.largest_free_block;
}
void heap_caps_get_info( multi_heap_info_t *info, uint32_t caps )
{
bzero(info, sizeof(multi_heap_info_t));
heap_t *heap;
SLIST_FOREACH(heap, &registered_heaps, next) {
if (heap_caps_match(heap, caps)) {
multi_heap_info_t hinfo;
multi_heap_get_info(heap->heap, &hinfo);
info->total_free_bytes += hinfo.total_free_bytes;
info->total_allocated_bytes += hinfo.total_allocated_bytes;
info->largest_free_block = MAX(info->largest_free_block,
hinfo.largest_free_block);
info->minimum_free_bytes += hinfo.minimum_free_bytes;
info->allocated_blocks += hinfo.allocated_blocks;
info->free_blocks += hinfo.free_blocks;
info->total_blocks += hinfo.total_blocks;
}
}
}
void heap_caps_print_heap_info( uint32_t caps )
{
multi_heap_info_t info;
printf("Heap summary for capabilities 0x%08X:\n", caps);
heap_t *heap;
SLIST_FOREACH(heap, &registered_heaps, next) {
if (heap_caps_match(heap, caps)) {
multi_heap_get_info(heap->heap, &info);
printf(" At 0x%08x len %d free %d allocated %d min_free %d\n",
heap->start, heap->end - heap->start, info.total_free_bytes, info.total_allocated_bytes, info.minimum_free_bytes);
printf(" largest_free_block %d alloc_blocks %d free_blocks %d total_blocks %d\n",
info.largest_free_block, info.allocated_blocks,
info.free_blocks, info.total_blocks);
}
}
printf(" Totals:\n");
heap_caps_get_info(&info, caps);
printf(" free %d allocated %d min_free %d largest_free_block %d\n", info.total_free_bytes, info.total_allocated_bytes, info.minimum_free_bytes, info.largest_free_block);
}
bool heap_caps_check_integrity(uint32_t caps, bool print_errors)
{
bool all_heaps = caps & MALLOC_CAP_INVALID;
bool valid = true;
heap_t *heap;
SLIST_FOREACH(heap, &registered_heaps, next) {
if (heap->heap != NULL
&& (all_heaps || (get_all_caps(heap) & caps) == caps)) {
valid = multi_heap_check(heap->heap, print_errors) && valid;
}
}
return valid;
}
bool heap_caps_check_integrity_all(bool print_errors)
{
return heap_caps_check_integrity(MALLOC_CAP_INVALID, print_errors);
}
bool heap_caps_check_integrity_addr(intptr_t addr, bool print_errors)
{
heap_t *heap = find_containing_heap((void *)addr);
if (heap == NULL) {
return false;
}
return multi_heap_check(heap->heap, print_errors);
}
void heap_caps_dump(uint32_t caps)
{
bool all_heaps = caps & MALLOC_CAP_INVALID;
heap_t *heap;
SLIST_FOREACH(heap, &registered_heaps, next) {
if (heap->heap != NULL
&& (all_heaps || (get_all_caps(heap) & caps) == caps)) {
multi_heap_dump(heap->heap);
}
}
}
void heap_caps_dump_all(void)
{
heap_caps_dump(MALLOC_CAP_INVALID);
}
size_t heap_caps_get_allocated_size( void *ptr )
{
heap_t *heap = find_containing_heap(ptr);
size_t size = multi_heap_get_allocated_size(heap->heap, ptr);
return size;
}
IRAM_ATTR void *heap_caps_aligned_alloc(size_t alignment, size_t size, uint32_t caps)
{
void *ret = NULL;
if(!alignment) {
return NULL;
}
//Alignment must be a power of two:
if((alignment & (alignment - 1)) != 0) {
return NULL;
}
if (size > HEAP_SIZE_MAX) {
// Avoids int overflow when adding small numbers to size, or
// calculating 'end' from start+size, by limiting 'size' to the possible range
heap_caps_alloc_failed(size, caps, __func__);
return NULL;
}
for (int prio = 0; prio < SOC_MEMORY_TYPE_NO_PRIOS; prio++) {
//Iterate over heaps and check capabilities at this priority
heap_t *heap;
SLIST_FOREACH(heap, &registered_heaps, next) {
if (heap->heap == NULL) {
continue;
}
if ((heap->caps[prio] & caps) != 0) {
//Heap has at least one of the caps requested. If caps has other bits set that this prio
//doesn't cover, see if they're available in other prios.
if ((get_all_caps(heap) & caps) == caps) {
//Just try to alloc, nothing special.
ret = multi_heap_aligned_alloc(heap->heap, size, alignment);
if (ret != NULL) {
return ret;
}
}
}
}
}
heap_caps_alloc_failed(size, caps, __func__);
//Nothing usable found.
return NULL;
}
IRAM_ATTR void heap_caps_aligned_free(void *ptr)
{
heap_caps_free(ptr);
}
void *heap_caps_aligned_calloc(size_t alignment, size_t n, size_t size, uint32_t caps)
{
size_t size_bytes;
if (__builtin_mul_overflow(n, size, &size_bytes)) {
return NULL;
}
void *ptr = heap_caps_aligned_alloc(alignment,size_bytes, caps);
if(ptr != NULL) {
memset(ptr, 0, size_bytes);
}
return ptr;
}

View File

@@ -0,0 +1,241 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "heap_private.h"
#include <assert.h>
#include <string.h>
#include <sys/lock.h>
#include "esp_log.h"
#include "multi_heap.h"
#include "multi_heap_platform.h"
#include "esp_heap_caps_init.h"
#include "soc/soc_memory_layout.h"
static const char *TAG = "heap_init";
/* Linked-list of registered heaps */
struct registered_heap_ll registered_heaps;
static void register_heap(heap_t *region)
{
size_t heap_size = region->end - region->start;
assert(heap_size <= HEAP_SIZE_MAX);
region->heap = multi_heap_register((void *)region->start, heap_size);
if (region->heap != NULL) {
ESP_EARLY_LOGD(TAG, "New heap initialised at %p", region->heap);
}
}
void heap_caps_enable_nonos_stack_heaps(void)
{
heap_t *heap;
SLIST_FOREACH(heap, &registered_heaps, next) {
// Assume any not-yet-registered heap is
// a nonos-stack heap
if (heap->heap == NULL) {
register_heap(heap);
if (heap->heap != NULL) {
multi_heap_set_lock(heap->heap, &heap->heap_mux);
}
}
}
}
/* Initialize the heap allocator to use all of the memory not
used by static data or reserved for other purposes
*/
void heap_caps_init(void)
{
/* Get the array of regions that we can use for heaps
(with reserved memory removed already.)
*/
size_t num_regions = soc_get_available_memory_region_max_count();
soc_memory_region_t regions[num_regions];
num_regions = soc_get_available_memory_regions(regions);
//The heap allocator will treat every region given to it as separate. In order to get bigger ranges of contiguous memory,
//it's useful to coalesce adjacent regions that have the same type.
for (size_t i = 1; i < num_regions; i++) {
soc_memory_region_t *a = &regions[i - 1];
soc_memory_region_t *b = &regions[i];
if (b->start == (intptr_t)(a->start + a->size) && b->type == a->type ) {
a->type = -1;
b->start = a->start;
b->size += a->size;
}
}
/* Count the heaps left after merging */
size_t num_heaps = 0;
for (size_t i = 0; i < num_regions; i++) {
if (regions[i].type != -1) {
num_heaps++;
}
}
/* Start by allocating the registered heap data on the stack.
Once we have a heap to copy it to, we will copy it to a heap buffer.
*/
heap_t temp_heaps[num_heaps];
size_t heap_idx = 0;
ESP_EARLY_LOGI(TAG, "Initializing. RAM available for dynamic allocation:");
for (size_t i = 0; i < num_regions; i++) {
soc_memory_region_t *region = &regions[i];
const soc_memory_type_desc_t *type = &soc_memory_types[region->type];
heap_t *heap = &temp_heaps[heap_idx];
if (region->type == -1) {
continue;
}
heap_idx++;
assert(heap_idx <= num_heaps);
memcpy(heap->caps, type->caps, sizeof(heap->caps));
heap->start = region->start;
heap->end = region->start + region->size;
MULTI_HEAP_LOCK_INIT(&heap->heap_mux);
if (type->startup_stack) {
/* Will be registered when OS scheduler starts */
heap->heap = NULL;
} else {
register_heap(heap);
}
SLIST_NEXT(heap, next) = NULL;
ESP_EARLY_LOGI(TAG, "At %08X len %08X (%d KiB): %s",
region->start, region->size, region->size / 1024, type->name);
}
assert(heap_idx == num_heaps);
/* Allocate the permanent heap data that we'll use as a linked list at runtime.
Allocate this part of data contiguously, even though it's a linked list... */
assert(SLIST_EMPTY(&registered_heaps));
heap_t *heaps_array = NULL;
for (size_t i = 0; i < num_heaps; i++) {
if (heap_caps_match(&temp_heaps[i], MALLOC_CAP_8BIT|MALLOC_CAP_INTERNAL)) {
/* use the first DRAM heap which can fit the data */
heaps_array = multi_heap_malloc(temp_heaps[i].heap, sizeof(heap_t) * num_heaps);
if (heaps_array != NULL) {
break;
}
}
}
assert(heaps_array != NULL); /* if NULL, there's not enough free startup heap space */
memcpy(heaps_array, temp_heaps, sizeof(heap_t)*num_heaps);
/* Iterate the heaps and set their locks, also add them to the linked list. */
for (size_t i = 0; i < num_heaps; i++) {
if (heaps_array[i].heap != NULL) {
multi_heap_set_lock(heaps_array[i].heap, &heaps_array[i].heap_mux);
}
if (i == 0) {
SLIST_INSERT_HEAD(&registered_heaps, &heaps_array[0], next);
} else {
SLIST_INSERT_AFTER(&heaps_array[i-1], &heaps_array[i], next);
}
}
}
esp_err_t heap_caps_add_region(intptr_t start, intptr_t end)
{
if (start == 0) {
return ESP_ERR_INVALID_ARG;
}
for (size_t i = 0; i < soc_memory_region_count; i++) {
const soc_memory_region_t *region = &soc_memory_regions[i];
// Test requested start only as 'end' may be in a different region entry, assume 'end' has same caps
if (region->start <= start && (intptr_t)(region->start + region->size) > start) {
const uint32_t *caps = soc_memory_types[region->type].caps;
return heap_caps_add_region_with_caps(caps, start, end);
}
}
return ESP_ERR_NOT_FOUND;
}
esp_err_t heap_caps_add_region_with_caps(const uint32_t caps[], intptr_t start, intptr_t end)
{
esp_err_t err = ESP_FAIL;
if (caps == NULL || start == 0 || end == 0 || end <= start) {
return ESP_ERR_INVALID_ARG;
}
//Check if region overlaps the start and/or end of an existing region. If so, the
//region is invalid (or maybe added twice)
/*
* assume that in on region, start must be less than end (cannot equal to) !!
* Specially, the 4th scenario can be allowed. For example, allocate memory from heap,
* then change the capability and call this function to create a new region for special
* application.
* In the following chart, 'start = start' and 'end = end' is contained in 3rd scenario.
* This all equal scenario is incorrect because the same region cannot be add twice. For example,
* add the .bss memory to region twice, if not do the check, it will cause exception.
*
* the existing heap region s(tart) e(nd)
* |----------------------|
* 1.add region [Correct] (s1<s && e1<=s) |-----|
* 2.add region [Incorrect] (s2<=s && s<e2<=e) |---------------|
* 3.add region [Incorrect] (s3<=s && e<e3) |-------------------------------------|
* 4 add region [Correct] (s<s4<e && s<e4<=e) |-------|
* 5.add region [Incorrect] (s<s5<e && e<e5) |----------------------------|
* 6.add region [Correct] (e<=s6 && e<e6) |----|
*/
heap_t *heap;
SLIST_FOREACH(heap, &registered_heaps, next) {
if ((start <= heap->start && end > heap->start)
|| (start < heap->end && end > heap->end)) {
return ESP_FAIL;
}
}
heap_t *p_new = heap_caps_malloc(sizeof(heap_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
if (p_new == NULL) {
err = ESP_ERR_NO_MEM;
goto done;
}
memcpy(p_new->caps, caps, sizeof(p_new->caps));
p_new->start = start;
p_new->end = end;
MULTI_HEAP_LOCK_INIT(&p_new->heap_mux);
p_new->heap = multi_heap_register((void *)start, end - start);
SLIST_NEXT(p_new, next) = NULL;
if (p_new->heap == NULL) {
err = ESP_ERR_INVALID_SIZE;
goto done;
}
multi_heap_set_lock(p_new->heap, &p_new->heap_mux);
/* (This insertion is atomic to registered_heaps, so
we don't need to worry about thread safety for readers,
only for writers. */
static multi_heap_lock_t registered_heaps_write_lock = MULTI_HEAP_LOCK_STATIC_INITIALIZER;
MULTI_HEAP_LOCK(&registered_heaps_write_lock);
SLIST_INSERT_HEAD(&registered_heaps, p_new, next);
MULTI_HEAP_UNLOCK(&registered_heaps_write_lock);
err = ESP_OK;
done:
if (err != ESP_OK) {
free(p_new);
}
return err;
}

View File

@@ -0,0 +1,77 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <stdlib.h>
#include <stdint.h>
#include <soc/soc_memory_layout.h>
#include "multi_heap.h"
#include "multi_heap_platform.h"
#include "sys/queue.h"
#ifdef __cplusplus
extern "C" {
#endif
/* Some common heap registration data structures used
for heap_caps_init.c to share heap information with heap_caps.c
*/
#define HEAP_SIZE_MAX (SOC_MAX_CONTIGUOUS_RAM_SIZE)
/* Type for describing each registered heap */
typedef struct heap_t_ {
uint32_t caps[SOC_MEMORY_TYPE_NO_PRIOS]; ///< Capabilities for the type of memory in this heap (as a prioritised set). Copied from soc_memory_types so it's in RAM not flash.
intptr_t start;
intptr_t end;
multi_heap_lock_t heap_mux;
multi_heap_handle_t heap;
SLIST_ENTRY(heap_t_) next;
} heap_t;
/* All registered heaps.
Forms a single linked list, even though most entries are contiguous.
This means at the expense of 4 bytes per heap, new heaps can be
added at runtime in a fast & thread-safe way.
*/
extern SLIST_HEAD(registered_heap_ll, heap_t_) registered_heaps;
bool heap_caps_match(const heap_t *heap, uint32_t caps);
/* return all possible capabilities (across all priorities) for a given heap */
inline static IRAM_ATTR uint32_t get_all_caps(const heap_t *heap)
{
if (heap->heap == NULL) {
return 0;
}
uint32_t all_caps = 0;
for (int prio = 0; prio < SOC_MEMORY_TYPE_NO_PRIOS; prio++) {
all_caps |= heap->caps[prio];
}
return all_caps;
}
/*
Because we don't want to add _another_ known allocation method to the stack of functions to trace wrt memory tracing,
these are declared private. The newlib malloc()/realloc() implementation also calls these, so they are declared
separately in newlib/syscalls.c.
*/
void *heap_caps_realloc_default(void *p, size_t size);
void *heap_caps_malloc_default(size_t size);
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,129 @@
// Copyright 2018 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
#include <multi_heap.h>
#include "multi_heap_internal.h"
#include "heap_private.h"
#include "esp_heap_task_info.h"
#ifdef CONFIG_HEAP_TASK_TRACKING
/*
* Return per-task heap allocation totals and lists of blocks.
*
* For each task that has allocated memory from the heap, return totals for
* allocations within regions matching one or more sets of capabilities.
*
* Optionally also return an array of structs providing details about each
* block allocated by one or more requested tasks, or by all tasks.
*
* Returns the number of block detail structs returned.
*/
size_t heap_caps_get_per_task_info(heap_task_info_params_t *params)
{
heap_t *reg;
heap_task_block_t *blocks = params->blocks;
size_t count = *params->num_totals;
size_t remaining = params->max_blocks;
// Clear out totals for any prepopulated tasks.
if (params->totals) {
for (size_t i = 0; i < count; ++i) {
for (size_t type = 0; type < NUM_HEAP_TASK_CAPS; ++type) {
params->totals[i].size[type] = 0;
params->totals[i].count[type] = 0;
}
}
}
SLIST_FOREACH(reg, &registered_heaps, next) {
multi_heap_handle_t heap = reg->heap;
if (heap == NULL) {
continue;
}
// Find if the capabilities of this heap region match on of the desired
// sets of capabilities.
uint32_t caps = get_all_caps(reg);
uint32_t type;
for (type = 0; type < NUM_HEAP_TASK_CAPS; ++type) {
if ((caps & params->mask[type]) == params->caps[type]) {
break;
}
}
if (type == NUM_HEAP_TASK_CAPS) {
continue;
}
multi_heap_block_handle_t b = multi_heap_get_first_block(heap);
multi_heap_internal_lock(heap);
for ( ; b ; b = multi_heap_get_next_block(heap, b)) {
if (multi_heap_is_free(b)) {
continue;
}
void *p = multi_heap_get_block_address(b); // Safe, only arithmetic
size_t bsize = multi_heap_get_allocated_size(heap, p); // Validates
TaskHandle_t btask = (TaskHandle_t)multi_heap_get_block_owner(b);
// Accumulate per-task allocation totals.
if (params->totals) {
size_t i;
for (i = 0; i < count; ++i) {
if (params->totals[i].task == btask) {
break;
}
}
if (i < count) {
params->totals[i].size[type] += bsize;
params->totals[i].count[type] += 1;
}
else {
if (count < params->max_totals) {
params->totals[count].task = btask;
params->totals[count].size[type] = bsize;
params->totals[i].count[type] = 1;
++count;
}
}
}
// Return details about allocated blocks for selected tasks.
if (blocks && remaining > 0) {
if (params->tasks) {
size_t i;
for (i = 0; i < params->num_tasks; ++i) {
if (btask == params->tasks[i]) {
break;
}
}
if (i == params->num_tasks) {
continue;
}
}
blocks->task = btask;
blocks->address = p;
blocks->size = bsize;
++blocks;
--remaining;
}
}
multi_heap_internal_unlock(heap);
}
*params->num_totals = count;
return params->max_blocks - remaining;
}
#endif // CONFIG_HEAP_TASK_TRACKING

1015
components/heap/heap_tlsf.c Normal file

File diff suppressed because it is too large Load Diff

119
components/heap/heap_tlsf.h Normal file
View File

@@ -0,0 +1,119 @@
/*
** Two Level Segregated Fit memory allocator, version 3.1.
** Written by Matthew Conte
** http://tlsf.baisoku.org
**
** Based on the original documentation by Miguel Masmano:
** http://www.gii.upv.es/tlsf/main/docs
**
** This implementation was written to the specification
** of the document, therefore no GPL restrictions apply.
**
** Copyright (c) 2006-2016, Matthew Conte
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions are met:
** * Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** * Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** * Neither the name of the copyright holder nor the
** names of its contributors may be used to endorse or promote products
** derived from this software without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
** ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
** DISCLAIMED. IN NO EVENT SHALL MATTHEW CONTE BE LIABLE FOR ANY
** DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
** ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <assert.h>
#include <limits.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stddef.h>
#include "heap_tlsf_config.h"
#if defined(__cplusplus)
extern "C" {
#endif
/*
** Cast and min/max macros.
*/
#define tlsf_cast(t, exp) ((t) (exp))
#define tlsf_min(a, b) ((a) < (b) ? (a) : (b))
#define tlsf_max(a, b) ((a) > (b) ? (a) : (b))
/* A type used for casting when doing pointer arithmetic. */
typedef ptrdiff_t tlsfptr_t;
typedef struct block_header_t
{
/* Points to the previous physical block. */
struct block_header_t* prev_phys_block;
/* The size of this block, excluding the block header. */
size_t size;
/* Next and previous free blocks. */
struct block_header_t* next_free;
struct block_header_t* prev_free;
} block_header_t;
#include "heap_tlsf_block_functions.h"
/* tlsf_t: a TLSF structure. Can contain 1 to N pools. */
/* pool_t: a block of memory that TLSF can manage. */
typedef void* tlsf_t;
typedef void* pool_t;
/* Create/destroy a memory pool. */
tlsf_t tlsf_create(void* mem, size_t max_bytes);
tlsf_t tlsf_create_with_pool(void* mem, size_t pool_bytes, size_t max_bytes);
pool_t tlsf_get_pool(tlsf_t tlsf);
/* Add/remove memory pools. */
pool_t tlsf_add_pool(tlsf_t tlsf, void* mem, size_t bytes);
void tlsf_remove_pool(tlsf_t tlsf, pool_t pool);
/* malloc/memalign/realloc/free replacements. */
void* tlsf_malloc(tlsf_t tlsf, size_t size);
void* tlsf_memalign(tlsf_t tlsf, size_t align, size_t size);
void* tlsf_memalign_offs(tlsf_t tlsf, size_t align, size_t size, size_t offset);
void* tlsf_realloc(tlsf_t tlsf, void* ptr, size_t size);
void tlsf_free(tlsf_t tlsf, void* ptr);
/* Returns internal block size, not original request size */
size_t tlsf_block_size(void* ptr);
/* Overheads/limits of internal structures. */
size_t tlsf_size(tlsf_t tlsf);
size_t tlsf_align_size(void);
size_t tlsf_block_size_min(void);
size_t tlsf_block_size_max(tlsf_t tlsf);
size_t tlsf_pool_overhead(void);
size_t tlsf_alloc_overhead(void);
size_t tlsf_fit_size(tlsf_t tlsf, size_t size);
/* Debugging. */
typedef void (*tlsf_walker)(void* ptr, size_t size, int used, void* user);
void tlsf_walk_pool(pool_t pool, tlsf_walker walker, void* user);
/* Returns nonzero if any internal consistency check fails. */
int tlsf_check(tlsf_t tlsf);
int tlsf_check_pool(pool_t pool);
#if defined(__cplusplus)
};
#endif

View File

@@ -0,0 +1,174 @@
/*
** Two Level Segregated Fit memory allocator, version 3.1.
** Written by Matthew Conte
** http://tlsf.baisoku.org
**
** Based on the original documentation by Miguel Masmano:
** http://www.gii.upv.es/tlsf/main/docs
**
** This implementation was written to the specification
** of the document, therefore no GPL restrictions apply.
**
** Copyright (c) 2006-2016, Matthew Conte
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions are met:
** * Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** * Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** * Neither the name of the copyright holder nor the
** names of its contributors may be used to endorse or promote products
** derived from this software without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
** ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
** DISCLAIMED. IN NO EVENT SHALL MATTHEW CONTE BE LIABLE FOR ANY
** DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
** ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
/*
** Data structures and associated constants.
*/
/*
** Since block sizes are always at least a multiple of 4, the two least
** significant bits of the size field are used to store the block status:
** - bit 0: whether block is busy or free
** - bit 1: whether previous block is busy or free
*/
#define block_header_free_bit (1 << 0)
#define block_header_prev_free_bit (1 << 1)
/*
** The size of the block header exposed to used blocks is the size field.
** The prev_phys_block field is stored *inside* the previous free block.
*/
#define block_header_overhead (sizeof(size_t))
/* User data starts directly after the size field in a used block. */
#define block_start_offset (offsetof(block_header_t, size) + sizeof(size_t))
/*
** A free block must be large enough to store its header minus the size of
** the prev_phys_block field, and no larger than the number of addressable
** bits for FL_INDEX.
** The block_size_max macro returns the maximum block for the minimum pool
** use tlsf_block_size_max for a value specific to the pool
*/
#define block_size_min (sizeof(block_header_t) - sizeof(block_header_t*))
#define block_size_max (tlsf_cast(size_t, 1) << FL_INDEX_MAX_MIN)
/*
** block_header_t member functions.
*/
static inline __attribute__((__always_inline__)) size_t block_size(const block_header_t* block)
{
return block->size & ~(block_header_free_bit | block_header_prev_free_bit);
}
static inline __attribute__((__always_inline__)) void block_set_size(block_header_t* block, size_t size)
{
const size_t oldsize = block->size;
block->size = size | (oldsize & (block_header_free_bit | block_header_prev_free_bit));
}
static inline __attribute__((__always_inline__)) int block_is_last(const block_header_t* block)
{
return block_size(block) == 0;
}
static inline __attribute__((__always_inline__)) int block_is_free(const block_header_t* block)
{
return tlsf_cast(int, block->size & block_header_free_bit);
}
static inline __attribute__((__always_inline__)) void block_set_free(block_header_t* block)
{
block->size |= block_header_free_bit;
}
static inline __attribute__((__always_inline__)) void block_set_used(block_header_t* block)
{
block->size &= ~block_header_free_bit;
}
static inline __attribute__((__always_inline__)) int block_is_prev_free(const block_header_t* block)
{
return tlsf_cast(int, block->size & block_header_prev_free_bit);
}
static inline __attribute__((__always_inline__)) void block_set_prev_free(block_header_t* block)
{
block->size |= block_header_prev_free_bit;
}
static inline __attribute__((__always_inline__)) void block_set_prev_used(block_header_t* block)
{
block->size &= ~block_header_prev_free_bit;
}
static inline __attribute__((__always_inline__)) block_header_t* block_from_ptr(const void* ptr)
{
return tlsf_cast(block_header_t*,
tlsf_cast(unsigned char*, ptr) - block_start_offset);
}
static inline __attribute__((__always_inline__)) void* block_to_ptr(const block_header_t* block)
{
return tlsf_cast(void*,
tlsf_cast(unsigned char*, block) + block_start_offset);
}
/* Return location of next block after block of given size. */
static inline __attribute__((__always_inline__)) block_header_t* offset_to_block(const void* ptr, size_t size)
{
return tlsf_cast(block_header_t*, tlsf_cast(tlsfptr_t, ptr) + size);
}
/* Return location of previous block. */
static inline __attribute__((__always_inline__)) block_header_t* block_prev(const block_header_t* block)
{
return block->prev_phys_block;
}
/* Return location of next existing block. */
static inline __attribute__((__always_inline__)) block_header_t* block_next(const block_header_t* block)
{
block_header_t* next = offset_to_block(block_to_ptr(block),
block_size(block) - block_header_overhead);
return next;
}
/* Link a new block with its physical neighbor, return the neighbor. */
static inline __attribute__((__always_inline__)) block_header_t* block_link_next(block_header_t* block)
{
block_header_t* next = block_next(block);
next->prev_phys_block = block;
return next;
}
static inline __attribute__((__always_inline__)) void block_mark_as_free(block_header_t* block)
{
/* Link the block to the next block, first. */
block_header_t* next = block_link_next(block);
block_set_prev_free(next);
block_set_free(block);
}
static inline __attribute__((__always_inline__)) void block_mark_as_used(block_header_t* block)
{
block_header_t* next = block_next(block);
block_set_prev_used(next);
block_set_used(block);
}

View File

@@ -0,0 +1,66 @@
/*
** Two Level Segregated Fit memory allocator, version 3.1.
** Written by Matthew Conte
** http://tlsf.baisoku.org
**
** Based on the original documentation by Miguel Masmano:
** http://www.gii.upv.es/tlsf/main/docs
**
** This implementation was written to the specification
** of the document, therefore no GPL restrictions apply.
**
** Copyright (c) 2006-2016, Matthew Conte
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions are met:
** * Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** * Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** * Neither the name of the copyright holder nor the
** names of its contributors may be used to endorse or promote products
** derived from this software without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
** ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
** DISCLAIMED. IN NO EVENT SHALL MATTHEW CONTE BE LIABLE FOR ANY
** DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
** ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
enum tlsf_config
{
/* log2 of number of linear subdivisions of block sizes. Larger
** values require more memory in the control structure. Values of
** 4 or 5 are typical, 3 is for very small pools.
*/
SL_INDEX_COUNT_LOG2_MIN = 3,
/* All allocation sizes and addresses are aligned to 4 bytes. */
ALIGN_SIZE_LOG2 = 2,
ALIGN_SIZE = (1 << ALIGN_SIZE_LOG2),
/*
** We support allocations of sizes up to (1 << FL_INDEX_MAX) bits.
** However, because we linearly subdivide the second-level lists, and
** our minimum size granularity is 4 bytes, it doesn't make sense to
** create first-level lists for sizes smaller than SL_INDEX_COUNT * 4,
** or (1 << (SL_INDEX_COUNT_LOG2 + 2)) bytes, as there we will be
** trying to split size ranges into more slots than we have available.
** Instead, we calculate the minimum threshold size, and place all
** blocks below that size into the 0th first-level list.
** Values below are the absolute minimum to accept a pool addition
*/
FL_INDEX_MAX_MIN = 14, // For a less than 16kB pool
SL_INDEX_COUNT_MIN = (1 << SL_INDEX_COUNT_LOG2_MIN),
FL_INDEX_COUNT_MIN = (FL_INDEX_MAX_MIN - (SL_INDEX_COUNT_LOG2_MIN + ALIGN_SIZE_LOG2) + 1),
};

View File

@@ -0,0 +1,255 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include <sdkconfig.h>
#define HEAP_TRACE_SRCFILE /* don't warn on inclusion here */
#include "esp_heap_trace.h"
#undef HEAP_TRACE_SRCFILE
#include "esp_attr.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#define STACK_DEPTH CONFIG_HEAP_TRACING_STACK_DEPTH
#if CONFIG_HEAP_TRACING_STANDALONE
static portMUX_TYPE trace_mux = portMUX_INITIALIZER_UNLOCKED;
static bool tracing;
static heap_trace_mode_t mode;
/* Buffer used for records, starting at offset 0
*/
static heap_trace_record_t *buffer;
static size_t total_records;
/* Count of entries logged in the buffer.
Maximum total_records
*/
static size_t count;
/* Actual number of allocations logged */
static size_t total_allocations;
/* Actual number of frees logged */
static size_t total_frees;
/* Has the buffer overflowed and lost trace entries? */
static bool has_overflowed = false;
esp_err_t heap_trace_init_standalone(heap_trace_record_t *record_buffer, size_t num_records)
{
if (tracing) {
return ESP_ERR_INVALID_STATE;
}
buffer = record_buffer;
total_records = num_records;
memset(buffer, 0, num_records * sizeof(heap_trace_record_t));
return ESP_OK;
}
esp_err_t heap_trace_start(heap_trace_mode_t mode_param)
{
if (buffer == NULL || total_records == 0) {
return ESP_ERR_INVALID_STATE;
}
portENTER_CRITICAL(&trace_mux);
tracing = false;
mode = mode_param;
count = 0;
total_allocations = 0;
total_frees = 0;
has_overflowed = false;
heap_trace_resume();
portEXIT_CRITICAL(&trace_mux);
return ESP_OK;
}
static esp_err_t set_tracing(bool enable)
{
if (tracing == enable) {
return ESP_ERR_INVALID_STATE;
}
tracing = enable;
return ESP_OK;
}
esp_err_t heap_trace_stop(void)
{
return set_tracing(false);
}
esp_err_t heap_trace_resume(void)
{
return set_tracing(true);
}
size_t heap_trace_get_count(void)
{
return count;
}
esp_err_t heap_trace_get(size_t index, heap_trace_record_t *record)
{
if (record == NULL) {
return ESP_ERR_INVALID_STATE;
}
esp_err_t result = ESP_OK;
portENTER_CRITICAL(&trace_mux);
if (index >= count) {
result = ESP_ERR_INVALID_ARG; /* out of range for 'count' */
} else {
memcpy(record, &buffer[index], sizeof(heap_trace_record_t));
}
portEXIT_CRITICAL(&trace_mux);
return result;
}
void heap_trace_dump(void)
{
size_t delta_size = 0;
size_t delta_allocs = 0;
printf("%u allocations trace (%u entry buffer)\n",
count, total_records);
size_t start_count = count;
for (int i = 0; i < count; i++) {
heap_trace_record_t *rec = &buffer[i];
if (rec->address != NULL) {
printf("%d bytes (@ %p) allocated CPU %d ccount 0x%08x caller ",
rec->size, rec->address, rec->ccount & 1, rec->ccount & ~3);
for (int j = 0; j < STACK_DEPTH && rec->alloced_by[j] != 0; j++) {
printf("%p%s", rec->alloced_by[j],
(j < STACK_DEPTH - 1) ? ":" : "");
}
if (mode != HEAP_TRACE_ALL || STACK_DEPTH == 0 || rec->freed_by[0] == NULL) {
delta_size += rec->size;
delta_allocs++;
printf("\n");
} else {
printf("\nfreed by ");
for (int j = 0; j < STACK_DEPTH; j++) {
printf("%p%s", rec->freed_by[j],
(j < STACK_DEPTH - 1) ? ":" : "\n");
}
}
}
}
if (mode == HEAP_TRACE_ALL) {
printf("%u bytes alive in trace (%u/%u allocations)\n",
delta_size, delta_allocs, heap_trace_get_count());
} else {
printf("%u bytes 'leaked' in trace (%u allocations)\n", delta_size, delta_allocs);
}
printf("total allocations %u total frees %u\n", total_allocations, total_frees);
if (start_count != count) { // only a problem if trace isn't stopped before dumping
printf("(NB: New entries were traced while dumping, so trace dump may have duplicate entries.)\n");
}
if (has_overflowed) {
printf("(NB: Buffer has overflowed, so trace data is incomplete.)\n");
}
}
/* Add a new allocation to the heap trace records */
static IRAM_ATTR void record_allocation(const heap_trace_record_t *record)
{
if (!tracing || record->address == NULL) {
return;
}
portENTER_CRITICAL(&trace_mux);
if (tracing) {
if (count == total_records) {
has_overflowed = true;
/* Move the whole buffer back one slot.
This is a bit slow, compared to treating this buffer as a ringbuffer and rotating a head pointer.
However, ringbuffer code gets tricky when we remove elements in mid-buffer (for leak trace mode) while
trying to keep track of an item count that may overflow.
*/
memmove(&buffer[0], &buffer[1], sizeof(heap_trace_record_t) * (total_records -1));
count--;
}
// Copy new record into place
memcpy(&buffer[count], record, sizeof(heap_trace_record_t));
count++;
total_allocations++;
}
portEXIT_CRITICAL(&trace_mux);
}
// remove a record, used when freeing
static void remove_record(int index);
/* record a free event in the heap trace log
For HEAP_TRACE_ALL, this means filling in the freed_by pointer.
For HEAP_TRACE_LEAKS, this means removing the record from the log.
*/
static IRAM_ATTR void record_free(void *p, void **callers)
{
if (!tracing || p == NULL) {
return;
}
portENTER_CRITICAL(&trace_mux);
if (tracing && count > 0) {
total_frees++;
/* search backwards for the allocation record matching this free */
int i;
for (i = count - 1; i >= 0; i--) {
if (buffer[i].address == p) {
break;
}
}
if (i >= 0) {
if (mode == HEAP_TRACE_ALL) {
memcpy(buffer[i].freed_by, callers, sizeof(void *) * STACK_DEPTH);
} else { // HEAP_TRACE_LEAKS
// Leak trace mode, once an allocation is freed we remove it from the list
remove_record(i);
}
}
}
portEXIT_CRITICAL(&trace_mux);
}
/* remove the entry at 'index' from the ringbuffer of saved records */
static IRAM_ATTR void remove_record(int index)
{
if (index < count - 1) {
// Remove the buffer entry from the list
memmove(&buffer[index], &buffer[index+1],
sizeof(heap_trace_record_t) * (total_records - index - 1));
} else {
// For last element, just zero it out to avoid ambiguity
memset(&buffer[index], 0, sizeof(heap_trace_record_t));
}
count--;
}
#include "heap_trace.inc"
#endif /*CONFIG_HEAP_TRACING_STANDALONE*/

