New driver for ILI9341-OLED

New driver for ILI9341-OLED-colordisplay, with rotation, flip, colordepth, gammacorrection.
Tested with 2.8inch OLED-Display ILI9241
This commit is contained in:
Mum-Pf
2021-02-09 14:19:55 +01:00
parent b9deead084
commit 84881ecb45
2 changed files with 320 additions and 283 deletions

View File

@@ -1,6 +1,7 @@
/** /**
* Copyright (c) 2017-2018 Tara Keeling * Copyright (c) 2017-2018 Tara Keeling
* 2020 Philippe G. * 2020 Philippe G.
* 2021 Mumpf and Harry1999
* *
* This software is released under the MIT License. * This software is released under the MIT License.
* https://opensource.org/licenses/MIT * https://opensource.org/licenses/MIT
@@ -10,333 +11,352 @@
#include <string.h> #include <string.h>
#include <stdint.h> #include <stdint.h>
#include <stdbool.h> #include <stdbool.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "driver/gpio.h"
#include <esp_heap_caps.h> #include <esp_heap_caps.h>
#include <esp_log.h> #include <esp_log.h>
#include "gds.h" #include "gds.h"
#include "gds_private.h" #include "gds_private.h"
//#define SHADOW_BUFFER #define SHADOW_BUFFER
#define PAGE_BLOCK 1024 #define USE_IRAM
#define PAGE_BLOCK 2048
#define ENABLE_WRITE 0x2c
//(MADCTL_MX | TFT_RGB_BGR)
#define MADCTL_MX 0x40
#define TFT_RGB_BGR 0x08
#define min(a,b) (((a) < (b)) ? (a) : (b)) #define min(a,b) (((a) < (b)) ? (a) : (b))
static char TAG[] = "ILI9341"; static char TAG[] = "ILI9341";
enum { ILI9341, ILI9341_24 }; //ILI9341_24 for future use...
#define L1_CMD_NOP 0X00
#define L1_CMD_SOFTWARE_RESET 0X01
#define L1_CMD_READ_DISPLAY_IDENTIFICATION_INFORMATION 0X04
#define L1_CMD_READ_DISPLAY_STATUS 0X09
#define L1_CMD_READ_DISPLAY_POWER_MODE 0X0A
#define L1_CMD_READ_DISPLAY_MADCTL 0X0B
#define L1_CMD_READ_DISPLAY_PIXEL_FORMAT 0X0C
#define L1_CMD_READ_DISPLAY_IMAGE_FORMAT 0X0D
#define L1_CMD_READ_DISPLAY_SIGNAL_MODE 0X0E
#define L1_CMD_READ_DISPLAY_SELF_DIAGNOSTIC_RESULT 0X0F
#define L1_CMD_ENTER_SLEEP_MODE 0X10
#define L1_CMD_SLEEP_OUT 0X11
#define L1_CMD_PARTIAL_MODE_ON 0X12
#define L1_CMD_NORMAL_DISPLAY_MODE_ON 0X13
#define L1_CMD_DISPLAY_INVERSION_OFF 0X20
#define L1_CMD_DISPLAY_INVERSION_ON 0X21
#define L1_CMD_GAMMA_SET 0X26
#define L1_CMD_DISPLAY_OFF 0X28
#define L1_CMD_DISPLAY_ON 0X29
#define L1_CMD_COLUMN_ADDRESS_SET 0X2A
#define L1_CMD_PAGE_ADDRESS_SET 0X2B
#define L1_CMD_MEMORY_WRITE 0X2C
#define L1_CMD_COLOR_SET 0X2D
#define L1_CMD_MEMORY_READ 0X2E
#define L1_CMD_PARTIAL_AREA 0X30
#define L1_CMD_VERTICAL_SCROLLING_DEFINITION 0X33
#define L1_CMD_TEARING_EFFECT_LINE_OFF 0X34
#define L1_CMD_TEARING_EFFECT_LINE_ON 0X35
#define L1_CMD_MEMORY_ACCESS_CONTROL 0X36
#define L1_CMD_VERTICAL_SCROLLING_START_ADDRESS 0X37
#define L1_CMD_IDLE_MODE_OFF 0X38
#define L1_CMD_IDLE_MODE_ON 0X39
#define L1_CMD_COLMOD_PIXEL_FORMAT_SET 0X3A
#define L1_CMD_WRITE_MEMORY_CONTINUE 0X3C
#define L1_CMD_READ_MEMORY_CONTINUE 0X3E
#define L1_CMD_SET_TEAR_SCANLINE 0X44
#define L1_CMD_GET_SCANLINE 0X45
#define L1_CMD_WRITE_DISPLAY_BRIGHTNESS 0X51
#define L1_CMD_READ_DISPLAY_BRIGHTNESS 0X52
#define L1_CMD_WRITE_CTRL_DISPLAY 0X53
#define L1_CMD_READ_CTRL_DISPLAY 0X54
#define L1_CMD_WRITE_CONTENT_ADAPTIVE_BRIGHTNESS_CONTROL 0X55
#define L1_CMD_READ_CONTENT_ADAPTIVE_BRIGHTNESS_CONTROL 0X56
#define L1_CMD_WRITE_CABC_MINIMUM_BRIGHTNESS 0X5E
#define L1_CMD_READ_CABC_MINIMUM_BRIGHTNESS 0X5F
#define L1_CMD_READ_ID1 0XDA
#define L1_CMD_READ_ID2 0XDB
#define L1_CMD_READ_ID3 0XDC
#define L2_CMD_RGB_INTERFACE_SIGNAL_CONTROL 0XB0
#define L2_CMD_FRAME_RATE_CONTROL_IN_NORMAL_MODE_FULL_COLORS 0XB1
