move to new cspot

This commit is contained in:
philippe44
2023-03-25 16:48:41 -07:00
parent c712b78931
commit 008c36facf
2983 changed files with 465270 additions and 13569 deletions

View File

@@ -0,0 +1,11 @@
#include "BellLogger.h"
bell::AbstractLogger* bell::bellGlobalLogger;
void bell::setDefaultLogger() {
bell::bellGlobalLogger = new bell::BellLogger();
}
void bell::enableSubmoduleLogging() {
bell::bellGlobalLogger->enableSubmodule = true;
}

View File

@@ -0,0 +1,37 @@
#include "BellUtils.h"
std::string bell::generateRandomUUID() {
static std::random_device dev;
static std::mt19937 rng(dev());
std::uniform_int_distribution<int> dist(0, 15);
const char* v = "0123456789abcdef";
const bool dash[] = {0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0};
std::string res;
for (int i = 0; i < 16; i++) {
if (dash[i])
res += "-";
res += v[dist(rng)];
res += v[dist(rng)];
}
return res;
}
std::string bell::getMacAddress() {
#ifdef ESP_PLATFORM
uint8_t mac[6];
esp_read_mac(mac, ESP_MAC_WIFI_STA);
char macStr[18];
sprintf(macStr, "%02x:%02x:%02x:%02x:%02x:%02x", mac[0], mac[1], mac[2],
mac[3], mac[4], mac[5]);
return std::string(macStr);
#endif
return "00:00:00:00:00:00";
}
void bell::freeAndNull(void*& ptr) {
free(ptr);
ptr = nullptr;
}