View File

@@ -0,0 +1,402 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <stdint.h>
#include <stdlib.h>
#include "multi_heap.h"
#include <sdkconfig.h>
#include "esp_err.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief Flags to indicate the capabilities of the various memory systems
*/
#define MALLOC_CAP_EXEC (1<<0) ///< Memory must be able to run executable code
#define MALLOC_CAP_32BIT (1<<1) ///< Memory must allow for aligned 32-bit data accesses
#define MALLOC_CAP_8BIT (1<<2) ///< Memory must allow for 8/16/...-bit data accesses
#define MALLOC_CAP_DMA (1<<3) ///< Memory must be able to accessed by DMA
#define MALLOC_CAP_PID2 (1<<4) ///< Memory must be mapped to PID2 memory space (PIDs are not currently used)
#define MALLOC_CAP_PID3 (1<<5) ///< Memory must be mapped to PID3 memory space (PIDs are not currently used)
#define MALLOC_CAP_PID4 (1<<6) ///< Memory must be mapped to PID4 memory space (PIDs are not currently used)
#define MALLOC_CAP_PID5 (1<<7) ///< Memory must be mapped to PID5 memory space (PIDs are not currently used)
#define MALLOC_CAP_PID6 (1<<8) ///< Memory must be mapped to PID6 memory space (PIDs are not currently used)
#define MALLOC_CAP_PID7 (1<<9) ///< Memory must be mapped to PID7 memory space (PIDs are not currently used)
#define MALLOC_CAP_SPIRAM (1<<10) ///< Memory must be in SPI RAM
#define MALLOC_CAP_INTERNAL (1<<11) ///< Memory must be internal; specifically it should not disappear when flash/spiram cache is switched off
#define MALLOC_CAP_DEFAULT (1<<12) ///< Memory can be returned in a non-capability-specific memory allocation (e.g. malloc(), calloc()) call
#define MALLOC_CAP_IRAM_8BIT (1<<13) ///< Memory must be in IRAM and allow unaligned access
#define MALLOC_CAP_RETENTION (1<<14)
#define MALLOC_CAP_INVALID (1<<31) ///< Memory can't be used / list end marker
/**
* @brief callback called when a allocation operation fails, if registered
* @param size in bytes of failed allocation
* @param caps capabillites requested of failed allocation
* @param function_name function which generated the failure
*/
typedef void (*esp_alloc_failed_hook_t) (size_t size, uint32_t caps, const char * function_name);
/**
* @brief registers a callback function to be invoked if a memory allocation operation fails
* @param callback caller defined callback to be invoked
* @return ESP_OK if callback was registered.
*/
esp_err_t heap_caps_register_failed_alloc_callback(esp_alloc_failed_hook_t callback);
/**
* @brief Allocate a chunk of memory which has the given capabilities
*
* Equivalent semantics to libc malloc(), for capability-aware memory.
*
* In IDF, ``malloc(p)`` is equivalent to ``heap_caps_malloc(p, MALLOC_CAP_8BIT)``.
*
* @param size Size, in bytes, of the amount of memory to allocate
* @param caps Bitwise OR of MALLOC_CAP_* flags indicating the type
* of memory to be returned
*
* @return A pointer to the memory allocated on success, NULL on failure
*/
void *heap_caps_malloc(size_t size, uint32_t caps);
/**
* @brief Free memory previously allocated via heap_caps_malloc() or heap_caps_realloc().
*
* Equivalent semantics to libc free(), for capability-aware memory.
*
* In IDF, ``free(p)`` is equivalent to ``heap_caps_free(p)``.
*
* @param ptr Pointer to memory previously returned from heap_caps_malloc() or heap_caps_realloc(). Can be NULL.
*/
void heap_caps_free( void *ptr);
/**
* @brief Reallocate memory previously allocated via heap_caps_malloc() or heap_caps_realloc().
*
* Equivalent semantics to libc realloc(), for capability-aware memory.
*
* In IDF, ``realloc(p, s)`` is equivalent to ``heap_caps_realloc(p, s, MALLOC_CAP_8BIT)``.
*
* 'caps' parameter can be different to the capabilities that any original 'ptr' was allocated with. In this way,
* realloc can be used to "move" a buffer if necessary to ensure it meets a new set of capabilities.
*
* @param ptr Pointer to previously allocated memory, or NULL for a new allocation.
* @param size Size of the new buffer requested, or 0 to free the buffer.
* @param caps Bitwise OR of MALLOC_CAP_* flags indicating the type
* of memory desired for the new allocation.
*
* @return Pointer to a new buffer of size 'size' with capabilities 'caps', or NULL if allocation failed.
*/
void *heap_caps_realloc( void *ptr, size_t size, uint32_t caps);
/**
* @brief Allocate a aligned chunk of memory which has the given capabilities
*
* Equivalent semantics to libc aligned_alloc(), for capability-aware memory.
* @param alignment How the pointer received needs to be aligned
* must be a power of two
* @param size Size, in bytes, of the amount of memory to allocate
* @param caps Bitwise OR of MALLOC_CAP_* flags indicating the type
* of memory to be returned
*
* @return A pointer to the memory allocated on success, NULL on failure
*
*
*/
void *heap_caps_aligned_alloc(size_t alignment, size_t size, uint32_t caps);
/**
* @brief Used to deallocate memory previously allocated with heap_caps_aligned_alloc
*
* @param ptr Pointer to the memory allocated
* @note This function is deprecated, plase consider using heap_caps_free() instead
*/
void __attribute__((deprecated)) heap_caps_aligned_free(void *ptr);
/**
* @brief Allocate a aligned chunk of memory which has the given capabilities. The initialized value in the memory is set to zero.
*
* @param alignment How the pointer received needs to be aligned
* must be a power of two
* @param n Number of continuing chunks of memory to allocate
* @param size Size, in bytes, of a chunk of memory to allocate
* @param caps Bitwise OR of MALLOC_CAP_* flags indicating the type
* of memory to be returned
*
* @return A pointer to the memory allocated on success, NULL on failure
*
*/
void *heap_caps_aligned_calloc(size_t alignment, size_t n, size_t size, uint32_t caps);
/**
* @brief Allocate a chunk of memory which has the given capabilities. The initialized value in the memory is set to zero.
*
* Equivalent semantics to libc calloc(), for capability-aware memory.
*
* In IDF, ``calloc(p)`` is equivalent to ``heap_caps_calloc(p, MALLOC_CAP_8BIT)``.
*
* @param n Number of continuing chunks of memory to allocate
* @param size Size, in bytes, of a chunk of memory to allocate
* @param caps Bitwise OR of MALLOC_CAP_* flags indicating the type
* of memory to be returned
*
* @return A pointer to the memory allocated on success, NULL on failure
*/
void *heap_caps_calloc(size_t n, size_t size, uint32_t caps);
/**
* @brief Get the total size of all the regions that have the given capabilities
*
* This function takes all regions capable of having the given capabilities allocated in them
* and adds up the total space they have.
*
* @param caps Bitwise OR of MALLOC_CAP_* flags indicating the type
* of memory
*
* @return total size in bytes
*/
size_t heap_caps_get_total_size(uint32_t caps);
/**
* @brief Get the total free size of all the regions that have the given capabilities
*
* This function takes all regions capable of having the given capabilities allocated in them
* and adds up the free space they have.
*
* Note that because of heap fragmentation it is probably not possible to allocate a single block of memory
* of this size. Use heap_caps_get_largest_free_block() for this purpose.
* @param caps Bitwise OR of MALLOC_CAP_* flags indicating the type
* of memory
*
* @return Amount of free bytes in the regions
*/
size_t heap_caps_get_free_size( uint32_t caps );
/**
* @brief Get the total minimum free memory of all regions with the given capabilities
*
* This adds all the low water marks of the regions capable of delivering the memory
* with the given capabilities.
*
* Note the result may be less than the global all-time minimum available heap of this kind, as "low water marks" are
* tracked per-region. Individual regions' heaps may have reached their "low water marks" at different points in time. However
* this result still gives a "worst case" indication for all-time minimum free heap.
*
* @param caps Bitwise OR of MALLOC_CAP_* flags indicating the type
* of memory
*
* @return Amount of free bytes in the regions
*/
size_t heap_caps_get_minimum_free_size( uint32_t caps );
/**
* @brief Get the largest free block of memory able to be allocated with the given capabilities.
*
* Returns the largest value of ``s`` for which ``heap_caps_malloc(s, caps)`` will succeed.
*
* @param caps Bitwise OR of MALLOC_CAP_* flags indicating the type
* of memory
*
* @return Size of largest free block in bytes.
*/
size_t heap_caps_get_largest_free_block( uint32_t caps );
/**
* @brief Get heap info for all regions with the given capabilities.
*
* Calls multi_heap_info() on all heaps which share the given capabilities. The information returned is an aggregate
* across all matching heaps. The meanings of fields are the same as defined for multi_heap_info_t, except that
* ``minimum_free_bytes`` has the same caveats described in heap_caps_get_minimum_free_size().
*
* @param info Pointer to a structure which will be filled with relevant
* heap metadata.
* @param caps Bitwise OR of MALLOC_CAP_* flags indicating the type
* of memory
*
*/
void heap_caps_get_info( multi_heap_info_t *info, uint32_t caps );
/**
* @brief Print a summary of all memory with the given capabilities.
*
* Calls multi_heap_info on all heaps which share the given capabilities, and
* prints a two-line summary for each, then a total summary.
*
* @param caps Bitwise OR of MALLOC_CAP_* flags indicating the type
* of memory
*
*/
void heap_caps_print_heap_info( uint32_t caps );
/**
* @brief Check integrity of all heap memory in the system.
*
* Calls multi_heap_check on all heaps. Optionally print errors if heaps are corrupt.
*
* Calling this function is equivalent to calling heap_caps_check_integrity
* with the caps argument set to MALLOC_CAP_INVALID.
*
* @param print_errors Print specific errors if heap corruption is found.
*
* @return True if all heaps are valid, False if at least one heap is corrupt.
*/
bool heap_caps_check_integrity_all(bool print_errors);
/**
* @brief Check integrity of all heaps with the given capabilities.
*
* Calls multi_heap_check on all heaps which share the given capabilities. Optionally
* print errors if the heaps are corrupt.
*
* See also heap_caps_check_integrity_all to check all heap memory
* in the system and heap_caps_check_integrity_addr to check memory
* around a single address.
*
* @param caps Bitwise OR of MALLOC_CAP_* flags indicating the type
* of memory
* @param print_errors Print specific errors if heap corruption is found.
*
* @return True if all heaps are valid, False if at least one heap is corrupt.
*/
bool heap_caps_check_integrity(uint32_t caps, bool print_errors);
/**
* @brief Check integrity of heap memory around a given address.
*
* This function can be used to check the integrity of a single region of heap memory,
* which contains the given address.
*
* This can be useful if debugging heap integrity for corruption at a known address,
* as it has a lower overhead than checking all heap regions. Note that if the corrupt
* address moves around between runs (due to timing or other factors) then this approach
* won't work and you should call heap_caps_check_integrity or
* heap_caps_check_integrity_all instead.
*
* @note The entire heap region around the address is checked, not only the adjacent
* heap blocks.
*
* @param addr Address in memory. Check for corruption in region containing this address.
* @param print_errors Print specific errors if heap corruption is found.
*
* @return True if the heap containing the specified address is valid,
* False if at least one heap is corrupt or the address doesn't belong to a heap region.
*/
bool heap_caps_check_integrity_addr(intptr_t addr, bool print_errors);
/**
* @brief Enable malloc() in external memory and set limit below which
* malloc() attempts are placed in internal memory.
*
* When external memory is in use, the allocation strategy is to initially try to
* satisfy smaller allocation requests with internal memory and larger requests
* with external memory. This sets the limit between the two, as well as generally
* enabling allocation in external memory.
*
* @param limit Limit, in bytes.
*/
void heap_caps_malloc_extmem_enable(size_t limit);
/**
* @brief Allocate a chunk of memory as preference in decreasing order.
*
* @attention The variable parameters are bitwise OR of MALLOC_CAP_* flags indicating the type of memory.
* This API prefers to allocate memory with the first parameter. If failed, allocate memory with
* the next parameter. It will try in this order until allocating a chunk of memory successfully
* or fail to allocate memories with any of the parameters.
*
* @param size Size, in bytes, of the amount of memory to allocate
* @param num Number of variable paramters
*
* @return A pointer to the memory allocated on success, NULL on failure
*/
void *heap_caps_malloc_prefer( size_t size, size_t num, ... );
/**
* @brief Allocate a chunk of memory as preference in decreasing order.
*
* @param ptr Pointer to previously allocated memory, or NULL for a new allocation.
* @param size Size of the new buffer requested, or 0 to free the buffer.
* @param num Number of variable paramters
*
* @return Pointer to a new buffer of size 'size', or NULL if allocation failed.
*/
void *heap_caps_realloc_prefer( void *ptr, size_t size, size_t num, ... );
/**
* @brief Allocate a chunk of memory as preference in decreasing order.
*
* @param n Number of continuing chunks of memory to allocate
* @param size Size, in bytes, of a chunk of memory to allocate
* @param num Number of variable paramters
*
* @return A pointer to the memory allocated on success, NULL on failure
*/
void *heap_caps_calloc_prefer( size_t n, size_t size, size_t num, ... );
/**
* @brief Dump the full structure of all heaps with matching capabilities.
*
* Prints a large amount of output to serial (because of locking limitations,
* the output bypasses stdout/stderr). For each (variable sized) block
* in each matching heap, the following output is printed on a single line:
*
* - Block address (the data buffer returned by malloc is 4 bytes after this
* if heap debugging is set to Basic, or 8 bytes otherwise).
* - Data size (the data size may be larger than the size requested by malloc,
* either due to heap fragmentation or because of heap debugging level).
* - Address of next block in the heap.
* - If the block is free, the address of the next free block is also printed.
*
* @param caps Bitwise OR of MALLOC_CAP_* flags indicating the type
* of memory
*/
void heap_caps_dump(uint32_t caps);
/**
* @brief Dump the full structure of all heaps.
*
* Covers all registered heaps. Prints a large amount of output to serial.
*
* Output is the same as for heap_caps_dump.
*
*/
void heap_caps_dump_all(void);
/**
* @brief Return the size that a particular pointer was allocated with.
*
* @param ptr Pointer to currently allocated heap memory. Must be a pointer value previously
* returned by heap_caps_malloc,malloc,calloc, etc. and not yet freed.
*
* @note The app will crash with an assertion failure if the pointer is not valid.
*
* @return Size of the memory allocated at this block.
*
*/
size_t heap_caps_get_allocated_size( void *ptr );
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,92 @@
// Copyright 2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "esp_err.h"
#include "esp_heap_caps.h"
#include "soc/soc_memory_layout.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief Initialize the capability-aware heap allocator.
*
* This is called once in the IDF startup code. Do not call it
* at other times.
*/
void heap_caps_init(void);
/**
* @brief Enable heap(s) in memory regions where the startup stacks are located.
*
* On startup, the pro/app CPUs have a certain memory region they use as stack, so we
* cannot do allocations in the regions these stack frames are. When FreeRTOS is
* completely started, they do not use that memory anymore and heap(s) there can
* be enabled.
*/
void heap_caps_enable_nonos_stack_heaps(void);
/**
* @brief Add a region of memory to the collection of heaps at runtime.
*
* Most memory regions are defined in soc_memory_layout.c for the SoC,
* and are registered via heap_caps_init(). Some regions can't be used
* immediately and are later enabled via heap_caps_enable_nonos_stack_heaps().
*
* Call this function to add a region of memory to the heap at some later time.
*
* This function does not consider any of the "reserved" regions or other data in soc_memory_layout, caller needs to
* consider this themselves.
*
* All memory within the region specified by start & end parameters must be otherwise unused.
*
* The capabilities of the newly registered memory will be determined by the start address, as looked up in the regions
* specified in soc_memory_layout.c.
*
* Use heap_caps_add_region_with_caps() to register a region with custom capabilities.
*
* @param start Start address of new region.
* @param end End address of new region.
*
* @return ESP_OK on success, ESP_ERR_INVALID_ARG if a parameter is invalid, ESP_ERR_NOT_FOUND if the
* specified start address doesn't reside in a known region, or any error returned by heap_caps_add_region_with_caps().
*/
esp_err_t heap_caps_add_region(intptr_t start, intptr_t end);
/**
* @brief Add a region of memory to the collection of heaps at runtime, with custom capabilities.
*
* Similar to heap_caps_add_region(), only custom memory capabilities are specified by the caller.
*
* @param caps Ordered array of capability masks for the new region, in order of priority. Must have length
* SOC_MEMORY_TYPE_NO_PRIOS. Does not need to remain valid after the call returns.
* @param start Start address of new region.
* @param end End address of new region.
*
* @return
* - ESP_OK on success
* - ESP_ERR_INVALID_ARG if a parameter is invalid
* - ESP_ERR_NO_MEM if no memory to register new heap.
* - ESP_ERR_INVALID_SIZE if the memory region is too small to fit a heap
* - ESP_FAIL if region overlaps the start and/or end of an existing region
*/
esp_err_t heap_caps_add_region_with_caps(const uint32_t caps[], intptr_t start, intptr_t end);
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,98 @@
// Copyright 2018 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#ifdef CONFIG_HEAP_TASK_TRACKING
#ifdef __cplusplus
extern "C" {
#endif
// This macro controls how much space is provided for partitioning the per-task
// heap allocation info according to one or more sets of heap capabilities.
#define NUM_HEAP_TASK_CAPS 4
/** @brief Structure to collect per-task heap allocation totals partitioned by selected caps */
typedef struct {
TaskHandle_t task; ///< Task to which these totals belong
size_t size[NUM_HEAP_TASK_CAPS]; ///< Total allocations partitioned by selected caps
size_t count[NUM_HEAP_TASK_CAPS]; ///< Number of blocks partitioned by selected caps
} heap_task_totals_t;
/** @brief Structure providing details about a block allocated by a task */
typedef struct {
TaskHandle_t task; ///< Task that allocated the block
void *address; ///< User address of allocated block
uint32_t size; ///< Size of the allocated block
} heap_task_block_t;
/** @brief Structure to provide parameters to heap_caps_get_per_task_info
*
* The 'caps' and 'mask' arrays allow partitioning the per-task heap allocation
* totals by selected sets of heap region capabilities so that totals for
* multiple regions can be accumulated in one scan. The capabilities flags for
* each region ANDed with mask[i] are compared to caps[i] in order; the
* allocations in that region are added to totals->size[i] and totals->count[i]
* for the first i that matches. To collect the totals without any
* partitioning, set mask[0] and caps[0] both to zero. The allocation totals
* are returned in the 'totals' array of heap_task_totals_t structs. To allow
* easily comparing the totals array between consecutive calls, that array can
* be left populated from one call to the next so the order of tasks is the
* same even if some tasks have freed their blocks or have been deleted. The
* number of blocks prepopulated is given by num_totals, which is updated upon
* return. If there are more tasks with allocations than the capacity of the
* totals array (given by max_totals), information for the excess tasks will be
* not be collected. The totals array pointer can be NULL if the totals are
* not desired.
*
* The 'tasks' array holds a list of handles for tasks whose block details are
* to be returned in the 'blocks' array of heap_task_block_t structs. If the
* tasks array pointer is NULL, block details for all tasks will be returned up
* to the capacity of the buffer array, given by max_blocks. The function
* return value tells the number of blocks filled into the array. The blocks
* array pointer can be NULL if block details are not desired, or max_blocks
* can be set to zero.
*/
typedef struct {
int32_t caps[NUM_HEAP_TASK_CAPS]; ///< Array of caps for partitioning task totals
int32_t mask[NUM_HEAP_TASK_CAPS]; ///< Array of masks under which caps must match
TaskHandle_t *tasks; ///< Array of tasks whose block info is returned
size_t num_tasks; ///< Length of tasks array
heap_task_totals_t *totals; ///< Array of structs to collect task totals
size_t *num_totals; ///< Number of task structs currently in array
size_t max_totals; ///< Capacity of array of task totals structs
heap_task_block_t *blocks; ///< Array of task block details structs
size_t max_blocks; ///< Capacity of array of task block info structs
} heap_task_info_params_t;
/**
* @brief Return per-task heap allocation totals and lists of blocks.
*
* For each task that has allocated memory from the heap, return totals for
* allocations within regions matching one or more sets of capabilities.
*
* Optionally also return an array of structs providing details about each
* block allocated by one or more requested tasks, or by all tasks.
*
* @param params Structure to hold all the parameters for the function
* (@see heap_task_info_params_t).
* @return Number of block detail structs returned (@see heap_task_block_t).
*/
extern size_t heap_caps_get_per_task_info(heap_task_info_params_t *params);
#ifdef __cplusplus
}
#endif
#endif // CONFIG_HEAP_TASK_TRACKING

View File

@@ -0,0 +1,154 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "sdkconfig.h"
#include <stdint.h>
#include <esp_err.h>
#ifdef __cplusplus
extern "C" {
#endif
#if !defined(CONFIG_HEAP_TRACING) && !defined(HEAP_TRACE_SRCFILE)
#warning "esp_heap_trace.h is included but heap tracing is disabled in menuconfig, functions are no-ops"
#endif
#ifndef CONFIG_HEAP_TRACING_STACK_DEPTH
#define CONFIG_HEAP_TRACING_STACK_DEPTH 0
#endif
typedef enum {
HEAP_TRACE_ALL,
HEAP_TRACE_LEAKS,
} heap_trace_mode_t;
/**
* @brief Trace record data type. Stores information about an allocated region of memory.
*/
typedef struct {
uint32_t ccount; ///< CCOUNT of the CPU when the allocation was made. LSB (bit value 1) is the CPU number (0 or 1).
void *address; ///< Address which was allocated
size_t size; ///< Size of the allocation
void *alloced_by[CONFIG_HEAP_TRACING_STACK_DEPTH]; ///< Call stack of the caller which allocated the memory.
void *freed_by[CONFIG_HEAP_TRACING_STACK_DEPTH]; ///< Call stack of the caller which freed the memory (all zero if not freed.)
} heap_trace_record_t;
/**
* @brief Initialise heap tracing in standalone mode.
*
* This function must be called before any other heap tracing functions.
*
* To disable heap tracing and allow the buffer to be freed, stop tracing and then call heap_trace_init_standalone(NULL, 0);
*
* @param record_buffer Provide a buffer to use for heap trace data. Must remain valid any time heap tracing is enabled, meaning
* it must be allocated from internal memory not in PSRAM.
* @param num_records Size of the heap trace buffer, as number of record structures.
* @return
* - ESP_ERR_NOT_SUPPORTED Project was compiled without heap tracing enabled in menuconfig.
* - ESP_ERR_INVALID_STATE Heap tracing is currently in progress.
* - ESP_OK Heap tracing initialised successfully.
*/
esp_err_t heap_trace_init_standalone(heap_trace_record_t *record_buffer, size_t num_records);
/**
* @brief Initialise heap tracing in host-based mode.
*
* This function must be called before any other heap tracing functions.
*
* @return
* - ESP_ERR_INVALID_STATE Heap tracing is currently in progress.
* - ESP_OK Heap tracing initialised successfully.
*/
esp_err_t heap_trace_init_tohost(void);
/**
* @brief Start heap tracing. All heap allocations & frees will be traced, until heap_trace_stop() is called.
*
* @note heap_trace_init_standalone() must be called to provide a valid buffer, before this function is called.
*
* @note Calling this function while heap tracing is running will reset the heap trace state and continue tracing.
*
* @param mode Mode for tracing.
* - HEAP_TRACE_ALL means all heap allocations and frees are traced.
* - HEAP_TRACE_LEAKS means only suspected memory leaks are traced. (When memory is freed, the record is removed from the trace buffer.)
* @return
* - ESP_ERR_NOT_SUPPORTED Project was compiled without heap tracing enabled in menuconfig.
* - ESP_ERR_INVALID_STATE A non-zero-length buffer has not been set via heap_trace_init_standalone().
* - ESP_OK Tracing is started.
*/
esp_err_t heap_trace_start(heap_trace_mode_t mode);
/**
* @brief Stop heap tracing.
*
* @return
* - ESP_ERR_NOT_SUPPORTED Project was compiled without heap tracing enabled in menuconfig.
* - ESP_ERR_INVALID_STATE Heap tracing was not in progress.
* - ESP_OK Heap tracing stopped..
*/
esp_err_t heap_trace_stop(void);
/**
* @brief Resume heap tracing which was previously stopped.
*
* Unlike heap_trace_start(), this function does not clear the
* buffer of any pre-existing trace records.
*
* The heap trace mode is the same as when heap_trace_start() was
* last called (or HEAP_TRACE_ALL if heap_trace_start() was never called).
*
* @return
* - ESP_ERR_NOT_SUPPORTED Project was compiled without heap tracing enabled in menuconfig.
* - ESP_ERR_INVALID_STATE Heap tracing was already started.
* - ESP_OK Heap tracing resumed.
*/
esp_err_t heap_trace_resume(void);
/**
* @brief Return number of records in the heap trace buffer
*
* It is safe to call this function while heap tracing is running.
*/
size_t heap_trace_get_count(void);
/**
* @brief Return a raw record from the heap trace buffer
*
* @note It is safe to call this function while heap tracing is running, however in HEAP_TRACE_LEAK mode record indexing may
* skip entries unless heap tracing is stopped first.
*
* @param index Index (zero-based) of the record to return.
* @param[out] record Record where the heap trace record will be copied.
* @return
* - ESP_ERR_NOT_SUPPORTED Project was compiled without heap tracing enabled in menuconfig.
* - ESP_ERR_INVALID_STATE Heap tracing was not initialised.
* - ESP_ERR_INVALID_ARG Index is out of bounds for current heap trace record count.
* - ESP_OK Record returned successfully.
*/
esp_err_t heap_trace_get(size_t index, heap_trace_record_t *record);
/**
* @brief Dump heap trace record data to stdout
*
* @note It is safe to call this function while heap tracing is running, however in HEAP_TRACE_LEAK mode the dump may skip
* entries unless heap tracing is stopped first.
*
*
*/
void heap_trace_dump(void);
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,200 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include <sdkconfig.h>
#include "soc/soc_memory_layout.h"
#include "esp_attr.h"
/* Encode the CPU ID in the LSB of the ccount value */
inline static uint32_t get_ccount(void)
{
uint32_t ccount = cpu_hal_get_cycle_count() & ~3;
#ifndef CONFIG_FREERTOS_UNICORE
ccount |= xPortGetCoreID();
#endif
return ccount;
}
/* Architecture-specific return value of __builtin_return_address which
* should be interpreted as an invalid address.
*/
#ifdef __XTENSA__
#define HEAP_ARCH_INVALID_PC 0x40000000
#else
#define HEAP_ARCH_INVALID_PC 0x00000000
#endif
// Caller is 2 stack frames deeper than we care about
#define STACK_OFFSET 2
#define TEST_STACK(N) do { \
if (STACK_DEPTH == N) { \
return; \
} \
callers[N] = __builtin_return_address(N+STACK_OFFSET); \
if (!esp_ptr_executable(callers[N]) \
|| callers[N] == (void*) HEAP_ARCH_INVALID_PC) { \
callers[N] = 0; \
return; \
} \
} while(0)
/* Static function to read the call stack for a traced heap call.
Calls to __builtin_return_address are "unrolled" via TEST_STACK macro as gcc requires the
argument to be a compile-time constant.
*/
static IRAM_ATTR __attribute__((noinline)) void get_call_stack(void **callers)
{
bzero(callers, sizeof(void *) * STACK_DEPTH);
TEST_STACK(0);
TEST_STACK(1);
TEST_STACK(2);
TEST_STACK(3);
TEST_STACK(4);
TEST_STACK(5);
TEST_STACK(6);
TEST_STACK(7);
TEST_STACK(8);
TEST_STACK(9);
}
_Static_assert(STACK_DEPTH >= 0 && STACK_DEPTH <= 10, "CONFIG_HEAP_TRACING_STACK_DEPTH must be in range 0-10");
typedef enum {
TRACE_MALLOC_CAPS,
TRACE_MALLOC_DEFAULT
} trace_malloc_mode_t;
void *__real_heap_caps_malloc(size_t size, uint32_t caps);
void *__real_heap_caps_malloc_default( size_t size );
void *__real_heap_caps_realloc_default( void *ptr, size_t size );
/* trace any 'malloc' event */
static IRAM_ATTR __attribute__((noinline)) void *trace_malloc(size_t size, uint32_t caps, trace_malloc_mode_t mode)
{
uint32_t ccount = get_ccount();
void *p;
if ( mode == TRACE_MALLOC_CAPS ) {
p = __real_heap_caps_malloc(size, caps);
} else { //TRACE_MALLOC_DEFAULT
p = __real_heap_caps_malloc_default(size);
}
heap_trace_record_t rec = {
.address = p,
.ccount = ccount,
.size = size,
};
get_call_stack(rec.alloced_by);
record_allocation(&rec);
return p;
}
void __real_heap_caps_free(void *p);
/* trace any 'free' event */
static IRAM_ATTR __attribute__((noinline)) void trace_free(void *p)
{
void *callers[STACK_DEPTH];
get_call_stack(callers);
record_free(p, callers);
__real_heap_caps_free(p);
}
void * __real_heap_caps_realloc(void *p, size_t size, uint32_t caps);
/* trace any 'realloc' event */
static IRAM_ATTR __attribute__((noinline)) void *trace_realloc(void *p, size_t size, uint32_t caps, trace_malloc_mode_t mode)
{
void *callers[STACK_DEPTH];
uint32_t ccount = get_ccount();
void *r;
/* trace realloc as free-then-alloc */
get_call_stack(callers);
record_free(p, callers);
if (mode == TRACE_MALLOC_CAPS ) {
r = __real_heap_caps_realloc(p, size, caps);
} else { //TRACE_MALLOC_DEFAULT
r = __real_heap_caps_realloc_default(p, size);
}
/* realloc with zero size is a free */
if (size != 0) {
heap_trace_record_t rec = {
.address = r,
.ccount = ccount,
.size = size,
};
memcpy(rec.alloced_by, callers, sizeof(void *) * STACK_DEPTH);
record_allocation(&rec);
}
return r;
}
/* Note: this changes the behaviour of libc malloc/realloc/free a bit,
as they no longer go via the libc functions in ROM. But more or less
the same in the end. */
IRAM_ATTR void *__wrap_malloc(size_t size)
{
return trace_malloc(size, 0, TRACE_MALLOC_DEFAULT);
}
IRAM_ATTR void __wrap_free(void *p)
{
trace_free(p);
}
IRAM_ATTR void *__wrap_realloc(void *p, size_t size)
{
return trace_realloc(p, size, 0, TRACE_MALLOC_DEFAULT);
}
IRAM_ATTR void *__wrap_calloc(size_t nmemb, size_t size)
{
size = size * nmemb;
void *result = trace_malloc(size, 0, TRACE_MALLOC_DEFAULT);
if (result != NULL) {
memset(result, 0, size);
}
return result;
}
IRAM_ATTR void *__wrap_heap_caps_malloc(size_t size, uint32_t caps)
{
return trace_malloc(size, caps, TRACE_MALLOC_CAPS);
}
void __wrap_heap_caps_free(void *p) __attribute__((alias("__wrap_free")));
IRAM_ATTR void *__wrap_heap_caps_realloc(void *p, size_t size, uint32_t caps)
{
return trace_realloc(p, size, caps, TRACE_MALLOC_CAPS);
}
IRAM_ATTR void *__wrap_heap_caps_malloc_default( size_t size )
{
return trace_malloc(size, 0, TRACE_MALLOC_DEFAULT);
}
IRAM_ATTR void *__wrap_heap_caps_realloc_default( void *ptr, size_t size )
{
return trace_realloc(ptr, size, 0, TRACE_MALLOC_DEFAULT);
}

View File

@@ -0,0 +1,190 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <stdint.h>
#include <stdlib.h>
#include <stdbool.h>
/* multi_heap is a heap implementation for handling multiple
heterogenous heaps in a single program.
Any contiguous block of memory can be registered as a heap.
*/
#ifdef __cplusplus
extern "C" {
#endif
/** @brief Opaque handle to a registered heap */
typedef struct multi_heap_info *multi_heap_handle_t;
/**
* @brief allocate a chunk of memory with specific alignment
*
* @param heap Handle to a registered heap.
* @param size size in bytes of memory chunk
* @param alignment how the memory must be aligned
*
* @return pointer to the memory allocated, NULL on failure
*/
void *multi_heap_aligned_alloc(multi_heap_handle_t heap, size_t size, size_t alignment);
/** @brief malloc() a buffer in a given heap
*
* Semantics are the same as standard malloc(), only the returned buffer will be allocated in the specified heap.
*
* @param heap Handle to a registered heap.
* @param size Size of desired buffer.
*
* @return Pointer to new memory, or NULL if allocation fails.
*/
void *multi_heap_malloc(multi_heap_handle_t heap, size_t size);
/** @brief free() a buffer aligned in a given heap.
*
* @param heap Handle to a registered heap.
* @param p NULL, or a pointer previously returned from multi_heap_aligned_alloc() for the same heap.
* @note This function is deprecated, consider using multi_heap_free() instead
*/
void __attribute__((deprecated)) multi_heap_aligned_free(multi_heap_handle_t heap, void *p);
/** @brief free() a buffer in a given heap.
*
* Semantics are the same as standard free(), only the argument 'p' must be NULL or have been allocated in the specified heap.
*
* @param heap Handle to a registered heap.
* @param p NULL, or a pointer previously returned from multi_heap_malloc() or multi_heap_realloc() for the same heap.
*/
void multi_heap_free(multi_heap_handle_t heap, void *p);
/** @brief realloc() a buffer in a given heap.
*
* Semantics are the same as standard realloc(), only the argument 'p' must be NULL or have been allocated in the specified heap.
*
* @param heap Handle to a registered heap.
* @param p NULL, or a pointer previously returned from multi_heap_malloc() or multi_heap_realloc() for the same heap.
* @param size Desired new size for buffer.
*
* @return New buffer of 'size' containing contents of 'p', or NULL if reallocation failed.
*/
void *multi_heap_realloc(multi_heap_handle_t heap, void *p, size_t size);
/** @brief Return the size that a particular pointer was allocated with.
*
* @param heap Handle to a registered heap.
* @param p Pointer, must have been previously returned from multi_heap_malloc() or multi_heap_realloc() for the same heap.
*
* @return Size of the memory allocated at this block. May be more than the original size argument, due
* to padding and minimum block sizes.
*/
size_t multi_heap_get_allocated_size(multi_heap_handle_t heap, void *p);
/** @brief Register a new heap for use
*
* This function initialises a heap at the specified address, and returns a handle for future heap operations.
*
* There is no equivalent function for deregistering a heap - if all blocks in the heap are free, you can immediately start using the memory for other purposes.
*
* @param start Start address of the memory to use for a new heap.
* @param size Size (in bytes) of the new heap.
*
* @return Handle of a new heap ready for use, or NULL if the heap region was too small to be initialised.
*/
multi_heap_handle_t multi_heap_register(void *start, size_t size);
/** @brief Associate a private lock pointer with a heap
*
* The lock argument is supplied to the MULTI_HEAP_LOCK() and MULTI_HEAP_UNLOCK() macros, defined in multi_heap_platform.h.
*
* The lock in question must be recursive.
*
* When the heap is first registered, the associated lock is NULL.
*
* @param heap Handle to a registered heap.
* @param lock Optional pointer to a locking structure to associate with this heap.
*/
void multi_heap_set_lock(multi_heap_handle_t heap, void* lock);
/** @brief Dump heap information to stdout
*
* For debugging purposes, this function dumps information about every block in the heap to stdout.
*
* @param heap Handle to a registered heap.
*/
void multi_heap_dump(multi_heap_handle_t heap);
/** @brief Check heap integrity
*
* Walks the heap and checks all heap data structures are valid. If any errors are detected, an error-specific message
* can be optionally printed to stderr. Print behaviour can be overriden at compile time by defining
* MULTI_CHECK_FAIL_PRINTF in multi_heap_platform.h.
*
* @param heap Handle to a registered heap.
* @param print_errors If true, errors will be printed to stderr.
* @return true if heap is valid, false otherwise.
*/
bool multi_heap_check(multi_heap_handle_t heap, bool print_errors);
/** @brief Return free heap size
*
* Returns the number of bytes available in the heap.
*
* Equivalent to the total_free_bytes member returned by multi_heap_get_heap_info().
*
* Note that the heap may be fragmented, so the actual maximum size for a single malloc() may be lower. To know this
* size, see the largest_free_block member returned by multi_heap_get_heap_info().
*
* @param heap Handle to a registered heap.
* @return Number of free bytes.
*/
size_t multi_heap_free_size(multi_heap_handle_t heap);
/** @brief Return the lifetime minimum free heap size
*
* Equivalent to the minimum_free_bytes member returned by multi_heap_get_info().
*
* Returns the lifetime "low water mark" of possible values returned from multi_free_heap_size(), for the specified
* heap.
*
* @param heap Handle to a registered heap.
* @return Number of free bytes.
*/
size_t multi_heap_minimum_free_size(multi_heap_handle_t heap);
/** @brief Structure to access heap metadata via multi_heap_get_info */
typedef struct {
size_t total_free_bytes; ///< Total free bytes in the heap. Equivalent to multi_free_heap_size().
size_t total_allocated_bytes; ///< Total bytes allocated to data in the heap.
size_t largest_free_block; ///< Size of largest free block in the heap. This is the largest malloc-able size.
size_t minimum_free_bytes; ///< Lifetime minimum free heap size. Equivalent to multi_minimum_free_heap_size().
size_t allocated_blocks; ///< Number of (variable size) blocks allocated in the heap.
size_t free_blocks; ///< Number of (variable size) free blocks in the heap.
size_t total_blocks; ///< Total number of (variable size) blocks in the heap.
} multi_heap_info_t;
/** @brief Return metadata about a given heap
*
* Fills a multi_heap_info_t structure with information about the specified heap.
*
* @param heap Handle to a registered heap.
* @param info Pointer to a structure to fill with heap metadata.
*/
void multi_heap_get_info(multi_heap_handle_t heap, multi_heap_info_t *info);
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,7 @@
[mapping:heap]
archive: libheap.a
entries:
heap_tlsf (noflash)
multi_heap (noflash)
if HEAP_POISONING_DISABLED = n:
multi_heap_poisoning (noflash)