#define L2_CMD_FRAME_RATE_CONTROL_IN_IDLE_MODE_8_COLORS 0XB2
#define L2_CMD_FRAME_RATE_CONTROL_IN_PARTIAL_MODE_FULL_COLORS 0XB3
#define L2_CMD_DISPLAY_INVERSION_CONTROL 0XB4
#define L2_CMD_BLANKING_PORCH_CONTROL 0XB5
#define L2_CMD_DISPLAY_FUNCTION_CONTROL 0XB6
#define L2_CMD_ENTRY_MODE_SET 0XB7
#define L2_CMD_BACKLIGHT_CONTROL_1 0XB8
#define L2_CMD_BACKLIGHT_CONTROL_2 0XB9
#define L2_CMD_BACKLIGHT_CONTROL_3 0XBA
#define L2_CMD_BACKLIGHT_CONTROL_4 0XBB
#define L2_CMD_BACKLIGHT_CONTROL_5 0XBC
#define L2_CMD_BACKLIGHT_CONTROL_7 0XBE
#define L2_CMD_BACKLIGHT_CONTROL_8 0XBF
#define L2_CMD_POWER_CONTROL_1 0XC0
#define L2_CMD_POWER_CONTROL_2 0XC1
#define L2_CMD_VCOM_CONTROL_1 0XC5
#define L2_CMD_VCOM_CONTROL_2 0XC7
#define L2_CMD_NV_MEMORY_WRITE 0XD0
#define L2_CMD_NV_MEMORY_PROTECTION_KEY 0XD1
#define L2_CMD_NV_MEMORY_STATUS_READ 0XD2
#define L2_CMD_READ_ID4 0XD3
#define L2_CMD_POSITIVE_GAMMA_CORRECTION 0XE0
#define L2_CMD_NEGATIVE_GAMMA_CORRECTION 0XE1
#define L2_CMD_DIGITAL_GAMMA_CONTROL_1 0XE2
#define L2_CMD_DIGITAL_GAMMA_CONTROL_2 0XE3
#define L2_CMD_INTERFACE_CONTROL 0XF6
/*
The LCD needs a bunch of command/argument values to be initialized. They are stored in this struct.
*/
typedef struct {
uint8_t cmd;
uint8_t data[16];
uint8_t databytes; //No of data in data; bit 7 = delay after set; 0xFF = end of cmds.
} lcd_init_cmd_t;
static const lcd_init_cmd_t ili_init_cmds[]={
/* Power contorl B, power control = 0, DC_ENA = 1 */
{0xCF, {0x00, 0x83, 0X30}, 3},
/* Power on sequence control,
* cp1 keeps 1 frame, 1st frame enable
* vcl = 0, ddvdh=3, vgh=1, vgl=2
* DDVDH_ENH=1
*/
{0xED, {0x64, 0x03, 0X12, 0X81}, 4},
/* Driver timing control A,
* non-overlap=default +1
* EQ=default - 1, CR=default
* pre-charge=default - 1
*/
{0xE8, {0x85, 0x01, 0x79}, 3},
/* Power control A, Vcore=1.6V, DDVDH=5.6V */
{0xCB, {0x39, 0x2C, 0x00, 0x34, 0x02}, 5},
/* Pump ratio control, DDVDH=2xVCl */
{0xF7, {0x20}, 1},
/* Driver timing control, all=0 unit */
{0xEA, {0x00, 0x00}, 2},
/* Power control 1, GVDD=4.75V */
{0xC0, {0x26}, 1},
/* Power control 2, DDVDH=VCl*2, VGH=VCl*7, VGL=-VCl*3 */
{0xC1, {0x11}, 1},
/* VCOM control 1, VCOMH=4.025V, VCOML=-0.950V */
{0xC5, {0x35, 0x3E}, 2},
/* VCOM control 2, VCOMH=VMH-2, VCOML=VML-2 */
{0xC7, {0xBE}, 1},
/* Memory access contorl, MX=MY=0, MV=1, ML=0, BGR=1, MH=0 */
{0x36, {0x28}, 1},
/* Pixel format, 16bits/pixel for RGB/MCU interface */
{0x3A, {0x55}, 1},
/* Frame rate control, f=fosc, 70Hz fps */
{0xB1, {0x00, 0x1B}, 2},
/* Enable 3G, disabled */
{0xF2, {0x08}, 1},
/* Gamma set, curve 1 */
{0x26, {0x01}, 1},
/* Positive gamma correction */
{0xE0, {0x1F, 0x1A, 0x18, 0x0A, 0x0F, 0x06, 0x45, 0X87, 0x32, 0x0A, 0x07, 0x02, 0x07, 0x05, 0x00}, 15},
/* Negative gamma correction */
{0XE1, {0x00, 0x25, 0x27, 0x05, 0x10, 0x09, 0x3A, 0x78, 0x4D, 0x05, 0x18, 0x0D, 0x38, 0x3A, 0x1F}, 15},
/* Column address set, SC=0, EC=0xEF */
{0x2A, {0x00, 0x00, 0x00, 0xEF}, 4},
/* Page address set, SP=0, EP=0x013F */
{0x2B, {0x00, 0x00, 0x01, 0x3f}, 4},
/* Memory write */
{0x2C, {0}, 0},
/* Entry mode set, Low vol detect disabled, normal display */
{0xB7, {0x07}, 1},
/* Display function control */
{0xB6, {0x0A, 0x82, 0x27, 0x00}, 4},
/* Sleep out */
{0x11, {0}, 0x80},
/* Display on */
{0x29, {0}, 0x80},
{0, {0}, 0xff},
};
//To speed up transfers, every SPI transfer sends a bunch of lines. This define specifies how many. More means more memory use,
//but less overhead for setting up / finishing transfers. Make sure 240 is dividable by this.