View File

@@ -0,0 +1,219 @@
#include "Crypto.h"
CryptoMbedTLS::CryptoMbedTLS() {}
CryptoMbedTLS::~CryptoMbedTLS() {
if (aesCtxInitialized) {
mbedtls_aes_free(&aesCtx);
}
}
std::vector<uint8_t> CryptoMbedTLS::base64Decode(const std::string& data) {
// Calculate max decode length
size_t requiredSize;
mbedtls_base64_encode(nullptr, 0, &requiredSize, (unsigned char*)data.c_str(),
data.size());
std::vector<uint8_t> output(requiredSize);
size_t outputLen = 0;
mbedtls_base64_decode(output.data(), requiredSize, &outputLen,
(unsigned char*)data.c_str(), data.size());
return std::vector<uint8_t>(output.begin(), output.begin() + outputLen);
}
std::string CryptoMbedTLS::base64Encode(const std::vector<uint8_t>& data) {
// Calculate max output length
size_t requiredSize;
mbedtls_base64_encode(nullptr, 0, &requiredSize, data.data(), data.size());
std::vector<uint8_t> output(requiredSize);
size_t outputLen = 0;
mbedtls_base64_encode(output.data(), requiredSize, &outputLen, data.data(),
data.size());
return std::string(output.begin(), output.begin() + outputLen);
}
// Sha1
void CryptoMbedTLS::sha1Init() {
// Init mbedtls md context, pick sha1
mbedtls_md_init(&sha1Context);
mbedtls_md_setup(&sha1Context, mbedtls_md_info_from_type(MBEDTLS_MD_SHA1), 1);
mbedtls_md_starts(&sha1Context);
}
void CryptoMbedTLS::sha1Update(const std::string& s) {
sha1Update(std::vector<uint8_t>(s.begin(), s.end()));
}
void CryptoMbedTLS::sha1Update(const std::vector<uint8_t>& vec) {
mbedtls_md_update(&sha1Context, vec.data(), vec.size());
}
std::vector<uint8_t> CryptoMbedTLS::sha1FinalBytes() {
std::vector<uint8_t> digest(20); // SHA1 digest size
mbedtls_md_finish(&sha1Context, digest.data());
mbedtls_md_free(&sha1Context);
return digest;
}
std::string CryptoMbedTLS::sha1Final() {
auto digest = sha1FinalBytes();
return std::string(digest.begin(), digest.end());
}
// HMAC SHA1
std::vector<uint8_t> CryptoMbedTLS::sha1HMAC(
const std::vector<uint8_t>& inputKey, const std::vector<uint8_t>& message) {
std::vector<uint8_t> digest(20); // SHA1 digest size
sha1Init();
mbedtls_md_hmac_starts(&sha1Context, inputKey.data(), inputKey.size());
mbedtls_md_hmac_update(&sha1Context, message.data(), message.size());
mbedtls_md_hmac_finish(&sha1Context, digest.data());
mbedtls_md_free(&sha1Context);
return digest;
}
// AES CTR
void CryptoMbedTLS::aesCTRXcrypt(const std::vector<uint8_t>& key,
std::vector<uint8_t>& iv, uint8_t* buffer,
size_t nbytes) {
if (!aesCtxInitialized) {
mbedtls_aes_init(&aesCtx);
aesCtxInitialized = true;
}
// needed for internal cache
size_t off = 0;
unsigned char streamBlock[16] = {0};
// set IV
if (mbedtls_aes_setkey_enc(&aesCtx, key.data(), key.size() * 8) != 0) {
throw std::runtime_error("Failed to set AES key");
}
// Perform decrypt
if (mbedtls_aes_crypt_ctr(&aesCtx, nbytes, &off, iv.data(), streamBlock,
buffer, buffer) != 0) {
throw std::runtime_error("Failed to decrypt");
}
}
void CryptoMbedTLS::aesECBdecrypt(const std::vector<uint8_t>& key,
std::vector<uint8_t>& data) {
struct AES_ctx aesCtr;
AES_init_ctx(&aesCtr, key.data());
for (unsigned int x = 0; x < data.size() / 16; x++) {
AES_ECB_decrypt(&aesCtr, data.data() + (x * 16));
}
}
// PBKDF2
std::vector<uint8_t> CryptoMbedTLS::pbkdf2HmacSha1(
const std::vector<uint8_t>& password, const std::vector<uint8_t>& salt,
int iterations, int digestSize) {
auto digest = std::vector<uint8_t>(digestSize);
// Init sha context
sha1Init();
mbedtls_pkcs5_pbkdf2_hmac(&sha1Context, password.data(), password.size(),
salt.data(), salt.size(), iterations, digestSize,
digest.data());
// Free sha context
mbedtls_md_free(&sha1Context);
return digest;
}
void CryptoMbedTLS::dhInit() {
privateKey = generateVectorWithRandomData(DH_KEY_SIZE);
// initialize big num
mbedtls_mpi prime, generator, res, privKey;
mbedtls_mpi_init(&prime);
mbedtls_mpi_init(&generator);
mbedtls_mpi_init(&privKey);
mbedtls_mpi_init(&res);
// Read bin into big num mpi
mbedtls_mpi_read_binary(&prime, DHPrime, sizeof(DHPrime));
mbedtls_mpi_read_binary(&generator, DHGenerator, sizeof(DHGenerator));
mbedtls_mpi_read_binary(&privKey, privateKey.data(), DH_KEY_SIZE);
// perform diffie hellman G^X mod P
mbedtls_mpi_exp_mod(&res, &generator, &privKey, &prime, NULL);
// Write generated public key to vector
this->publicKey = std::vector<uint8_t>(DH_KEY_SIZE);
mbedtls_mpi_write_binary(&res, publicKey.data(), DH_KEY_SIZE);
// Release memory
mbedtls_mpi_free(&prime);
mbedtls_mpi_free(&generator);
mbedtls_mpi_free(&privKey);
mbedtls_mpi_free(&res);
}
std::vector<uint8_t> CryptoMbedTLS::dhCalculateShared(
const std::vector<uint8_t>& remoteKey) {
// initialize big num
mbedtls_mpi prime, remKey, res, privKey;
mbedtls_mpi_init(&prime);
mbedtls_mpi_init(&remKey);
mbedtls_mpi_init(&privKey);
mbedtls_mpi_init(&res);
// Read bin into big num mpi
mbedtls_mpi_read_binary(&prime, DHPrime, sizeof(DHPrime));
mbedtls_mpi_read_binary(&remKey, remoteKey.data(), remoteKey.size());
mbedtls_mpi_read_binary(&privKey, privateKey.data(), DH_KEY_SIZE);
// perform diffie hellman (G^Y)^X mod P (for shared secret)
mbedtls_mpi_exp_mod(&res, &remKey, &privKey, &prime, NULL);
auto sharedKey = std::vector<uint8_t>(DH_KEY_SIZE);
mbedtls_mpi_write_binary(&res, sharedKey.data(), DH_KEY_SIZE);
// Release memory
mbedtls_mpi_free(&prime);
mbedtls_mpi_free(&remKey);
mbedtls_mpi_free(&privKey);
mbedtls_mpi_free(&res);
return sharedKey;
}
// Random stuff
std::vector<uint8_t> CryptoMbedTLS::generateVectorWithRandomData(
size_t length) {
std::vector<uint8_t> randomVector(length);
mbedtls_entropy_context entropy;
mbedtls_ctr_drbg_context ctrDrbg;
// Personification string
const char* pers = "cspotGen";
// init entropy and random num generator
mbedtls_entropy_init(&entropy);
mbedtls_ctr_drbg_init(&ctrDrbg);
// Seed the generator
mbedtls_ctr_drbg_seed(&ctrDrbg, mbedtls_entropy_func, &entropy,
(const unsigned char*)pers, 7);
// Generate random bytes
mbedtls_ctr_drbg_random(&ctrDrbg, randomVector.data(), length);
// Release memory
mbedtls_entropy_free(&entropy);
mbedtls_ctr_drbg_free(&ctrDrbg);
return randomVector;
}