View File

@@ -0,0 +1,376 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdint.h>
#include <stdlib.h>
#include <stdbool.h>
#include <assert.h>
#include <string.h>
#include <stddef.h>
#include <stdio.h>
#include <sys/cdefs.h>
#include "heap_tlsf.h"
#include <multi_heap.h>
#include "multi_heap_internal.h"
/* Note: Keep platform-specific parts in this header, this source
file should depend on libc only */
#include "multi_heap_platform.h"
/* Defines compile-time configuration macros */
#include "multi_heap_config.h"
#ifndef MULTI_HEAP_POISONING
/* if no heap poisoning, public API aliases directly to these implementations */
void *multi_heap_malloc(multi_heap_handle_t heap, size_t size)
__attribute__((alias("multi_heap_malloc_impl")));
void *multi_heap_aligned_alloc(multi_heap_handle_t heap, size_t size, size_t alignment)
__attribute__((alias("multi_heap_aligned_alloc_impl")));
void multi_heap_aligned_free(multi_heap_handle_t heap, void *p)
__attribute__((alias("multi_heap_free_impl")));
void multi_heap_free(multi_heap_handle_t heap, void *p)
__attribute__((alias("multi_heap_free_impl")));
void *multi_heap_realloc(multi_heap_handle_t heap, void *p, size_t size)
__attribute__((alias("multi_heap_realloc_impl")));
size_t multi_heap_get_allocated_size(multi_heap_handle_t heap, void *p)
__attribute__((alias("multi_heap_get_allocated_size_impl")));
multi_heap_handle_t multi_heap_register(void *start, size_t size)
__attribute__((alias("multi_heap_register_impl")));
void multi_heap_get_info(multi_heap_handle_t heap, multi_heap_info_t *info)
__attribute__((alias("multi_heap_get_info_impl")));
size_t multi_heap_free_size(multi_heap_handle_t heap)
__attribute__((alias("multi_heap_free_size_impl")));
size_t multi_heap_minimum_free_size(multi_heap_handle_t heap)
__attribute__((alias("multi_heap_minimum_free_size_impl")));
void *multi_heap_get_block_address(multi_heap_block_handle_t block)
__attribute__((alias("multi_heap_get_block_address_impl")));
void *multi_heap_get_block_owner(multi_heap_block_handle_t block)
{
return NULL;
}
#endif
#define ALIGN(X) ((X) & ~(sizeof(void *)-1))
#define ALIGN_UP(X) ALIGN((X)+sizeof(void *)-1)
#define ALIGN_UP_BY(num, align) (((num) + ((align) - 1)) & ~((align) - 1))
typedef struct multi_heap_info {
void *lock;
size_t free_bytes;
size_t minimum_free_bytes;
size_t pool_size;
tlsf_t heap_data;
} heap_t;
/* Return true if this block is free. */
static inline bool is_free(const block_header_t *block)
{
return ((block->size & 0x01) != 0);
}
/* Data size of the block (excludes this block's header) */
static inline size_t block_data_size(const block_header_t *block)
{
return (block->size & ~0x03);
}
/* Check a block is valid for this heap. Used to verify parameters. */
static void assert_valid_block(const heap_t *heap, const block_header_t *block)
{
pool_t pool = tlsf_get_pool(heap->heap_data);
void *ptr = block_to_ptr(block);
MULTI_HEAP_ASSERT((ptr >= pool) &&
(ptr < pool + heap->pool_size),
(uintptr_t)ptr);
}
void *multi_heap_get_block_address_impl(multi_heap_block_handle_t block)
{
void *ptr = block_to_ptr(block);
return (ptr);
}
size_t multi_heap_get_allocated_size_impl(multi_heap_handle_t heap, void *p)
{
return tlsf_block_size(p);
}
multi_heap_handle_t multi_heap_register_impl(void *start_ptr, size_t size)
{
assert(start_ptr);
if(size < (tlsf_size(NULL) + tlsf_block_size_min() + sizeof(heap_t))) {
//Region too small to be a heap.
return NULL;
}
heap_t *result = (heap_t *)start_ptr;
size -= sizeof(heap_t);
result->heap_data = tlsf_create_with_pool(start_ptr + sizeof(heap_t), size, 0);
if(!result->heap_data) {
return NULL;
}
result->lock = NULL;
result->free_bytes = size - tlsf_size(result->heap_data);
result->pool_size = size;
result->minimum_free_bytes = result->free_bytes;
return result;
}
void multi_heap_set_lock(multi_heap_handle_t heap, void *lock)
{
heap->lock = lock;
}
void inline multi_heap_internal_lock(multi_heap_handle_t heap)
{
MULTI_HEAP_LOCK(heap->lock);
}
void inline multi_heap_internal_unlock(multi_heap_handle_t heap)
{
MULTI_HEAP_UNLOCK(heap->lock);
}
multi_heap_block_handle_t multi_heap_get_first_block(multi_heap_handle_t heap)
{
assert(heap != NULL);
pool_t pool = tlsf_get_pool(heap->heap_data);
block_header_t* block = offset_to_block(pool, -(int)block_header_overhead);
return (multi_heap_block_handle_t)block;
}
multi_heap_block_handle_t multi_heap_get_next_block(multi_heap_handle_t heap, multi_heap_block_handle_t block)
{
assert(heap != NULL);
assert_valid_block(heap, block);
block_header_t* next = block_next(block);
if(block_data_size(next) == 0) {
//Last block:
return NULL;
} else {
return (multi_heap_block_handle_t)next;
}
}
bool multi_heap_is_free(multi_heap_block_handle_t block)
{
return is_free(block);
}
void *multi_heap_malloc_impl(multi_heap_handle_t heap, size_t size)
{
if (size == 0 || heap == NULL) {
return NULL;
}
multi_heap_internal_lock(heap);
void *result = tlsf_malloc(heap->heap_data, size);
if(result) {
heap->free_bytes -= tlsf_block_size(result);
if (heap->free_bytes < heap->minimum_free_bytes) {
heap->minimum_free_bytes = heap->free_bytes;
}
}
multi_heap_internal_unlock(heap);
return result;
}
void multi_heap_free_impl(multi_heap_handle_t heap, void *p)
{
if (heap == NULL || p == NULL) {
return;
}
assert_valid_block(heap, p);
multi_heap_internal_lock(heap);
heap->free_bytes += tlsf_block_size(p);
tlsf_free(heap->heap_data, p);
multi_heap_internal_unlock(heap);
}
void *multi_heap_realloc_impl(multi_heap_handle_t heap, void *p, size_t size)
{
assert(heap != NULL);
if (p == NULL) {
return multi_heap_malloc_impl(heap, size);
}
assert_valid_block(heap, p);
if (heap == NULL) {
return NULL;
}
multi_heap_internal_lock(heap);
size_t previous_block_size = tlsf_block_size(p);
void *result = tlsf_realloc(heap->heap_data, p, size);
if(result) {
heap->free_bytes += previous_block_size;
heap->free_bytes -= tlsf_block_size(result);
if (heap->free_bytes < heap->minimum_free_bytes) {
heap->minimum_free_bytes = heap->free_bytes;
}
}
multi_heap_internal_unlock(heap);
return result;
}
void *multi_heap_aligned_alloc_impl_offs(multi_heap_handle_t heap, size_t size, size_t alignment, size_t offset)
{
if(heap == NULL) {
return NULL;
}
if(!size) {
return NULL;
}
//Alignment must be a power of two:
if(((alignment & (alignment - 1)) != 0) ||(!alignment)) {
return NULL;
}
multi_heap_internal_lock(heap);
void *result = tlsf_memalign_offs(heap->heap_data, alignment, size, offset);
if(result) {
heap->free_bytes -= tlsf_block_size(result);
if(heap->free_bytes < heap->minimum_free_bytes) {
heap->minimum_free_bytes = heap->free_bytes;
}
}
multi_heap_internal_unlock(heap);
return result;
}
void *multi_heap_aligned_alloc_impl(multi_heap_handle_t heap, size_t size, size_t alignment)
{
return multi_heap_aligned_alloc_impl_offs(heap, size, alignment, 0);
}
bool multi_heap_check(multi_heap_handle_t heap, bool print_errors)
{
(void)print_errors;
bool valid = true;
assert(heap != NULL);
multi_heap_internal_lock(heap);
if(tlsf_check(heap->heap_data)) {
valid = false;
}
if(tlsf_check_pool(tlsf_get_pool(heap->heap_data))) {
valid = false;
}
multi_heap_internal_unlock(heap);
return valid;
}
static void multi_heap_dump_tlsf(void* ptr, size_t size, int used, void* user)
{
(void)user;
MULTI_HEAP_STDERR_PRINTF("Block %p data, size: %d bytes, Free: %s \n",
(void *)ptr,
size,
used ? "No" : "Yes");
}
void multi_heap_dump(multi_heap_handle_t heap)
{
assert(heap != NULL);
multi_heap_internal_lock(heap);
MULTI_HEAP_STDERR_PRINTF("Showing data for heap: %p \n", (void *)heap);
tlsf_walk_pool(tlsf_get_pool(heap->heap_data), multi_heap_dump_tlsf, NULL);
multi_heap_internal_unlock(heap);
}
size_t multi_heap_free_size_impl(multi_heap_handle_t heap)
{
if (heap == NULL) {
return 0;
}
return heap->free_bytes;
}
size_t multi_heap_minimum_free_size_impl(multi_heap_handle_t heap)
{
if (heap == NULL) {
return 0;
}
return heap->minimum_free_bytes;
}
static void multi_heap_get_info_tlsf(void* ptr, size_t size, int used, void* user)
{
multi_heap_info_t *info = user;
if(used) {
info->allocated_blocks++;
} else {
info->free_blocks++;
if(size > info->largest_free_block ) {
info->largest_free_block = size;
}
}
info->total_blocks++;
}
void multi_heap_get_info_impl(multi_heap_handle_t heap, multi_heap_info_t *info)
{
memset(info, 0, sizeof(multi_heap_info_t));
if (heap == NULL) {
return;
}
multi_heap_internal_lock(heap);
tlsf_walk_pool(tlsf_get_pool(heap->heap_data), multi_heap_get_info_tlsf, info);
info->total_allocated_bytes = (heap->pool_size - tlsf_size(heap->heap_data)) - heap->free_bytes;
info->minimum_free_bytes = heap->minimum_free_bytes;
info->total_free_bytes = heap->free_bytes;
info->largest_free_block = tlsf_fit_size(heap->heap_data, info->largest_free_block);
multi_heap_internal_unlock(heap);
}

View File

@@ -0,0 +1,31 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#ifdef ESP_PLATFORM
#include "sdkconfig.h"
#include "soc/soc.h"
#include "soc/soc_caps.h"
#endif
/* Configuration macros for multi-heap */
#ifdef CONFIG_HEAP_POISONING_LIGHT
#define MULTI_HEAP_POISONING
#endif
#ifdef CONFIG_HEAP_POISONING_COMPREHENSIVE
#define MULTI_HEAP_POISONING
#define MULTI_HEAP_POISONING_SLOW
#endif

View File

@@ -0,0 +1,76 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
/* Opaque handle to a heap block */
typedef const struct block_header_t *multi_heap_block_handle_t;
/* Internal definitions for the "implementation" of the multi_heap API,
as defined in multi_heap.c.
If heap poisioning is disabled, these are aliased directly to the public API.
If heap poisoning is enabled, wrapper functions call each of these.
*/
void *multi_heap_malloc_impl(multi_heap_handle_t heap, size_t size);
/* Allocate a memory region of minimum `size` bytes, aligned on `alignment`. */
void *multi_heap_aligned_alloc_impl(multi_heap_handle_t heap, size_t size, size_t alignment);
/* Allocate a memory region of minimum `size` bytes, where memory's `offset` is aligned on `alignment`. */
void *multi_heap_aligned_alloc_impl_offs(multi_heap_handle_t heap, size_t size, size_t alignment, size_t offset);
void multi_heap_free_impl(multi_heap_handle_t heap, void *p);
void *multi_heap_realloc_impl(multi_heap_handle_t heap, void *p, size_t size);
multi_heap_handle_t multi_heap_register_impl(void *start, size_t size);
void multi_heap_get_info_impl(multi_heap_handle_t heap, multi_heap_info_t *info);
size_t multi_heap_free_size_impl(multi_heap_handle_t heap);
size_t multi_heap_minimum_free_size_impl(multi_heap_handle_t heap);
size_t multi_heap_get_allocated_size_impl(multi_heap_handle_t heap, void *p);
void *multi_heap_get_block_address_impl(multi_heap_block_handle_t block);
/* Some internal functions for heap poisoning use */
/* Check an allocated block's poison bytes are correct. Called by multi_heap_check(). */
bool multi_heap_internal_check_block_poisoning(void *start, size_t size, bool is_free, bool print_errors);
/* Fill a region of memory with the free or malloced pattern.
Called when merging blocks, to overwrite the old block header.
*/
void multi_heap_internal_poison_fill_region(void *start, size_t size, bool is_free);
/* Allow heap poisoning to lock/unlock the heap to avoid race conditions
if multi_heap_check() is running concurrently.
*/
void multi_heap_internal_lock(multi_heap_handle_t heap);
void multi_heap_internal_unlock(multi_heap_handle_t heap);
/* Some internal functions for heap debugging code to use */
/* Get the handle to the first (fixed free) block in a heap */
multi_heap_block_handle_t multi_heap_get_first_block(multi_heap_handle_t heap);
/* Get the handle to the next block in a heap, with validation */
multi_heap_block_handle_t multi_heap_get_next_block(multi_heap_handle_t heap, multi_heap_block_handle_t block);
/* Test if a heap block is free */
bool multi_heap_is_free(const multi_heap_block_handle_t block);
/* Get the data address of a heap block */
void *multi_heap_get_block_address(multi_heap_block_handle_t block);
/* Get the owner identification for a heap block */
void *multi_heap_get_block_owner(multi_heap_block_handle_t block);

View File

@@ -0,0 +1,108 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#ifdef MULTI_HEAP_FREERTOS
#include "freertos/FreeRTOS.h"
#include "sdkconfig.h"
#include "esp_rom_sys.h"
#if CONFIG_IDF_TARGET_ESP32
#include "esp32/rom/ets_sys.h" // will be removed in idf v5.0
#elif CONFIG_IDF_TARGET_ESP32S2
#include "esp32s2/rom/ets_sys.h"
#endif
#include <assert.h>
typedef portMUX_TYPE multi_heap_lock_t;
/* Because malloc/free can happen inside an ISR context,
we need to use portmux spinlocks here not RTOS mutexes */
#define MULTI_HEAP_LOCK(PLOCK) do { \
if((PLOCK) != NULL) { \
portENTER_CRITICAL((PLOCK)); \
} \
} while(0)
#define MULTI_HEAP_UNLOCK(PLOCK) do { \
if ((PLOCK) != NULL) { \
portEXIT_CRITICAL((PLOCK)); \
} \
} while(0)
#define MULTI_HEAP_LOCK_INIT(PLOCK) do { \
vPortCPUInitializeMutex((PLOCK)); \
} while(0)
#define MULTI_HEAP_LOCK_STATIC_INITIALIZER portMUX_INITIALIZER_UNLOCKED
/* Not safe to use std i/o while in a portmux critical section,
can deadlock, so we use the ROM equivalent functions. */
#define MULTI_HEAP_PRINTF esp_rom_printf
#define MULTI_HEAP_STDERR_PRINTF(MSG, ...) esp_rom_printf(MSG, __VA_ARGS__)
inline static void multi_heap_assert(bool condition, const char *format, int line, intptr_t address)
{
/* Can't use libc assert() here as it calls printf() which can cause another malloc() for a newlib lock.
Also, it's useful to be able to print the memory address where corruption was detected.
*/
#ifndef NDEBUG
if(!condition) {
#ifndef CONFIG_COMPILER_OPTIMIZATION_ASSERTIONS_SILENT
esp_rom_printf(format, line, address);
#endif // CONFIG_COMPILER_OPTIMIZATION_ASSERTIONS_SILENT
abort();
}
#else // NDEBUG
(void) condition;
#endif // NDEBUG
}
#define MULTI_HEAP_ASSERT(CONDITION, ADDRESS) \
multi_heap_assert((CONDITION), "CORRUPT HEAP: multi_heap.c:%d detected at 0x%08x\n", \
__LINE__, (intptr_t)(ADDRESS))
#ifdef CONFIG_HEAP_TASK_TRACKING
#include <freertos/task.h>
#define MULTI_HEAP_BLOCK_OWNER TaskHandle_t task;
#define MULTI_HEAP_SET_BLOCK_OWNER(HEAD) (HEAD)->task = xTaskGetCurrentTaskHandle()
#define MULTI_HEAP_GET_BLOCK_OWNER(HEAD) ((HEAD)->task)
#else
#define MULTI_HEAP_BLOCK_OWNER
#define MULTI_HEAP_SET_BLOCK_OWNER(HEAD)
#define MULTI_HEAP_GET_BLOCK_OWNER(HEAD) (NULL)
#endif
#else // MULTI_HEAP_FREERTOS
#include <assert.h>
#define MULTI_HEAP_PRINTF printf
#define MULTI_HEAP_STDERR_PRINTF(MSG, ...) fprintf(stderr, MSG, __VA_ARGS__)
#define MULTI_HEAP_LOCK(PLOCK) (void) (PLOCK)
#define MULTI_HEAP_UNLOCK(PLOCK) (void) (PLOCK)
#define MULTI_HEAP_LOCK_INIT(PLOCK) (void) (PLOCK)
#define MULTI_HEAP_LOCK_STATIC_INITIALIZER 0
#define MULTI_HEAP_ASSERT(CONDITION, ADDRESS) assert((CONDITION) && "Heap corrupt")
#define MULTI_HEAP_BLOCK_OWNER
#define MULTI_HEAP_SET_BLOCK_OWNER(HEAD)
#define MULTI_HEAP_GET_BLOCK_OWNER(HEAD) (NULL)
#endif // MULTI_HEAP_FREERTOS

View File

@@ -0,0 +1,426 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdint.h>
#include <stdlib.h>
#include <stdbool.h>
#include <assert.h>
#include <string.h>
#include <stddef.h>
#include <stdio.h>
#include <sys/param.h>
#include <multi_heap.h>
#include "multi_heap_internal.h"
/* Note: Keep platform-specific parts in this header, this source
file should depend on libc only */
#include "multi_heap_platform.h"
/* Defines compile-time configuration macros */
#include "multi_heap_config.h"
#ifdef MULTI_HEAP_POISONING
/* Alias MULTI_HEAP_POISONING_SLOW to SLOW for better readabilty */
#ifdef SLOW
#error "external header has defined SLOW"
#endif
#ifdef MULTI_HEAP_POISONING_SLOW
#define SLOW 1
#endif
#define MALLOC_FILL_PATTERN 0xce
#define FREE_FILL_PATTERN 0xfe
#define HEAD_CANARY_PATTERN 0xABBA1234
#define TAIL_CANARY_PATTERN 0xBAAD5678
#define ALIGN_UP(num, align) (((num) + ((align) - 1)) & ~((align) - 1))
typedef struct {
uint32_t head_canary;
MULTI_HEAP_BLOCK_OWNER
size_t alloc_size;
} poison_head_t;
typedef struct {
uint32_t tail_canary;
} poison_tail_t;
#define POISON_OVERHEAD (sizeof(poison_head_t) + sizeof(poison_tail_t))
/* Given a "poisoned" region with pre-data header 'head', and actual data size 'alloc_size', fill in the head and tail
region checks.
Returns the pointer to the actual usable data buffer (ie after 'head')
*/
static uint8_t *poison_allocated_region(poison_head_t *head, size_t alloc_size)
{
uint8_t *data = (uint8_t *)(&head[1]); /* start of data ie 'real' allocated buffer */
poison_tail_t *tail = (poison_tail_t *)(data + alloc_size);
head->alloc_size = alloc_size;
head->head_canary = HEAD_CANARY_PATTERN;
MULTI_HEAP_SET_BLOCK_OWNER(head);
uint32_t tail_canary = TAIL_CANARY_PATTERN;
if ((intptr_t)tail % sizeof(void *) == 0) {
tail->tail_canary = tail_canary;
} else {
/* unaligned tail_canary */
memcpy(&tail->tail_canary, &tail_canary, sizeof(uint32_t));
}
return data;
}
/* Given a pointer to some allocated data, check the head & tail poison structures (before & after it) that were
previously injected by poison_allocated_region().
Returns a pointer to the poison header structure, or NULL if the poison structures are corrupt.
*/
static poison_head_t *verify_allocated_region(void *data, bool print_errors)
{
poison_head_t *head = (poison_head_t *)((intptr_t)data - sizeof(poison_head_t));
poison_tail_t *tail = (poison_tail_t *)((intptr_t)data + head->alloc_size);
/* check if the beginning of the data was overwritten */
if (head->head_canary != HEAD_CANARY_PATTERN) {
if (print_errors) {
MULTI_HEAP_STDERR_PRINTF("CORRUPT HEAP: Bad head at %p. Expected 0x%08x got 0x%08x\n", &head->head_canary,
HEAD_CANARY_PATTERN, head->head_canary);
}
return NULL;
}
/* check if the end of the data was overrun */
uint32_t canary;
if ((intptr_t)tail % sizeof(void *) == 0) {
canary = tail->tail_canary;
} else {
/* tail is unaligned */
memcpy(&canary, &tail->tail_canary, sizeof(canary));
}
if (canary != TAIL_CANARY_PATTERN) {
if (print_errors) {
MULTI_HEAP_STDERR_PRINTF("CORRUPT HEAP: Bad tail at %p. Expected 0x%08x got 0x%08x\n", &tail->tail_canary,
TAIL_CANARY_PATTERN, canary);
}
return NULL;
}
return head;
}
#ifdef SLOW
/* Go through a region that should have the specified fill byte 'pattern',
verify it.
if expect_free is true, expect FREE_FILL_PATTERN otherwise MALLOC_FILL_PATTERN.
if swap_pattern is true, swap patterns in the buffer (ie replace MALLOC_FILL_PATTERN with FREE_FILL_PATTERN, and vice versa.)
Returns true if verification checks out.
*/
static bool verify_fill_pattern(void *data, size_t size, bool print_errors, bool expect_free, bool swap_pattern)
{
const uint32_t FREE_FILL_WORD = (FREE_FILL_PATTERN << 24) | (FREE_FILL_PATTERN << 16) | (FREE_FILL_PATTERN << 8) | FREE_FILL_PATTERN;
const uint32_t MALLOC_FILL_WORD = (MALLOC_FILL_PATTERN << 24) | (MALLOC_FILL_PATTERN << 16) | (MALLOC_FILL_PATTERN << 8) | MALLOC_FILL_PATTERN;
const uint32_t EXPECT_WORD = expect_free ? FREE_FILL_WORD : MALLOC_FILL_WORD;
const uint32_t REPLACE_WORD = expect_free ? MALLOC_FILL_WORD : FREE_FILL_WORD;
bool valid = true;
/* Use 4-byte operations as much as possible */
if ((intptr_t)data % 4 == 0) {
uint32_t *p = data;
while (size >= 4) {
if (*p != EXPECT_WORD) {
if (print_errors) {
MULTI_HEAP_STDERR_PRINTF("CORRUPT HEAP: Invalid data at %p. Expected 0x%08x got 0x%08x\n", p, EXPECT_WORD, *p);
}
valid = false;
#ifndef NDEBUG
/* If an assertion is going to fail as soon as we're done verifying the pattern, leave the rest of the
buffer contents as-is for better post-mortem analysis
*/
swap_pattern = false;
#endif
}
if (swap_pattern) {
*p = REPLACE_WORD;
}
p++;
size -= 4;
}
data = p;
}
uint8_t *p = data;
for (size_t i = 0; i < size; i++) {
if (p[i] != (uint8_t)EXPECT_WORD) {
if (print_errors) {
MULTI_HEAP_STDERR_PRINTF("CORRUPT HEAP: Invalid data at %p. Expected 0x%02x got 0x%02x\n", p, (uint8_t)EXPECT_WORD, *p);
}
valid = false;
#ifndef NDEBUG
swap_pattern = false; // same as above
#endif
}
if (swap_pattern) {
p[i] = (uint8_t)REPLACE_WORD;
}
}
return valid;
}
#endif
void *multi_heap_aligned_alloc(multi_heap_handle_t heap, size_t size, size_t alignment)
{
if (!size) {
return NULL;
}
if (size > SIZE_MAX - POISON_OVERHEAD) {
return NULL;
}
multi_heap_internal_lock(heap);
poison_head_t *head = multi_heap_aligned_alloc_impl_offs(heap, size + POISON_OVERHEAD,
alignment, sizeof(poison_head_t));
uint8_t *data = NULL;
if (head != NULL) {
data = poison_allocated_region(head, size);
#ifdef SLOW
/* check everything we got back is FREE_FILL_PATTERN & swap for MALLOC_FILL_PATTERN */
bool ret = verify_fill_pattern(data, size, true, true, true);
assert( ret );
#endif
} else {
multi_heap_internal_unlock(heap);
return NULL;
}
multi_heap_internal_unlock(heap);
return data;
}
void *multi_heap_malloc(multi_heap_handle_t heap, size_t size)
{
if (!size) {
return NULL;
}
if(size > SIZE_MAX - POISON_OVERHEAD) {
return NULL;
}
multi_heap_internal_lock(heap);
poison_head_t *head = multi_heap_malloc_impl(heap, size + POISON_OVERHEAD);
uint8_t *data = NULL;
if (head != NULL) {
data = poison_allocated_region(head, size);
#ifdef SLOW
/* check everything we got back is FREE_FILL_PATTERN & swap for MALLOC_FILL_PATTERN */
bool ret = verify_fill_pattern(data, size, true, true, true);
assert( ret );
#endif
}
multi_heap_internal_unlock(heap);
return data;
}
void multi_heap_free(multi_heap_handle_t heap, void *p)
{
if (p == NULL) {
return;
}
multi_heap_internal_lock(heap);
poison_head_t *head = verify_allocated_region(p, true);
assert(head != NULL);
#ifdef SLOW
/* replace everything with FREE_FILL_PATTERN, including the poison head/tail */
memset(head, FREE_FILL_PATTERN,
head->alloc_size + POISON_OVERHEAD);
#endif
multi_heap_free_impl(heap, head);
multi_heap_internal_unlock(heap);
}
void multi_heap_aligned_free(multi_heap_handle_t heap, void *p)
{
multi_heap_free(heap, p);
}
void *multi_heap_realloc(multi_heap_handle_t heap, void *p, size_t size)
{
poison_head_t *head = NULL;
poison_head_t *new_head;
void *result = NULL;
if(size > SIZE_MAX - POISON_OVERHEAD) {
return NULL;
}
if (p == NULL) {
return multi_heap_malloc(heap, size);
}
if (size == 0) {
multi_heap_free(heap, p);
return NULL;
}
/* p != NULL, size != 0 */
head = verify_allocated_region(p, true);
assert(head != NULL);
multi_heap_internal_lock(heap);
#ifndef SLOW
new_head = multi_heap_realloc_impl(heap, head, size + POISON_OVERHEAD);
if (new_head != NULL) {
/* For "fast" poisoning, we only overwrite the head/tail of the new block so it's safe
to poison, so no problem doing this even if realloc resized in place.
*/
result = poison_allocated_region(new_head, size);
}
#else // SLOW
/* When slow poisoning is enabled, it becomes very fiddly to try and correctly fill memory when resizing in place
(where the buffer may be moved (including to an overlapping address with the old buffer), grown, or shrunk in
place.)
For now we just malloc a new buffer, copy, and free. :|
Note: If this ever changes, multi_heap defrag realloc test should be enabled.
*/
size_t orig_alloc_size = head->alloc_size;
new_head = multi_heap_malloc_impl(heap, size + POISON_OVERHEAD);
if (new_head != NULL) {
result = poison_allocated_region(new_head, size);
memcpy(result, p, MIN(size, orig_alloc_size));
multi_heap_free(heap, p);
}
#endif
multi_heap_internal_unlock(heap);
return result;
}
void *multi_heap_get_block_address(multi_heap_block_handle_t block)
{
char *head = multi_heap_get_block_address_impl(block);
return head + sizeof(poison_head_t);
}
void *multi_heap_get_block_owner(multi_heap_block_handle_t block)
{
return MULTI_HEAP_GET_BLOCK_OWNER((poison_head_t*)multi_heap_get_block_address_impl(block));
}
multi_heap_handle_t multi_heap_register(void *start, size_t size)
{
#ifdef SLOW
if (start != NULL) {
memset(start, FREE_FILL_PATTERN, size);
}
#endif
return multi_heap_register_impl(start, size);
}
static inline void subtract_poison_overhead(size_t *arg) {
if (*arg > POISON_OVERHEAD) {
*arg -= POISON_OVERHEAD;
} else {
*arg = 0;
}
}
size_t multi_heap_get_allocated_size(multi_heap_handle_t heap, void *p)
{
poison_head_t *head = verify_allocated_region(p, true);
assert(head != NULL);
size_t result = multi_heap_get_allocated_size_impl(heap, head);
return result;
}
void multi_heap_get_info(multi_heap_handle_t heap, multi_heap_info_t *info)
{
multi_heap_get_info_impl(heap, info);
/* don't count the heap poison head & tail overhead in the allocated bytes size */
info->total_allocated_bytes -= info->allocated_blocks * POISON_OVERHEAD;
/* trim largest_free_block to account for poison overhead */
subtract_poison_overhead(&info->largest_free_block);
/* similarly, trim total_free_bytes so there's no suggestion that
a block this big may be available. */
subtract_poison_overhead(&info->total_free_bytes);
subtract_poison_overhead(&info->minimum_free_bytes);
}
size_t multi_heap_free_size(multi_heap_handle_t heap)
{
size_t r = multi_heap_free_size_impl(heap);
subtract_poison_overhead(&r);
return r;
}
size_t multi_heap_minimum_free_size(multi_heap_handle_t heap)
{
size_t r = multi_heap_minimum_free_size_impl(heap);
subtract_poison_overhead(&r);
return r;
}
/* Internal hooks used by multi_heap to manage poisoning, while keeping some modularity */
bool multi_heap_internal_check_block_poisoning(void *start, size_t size, bool is_free, bool print_errors)
{
if (is_free) {
#ifdef SLOW
return verify_fill_pattern(start, size, print_errors, true, false);
#else
return true; /* can only verify empty blocks in SLOW mode */
#endif
} else {
void *data = (void *)((intptr_t)start + sizeof(poison_head_t));
poison_head_t *head = verify_allocated_region(data, print_errors);
if (head != NULL && head->alloc_size > size - POISON_OVERHEAD) {
/* block can be bigger than alloc_size, for reasons of alignment & fragmentation,
but block can never be smaller than head->alloc_size... */
if (print_errors) {
MULTI_HEAP_STDERR_PRINTF("CORRUPT HEAP: Size at %p expected <=0x%08x got 0x%08x\n", &head->alloc_size,
size - POISON_OVERHEAD, head->alloc_size);
}
return false;
}
return head != NULL;
}
}
void multi_heap_internal_poison_fill_region(void *start, size_t size, bool is_free)
{
memset(start, is_free ? FREE_FILL_PATTERN : MALLOC_FILL_PATTERN, size);
}
#else // !MULTI_HEAP_POISONING
#ifdef MULTI_HEAP_POISONING_SLOW
#error "MULTI_HEAP_POISONING_SLOW requires MULTI_HEAP_POISONING"
#endif
#endif // MULTI_HEAP_POISONING

View File

@@ -0,0 +1,3 @@
idf_component_register(SRC_DIRS "."
PRIV_INCLUDE_DIRS "."
PRIV_REQUIRES cmock test_utils heap)

View File

@@ -0,0 +1,5 @@
#
#Component Makefile
#
COMPONENT_ADD_LDFLAGS = -Wl,--whole-archive -l$(COMPONENT_NAME) -Wl,--no-whole-archive

View File

@@ -0,0 +1,147 @@
/*
Tests for the capabilities-based memory allocator.
*/
#include <esp_types.h>
#include <stdio.h>
#include "unity.h"
#include "esp_attr.h"
#include "esp_heap_caps.h"
#include "esp_spi_flash.h"
#include <stdlib.h>
#include <sys/param.h>
#include <string.h>
#include <malloc.h>
TEST_CASE("Capabilities aligned allocator test", "[heap]")
{
uint32_t alignments = 0;
printf("[ALIGNED_ALLOC] Allocating from default CAP: \n");
for(;alignments <= 1024; alignments++) {
uint8_t *buf = (uint8_t *)memalign(alignments, (alignments + 137));
if(((alignments & (alignments - 1)) != 0) || (!alignments)) {
TEST_ASSERT( buf == NULL );
//printf("[ALIGNED_ALLOC] alignment: %u is not a power of two, don't allow allocation \n", aligments);
} else {
TEST_ASSERT( buf != NULL );
printf("[ALIGNED_ALLOC] alignment required: %u \n", alignments);
printf("[ALIGNED_ALLOC] address of allocated memory: %p \n\n", (void *)buf);
//Address of obtained block must be aligned with selected value
TEST_ASSERT(((intptr_t)buf & (alignments - 1)) == 0);
//Write some data, if it corrupts memory probably the heap
//canary verification will fail:
memset(buf, 0xA5, (alignments + 137));
free(buf);
}
}
//Alloc from a non permitted area:
uint32_t *not_permitted_buf = (uint32_t *)heap_caps_aligned_alloc(alignments, (alignments + 137), MALLOC_CAP_EXEC | MALLOC_CAP_32BIT);
TEST_ASSERT( not_permitted_buf == NULL );
#if CONFIG_ESP32_SPIRAM_SUPPORT || CONFIG_ESP32S2_SPIRAM_SUPPORT
alignments = 0;
printf("[ALIGNED_ALLOC] Allocating from external memory: \n");
for(;alignments <= 1024 * 1024; alignments++) {
//Now try to take aligned memory from IRAM:
uint8_t *buf = (uint8_t *)heap_caps_aligned_alloc(alignments, 10*1024, MALLOC_CAP_SPIRAM);
if(((alignments & (alignments - 1)) != 0) || (!alignments)) {
TEST_ASSERT( buf == NULL );
//printf("[ALIGNED_ALLOC] alignment: %u is not a power of two, don't allow allocation \n", aligments);
} else {
TEST_ASSERT( buf != NULL );
printf("[ALIGNED_ALLOC] alignment required: %u \n", alignments);
printf("[ALIGNED_ALLOC] address of allocated memory: %p \n\n", (void *)buf);
//Address of obtained block must be aligned with selected value
TEST_ASSERT(((intptr_t)buf & (alignments - 1)) == 0);
//Write some data, if it corrupts memory probably the heap
//canary verification will fail:
memset(buf, 0xA5, (10*1024));
heap_caps_free(buf);
}
}
#endif
}
TEST_CASE("Capabilities aligned calloc test", "[heap]")
{
uint32_t alignments = 0;
printf("[ALIGNED_ALLOC] Allocating from default CAP: \n");
for(;alignments <= 1024; alignments++) {
uint8_t *buf = (uint8_t *)heap_caps_aligned_calloc(alignments, 1, (alignments + 137), MALLOC_CAP_DEFAULT);
if(((alignments & (alignments - 1)) != 0) || (!alignments)) {
TEST_ASSERT( buf == NULL );
//printf("[ALIGNED_ALLOC] alignment: %u is not a power of two, don't allow allocation \n", aligments);
} else {
TEST_ASSERT( buf != NULL );
printf("[ALIGNED_ALLOC] alignment required: %u \n", alignments);
printf("[ALIGNED_ALLOC] address of allocated memory: %p \n\n", (void *)buf);
//Address of obtained block must be aligned with selected value
TEST_ASSERT(((intptr_t)buf & (alignments - 1)) == 0);
//Write some data, if it corrupts memory probably the heap
//canary verification will fail:
memset(buf, 0xA5, (alignments + 137));
heap_caps_free(buf);
}
}
//Check if memory is initialized with zero:
uint8_t byte_array[1024];
memset(&byte_array, 0, sizeof(byte_array));
uint8_t *buf = (uint8_t *)heap_caps_aligned_calloc(1024, 1, 1024, MALLOC_CAP_DEFAULT);
TEST_ASSERT(memcmp(byte_array, buf, sizeof(byte_array)) == 0);
heap_caps_free(buf);
//Same size, but different chunk:
buf = (uint8_t *)heap_caps_aligned_calloc(1024, 1024, 1, MALLOC_CAP_DEFAULT);
TEST_ASSERT(memcmp(byte_array, buf, sizeof(byte_array)) == 0);
heap_caps_free(buf);
//Alloc from a non permitted area:
uint32_t *not_permitted_buf = (uint32_t *)heap_caps_aligned_calloc(alignments, 1, (alignments + 137), MALLOC_CAP_32BIT);
TEST_ASSERT( not_permitted_buf == NULL );
#if CONFIG_ESP32_SPIRAM_SUPPORT || CONFIG_ESP32S2_SPIRAM_SUPPORT
alignments = 0;
printf("[ALIGNED_ALLOC] Allocating from external memory: \n");
for(;alignments <= 1024 * 1024; alignments++) {
//Now try to take aligned memory from IRAM:
uint8_t *buf = (uint8_t *)(uint8_t *)heap_caps_aligned_calloc(alignments, 1, 10*1024, MALLOC_CAP_SPIRAM);
if(((alignments & (alignments - 1)) != 0) || (!alignments)) {
TEST_ASSERT( buf == NULL );
//printf("[ALIGNED_ALLOC] alignment: %u is not a power of two, don't allow allocation \n", aligments);
} else {
TEST_ASSERT( buf != NULL );
printf("[ALIGNED_ALLOC] alignment required: %u \n", alignments);
printf("[ALIGNED_ALLOC] address of allocated memory: %p \n\n", (void *)buf);
//Address of obtained block must be aligned with selected value
TEST_ASSERT(((intptr_t)buf & (alignments - 1)) == 0);
//Write some data, if it corrupts memory probably the heap
//canary verification will fail:
memset(buf, 0xA5, (10*1024));
heap_caps_free(buf);
}
}
#endif
}
TEST_CASE("aligned_alloc(0) should return a NULL pointer", "[heap]")
{
void *p;
p = heap_caps_aligned_alloc(32, 0, MALLOC_CAP_DEFAULT);
TEST_ASSERT(p == NULL);
}