#define PARALLEL_LINES 16
struct PrivateSpace { struct PrivateSpace {
uint8_t *iRAM, *Shadowbuffer; uint8_t *iRAM, *Shadowbuffer;
uint8_t ReMap, PageSize; struct {
uint8_t Offset; uint16_t Height, Width;
} Offset;
uint8_t MADCtl, PageSize;
uint8_t Model;
}; };
// Functions are not declared to minimize # of lines // Functions are not declared to minimize # of lines
static void WriteDataByte( struct GDS_Device* Device, uint8_t Data ) { static void WriteByte( struct GDS_Device* Device, uint8_t Data ) {
Device->WriteData( Device, &Data, 1); Device->WriteData( Device, &Data, 1 );
} }
static void SetColumnAddress( struct GDS_Device* Device, uint8_t Start, uint8_t End ) { static void SetColumnAddress( struct GDS_Device* Device, uint16_t Start, uint16_t End ) {
Device->WriteCommand( Device, L1_CMD_COLUMN_ADDRESS_SET ); uint32_t Addr = __builtin_bswap16(Start) | (__builtin_bswap16(End) << 16);
Device->WriteData( Device, &Start, 1 ); Device->WriteCommand( Device, 0x2A );
Device->WriteData( Device, &End, 1 ); Device->WriteData( Device, (uint8_t*) &Addr, 4 );
}
static void SetRowAddress( struct GDS_Device* Device, uint8_t Start, uint8_t End ) {
Device->WriteCommand( Device, L1_CMD_PAGE_ADDRESS_SET );
Device->WriteData( Device, &Start, 1 );
Device->WriteData( Device, &End, 1 );
} }
static void SetRowAddress( struct GDS_Device* Device, uint16_t Start, uint16_t End ) {
uint32_t Addr = __builtin_bswap16(Start) | (__builtin_bswap16(End) << 16);
Device->WriteCommand( Device, 0x2B );
Device->WriteData( Device, (uint8_t*) &Addr, 4 );
}
static void Update16( struct GDS_Device* Device ) {
static void Update( struct GDS_Device* Device ) {
struct PrivateSpace *Private = (struct PrivateSpace*) Device->Private; struct PrivateSpace *Private = (struct PrivateSpace*) Device->Private;
//SetColumnAddress( Device, Private->Offset, Private->Offset + Device->Width / 4 - 1);
SetColumnAddress( Device, Private->Offset, Private->Offset + Device->Width - 1);
#ifdef SHADOW_BUFFER #ifdef SHADOW_BUFFER
uint16_t *optr = (uint16_t*) Private->Shadowbuffer, *iptr = (uint16_t*) Device->Framebuffer; uint32_t *optr = (uint32_t*) Private->Shadowbuffer, *iptr = (uint32_t*) Device->Framebuffer;
bool dirty = false; int FirstCol = Device->Width / 2, LastCol = 0, FirstRow = -1, LastRow = 0;
for (int r = 0, page = 0; r < Device->Height; r++) { for (int r = 0; r < Device->Height; r++) {
// look for change and update shadow (cheap optimization = width always / by 2) // look for change and update shadow (cheap optimization = width is always a multiple of 2)
for (int c = Device->Width / 2 / 2; --c >= 0;) { for (int c = 0; c < Device->Width / 2; c++, iptr++, optr++) {
if (*optr != *iptr) { if (*optr != *iptr) {
dirty = true;
*optr = *iptr; *optr = *iptr;
if (c < FirstCol) FirstCol = c;
if (c > LastCol) LastCol = c;
if (FirstRow < 0) FirstRow = r;
LastRow = r;
} }
iptr++; optr++;
} }
// one line done, check for page boundary // wait for a large enough window - careful that window size might increase by more than a line at once !