View File

@@ -0,0 +1,78 @@
#include "NanoPBHelper.h"
static bool vectorWrite(pb_ostream_t *stream, const pb_byte_t *buf, size_t count)
{
size_t i;
auto *dest = reinterpret_cast<std::vector<uint8_t> *>(stream->state);
dest->insert(dest->end(), buf, buf + count);
return true;
}
pb_ostream_t pb_ostream_from_vector(std::vector<uint8_t> &vec)
{
pb_ostream_t stream;
stream.callback = &vectorWrite;
stream.state = &vec;
stream.max_size = 100000;
stream.bytes_written = 0;
return stream;
}
std::vector<uint8_t> pbEncode(const pb_msgdesc_t *fields, const void *src_struct)
{
std::vector<uint8_t> vecData(0);
pb_ostream_t stream = pb_ostream_from_vector(vecData);
pb_encode(&stream, fields, src_struct);
return vecData;
}
void packString(char *&dst, std::string stringToPack)
{
dst = (char *)malloc((strlen(stringToPack.c_str()) + 1) * sizeof(char));
strcpy(dst, stringToPack.c_str());
}
pb_bytes_array_t* vectorToPbArray(const std::vector<uint8_t>& vectorToPack)
{
auto size = static_cast<pb_size_t>(vectorToPack.size());
auto result = static_cast<pb_bytes_array_t *>(
malloc(PB_BYTES_ARRAY_T_ALLOCSIZE(size)));
result->size = size;
memcpy(result->bytes, vectorToPack.data(), size);
return result;
}
void pbPutString(const std::string &stringToPack, char* dst) {
stringToPack.copy(dst, stringToPack.size());
dst[stringToPack.size()] = '\0';
}
void pbPutCharArray(const char * stringToPack, char* dst) {
// copy stringToPack into dst
strcpy(dst, stringToPack);
//dst[sizeof(stringToPack)-1] = '\0';
}
void pbPutBytes(const std::vector<uint8_t> &data, pb_bytes_array_t &dst) {
dst.size = data.size();
std::copy(data.begin(), data.end(), dst.bytes);
}
std::vector<uint8_t> pbArrayToVector(pb_bytes_array_t* pbArray) {
return std::vector<uint8_t>(pbArray->bytes, pbArray->bytes + pbArray->size);
}
const char *pb_encode_to_string(const pb_msgdesc_t *fields, const void *data) {
size_t len;
pb_get_encoded_size(&len, fields, data);
auto *buf = static_cast<uint8_t *>(malloc(len + 1));
auto ostream = pb_ostream_from_buffer(buf, len);
pb_encode(&ostream, fields, data);
buf[len] = '\0';
return reinterpret_cast<const char *>(buf);
}