View File

@@ -0,0 +1,108 @@
#include "freertos/FreeRTOS.h"
#include <esp_types.h>
#include <stdio.h>
#include "unity.h"
#include "esp_attr.h"
#include "esp_heap_caps.h"
#include <stdlib.h>
#include <sys/param.h>
#include <string.h>
#include <test_utils.h>
//This test only makes sense with poisoning disabled (light or comprehensive)
#if !defined(CONFIG_HEAP_POISONING_COMPREHENSIVE) && !defined(CONFIG_HEAP_POISONING_LIGHT)
#define NUM_POINTERS 128
#define ITERATIONS 10000
TEST_CASE("Heap many random allocations timings", "[heap]")
{
void *p[NUM_POINTERS] = { 0 };
size_t s[NUM_POINTERS] = { 0 };
uint32_t cycles_before;
uint64_t alloc_time_average = 0;
uint64_t free_time_average = 0;
uint64_t realloc_time_average = 0;
for (int i = 0; i < ITERATIONS; i++) {
uint8_t n = esp_random() % NUM_POINTERS;
if (esp_random() % 4 == 0) {
/* 1 in 4 iterations, try to realloc the buffer instead
of using malloc/free
*/
size_t new_size = esp_random() % 1024;
cycles_before = portGET_RUN_TIME_COUNTER_VALUE();
void *new_p = heap_caps_realloc(p[n], new_size, MALLOC_CAP_DEFAULT);
realloc_time_average = portGET_RUN_TIME_COUNTER_VALUE() - cycles_before;
printf("realloc %p -> %p (%zu -> %zu) time spent cycles: %lld \n", p[n], new_p, s[n], new_size, realloc_time_average);
heap_caps_check_integrity(MALLOC_CAP_DEFAULT, true);
if (new_size == 0 || new_p != NULL) {
p[n] = new_p;
s[n] = new_size;
if (new_size > 0) {
memset(p[n], n, new_size);
}
}
continue;
}
if (p[n] != NULL) {
if (s[n] > 0) {
/* Verify pre-existing contents of p[n] */
uint8_t compare[s[n]];
memset(compare, n, s[n]);
TEST_ASSERT(( memcmp(compare, p[n], s[n]) == 0 ));
}
TEST_ASSERT(heap_caps_check_integrity(MALLOC_CAP_DEFAULT, true));
cycles_before = portGET_RUN_TIME_COUNTER_VALUE();
heap_caps_free(p[n]);
free_time_average = portGET_RUN_TIME_COUNTER_VALUE() - cycles_before;
printf("freed %p (%zu) time spent cycles: %lld\n", p[n], s[n], free_time_average);
if (!heap_caps_check_integrity(MALLOC_CAP_DEFAULT, true)) {
printf("FAILED iteration %d after freeing %p\n", i, p[n]);
heap_caps_dump(MALLOC_CAP_DEFAULT);
TEST_ASSERT(0);
}
}
s[n] = rand() % 1024;
heap_caps_check_integrity(MALLOC_CAP_DEFAULT, true);
cycles_before = portGET_RUN_TIME_COUNTER_VALUE();
p[n] = heap_caps_malloc(s[n], MALLOC_CAP_DEFAULT);
alloc_time_average = portGET_RUN_TIME_COUNTER_VALUE() - cycles_before;
printf("malloc %p (%zu) time spent cycles: %lld \n", p[n], s[n], alloc_time_average);
if (!heap_caps_check_integrity(MALLOC_CAP_DEFAULT, true)) {
printf("FAILED iteration %d after mallocing %p (%zu bytes)\n", i, p[n], s[n]);
heap_caps_dump(MALLOC_CAP_DEFAULT);
TEST_ASSERT(0);
}
if (p[n] != NULL) {
memset(p[n], n, s[n]);
}
}
for (int i = 0; i < NUM_POINTERS; i++) {
cycles_before = portGET_RUN_TIME_COUNTER_VALUE();
heap_caps_free( p[i]);
free_time_average = portGET_RUN_TIME_COUNTER_VALUE() - cycles_before;
if (!heap_caps_check_integrity(MALLOC_CAP_DEFAULT, true)) {
printf("FAILED during cleanup after freeing %p\n", p[i]);
heap_caps_dump(MALLOC_CAP_DEFAULT);
TEST_ASSERT(0);
}
}
TEST_ASSERT(heap_caps_check_integrity(MALLOC_CAP_DEFAULT, true));
}
#endif

View File

@@ -0,0 +1,74 @@
/*
Tests for D/IRAM support in heap capability allocator
*/
#include <esp_types.h>
#include <stdio.h>
#include "unity.h"
#include "esp_heap_caps.h"
#include "soc/soc_memory_layout.h"
#define ALLOC_SZ 1024
static void *malloc_block_diram(uint32_t caps)
{
void *attempts[256] = { 0 }; // Allocate up to 256 ALLOC_SZ blocks to exhaust all non-D/IRAM memory temporarily
int count = 0;
void *result;
while(count < sizeof(attempts)/sizeof(void *)) {
result = heap_caps_malloc(ALLOC_SZ, caps);
TEST_ASSERT_NOT_NULL_MESSAGE(result, "not enough free heap to perform test");
if (esp_ptr_in_diram_dram(result) || esp_ptr_in_diram_iram(result)) {
break;
}
attempts[count] = result;
result = NULL;
count++;
}
for (int i = 0; i < count; i++) {
free(attempts[i]);
}
TEST_ASSERT_NOT_NULL_MESSAGE(result, "not enough D/IRAM memory is free");
return result;
}
TEST_CASE("Allocate D/IRAM as DRAM", "[heap]")
{
uint32_t *dram = malloc_block_diram(MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL);
for (int i = 0; i < ALLOC_SZ / sizeof(uint32_t); i++) {
uint32_t v = i + 0xAAAA;
dram[i] = v;
volatile uint32_t *iram = esp_ptr_diram_dram_to_iram(dram + i);
TEST_ASSERT_EQUAL(v, dram[i]);
TEST_ASSERT_EQUAL(v, *iram);
*iram = UINT32_MAX;
TEST_ASSERT_EQUAL(UINT32_MAX, *iram);
TEST_ASSERT_EQUAL(UINT32_MAX, dram[i]);
}
free(dram);
}
TEST_CASE("Allocate D/IRAM as IRAM", "[heap]")
{
uint32_t *iram = malloc_block_diram(MALLOC_CAP_EXEC);
for (int i = 0; i < ALLOC_SZ / sizeof(uint32_t); i++) {
uint32_t v = i + 0xEEE;
iram[i] = v;
volatile uint32_t *dram = esp_ptr_diram_iram_to_dram(iram + i);
TEST_ASSERT_EQUAL_HEX32(v, iram[i]);
TEST_ASSERT_EQUAL_HEX32(v, *dram);
*dram = UINT32_MAX;
TEST_ASSERT_EQUAL_HEX32(UINT32_MAX, *dram);
TEST_ASSERT_EQUAL_HEX32(UINT32_MAX, iram[i]);
}
free(iram);
}

View File

@@ -0,0 +1,164 @@
/*
Generic test for heap tracing support
Only compiled in if CONFIG_HEAP_TRACING is set
*/
#include <esp_types.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "sdkconfig.h"
#include "unity.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#ifdef CONFIG_HEAP_TRACING
// only compile in heap tracing tests if tracing is enabled
#include "esp_heap_trace.h"
TEST_CASE("heap trace leak check", "[heap]")
{
heap_trace_record_t recs[8];
heap_trace_init_standalone(recs, 8);
printf("Leak check test\n"); // Print something before trace starts, or stdout allocations skew total counts
fflush(stdout);
heap_trace_start(HEAP_TRACE_LEAKS);
void *a = malloc(64);
memset(a, '3', 64);
void *b = malloc(96);
memset(b, '4', 11);
printf("a.address %p vs %p b.address %p vs %p\n", a, recs[0].address, b, recs[1].address);
heap_trace_dump();
TEST_ASSERT_EQUAL(2, heap_trace_get_count());
heap_trace_record_t trace_a, trace_b;
heap_trace_get(0, &trace_a);
heap_trace_get(1, &trace_b);
printf("trace_a.address %p trace_bb.address %p\n", trace_a.address, trace_b.address);
TEST_ASSERT_EQUAL_PTR(a, trace_a.address);
TEST_ASSERT_EQUAL_PTR(b, trace_b.address);
TEST_ASSERT_EQUAL_PTR(recs[0].address, trace_a.address);
TEST_ASSERT_EQUAL_PTR(recs[1].address, trace_b.address);
free(a);
TEST_ASSERT_EQUAL(1, heap_trace_get_count());
heap_trace_get(0, &trace_b);
TEST_ASSERT_EQUAL_PTR(b, trace_b.address);
/* buffer deletes trace_a when freed,
so trace_b at head of buffer */
TEST_ASSERT_EQUAL_PTR(recs[0].address, trace_b.address);
heap_trace_stop();
}
TEST_CASE("heap trace wrapped buffer check", "[heap]")
{
const size_t N = 8;
heap_trace_record_t recs[N];
heap_trace_init_standalone(recs, N);
heap_trace_start(HEAP_TRACE_LEAKS);
void *ptrs[N+1];
for (int i = 0; i < N+1; i++) {
ptrs[i] = malloc(i*3);
}
// becuase other mallocs happen as part of this control flow,
// we can't guarantee N entries of ptrs[] are in the heap check buffer.
// but we should guarantee at least the last one is
bool saw_last_ptr = false;
for (int i = 0; i < N; i++) {
heap_trace_record_t rec;
heap_trace_get(i, &rec);
if (rec.address == ptrs[N-1]) {
saw_last_ptr = true;
}
}
TEST_ASSERT(saw_last_ptr);
void *other = malloc(6);
heap_trace_dump();
for (int i = 0; i < N+1; i++) {
free(ptrs[i]);
}
heap_trace_dump();
bool saw_other = false;
for (int i = 0; i < heap_trace_get_count(); i++) {
heap_trace_record_t rec;
heap_trace_get(i, &rec);
// none of ptr[]s should be in the heap trace any more
for (int j = 0; j < N+1; j++) {
TEST_ASSERT_NOT_EQUAL(ptrs[j], rec.address);
}
if (rec.address == other) {
saw_other = true;
}
}
// 'other' pointer should be somewhere in the leak dump
TEST_ASSERT(saw_other);
heap_trace_stop();
}
static void print_floats_task(void *ignore)
{
heap_trace_start(HEAP_TRACE_ALL);
char buf[16] = { };
volatile float f = 12.3456;
sprintf(buf, "%.4f", f);
TEST_ASSERT_EQUAL_STRING("12.3456", buf);
heap_trace_stop();
vTaskDelete(NULL);
}
TEST_CASE("can trace allocations made by newlib", "[heap]")
{
const size_t N = 8;
heap_trace_record_t recs[N];
heap_trace_init_standalone(recs, N);
/* Verifying that newlib code performs an allocation is very fiddly:
- Printing a float allocates data associated with the task, but only the
first time a task prints a float of this length. So we do it in a one-shot task
to avoid possibility it already happened.
- If newlib is updated this test may start failing if the printf() implementation
changes. (This version passes for both nano & regular formatting in newlib 2.2.0)
- We also do the tracing in the task so we only capture things directly related to it.
*/
xTaskCreate(print_floats_task, "print_float", 4096, NULL, 5, NULL);
vTaskDelay(10);
/* has to be at least a few as newlib allocates via multiple different function calls */
TEST_ASSERT(heap_trace_get_count() > 3);
}
#endif

View File

@@ -0,0 +1,60 @@
/*
Tests for a leak tag
*/
#include <stdio.h>
#include "unity.h"
#include "esp_heap_caps_init.h"
#include "esp_system.h"
#include <stdlib.h>
static char* check_calloc(int size)
{
char *arr = calloc(size, sizeof(char));
TEST_ASSERT_NOT_NULL(arr);
return arr;
}
TEST_CASE("Check for leaks (no leak)", "[heap]")
{
char *arr = check_calloc(1000);
free(arr);
}
TEST_CASE("Check for leaks (leak)", "[heap][ignore]")
{
check_calloc(1000);
}
TEST_CASE("Not check for leaks", "[heap][leaks]")
{
check_calloc(1000);
}
TEST_CASE("Set a leak level = 7016", "[heap][leaks=7016]")
{
check_calloc(7000);
}
static void test_fn(void)
{
check_calloc(1000);
}
TEST_CASE_MULTIPLE_STAGES("Not check for leaks in MULTIPLE_STAGES mode", "[heap][leaks]", test_fn, test_fn, test_fn);
TEST_CASE_MULTIPLE_STAGES("Check for leaks in MULTIPLE_STAGES mode (leak)", "[heap][ignore]", test_fn, test_fn, test_fn);
static void test_fn2(void)
{
check_calloc(1000);
esp_restart();
}
static void test_fn3(void)
{
check_calloc(1000);
}
TEST_CASE_MULTIPLE_STAGES("Check for leaks in MULTIPLE_STAGES mode (manual reset)", "[heap][leaks][reset=SW_CPU_RESET, SW_CPU_RESET]", test_fn2, test_fn2, test_fn3);

View File

@@ -0,0 +1,134 @@
/*
Generic test for malloc/free
*/
#include <esp_types.h>
#include <stdio.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "freertos/queue.h"
#include "unity.h"
#include "esp_heap_caps.h"
#include "sdkconfig.h"
static int **allocatedMem;
static int noAllocated;
static int tryAllocMem(void) {
int i, j;
const int allocateMaxK=1024*5; //try to allocate a max of 5MiB
allocatedMem=malloc(sizeof(int *)*allocateMaxK);
if (!allocatedMem) return 0;
for (i=0; i<allocateMaxK; i++) {
allocatedMem[i]=malloc(1024);
if (allocatedMem[i]==NULL) break;
for (j=0; j<1024/4; j++) allocatedMem[i][j]=(0xdeadbeef);
}
noAllocated=i;
return i;
}
static void tryAllocMemFree(void) {
int i, j;
for (i=0; i<noAllocated; i++) {
for (j=0; j<1024/4; j++) {
TEST_ASSERT(allocatedMem[i][j]==(0xdeadbeef));
}
free(allocatedMem[i]);
}
free(allocatedMem);
}
TEST_CASE("Malloc/overwrite, then free all available DRAM", "[heap]")
{
int m1=0, m2=0;
m1=tryAllocMem();
tryAllocMemFree();
m2=tryAllocMem();
tryAllocMemFree();
printf("Could allocate %dK on first try, %dK on 2nd try.\n", m1, m2);
TEST_ASSERT(m1==m2);
}
#if CONFIG_SPIRAM_USE_MALLOC
#if (CONFIG_SPIRAM_MALLOC_RESERVE_INTERNAL > 1024)
TEST_CASE("Check if reserved DMA pool still can allocate even when malloc()'ed memory is exhausted", "[heap]")
{
char** dmaMem=malloc(sizeof(char*)*512);
assert(dmaMem);
int m=tryAllocMem();
int i=0;
for (i=0; i<512; i++) {
dmaMem[i]=heap_caps_malloc(1024, MALLOC_CAP_DMA);
if (dmaMem[i]==NULL) break;
}
for (int j=0; j<i; j++) free(dmaMem[j]);
free(dmaMem);
tryAllocMemFree();
printf("Could allocate %dK of DMA memory after allocating all of %dK of normal memory.\n", i, m);
TEST_ASSERT(i);
}
#endif
#endif
/* As you see, we are desperately trying to outsmart the compiler, so that it
* doesn't warn about oversized allocations in the next two unit tests.
* To be removed when we switch to GCC 8.2 and add
* -Wno-alloc-size-larger-than=PTRDIFF_MAX to CFLAGS for this file.
*/
void* (*g_test_malloc_ptr)(size_t) = &malloc;
void* (*g_test_calloc_ptr)(size_t, size_t) = &calloc;
void* test_malloc_wrapper(size_t size)
{
return (*g_test_malloc_ptr)(size);
}
void* test_calloc_wrapper(size_t count, size_t size)
{
return (*g_test_calloc_ptr)(count, size);
}
TEST_CASE("alloc overflows should all fail", "[heap]")
{
/* allocates 8 bytes if size_t overflows */
TEST_ASSERT_NULL(test_calloc_wrapper(SIZE_MAX / 2 + 4, 2));
/* will overflow if any poisoning is enabled
(should fail for sensible OOM reasons, otherwise) */
TEST_ASSERT_NULL(test_malloc_wrapper(SIZE_MAX - 1));
TEST_ASSERT_NULL(test_calloc_wrapper(SIZE_MAX - 1, 1));
/* will overflow when the size is rounded up to word align it */
TEST_ASSERT_NULL(heap_caps_malloc(SIZE_MAX-1, MALLOC_CAP_32BIT));
TEST_ASSERT_NULL(heap_caps_malloc(SIZE_MAX-1, MALLOC_CAP_EXEC));
}
TEST_CASE("unreasonable allocs should all fail", "[heap]")
{
TEST_ASSERT_NULL(test_calloc_wrapper(16, 1024*1024));
TEST_ASSERT_NULL(test_malloc_wrapper(16*1024*1024));
TEST_ASSERT_NULL(test_malloc_wrapper(SIZE_MAX / 2));
TEST_ASSERT_NULL(test_malloc_wrapper(SIZE_MAX - 256));
TEST_ASSERT_NULL(test_malloc_wrapper(xPortGetFreeHeapSize() - 1));
}
TEST_CASE("malloc(0) should return a NULL pointer", "[heap]")
{
void *p;
p = malloc(0);
TEST_ASSERT(p == NULL);
}

View File

@@ -0,0 +1,247 @@
/*
Tests for the capabilities-based memory allocator.
*/
#include <esp_types.h>
#include <stdio.h>
#include "unity.h"
#include "esp_attr.h"
#include "esp_heap_caps.h"
#include "esp_spi_flash.h"
#include <stdlib.h>
#include <sys/param.h>
#ifndef CONFIG_ESP_SYSTEM_MEMPROT_FEATURE
TEST_CASE("Capabilities allocator test", "[heap]")
{
char *m1, *m2[10];
int x;
size_t free8start, free32start, free8, free32;
/* It's important we printf() something before we take the empty heap sizes,
as the first printf() in a task allocates heap resources... */
printf("Testing capabilities allocator...\n");
free8start = heap_caps_get_free_size(MALLOC_CAP_8BIT);
free32start = heap_caps_get_free_size(MALLOC_CAP_32BIT);
printf("Free 8bit-capable memory (start): %dK, 32-bit capable memory %dK\n", free8start, free32start);
TEST_ASSERT(free32start >= free8start);
printf("Allocating 10K of 8-bit capable RAM\n");
m1= heap_caps_malloc(10*1024, MALLOC_CAP_8BIT);
printf("--> %p\n", m1);
free8 = heap_caps_get_free_size(MALLOC_CAP_8BIT);
free32 = heap_caps_get_free_size(MALLOC_CAP_32BIT);
printf("Free 8bit-capable memory (both reduced): %dK, 32-bit capable memory %dK\n", free8, free32);
//Both should have gone down by 10K; 8bit capable ram is also 32-bit capable
TEST_ASSERT(free8<=(free8start-10*1024));
TEST_ASSERT(free32<=(free32start-10*1024));
//Assume we got DRAM back
TEST_ASSERT((((int)m1)&0xFF000000)==0x3F000000);
free(m1);
//The goal here is to allocate from IRAM. Since there is no external IRAM (yet)
//the following gives size of IRAM-only (not D/IRAM) memory.
size_t free_iram = heap_caps_get_free_size(MALLOC_CAP_INTERNAL) -
heap_caps_get_free_size(MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL);
size_t alloc32 = MIN(free_iram / 2, 10*1024) & (~3);
if(free_iram) {
printf("Freeing; allocating %u bytes of 32K-capable RAM\n", alloc32);
m1 = heap_caps_malloc(alloc32, MALLOC_CAP_32BIT);
printf("--> %p\n", m1);
//Check that we got IRAM back
TEST_ASSERT((((int)m1)&0xFF000000)==0x40000000);
free8 = heap_caps_get_free_size(MALLOC_CAP_8BIT);
free32 = heap_caps_get_free_size(MALLOC_CAP_32BIT);
printf("Free 8bit-capable memory (after 32-bit): %dK, 32-bit capable memory %dK\n", free8, free32);
//Only 32-bit should have gone down by alloc32: 32-bit isn't necessarily 8bit capable
TEST_ASSERT(free32<=(free32start-alloc32));
TEST_ASSERT(free8==free8start);
free(m1);
} else {
printf("This platform has no 32-bit only capable RAM, jumping to next test \n");
}
printf("Allocating impossible caps\n");
m1= heap_caps_malloc(10*1024, MALLOC_CAP_8BIT|MALLOC_CAP_EXEC);
printf("--> %p\n", m1);
TEST_ASSERT(m1==NULL);
if(free_iram) {
printf("Testing changeover iram -> dram");
// priorities will exhaust IRAM first, then start allocating from DRAM
for (x=0; x<10; x++) {
m2[x]= heap_caps_malloc(alloc32, MALLOC_CAP_32BIT);
printf("--> %p\n", m2[x]);
}
TEST_ASSERT((((int)m2[0])&0xFF000000)==0x40000000);
TEST_ASSERT((((int)m2[9])&0xFF000000)==0x3F000000);
} else {
printf("This platform has no IRAM-only so changeover will never occur, jumping to next test\n");
}
printf("Test if allocating executable code still gives IRAM, even with dedicated IRAM region depleted\n");
if(free_iram) {
// (the allocation should come from D/IRAM)
free_iram = heap_caps_get_free_size(MALLOC_CAP_EXEC);
m1= heap_caps_malloc(MIN(free_iram / 2, 10*1024), MALLOC_CAP_EXEC);
printf("--> %p\n", m1);
TEST_ASSERT((((int)m1)&0xFF000000)==0x40000000);
for (x=0; x<10; x++) free(m2[x]);
} else {
// (the allocation should come from D/IRAM)
free_iram = heap_caps_get_free_size(MALLOC_CAP_EXEC);
m1= heap_caps_malloc(MIN(free_iram / 2, 10*1024), MALLOC_CAP_EXEC);
printf("--> %p\n", m1);
TEST_ASSERT((((int)m1)&0xFF000000)==0x40000000);
}
free(m1);
printf("Done.\n");
}
#endif
#ifdef CONFIG_ESP32_IRAM_AS_8BIT_ACCESSIBLE_MEMORY
TEST_CASE("IRAM_8BIT capability test", "[heap]")
{
uint8_t *ptr;
size_t free_size, free_size32, largest_free_size;
/* need to print something as first printf allocates some heap */
printf("IRAM_8BIT capability test\n");
free_size = heap_caps_get_free_size(MALLOC_CAP_IRAM_8BIT);
free_size32 = heap_caps_get_free_size(MALLOC_CAP_32BIT);
largest_free_size = heap_caps_get_largest_free_block(MALLOC_CAP_IRAM_8BIT);
ptr = heap_caps_malloc(largest_free_size, MALLOC_CAP_IRAM_8BIT);
TEST_ASSERT((((int)ptr)&0xFF000000)==0x40000000);
TEST_ASSERT(heap_caps_get_free_size(MALLOC_CAP_IRAM_8BIT) == (free_size - heap_caps_get_allocated_size(ptr)));
TEST_ASSERT(heap_caps_get_free_size(MALLOC_CAP_32BIT) == (free_size32 - heap_caps_get_allocated_size(ptr)));
free(ptr);
}
#endif
TEST_CASE("heap_caps metadata test", "[heap]")
{
/* need to print something as first printf allocates some heap */
printf("heap_caps metadata test\n");
heap_caps_print_heap_info(MALLOC_CAP_8BIT);
multi_heap_info_t original;
heap_caps_get_info(&original, MALLOC_CAP_8BIT);
void *b = heap_caps_malloc(original.largest_free_block, MALLOC_CAP_8BIT);
TEST_ASSERT_NOT_NULL(b);
printf("After allocating %d bytes:\n", original.largest_free_block);
heap_caps_print_heap_info(MALLOC_CAP_8BIT);
multi_heap_info_t after;
heap_caps_get_info(&after, MALLOC_CAP_8BIT);
TEST_ASSERT(after.largest_free_block <= original.largest_free_block);
TEST_ASSERT(after.total_free_bytes <= original.total_free_bytes);
free(b);
heap_caps_get_info(&after, MALLOC_CAP_8BIT);
printf("\n\n After test, heap status:\n");
heap_caps_print_heap_info(MALLOC_CAP_8BIT);
/* Allow some leeway here, because LWIP sometimes allocates up to 144 bytes in the background
as part of timer management.
*/
TEST_ASSERT_INT32_WITHIN(200, after.total_free_bytes, original.total_free_bytes);
TEST_ASSERT_INT32_WITHIN(200, after.largest_free_block, original.largest_free_block);
TEST_ASSERT(after.minimum_free_bytes < original.total_free_bytes);
}
/* Small function runs from IRAM to check that malloc/free/realloc
all work OK when cache is disabled...
*/
static IRAM_ATTR __attribute__((noinline)) bool iram_malloc_test(void)
{
spi_flash_guard_get()->start(); // Disables flash cache
bool result = true;
void *x = heap_caps_malloc(64, MALLOC_CAP_EXEC);
result = result && (x != NULL);
void *y = heap_caps_realloc(x, 32, MALLOC_CAP_EXEC);
result = result && (y != NULL);
heap_caps_free(y);
spi_flash_guard_get()->end(); // Re-enables flash cache
return result;
}
TEST_CASE("heap_caps_xxx functions work with flash cache disabled", "[heap]")
{
TEST_ASSERT( iram_malloc_test() );
}
#ifdef CONFIG_HEAP_ABORT_WHEN_ALLOCATION_FAILS
TEST_CASE("When enabled, allocation operation failure generates an abort", "[heap][reset=abort,SW_CPU_RESET]")
{
const size_t stupid_allocation_size = (128 * 1024 * 1024);
void *ptr = heap_caps_malloc(stupid_allocation_size, MALLOC_CAP_DEFAULT);
(void)ptr;
TEST_FAIL_MESSAGE("should not be reached");
}
#endif
static bool called_user_failed_hook = false;
void heap_caps_alloc_failed_hook(size_t requested_size, uint32_t caps, const char *function_name)
{
printf("%s was called but failed to allocate %d bytes with 0x%X capabilities. \n",function_name, requested_size, caps);
called_user_failed_hook = true;
}
TEST_CASE("user provided alloc failed hook must be called when allocation fails", "[heap]")
{
TEST_ASSERT(heap_caps_register_failed_alloc_callback(heap_caps_alloc_failed_hook) == ESP_OK);
const size_t stupid_allocation_size = (128 * 1024 * 1024);
void *ptr = heap_caps_malloc(stupid_allocation_size, MALLOC_CAP_DEFAULT);
TEST_ASSERT(called_user_failed_hook != false);
called_user_failed_hook = false;
ptr = heap_caps_realloc(ptr, stupid_allocation_size, MALLOC_CAP_DEFAULT);
TEST_ASSERT(called_user_failed_hook != false);
called_user_failed_hook = false;
ptr = heap_caps_aligned_alloc(0x200, stupid_allocation_size, MALLOC_CAP_DEFAULT);
TEST_ASSERT(called_user_failed_hook != false);
(void)ptr;
}
TEST_CASE("allocation with invalid capability should also trigger the alloc failed hook", "[heap]")
{
const size_t allocation_size = 64;
const uint32_t invalid_cap = MALLOC_CAP_INVALID;
TEST_ASSERT(heap_caps_register_failed_alloc_callback(heap_caps_alloc_failed_hook) == ESP_OK);
called_user_failed_hook = false;
void *ptr = heap_caps_malloc(allocation_size, invalid_cap);
TEST_ASSERT(called_user_failed_hook != false);
called_user_failed_hook = false;
ptr = heap_caps_realloc(ptr, allocation_size, invalid_cap);
TEST_ASSERT(called_user_failed_hook != false);
called_user_failed_hook = false;
ptr = heap_caps_aligned_alloc(0x200, allocation_size, invalid_cap);
TEST_ASSERT(called_user_failed_hook != false);
(void)ptr;
}

View File

@@ -0,0 +1,67 @@
/*
Generic test for realloc
*/
#include <stdlib.h>
#include <string.h>
#include "unity.h"
#include "sdkconfig.h"
#include "esp_heap_caps.h"
#include "soc/soc_memory_layout.h"
#ifndef CONFIG_HEAP_POISONING_COMPREHENSIVE
/* (can't realloc in place if comprehensive is enabled) */
TEST_CASE("realloc shrink buffer in place", "[heap]")
{
void *x = malloc(64);
TEST_ASSERT(x);
void *y = realloc(x, 48);
TEST_ASSERT_EQUAL_PTR(x, y);
}
#endif
#ifndef CONFIG_ESP_SYSTEM_MEMPROT_FEATURE
TEST_CASE("realloc shrink buffer with EXEC CAPS", "[heap]")
{
const size_t buffer_size = 64;
void *x = heap_caps_malloc(buffer_size, MALLOC_CAP_EXEC);
TEST_ASSERT(x);
void *y = heap_caps_realloc(x, buffer_size - 16, MALLOC_CAP_EXEC);
TEST_ASSERT(y);
//y needs to fall in a compatible memory area of IRAM:
TEST_ASSERT(esp_ptr_executable(y)|| esp_ptr_in_iram(y) || esp_ptr_in_diram_iram(y));
free(y);
}
TEST_CASE("realloc move data to a new heap type", "[heap]")
{
const char *test = "I am some test content to put in the heap";
char buf[64];
memset(buf, 0xEE, 64);
strlcpy(buf, test, 64);
char *a = malloc(64);
memcpy(a, buf, 64);
// move data from 'a' to IRAM
char *b = heap_caps_realloc(a, 64, MALLOC_CAP_EXEC);
TEST_ASSERT_NOT_NULL(b);
TEST_ASSERT_NOT_EQUAL(a, b);
TEST_ASSERT(heap_caps_check_integrity(MALLOC_CAP_INVALID, true));
TEST_ASSERT_EQUAL_HEX32_ARRAY(buf, b, 64 / sizeof(uint32_t));
// Move data back to DRAM
char *c = heap_caps_realloc(b, 48, MALLOC_CAP_8BIT);
TEST_ASSERT_NOT_NULL(c);
TEST_ASSERT_NOT_EQUAL(b, c);
TEST_ASSERT(heap_caps_check_integrity(MALLOC_CAP_INVALID, true));
TEST_ASSERT_EQUAL_HEX8_ARRAY(buf, c, 48);
free(c);
}
#endif

View File

@@ -0,0 +1,72 @@
/*
Tests for registering new heap memory at runtime
*/
#include <stdio.h>
#include "unity.h"
#include "esp_heap_caps_init.h"
#include "esp_system.h"
#include <stdlib.h>
/* NOTE: This is not a well-formed unit test, it leaks memory */
TEST_CASE("Allocate new heap at runtime", "[heap][ignore]")
{
const size_t BUF_SZ = 1000;
const size_t HEAP_OVERHEAD_MAX = 200;
void *buffer = malloc(BUF_SZ);
TEST_ASSERT_NOT_NULL(buffer);
uint32_t before_free = esp_get_free_heap_size();
TEST_ESP_OK( heap_caps_add_region((intptr_t)buffer, (intptr_t)buffer + BUF_SZ) );
uint32_t after_free = esp_get_free_heap_size();
printf("Before %u after %u\n", before_free, after_free);
/* allow for some 'heap overhead' from accounting structures */
TEST_ASSERT(after_free >= before_free + BUF_SZ - HEAP_OVERHEAD_MAX);
}
/* NOTE: This is not a well-formed unit test, it leaks memory and
may fail if run twice in a row without a reset.
*/
TEST_CASE("Allocate new heap with new capability", "[heap][ignore]")
{
const size_t BUF_SZ = 100;
#ifdef CONFIG_ESP_SYSTEM_MEMPROT_FEATURE
const size_t ALLOC_SZ = 32;
#else
const size_t ALLOC_SZ = 64; // More than half of BUF_SZ
#endif
const uint32_t MALLOC_CAP_INVENTED = (1 << 30); /* this must be unused in esp_heap_caps.h */
/* no memory exists to provide this capability */
TEST_ASSERT_NULL( heap_caps_malloc(ALLOC_SZ, MALLOC_CAP_INVENTED) );
void *buffer = malloc(BUF_SZ);
TEST_ASSERT_NOT_NULL(buffer);
uint32_t caps[SOC_MEMORY_TYPE_NO_PRIOS] = { MALLOC_CAP_INVENTED };
TEST_ESP_OK( heap_caps_add_region_with_caps(caps, (intptr_t)buffer, (intptr_t)buffer + BUF_SZ) );
/* ta-da, it's now possible! */
TEST_ASSERT_NOT_NULL( heap_caps_malloc(ALLOC_SZ, MALLOC_CAP_INVENTED) );
}
/* NOTE: This is not a well-formed unit test.
* If run twice without a reset, it will failed.
*/
TEST_CASE("Add .bss memory to heap region runtime", "[heap][ignore]")
{
#define BUF_SZ 1000
#define HEAP_OVERHEAD_MAX 200
static uint8_t s_buffer[BUF_SZ];
printf("s_buffer start %08x end %08x\n", (intptr_t)s_buffer, (intptr_t)s_buffer + BUF_SZ);
uint32_t before_free = esp_get_free_heap_size();
TEST_ESP_OK( heap_caps_add_region((intptr_t)s_buffer, (intptr_t)s_buffer + BUF_SZ) );
uint32_t after_free = esp_get_free_heap_size();
printf("Before %u after %u\n", before_free, after_free);
/* allow for some 'heap overhead' from accounting structures */
TEST_ASSERT(after_free >= before_free + BUF_SZ - HEAP_OVERHEAD_MAX);
/* Twice add must be failed */
TEST_ASSERT( (heap_caps_add_region((intptr_t)s_buffer, (intptr_t)s_buffer + BUF_SZ) != ESP_OK) );
}

View File

@@ -0,0 +1,54 @@
TEST_PROGRAM=test_multi_heap
all: $(TEST_PROGRAM)
ifneq ($(filter clean,$(MAKECMDGOALS)),)
.NOTPARALLEL: # prevent make clean racing the other targets
endif
SOURCE_FILES = $(abspath \
../multi_heap.c \
../heap_tlsf.c \
../multi_heap_poisoning.c \
test_multi_heap.cpp \
main.cpp \
)
INCLUDE_FLAGS = -I../include -I../../../tools/catch
GCOV ?= gcov
CPPFLAGS += $(INCLUDE_FLAGS) -D CONFIG_LOG_DEFAULT_LEVEL -g -fstack-protector-all -m32 -DCONFIG_HEAP_POISONING_COMPREHENSIVE
CFLAGS += -Wall -Werror -fprofile-arcs -ftest-coverage
CXXFLAGS += -std=c++11 -Wall -Werror -fprofile-arcs -ftest-coverage
LDFLAGS += -lstdc++ -fprofile-arcs -ftest-coverage -m32
OBJ_FILES = $(filter %.o, $(SOURCE_FILES:.cpp=.o) $(SOURCE_FILES:.c=.o))
COVERAGE_FILES = $(OBJ_FILES:.o=.gc*)
$(TEST_PROGRAM): $(OBJ_FILES)
g++ $(LDFLAGS) -o $(TEST_PROGRAM) $(OBJ_FILES)
$(OUTPUT_DIR):
mkdir -p $(OUTPUT_DIR)
test: $(TEST_PROGRAM)
./$(TEST_PROGRAM)
$(COVERAGE_FILES): $(TEST_PROGRAM) test
coverage.info: $(COVERAGE_FILES)
find ../ -name "*.gcno" -exec $(GCOV) -r -pb {} +
lcov --capture --directory $(abspath ../) --no-external --output-file coverage.info --gcov-tool $(GCOV)
coverage_report: coverage.info
genhtml coverage.info --output-directory coverage_report
@echo "Coverage report is in coverage_report/index.html"
clean:
rm -f $(OBJ_FILES) $(TEST_PROGRAM)
rm -f $(COVERAGE_FILES) *.gcov
rm -rf coverage_report/
rm -f coverage.info
.PHONY: clean all test

View File

@@ -0,0 +1,2 @@
#define CATCH_CONFIG_MAIN
#include "catch.hpp"

View File

@@ -0,0 +1,20 @@
#!/usr/bin/env bash
#
# Run the test suite with all configurations enabled
#
FAIL=0
for FLAGS in "CONFIG_HEAP_POISONING_NONE" "CONFIG_HEAP_POISONING_LIGHT" "CONFIG_HEAP_POISONING_COMPREHENSIVE" ; do
echo "==== Testing with config: ${FLAGS} ===="
CPPFLAGS="-D${FLAGS}" make clean test || FAIL=1
done
make clean
if [ $FAIL == 0 ]; then
echo "All configurations passed"
else
echo "Some configurations failed, see log."
exit 1
fi