if (++page == Private->PageSize) { if (FirstRow < 0 || ((LastCol - FirstCol + 1) * (r - FirstRow + 1) * 4 < PAGE_BLOCK && r != Device->Height - 1)) continue;
if (dirty) {
uint16_t *optr = (uint16_t*) Private->iRAM, *iptr = (uint16_t*) (Private->Shadowbuffer + (r - page + 1) * Device->Width / 2); FirstCol *= 2;
SetRowAddress( Device, r - page + 1, r ); LastCol = LastCol * 2 + 1;
for (int i = page * Device->Width / 2 / 2; --i >= 0; iptr++) *optr++ = (*iptr >> 8) | (*iptr << 8); SetRowAddress( Device, FirstRow + Private->Offset.Height, LastRow + Private->Offset.Height);
//memcpy(Private->iRAM, Private->Shadowbuffer + (r - page + 1) * Device->Width / 2, page * Device->Width / 2 ); SetColumnAddress( Device, FirstCol + Private->Offset.Width, LastCol + Private->Offset.Width );
Device->WriteCommand( Device, 0x5c ); Device->WriteCommand( Device, ENABLE_WRITE );
Device->WriteData( Device, Private->iRAM, Device->Width * page / 2 );
dirty = false; int ChunkSize = (LastCol - FirstCol + 1) * 2;
// own use of IRAM has not proven to be much better than letting SPI do its copy
if (Private->iRAM) {
uint8_t *optr = Private->iRAM;
for (int i = FirstRow; i <= LastRow; i++) {
memcpy(optr, Private->Shadowbuffer + (i * Device->Width + FirstCol) * 2, ChunkSize);
optr += ChunkSize;
if (optr - Private->iRAM <= (PAGE_BLOCK - ChunkSize) && i < LastRow) continue;
Device->WriteData(Device, Private->iRAM, optr - Private->iRAM);
optr = Private->iRAM;
} }
page = 0; } else for (int i = FirstRow; i <= LastRow; i++) {
Device->WriteData( Device, Private->Shadowbuffer + (i * Device->Width + FirstCol) * 2, ChunkSize );
} }
FirstCol = Device->Width / 2; LastCol = 0;
FirstRow = -1;
} }
#else #else
for (int r = 0; r < Device->Height; r += Private->PageSize) { // always update by full lines
SetRowAddress( Device, r, r + Private->PageSize - 1 ); SetColumnAddress( Device, Private->Offset.Width, Device->Width - 1);
Device->WriteCommand( Device, L1_CMD_MEMORY_WRITE );
for (int r = 0; r < Device->Height; r += min(Private->PageSize, Device->Height - r)) {
int Height = min(Private->PageSize, Device->Height - r);
SetRowAddress( Device, Private->Offset.Height + r, Private->Offset.Height + r + Height - 1 );
Device->WriteCommand(Device, ENABLE_WRITE);
if (Private->iRAM) { if (Private->iRAM) {
uint16_t *optr = (uint16_t*) Private->iRAM, *iptr = (uint16_t*) (Device->Framebuffer + r * Device->Width / 2); memcpy(Private->iRAM, Device->Framebuffer + r * Device->Width * 2, Height * Device->Width * 2 );
for (int i = Private->PageSize * Device->Width / 2 / 2; --i >= 0; iptr++) *optr++ = (*iptr >> 8) | (*iptr << 8); Device->WriteData( Device, Private->iRAM, Height * Device->Width * 2 );
//memcpy(Private->iRAM, Device->Framebuffer + r * Device->Width / 2, Private->PageSize * Device->Width / 2 );
Device->WriteData( Device, Private->iRAM, Private->PageSize * Device->Width / 2 );
} else { } else {
Device->WriteData( Device, Device->Framebuffer + r * Device->Width / 2, Private->PageSize * Device->Width / 2 ); Device->WriteData( Device, Device->Framebuffer + r * Device->Width * 2, Height * Device->Width * 2 );
} }
} }
#endif #endif
} }
//Bit Name Description static void Update24( struct GDS_Device* Device ) {
//--- --------------------------- ------------------------------------------------------ struct PrivateSpace *Private = (struct PrivateSpace*) Device->Private;
//MY Row Address Order MCU to memory write/read direction.
//MX Column Address Order MCU to memory write/read direction.
//MV Row / Column Exchange MCU to memory write/read direction.
//ML Vertical Refresh Order LCD vertical refresh direction control.
//BGR RGB-BGR Order Color selector switch control
// (0=RGB color filter panel, 1=BGR color filter panel)
//MH Horizontal Refresh ORDER LCD horizontal refreshing direction control.