View File

@@ -0,0 +1,571 @@
/*
This is an implementation of the AES algorithm, specifically ECB, CTR and CBC mode.
Block size can be chosen in aes.h - available choices are AES128, AES192, AES256.
The implementation is verified against the test vectors in:
National Institute of Standards and Technology Special Publication 800-38A 2001 ED
ECB-AES128
----------
plain-text:
6bc1bee22e409f96e93d7e117393172a
ae2d8a571e03ac9c9eb76fac45af8e51
30c81c46a35ce411e5fbc1191a0a52ef
f69f2445df4f9b17ad2b417be66c3710
key:
2b7e151628aed2a6abf7158809cf4f3c
resulting cipher
3ad77bb40d7a3660a89ecaf32466ef97
f5d3d58503b9699de785895a96fdbaaf
43b1cd7f598ece23881b00e3ed030688
7b0c785e27e8ad3f8223207104725dd4
NOTE: String length must be evenly divisible by 16byte (str_len % 16 == 0)
You should pad the end of the string with zeros if this is not the case.
For AES192/256 the key size is proportionally larger.
*/
/*****************************************************************************/
/* Includes: */
/*****************************************************************************/
#include <string.h> // CBC mode, for memset
#include "aes.h"
/*****************************************************************************/
/* Defines: */
/*****************************************************************************/
// The number of columns comprising a state in AES. This is a constant in AES. Value=4
#define Nb 4
#if defined(AES256) && (AES256 == 1)
#define Nk 8
#define Nr 14
#elif defined(AES192) && (AES192 == 1)
#define Nk 6
#define Nr 12
#else
#define Nk 4 // The number of 32 bit words in a key.
#define Nr 10 // The number of rounds in AES Cipher.
#endif
// jcallan@github points out that declaring Multiply as a function
// reduces code size considerably with the Keil ARM compiler.
// See this link for more information: https://github.com/kokke/tiny-AES-C/pull/3
#ifndef MULTIPLY_AS_A_FUNCTION
#define MULTIPLY_AS_A_FUNCTION 0
#endif
/*****************************************************************************/
/* Private variables: */
/*****************************************************************************/
// state - array holding the intermediate results during decryption.
typedef uint8_t state_t[4][4];
// The lookup-tables are marked const so they can be placed in read-only storage instead of RAM
// The numbers below can be computed dynamically trading ROM for RAM -
// This can be useful in (embedded) bootloader applications, where ROM is often limited.
static const uint8_t sbox[256] = {
//0 1 2 3 4 5 6 7 8 9 A B C D E F
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };
#if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
static const uint8_t rsbox[256] = {
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };
#endif
// The round constant word array, Rcon[i], contains the values given by
// x to the power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8)
static const uint8_t Rcon[11] = {
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 };
/*
* Jordan Goulder points out in PR #12 (https://github.com/kokke/tiny-AES-C/pull/12),
* that you can remove most of the elements in the Rcon array, because they are unused.
*
* From Wikipedia's article on the Rijndael key schedule @ https://en.wikipedia.org/wiki/Rijndael_key_schedule#Rcon
*
* "Only the first some of these constants are actually used up to rcon[10] for AES-128 (as 11 round keys are needed),
* up to rcon[8] for AES-192, up to rcon[7] for AES-256. rcon[0] is not used in AES algorithm."
*/
/*****************************************************************************/
/* Private functions: */
/*****************************************************************************/
/*
static uint8_t getSBoxValue(uint8_t num)
{
return sbox[num];
}
*/
#define getSBoxValue(num) (sbox[(num)])
// This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states.
static void KeyExpansion(uint8_t* RoundKey, const uint8_t* Key)
{
unsigned i, j, k;
uint8_t tempa[4]; // Used for the column/row operations
// The first round key is the key itself.
for (i = 0; i < Nk; ++i)
{
RoundKey[(i * 4) + 0] = Key[(i * 4) + 0];
RoundKey[(i * 4) + 1] = Key[(i * 4) + 1];
RoundKey[(i * 4) + 2] = Key[(i * 4) + 2];
RoundKey[(i * 4) + 3] = Key[(i * 4) + 3];
}
// All other round keys are found from the previous round keys.
for (i = Nk; i < Nb * (Nr + 1); ++i)
{
{
k = (i - 1) * 4;
tempa[0]=RoundKey[k + 0];
tempa[1]=RoundKey[k + 1];
tempa[2]=RoundKey[k + 2];
tempa[3]=RoundKey[k + 3];
}
if (i % Nk == 0)
{
// This function shifts the 4 bytes in a word to the left once.
// [a0,a1,a2,a3] becomes [a1,a2,a3,a0]
// Function RotWord()
{
const uint8_t u8tmp = tempa[0];
tempa[0] = tempa[1];
tempa[1] = tempa[2];
tempa[2] = tempa[3];
tempa[3] = u8tmp;
}
// SubWord() is a function that takes a four-byte input word and
// applies the S-box to each of the four bytes to produce an output word.
// Function Subword()
{
tempa[0] = getSBoxValue(tempa[0]);
tempa[1] = getSBoxValue(tempa[1]);
tempa[2] = getSBoxValue(tempa[2]);
tempa[3] = getSBoxValue(tempa[3]);
}
tempa[0] = tempa[0] ^ Rcon[i/Nk];
}
#if defined(AES256) && (AES256 == 1)
if (i % Nk == 4)
{
// Function Subword()
{
tempa[0] = getSBoxValue(tempa[0]);
tempa[1] = getSBoxValue(tempa[1]);
tempa[2] = getSBoxValue(tempa[2]);
tempa[3] = getSBoxValue(tempa[3]);
}
}
#endif
j = i * 4; k=(i - Nk) * 4;
RoundKey[j + 0] = RoundKey[k + 0] ^ tempa[0];
RoundKey[j + 1] = RoundKey[k + 1] ^ tempa[1];
RoundKey[j + 2] = RoundKey[k + 2] ^ tempa[2];
RoundKey[j + 3] = RoundKey[k + 3] ^ tempa[3];
}
}
void AES_init_ctx(struct AES_ctx* ctx, const uint8_t* key)
{
KeyExpansion(ctx->RoundKey, key);
}
#if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1))
void AES_init_ctx_iv(struct AES_ctx* ctx, const uint8_t* key, const uint8_t* iv)
{
KeyExpansion(ctx->RoundKey, key);
memcpy (ctx->Iv, iv, AES_BLOCKLEN);
}
void AES_ctx_set_iv(struct AES_ctx* ctx, const uint8_t* iv)
{
memcpy (ctx->Iv, iv, AES_BLOCKLEN);
}
#endif
// This function adds the round key to state.
// The round key is added to the state by an XOR function.
static void AddRoundKey(uint8_t round, state_t* state, const uint8_t* RoundKey)
{
uint8_t i,j;
for (i = 0; i < 4; ++i)
{
for (j = 0; j < 4; ++j)
{
(*state)[i][j] ^= RoundKey[(round * Nb * 4) + (i * Nb) + j];
}
}
}
// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
static void SubBytes(state_t* state)
{
uint8_t i, j;
for (i = 0; i < 4; ++i)
{
for (j = 0; j < 4; ++j)
{
(*state)[j][i] = getSBoxValue((*state)[j][i]);
}
}
}
// The ShiftRows() function shifts the rows in the state to the left.
// Each row is shifted with different offset.
// Offset = Row number. So the first row is not shifted.
static void ShiftRows(state_t* state)
{
uint8_t temp;
// Rotate first row 1 columns to left
temp = (*state)[0][1];
(*state)[0][1] = (*state)[1][1];
(*state)[1][1] = (*state)[2][1];
(*state)[2][1] = (*state)[3][1];
(*state)[3][1] = temp;
// Rotate second row 2 columns to left
temp = (*state)[0][2];
(*state)[0][2] = (*state)[2][2];
(*state)[2][2] = temp;