View File

@@ -0,0 +1,508 @@
#include "catch.hpp"
#include "multi_heap.h"
#include "../multi_heap_config.h"
#include <string.h>
#include <assert.h>
static void *__malloc__(size_t bytes)
{
return malloc(bytes);
}
static void __free__(void *ptr)
{
free(ptr);
}
/* Insurance against accidentally using libc heap functions in tests */
#undef free
#define free #error
#undef malloc
#define malloc #error
#undef calloc
#define calloc #error
#undef realloc
#define realloc #error
TEST_CASE("multi_heap simple allocations", "[multi_heap]")
{
uint8_t small_heap[4 * 1024];
multi_heap_handle_t heap = multi_heap_register(small_heap, sizeof(small_heap));
size_t test_alloc_size = (multi_heap_free_size(heap) + 4) / 2;
printf("New heap:\n");
multi_heap_dump(heap);
printf("*********************\n");
uint8_t *buf = (uint8_t *)multi_heap_malloc(heap, test_alloc_size);
printf("small_heap %p buf %p\n", small_heap, buf);
REQUIRE( buf != NULL );
REQUIRE((intptr_t)buf >= (intptr_t)small_heap);
REQUIRE( (intptr_t)buf < (intptr_t)(small_heap + sizeof(small_heap)));
REQUIRE( multi_heap_get_allocated_size(heap, buf) >= test_alloc_size );
REQUIRE( multi_heap_get_allocated_size(heap, buf) < test_alloc_size + 16);
memset(buf, 0xEE, test_alloc_size);
REQUIRE( multi_heap_malloc(heap, test_alloc_size) == NULL );
multi_heap_free(heap, buf);
printf("Empty?\n");
multi_heap_dump(heap);
printf("*********************\n");
/* Now there should be space for another allocation */
buf = (uint8_t *)multi_heap_malloc(heap, test_alloc_size);
REQUIRE( buf != NULL );
multi_heap_free(heap, buf);
REQUIRE( multi_heap_free_size(heap) > multi_heap_minimum_free_size(heap) );
}
TEST_CASE("multi_heap fragmentation", "[multi_heap]")
{
uint8_t small_heap[4 * 1024];
multi_heap_handle_t heap = multi_heap_register(small_heap, sizeof(small_heap));
const size_t alloc_size = 128;
void *p[4];
for (int i = 0; i < 4; i++) {
multi_heap_dump(heap);
REQUIRE( multi_heap_check(heap, true) );
p[i] = multi_heap_malloc(heap, alloc_size);
printf("%d = %p ****->\n", i, p[i]);
multi_heap_dump(heap);
REQUIRE( p[i] != NULL );
}
printf("allocated %p %p %p %p\n", p[0], p[1], p[2], p[3]);
REQUIRE( multi_heap_malloc(heap, alloc_size * 5) == NULL ); /* no room to allocate 5*alloc_size now */
printf("4 allocations:\n");
multi_heap_dump(heap);
printf("****************\n");
multi_heap_free(heap, p[0]);
multi_heap_free(heap, p[1]);
multi_heap_free(heap, p[3]);
printf("1 allocations:\n");
multi_heap_dump(heap);
printf("****************\n");
void *big = multi_heap_malloc(heap, alloc_size * 3);
//Blocks in TLSF are organized in different form, so this makes no sense
multi_heap_free(heap, big);
multi_heap_free(heap, p[2]);
printf("0 allocations:\n");
multi_heap_dump(heap);
printf("****************\n");
big = multi_heap_malloc(heap, alloc_size * 2);
//Blocks in TLSF are organized in different form, so this makes no sense
multi_heap_free(heap, big);
}
/* Test that malloc/free does not leave free space fragmented */
TEST_CASE("multi_heap defrag", "[multi_heap]")
{
void *p[4];
uint8_t small_heap[4 * 1024];
multi_heap_info_t info, info2;
multi_heap_handle_t heap = multi_heap_register(small_heap, sizeof(small_heap));
printf("0 ---\n");
multi_heap_dump(heap);
REQUIRE( multi_heap_check(heap, true) );
multi_heap_get_info(heap, &info);
REQUIRE( 0 == info.allocated_blocks );
REQUIRE( 1 == info.free_blocks );
printf("1 ---\n");
p[0] = multi_heap_malloc(heap, 128);
p[1] = multi_heap_malloc(heap, 32);
multi_heap_dump(heap);
REQUIRE( multi_heap_check(heap, true) );
printf("2 ---\n");
multi_heap_free(heap, p[0]);
p[2] = multi_heap_malloc(heap, 64);
multi_heap_dump(heap);
REQUIRE( p[2] == p[0] );
REQUIRE( multi_heap_check(heap, true) );
printf("3 ---\n");
multi_heap_free(heap, p[2]);
p[3] = multi_heap_malloc(heap, 32);
multi_heap_dump(heap);
REQUIRE( p[3] == p[0] );
REQUIRE( multi_heap_check(heap, true) );
multi_heap_get_info(heap, &info2);
REQUIRE( 2 == info2.allocated_blocks );
REQUIRE( 2 == info2.free_blocks );
multi_heap_free(heap, p[0]);
multi_heap_free(heap, p[1]);
multi_heap_get_info(heap, &info2);
REQUIRE( 0 == info2.allocated_blocks );
REQUIRE( 1 == info2.free_blocks );
REQUIRE( info.total_free_bytes == info2.total_free_bytes );
}
/* Test that malloc/free does not leave free space fragmented
Note: With fancy poisoning, realloc is implemented as malloc-copy-free and this test does not apply.
*/
#ifndef MULTI_HEAP_POISONING_SLOW
TEST_CASE("multi_heap defrag realloc", "[multi_heap]")
{
void *p[4];
uint8_t small_heap[4 * 1024];
multi_heap_info_t info, info2;
multi_heap_handle_t heap = multi_heap_register(small_heap, sizeof(small_heap));
printf("0 ---\n");
multi_heap_dump(heap);
REQUIRE( multi_heap_check(heap, true) );
multi_heap_get_info(heap, &info);
REQUIRE( 0 == info.allocated_blocks );
REQUIRE( 1 == info.free_blocks );
printf("1 ---\n");
p[0] = multi_heap_malloc(heap, 128);
p[1] = multi_heap_malloc(heap, 32);
multi_heap_dump(heap);
REQUIRE( multi_heap_check(heap, true) );
printf("2 ---\n");
p[2] = multi_heap_realloc(heap, p[0], 64);
multi_heap_dump(heap);
REQUIRE( p[2] == p[0] );
REQUIRE( multi_heap_check(heap, true) );
printf("3 ---\n");
p[3] = multi_heap_realloc(heap, p[2], 32);
multi_heap_dump(heap);
REQUIRE( p[3] == p[0] );
REQUIRE( multi_heap_check(heap, true) );
multi_heap_get_info(heap, &info2);
REQUIRE( 2 == info2.allocated_blocks );
REQUIRE( 2 == info2.free_blocks );
multi_heap_free(heap, p[0]);
multi_heap_free(heap, p[1]);
multi_heap_get_info(heap, &info2);
REQUIRE( 0 == info2.allocated_blocks );
REQUIRE( 1 == info2.free_blocks );
REQUIRE( info.total_free_bytes == info2.total_free_bytes );
}
#endif
void multi_heap_allocation_impl(int heap_size)
{
uint8_t *big_heap = (uint8_t *) __malloc__(2*heap_size);
const int NUM_POINTERS = 64;
printf("Running multi-allocation test with heap_size %d...\n", heap_size);
REQUIRE( big_heap );
multi_heap_handle_t heap = multi_heap_register(big_heap, heap_size);
void *p[NUM_POINTERS] = { 0 };
size_t s[NUM_POINTERS] = { 0 };
const size_t initial_free = multi_heap_free_size(heap);
const int ITERATIONS = 10000;
for (int i = 0; i < ITERATIONS; i++) {
/* check all pointers allocated so far are valid inside big_heap */
for (int j = 0; j < NUM_POINTERS; j++) {
if (p[j] != NULL) {
}
}
uint8_t n = rand() % NUM_POINTERS;
if (rand() % 4 == 0) {
/* 1 in 4 iterations, try to realloc the buffer instead
of using malloc/free
*/
size_t new_size = rand() % 1024;
void *new_p = multi_heap_realloc(heap, p[n], new_size);
printf("realloc %p -> %p (%zu -> %zu)\n", p[n], new_p, s[n], new_size);
multi_heap_check(heap, true);
if (new_size == 0 || new_p != NULL) {
p[n] = new_p;
s[n] = new_size;
if (new_size > 0) {
REQUIRE( p[n] >= big_heap );
REQUIRE( p[n] < big_heap + heap_size );
memset(p[n], n, new_size);
}
}
continue;
}
if (p[n] != NULL) {
if (s[n] > 0) {
/* Verify pre-existing contents of p[n] */
uint8_t compare[s[n]];
memset(compare, n, s[n]);
/*REQUIRE*/assert( memcmp(compare, p[n], s[n]) == 0 );
}
REQUIRE( multi_heap_check(heap, true) );
multi_heap_free(heap, p[n]);
printf("freed %p (%zu)\n", p[n], s[n]);
if (!multi_heap_check(heap, true)) {
printf("FAILED iteration %d after freeing %p\n", i, p[n]);
multi_heap_dump(heap);
REQUIRE(0);
}
}
s[n] = rand() % 1024;
REQUIRE( multi_heap_check(heap, true) );
p[n] = multi_heap_malloc(heap, s[n]);
printf("malloc %p (%zu)\n", p[n], s[n]);
if (p[n] != NULL) {
REQUIRE( p[n] >= big_heap );
REQUIRE( p[n] < big_heap + heap_size );
}
if (!multi_heap_check(heap, true)) {
printf("FAILED iteration %d after mallocing %p (%zu bytes)\n", i, p[n], s[n]);
multi_heap_dump(heap);
REQUIRE(0);
}
if (p[n] != NULL) {
memset(p[n], n, s[n]);
}
}
for (int i = 0; i < NUM_POINTERS; i++) {
multi_heap_free(heap, p[i]);
if (!multi_heap_check(heap, true)) {
printf("FAILED during cleanup after freeing %p\n", p[i]);
multi_heap_dump(heap);
REQUIRE(0);
}
}
REQUIRE( initial_free == multi_heap_free_size(heap) );
__free__(big_heap);
}
TEST_CASE("multi_heap many random allocations", "[multi_heap]")
{
size_t poolsize[] = { 15, 255, 4095, 8191 };
for (size_t i = 0; i < sizeof(poolsize)/sizeof(size_t); i++) {
multi_heap_allocation_impl(poolsize[i] * 1024);
}
}
TEST_CASE("multi_heap_get_info() function", "[multi_heap]")
{
uint8_t heapdata[4 * 1024];
multi_heap_handle_t heap = multi_heap_register(heapdata, sizeof(heapdata));
multi_heap_info_t before, after, freed;
multi_heap_get_info(heap, &before);
printf("before: total_free_bytes %zu\ntotal_allocated_bytes %zu\nlargest_free_block %zu\nminimum_free_bytes %zu\nallocated_blocks %zu\nfree_blocks %zu\ntotal_blocks %zu\n",
before.total_free_bytes,
before.total_allocated_bytes,
before.largest_free_block,
before.minimum_free_bytes,
before.allocated_blocks,
before.free_blocks,
before.total_blocks);
REQUIRE( 0 == before.allocated_blocks );
REQUIRE( 0 == before.total_allocated_bytes );
REQUIRE( before.total_free_bytes == before.minimum_free_bytes );
void *x = multi_heap_malloc(heap, 32);
multi_heap_get_info(heap, &after);
printf("after: total_free_bytes %zu\ntotal_allocated_bytes %zu\nlargest_free_block %zu\nminimum_free_bytes %zu\nallocated_blocks %zu\nfree_blocks %zu\ntotal_blocks %zu\n",
after.total_free_bytes,
after.total_allocated_bytes,
after.largest_free_block,
after.minimum_free_bytes,
after.allocated_blocks,
after.free_blocks,
after.total_blocks);
REQUIRE( 1 == after.allocated_blocks );
REQUIRE( 32 == after.total_allocated_bytes );
REQUIRE( after.minimum_free_bytes < before.minimum_free_bytes);
REQUIRE( after.minimum_free_bytes > 0 );
multi_heap_free(heap, x);
multi_heap_get_info(heap, &freed);
printf("freed: total_free_bytes %zu\ntotal_allocated_bytes %zu\nlargest_free_block %zu\nminimum_free_bytes %zu\nallocated_blocks %zu\nfree_blocks %zu\ntotal_blocks %zu\n",
freed.total_free_bytes,
freed.total_allocated_bytes,
freed.largest_free_block,
freed.minimum_free_bytes,
freed.allocated_blocks,
freed.free_blocks,
freed.total_blocks);
REQUIRE( 0 == freed.allocated_blocks );
REQUIRE( 0 == freed.total_allocated_bytes );
REQUIRE( before.total_free_bytes == freed.total_free_bytes );
REQUIRE( after.minimum_free_bytes == freed.minimum_free_bytes );
}
TEST_CASE("multi_heap minimum-size allocations", "[multi_heap]")
{
uint8_t heapdata[4096];
void *p[sizeof(heapdata) / sizeof(void *)] = {NULL};
const size_t NUM_P = sizeof(p) / sizeof(void *);
size_t allocated_size = 0;
multi_heap_handle_t heap = multi_heap_register(heapdata, sizeof(heapdata));
size_t before_free = multi_heap_free_size(heap);
size_t i;
for (i = 0; i < NUM_P; i++) {
//TLSF minimum block size is 4 bytes
p[i] = multi_heap_malloc(heap, 1);
if (p[i] == NULL) {
break;
}
}
REQUIRE( i < NUM_P); // Should have run out of heap before we ran out of pointers
printf("Allocated %zu minimum size chunks\n", i);
REQUIRE(multi_heap_free_size(heap) < before_free);
multi_heap_check(heap, true);
/* Free in random order */
bool has_allocations = true;
while (has_allocations) {
i = rand() % NUM_P;
multi_heap_free(heap, p[i]);
p[i] = NULL;
multi_heap_check(heap, true);
has_allocations = false;
for (i = 0; i < NUM_P && !has_allocations; i++) {
has_allocations = (p[i] != NULL);
}
}
/* all freed! */
REQUIRE( before_free == multi_heap_free_size(heap) );
}
TEST_CASE("multi_heap_realloc()", "[multi_heap]")
{
const uint32_t PATTERN = 0xABABDADA;
uint8_t small_heap[4 * 1024];
multi_heap_handle_t heap = multi_heap_register(small_heap, sizeof(small_heap));
uint32_t *a = (uint32_t *)multi_heap_malloc(heap, 64);
uint32_t *b = (uint32_t *)multi_heap_malloc(heap, 32);
REQUIRE( a != NULL );
REQUIRE( b != NULL );
REQUIRE( b > a); /* 'b' takes the block after 'a' */
*a = PATTERN;
uint32_t *c = (uint32_t *)multi_heap_realloc(heap, a, 72);
REQUIRE( multi_heap_check(heap, true));
REQUIRE( c != NULL );
REQUIRE( c > b ); /* 'a' moves, 'c' takes the block after 'b' */
REQUIRE( *c == PATTERN );
#ifndef MULTI_HEAP_POISONING_SLOW
// "Slow" poisoning implementation doesn't reallocate in place, so these
// test will fail...
uint32_t *d = (uint32_t *)multi_heap_realloc(heap, c, 36);
REQUIRE( multi_heap_check(heap, true) );
REQUIRE( c == d ); /* 'c' block should be shrunk in-place */
REQUIRE( *d == PATTERN);
uint32_t *e = (uint32_t *)multi_heap_malloc(heap, 64);
REQUIRE( multi_heap_check(heap, true));
REQUIRE( a == e ); /* 'e' takes the block formerly occupied by 'a' */
multi_heap_free(heap, d);
uint32_t *f = (uint32_t *)multi_heap_realloc(heap, b, 64);
REQUIRE( multi_heap_check(heap, true) );
REQUIRE( f == b ); /* 'b' should be extended in-place, over space formerly occupied by 'd' */
#ifdef MULTI_HEAP_POISONING
#define TOO_MUCH 7420 + 1
#else
#define TOO_MUCH 7420 + 1
#endif
/* not enough contiguous space left in the heap */
uint32_t *g = (uint32_t *)multi_heap_realloc(heap, e, TOO_MUCH);
REQUIRE( g == NULL );
multi_heap_free(heap, f);
/* try again */
g = (uint32_t *)multi_heap_realloc(heap, e, 128);
REQUIRE( multi_heap_check(heap, true) );
REQUIRE( e == g ); /* 'g' extends 'e' in place, into the space formerly held by 'f' */
#endif
}
// TLSF only accepts heaps aligned to 4-byte boundary so
// only aligned allocation tests make sense.
TEST_CASE("multi_heap aligned allocations", "[multi_heap]")
{
uint8_t test_heap[4 * 1024];
multi_heap_handle_t heap = multi_heap_register(test_heap, sizeof(test_heap));
uint32_t aligments = 0; // starts from alignment by 4-byte boundary
size_t old_size = multi_heap_free_size(heap);
size_t leakage = 1024;
printf("[ALIGNED_ALLOC] heap_size before: %d \n", old_size);
printf("New heap:\n");
multi_heap_dump(heap);
printf("*********************\n");
for(;aligments <= 256; aligments++) {
//Use some stupid size value to test correct alignment even in strange
//memory layout objects:
uint8_t *buf = (uint8_t *)multi_heap_aligned_alloc(heap, (aligments + 137), aligments );
if(((aligments & (aligments - 1)) != 0) || (!aligments)) {
REQUIRE( buf == NULL );
} else {
REQUIRE( buf != NULL );
REQUIRE((intptr_t)buf >= (intptr_t)test_heap);
REQUIRE((intptr_t)buf < (intptr_t)(test_heap + sizeof(test_heap)));
printf("[ALIGNED_ALLOC] alignment required: %u \n", aligments);
printf("[ALIGNED_ALLOC] address of allocated memory: %p \n\n", (void *)buf);
//Address of obtained block must be aligned with selected value
REQUIRE(((intptr_t)buf & (aligments - 1)) == 0);
//Write some data, if it corrupts memory probably the heap
//canary verification will fail:
memset(buf, 0xA5, (aligments + 137));
multi_heap_free(heap, buf);
}
}
printf("[ALIGNED_ALLOC] heap_size after: %d \n", multi_heap_free_size(heap));
REQUIRE((old_size - multi_heap_free_size(heap)) <= leakage);
}

View File

@@ -1,6 +1,6 @@
idf_component_register( SRC_DIRS .
INCLUDE_DIRS .
PRIV_REQUIRES tools newlib console esp_common freertos services
PRIV_REQUIRES tools newlib console esp_common freertos tools
REQUIRES nvs_flash json
)

View File

@@ -14,7 +14,7 @@
#include "nvs_flash.h"
#include "nvs_utilities.h"
#include "platform_config.h"
#include "globdefs.h"
#include "tools.h"
const char current_namespace[] = "config";
const char settings_partition[] = "settings";

View File

@@ -21,7 +21,6 @@
#include "platform_config.h"
#include "nvs_utilities.h"
#include "platform_esp32.h"
#include "trace.h"
#include <stdio.h>
#include <string.h>
#include "esp_system.h"
@@ -38,7 +37,7 @@
#include "cJSON.h"
#include "freertos/timers.h"
#include "freertos/event_groups.h"
#include "globdefs.h"
#include "tools.h"
#define CONFIG_COMMIT_DELAY 1000
#define LOCK_MAX_WAIT 20*CONFIG_COMMIT_DELAY

View File

@@ -8,9 +8,20 @@
#ifdef __cplusplus
extern "C" {
#endif
#ifdef __cplusplus
}
#endif
#define PARSE_PARAM(S,P,C,V) do { \
char *__p; \
if ((__p = strcasestr(S, P)) && (__p = strchr(__p, C))) V = atoi(__p+1); \
} while (0)
#define PARSE_PARAM_STR(S,P,C,V,I) do { \
char *__p; \
if ((__p = strstr(S, P)) && (__p = strchr(__p, C))) { \
while (*++__p == ' '); \
sscanf(__p,"%" #I "[^,]", V); \
} \
} while (0)
#define DECLARE_SET_DEFAULT(t) void config_set_default_## t (const char *key, t value);
#define DECLARE_GET_NUM(t) esp_err_t config_get_## t (const char *key, t * value);
#ifndef FREE_RESET
@@ -45,3 +56,7 @@ esp_err_t config_set_value(nvs_type_t nvs_type, const char *key, const void * va
nvs_type_t config_get_item_type(cJSON * entry);
void * config_safe_alloc_get_entry_value(nvs_type_t nvs_type, cJSON * entry);
#ifdef __cplusplus
}
#endif

View File

@@ -8,7 +8,7 @@ idf_component_register( SRCS
cmd_config.c
INCLUDE_DIRS .
REQUIRES nvs_flash
PRIV_REQUIRES console app_update tools services spi_flash platform_config vfs pthread wifi-manager platform_config newlib telnet display squeezelite services)
PRIV_REQUIRES console app_update tools services spi_flash platform_config vfs pthread wifi-manager platform_config newlib telnet display squeezelite tools)
target_link_libraries(${COMPONENT_LIB} "-Wl,--undefined=GDS_DrawPixelFast")
target_link_libraries(${COMPONENT_LIB} ${build_dir}/esp-idf/$<TARGET_PROPERTY:RECOVERY_PREFIX>/lib$<TARGET_PROPERTY:RECOVERY_PREFIX>.a )
target_add_binary_data( __idf_platform_console presets.json BINARY)

View File

@@ -1,7 +1,7 @@
idf_build_get_property(idf_path IDF_PATH)
idf_component_register( SRCS cmd_squeezelite.c
INCLUDE_DIRS .
PRIV_REQUIRES spi_flash bootloader_support partition_table bootloader_support console codecs squeezelite newlib pthread tools platform_config display services)
PRIV_REQUIRES spi_flash bootloader_support partition_table bootloader_support console codecs squeezelite newlib pthread tools platform_config display tools)
target_link_libraries(${COMPONENT_LIB} INTERFACE "-Wl,--undefined=feof")

View File

@@ -12,7 +12,7 @@
#include "platform_esp32.h"
#include "platform_config.h"
#include "esp_app_format.h"
#include "globdefs.h"
#include "tools.h"
extern esp_err_t process_recovery_ota(const char * bin_url, char * bin_buffer, uint32_t length);
static const char * TAG = "squeezelite_cmd";

View File

@@ -14,11 +14,10 @@
#include "string.h"
#include "stdio.h"
#include "platform_config.h"
#include "trace.h"
#include "messaging.h"
#include "accessors.h"
#include "adac.h"
#include "globdefs.h"
#include "tools.h"
#include "cJSON.h"
#include "cmd_i2ctools.h"

View File

@@ -20,7 +20,7 @@
#include "messaging.h"
#include "display.h"
#include "config.h"
#include "globdefs.h"
#include "tools.h"
#include "adac.h"
#define I2C_MASTER_TX_BUF_DISABLE 0 /*!< I2C master doesn't need buffer */

View File

@@ -26,8 +26,7 @@ extern "C" {
#include "nvs_utilities.h"
#include "platform_console.h"
#include "messaging.h"
#include "globdefs.h"
#include "trace.h"
#include "tools.h"
extern esp_err_t network_wifi_erase_legacy();
extern esp_err_t network_wifi_erase_known_ap();

View File

@@ -31,8 +31,7 @@
#include "driver/uart.h" // for the uart driver access
#include "messaging.h"
#include "platform_console.h"
#include "trace.h"
#include "globdefs.h"
#include "tools.h"
#ifdef CONFIG_FREERTOS_GENERATE_RUN_TIME_STATS
#pragma message("Runtime stats enabled")

View File

@@ -26,17 +26,26 @@
#include "trace.h"
#include "platform_config.h"
#include "telnet.h"
#include "tools.h"
#include "messaging.h"
#include "config.h"
pthread_t thread_console;
static pthread_t thread_console;
static void * console_thread();
void console_start();
static const char * TAG = "console";
extern bool bypass_network_manager;
extern void register_squeezelite();
static EXT_RAM_ATTR QueueHandle_t uart_queue;
static EXT_RAM_ATTR struct {
uint8_t _buf[128];
StaticRingbuffer_t _ringbuf;
RingbufHandle_t handle;
QueueSetHandle_t queue_set;
} stdin_redir;
/* Prompt to be printed before each line.
* This can be customized, made dynamic, etc.
*/
@@ -50,7 +59,7 @@ const char* recovery_prompt = LOG_COLOR_E "recovery-squeezelite-esp32> " LOG_RES
#define MOUNT_PATH "/data"
#define HISTORY_PATH MOUNT_PATH "/history.txt"
esp_err_t run_command(char * line);
static esp_err_t run_command(char * line);
#define ADD_TO_JSON(o,t,n) if (t->n) cJSON_AddStringToObject(o,QUOTE(n),t->n);
#define ADD_PARMS_TO_CMD(o,t,n) { cJSON * parms = ParmsToJSON(&t.n->hdr); if(parms) cJSON_AddItemToObject(o,QUOTE(n),parms); }
cJSON * cmdList;
@@ -230,17 +239,43 @@ void process_autoexec(){
}
}
static ssize_t stdin_read(int fd, void* data, size_t size) {
size_t bytes = -1;
while (1) {
QueueSetMemberHandle_t activated = xQueueSelectFromSet(stdin_redir.queue_set, portMAX_DELAY);
if (activated == uart_queue) {
uart_event_t event;
xQueueReceive(uart_queue, &event, 0);
if (event.type == UART_DATA) {
bytes = uart_read_bytes(CONFIG_ESP_CONSOLE_UART_NUM, data, size < event.size ? size : event.size, 0);
// we have to do our own line ending translation here
for (int i = 0; i < bytes; i++) if (((char*)data)[i] == '\r') ((char*)data)[i] = '\n';
break;
}
} else if (xRingbufferCanRead(stdin_redir.handle, activated)) {
char *p = xRingbufferReceiveUpTo(stdin_redir.handle, &bytes, 0, size);
// we might receive strings, replace null by \n
for (int i = 0; i < bytes; i++) if (p[i] == '\0' || p[i] == '\r') p[i] = '\n';
memcpy(data, p, bytes);
vRingbufferReturnItem(stdin_redir.handle, p);
break;
}
}
return bytes;
}
static int stdin_dummy(const char * path, int flags, int mode) { return 0; }
void initialize_console() {
/* Disable buffering on stdin */
setvbuf(stdin, NULL, _IONBF, 0);
/* Minicom, screen, idf_monitor send CR when ENTER key is pressed */
esp_vfs_dev_uart_port_set_rx_line_endings(CONFIG_ESP_CONSOLE_UART_NUM, ESP_LINE_ENDINGS_CR);
/* Move the caret to the beginning of the next line on '\n' */
esp_vfs_dev_uart_port_set_tx_line_endings(CONFIG_ESP_CONSOLE_UART_NUM, ESP_LINE_ENDINGS_CRLF);
/* Minicom, screen, idf_monitor send CR when ENTER key is pressed (unused if we redirect stdin) */
esp_vfs_dev_uart_set_rx_line_endings(ESP_LINE_ENDINGS_CR);
/* Move the caret to the beginning of the next line on '\n' */
esp_vfs_dev_uart_set_tx_line_endings(ESP_LINE_ENDINGS_CRLF);
/* Configure UART. Note that REF_TICK is used so that the baud rate remains
* correct while APB frequency is changing in light sleep mode.
@@ -252,10 +287,28 @@ void initialize_console() {
ESP_ERROR_CHECK(uart_param_config(CONFIG_ESP_CONSOLE_UART_NUM, &uart_config));
/* Install UART driver for interrupt-driven reads and writes */
ESP_ERROR_CHECK( uart_driver_install(CONFIG_ESP_CONSOLE_UART_NUM, 256, 0, 0, NULL, 0));
ESP_ERROR_CHECK( uart_driver_install(CONFIG_ESP_CONSOLE_UART_NUM, 256, 0, 3, &uart_queue, 0));
/* Tell VFS to use UART driver */
esp_vfs_dev_uart_use_driver(CONFIG_ESP_CONSOLE_UART_NUM);
/* re-direct stdin to our own driver so we can gather data from various sources */
stdin_redir.queue_set = xQueueCreateSet(2);
stdin_redir.handle = xRingbufferCreateStatic(sizeof(stdin_redir._buf), RINGBUF_TYPE_BYTEBUF, stdin_redir._buf, &stdin_redir._ringbuf);
xRingbufferAddToQueueSetRead(stdin_redir.handle, stdin_redir.queue_set);
xQueueAddToSet(uart_queue, stdin_redir.queue_set);
const esp_vfs_t vfs = {
.flags = ESP_VFS_FLAG_DEFAULT,
.open = stdin_dummy,
.read = stdin_read,
};
ESP_ERROR_CHECK(esp_vfs_register("/dev/console", &vfs, NULL));
freopen("/dev/console", "r", stdin);
/* Disable buffering on stdin */
setvbuf(stdin, NULL, _IONBF, 0);
/* Initialize the console */
esp_console_config_t console_config = { .max_cmdline_args = 28,
@@ -283,20 +336,14 @@ void initialize_console() {
//linenoiseHistoryLoad(HISTORY_PATH);
}
bool console_push(const char *data, size_t size) {
return xRingbufferSend(stdin_redir.handle, data, size, pdMS_TO_TICKS(100)) == pdPASS;
}
void console_start() {
if(!is_serial_suppressed()){
initialize_console();
}
else {
/* Initialize the console */
esp_console_config_t console_config = { .max_cmdline_args = 28,
.max_cmdline_length = 600,
#if CONFIG_LOG_COLORS
.hint_color = atoi(LOG_COLOR_CYAN)
#endif
};
ESP_ERROR_CHECK(esp_console_init(&console_config));
}
/* we always run console b/c telnet sends commands to stdin */
initialize_console();
/* Register commands */
MEMTRACE_PRINT_DELTA_MESSAGE("Registering help command");
esp_console_register_help_command();
@@ -320,67 +367,58 @@ void console_start() {
MEMTRACE_PRINT_DELTA_MESSAGE("Registering i2c commands");
register_i2ctools();
if(!is_serial_suppressed()){
printf("\n");
if(is_recovery_running){
printf("****************************************************************\n"
"RECOVERY APPLICATION\n"
"This mode is used to flash Squeezelite into the OTA partition\n"
"****\n\n");
}
printf("Type 'help' to get the list of commands.\n"
"Use UP/DOWN arrows to navigate through command history.\n"
"Press TAB when typing command name to auto-complete.\n"
"\n");
if(!is_recovery_running){
printf("To automatically execute lines at startup:\n"
"\tSet NVS variable autoexec (U8) = 1 to enable, 0 to disable automatic execution.\n"
"\tSet NVS variable autoexec[1~9] (string)to a command that should be executed automatically\n");
}
printf("\n\n");
/* Figure out if the terminal supports escape sequences */
int probe_status = linenoiseProbe();
if (probe_status) { /* zero indicates success */
printf("\n****************************\n"
"Your terminal application does not support escape sequences.\n"
"Line editing and history features are disabled.\n"
"On Windows, try using Putty instead.\n"
"****************************\n");
linenoiseSetDumbMode(1);
#if CONFIG_LOG_COLORS
/* Since the terminal doesn't support escape sequences,
* don't use color codes in the prompt.
*/
if(is_recovery_running){
recovery_prompt= "recovery-squeezelite-esp32>";
}
prompt = "squeezelite-esp32> ";
#endif //CONFIG_LOG_COLORS
}
esp_pthread_cfg_t cfg = esp_pthread_get_default_config();
cfg.thread_name= "console";
cfg.inherit_cfg = true;
if(is_recovery_running){
prompt = recovery_prompt;
cfg.stack_size = 4096 ;
}
MEMTRACE_PRINT_DELTA_MESSAGE("Creating console thread with stack size of 4096 bytes");
esp_pthread_set_cfg(&cfg);
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_create(&thread_console, &attr, console_thread, NULL);
pthread_attr_destroy(&attr);
MEMTRACE_PRINT_DELTA_MESSAGE("Console thread created");
}
else if(!is_recovery_running){
MEMTRACE_PRINT_DELTA_MESSAGE("Running autoexec");
process_autoexec();
printf("\n");
if(is_recovery_running){
printf("****************************************************************\n"
"RECOVERY APPLICATION\n"
"This mode is used to flash Squeezelite into the OTA partition\n"
"****\n\n");
}
printf("Type 'help' to get the list of commands.\n"
"Use UP/DOWN arrows to navigate through command history.\n"
"Press TAB when typing command name to auto-complete.\n"
"\n");
if(!is_recovery_running){
printf("To automatically execute lines at startup:\n"
"\tSet NVS variable autoexec (U8) = 1 to enable, 0 to disable automatic execution.\n"
"\tSet NVS variable autoexec[1~9] (string)to a command that should be executed automatically\n");
}
printf("\n\n");
/* Figure out if the terminal supports escape sequences */
int probe_status = linenoiseProbe();
if (probe_status) { /* zero indicates success */
printf("\n****************************\n"
"Your terminal application does not support escape sequences.\n"
"Line editing and history features are disabled.\n"
"On Windows, try using Putty instead.\n"
"****************************\n");
linenoiseSetDumbMode(1);
#if CONFIG_LOG_COLORS
/* Since the terminal doesn't support escape sequences,
* don't use color codes in the prompt.
*/
if(is_recovery_running){
recovery_prompt= "recovery-squeezelite-esp32>";
}
prompt = "squeezelite-esp32> ";
#endif //CONFIG_LOG_COLORS
}
esp_pthread_cfg_t cfg = esp_pthread_get_default_config();
cfg.thread_name= "console";
cfg.inherit_cfg = true;
if(is_recovery_running){
prompt = recovery_prompt;
cfg.stack_size = 4096 ;
}
MEMTRACE_PRINT_DELTA_MESSAGE("Creating console thread with stack size of 4096 bytes");
esp_pthread_set_cfg(&cfg);
pthread_create(&thread_console, NULL, console_thread, NULL);
MEMTRACE_PRINT_DELTA_MESSAGE("Console thread created");
}
esp_err_t run_command(char * line){
static esp_err_t run_command(char * line){
/* Try to run the command */
int ret;
esp_err_t err = esp_console_run(line, &ret);
@@ -400,6 +438,7 @@ esp_err_t run_command(char * line){
}
return err;
}
static void * console_thread() {
if(!is_recovery_running){
MEMTRACE_PRINT_DELTA_MESSAGE("Running autoexec");

View File

@@ -255,7 +255,7 @@ void raop_delete(struct raop_ctx_s *ctx) {
// brute-force exit of accept()
shutdown(ctx->sock, SHUT_RDWR);
closesocket(ctx->sock);
closesocket(ctx->sock);
// wait to make sure LWIP if scheduled (avoid issue with NotifyTake)
vTaskDelay(100 / portTICK_PERIOD_MS);
@@ -525,15 +525,17 @@ static bool handle_rtsp(raop_ctx_t *ctx, int sock)
ctx->active_remote.destroy_mutex = xSemaphoreCreateBinary();
ctx->active_remote.xTaskBuffer = (StaticTask_t*) heap_caps_malloc(sizeof(StaticTask_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
ctx->active_remote.thread = xTaskCreateStatic( (TaskFunction_t) search_remote, "search_remote", SEARCH_STACK_SIZE, ctx, ESP_TASK_PRIO_MIN + 2, ctx->active_remote.xStack, ctx->active_remote.xTaskBuffer);
#endif
} else if (!strcmp(method, "SETUP") && ((buf = kd_lookup(headers, "Transport")) != NULL)) {
} else if (!strcmp(method, "SETUP") && ((buf = kd_lookup(headers, "Transport")) != NULL)) {
char *p;
rtp_resp_t rtp = { 0 };
short unsigned tport = 0, cport = 0;
uint8_t *buffer = NULL;
size_t size = 0;
// we are about to stream, do something if needed and optionally give buffers to play with
success = ctx->cmd_cb(RAOP_SETUP);
success = ctx->cmd_cb(RAOP_SETUP, &buffer, &size);
if ((p = strcasestr(buf, "timing_port")) != NULL) sscanf(p, "%*[^=]=%hu", &tport);
if ((p = strcasestr(buf, "control_port")) != NULL) sscanf(p, "%*[^=]=%hu", &cport);
@@ -605,7 +607,6 @@ static bool handle_rtsp(raop_ctx_t *ctx, int sock)
volume = (volume == -144.0) ? 0 : (1 + volume / 30);
success = ctx->cmd_cb(RAOP_VOLUME, volume);
} else if (body && (p = strcasestr(body, "progress")) != NULL) {
int start, current, stop = 0;
int start, current, stop = 0;
// we want ms, not s
@@ -672,9 +673,8 @@ void cleanup_rtsp(raop_ctx_t *ctx, bool abort) {
if (ctx->active_remote.running) {
#ifdef WIN32
pthread_join(ctx->active_remote.thread, NULL);
close_mDNS(ctx->active_remote.handle);
#else
#else
// need to make sure no search is on-going and reclaim task memory
// need to make sure no search is on-going and reclaim task memory
ctx->active_remote.running = false;
xSemaphoreTake(ctx->active_remote.destroy_mutex, portMAX_DELAY);

View File

@@ -1,15 +1,12 @@
/*
* AirCast: Chromecast to AirPlay
*
* (c) Philippe 2016-2017, philippe_44@outlook.com
* (c) Philippe 2020, philippe_44@outlook.com
*
* This software is released under the MIT License.
* https://opensource.org/licenses/MIT
*
*/
#ifndef __RAOP_H
#define __RAOP_H
#pragma once
#include "platform.h"
#include "raop_sink.h"
@@ -20,4 +17,3 @@ void raop_delete(struct raop_ctx_s *ctx);
void raop_abort(struct raop_ctx_s *ctx);
bool raop_cmd(struct raop_ctx_s *ctx, raop_event_t event, void *param);
#endif

View File

@@ -16,9 +16,7 @@
#include "audio_controls.h"
#include "display.h"
#include "accessors.h"
#include "log_util.h"
#include "trace.h"
#ifndef CONFIG_AIRPLAY_NAME
#define CONFIG_AIRPLAY_NAME "ESP32-AirPlay"
@@ -184,7 +182,7 @@ static bool raop_sink_start(raop_cmd_vcb_t cmd_cb, raop_data_cb_t data_cb) {
ESP_ERROR_CHECK( mdns_hostname_set(hostname) );
char * sink_name_buffer= (char *)config_alloc_get(NVS_TYPE_STR,"airplay_name");
if(sink_name_buffer != NULL){
if (sink_name_buffer != NULL){
memset(sink_name, 0x00, sizeof(sink_name));
strncpy(sink_name,sink_name_buffer,sizeof(sink_name)-1 );
free(sink_name_buffer);
@@ -219,7 +217,7 @@ void raop_sink_init(raop_cmd_vcb_t cmd_cb, raop_data_cb_t data_cb) {
raop_cbs.data = data_cb;
TimerHandle_t timer = xTimerCreate("raopStart", 5000 / portTICK_RATE_MS, pdTRUE, NULL, raop_start_handler);
xTimerStart(timer, portMAX_DELAY);
LOG_INFO( "delaying AirPlay start");
LOG_INFO( "Delaying AirPlay start");
}
}

View File

@@ -65,8 +65,8 @@
#define MS2TS(ms, rate) ((((u64_t) (ms)) * (rate)) / 1000)
#define TS2MS(ts, rate) NTP2MS(TS2NTP(ts,rate))
extern log_level raop_loglevel;
extern log_level raop_loglevel;
static log_level *loglevel = &raop_loglevel;
//#define __RTP_STORE
@@ -93,6 +93,7 @@ typedef struct audio_buffer_entry { // decoded audio packets
u32_t rtptime, last_resend;
s16_t *data;
int len;
bool allocated;
} abuf_t;
typedef struct rtp_s {
@@ -152,7 +153,7 @@ typedef struct rtp_s {
#define BUFIDX(seqno) ((seq_t)(seqno) % BUFFER_FRAMES)
static void buffer_alloc(abuf_t *audio_buffer, int size, uint8_t *buf, size_t buf_size);
static void buffer_release(abuf_t *audio_buffer);
static void buffer_reset(abuf_t *audio_buffer);
static void buffer_push_packet(rtp_t *ctx);
@@ -208,6 +209,7 @@ static struct alac_codec_s* alac_init(int fmtp[32]) {
/*---------------------------------------------------------------------------*/
rtp_resp_t rtp_init(struct in_addr host, int latency, char *aeskey, char *aesiv, char *fmtpstr,
short unsigned pCtrlPort, short unsigned pTimingPort,
uint8_t *buffer, size_t size,
raop_cmd_cb_t cmd_cb, raop_data_cb_t data_cb)
{
int i = 0;
@@ -260,7 +262,7 @@ rtp_resp_t rtp_init(struct in_addr host, int latency, char *aeskey, char *aesiv,
ctx->alac_codec = alac_init(fmtp);
rc &= ctx->alac_codec != NULL;
rc &= ctx->alac_codec != NULL;
buffer_alloc(ctx->audio_buffer, ctx->frame_size*4, buffer, size);
// create rtp ports
for (i = 0; i < 3; i++) {
@@ -311,7 +313,7 @@ void rtp_end(rtp_t *ctx)
#else
ulTaskNotifyTake(pdFALSE, portMAX_DELAY);
vTaskDelete(ctx->thread);
ulTaskNotifyTake(pdFALSE, portMAX_DELAY);
SAFE_PTR_FREE(ctx->xTaskBuffer);
#endif
}
@@ -369,10 +371,18 @@ void rtp_record(rtp_t *ctx, unsigned short seqno, unsigned rtptime) {
}
/*---------------------------------------------------------------------------*/
static void buffer_alloc(abuf_t *audio_buffer, int size, uint8_t *buf, size_t buf_size) {
int i;
for (i = 0; i < BUFFER_FRAMES; i++) {
int i;
if (buf && buf_size >= size) {
audio_buffer[i].data = (s16_t*) buf;
audio_buffer[i].allocated = false;
buf += size;
buf_size -= size;
} else {
audio_buffer[i].allocated = true;
audio_buffer[i].data = malloc(size);
}
audio_buffer[i].ready = 0;
}
}
@@ -381,7 +391,7 @@ static void buffer_alloc(abuf_t *audio_buffer, int size) {
static void buffer_release(abuf_t *audio_buffer) {
int i;
for (i = 0; i < BUFFER_FRAMES; i++) {
int i;
if (audio_buffer[i].allocated) free(audio_buffer[i].data);
}
}