// Bits 17-0
// XX XX XX XX XX XX XX XX XX XX MY MX MV ML BGR MH 0 0
typedef enum {
MAC_BIT_MH=2,
MAC_BIT_BGR,
MAC_BIT_ML,
MAC_BIT_MV,
MAC_BIT_MX,
MAC_BIT_MY,
} mac_bits;
uint16_t set_mac_bit(mac_bits bit, uint16_t val){ #ifdef SHADOW_BUFFER
return (1 << bit) | val; uint16_t *optr = (uint16_t*) Private->Shadowbuffer, *iptr = (uint16_t*) Device->Framebuffer;
} int FirstCol = (Device->Width * 3) / 2, LastCol = 0, FirstRow = -1, LastRow = 0;
uint16_t unset_mac_bit(mac_bits bit, uint16_t val){
return ~(1 << bit) & val; for (int r = 0; r < Device->Height; r++) {
// look for change and update shadow (cheap optimization = width always / by 2)
for (int c = 0; c < (Device->Width * 3) / 2; c++, optr++, iptr++) {
if (*optr != *iptr) {
*optr = *iptr;
if (c < FirstCol) FirstCol = c;
if (c > LastCol) LastCol = c;
if (FirstRow < 0) FirstRow = r;
LastRow = r;
}
}
// do we have enough to send (cols are divided by 3/2)
if (FirstRow < 0 || ((((LastCol - FirstCol + 1) * 2 ) / 3) * (r - FirstRow + 1) * 4 < PAGE_BLOCK && r != Device->Height - 1)) continue;
FirstCol = (FirstCol * 2) / 3;
LastCol = (LastCol * 2 + 1 ) / 3;
SetRowAddress( Device, FirstRow + Private->Offset.Height, LastRow + Private->Offset.Height);
SetColumnAddress( Device, FirstCol + Private->Offset.Width, LastCol + Private->Offset.Width );
Device->WriteCommand( Device, ENABLE_WRITE );
int ChunkSize = (LastCol - FirstCol + 1) * 3;
// own use of IRAM has not proven to be much better than letting SPI do its copy
if (Private->iRAM) {
uint8_t *optr = Private->iRAM;
for (int i = FirstRow; i <= LastRow; i++) {
memcpy(optr, Private->Shadowbuffer + (i * Device->Width + FirstCol) * 3, ChunkSize);
optr += ChunkSize;
if (optr - Private->iRAM <= (PAGE_BLOCK - ChunkSize) && i < LastRow) continue;
Device->WriteData(Device, Private->iRAM, optr - Private->iRAM);
optr = Private->iRAM;
}
} else for (int i = FirstRow; i <= LastRow; i++) {
Device->WriteData( Device, Private->Shadowbuffer + (i * Device->Width + FirstCol) * 3, ChunkSize );
}
FirstCol = (Device->Width * 3) / 2; LastCol = 0;
FirstRow = -1;
}
#else
// always update by full lines
SetColumnAddress( Device, Private->Offset.Width, Device->Width - 1);
for (int r = 0; r < Device->Height; r += min(Private->PageSize, Device->Height - r)) {
int Height = min(Private->PageSize, Device->Height - r);
SetRowAddress( Device, Private->Offset.Height + r, Private->Offset.Height + r + Height - 1 );
Device->WriteCommand(Device, ENABLE_WRITE);
if (Private->iRAM) {
memcpy(Private->iRAM, Device->Framebuffer + r * Device->Width * 3, Height * Device->Width * 3 );
Device->WriteData( Device, Private->iRAM, Height * Device->Width * 3 );
} else {
Device->WriteData( Device, Device->Framebuffer + r * Device->Width * 3, Height * Device->Width * 3 );
}
}
#endif
} }
static void SetLayout( struct GDS_Device* Device, bool HFlip, bool VFlip, bool Rotate ) { static void SetLayout( struct GDS_Device* Device, bool HFlip, bool VFlip, bool Rotate ) {
struct PrivateSpace *Private = (struct PrivateSpace*) Device->Private; struct PrivateSpace *Private = (struct PrivateSpace*) Device->Private;
Private->ReMap = HFlip ? (Private->ReMap & ~(1 << MAC_BIT_MX)) : (Private->ReMap | (1 << MAC_BIT_MX)); ESP_LOGI(TAG, "SetLayout 197 HFlip=%d VFlip=%d Rotate=%d (1=true)", HFlip, VFlip, Rotate);
Private->ReMap = VFlip ? (Private->ReMap | (1 << MAC_BIT_MY)) : (Private->ReMap & ~(1 << MAC_BIT_MY)); // D/CX RDX WRX D17-8 D7 D6 D5 D4 D3 D2 D1 D0 HEX
Device->WriteCommand( Device, L1_CMD_MEMORY_ACCESS_CONTROL ); //Command 0 1 ↑ XX 0 0 1 1 0 1 1 0 36h
Device->WriteData( Device, &Private->ReMap, 1 ); //Parameter 1 1 ↑ XX MY MX MV ML BGR MH 0 0 00
WriteDataByte(Device,0x00); //Orientation 0: MADCtl = 0x80 = 1000 0000 (MY=1)
if ((Device->Height)>(Device->Width)){ //Resolution = 320x240
Private->MADCtl = (1 << 7); // 0x80 = default (no Rotation an no Flip)
if (HFlip) { //Flip Horizontal
int a = Private->MADCtl;
Private->MADCtl = (a ^ (1 << 7));
}
if (Rotate) { //Rotate 180 degr.
int a = Private->MADCtl;
a = (a ^ (1 << 7));
Private->MADCtl = (a ^ (1 << 6));
}
if (VFlip) { //Flip Vertical
int a = Private->MADCtl;
Private->MADCtl = (a ^ (1 << 6));
}
} else { //Resolution = 240x320
Private->MADCtl = (1 << 5); // 0x20 = default (no Rotation an no Flip)
if (HFlip) { //Flip Horizontal
int a = Private->MADCtl;
Private->MADCtl = (a ^ (1 << 6));
}
if (Rotate) { //Rotate 180 degr.