temp = (*state)[1][2];
(*state)[1][2] = (*state)[3][2];
(*state)[3][2] = temp;
// Rotate third row 3 columns to left
temp = (*state)[0][3];
(*state)[0][3] = (*state)[3][3];
(*state)[3][3] = (*state)[2][3];
(*state)[2][3] = (*state)[1][3];
(*state)[1][3] = temp;
}
static uint8_t xtime(uint8_t x)
{
return ((x<<1) ^ (((x>>7) & 1) * 0x1b));
}
// MixColumns function mixes the columns of the state matrix
static void MixColumns(state_t* state)
{
uint8_t i;
uint8_t Tmp, Tm, t;
for (i = 0; i < 4; ++i)
{
t = (*state)[i][0];
Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3] ;
Tm = (*state)[i][0] ^ (*state)[i][1] ; Tm = xtime(Tm); (*state)[i][0] ^= Tm ^ Tmp ;
Tm = (*state)[i][1] ^ (*state)[i][2] ; Tm = xtime(Tm); (*state)[i][1] ^= Tm ^ Tmp ;
Tm = (*state)[i][2] ^ (*state)[i][3] ; Tm = xtime(Tm); (*state)[i][2] ^= Tm ^ Tmp ;
Tm = (*state)[i][3] ^ t ; Tm = xtime(Tm); (*state)[i][3] ^= Tm ^ Tmp ;
}
}
// Multiply is used to multiply numbers in the field GF(2^8)
// Note: The last call to xtime() is unneeded, but often ends up generating a smaller binary
// The compiler seems to be able to vectorize the operation better this way.
// See https://github.com/kokke/tiny-AES-c/pull/34
#if MULTIPLY_AS_A_FUNCTION
static uint8_t Multiply(uint8_t x, uint8_t y)
{
return (((y & 1) * x) ^
((y>>1 & 1) * xtime(x)) ^
((y>>2 & 1) * xtime(xtime(x))) ^
((y>>3 & 1) * xtime(xtime(xtime(x)))) ^
((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))); /* this last call to xtime() can be omitted */
}
#else
#define Multiply(x, y) \
( ((y & 1) * x) ^ \
((y>>1 & 1) * xtime(x)) ^ \
((y>>2 & 1) * xtime(xtime(x))) ^ \
((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ \
((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))) \
#endif
#if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
/*
static uint8_t getSBoxInvert(uint8_t num)
{
return rsbox[num];
}
*/
#define getSBoxInvert(num) (rsbox[(num)])
// MixColumns function mixes the columns of the state matrix.
// The method used to multiply may be difficult to understand for the inexperienced.
// Please use the references to gain more information.
static void InvMixColumns(state_t* state)
{
int i;
uint8_t a, b, c, d;
for (i = 0; i < 4; ++i)
{
a = (*state)[i][0];
b = (*state)[i][1];
c = (*state)[i][2];
d = (*state)[i][3];
(*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09);
(*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d);
(*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b);
(*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e);
}
}
// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
static void InvSubBytes(state_t* state)
{
uint8_t i, j;
for (i = 0; i < 4; ++i)
{
for (j = 0; j < 4; ++j)
{
(*state)[j][i] = getSBoxInvert((*state)[j][i]);
}
}
}
static void InvShiftRows(state_t* state)
{
uint8_t temp;
// Rotate first row 1 columns to right
temp = (*state)[3][1];
(*state)[3][1] = (*state)[2][1];
(*state)[2][1] = (*state)[1][1];
(*state)[1][1] = (*state)[0][1];
(*state)[0][1] = temp;
// Rotate second row 2 columns to right
temp = (*state)[0][2];
(*state)[0][2] = (*state)[2][2];
(*state)[2][2] = temp;
temp = (*state)[1][2];
(*state)[1][2] = (*state)[3][2];
(*state)[3][2] = temp;
// Rotate third row 3 columns to right
temp = (*state)[0][3];
(*state)[0][3] = (*state)[1][3];
(*state)[1][3] = (*state)[2][3];
(*state)[2][3] = (*state)[3][3];
(*state)[3][3] = temp;
}
#endif // #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
// Cipher is the main function that encrypts the PlainText.
static void Cipher(state_t* state, const uint8_t* RoundKey)
{
uint8_t round = 0;
// Add the First round key to the state before starting the rounds.
AddRoundKey(0, state, RoundKey);
// There will be Nr rounds.
// The first Nr-1 rounds are identical.
// These Nr rounds are executed in the loop below.
// Last one without MixColumns()
for (round = 1; ; ++round)
{
SubBytes(state);
ShiftRows(state);
if (round == Nr) {
break;
}
MixColumns(state);
AddRoundKey(round, state, RoundKey);
}
// Add round key to last round
AddRoundKey(Nr, state, RoundKey);
}
#if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
static void InvCipher(state_t* state, const uint8_t* RoundKey)
{
uint8_t round = 0;
// Add the First round key to the state before starting the rounds.
AddRoundKey(Nr, state, RoundKey);
// There will be Nr rounds.
// The first Nr-1 rounds are identical.
// These Nr rounds are executed in the loop below.
// Last one without InvMixColumn()
for (round = (Nr - 1); ; --round)
{
InvShiftRows(state);
InvSubBytes(state);
AddRoundKey(round, state, RoundKey);
if (round == 0) {
break;
}
InvMixColumns(state);
}
}
#endif // #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
/*****************************************************************************/
/* Public functions: */
/*****************************************************************************/
#if defined(ECB) && (ECB == 1)
void AES_ECB_encrypt(const struct AES_ctx* ctx, uint8_t* buf)
{
// The next function call encrypts the PlainText with the Key using AES algorithm.
Cipher((state_t*)buf, ctx->RoundKey);
}
void AES_ECB_decrypt(const struct AES_ctx* ctx, uint8_t* buf)
{
// The next function call decrypts the PlainText with the Key using AES algorithm.
InvCipher((state_t*)buf, ctx->RoundKey);
}
#endif // #if defined(ECB) && (ECB == 1)
#if defined(CBC) && (CBC == 1)
static void XorWithIv(uint8_t* buf, const uint8_t* Iv)
{
uint8_t i;
for (i = 0; i < AES_BLOCKLEN; ++i) // The block in AES is always 128bit no matter the key size
{
buf[i] ^= Iv[i];
}
}
void AES_CBC_encrypt_buffer(struct AES_ctx *ctx, uint8_t* buf, size_t length)
{
size_t i;
uint8_t *Iv = ctx->Iv;
for (i = 0; i < length; i += AES_BLOCKLEN)
{
XorWithIv(buf, Iv);
Cipher((state_t*)buf, ctx->RoundKey);
Iv = buf;
buf += AES_BLOCKLEN;
}
/* store Iv in ctx for next call */
memcpy(ctx->Iv, Iv, AES_BLOCKLEN);
}
void AES_CBC_decrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length)
{
size_t i;
uint8_t storeNextIv[AES_BLOCKLEN];
for (i = 0; i < length; i += AES_BLOCKLEN)
{
memcpy(storeNextIv, buf, AES_BLOCKLEN);
InvCipher((state_t*)buf, ctx->RoundKey);
XorWithIv(buf, ctx->Iv);
memcpy(ctx->Iv, storeNextIv, AES_BLOCKLEN);
buf += AES_BLOCKLEN;
}
}
#endif // #if defined(CBC) && (CBC == 1)
#if defined(CTR) && (CTR == 1)
/* Symmetrical operation: same function for encrypting as for decrypting. Note any IV/nonce should never be reused with the same key */
void AES_CTR_xcrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length)
{
uint8_t buffer[AES_BLOCKLEN];
size_t i;
int bi;
for (i = 0, bi = AES_BLOCKLEN; i < length; ++i, ++bi)
{
if (bi == AES_BLOCKLEN) /* we need to regen xor compliment in buffer */
{
memcpy(buffer, ctx->Iv, AES_BLOCKLEN);
Cipher((state_t*)buffer,ctx->RoundKey);
/* Increment Iv and handle overflow */
for (bi = (AES_BLOCKLEN - 1); bi >= 0; --bi)
{
/* inc will overflow */
if (ctx->Iv[bi] == 255)
{
ctx->Iv[bi] = 0;
continue;
}
ctx->Iv[bi] += 1;
break;
}
bi = 0;
}
buf[i] = (buf[i] ^ buffer[bi]);
}
}
#endif // #if defined(CTR) && (CTR == 1)