View File

@@ -12,6 +12,7 @@ typedef struct {
rtp_resp_t rtp_init(struct in_addr host, int latency,
char *aeskey, char *aesiv, char *fmtpstr,
short unsigned pCtrlPort, short unsigned pTimingPort,
uint8_t *buffer, size_t size,
raop_cmd_cb_t cmd_cb, raop_data_cb_t data_cb);
void rtp_end(struct rtp_s *ctx);
bool rtp_flush(struct rtp_s *ctx, unsigned short seqno, unsigned rtptime, bool exit_locked);

View File

@@ -18,6 +18,11 @@
#include "platform.h"
#include "pthread.h"
#ifndef WIN32
#include "freertos/FreeRTOS.h"
#include "freertos/timers.h"
#endif
#define NFREE(p) if (p) { free(p); p = NULL; }
typedef struct metadata_s {
@@ -46,9 +51,21 @@ char *strndup(const char *s, size_t n);
char *strndup(const char *s, size_t n);
int asprintf(char **strp, const char *fmt, ...);
void winsock_init(void);
void winsock_close(void);
void winsock_close(void);
#define SAFE_PTR_FREE(P) free(P)
#else
char *strlwr(char *str);
// reason is that TCB might be cleanup in idle task
#define SAFE_PTR_FREE(P) \
do { \
TimerHandle_t timer = xTimerCreate("cleanup", pdMS_TO_TICKS(5000), pdFALSE, P, _delayed_free); \
xTimerStart(timer, portMAX_DELAY); \
} while (0)
static void inline _delayed_free(TimerHandle_t xTimer) {
free(pvTimerGetTimerID(xTimer));
xTimerDelete(xTimer, portMAX_DELAY);
}
#endif
char* strextract(char *s1, char *beg, char *end);
@@ -67,5 +84,6 @@ char* kd_dump(key_data_t *kd);
char* http_send(int sock, char *method, key_data_t *rkd);
char* kd_lookup(key_data_t *kd, char *key);
bool kd_add(key_data_t *kd, char *key, char *value);
bool kd_add(key_data_t *kd, char *key, char *value);
char* kd_dump(key_data_t *kd);
void kd_free(key_data_t *kd);

View File

@@ -29,12 +29,11 @@
#include "driver/spi_common_internal.h"
#include "esp32/rom/efuse.h"
#include "adac.h"
#include "trace.h"
#include "tools.h"
#include "monitor.h"
#include "messaging.h"
#include "network_ethernet.h"
static const char *TAG = "services";
const char *i2c_name_type="I2C";
const char *spi_name_type="SPI";
@@ -63,7 +62,6 @@ static char * config_spdif_get_string(){
",ws=" STR(CONFIG_SPDIF_WS_IO) ",do=" STR(CONFIG_SPDIF_DO_IO));
}
/****************************************************************************************
*
*/
@@ -110,9 +108,9 @@ bool is_spdif_config_locked(){
static void set_i2s_pin(char *config, i2s_pin_config_t *pin_config) {
char *p;
pin_config->bck_io_num = pin_config->ws_io_num = pin_config->data_out_num = pin_config->data_in_num = -1;
if ((p = strcasestr(config, "bck")) != NULL) pin_config->bck_io_num = atoi(strchr(p, '=') + 1);
if ((p = strcasestr(config, "ws")) != NULL) pin_config->ws_io_num = atoi(strchr(p, '=') + 1);
if ((p = strcasestr(config, "do")) != NULL) pin_config->data_out_num = atoi(strchr(p, '=') + 1);
if ((p = strcasestr(config, "bck"))) sscanf(p, "bck%*[^=]=%d", &pin_config->bck_io_num);
if ((p = strcasestr(config, "ws"))) sscanf(p, "ws%*[^=]=%d", &pin_config->ws_io_num);
if ((p = strcasestr(config, "do"))) sscanf(p, "do%*[^=]=%d", &pin_config->data_out_num);
}
/****************************************************************************************
@@ -120,19 +118,20 @@ static void set_i2s_pin(char *config, i2s_pin_config_t *pin_config) {
*/
const i2s_platform_config_t * config_get_i2s_from_str(char * dac_config ){
static EXT_RAM_ATTR i2s_platform_config_t i2s_dac_pin;
memset(&i2s_dac_pin, 0xFF, sizeof(i2s_dac_pin));
memset(&i2s_dac_pin, 0xff, sizeof(i2s_dac_pin));
set_i2s_pin(dac_config, &i2s_dac_pin.pin);
strcpy(i2s_dac_pin.model, "i2s");
char * p=NULL;
if ((p = strcasestr(dac_config, "i2c")) != NULL) i2s_dac_pin.i2c_addr = atoi(strchr(p, '=') + 1);
if ((p = strcasestr(dac_config, "sda")) != NULL) i2s_dac_pin.sda = atoi(strchr(p, '=') + 1);
if ((p = strcasestr(dac_config, "scl")) != NULL) i2s_dac_pin.scl = atoi(strchr(p, '=') + 1);
if ((p = strcasestr(dac_config, "model")) != NULL) sscanf(p, "%*[^=]=%31[^,]", i2s_dac_pin.model);
if ((p = strcasestr(dac_config, "mute")) != NULL) {
PARSE_PARAM(dac_config, "i2c", '=', i2s_dac_pin.i2c_addr);
PARSE_PARAM(dac_config, "sda", '=', i2s_dac_pin.sda);
PARSE_PARAM(dac_config, "scl", '=', i2s_dac_pin.scl);
PARSE_PARAM_STR(dac_config, "model", '=', i2s_dac_pin.model, 31);
if ((p = strcasestr(dac_config, "mute"))) {
char mute[8] = "";
sscanf(p, "%*[^=]=%7[^,]", mute);
i2s_dac_pin.mute_gpio = atoi(mute);
if ((p = strchr(mute, ':')) != NULL) i2s_dac_pin.mute_level = atoi(p + 1);
PARSE_PARAM(p, "mute", ':', i2s_dac_pin.mute_level);
}
return &i2s_dac_pin;
}
@@ -140,52 +139,56 @@ const i2s_platform_config_t * config_get_i2s_from_str(char * dac_config ){
/****************************************************************************************
* Get eth config structure from config string
*/
const eth_config_t * config_get_eth_from_str(char * eth_config ){
char * p=NULL;
static EXT_RAM_ATTR eth_config_t eth_pin;
memset(&eth_pin, 0xFF, sizeof(eth_pin));
memset(&eth_pin.model, 0x00, sizeof(eth_pin.model));
eth_pin.valid = true;
const eth_config_t * config_get_eth_from_str(char* config ){
static EXT_RAM_ATTR eth_config_t eth_config;
memset(&eth_config, 0xff, sizeof(eth_config));
memset(&eth_config.model, 0x00, sizeof(eth_config.model));
eth_config.valid = true;
if ((p = strcasestr(eth_config, "model")) != NULL) sscanf(p, "%*[^=]=%15[^,]", eth_pin.model);
if ((p = strcasestr(eth_config, "mdc")) != NULL) eth_pin.mdc = atoi(strchr(p, '=') + 1);
if ((p = strcasestr(eth_config, "mdio")) != NULL) eth_pin.mdio = atoi(strchr(p, '=') + 1);
if ((p = strcasestr(eth_config, "rst")) != NULL) eth_pin.rst = atoi(strchr(p, '=') + 1);
if ((p = strcasestr(eth_config, "mosi")) != NULL) eth_pin.mosi = atoi(strchr(p, '=') + 1);
if ((p = strcasestr(eth_config, "miso")) != NULL) eth_pin.miso = atoi(strchr(p, '=') + 1);
if ((p = strcasestr(eth_config, "intr")) != NULL) eth_pin.intr = atoi(strchr(p, '=') + 1);
if ((p = strcasestr(eth_config, "cs")) != NULL) eth_pin.cs = atoi(strchr(p, '=') + 1);
if ((p = strcasestr(eth_config, "speed")) != NULL) eth_pin.speed = atoi(strchr(p, '=') + 1);
if ((p = strcasestr(eth_config, "clk")) != NULL) eth_pin.clk = atoi(strchr(p, '=') + 1);
if ((p = strcasestr(eth_config, "host")) != NULL) eth_pin.host = atoi(strchr(p, '=') + 1);
PARSE_PARAM_STR(config, "model", '=', eth_config.model, 15);
PARSE_PARAM(config, "mdc", '=', eth_config.mdc);
PARSE_PARAM(config, "mdio", '=', eth_config.mdio);
PARSE_PARAM(config, "rst", '=', eth_config.rst);
PARSE_PARAM(config, "mosi", '=', eth_config.mosi);
PARSE_PARAM(config, "miso", '=', eth_config.miso);
PARSE_PARAM(config, "intr", '=', eth_config.intr);
PARSE_PARAM(config, "cs", '=', eth_config.cs);
PARSE_PARAM(config, "speed", '=', eth_config.speed);
PARSE_PARAM(config, "clk", '=', eth_config.clk);
if(!eth_pin.model || strlen(eth_pin.model)==0){
eth_pin.valid = false;
return &eth_pin;
// only system host is available
eth_config.host = spi_system_host;
if(!eth_config.model || strlen(eth_config.model)==0){
eth_config.valid = false;
return &eth_config;
}
network_ethernet_driver_t* network_driver = network_ethernet_driver_autodetect(eth_pin.model);
network_ethernet_driver_t* network_driver = network_ethernet_driver_autodetect(eth_config.model);
if(!network_driver || !network_driver->valid){
messaging_post_message(MESSAGING_ERROR,MESSAGING_CLASS_SYSTEM,"Ethernet config invalid: model %s %s",eth_pin.model,network_driver?"was not compiled in":"was not found");
eth_pin.valid = false;
messaging_post_message(MESSAGING_ERROR,MESSAGING_CLASS_SYSTEM,"Ethernet config invalid: model %s %s",eth_config.model,network_driver?"was not compiled in":"was not found");
eth_config.valid = false;
}
if(network_driver){
eth_pin.rmii = network_driver->rmii;
eth_pin.spi = network_driver->spi;
eth_config.rmii = network_driver->rmii;
eth_config.spi = network_driver->spi;
if(network_driver->rmii){
if(!GPIO_IS_VALID_GPIO(eth_pin.mdio) || !GPIO_IS_VALID_GPIO(eth_pin.mdc)){
messaging_post_message(MESSAGING_ERROR,MESSAGING_CLASS_SYSTEM,"Ethernet config invalid: %s %s",!GPIO_IS_VALID_GPIO(eth_pin.mdc)?"Invalid MDC":"",!GPIO_IS_VALID_GPIO(eth_pin.mdio)?"Invalid mdio":"");
eth_pin.valid = false;
if(!GPIO_IS_VALID_GPIO(eth_config.mdio) || !GPIO_IS_VALID_GPIO(eth_config.mdc)){
messaging_post_message(MESSAGING_ERROR,MESSAGING_CLASS_SYSTEM,"Ethernet config invalid: %s %s",!GPIO_IS_VALID_GPIO(eth_config.mdc)?"Invalid MDC":"",!GPIO_IS_VALID_GPIO(eth_config.mdio)?"Invalid mdio":"");
eth_config.valid = false;
}
}
else if(network_driver->spi){
if(!GPIO_IS_VALID_GPIO(eth_pin.cs)){
if(!GPIO_IS_VALID_GPIO(eth_config.cs)){
messaging_post_message(MESSAGING_ERROR,MESSAGING_CLASS_SYSTEM,"Ethernet config invalid: invalid CS pin");
return false;
}
}
}
return &eth_pin;
return &eth_config;
}
/****************************************************************************************
@@ -468,16 +471,18 @@ const display_config_t * config_display_get(){
sscanf(p, "%*[^:]:%u", &dstruct.depth);
dstruct.drivername = display_conf_get_driver_name(strchr(p, '=') + 1);
}
if ((p = strcasestr(config, "width")) != NULL) dstruct.width = atoi(strchr(p, '=') + 1);
if ((p = strcasestr(config, "height")) != NULL) dstruct.height = atoi(strchr(p, '=') + 1);
if ((p = strcasestr(config, "reset")) != NULL) dstruct.RST_pin = atoi(strchr(p, '=') + 1);
PARSE_PARAM(config, "width", '=', dstruct.width);
PARSE_PARAM(config, "height", '=', dstruct.height);
PARSE_PARAM(config, "reset", '=', dstruct.RST_pin);
PARSE_PARAM(config, "address", '=', dstruct.address);
PARSE_PARAM(config, "cs", '=', dstruct.CS_pin);
PARSE_PARAM(config, "speed", '=', dstruct.speed);
PARSE_PARAM(config, "back", '=', dstruct.back);
if (strstr(config, "I2C") ) dstruct.type=i2c_name_type;
if ((p = strcasestr(config, "address")) != NULL) dstruct.address = atoi(strchr(p, '=') + 1);
if (strstr(config, "SPI") ) dstruct.type=spi_name_type;
if ((p = strcasestr(config, "cs")) != NULL) dstruct.CS_pin = atoi(strchr(p, '=') + 1);
if ((p = strcasestr(config, "speed")) != NULL) dstruct.speed = atoi(strchr(p, '=') + 1);
if ((p = strcasestr(config, "back")) != NULL) dstruct.back = atoi(strchr(p, '=') + 1);
dstruct.hflip= strcasestr(config, "HFlip") ? true : false;
dstruct.vflip= strcasestr(config, "VFlip") ? true : false;
dstruct.rotate= strcasestr(config, "rotate") ? true : false;
@@ -488,7 +493,7 @@ const display_config_t * config_display_get(){
*
*/
const i2c_config_t * config_i2c_get(int * i2c_port) {
char *nvs_item, *p;
char *nvs_item;
static i2c_config_t i2c = {
.mode = I2C_MODE_MASTER,
.sda_io_num = -1,
@@ -502,10 +507,10 @@ const i2c_config_t * config_i2c_get(int * i2c_port) {
nvs_item = config_alloc_get(NVS_TYPE_STR, "i2c_config");
if (nvs_item) {
if ((p = strcasestr(nvs_item, "scl")) != NULL) i2c.scl_io_num = atoi(strchr(p, '=') + 1);
if ((p = strcasestr(nvs_item, "sda")) != NULL) i2c.sda_io_num = atoi(strchr(p, '=') + 1);
if ((p = strcasestr(nvs_item, "speed")) != NULL) i2c.master.clk_speed = atoi(strchr(p, '=') + 1);
if ((p = strcasestr(nvs_item, "port")) != NULL) i2c_system_port = atoi(strchr(p, '=') + 1);
PARSE_PARAM(nvs_item, "scl", '=', i2c.scl_io_num);
PARSE_PARAM(nvs_item, "sda", '=', i2c.sda_io_num);
PARSE_PARAM(nvs_item, "speed", '=', i2c.master.clk_speed);
PARSE_PARAM(nvs_item, "port", '=', i2c_system_port);
free(nvs_item);
}
if(i2c_port) {
@@ -518,6 +523,46 @@ const i2c_config_t * config_i2c_get(int * i2c_port) {
return &i2c;
}
/****************************************************************************************
* Get IO expander config structure from config string
*/
const gpio_exp_config_t* config_gpio_exp_get(int index) {
char *nvs_item, *item, *p;
static gpio_exp_config_t config;
// re-initialize config every time
memset(&config, 0, sizeof(config));
config.intr = -1; config.count = 16; config.base = GPIO_NUM_MAX; config.phy.port = i2c_system_port; config.phy.host = spi_system_host;
nvs_item = config_alloc_get(NVS_TYPE_STR, "gpio_exp_config");
if (!nvs_item || !*nvs_item) return NULL;
// search index items
for (item = strtok(nvs_item, ";"); index && item; index--) {
if ((item = strtok(NULL, ";")) == NULL) {
free(nvs_item);
return NULL;
}
}
PARSE_PARAM(item, "addr", '=', config.phy.addr);
PARSE_PARAM(item, "cs", '=', config.phy.cs_pin);
PARSE_PARAM(item, "speed", '=', config.phy.speed);
PARSE_PARAM(item, "intr", '=', config.intr);
PARSE_PARAM(item, "base", '=', config.base);
PARSE_PARAM(item, "count", '=', config.count);
PARSE_PARAM_STR(item, "model", '=', config.model, 31);
if ((p = strcasestr(item, "port")) != NULL) {
char port[8] = "";
sscanf(p, "%*[^=]=%7[^,]", port);
if (strcasestr(port, "dac")) config.phy.port = 0;
}
free(nvs_item);
return &config;
}
/****************************************************************************************
*
*/
@@ -596,18 +641,19 @@ const set_GPIO_struct_t * get_gpio_struct(){
*
*/
const spi_bus_config_t * config_spi_get(spi_host_device_t * spi_host) {
char *nvs_item, *p;
char *nvs_item;
static EXT_RAM_ATTR spi_bus_config_t spi;
memset(&spi, 0xFF, sizeof(spi));
memset(&spi, 0xff, sizeof(spi));
nvs_item = config_alloc_get_str("spi_config", CONFIG_SPI_CONFIG, NULL);
if (nvs_item) {
if ((p = strcasestr(nvs_item, "data")) != NULL) spi.mosi_io_num = atoi(strchr(p, '=') + 1);
if ((p = strcasestr(nvs_item, "mosi")) != NULL) spi.mosi_io_num = atoi(strchr(p, '=') + 1);
if ((p = strcasestr(nvs_item, "miso")) != NULL) spi.miso_io_num = atoi(strchr(p, '=') + 1);
if ((p = strcasestr(nvs_item, "clk")) != NULL) spi.sclk_io_num = atoi(strchr(p, '=') + 1);
if ((p = strcasestr(nvs_item, "dc")) != NULL) spi_system_dc_gpio = atoi(strchr(p, '=') + 1);
if ((p = strcasestr(nvs_item, "host")) != NULL) spi_system_host = atoi(strchr(p, '=') + 1);
PARSE_PARAM(nvs_item, "data", '=', spi.mosi_io_num);
PARSE_PARAM(nvs_item, "mosi", '=', spi.mosi_io_num);
PARSE_PARAM(nvs_item, "miso", '=', spi.miso_io_num);
PARSE_PARAM(nvs_item, "clk", '=', spi.sclk_io_num);
PARSE_PARAM(nvs_item, "dc", '=', spi_system_dc_gpio);
// only VSPI (1) can be used as Flash and PSRAM run at 80MHz
// if ((p = strcasestr(nvs_item, "host")) != NULL) spi_system_host = atoi(strchr(p, '=') + 1);
free(nvs_item);
}
if(spi_host) *spi_host = spi_system_host;
@@ -642,11 +688,11 @@ const rotary_struct_t * config_rotary_get() {
char *config = config_alloc_get_default(NVS_TYPE_STR, "rotary_config", NULL, 0);
if (config && *config) {
char *p;
// parse config
if ((p = strcasestr(config, "A")) != NULL) rotary.A = atoi(strchr(p, '=') + 1);
if ((p = strcasestr(config, "B")) != NULL) rotary.B = atoi(strchr(p, '=') + 1);
if ((p = strcasestr(config, "SW")) != NULL) rotary.SW = atoi(strchr(p, '=') + 1);
PARSE_PARAM(config, "A", '=', rotary.A);
PARSE_PARAM(config, "B", '=', rotary.B);
PARSE_PARAM(config, "SW", '=', rotary.SW);
if ((p = strcasestr(config, "knobonly")) != NULL) {
p = strchr(p, '=');
rotary.knobonly = true;
@@ -691,13 +737,10 @@ cJSON * add_gpio_for_value(cJSON * list,const char * name,int gpio, const char *
*/
cJSON * add_gpio_for_name(cJSON * list,const char * nvs_entry,const char * name, const char * prefix, bool fixed){
cJSON * llist = list?list:cJSON_CreateArray();
char *p;
int gpioNum=0;
if ((p = strcasestr(nvs_entry, name)) != NULL) {
gpioNum = atoi(strchr(p, '=') + 1);
if(gpioNum>=0){
cJSON_AddItemToArray(llist,get_gpio_entry(name,prefix,gpioNum,fixed));
}
PARSE_PARAM(nvs_entry, name, '=', gpioNum);
if(gpioNum>=0){
cJSON_AddItemToArray(llist,get_gpio_entry(name,prefix,gpioNum,fixed));
}
return llist;
}
@@ -1059,14 +1102,11 @@ cJSON * get_gpio_list(bool refresh) {
#ifndef CONFIG_BAT_LOCKED
char *bat_config = config_alloc_get_default(NVS_TYPE_STR, "bat_config", NULL, 0);
if (bat_config) {
char *p;
int channel;
if ((p = strcasestr(bat_config, "channel") ) != NULL) {
channel = atoi(strchr(p, '=') + 1);
if(channel != -1){
if(adc1_pad_get_io_num(channel,&gpio_num )==ESP_OK){
cJSON_AddItemToArray(gpio_list,get_gpio_entry("bat","other",gpio_num,false));
}
int channel = -1;
PARSE_PARAM(bat_config, "channel", '=', channel);
if(channel != -1){
if(adc1_pad_get_io_num(channel,&gpio_num )==ESP_OK){
cJSON_AddItemToArray(gpio_list,get_gpio_entry("bat","other",gpio_num,false));
}
}
free(bat_config);

View File

@@ -12,10 +12,11 @@
#include "driver/i2c.h"
#include "driver/i2s.h"
#include "driver/spi_master.h"
#include "freertos/queue.h"
#include "gpio_exp.h"
extern const char *i2c_name_type;
extern const char *spi_name_type;
typedef struct {
int width;
int height;
@@ -97,6 +98,7 @@ esp_err_t config_i2s_set(const i2s_platform_config_t * config, const char *
esp_err_t config_spi_set(const spi_bus_config_t * config, int host, int dc);
const i2c_config_t * config_i2c_get(int * i2c_port);
const spi_bus_config_t * config_spi_get(spi_host_device_t * spi_host);
const gpio_exp_config_t * config_gpio_exp_get(int index);
void parse_set_GPIO(void (*cb)(int gpio, char *value));
const i2s_platform_config_t * config_dac_get();
const i2s_platform_config_t * config_spdif_get( );

View File

@@ -67,12 +67,12 @@ static const char * actrls_action_s[ ] = { EP(ACTRLS_POWER),EP(ACTRLS_VOLUP),EP(
static const char * TAG = "audio controls";
static actrls_config_t *json_config;
cJSON * control_profiles = NULL;
static actrls_t default_controls, current_controls;
static EXT_RAM_ATTR actrls_t default_controls, current_controls;
static actrls_hook_t *default_hook, *current_hook;
static bool default_raw_controls, current_raw_controls;
static actrls_ir_handler_t *default_ir_handler, *current_ir_handler;
static struct {
static EXT_RAM_ATTR struct {
bool long_state;
bool volume_lock;
TimerHandle_t timer;
@@ -137,10 +137,10 @@ esp_err_t actrls_init(const char *profile_name) {
int A = -1, B = -1, SW = -1, longpress = 0;
// parse config
if ((p = strcasestr(config, "A")) != NULL) A = atoi(strchr(p, '=') + 1);
if ((p = strcasestr(config, "B")) != NULL) B = atoi(strchr(p, '=') + 1);
if ((p = strcasestr(config, "SW")) != NULL) SW = atoi(strchr(p, '=') + 1);
if ((p = strcasestr(config, "knobonly")) != NULL) {
PARSE_PARAM(config, "A", '=', A);
PARSE_PARAM(config, "B", '=', B);
PARSE_PARAM(config, "SW", '=', SW);
if ((p = strcasestr(config, "knobonly"))) {
p = strchr(p, '=');
int double_press = p ? atoi(p + 1) : 350;
rotary.timer = xTimerCreate("knobTimer", double_press / portTICK_RATE_MS, pdFALSE, NULL, rotary_timer);

View File

@@ -79,13 +79,12 @@ void battery_svc_init(void) {
char *nvs_item = config_alloc_get_default(NVS_TYPE_STR, "bat_config", "n", 0);
if (nvs_item) {
char *p;
#ifndef CONFIG_BAT_LOCKED
if ((p = strcasestr(nvs_item, "channel")) != NULL) battery.channel = atoi(strchr(p, '=') + 1);
if ((p = strcasestr(nvs_item, "scale")) != NULL) battery.scale = atof(strchr(p, '=') + 1);
if ((p = strcasestr(nvs_item, "atten")) != NULL) battery.attenuation = atoi(strchr(p, '=') + 1);
PARSE_PARAM(nvs_item, "channel", '=', battery.channel);
PARSE_PARAM(nvs_item, "scale", '=', battery.scale);
PARSE_PARAM(nvs_item, "atten", '=', battery.attenuation);
#endif
if ((p = strcasestr(nvs_item, "cells")) != NULL) battery.cells = atof(strchr(p, '=') + 1);
PARSE_PARAM(nvs_item, "cells", '=', battery.cells);
free(nvs_item);
}

View File

@@ -21,16 +21,17 @@
#include "esp_task.h"
#include "driver/gpio.h"
#include "driver/rmt.h"
#include "gpio_exp.h"
#include "buttons.h"
#include "rotary_encoder.h"
#include "globdefs.h"
static const char * TAG = "buttons";
static int n_buttons = 0;
static EXT_RAM_ATTR int n_buttons;
#define BUTTON_STACK_SIZE 4096
#define MAX_BUTTONS 16
#define MAX_BUTTONS 32
#define DEBOUNCE 50
#define BUTTON_QUEUE_LEN 10
@@ -47,6 +48,7 @@ static EXT_RAM_ATTR struct button_s {
TimerHandle_t timer;
} buttons[MAX_BUTTONS];
// can't use EXT_RAM_ATTR for initialized structure
static struct {
int gpio, level;
struct button_s *button;
@@ -67,10 +69,11 @@ static EXT_RAM_ATTR struct {
infrared_handler handler;
} infrared;
static xQueueHandle button_evt_queue;
static QueueSetHandle_t common_queue_set;
static EXT_RAM_ATTR QueueHandle_t button_queue;
static EXT_RAM_ATTR QueueSetHandle_t common_queue_set;
static void buttons_task(void* arg);
static void buttons_handler(struct button_s *button, int level);
/****************************************************************************************
* Start task needed by button,s rotaty and infrared
@@ -86,40 +89,33 @@ static void common_task_init(void) {
}
/****************************************************************************************
* GPIO low-level handler
* GPIO low-level ISR handler
*/
static void IRAM_ATTR gpio_isr_handler(void* arg)
{
struct button_s *button = (struct button_s*) arg;
BaseType_t woken = pdFALSE;
if (xTimerGetPeriod(button->timer) > button->debounce / portTICK_RATE_MS) xTimerChangePeriodFromISR(button->timer, button->debounce / portTICK_RATE_MS, &woken); // does that restart the timer?
else xTimerResetFromISR(button->timer, &woken);
if (xTimerGetPeriod(button->timer) > pdMS_TO_TICKS(button->debounce)) {
if (button->gpio < GPIO_NUM_MAX) xTimerChangePeriodFromISR(button->timer, pdMS_TO_TICKS(button->debounce), &woken);
else xTimerChangePeriod(button->timer, pdMS_TO_TICKS(button->debounce), pdMS_TO_TICKS(10));
} else {
if (button->gpio < GPIO_NUM_MAX) xTimerResetFromISR(button->timer, &woken);
else xTimerReset(button->timer, portMAX_DELAY);
}
if (woken) portYIELD_FROM_ISR();
ESP_EARLY_LOGD(TAG, "INT gpio %u level %u", button->gpio, button->level);
}
/****************************************************************************************
* Buttons debounce/longpress timer
*/
static void buttons_timer( TimerHandle_t xTimer ) {
static void buttons_timer_handler( TimerHandle_t xTimer ) {
struct button_s *button = (struct button_s*) pvTimerGetTimerID (xTimer);
button->level = gpio_get_level(button->gpio);
if (button->shifter && button->shifter->type == button->shifter->level) button->shifter->shifting = true;
if (button->long_press && !button->long_timer && button->level == button->type) {
// detect a long press, so hold event generation
ESP_LOGD(TAG, "setting long timer gpio:%u level:%u", button->gpio, button->level);
xTimerChangePeriod(xTimer, button->long_press / portTICK_RATE_MS, 0);
button->long_timer = true;
} else {
// send a button pressed/released event (content is copied in queue)
ESP_LOGD(TAG, "sending event for gpio:%u level:%u", button->gpio, button->level);
// queue will have a copy of button's context
xQueueSend(button_evt_queue, button, 0);
button->long_timer = false;
}
// if this is an expanded GPIO, must give cache a chance
buttons_handler(button, gpio_exp_get_level(button->gpio, (button->debounce * 3) / 2, NULL));
}
/****************************************************************************************
@@ -133,11 +129,33 @@ static void buttons_polling( TimerHandle_t xTimer ) {
if (level != polled_gpio[i].level) {
polled_gpio[i].level = level;
buttons_timer(polled_gpio[i].button->timer);
buttons_handler(polled_gpio[i].button, level);
}
}
}
/****************************************************************************************
* Buttons timer handler for press/longpress
*/
static void buttons_handler(struct button_s *button, int level) {
button->level = level;
if (button->shifter && button->shifter->type == button->shifter->level) button->shifter->shifting = true;
if (button->long_press && !button->long_timer && button->level == button->type) {
// detect a long press, so hold event generation
ESP_LOGD(TAG, "setting long timer gpio:%u level:%u", button->gpio, button->level);
xTimerChangePeriod(button->timer, button->long_press / portTICK_RATE_MS, 0);
button->long_timer = true;
} else {
// send a button pressed/released event (content is copied in queue)
ESP_LOGD(TAG, "sending event for gpio:%u level:%u", button->gpio, button->level);
// queue will have a copy of button's context
xQueueSend(button_queue, button, 0);
button->long_timer = false;
}
}
/****************************************************************************************
* Tasks that calls the appropriate functions when buttons are pressed
*/
@@ -150,13 +168,13 @@ static void buttons_task(void* arg) {
// wait on button, rotary and infrared queues
if ((xActivatedMember = xQueueSelectFromSet( common_queue_set, portMAX_DELAY )) == NULL) continue;
if (xActivatedMember == button_evt_queue) {
if (xActivatedMember == button_queue) {
struct button_s button;
button_event_e event;
button_press_e press;
// received a button event
xQueueReceive(button_evt_queue, &button, 0);
xQueueReceive(button_queue, &button, 0);
event = (button.level == button.type) ? BUTTON_PRESSED : BUTTON_RELEASED;
@@ -175,18 +193,18 @@ static void buttons_task(void* arg) {
if (event == BUTTON_RELEASED) {
// early release of a long-press button, send press/release
if (!button.shifting) {
(*button.handler)(button.client, BUTTON_PRESSED, press, false);
(*button.handler)(button.client, BUTTON_RELEASED, press, false);
button.handler(button.client, BUTTON_PRESSED, press, false);
button.handler(button.client, BUTTON_RELEASED, press, false);
}
// button is a copy, so need to go to real context
button.self->shifting = false;
} else if (!button.shifting) {
// normal long press and not shifting so don't discard
(*button.handler)(button.client, BUTTON_PRESSED, press, true);
button.handler(button.client, BUTTON_PRESSED, press, true);
}
} else {
// normal press/release of a button or release of a long-press button
if (!button.shifting) (*button.handler)(button.client, event, press, button.long_press);
if (!button.shifting) button.handler(button.client, event, press, button.long_press);
// button is a copy, so need to go to real context
button.self->shifting = false;
}
@@ -195,12 +213,12 @@ static void buttons_task(void* arg) {
// received a rotary event
xQueueReceive(rotary.queue, &event, 0);
ESP_LOGD(TAG, "Event: position %d, direction %s", event.state.position,
event.state.direction ? (event.state.direction == ROTARY_ENCODER_DIRECTION_CLOCKWISE ? "CW" : "CCW") : "NOT_SET");
event.state.direction ? (event.state.direction == ROTARY_ENCODER_DIRECTION_CLOCKWISE ? "CW" : "CCW") : "NOT_SET");
rotary.handler(rotary.client, event.state.direction == ROTARY_ENCODER_DIRECTION_CLOCKWISE ?
ROTARY_RIGHT : ROTARY_LEFT, false);
ROTARY_RIGHT : ROTARY_LEFT, false);
} else {
// this is IR
infrared_receive(infrared.rb, infrared.handler);
@@ -224,9 +242,9 @@ void button_create(void *client, int gpio, int type, bool pull, int debounce, bu
ESP_LOGI(TAG, "Creating button using GPIO %u, type %u, pull-up/down %u, long press %u shifter %d", gpio, type, pull, long_press, shifter_gpio);
if (!n_buttons) {
button_evt_queue = xQueueCreate(BUTTON_QUEUE_LEN, sizeof(struct button_s));
button_queue = xQueueCreate(BUTTON_QUEUE_LEN, sizeof(struct button_s));
common_task_init();
xQueueAddToSet( button_evt_queue, common_queue_set );
xQueueAddToSet( button_queue, common_queue_set );
}
// just in case this structure is allocated in a future release
@@ -240,7 +258,7 @@ void button_create(void *client, int gpio, int type, bool pull, int debounce, bu
buttons[n_buttons].long_press = long_press;
buttons[n_buttons].shifter_gpio = shifter_gpio;
buttons[n_buttons].type = type;
buttons[n_buttons].timer = xTimerCreate("buttonTimer", buttons[n_buttons].debounce / portTICK_RATE_MS, pdFALSE, (void *) &buttons[n_buttons], buttons_timer);
buttons[n_buttons].timer = xTimerCreate("buttonTimer", buttons[n_buttons].debounce / portTICK_RATE_MS, pdFALSE, (void *) &buttons[n_buttons], buttons_timer_handler);
buttons[n_buttons].self = buttons + n_buttons;
for (int i = 0; i < n_buttons; i++) {
@@ -257,24 +275,21 @@ void button_create(void *client, int gpio, int type, bool pull, int debounce, bu
}
}
gpio_pad_select_gpio(gpio);
gpio_set_direction(gpio, GPIO_MODE_INPUT);
// we need any edge detection
gpio_set_intr_type(gpio, GPIO_INTR_ANYEDGE);
gpio_pad_select_gpio_x(gpio);
gpio_set_direction_x(gpio, GPIO_MODE_INPUT);
// do we need pullup or pulldown
if (pull) {
if (GPIO_IS_VALID_OUTPUT_GPIO(gpio)) {
if (type == BUTTON_LOW) gpio_set_pull_mode(gpio, GPIO_PULLUP_ONLY);
else gpio_set_pull_mode(gpio, GPIO_PULLDOWN_ONLY);
if (GPIO_IS_VALID_OUTPUT_GPIO(gpio) || gpio >= GPIO_NUM_MAX) {
if (type == BUTTON_LOW) gpio_set_pull_mode_x(gpio, GPIO_PULLUP_ONLY);
else gpio_set_pull_mode_x(gpio, GPIO_PULLDOWN_ONLY);
} else {
ESP_LOGW(TAG, "cannot set pull up/down for gpio %u", gpio);
}
}
// and initialize level ...
buttons[n_buttons].level = gpio_get_level(gpio);
buttons[n_buttons].level = gpio_get_level_x(gpio);
// nasty ESP32 bug: fire-up constantly INT on GPIO 36/39 if ADC1, AMP, Hall used which WiFi does when PS is activated
for (int i = 0; polled_gpio[i].gpio != -1; i++) if (polled_gpio[i].gpio == gpio) {
@@ -282,19 +297,21 @@ void button_create(void *client, int gpio, int type, bool pull, int debounce, bu
polled_timer = xTimerCreate("buttonsPolling", 100 / portTICK_RATE_MS, pdTRUE, polled_gpio, buttons_polling);
xTimerStart(polled_timer, portMAX_DELAY);
}
polled_gpio[i].button = buttons + n_buttons;
polled_gpio[i].level = gpio_get_level(gpio);
ESP_LOGW(TAG, "creating polled gpio %u, level %u", gpio, polled_gpio[i].level);
gpio = -1;
break;
}
// only create timers and ISR is this is not a polled gpio
// only create ISR if this is not a polled gpio
if (gpio != -1) {
gpio_isr_handler_add(gpio, gpio_isr_handler, (void*) &buttons[n_buttons]);
gpio_intr_enable(gpio);
// we need any edge detection
gpio_set_intr_type_x(gpio, GPIO_INTR_ANYEDGE);
gpio_isr_handler_add_x(gpio, gpio_isr_handler, buttons + n_buttons);
gpio_intr_enable_x(gpio);
}
n_buttons++;
@@ -362,7 +379,7 @@ void *button_remap(void *client, int gpio, button_handler handler, int long_pres
}
/****************************************************************************************
* Create rotary encoder
* Rotary encoder handler
*/
static void rotary_button_handler(void *id, button_event_e event, button_press_e mode, bool long_press) {
ESP_LOGI(TAG, "Rotary push-button %d", event);