int a = Private->MADCtl;
a = (a ^ (1 << 7));
Private->MADCtl = (a ^ (1 << 6));
}
if (VFlip) { //Flip Vertical
int a = Private->MADCtl;
Private->MADCtl = (a ^ (1 << 7));
}
}
/*//----- Or Rotation: -----
Private->MADCtl = 0x80; //Orientation 0 degree
if (HFlip) { //Orientation 90 degree
Private->MADCtl = 0x20;
int a = Device->Height;
int b = Device->Width;
Device->Height = b;
Device->Width = a;
}
if (Rotate) { //Orientation 180 degree
Private->MADCtl = 0x40;
}
if (VFlip) { //Orientation 270 degree
Private->MADCtl = 0xE0;
int a = Device->Height;
int b = Device->Width;
Device->Height = b;
Device->Width = a;
}
*/
ESP_LOGI(TAG, "SetLayout 255 Private->MADCtl=%hhu", Private->MADCtl);
Device->WriteCommand( Device, 0x36 );
WriteByte( Device, Private->MADCtl );
#ifdef SHADOW_BUFFER
// force a full refresh (almost ...)
memset(Private->Shadowbuffer, 0xAA, Device->FramebufferSize);
#endif
} }
static void DisplayOn( struct GDS_Device* Device ) { Device->WriteCommand( Device, L1_CMD_DISPLAY_ON ); } static void DisplayOn( struct GDS_Device* Device ) { Device->WriteCommand( Device, 0x29 ); } //DISPON =0x29
static void DisplayOff( struct GDS_Device* Device ) { Device->WriteCommand( Device, L1_CMD_DISPLAY_OFF ); } static void DisplayOff( struct GDS_Device* Device ) { Device->WriteCommand( Device, 0x28 ); } //DISPOFF=0x28
static void SetContrast( struct GDS_Device* Device, uint8_t Contrast ) { static void SetContrast( struct GDS_Device* Device, uint8_t Contrast ) {
Device->WriteCommand( Device, L1_CMD_WRITE_DISPLAY_BRIGHTNESS ); Device->WriteCommand( Device, 0x51 );
uint8_t loc_contrast = (uint8_t)((float)Contrast/5.0f* 255.0f); WriteByte( Device, Contrast );
Device->WriteData( Device, &loc_contrast , 1 );
WriteDataByte(Device,0x00); Device->SetContrast = NULL;
GDS_SetContrast( Device, Contrast );
Device->SetContrast = SetContrast; // 0x00 value means the lowest brightness and 0xFF value means the highest brightness.
} }
static bool Init( struct GDS_Device* Device ) { static bool Init( struct GDS_Device* Device ) {
struct PrivateSpace *Private = (struct PrivateSpace*) Device->Private; struct PrivateSpace *Private = (struct PrivateSpace*) Device->Private;
int Depth = (Device->Depth + 8 - 1) / 8;
Private->PageSize = min(8, PAGE_BLOCK / (Device->Width * Depth));
// Private->Offset = (480 - Device->Width) / 4 / 2;
// find a page size that is not too small is an integer of height
Private->PageSize = min(8, PAGE_BLOCK / (Device->Width / 2));
Private->PageSize = Device->Height / (Device->Height / Private->PageSize) ;
#ifdef SHADOW_BUFFER #ifdef SHADOW_BUFFER
// Private->Shadowbuffer = malloc( Device->FramebufferSize ); Private->Shadowbuffer = malloc( Device->FramebufferSize );
// memset(Private->Shadowbuffer, 0xFF, Device->FramebufferSize); memset(Private->Shadowbuffer, 0xFF, Device->FramebufferSize);
#endif
#ifdef USE_IRAM
Private->iRAM = heap_caps_malloc( (Private->PageSize + 1) * Device->Width * Depth, MALLOC_CAP_INTERNAL | MALLOC_CAP_DMA );
#endif #endif
Private->iRAM =NULL;
//Private->iRAM =heap_caps_malloc(320*PARALLEL_LINES*sizeof(uint16_t), MALLOC_CAP_DMA);
ESP_LOGI(TAG, "ILI9341 with bit default-depth %u, page %u, iRAM %p", Device->Depth, Private->PageSize, Private->iRAM);
//ESP_LOGI(TAG, "ILI9341 with offset %u, page %u, iRAM %p", Private->Offset, Private->PageSize, Private->iRAM); // Sleepout + Booster
ESP_LOGI(TAG, "ILI9341 "); Device->WriteCommand( Device, 0x11 );
// need to be off and disable display RAM // need BGR & Address Mode
Device->DisplayOff( Device ); //Private->MADCtl = 1 << 3; // for ST77xx = 0x40
int cmd=0; //Private->MADCtl = 1 << 7; // for ILI9341 = 0x80 (320x240) or 0x20 (240x320)
//Send all the commands //Device->WriteCommand( Device, 0x36 );
while (ili_init_cmds[cmd].databytes!=0xff) { //WriteByte( Device, Private->MADCtl );
Device->WriteCommand( Device, ili_init_cmds[cmd].cmd );
Device->WriteData(Device,ili_init_cmds[cmd].data,ili_init_cmds[cmd].databytes&0x1F); // set flip modes & contrast
if (ili_init_cmds[cmd].databytes&0x80) { GDS_SetContrast( Device, 0x7f );
vTaskDelay(100 / portTICK_RATE_MS); Device->SetLayout( Device, false, false, false );
}
cmd++; // set screen depth (16/18) *** INTERFACE PIXEL FORMAT: 0x66=18 bit; 0x55=16 bit
} Device->WriteCommand( Device, 0x3A );
if (Private->Model == ILI9341_24) WriteByte( Device, Device->Depth == 24 ? 0x66 : 0x55 );
else WriteByte( Device, Device->Depth == 24 ? 0x66 : 0x55 );
ESP_LOGI(TAG, "ILI9341_Init 312 device-depth %u, 0x66/0x55=0x%X", Device->Depth, Device->Depth == 24 ? 0x66 : 0x55);
// no Display Inversion (INVOFF=0x20 INVON=0x21)
Device->WriteCommand( Device, 0x20 );
//Gamma Correction: Enable next two line and enabel one of the Test0x Section... or build you own 15 Parameter...