View File

@@ -0,0 +1,120 @@
#ifndef BELL_LOGGER_H
#define BELL_LOGGER_H
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <string>
#include <memory>
namespace bell
{
class AbstractLogger
{
public:
bool enableSubmodule = false;
virtual void debug(std::string filename, int line, std::string submodule, const char *format, ...) = 0;
virtual void error(std::string filename, int line, std::string submodule, const char *format, ...) = 0;
virtual void info(std::string filename, int line, std::string submodule, const char *format, ...) = 0;
};
extern bell::AbstractLogger* bellGlobalLogger;
class BellLogger : public bell::AbstractLogger
{
public:
// static bool enableColors = true;
void debug(std::string filename, int line, std::string submodule, const char *format, ...)
{
printf(colorRed);
printf("D ");
if (enableSubmodule) {
printf(colorReset);
printf("[%s] ", submodule.c_str());
}
printFilename(filename);
printf(":%d: ", line);
va_list args;
va_start(args, format);
vprintf(format, args);
va_end(args);
printf("\n");
};
void error(std::string filename, int line, std::string submodule, const char *format, ...)
{
printf(colorRed);
printf("E ");
if (enableSubmodule) {
printf(colorReset);
printf("[%s] ", submodule.c_str());
}
printFilename(filename);
printf(":%d: ", line);
printf(colorRed);
va_list args;
va_start(args, format);
vprintf(format, args);
va_end(args);
printf("\n");
};
void info(std::string filename, int line, std::string submodule, const char *format, ...)
{
printf(colorBlue);
printf("I ");
if (enableSubmodule) {
printf(colorReset);
printf("[%s] ", submodule.c_str());
}
printFilename(filename);
printf(":%d: ", line);
printf(colorReset);
va_list args;
va_start(args, format);
vprintf(format, args);
va_end(args);
printf("\n");
};
void printFilename(std::string filename)
{
#ifdef _WIN32
std::string basenameStr(filename.substr(filename.rfind("\\") + 1));
#else
std::string basenameStr(filename.substr(filename.rfind("/") + 1));
#endif
unsigned long hash = 5381;
for (char const &c : basenameStr)
{
hash = ((hash << 5) + hash) + c; /* hash * 33 + c */
}
printf("\033[0;%dm", allColors[hash % NColors]);
printf("%s", basenameStr.c_str());
printf(colorReset);
}
private:
static constexpr const char *colorReset = "\033[0m";
static constexpr const char *colorRed = "\033[0;31m";
static constexpr const char *colorBlue = "\033[0;34m";
static constexpr const int NColors = 15;
static constexpr int allColors[NColors] = {31, 32, 33, 34, 35, 36, 37, 90, 91, 92, 93, 94, 95, 96, 97};
};
void setDefaultLogger();
void enableSubmoduleLogging();
}
#define BELL_LOG(type, ...) \
do \
{ \
bell::bellGlobalLogger->type(__FILE__, __LINE__, __VA_ARGS__); \
} while (0)
#endif