View File

@@ -21,13 +21,3 @@ typedef struct {
int timer, base_channel, max;
} pwm_system_t;
extern pwm_system_t pwm_system;
#ifdef CONFIG_SQUEEZEAMP
#define ADAC dac_tas57xx
#elif defined(CONFIG_A1S)
#define ADAC dac_a1s
#else
#define ADAC dac_external
#endif
void * malloc_init_external(size_t sz);
void * clone_obj_psram(void * source, size_t source_sz);
char * strdup_psram(const char * source);

View File

@@ -0,0 +1,738 @@
/* GDS Example
This example code is in the Public Domain (or CC0 licensed, at your option.)
Unless required by applicable law or agreed to in writing, this
software is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.
*/
#include <string.h>
#include <stdlib.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/timers.h"
#include "freertos/queue.h"
#include "esp_task.h"
#include "esp_log.h"
#include "driver/gpio.h"
#include "driver/i2c.h"
#include "driver/spi_master.h"
#include "gpio_exp.h"
#define GPIO_EXP_INTR 0x100
#define GPIO_EXP_WRITE 0x200
/*
shadow register is both output and input, so we assume that reading to the
ports also reads the value set on output
*/
typedef struct gpio_exp_s {
uint32_t first, last;
int intr;
bool intr_pending;
struct {
struct gpio_exp_phy_s phy;
spi_device_handle_t spi_handle;
};
uint32_t shadow, pending;
TickType_t age;
SemaphoreHandle_t mutex;
uint32_t r_mask, w_mask;
uint32_t pullup, pulldown;
struct gpio_exp_isr_s {
gpio_isr_t handler;
void *arg;
TimerHandle_t timer;
} isr[32];
struct gpio_exp_model_s const *model;
} gpio_exp_t;
typedef struct {
enum { ASYNC_WRITE } type;
int gpio;
int level;
gpio_exp_t *expander;
} queue_request_t;
static const char TAG[] = "gpio expander";
static void IRAM_ATTR intr_isr_handler(void* arg);
static gpio_exp_t* find_expander(gpio_exp_t *expander, int *gpio);
static void pca9535_set_direction(gpio_exp_t* self);
static uint32_t pca9535_read(gpio_exp_t* self);
static void pca9535_write(gpio_exp_t* self);
static uint32_t pca85xx_read(gpio_exp_t* self);
static void pca85xx_write(gpio_exp_t* self);
static esp_err_t mcp23017_init(gpio_exp_t* self);
static void mcp23017_set_pull_mode(gpio_exp_t* self);
static void mcp23017_set_direction(gpio_exp_t* self);
static uint32_t mcp23017_read(gpio_exp_t* self);
static void mcp23017_write(gpio_exp_t* self);
static esp_err_t mcp23s17_init(gpio_exp_t* self);
static void mcp23s17_set_pull_mode(gpio_exp_t* self);
static void mcp23s17_set_direction(gpio_exp_t* self);
static uint32_t mcp23s17_read(gpio_exp_t* self);
static void mcp23s17_write(gpio_exp_t* self);
static void service_handler(void *arg);
static void debounce_handler( TimerHandle_t xTimer );
static esp_err_t i2c_write(uint8_t port, uint8_t addr, uint8_t reg, uint32_t data, int len);
static uint32_t i2c_read(uint8_t port, uint8_t addr, uint8_t reg, int len);
static spi_device_handle_t spi_config(struct gpio_exp_phy_s *phy);
static esp_err_t spi_write(spi_device_handle_t handle, uint8_t addr, uint8_t reg, uint32_t data, int len);
static uint32_t spi_read(spi_device_handle_t handle, uint8_t addr, uint8_t reg, int len);
static const struct gpio_exp_model_s {
char *model;
gpio_int_type_t trigger;
esp_err_t (*init)(gpio_exp_t* self);
uint32_t (*read)(gpio_exp_t* self);
void (*write)(gpio_exp_t* self);
void (*set_direction)(gpio_exp_t* self);
void (*set_pull_mode)(gpio_exp_t* self);
} registered[] = {
{ .model = "pca9535",
.trigger = GPIO_INTR_NEGEDGE,
.set_direction = pca9535_set_direction,
.read = pca9535_read,
.write = pca9535_write, },
{ .model = "pca85xx",
.trigger = GPIO_INTR_NEGEDGE,
.read = pca85xx_read,
.write = pca85xx_write, },
{ .model = "mcp23017",
.trigger = GPIO_INTR_NEGEDGE,
.init = mcp23017_init,
.set_direction = mcp23017_set_direction,
.set_pull_mode = mcp23017_set_pull_mode,
.read = mcp23017_read,
.write = mcp23017_write, },
{ .model = "mcp23s17",
.trigger = GPIO_INTR_NEGEDGE,
.init = mcp23s17_init,
.set_direction = mcp23s17_set_direction,
.set_pull_mode = mcp23s17_set_pull_mode,
.read = mcp23s17_read,
.write = mcp23s17_write, },
};
static EXT_RAM_ATTR uint8_t n_expanders;
static EXT_RAM_ATTR QueueHandle_t message_queue;
static EXT_RAM_ATTR gpio_exp_t expanders[4];
static EXT_RAM_ATTR TaskHandle_t service_task;
/******************************************************************************
* Retrieve base from an expander reference
*/
uint32_t gpio_exp_get_base(gpio_exp_t *expander) {
return expander->first;
}
/******************************************************************************
* Retrieve reference from a GPIO
*/
gpio_exp_t *gpio_exp_get_expander(int gpio) {
int _gpio = gpio;
return find_expander(NULL, &_gpio);
}
/******************************************************************************
* Create an I2C expander
*/
gpio_exp_t* gpio_exp_create(const gpio_exp_config_t *config) {
gpio_exp_t *expander = expanders + n_expanders;
if (config->base < GPIO_NUM_MAX || n_expanders == sizeof(expanders)/sizeof(gpio_exp_t)) {
ESP_LOGE(TAG, "Base %d GPIO must be at least %d for %s or too many expanders %d", config->base, GPIO_NUM_MAX, config->model, n_expanders);
return NULL;
}
// See if we know that model (expanders is zero-initialized)
for (int i = 0; !expander->model && i < sizeof(registered)/sizeof(struct gpio_exp_model_s); i++) {
if (strcasestr(config->model, registered[i].model)) expander->model = registered + i;
}
// well... try again
if (!expander->model) {
ESP_LOGE(TAG, "Unknown GPIO expansion chip %s", config->model);
return NULL;
}
memcpy(&expander->phy, &config->phy, sizeof(struct gpio_exp_phy_s));
// try to initialize the expander if required
if (expander->model->init && expander->model->init(expander) != ESP_OK) {
ESP_LOGE(TAG, "Cannot create GPIO expander %s, check i2c/spi configuration", config->model);
return NULL;
}
n_expanders++;
expander->first = config->base;
expander->last = config->base + config->count - 1;
expander->intr = config->intr;
expander->mutex = xSemaphoreCreateMutex();
// create a task to handle asynchronous requests (only write at this time)
if (!message_queue) {
// we allocate TCB but stack is static to avoid SPIRAM fragmentation
StaticTask_t* xTaskBuffer = (StaticTask_t*) heap_caps_malloc(sizeof(StaticTask_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
static EXT_RAM_ATTR StackType_t xStack[4*1024] __attribute__ ((aligned (4)));
message_queue = xQueueCreate(4, sizeof(queue_request_t));
service_task = xTaskCreateStatic(service_handler, "gpio_expander", sizeof(xStack), NULL, ESP_TASK_PRIO_MIN + 1, xStack, xTaskBuffer);
}
// set interrupt if possible
if (config->intr >= 0) {
gpio_pad_select_gpio(config->intr);
gpio_set_direction(config->intr, GPIO_MODE_INPUT);
switch (expander->model->trigger) {
case GPIO_INTR_NEGEDGE:
case GPIO_INTR_LOW_LEVEL:
gpio_set_pull_mode(config->intr, GPIO_PULLUP_ONLY);
break;
case GPIO_INTR_POSEDGE:
case GPIO_INTR_HIGH_LEVEL:
gpio_set_pull_mode(config->intr, GPIO_PULLDOWN_ONLY);
break;
default:
gpio_set_pull_mode(config->intr, GPIO_PULLUP_PULLDOWN);
break;
}
gpio_set_intr_type(config->intr, expander->model->trigger);
gpio_isr_handler_add(config->intr, intr_isr_handler, expander);
gpio_intr_enable(config->intr);
}
ESP_LOGI(TAG, "Create GPIO expander %s at base %u with INT %d at @%x on port/host %d/%d", config->model, config->base, config->intr, config->phy.addr, config->phy.port, config->phy.host);
return expander;
}
/******************************************************************************
* Add ISR handler for a GPIO
*/
esp_err_t gpio_exp_isr_handler_add(int gpio, gpio_isr_t isr_handler, uint32_t debounce, void *arg, struct gpio_exp_s *expander) {
if (gpio < GPIO_NUM_MAX && !expander) return gpio_isr_handler_add(gpio, isr_handler, arg);
if ((expander = find_expander(expander, &gpio)) == NULL) return ESP_ERR_INVALID_ARG;
expander->isr[gpio].handler = isr_handler;
expander->isr[gpio].arg = arg;
if (debounce) expander->isr[gpio].timer = xTimerCreate("gpioExpDebounce", pdMS_TO_TICKS(debounce),
pdFALSE, expander->isr + gpio, debounce_handler );
return ESP_OK;
}
/******************************************************************************
* Remove ISR handler for a GPIO
*/
esp_err_t gpio_exp_isr_handler_remove(int gpio, struct gpio_exp_s *expander) {
if (gpio < GPIO_NUM_MAX && !expander) return gpio_isr_handler_remove(gpio);
if ((expander = find_expander(expander, &gpio)) == NULL) return ESP_ERR_INVALID_ARG;
if (expander->isr[gpio].timer) xTimerDelete(expander->isr[gpio].timer, portMAX_DELAY);
memset(expander->isr + gpio, 0, sizeof(struct gpio_exp_isr_s));
return ESP_OK;
}
/******************************************************************************
* Set GPIO direction
*/
esp_err_t gpio_exp_set_direction(int gpio, gpio_mode_t mode, gpio_exp_t *expander) {
if (gpio < GPIO_NUM_MAX && !expander) return gpio_set_direction(gpio, mode);
if ((expander = find_expander(expander, &gpio)) == NULL) return ESP_ERR_INVALID_ARG;
xSemaphoreTake(expander->mutex, pdMS_TO_TICKS(portMAX_DELAY));
if (mode == GPIO_MODE_INPUT) {
expander->r_mask |= 1 << gpio;
expander->shadow = expander->model->read(expander);
expander->age = ~xTaskGetTickCount();
} else {
expander->w_mask |= 1 << gpio;
}
if (expander->r_mask & expander->w_mask) {
xSemaphoreGive(expander->mutex);
ESP_LOGE(TAG, "GPIO %d on expander base %u can't be r/w", gpio, expander->first);
return ESP_ERR_INVALID_ARG;
}
// most expanders want unconfigured GPIO to be set to output
if (expander->model->set_direction) expander->model->set_direction(expander);
xSemaphoreGive(expander->mutex);
return ESP_OK;
}
/******************************************************************************
* Get GPIO level with cache
*/
int gpio_exp_get_level(int gpio, int age, gpio_exp_t *expander) {
if (gpio < GPIO_NUM_MAX && !expander) return gpio_get_level(gpio);
if ((expander = find_expander(expander, &gpio)) == NULL) return -1;
uint32_t now = xTaskGetTickCount();
// return last thing we had if we can't get the mutex
if (xSemaphoreTake(expander->mutex, pdMS_TO_TICKS(50)) == pdFALSE) {
ESP_LOGW(TAG, "Can't get mutex for GPIO %d", expander->first + gpio);
return (expander->shadow >> gpio) & 0x01;
}
// re-read the expander if data is too old
if (age >= 0 && now - expander->age >= pdMS_TO_TICKS(age)) {
uint32_t value = expander->model->read(expander);
expander->pending |= (expander->shadow ^ value) & expander->r_mask;
expander->shadow = value;
expander->age = now;
}
// clear pending bit
expander->pending &= ~(1 << gpio);
xSemaphoreGive(expander->mutex);
ESP_LOGD(TAG, "Get level for GPIO %u => read %x", expander->first + gpio, expander->shadow);
return (expander->shadow >> gpio) & 0x01;
}
/******************************************************************************
* Set GPIO level with cache
*/
esp_err_t gpio_exp_set_level(int gpio, int level, bool direct, gpio_exp_t *expander) {
if (gpio < GPIO_NUM_MAX && !expander) return gpio_set_level(gpio, level);
if ((expander = find_expander(expander, &gpio)) == NULL) return ESP_ERR_INVALID_ARG;
uint32_t mask = 1 << gpio;
// very limited risk with lack of semaphore here
if ((expander->w_mask & mask) == 0) {
ESP_LOGW(TAG, "GPIO %d is not set for output", expander->first + gpio);
return ESP_ERR_INVALID_ARG;
}
if (direct) {
xSemaphoreTake(expander->mutex, pdMS_TO_TICKS(portMAX_DELAY));
level = level ? mask : 0;
mask &= expander->shadow;
// only write if shadow not up to date
if ((mask ^ level) && expander->model->write) {
expander->shadow = (expander->shadow & ~(mask | level)) | level;
expander->model->write(expander);
}
xSemaphoreGive(expander->mutex);
ESP_LOGD(TAG, "Set level %x for GPIO %u => wrote %x", level, expander->first + gpio, expander->shadow);
} else {
queue_request_t request = { .gpio = gpio, .level = level, .type = ASYNC_WRITE, .expander = expander };
if (xQueueSend(message_queue, &request, 0) == pdFALSE) return ESP_ERR_INVALID_RESPONSE;
// notify service task that will write it when it can
xTaskNotify(service_task, GPIO_EXP_WRITE, eSetValueWithoutOverwrite);
}
return ESP_OK;
}
/******************************************************************************
* Set GPIO pullmode
*/
esp_err_t gpio_exp_set_pull_mode(int gpio, gpio_pull_mode_t mode, gpio_exp_t *expander) {
if (gpio < GPIO_NUM_MAX && !expander) return gpio_set_pull_mode(gpio, mode);
if ((expander = find_expander(expander, &gpio)) != NULL && expander->model->set_pull_mode) {
expander->pullup &= ~(1 << gpio);
expander->pulldown &= ~(1 << gpio);
if (mode == GPIO_PULLUP_ONLY || mode == GPIO_PULLUP_PULLDOWN) expander->pullup |= 1 << gpio;
if (mode == GPIO_PULLDOWN_ONLY || mode == GPIO_PULLUP_PULLDOWN) expander->pulldown |= 1 << gpio;
expander->model->set_pull_mode(expander);
return ESP_OK;
}
return ESP_ERR_INVALID_ARG;
}
/******************************************************************************
* Wrapper function
*/
esp_err_t gpio_set_pull_mode_x(int gpio, gpio_pull_mode_t mode) {
if (gpio < GPIO_NUM_MAX) return gpio_set_pull_mode(gpio, mode);
return gpio_exp_set_pull_mode(gpio, mode, NULL);
}
esp_err_t gpio_set_direction_x(int gpio, gpio_mode_t mode) {
if (gpio < GPIO_NUM_MAX) return gpio_set_direction(gpio, mode);
return gpio_exp_set_direction(gpio, mode, NULL);
}
int gpio_get_level_x(int gpio) {
if (gpio < GPIO_NUM_MAX) return gpio_get_level(gpio);
return gpio_exp_get_level(gpio, 10, NULL);
}
esp_err_t gpio_set_level_x(int gpio, int level) {
if (gpio < GPIO_NUM_MAX) return gpio_set_level(gpio, level);
return gpio_exp_set_level(gpio, level, false, NULL);
}
esp_err_t gpio_isr_handler_add_x(int gpio, gpio_isr_t isr_handler, void* args) {
if (gpio < GPIO_NUM_MAX) return gpio_isr_handler_add(gpio, isr_handler, args);
return gpio_exp_isr_handler_add(gpio, isr_handler, 0, args, NULL);
}
esp_err_t gpio_isr_handler_remove_x(int gpio) {
if (gpio < GPIO_NUM_MAX) return gpio_isr_handler_remove(gpio);
return gpio_exp_isr_handler_remove(gpio, NULL);
}
/****************************************************************************************
* INTR low-level handler
*/
static void IRAM_ATTR intr_isr_handler(void* arg) {
gpio_exp_t *self = (gpio_exp_t*) arg;
BaseType_t woken = pdFALSE;
// activate all, including ourselves
for (int i = 0; i < n_expanders; i++) if (expanders[i].intr == self->intr) expanders[i].intr_pending = true;
xTaskNotifyFromISR(service_task, GPIO_EXP_INTR, eSetValueWithOverwrite, &woken);
if (woken) portYIELD_FROM_ISR();
ESP_EARLY_LOGD(TAG, "INTR for expander base %d", gpio_exp_get_base(self));
}
/****************************************************************************************
* INTR debounce handler
*/
static void debounce_handler( TimerHandle_t xTimer ) {
struct gpio_exp_isr_s *isr = (struct gpio_exp_isr_s*) pvTimerGetTimerID (xTimer);
isr->handler(isr->arg);
}
/****************************************************************************************
* Service task
*/
void service_handler(void *arg) {
while (1) {
queue_request_t request;
uint32_t notif = ulTaskNotifyTake(pdTRUE, portMAX_DELAY);
// we have been notified of an interrupt
if (notif == GPIO_EXP_INTR) {
/* If we want a smarter bitmap of expanders with a pending interrupt
we'll have to disable interrupts while clearing that bitmap. For
now, a loop will do */
for (int i = 0; i < n_expanders; i++) {
gpio_exp_t *expander = expanders + i;
// no interrupt for that gpio
if (expander->intr < 0) continue;
// only check expander with pending interrupts
gpio_intr_disable(expander->intr);
if (!expander->intr_pending) {
gpio_intr_enable(expander->intr);
continue;
}
expander->intr_pending = false;
gpio_intr_enable(expander->intr);
xSemaphoreTake(expander->mutex, pdMS_TO_TICKS(50));
// read GPIOs and clear all pending status
uint32_t value = expander->model->read(expander);
uint32_t pending = expander->pending | ((expander->shadow ^ value) & expander->r_mask);
expander->shadow = value;
expander->pending = 0;
expander->age = xTaskGetTickCount();
xSemaphoreGive(expander->mutex);
ESP_LOGD(TAG, "Handling GPIO %d reads 0x%04x and has 0x%04x pending", expander->first, expander->shadow, pending);
for (int gpio = 31, clz; pending; pending <<= (clz + 1)) {
clz = __builtin_clz(pending);
gpio -= clz;
if (expander->isr[gpio].timer) xTimerReset(expander->isr[gpio].timer, 1); // todo 0
else if (expander->isr[gpio].handler) expander->isr[gpio].handler(expander->isr[gpio].arg);
}
}
}
// check if we have some other pending requests
while (xQueueReceive(message_queue, &request, 0) == pdTRUE) {
esp_err_t err = gpio_exp_set_level(request.gpio, request.level, true, request.expander);
if (err != ESP_OK) ESP_LOGW(TAG, "Can't execute async GPIO %d write request (%d)", request.gpio, err);
}
}
}
/****************************************************************************************
* Find the expander related to base
*/
static gpio_exp_t* find_expander(gpio_exp_t *expander, int *gpio) {
// a mutex would be better, but risk is so small...
for (int i = 0; !expander && i < n_expanders; i++) {
if (*gpio >= expanders[i].first && *gpio <= expanders[i].last) expander = expanders + i;
}
// normalize GPIO number
if (expander && *gpio >= expander->first) *gpio -= expander->first;
return expander;
}
/****************************************************************************************
DRIVERS
****************************************************************************************/
/****************************************************************************************
* PCA9535 family : direction, read and write
*/
static void pca9535_set_direction(gpio_exp_t* self) {
i2c_write(self->phy.port, self->phy.addr, 0x06, self->r_mask, 2);
}
static uint32_t pca9535_read(gpio_exp_t* self) {
return i2c_read(self->phy.port, self->phy.addr, 0x00, 2);
}
static void pca9535_write(gpio_exp_t* self) {
i2c_write(self->phy.port, self->phy.addr, 0x02, self->shadow, 2);
}
/****************************************************************************************
* PCA85xx family : read and write
*/
static uint32_t pca85xx_read(gpio_exp_t* self) {
// must return the full set of pins, not just inputs
uint32_t data = i2c_read(self->phy.port, self->phy.addr, 0xff, 2);
return (data & self->r_mask) | (self->shadow & ~self->r_mask);
}
static void pca85xx_write(gpio_exp_t* self) {
/*
There is no good option with this chip: normally, unused pin should be set to input
to avoid any conflict but then they float and create tons of suprious. So option 1 is
to le tthem float and option 2 is to set them as output to 0.
In addition, setting an output pin to 1 equals is making it an input and if this is
use to short a led (e.g.) instead of being the sink, the it generates a spurious
*/
// option 1
// i2c_write(self->phy.port, self->phy.addr, 0xff, (self->shadow & self->w_mask) | ~self->w_mask, 2);
// option 2
i2c_write(self->phy.port, self->phy.addr, 0xff, (self->shadow & self->w_mask) | self->r_mask, 2);
}
/****************************************************************************************
* MCP23017 family : init, direction, read and write
*/
static esp_err_t mcp23017_init(gpio_exp_t* self) {
/*
0111 x10x = same bank, mirrot single int, no sequentµial, open drain, active low
not sure about this funny change of mapping of the control register itself, really?
*/
esp_err_t err = i2c_write(self->phy.port, self->phy.addr, 0x05, 0x74, 1);
err |= i2c_write(self->phy.port, self->phy.addr, 0x0a, 0x74, 1);
// no interrupt on comparison or on change
err |= i2c_write(self->phy.port, self->phy.addr, 0x04, 0x00, 2);
err |= i2c_write(self->phy.port, self->phy.addr, 0x08, 0x00, 2);
return err;
}
static void mcp23017_set_direction(gpio_exp_t* self) {
// default to input and set real input to generate interrupt
i2c_write(self->phy.port, self->phy.addr, 0x00, ~self->w_mask, 2);
i2c_write(self->phy.port, self->phy.addr, 0x04, self->r_mask, 2);
}
static void mcp23017_set_pull_mode(gpio_exp_t* self) {
i2c_write(self->phy.port, self->phy.addr, 0x0c, self->pullup, 2);
}
static uint32_t mcp23017_read(gpio_exp_t* self) {
// read the pins value, not the stored one @interrupt
return i2c_read(self->phy.port, self->phy.addr, 0x12, 2);
}
static void mcp23017_write(gpio_exp_t* self) {
i2c_write(self->phy.port, self->phy.addr, 0x12, self->shadow, 2);
}
/****************************************************************************************
* MCP23s17 family : init, direction, read and write
*/
static esp_err_t mcp23s17_init(gpio_exp_t* self) {
if ((self->spi_handle = spi_config(&self->phy)) == NULL) return ESP_ERR_INVALID_ARG;
/*
0111 x10x = same bank, mirrot single int, no sequentµial, open drain, active low
not sure about this funny change of mapping of the control register itself, really?
*/
esp_err_t err = spi_write(self->spi_handle, self->phy.addr, 0x05, 0x74, 1);
err |= spi_write(self->spi_handle, self->phy.addr, 0x0a, 0x74, 1);
// no interrupt on comparison or on change
err |= spi_write(self->spi_handle, self->phy.addr, 0x04, 0x00, 2);
err |= spi_write(self->spi_handle, self->phy.addr, 0x08, 0x00, 2);
return err;
}
static void mcp23s17_set_direction(gpio_exp_t* self) {
// default to input and set real input to generate interrupt
spi_write(self->spi_handle, self->phy.addr, 0x00, ~self->w_mask, 2);
spi_write(self->spi_handle, self->phy.addr, 0x04, self->r_mask, 2);
}
static void mcp23s17_set_pull_mode(gpio_exp_t* self) {
spi_write(self->spi_handle, self->phy.addr, 0x0c, self->pullup, 2);
}
static uint32_t mcp23s17_read(gpio_exp_t* self) {
// read the pins value, not the stored one @interrupt
return spi_read(self->spi_handle, self->phy.addr, 0x12, 2);
}
static void mcp23s17_write(gpio_exp_t* self) {
spi_write(self->spi_handle, self->phy.addr, 0x12, self->shadow, 2);
}
/***************************************************************************************
I2C low level
***************************************************************************************/
/****************************************************************************************
* I2C write up to 32 bits
*/
static esp_err_t i2c_write(uint8_t port, uint8_t addr, uint8_t reg, uint32_t data, int len) {
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, (addr << 1) | I2C_MASTER_WRITE, I2C_MASTER_NACK);
if (reg != 0xff) i2c_master_write_byte(cmd, reg, I2C_MASTER_NACK);
// works with our endianness
if (len > 1) i2c_master_write(cmd, (uint8_t*) &data, len, I2C_MASTER_NACK);
else i2c_master_write_byte(cmd, data, I2C_MASTER_NACK);
i2c_master_stop(cmd);
esp_err_t ret = i2c_master_cmd_begin(port, cmd, 100 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
if (ret != ESP_OK) {
ESP_LOGW(TAG, "I2C write failed");
}
return ret;
}
/****************************************************************************************
* I2C read up to 32 bits
*/
static uint32_t i2c_read(uint8_t port, uint8_t addr, uint8_t reg, int len) {
uint32_t data = 0;
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
// when using a register, write it's value then the device address again
if (reg != 0xff) {
i2c_master_write_byte(cmd, (addr << 1) | I2C_MASTER_WRITE, I2C_MASTER_NACK);
i2c_master_write_byte(cmd, reg, I2C_MASTER_NACK);
i2c_master_start(cmd);
i2c_master_write_byte(cmd, (addr << 1) | I2C_MASTER_READ, I2C_MASTER_NACK);
} else {
i2c_master_write_byte(cmd, (addr << 1) | I2C_MASTER_READ, I2C_MASTER_NACK);
}
// works with our endianness
if (len > 1) i2c_master_read(cmd, (uint8_t*) &data, len, I2C_MASTER_LAST_NACK);
else i2c_master_read_byte(cmd, (uint8_t*) &data, I2C_MASTER_NACK);
i2c_master_stop(cmd);
esp_err_t ret = i2c_master_cmd_begin(port, cmd, 100 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
if (ret != ESP_OK) {
ESP_LOGW(TAG, "I2C read failed");
}
return data;
}
/***************************************************************************************
SPI low level
***************************************************************************************/
/****************************************************************************************
* SPI device addition
*/
static spi_device_handle_t spi_config(struct gpio_exp_phy_s *phy) {
spi_device_interface_config_t config = { };
spi_device_handle_t handle = NULL;
config.command_bits = config.address_bits = 8;
config.clock_speed_hz = phy->speed ? phy->speed : SPI_MASTER_FREQ_8M;
config.spics_io_num = phy->cs_pin;
config.queue_size = 1;
config.flags = SPI_DEVICE_NO_DUMMY;
spi_bus_add_device( phy->host, &config, &handle );
ESP_LOGI(TAG, "SPI expander initialized on host:%d with cs:%d and speed:%dHz", phy->host, phy->cs_pin, config.clock_speed_hz);
return handle;
}
/****************************************************************************************
* SPI write up to 32 bits
*/
static esp_err_t spi_write(spi_device_handle_t handle, uint8_t addr, uint8_t reg, uint32_t data, int len) {
spi_transaction_t transaction = { };
// rx_buffer is NULL, nothing to receive
transaction.flags = SPI_TRANS_USE_TXDATA;
transaction.cmd = addr << 1;
transaction.addr = reg;
transaction.tx_data[0] = data; transaction.tx_data[1] = data >> 8;
transaction.length = len * 8;
// only do polling as we don't have contention on SPI (otherwise DMA for transfers > 16 bytes)
return spi_device_polling_transmit(handle, &transaction);
}
/****************************************************************************************
* SPI read up to 32 bits
*/
static uint32_t spi_read(spi_device_handle_t handle, uint8_t addr, uint8_t reg, int len) {
spi_transaction_t *transaction = heap_caps_calloc(1, sizeof(spi_transaction_t), MALLOC_CAP_DMA);
// tx_buffer is NULL, nothing to transmit except cmd/addr
transaction->flags = SPI_TRANS_USE_RXDATA;
transaction->cmd = (addr << 1) | 0x01;
transaction->addr = reg;
transaction->length = len * 8;
// only do polling as we don't have contention on SPI (otherwise DMA for transfers > 16 bytes)
spi_device_polling_transmit(handle, transaction);
uint32_t data = *(uint32_t*) transaction->rx_data;
free(transaction);
return data;
}

View File

@@ -0,0 +1,61 @@
/* GDS Example
This example code is in the Public Domain (or CC0 licensed, at your option.)
Unless required by applicable law or agreed to in writing, this
software is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.
*/
#pragma once
#include <stdint.h>
#include "freertos/FreeRTOS.h"
#include "driver/gpio.h"
struct gpio_exp_s;
typedef struct {
char model[32];
int intr;
uint8_t count;
uint32_t base;
struct gpio_exp_phy_s {
uint8_t addr;
struct { // for I2C
uint8_t port;
};
struct { // for SPI
uint32_t speed;
uint8_t host;
uint8_t cs_pin;
};
} phy;
} gpio_exp_config_t;
// set <intr> to -1 and <queue> to NULL if there is no interrupt
struct gpio_exp_s* gpio_exp_create(const gpio_exp_config_t *config);
uint32_t gpio_exp_get_base(struct gpio_exp_s *expander);
struct gpio_exp_s* gpio_exp_get_expander(int gpio);
#define gpio_is_expanded(gpio) (gpio < GPIO_NUM_MAX)
/*
For all functions below when <expander> is provided, GPIO's can be numbered from 0. If <expander>
is NULL, then GPIO must start from base OR be on-chip
*/
esp_err_t gpio_exp_set_direction(int gpio, gpio_mode_t mode, struct gpio_exp_s *expander);
esp_err_t gpio_exp_set_pull_mode(int gpio, gpio_pull_mode_t mode, struct gpio_exp_s *expander);
int gpio_exp_get_level(int gpio, int age, struct gpio_exp_s *expander);
esp_err_t gpio_exp_set_level(int gpio, int level, bool direct, struct gpio_exp_s *expander);
esp_err_t gpio_exp_isr_handler_add(int gpio, gpio_isr_t isr, uint32_t debounce, void *arg, struct gpio_exp_s *expander);
esp_err_t gpio_exp_isr_handler_remove(int gpio, struct gpio_exp_s *expander);
// unified function to use either built-in or expanded GPIO
esp_err_t gpio_set_direction_x(int gpio, gpio_mode_t mode);
esp_err_t gpio_set_pull_mode_x(int gpio, gpio_pull_mode_t mode);
int gpio_get_level_x(int gpio);
esp_err_t gpio_set_level_x(int gpio, int level);
esp_err_t gpio_isr_handler_add_x(int gpio, gpio_isr_t isr_handler, void* args);
esp_err_t gpio_isr_handler_remove_x(int gpio);
#define gpio_set_intr_type_x(gpio, type) do { if (gpio < GPIO_NUM_MAX) gpio_set_intr_type(gpio, type); } while (0)
#define gpio_intr_enable_x(gpio) do { if (gpio < GPIO_NUM_MAX) gpio_intr_enable(gpio); } while (0)
#define gpio_pad_select_gpio_x(gpio) do { if (gpio < GPIO_NUM_MAX) gpio_pad_select_gpio(gpio); } while (0)

View File

@@ -19,6 +19,7 @@
#include "driver/gpio.h"
#include "driver/ledc.h"
#include "platform_config.h"
#include "gpio_exp.h"
#include "led.h"
#include "globdefs.h"
#include "accessors.h"
@@ -40,7 +41,8 @@ static EXT_RAM_ATTR struct led_s {
TimerHandle_t timer;
} leds[MAX_LED];
static EXT_RAM_ATTR struct {
// can't use EXT_RAM_ATTR for initialized structure
static struct {
int gpio;
int active;
int pwm;
@@ -53,7 +55,7 @@ static int led_max = 2;
*
*/
static void set_level(struct led_s *led, bool on) {
if (led->pwm < 0) gpio_set_level(led->gpio, on ? led->onstate : !led->onstate);
if (led->pwm < 0 || led->gpio >= GPIO_NUM_MAX) gpio_set_level_x(led->gpio, on ? led->onstate : !led->onstate);
else {
ledc_set_duty(LEDC_HIGH_SPEED_MODE, led->channel, on ? led->pwm : (led->onstate ? 0 : pwm_system.max));
ledc_update_duty(LEDC_HIGH_SPEED_MODE, led->channel);
@@ -179,9 +181,9 @@ bool led_config(int idx, gpio_num_t gpio, int onstate, int pwm) {
leds[idx].onstate = onstate;
leds[idx].pwm = -1;
if (pwm < 0) {
gpio_pad_select_gpio(gpio);
gpio_set_direction(gpio, GPIO_MODE_OUTPUT);
if (pwm < 0 || gpio >= GPIO_NUM_MAX) {
gpio_pad_select_gpio_x(gpio);
gpio_set_direction_x(gpio, GPIO_MODE_OUTPUT);
} else {
leds[idx].channel = pwm_system.base_channel++;
leds[idx].pwm = pwm_system.max * powf(pwm / 100.0, 3);
@@ -232,10 +234,10 @@ void led_svc_init(void) {
parse_set_GPIO(set_led_gpio);
#endif
char *nvs_item = config_alloc_get(NVS_TYPE_STR, "led_brightness"), *p;
char *nvs_item = config_alloc_get(NVS_TYPE_STR, "led_brightness");
if (nvs_item) {
if ((p = strcasestr(nvs_item, "green")) != NULL) green.pwm = atoi(strchr(p, '=') + 1);
if ((p = strcasestr(nvs_item, "red")) != NULL) red.pwm = atoi(strchr(p, '=') + 1);
PARSE_PARAM(nvs_item, "green", '=', green.pwm);
PARSE_PARAM(nvs_item, "red", '=', red.pwm);
free(nvs_item);
}

View File

@@ -14,8 +14,7 @@
#include "nvs_utilities.h"
#include "platform_esp32.h"
#include "messaging.h"
#include "trace.h"
#include "globdefs.h"
#include "tools.h"
/************************************
* Globals
*/

View File

@@ -23,7 +23,7 @@
#include "accessors.h"
#include "messaging.h"
#include "cJSON.h"
#include "trace.h"
#include "tools.h"
#define MONITOR_TIMER (10*1000)
#define SCRATCH_SIZE 256
@@ -147,7 +147,7 @@ static void monitor_callback(TimerHandle_t xTimer) {
*
*/
static void jack_handler_default(void *id, button_event_e event, button_press_e mode, bool long_press) {
ESP_LOGD(TAG, "Jack %s", event == BUTTON_PRESSED ? "inserted" : "removed");
ESP_LOGI(TAG, "Jack %s", event == BUTTON_PRESSED ? "inserted" : "removed");
if (jack_handler_svc) (*jack_handler_svc)(event == BUTTON_PRESSED);
}

View File

@@ -91,6 +91,7 @@
#include "esp_log.h"
#include "driver/gpio.h"
#include "gpio_exp.h"
#define TAG "rotary_encoder"
@@ -148,7 +149,7 @@ static uint8_t _process(rotary_encoder_info_t * info)
if (info != NULL)
{
// Get state of input pins.
uint8_t pin_state = (gpio_get_level(info->pin_b) << 1) | gpio_get_level(info->pin_a);
uint8_t pin_state = (gpio_get_level_x(info->pin_b) << 1) | gpio_get_level_x(info->pin_a);
// Determine new state from the pins and state table.
#ifdef ROTARY_ENCODER_DEBUG
@@ -198,12 +199,18 @@ static void _isr_rotenc(void * args)
.direction = info->state.direction,
},
};
BaseType_t task_woken = pdFALSE;
xQueueOverwriteFromISR(info->queue, &queue_event, &task_woken);
if (task_woken)
{
portYIELD_FROM_ISR();
}
if (info->pin_a < GPIO_NUM_MAX) {
BaseType_t task_woken = pdFALSE;
xQueueOverwriteFromISR(info->queue, &queue_event, &task_woken);
if (task_woken)
{
portYIELD_FROM_ISR();
}
}
else
{
xQueueOverwrite(info->queue, &queue_event);
}
}
}
@@ -220,19 +227,19 @@ esp_err_t rotary_encoder_init(rotary_encoder_info_t * info, gpio_num_t pin_a, gp
info->state.direction = ROTARY_ENCODER_DIRECTION_NOT_SET;
// configure GPIOs
gpio_pad_select_gpio(info->pin_a);
gpio_set_pull_mode(info->pin_a, GPIO_PULLUP_ONLY);
gpio_set_direction(info->pin_a, GPIO_MODE_INPUT);
gpio_set_intr_type(info->pin_a, GPIO_INTR_ANYEDGE);
gpio_pad_select_gpio_x(info->pin_a);
gpio_set_pull_mode_x(info->pin_a, GPIO_PULLUP_ONLY);
gpio_set_direction_x(info->pin_a, GPIO_MODE_INPUT);
gpio_set_intr_type_x(info->pin_a, GPIO_INTR_ANYEDGE);
gpio_pad_select_gpio(info->pin_b);
gpio_set_pull_mode(info->pin_b, GPIO_PULLUP_ONLY);
gpio_set_direction(info->pin_b, GPIO_MODE_INPUT);
gpio_set_intr_type(info->pin_b, GPIO_INTR_ANYEDGE);
gpio_pad_select_gpio_x(info->pin_b);
gpio_set_pull_mode_x(info->pin_b, GPIO_PULLUP_ONLY);
gpio_set_direction_x(info->pin_b, GPIO_MODE_INPUT);
gpio_set_intr_type_x(info->pin_b, GPIO_INTR_ANYEDGE);
// install interrupt handlers
gpio_isr_handler_add(info->pin_a, _isr_rotenc, info);
gpio_isr_handler_add(info->pin_b, _isr_rotenc, info);
gpio_isr_handler_add_x(info->pin_a, _isr_rotenc, info);
gpio_isr_handler_add_x(info->pin_b, _isr_rotenc, info);
}
else
{
@@ -280,8 +287,8 @@ esp_err_t rotary_encoder_uninit(rotary_encoder_info_t * info)
esp_err_t err = ESP_OK;
if (info)
{
gpio_isr_handler_remove(info->pin_a);
gpio_isr_handler_remove(info->pin_b);
gpio_isr_handler_remove_x(info->pin_a);
gpio_isr_handler_remove_x(info->pin_b);
}
else
{