Device->WriteCommand( Device, 0xF2 ); WriteByte( Device, 0x03 ); // 3Gamma Function: Disable = default (0x02), Enable (0x03)
Device->WriteCommand( Device, 0x26 ); WriteByte( Device, 0x01 ); // Gamma curve selected (0x01, 0x02, 0x04, 0x08) - A maximum of 4 fixed gamma curves can be selected
//Gamma Correction Test01
Device->WriteCommand( Device, 0xE0 ); // Positive Gamma Correction (15 Parameter)
WriteByte( Device, 0x0F ); WriteByte( Device, 0x31 ); WriteByte( Device, 0x2B ); WriteByte( Device, 0x0C ); WriteByte( Device, 0x0E );
WriteByte( Device, 0x08 ); WriteByte( Device, 0x4E ); WriteByte( Device, 0xF1 ); WriteByte( Device, 0x37 ); WriteByte( Device, 0x07 );
WriteByte( Device, 0x10 ); WriteByte( Device, 0x03 ); WriteByte( Device, 0x0E ); WriteByte( Device, 0x09 ); WriteByte( Device, 0x00 );
Device->WriteCommand( Device, 0xE1 ); // Negative Gamma Correction (15 Parameter)
WriteByte( Device, 0x00 ); WriteByte( Device, 0x0E ); WriteByte( Device, 0x14 ); WriteByte( Device, 0x03 ); WriteByte( Device, 0x11 );
WriteByte( Device, 0x07 ); WriteByte( Device, 0x31 ); WriteByte( Device, 0xC1 ); WriteByte( Device, 0x48 ); WriteByte( Device, 0x08 );
WriteByte( Device, 0x0F ); WriteByte( Device, 0x0C ); WriteByte( Device, 0x31 ); WriteByte( Device, 0x36 ); WriteByte( Device, 0x0F );
/*//Gamma Correction Test02
Device->WriteCommand( Device, 0xE0 ); // Positive Gamma Correction (15 Parameter)
WriteByte( Device, 0x1F ); WriteByte( Device, 0x1A ); WriteByte( Device, 0x18 ); WriteByte( Device, 0x0A ); WriteByte( Device, 0x0F );
WriteByte( Device, 0x06 ); WriteByte( Device, 0x45 ); WriteByte( Device, 0x87 ); WriteByte( Device, 0x32 ); WriteByte( Device, 0x0a );
WriteByte( Device, 0x07 ); WriteByte( Device, 0x02 ); WriteByte( Device, 0x07 ); WriteByte( Device, 0x05 ); WriteByte( Device, 0x00 );
Device->WriteCommand( Device, 0xE1 ); // Negative Gamma Correction (15 Parameter)
WriteByte( Device, 0x00 ); WriteByte( Device, 0x25 ); WriteByte( Device, 0x27 ); WriteByte( Device, 0x05 ); WriteByte( Device, 0x10 );
WriteByte( Device, 0x09 ); WriteByte( Device, 0x3a ); WriteByte( Device, 0x78 ); WriteByte( Device, 0x4d ); WriteByte( Device, 0x05 );
WriteByte( Device, 0x18 ); WriteByte( Device, 0x0d ); WriteByte( Device, 0x38 ); WriteByte( Device, 0x3a ); WriteByte( Device, 0x1F );
*/
/*//Gamma Correction Test03
Device->WriteCommand( Device, 0xE0 ); // Positive Gamma Correction (15 Parameter)
WriteByte( Device, 0x0F ); WriteByte( Device, 0x3F ); WriteByte( Device, 0x2F ); WriteByte( Device, 0x0C ); WriteByte( Device, 0x10 );
WriteByte( Device, 0x0A ); WriteByte( Device, 0x53 ); WriteByte( Device, 0xD5 ); WriteByte( Device, 0x40 ); WriteByte( Device, 0x0A );
WriteByte( Device, 0x13 ); WriteByte( Device, 0x03 ); WriteByte( Device, 0x08 ); WriteByte( Device, 0x03 ); WriteByte( Device, 0x00 );
Device->WriteCommand( Device, 0xE1 ); // Negative Gamma Correction (15 Parameter)
WriteByte( Device, 0x00 ); WriteByte( Device, 0x00 ); WriteByte( Device, 0x10 ); WriteByte( Device, 0x03 ); WriteByte( Device, 0x0F );
WriteByte( Device, 0x05 ); WriteByte( Device, 0x2C ); WriteByte( Device, 0xA2 ); WriteByte( Device, 0x3F ); WriteByte( Device, 0x05 );
WriteByte( Device, 0x0E ); WriteByte( Device, 0x0C ); WriteByte( Device, 0x37 ); WriteByte( Device, 0x3c ); WriteByte( Device, 0x0F );
*/
/*//Gamma Correction Test04 (no real values... only to test, that Gamme Correction works... you see very light cover-images)
Device->WriteCommand( Device, 0xE0 ); // Positive Gamma Correction (15 Parameter)