View File

@@ -0,0 +1,123 @@
#ifndef BELL_TASK_H
#define BELL_TASK_H
#include <string>
#ifdef ESP_PLATFORM
#include <esp_pthread.h>
#include <esp_task.h>
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
#include <freertos/timers.h>
#elif _WIN32
#include <winsock2.h>
#else
#include <pthread.h>
#endif
#include <string>
#include <iostream>
namespace bell {
class Task {
public:
std::string TASK;
int stackSize, core;
bool runOnPSRAM;
Task(std::string taskName, int stackSize, int priority, int core,
bool runOnPSRAM = true) {
this->TASK = taskName;
this->stackSize = stackSize;
this->core = core;
this->runOnPSRAM = runOnPSRAM;
#ifdef ESP_PLATFORM
this->xStack = NULL;
this->priority = CONFIG_ESP32_PTHREAD_TASK_PRIO_DEFAULT + priority;
if (this->priority <= ESP_TASK_PRIO_MIN)
this->priority = ESP_TASK_PRIO_MIN + 1;
if (runOnPSRAM) {
this->xStack = (StackType_t*)heap_caps_malloc(
this->stackSize, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
}
#endif
}
virtual ~Task() {
#ifdef ESP_PLATFORM
if (xStack)
heap_caps_free(xStack);
#endif
}
bool startTask() {
#ifdef ESP_PLATFORM
if (runOnPSRAM) {
xTaskBuffer = (StaticTask_t*)heap_caps_malloc(
sizeof(StaticTask_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
return (xTaskCreateStaticPinnedToCore(
taskEntryFuncPSRAM, this->TASK.c_str(), this->stackSize, this,
this->priority, xStack, xTaskBuffer, this->core) != NULL);
} else {
printf("task on internal %s", this->TASK.c_str());
esp_pthread_cfg_t cfg = esp_pthread_get_default_config();
cfg.stack_size = stackSize;
cfg.inherit_cfg = true;
cfg.thread_name = this->TASK.c_str();
cfg.pin_to_core = core;
cfg.prio = this->priority;
esp_pthread_set_cfg(&cfg);
}
#endif
#if _WIN32
thread = CreateThread(NULL, stackSize,
(LPTHREAD_START_ROUTINE)taskEntryFunc, this, 0, NULL);
return thread != NULL;
#else
return (pthread_create(&thread, NULL, taskEntryFunc, this) == 0);
#endif
}
protected:
virtual void runTask() = 0;
private:
#if _WIN32
HANDLE thread;
#else
pthread_t thread;
#endif
#ifdef ESP_PLATFORM
int priority;
StaticTask_t* xTaskBuffer;
StackType_t* xStack;
static void taskEntryFuncPSRAM(void* This) {
Task* self = (Task*)This;
self->runTask();
// TCB are cleanup in IDLE task, so give it some time
TimerHandle_t timer =
xTimerCreate("cleanup", pdMS_TO_TICKS(5000), pdFALSE, self->xTaskBuffer,
[](TimerHandle_t xTimer) {
heap_caps_free(pvTimerGetTimerID(xTimer));
xTimerDelete(xTimer, portMAX_DELAY);
});
xTimerStart(timer, portMAX_DELAY);
vTaskDelete(NULL);
}
#endif
static void* taskEntryFunc(void* This) {
Task* self = (Task*)This;
self->runTask();
#if _WIN32
WaitForSingleObject(self->thread, INFINITE);
#else
pthread_join(self->thread, NULL);
#endif
return NULL;
}
};
} // namespace bell
#endif

View File

@@ -0,0 +1,105 @@
#ifndef EUPHONIUM_BELL_UTILS
#define EUPHONIUM_BELL_UTILS
#include <string.h>
#ifdef _WIN32
#include <WinSock2.h>
#else
#include <sys/time.h>
#endif
#include <random>
#include <vector>
#ifdef ESP_PLATFORM
//#include "esp_mac.h"
#include "esp_system.h"
#endif
namespace bell {
std::string generateRandomUUID();
void freeAndNull(void*& ptr);
std::string getMacAddress();
struct tv {
tv() {}
tv(timeval tv) : sec(tv.tv_sec), usec(tv.tv_usec){};
tv(int32_t _sec, int32_t _usec) : sec(_sec), usec(_usec){};
static tv now() {
tv timestampNow;
#if _WIN32
static const uint64_t EPOCH = ((uint64_t)116444736000000000ULL);
SYSTEMTIME system_time;
FILETIME file_time;
uint64_t time;
GetSystemTime(&system_time);
SystemTimeToFileTime(&system_time, &file_time);
time = ((uint64_t)file_time.dwLowDateTime);
time += ((uint64_t)file_time.dwHighDateTime) << 32;
timestampNow.sec = (long)((time - EPOCH) / 10000000L);
timestampNow.usec = (long)(system_time.wMilliseconds * 1000);
#else
timeval t;
gettimeofday(&t, NULL);
timestampNow.sec = t.tv_sec;
timestampNow.usec = t.tv_usec;
#endif
return timestampNow;
}
int32_t sec;
int32_t usec;
int64_t ms() { return (sec * (int64_t)1000) + (usec / 1000); }
tv operator+(const tv& other) const {
tv result(*this);
result.sec += other.sec;
result.usec += other.usec;
if (result.usec > 1000000) {
result.sec += result.usec / 1000000;
result.usec %= 1000000;
}
return result;
}
tv operator/(const int& other) const {
tv result(*this);
int64_t millis = result.ms();
millis = millis / other;
result.sec = std::floor(millis / 1000.0);
result.usec = (int32_t)((int64_t)(millis * 1000) % 1000000);
return result;
}
tv operator-(const tv& other) const {
tv result(*this);
result.sec -= other.sec;
result.usec -= other.usec;
while (result.usec < 0) {
result.sec -= 1;
result.usec += 1000000;
}
return result;
}
};
} // namespace bell
#ifdef ESP_PLATFORM
#include <freertos/FreeRTOS.h>
#define BELL_SLEEP_MS(ms) vTaskDelay(ms / portTICK_PERIOD_MS)
#define BELL_YIELD() taskYIELD()
#elif defined(_WIN32)
#define BELL_SLEEP_MS(ms) Sleep(ms)
#define BELL_YIELD() ;
#else
#include <unistd.h>
#define BELL_SLEEP_MS(ms) usleep(ms * 1000)
#define BELL_YIELD() ;
#endif
#endif