View File

@@ -12,15 +12,13 @@
#include "driver/ledc.h"
#include "driver/i2c.h"
#include "platform_config.h"
#include "gpio_exp.h"
#include "battery.h"
#include "led.h"
#include "monitor.h"
#include "globdefs.h"
#include "accessors.h"
#include "messaging.h"
#include "esp_heap_caps.h"
#include "esp_log.h"
extern void battery_svc_init(void);
extern void monitor_svc_init(void);
@@ -38,48 +36,14 @@ pwm_system_t pwm_system = {
static const char *TAG = "services";
void * malloc_init_external(size_t sz){
void * ptr=NULL;
ptr = heap_caps_malloc(sz, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
if(ptr==NULL){
ESP_LOGE(TAG,"malloc_init_external: unable to allocate %d bytes of PSRAM!",sz);
}
else {
memset(ptr,0x00,sz);
}
return ptr;
}
void * clone_obj_psram(void * source, size_t source_sz){
void * ptr=NULL;
ptr = heap_caps_malloc(source_sz, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
if(ptr==NULL){
ESP_LOGE(TAG,"clone_obj_psram: unable to allocate %d bytes of PSRAM!",source_sz);
}
else {
memcpy(ptr,source,source_sz);
}
return ptr;
}
char * strdup_psram(const char * source){
void * ptr=NULL;
size_t source_sz = strlen(source)+1;
ptr = heap_caps_malloc(source_sz, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
if(ptr==NULL){
ESP_LOGE(TAG,"strdup_psram: unable to allocate %d bytes of PSRAM! Cannot clone string %s",source_sz,source);
}
else {
memset(ptr,0x00,source_sz);
strcpy(ptr,source);
}
return ptr;
}
/****************************************************************************************
*
*/
void set_power_gpio(int gpio, char *value) {
void set_chip_power_gpio(int gpio, char *value) {
bool parsed = true;
// we only parse on-chip GPIOs
if (gpio >= GPIO_NUM_MAX) return;
if (!strcasecmp(value, "vcc") ) {
gpio_pad_select_gpio(gpio);
@@ -89,9 +53,26 @@ void set_power_gpio(int gpio, char *value) {
gpio_pad_select_gpio(gpio);
gpio_set_direction(gpio, GPIO_MODE_OUTPUT);
gpio_set_level(gpio, 0);
} else parsed = false ;
} else parsed = false;
if (parsed) ESP_LOGI(TAG, "set GPIO %u to %s", gpio, value);
}
void set_exp_power_gpio(int gpio, char *value) {
bool parsed = true;
// we only parse on-chip GPIOs
if (gpio < GPIO_NUM_MAX) return;
if (!strcasecmp(value, "vcc") ) {
gpio_exp_set_direction(gpio, GPIO_MODE_OUTPUT, NULL);
gpio_exp_set_level(gpio, 1, true, NULL);
} else if (!strcasecmp(value, "gnd")) {
gpio_exp_set_direction(gpio, GPIO_MODE_OUTPUT, NULL);
gpio_exp_set_level(gpio, 0, true, NULL);
} else parsed = false;
if (parsed) ESP_LOGI(TAG, "set expanded GPIO %u to %s", gpio, value);
}
@@ -109,8 +90,8 @@ void services_init(void) {
}
#endif
// set potential power GPIO
parse_set_GPIO(set_power_gpio);
// set potential power GPIO on chip first in case expanders are power using these
parse_set_GPIO(set_chip_power_gpio);
// shared I2C bus
const i2c_config_t * i2c_config = config_i2c_get(&i2c_system_port);
@@ -140,6 +121,13 @@ void services_init(void) {
ESP_LOGW(TAG, "no SPI configured");
}
// create GPIO expanders
const gpio_exp_config_t* gpio_exp_config;
for (int count = 0; (gpio_exp_config = config_gpio_exp_get(count)); count++) gpio_exp_create(gpio_exp_config);
// now set potential power GPIO on expander
parse_set_GPIO(set_exp_power_gpio);
// system-wide PWM timer configuration
ledc_timer_config_t pwm_timer = {
.duty_resolution = LEDC_TIMER_13_BIT,

View File

@@ -0,0 +1,28 @@
# this must be set *before* idf_component_register
set(CMAKE_CXX_STANDARD 17)
idf_component_register(
SRC_DIRS .
INCLUDE_DIRS . "cspot/include" "cspot/bell/include" "cspot/protos"
PRIV_REQUIRES mbedtls mdns nvs_flash platform_config services esp_http_server tools
LDFRAGMENTS "linker.lf"
)
include_directories("../codecs/inc")
add_definitions(-DBELL_USE_MBEDTLS)
add_definitions(-Wno-unused-variable -Wno-unused-const-variable -Wchar-subscripts -Wunused-label -Wmaybe-uninitialized -Wmisleading-indentation)
set(BELL_DISABLE_CODECS 1)
set(BELL_TREMOR_EXTERNAL "idf::codecs")
set(BELL_CJSON_EXTERNAL "idf::json")
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/cspot ${CMAKE_CURRENT_BINARY_DIR}/cspot)
target_link_libraries(${COMPONENT_LIB} PRIVATE cspot ${EXTRA_REQ_LIBS})
#if (!WIN32)
# message(${CMAKE_CURRENT_SOURCE_DIR}/cmake/generate_protos.sh)
# execute_process(COMMAND "${CMAKE_CURRENT_SOURCE_DIR}/cmake/generate_protos.sh" WORKING_DIRECTORY "${CMAKE_CURRENT_SOURCE_DIR}")
#endif ()

381
components/spotify/Shim.cpp Normal file
View File

@@ -0,0 +1,381 @@
/*
* This software is released under the MIT License.
* https://opensource.org/licenses/MIT
*
*/
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include "sdkconfig.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_system.h"
#include "esp_wifi.h"
#include "esp_event.h"
#include "esp_log.h"
#include "esp_http_server.h"
#include <ConstantParameters.h>
#include <Session.h>
#include <SpircController.h>
#include <MercuryManager.h>
#include <ZeroconfAuthenticator.h>
#include <ApResolve.h>
#include <HTTPServer.h>
#include "ConfigJSON.h"
#include "Logger.h"
#include "platform_config.h"
#include "tools.h"
#include "cspot_private.h"
#include "cspot_sink.h"
#include "Shim.h"
extern "C" {
httpd_handle_t get_http_server(int *port);
static esp_err_t handlerWrapper(httpd_req_t *req);
};
#define CSPOT_STACK_SIZE (8*1024)
static const char *TAG = "cspot";
// using a global is pretty ugly, but it's easier with all Lambda below
static EXT_RAM_ATTR struct cspot_s {
char name[32];
cspot_cmd_cb_t cHandler;
cspot_data_cb_t dHandler;
TaskHandle_t TaskHandle;
std::shared_ptr<LoginBlob> blob;
} cspot;
std::shared_ptr<ConfigJSON> configMan;
std::shared_ptr<NVSFile> file;
std::shared_ptr<MercuryManager> mercuryManager;
std::shared_ptr<SpircController> spircController;
/****************************************************************************************
* Main task (could it be deleted after spirc has started?)
*/
static void cspotTask(void *pvParameters) {
char configName[] = "cspot_config";
std::string jsonConfig;
// Config file
file = std::make_shared<NVSFile>();
configMan = std::make_shared<ConfigJSON>(configName, file);
// We might have no config at all
if (!file->readFile(configName, jsonConfig) || !jsonConfig.length()) {
ESP_LOGW(TAG, "Cannot load config, using default");
configMan->deviceName = cspot.name;
configMan->format = AudioFormat::OGG_VORBIS_160;
configMan->volume = 32767;
configMan->save();
}
// safely load config now
configMan->load();
if (!configMan->deviceName.length()) configMan->deviceName = cspot.name;
ESP_LOGI(TAG, "Started CSpot with %s (bitrate %d)", configMan->deviceName.c_str(), configMan->format == AudioFormat::OGG_VORBIS_320 ? 320 : (configMan->format == AudioFormat::OGG_VORBIS_160 ? 160 : 96));
// All we do here is notify the task to start the mercury loop
auto createPlayerCallback = [](std::shared_ptr<LoginBlob> blob) {
// TODO: handle/refuse that another user takes ownership
cspot.blob = blob;
xTaskNotifyGive(cspot.TaskHandle);
};
int port;
httpd_handle_t server = get_http_server(&port);
auto httpServer = std::make_shared<ShimHTTPServer>(server, port);
auto authenticator = std::make_shared<ZeroconfAuthenticator>(createPlayerCallback, httpServer);
authenticator->registerHandlers();
// wait to be notified and have a mercury loop
while (1) {
ulTaskNotifyTake(pdFALSE, portMAX_DELAY);
auto session = std::make_unique<Session>();
session->connectWithRandomAp();
auto token = session->authenticate(cspot.blob);
ESP_LOGI(TAG, "Creating Spotify(CSpot) player");
// Auth successful
if (token.size() > 0) {
// tell sink that we are taking over
cspot.cHandler(CSPOT_SETUP, 44100);
auto audioSink = std::make_shared<ShimAudioSink>();
// @TODO Actually store this token somewhere
mercuryManager = std::make_shared<MercuryManager>(std::move(session));
mercuryManager->startTask();
spircController = std::make_shared<SpircController>(mercuryManager, cspot.blob->username, audioSink);
spircController->setEventHandler([](CSpotEvent &event) {
switch (event.eventType) {
case CSpotEventType::TRACK_INFO: {
TrackInfo track = std::get<TrackInfo>(event.data);
cspot.cHandler(CSPOT_TRACK, 44100, track.artist.c_str(), track.album.c_str(), track.name.c_str());
break;
}
case CSpotEventType::PLAY_PAUSE: {
bool isPaused = std::get<bool>(event.data);
if (isPaused) cspot.cHandler(CSPOT_PAUSE);
else cspot.cHandler(CSPOT_PLAY);
break;
}
case CSpotEventType::SEEK:
cspot.cHandler(CSPOT_SEEK, std::get<int>(event.data));
break;
case CSpotEventType::DISC:
cspot.cHandler(CSPOT_DISC);
spircController->stopPlayer();
mercuryManager->stop();
break;
case CSpotEventType::PREV:
case CSpotEventType::NEXT:
cspot.cHandler(CSPOT_FLUSH);
break;
/*
// we use volume from sink which is a 16 bits value
case CSpotEventType::VOLUME: {
int volume = std::get<int>(event.data);
cspot.cHandler(CSPOT_VOLUME, volume);
ESP_LOGW(TAG, "cspot volume : %d", volume);
break;
}
*/
default:
break;
}
});
mercuryManager->reconnectedCallback = []() {
return spircController->subscribe();
};
mercuryManager->handleQueue();
}
// release all ownership
mercuryManager.reset();
spircController.reset();
cspot.blob.reset();
// flush files
file->flush();
ESP_LOGW(TAG, "THIS SESSION IS FINISHED %ld %ld %ld", mercuryManager.use_count(), spircController.use_count(), cspot.blob.use_count());
}
// we should not be here
vTaskDelete(NULL);
}
/****************************************************************************************
* API to create and start a cspot instance
*/
struct cspot_s* cspot_create(const char *name, cspot_cmd_cb_t cmd_cb, cspot_data_cb_t data_cb) {
static DRAM_ATTR StaticTask_t xTaskBuffer __attribute__ ((aligned (4)));
static EXT_RAM_ATTR StackType_t xStack[CSPOT_STACK_SIZE] __attribute__ ((aligned (4)));
bell::setDefaultLogger();
cspot.cHandler = cmd_cb;
cspot.dHandler = data_cb;
strncpy(cspot.name, name, sizeof(cspot.name) - 1);
cspot.TaskHandle = xTaskCreateStatic(&cspotTask, "cspot", CSPOT_STACK_SIZE, NULL, ESP_TASK_PRIO_MIN + 1, xStack, &xTaskBuffer);
return &cspot;
}
/****************************************************************************************
* Commands sent by local buttons/actions
*/
bool cspot_cmd(struct cspot_s* ctx, cspot_event_t event, void *param) {
switch(event) {
case CSPOT_PREV:
spircController->prevSong();
break;
case CSPOT_NEXT:
spircController->nextSong();
break;
case CSPOT_TOGGLE:
spircController->playToggle();
break;
case CSPOT_PAUSE:
spircController->setPause(true);
break;
case CSPOT_PLAY:
spircController->setPause(false);
break;
case CSPOT_DISC:
spircController->stopPlayer();
mercuryManager->stop();
break;
case CSPOT_STOP:
spircController->stopPlayer();
break;
case CSPOT_VOLUME_UP:
spircController->adjustVolume(MAX_VOLUME / 100 + 1);
break;
case CSPOT_VOLUME_DOWN:
spircController->adjustVolume(-(MAX_VOLUME / 100 + 1));
break;
default:
break;
}
return true;
}
/****************************************************************************************
* AudioSink class to push data to squeezelite backend (decode_external)
*/
void ShimAudioSink::volumeChanged(uint16_t volume) {
cspot.cHandler(CSPOT_VOLUME, volume);
}
void ShimAudioSink::feedPCMFrames(std::vector<uint8_t> &data) {
cspot.dHandler(&data[0], data.size());
}
/****************************************************************************************
* NVSFile class to store config
*/
bool NVSFile::readFile(std::string filename, std::string &fileContent) {
auto search = files.find(filename);
// cache
if (search == files.end()) {
char *content = (char*) config_alloc_get(NVS_TYPE_STR, filename.c_str());
if (!content) return false;
fileContent = content;
free(content);
} else {
fileContent = search->second;
}
return true;
}
bool NVSFile::writeFile(std::string filename, std::string fileContent) {
auto search = files.find(filename);
files[filename] = fileContent;
if (search == files.end()) return (ESP_OK == config_set_value(NVS_TYPE_STR, filename.c_str(), fileContent.c_str()));
return true;
}
bool NVSFile::flush() {
esp_err_t err = ESP_OK;
for (auto it = files.begin(); it != files.end(); ++it) {
err |= config_set_value(NVS_TYPE_STR, it->first.c_str(), it->second.c_str());
}
return (err == ESP_OK);
}
/****************************************************************************************
* Shim HTTP server for spirc
*/
static esp_err_t handlerWrapper(httpd_req_t *req) {
bell::HTTPRequest request = { };
char *query = NULL, *body = NULL;
bell::httpHandler *handler = (bell::httpHandler*) req->user_ctx;
size_t query_len = httpd_req_get_url_query_len(req);
request.connection = httpd_req_to_sockfd(req);
// get body if any (add '\0' at the end if used as string)
if (req->content_len) {
body = (char*) calloc(1, req->content_len + 1);
int size = httpd_req_recv(req, body, req->content_len);
request.body = body;
ESP_LOGD(TAG,"wrapper received body %d/%d", size, req->content_len);
}
// parse query if any (can be in body as well for url-encoded)
if (query_len) {
query = (char*) malloc(query_len + 1);
httpd_req_get_url_query_str(req, query, query_len + 1);
} else if (body && strchr(body, '&')) {
query = body;
body = NULL;
}
// I know this is very crude and unsafe...
url_decode(query);
char *key = strtok(query, "&");
while (key) {
char *value = strchr(key, '=');
*value++ = '\0';
request.queryParams[key] = value;
ESP_LOGD(TAG,"wrapper received key:%s value:%s", key, value);
key = strtok(NULL, "&");
};
if (query) free(query);
if (body) free(body);
/*
This is a strange construct as the C++ handler will call the ShimHTTPSer::respond
and then we'll return. So we can't obtain the response to be sent, as esp_http_server
normally expects, instead respond() will use raw socket and close connection
*/
(*handler)(request);
return ESP_OK;
}
void ShimHTTPServer::registerHandler(bell::RequestType requestType, const std::string &routeUrl, bell::httpHandler handler) {
httpd_uri_t request = {
.uri = routeUrl.c_str(),
.method = (requestType == bell::RequestType::GET ? HTTP_GET : HTTP_POST),
.handler = handlerWrapper,
.user_ctx = NULL,
};
// find athe first free spot and register handler
for (int i = 0; i < sizeof(uriHandlers)/sizeof(bell::httpHandler); i++) {
if (!uriHandlers[i]) {
uriHandlers[i] = handler;
request.user_ctx = uriHandlers + i;
httpd_register_uri_handler(serverHandle, &request);
break;
}
}
if (!request.user_ctx) ESP_LOGW(TAG, "Cannot add handler for %s", routeUrl.c_str());
}
void ShimHTTPServer::respond(const bell::HTTPResponse &response) {
char *buf;
size_t len = asprintf(&buf, "HTTP/1.1 %d OK\r\n"
"Server: SQUEEZEESP32\r\n"
"Connection: close\r\n"
"Content-type: %s\r\n"
"Content-length: %d\r\n"
"Access-Control-Allow-Origin: *\r\n"
"Access-Control-Allow-Methods: GET, POST, PATCH, PUT, DELETE, OPTIONS\r\n"
"Access-Control-Allow-Headers: Origin, Content-Type, X-Auth-Token\r\n"
"\r\n%s",
response.status, response.contentType.c_str(),
response.body.size(), response.body.c_str()
);
// use raw socket send and close connection
httpd_socket_send(serverHandle, response.connectionFd, buf, len, 0);
free(buf);
// we want to close the socket due to the strange construct
httpd_sess_trigger_close(serverHandle, response.connectionFd);
}

50
components/spotify/Shim.h Normal file
View File

@@ -0,0 +1,50 @@
/*
* This software is released under the MIT License.
* https://opensource.org/licenses/MIT
*
*/
#pragma once
#include <vector>
#include <iostream>
#include <map>
#include "AudioSink.h"
#include "FileHelper.h"
#include "BaseHTTPServer.h"
#include <stdio.h>
#include <string.h>
#include <sys/unistd.h>
#include <sys/stat.h>
#include "esp_err.h"
#include "esp_http_server.h"
#include "esp_log.h"
class ShimAudioSink : public AudioSink {
public:
ShimAudioSink(void) { softwareVolumeControl = false; }
void feedPCMFrames(std::vector<uint8_t> &data);
virtual void volumeChanged(uint16_t volume);
};
class NVSFile : public FileHelper {
private:
std::map<std::string, std::string> files;
public:
bool readFile(std::string filename, std::string &fileContent);
bool writeFile(std::string filename, std::string fileContent);
bool flush();
};
class ShimHTTPServer : public bell::BaseHTTPServer {
private:
httpd_handle_t serverHandle;
bell::httpHandler uriHandlers[4];
public:
ShimHTTPServer(httpd_handle_t server, int port) { serverHandle = server; serverPort = port; }
void registerHandler(bell::RequestType requestType, const std::string &, bell::httpHandler);
void respond(const bell::HTTPResponse &);
};

View File

@@ -0,0 +1,66 @@
project(cspot)
cmake_minimum_required(VERSION 2.8.9)
set (CMAKE_CXX_STANDARD 17)
file(GLOB SOURCES "src/*.cpp" "src/*.c")
if (NOT DEFINED ${USE_EXTERNAL_BELL})
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/bell ${CMAKE_CURRENT_BINARY_DIR}/bell)
endif()
# Add platform specific sources
# if(${ESP_PLATFORM})
# file(GLOB ESP_PLATFORM_SOURCES "src/platform/esp/*.cpp" "src/platform/esp/*.c")
# set(SOURCES ${SOURCES} ${ESP_PLATFORM_SOURCES} )
# endif()
# if(UNIX)
# file(GLOB UNIX_PLATFORM_SOURCES "src/platform/unix/*.cpp" "src/platform/unix/*.c")
# set(SOURCES ${SOURCES} ${UNIX_PLATFORM_SOURCES} )
# endif()
# if(APPLE)
# file(GLOB APPLE_PLATFORM_SOURCES "src/platform/apple/*.cpp" "src/platform/apple/*.c")
# set(SOURCES ${SOURCES} ${APPLE_PLATFORM_SOURCES} )
# endif()
# if(UNIX AND NOT APPLE)
# # file(GLOB LINUX_PLATFORM_SOURCES "src/platform/linux/*.cpp" "src/platform/linux/*.c")
# # set(SOURCES ${SOURCES} ${LINUX_PLATFORM_SOURCES} )
# # endif()
# if(${ESP_PLATFORM})
# list(REMOVE_ITEM SOURCES ${CMAKE_CURRENT_SOURCE_DIR}/src/CryptoOpenSSL.cpp) # use MBedTLS
# idf_build_set_property(COMPILE_DEFINITIONS "-DCSPOT_USE_MBEDTLS" APPEND)
# set(EXTRA_REQ_LIBS idf::mbedtls idf::pthread idf::mdns)
# add_definitions(-Wunused-const-variable -Wchar-subscripts -Wunused-label -Wmaybe-uninitialized -Wmisleading-indentation)
# else()
# list(REMOVE_ITEM SOURCES ${CMAKE_CURRENT_SOURCE_DIR}/src/CryptoMbedTLS.cpp) # use OpenSSL
# find_package(OpenSSL REQUIRED)
# if(OPENSSL_FOUND)
# set(OPENSSL_USE_STATIC_LIBS TRUE)
# endif()
# set(EXTRA_REQ_LIBS OpenSSL::Crypto Threads::Threads)
# set(THREADS_PREFER_PTHREAD_FLAG ON)
# find_package(Threads REQUIRED)
# endif()
if(UNIX AND NOT APPLE)
set(EXTRA_REQ_LIBS ${EXTRA_REQ_LIBS} dns_sd) # add apple bonjur compatibility library for linux
# TODO: migrate from this to native linux mDNS
endif()
include_directories("include")
include_directories("${CMAKE_CURRENT_BINARY_DIR}")
include_directories("protos")
message(${CMAKE_CURRENT_SOURCE_DIR}/cmake/generate_protos.sh)
execute_process(COMMAND "${CMAKE_CURRENT_SOURCE_DIR}/cmake/generate_protos.sh" WORKING_DIRECTORY "${CMAKE_CURRENT_SOURCE_DIR}")
set(SOURCES ${SOURCES} "protos/AnyRefImpl.cpp" "protos/ReflectTypeInfo.cpp")
add_library(cspot STATIC ${SOURCES})
target_link_libraries(cspot PRIVATE bell ${EXTRA_REQ_LIBS})
target_include_directories(cspot PUBLIC "include" "protos" bell ${EXTRA_REQ_LIBS} ${CMAKE_CURRENT_BINARY_DIR})

BIN
components/spotify/cspot/bell/.DS_Store vendored Normal file

Binary file not shown.

View File

@@ -0,0 +1,7 @@
[submodule "tremor"]
path = tremor
url = https://gitlab.xiph.org/xiph/tremor.git
branch = lowmem
[submodule "cJSON"]
path = cJSON
url = https://github.com/DaveGamble/cJSON

View File

@@ -0,0 +1,80 @@
project(bell)
cmake_minimum_required(VERSION 2.8.9)
set (CMAKE_CXX_STANDARD 17)
file(GLOB SOURCES "src/*.cpp" "src/*.c")
# Add platform specific sources
if(${ESP_PLATFORM})
file(GLOB ESP_PLATFORM_SOURCES "src/platform/esp/*.cpp" "src/platform/esp/*.c" "src/asm/biquad_f32_ae32.S")
set(SOURCES ${SOURCES} ${ESP_PLATFORM_SOURCES} )
endif()
if(UNIX)
file(GLOB UNIX_PLATFORM_SOURCES "src/platform/unix/*.cpp" "src/platform/linux/TLSSocket.cpp" "src/platform/unix/*.c")
set(SOURCES ${SOURCES} ${UNIX_PLATFORM_SOURCES} )
endif()
if(APPLE)
file(GLOB APPLE_PLATFORM_SOURCES "src/platform/apple/*.cpp" "src/platform/linux/TLSSocket.cpp" "src/platform/apple/*.c")
set(SOURCES ${SOURCES} ${APPLE_PLATFORM_SOURCES} )
endif()
if(UNIX AND NOT APPLE)
file(GLOB LINUX_PLATFORM_SOURCES "src/platform/linux/*.cpp" "src/platform/linux/*.c")
set(SOURCES ${SOURCES} ${LINUX_PLATFORM_SOURCES} )
endif()
if(${ESP_PLATFORM})
list(REMOVE_ITEM SOURCES ${CMAKE_CURRENT_SOURCE_DIR}/src/CryptoOpenSSL.cpp) # use MBedTLS
idf_build_set_property(COMPILE_DEFINITIONS "-DBELL_USE_MBEDTLS" APPEND)
set(EXTRA_REQ_LIBS idf::mbedtls idf::pthread idf::mdns)
add_definitions(-Wunused-const-variable -Wchar-subscripts -Wunused-label -Wmaybe-uninitialized -Wmisleading-indentation)
else()
list(REMOVE_ITEM SOURCES ${CMAKE_CURRENT_SOURCE_DIR}/src/CryptoMbedTLS.cpp) # use OpenSSL
find_package(OpenSSL REQUIRED)
if(OPENSSL_FOUND)
set(OPENSSL_USE_STATIC_LIBS TRUE)
endif()
set(EXTRA_REQ_LIBS OpenSSL::Crypto OpenSSL::SSL Threads::Threads)
set(THREADS_PREFER_PTHREAD_FLAG ON)
find_package(Threads REQUIRED)
endif()
if (BELL_DISABLE_CODECS)
list(REMOVE_ITEM SOURCES ${CMAKE_CURRENT_SOURCE_DIR}/src/DecoderGlobals.cpp) # use OpenSSL
add_definitions(-DBELL_DISABLE_CODECS)
else()
set(EXTRA_INC ${EXTRA_INC} "libhelix-aac" "libhelix-mp3")
set(SOURCES ${SOURCES} "libhelix-aac/aacdec.c" "libhelix-aac/aactabs.c" "libhelix-aac/bitstream.c" "libhelix-aac/buffers.c" "libhelix-aac/dct4.c" "libhelix-aac/decelmnt.c" "libhelix-aac/dequant.c" "libhelix-aac/fft.c" "libhelix-aac/filefmt.c" "libhelix-aac/huffman.c" "libhelix-aac/hufftabs.c" "libhelix-aac/imdct.c" "libhelix-aac/noiseless.c" "libhelix-aac/pns.c" "libhelix-aac/sbr.c" "libhelix-aac/sbrfft.c" "libhelix-aac/sbrfreq.c" "libhelix-aac/sbrhfadj.c" "libhelix-aac/sbrhfgen.c" "libhelix-aac/sbrhuff.c" "libhelix-aac/sbrimdct.c" "libhelix-aac/sbrmath.c" "libhelix-aac/sbrqmf.c" "libhelix-aac/sbrside.c" "libhelix-aac/sbrtabs.c" "libhelix-aac/stproc.c" "libhelix-aac/tns.c" "libhelix-aac/trigtabs.c")
set(SOURCES ${SOURCES} "libhelix-mp3/bitstream.c" "libhelix-mp3/buffers.c" "libhelix-mp3/dct32.c" "libhelix-mp3/dequant.c" "libhelix-mp3/dqchan.c" "libhelix-mp3/huffman.c" "libhelix-mp3/hufftabs.c" "libhelix-mp3/imdct.c" "libhelix-mp3/mp3dec.c" "libhelix-mp3/mp3tabs.c" "libhelix-mp3/polyphase.c" "libhelix-mp3/scalfact.c" "libhelix-mp3/stproc.c" "libhelix-mp3/subband.c" "libhelix-mp3/trigtabs.c")
endif()
if(UNIX AND NOT APPLE)
set(EXTRA_REQ_LIBS ${EXTRA_REQ_LIBS} dns_sd) # add apple bonjur compatibility library for linux
# TODO: migrate from this to native linux mDNS
endif()
add_definitions( -DUSE_DEFAULT_STDLIB=1)
if (BELL_CJSON_EXTERNAL)
message("Using external cJSON")
set(EXTRA_REQ_LIBS ${EXTRA_REQ_LIBS} ${BELL_CJSON_EXTERNAL})
else()
set(EXTRA_INC ${EXTRA_INC} "cJSON")
set(SOURCES ${SOURCES} "cJSON/cJSON.c")
endif()
if (BELL_TREMOR_EXTERNAL)
message("Using external TREMOR")
set(EXTRA_REQ_LIBS ${EXTRA_REQ_LIBS} ${BELL_TREMOR_EXTERNAL})
else()
set(EXTRA_INC ${EXTRA_INC} "tremor")
set(SOURCES ${SOURCES} "tremor/mdct.c" "tremor/dsp.c" "tremor/info.c" "tremor/misc.c" "tremor/floor1.c" "tremor/floor0.c" "tremor/vorbisfile.c" "tremor/res012.c" "tremor/mapping0.c" "tremor/codebook.c" "tremor/framing.c" "tremor/bitwise.c" "tremor/floor_lookup.c")
endif()
add_library(bell STATIC ${SOURCES})
target_link_libraries(bell PRIVATE ${EXTRA_REQ_LIBS})
target_include_directories(bell PUBLIC "include" "protos" ${EXTRA_INC} ${EXTRA_REQ_LIBS} ${CMAKE_CURRENT_BINARY_DIR})

View File

@@ -0,0 +1,9 @@
# bell
Core audio utils library used in cspot and euphonium projects.
Implemented utilities:
- HTTPServer
- Crypto (openssl and mbedtls backed)
- Semaphore implementations

View File

@@ -0,0 +1,23 @@
root = true
[*]
indent_style = space
indent_size = 4
end_of_line = lf
charset = utf-8
trim_trailing_whitespace = true
insert_final_newline = true
[Makefile]
indent_style = tab
indent_size = unset
# ignore external repositories and test inputs
[tests/{unity,json-patch-tests,inputs}/*]
indent_style = unset
indent_size = unset
end_of_line = unset
charset = unset
trim_trailing_whitespace = unset
insert_final_newline = unset

View File

@@ -0,0 +1,11 @@
* text=auto
/tests/inputs/* text eol=lf
.gitattributes export-ignore
.gitignore export-ignore
.github export-ignore
.editorconfig export-ignore
.travis.yml export-ignore
# Linguist incorrectly identified the headers as C++, manually override this.
*.h linguist-language=C

View File

@@ -0,0 +1,54 @@
Contribution Guidelines
=======================
Contributions to cJSON are welcome. If you find a bug or want to improve cJSON in another way, pull requests are appreciated.
For bigger changes, in order to avoid wasted effort, please open an issue to discuss the technical details before creating a pull request.
The further sections explain the process in more detail and provides some guidelines on how contributions should look like.
Branches
--------
There are two branches to be aware of, the `master` and the `develop` branch. The `master` branch is reserved for the latest release, so only make pull requests to the `master` branch for small bug- or security fixes (these are usually just a few lines). In all other cases, please make a pull request to the `develop` branch.
Coding Style
------------
The coding style has been discussed in [#24](https://github.com/DaveGamble/cJSON/issues/24). The basics are:
* Use 4 spaces for indentation
* No oneliners (conditions, loops, variable declarations ...)
* Always use parenthesis for control structures
* Don't implicitly rely on operator precedence, use round brackets in expressions. e.g. `(a > b) && (c < d)` instead of `a>b && c<d`
* opening curly braces start in the next line
* use spaces around operators
* lines should not have trailing whitespace
* use spaces between function parameters
* use pronouncable variable names, not just a combination of letters
Example:
```c
/* calculate the new length of the string in a printbuffer and update the offset */
static void update_offset(printbuffer * const buffer)
{
const unsigned char *buffer_pointer = NULL;
if ((buffer == NULL) || (buffer->buffer == NULL))
{
return;
}
buffer_pointer = buffer->buffer + buffer->offset;
buffer->offset += strlen((const char*)buffer_pointer);
}
```
Unit Tests
----------
cJSON uses the [Unity](https://github.com/ThrowTheSwitch/Unity) library for unit tests. The tests are located in the `tests` directory. In order to add a new test, either add it to one of the existing files (if it fits) or add a new C file for the test. That new file has to be added to the list of tests in `tests/CMakeLists.txt`.
All new features have to be covered by unit tests.
Other Notes
-----------
* Internal functions are to be declared static.
* Wrap the return type of external function in the `CJSON_PUBLIC` macro.

View File

@@ -0,0 +1,102 @@
name: CI
on:
push:
branches: [ master ]
paths-ignore:
- '**.md'
- 'LICENSE'
pull_request:
types: [opened, synchronize]
paths-ignore:
- '**.md'
- 'LICENSE'
jobs:
linux:
runs-on: ubuntu-latest
if: "!contains(github.event.head_commit.message, 'ci skip')"
strategy:
fail-fast: false
matrix:
mem_check:
- ENABLE_VALGRIND
- ENABLE_SANITIZERS
- NONE_MEM_CHECK
compiler:
- GCC
- CLANG
steps:
- uses: actions/checkout@v2
- name: install build dependencies
run: |
sudo apt-get update
sudo apt-get install clang-8 valgrind
- name: build and test
shell: bash
run: |
if [ "${{ matrix.mem_check }}" == "ENABLE_VALGRIND" ]; then
EVENT_CMAKE_OPTIONS="-DENABLE_CJSON_UTILS=ON -DENABLE_VALGRIND=ON -DENABLE_SAFE_STACK=ON -DENABLE_SANITIZERS=OFF"
elif [ "${{ matrix.mem_check }}" == "ENABLE_SANITIZERS" ]; then
EVENT_CMAKE_OPTIONS="-DENABLE_CJSON_UTILS=ON -DENABLE_VALGRIND=OFF -DENABLE_SAFE_STACK=OFF -DENABLE_SANITIZERS=ON"
else
EVENT_CMAKE_OPTIONS="-DENABLE_CJSON_UTILS=ON -DENABLE_VALGRIND=OFF -DENABLE_SAFE_STACK=OFF -DENABLE_SANITIZERS=OFF"
fi
if [ "${{ matrix.compiler }}" == "GCC" ]; then
export CC=gcc
else
export CC=clang
fi
#run build and test
JOBS=20
export CTEST_PARALLEL_LEVEL=$JOBS
export CTEST_OUTPUT_ON_FAILURE=1
mkdir -p build
cd build
echo [cmake]: cmake .. $EVENT_CMAKE_OPTIONS
cmake .. $EVENT_CMAKE_OPTIONS || (rm -rf * && cmake .. $EVENT_CMAKE_OPTIONS)
cmake --build .
make
make test
macos:
runs-on: macos-latest
if: "!contains(github.event.head_commit.message, 'ci skip')"
strategy:
fail-fast: false
matrix:
mem_check:
- ENABLE_VALGRIND
- ENABLE_SANITIZERS
- NONE_MEM_CHECK
compiler:
- GCC
- CLANG
steps:
- uses: actions/checkout@v2
- name: build and test
shell: bash
run: |
if [ "${{ matrix.mem_check }}" == "ENABLE_VALGRIND" ]; then
EVENT_CMAKE_OPTIONS="-DENABLE_CJSON_UTILS=ON -DENABLE_VALGRIND=ON -DENABLE_SAFE_STACK=ON -DENABLE_SANITIZERS=OFF"
elif [ "${{ matrix.mem_check }}" == "ENABLE_SANITIZERS" ]; then
EVENT_CMAKE_OPTIONS="-DENABLE_CJSON_UTILS=ON -DENABLE_VALGRIND=OFF -DENABLE_SAFE_STACK=OFF -DENABLE_SANITIZERS=ON"
else
EVENT_CMAKE_OPTIONS="-DENABLE_CJSON_UTILS=ON -DENABLE_VALGRIND=OFF -DENABLE_SAFE_STACK=OFF -DENABLE_SANITIZERS=OFF"
fi
if [ "${{ matrix.compiler }}" == "GCC" ]; then
export CC=gcc
else
export CC=clang
fi
#run build and test
JOBS=20
export CTEST_PARALLEL_LEVEL=$JOBS
export CTEST_OUTPUT_ON_FAILURE=1
mkdir -p build
cd build
echo [cmake]: cmake .. $EVENT_CMAKE_OPTIONS
cmake .. $EVENT_CMAKE_OPTIONS || (rm -rf * && cmake .. $EVENT_CMAKE_OPTIONS)
cmake --build .
make
make test

View File

@@ -0,0 +1,20 @@
.svn
test
*.o
*.a
*.so
*.swp
*.patch
tags
*.dylib
build/
cJSON_test
cJSON_test_utils
libcjson.so.*
libcjson_utils.so.*
*.orig
.vscode
.idea
cmake-build-debug
*.lst
*.lss

View File

@@ -0,0 +1,28 @@
dist: trusty
sudo: false
language: c
env:
matrix:
- VALGRIND=On SANITIZERS=Off
- VALGRIND=Off SANITIZERS=Off
- VALGRIND=Off SANITIZERS=On
compiler:
- gcc
- clang
addons:
apt:
packages:
- valgrind
- libasan0
- lib32asan0
# currently not supported on travis:
# - libasan1
# - libasan2
# - libubsan0
- llvm
script:
- mkdir build
- cd build
- cmake .. -DENABLE_CJSON_UTILS=On -DENABLE_VALGRIND="${VALGRIND}" -DENABLE_SAFE_STACK="${VALGRIND}" -DENABLE_SANITIZERS="${SANITIZERS}"
- make
- make test CTEST_OUTPUT_ON_FAILURE=On

Some files were not shown because too many files have changed in this diff Show More