WriteByte( Device, 0x22 ); WriteByte( Device, 0x22 ); WriteByte( Device, 0x22 ); WriteByte( Device, 0x22 ); WriteByte( Device, 0x22 );
WriteByte( Device, 0x22 ); WriteByte( Device, 0x22 ); WriteByte( Device, 0x22 ); WriteByte( Device, 0x22 ); WriteByte( Device, 0x22 );
WriteByte( Device, 0x22 ); WriteByte( Device, 0x22 ); WriteByte( Device, 0x22 ); WriteByte( Device, 0x22 ); WriteByte( Device, 0x22 );
Device->WriteCommand( Device, 0xE1 ); // Negative Gamma Correction (15 Parameter)
WriteByte( Device, 0x10 ); WriteByte( Device, 0x10 ); WriteByte( Device, 0x10 ); WriteByte( Device, 0x10 ); WriteByte( Device, 0x10 );
WriteByte( Device, 0x10 ); WriteByte( Device, 0x10 ); WriteByte( Device, 0x10 ); WriteByte( Device, 0x10 ); WriteByte( Device, 0x10 );
WriteByte( Device, 0x10 ); WriteByte( Device, 0x10 ); WriteByte( Device, 0x10 ); WriteByte( Device, 0x10 ); WriteByte( Device, 0x10 );
*/
// gone with the wind // gone with the wind
Device->DisplayOn( Device ); Device->DisplayOn( Device );
@@ -345,21 +365,38 @@ static bool Init( struct GDS_Device* Device ) {
return true; return true;
} }
static const struct GDS_Device ILI9341 = { static const struct GDS_Device ILI9341_X = {
.DisplayOn = DisplayOn, .DisplayOff = DisplayOff, .SetContrast = SetContrast, .DisplayOn = DisplayOn, .DisplayOff = DisplayOff,
.SetLayout = SetLayout, .SetLayout = SetLayout,
.Update = Update, .Init = Init, .Update = Update16, .Init = Init,
.Mode = GDS_RGB565, .Depth = 16,
}; };
struct GDS_Device* ILI9341_Detect(char *Driver, struct GDS_Device* Device) { struct GDS_Device* ILI9341_Detect(char *Driver, struct GDS_Device* Device) {
if (!strcasestr(Driver, "ILI9341")) return NULL; uint8_t Model;
//int Depth=18; // 18bit (=24bit) colordepth
int Depth=16; // 16bit colordepth
if (strcasestr(Driver, "ILI9341")) Model = ILI9341;
else if (strcasestr(Driver, "ILI9341_24")) Model = ILI9341_24; //for future use...
else return NULL;
//ESP_LOGI(TAG, "ILI9341_Detect 383 Model=%hhu (0=ILI9341, 1=ILI9341_24) and Depth=%d", Model,Depth);
if (!Device) Device = calloc(1, sizeof(struct GDS_Device)); if (!Device) Device = calloc(1, sizeof(struct GDS_Device));
*Device = ILI9341; *Device = ILI9341_X;
Device->Depth = 4; sscanf(Driver, "%*[^:]:%u", &Depth); // NVS-Parameter driver=ILI9341[:16|18]
struct PrivateSpace* Private = (struct PrivateSpace*) Device->Private;
Private->Model = Model;
ESP_LOGI(TAG, "ILI9341_Detect 391 Driver= %s Depth=%d", Driver, Depth);
if (Depth == 18) {
Device->Mode = GDS_RGB888;
Device->Depth = 24;
Device->Update = Update24;
}
if (Model == ILI9341_24) Device->SetContrast = SetContrast;
return Device; return Device;
} }

View File

@@ -60,8 +60,8 @@ static const char *known_drivers[] = {"SH1106",
static void displayer_task(void *args); static void displayer_task(void *args);
struct GDS_Device *display; struct GDS_Device *display;
extern GDS_DetectFunc SSD1306_Detect, SSD132x_Detect, SH1106_Detect, SSD1675_Detect, SSD1322_Detect, SSD1351_Detect, ST77xx_Detect; extern GDS_DetectFunc SSD1306_Detect, SSD132x_Detect, SH1106_Detect, SSD1675_Detect, SSD1322_Detect, SSD1351_Detect, ST77xx_Detect, ILI9341_Detect;
GDS_DetectFunc *drivers[] = { SH1106_Detect, SSD1306_Detect, SSD132x_Detect, SSD1675_Detect, SSD1322_Detect, SSD1351_Detect, ST77xx_Detect, NULL }; GDS_DetectFunc *drivers[] = { SH1106_Detect, SSD1306_Detect, SSD132x_Detect, SSD1675_Detect, SSD1322_Detect, SSD1351_Detect, ST77xx_Detect, ILI9341_Detect, NULL };
/**************************************************************************************** /****************************************************************************************
* *