View File

@@ -0,0 +1,83 @@
#ifndef BELL_CRYPTO_H
#define BELL_CRYPTO_H
#define Crypto CryptoMbedTLS
#include <vector>
#include <string>
#include <memory>
#include <stdexcept>
extern "C" {
#include "aes.h"
}
#include <mbedtls/base64.h>
#include <mbedtls/bignum.h>
#include <mbedtls/md.h>
#include <mbedtls/aes.h>
#include <mbedtls/pkcs5.h>
#include <mbedtls/entropy.h>
#include <mbedtls/ctr_drbg.h>
#define DH_KEY_SIZE 96
static unsigned char DHPrime[] = {
/* Well-known Group 1, 768-bit prime */
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xc9,
0x0f, 0xda, 0xa2, 0x21, 0x68, 0xc2, 0x34, 0xc4, 0xc6,
0x62, 0x8b, 0x80, 0xdc, 0x1c, 0xd1, 0x29, 0x02, 0x4e,
0x08, 0x8a, 0x67, 0xcc, 0x74, 0x02, 0x0b, 0xbe, 0xa6,
0x3b, 0x13, 0x9b, 0x22, 0x51, 0x4a, 0x08, 0x79, 0x8e,
0x34, 0x04, 0xdd, 0xef, 0x95, 0x19, 0xb3, 0xcd, 0x3a,
0x43, 0x1b, 0x30, 0x2b, 0x0a, 0x6d, 0xf2, 0x5f, 0x14,
0x37, 0x4f, 0xe1, 0x35, 0x6d, 0x6d, 0x51, 0xc2, 0x45,
0xe4, 0x85, 0xb5, 0x76, 0x62, 0x5e, 0x7e, 0xc6, 0xf4,
0x4c, 0x42, 0xe9, 0xa6, 0x3a, 0x36, 0x20, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
static unsigned char DHGenerator[1] = {2};
class CryptoMbedTLS {
private:
mbedtls_md_context_t sha1Context;
mbedtls_aes_context aesCtx;
bool aesCtxInitialized = false;
public:
CryptoMbedTLS();
~CryptoMbedTLS();
// Base64
std::vector<uint8_t> base64Decode(const std::string& data);
std::string base64Encode(const std::vector<uint8_t>& data);
// Sha1
void sha1Init();
void sha1Update(const std::string& s);
void sha1Update(const std::vector<uint8_t>& vec);
std::string sha1Final();
std::vector<uint8_t> sha1FinalBytes();
// HMAC SHA1
std::vector<uint8_t> sha1HMAC(const std::vector<uint8_t>& inputKey, const std::vector<uint8_t>& message);
// AES CTR
void aesCTRXcrypt(const std::vector<uint8_t>& key, std::vector<uint8_t>& iv, uint8_t* data, size_t nbytes);
// AES ECB
void aesECBdecrypt(const std::vector<uint8_t>& key, std::vector<uint8_t>& data);
// Diffie Hellman
std::vector<uint8_t> publicKey;
std::vector<uint8_t> privateKey;
void dhInit();
std::vector<uint8_t> dhCalculateShared(const std::vector<uint8_t>& remoteKey);
// PBKDF2
std::vector<uint8_t> pbkdf2HmacSha1(const std::vector<uint8_t>& password, const std::vector<uint8_t>& salt, int iterations, int digestSize);
// Random stuff
std::vector<uint8_t> generateVectorWithRandomData(size_t length);
};
#endif

View File

@@ -0,0 +1,47 @@
#pragma once
#include <vector>
#include "pb_encode.h"
#include "pb_decode.h"
#include <string>
std::vector<uint8_t> pbEncode(const pb_msgdesc_t *fields, const void *src_struct);
pb_bytes_array_t* vectorToPbArray(const std::vector<uint8_t>& vectorToPack);
void packString(char* &dst, std::string stringToPack);
std::vector<uint8_t> pbArrayToVector(pb_bytes_array_t* pbArray);
template <typename T>
T pbDecode(const pb_msgdesc_t *fields, std::vector<uint8_t> &data)
{
T result = {};
// Create stream
pb_istream_t stream = pb_istream_from_buffer(&data[0], data.size());
// Decode the message
if (pb_decode(&stream, fields, &result) == false) {
printf("Decode failed: %s\n", PB_GET_ERROR(&stream));
}
return result;
}
template <typename T>
void pbDecode(T &result, const pb_msgdesc_t *fields, std::vector<uint8_t> &data)
{
// Create stream
pb_istream_t stream = pb_istream_from_buffer(&data[0], data.size());
// Decode the message
if (pb_decode(&stream, fields, &result) == false) {
printf("Decode failed: %s\n", PB_GET_ERROR(&stream));
}
}
void pbPutString(const std::string &stringToPack, char* dst);
void pbPutCharArray(const char * stringToPack, char* dst);
void pbPutBytes(const std::vector<uint8_t> &data, pb_bytes_array_t &dst);
const char* pb_encode_to_string(const pb_msgdesc_t *fields, const void *data);

View File

@@ -0,0 +1,117 @@
#ifndef BELL_QUEUE_H
#define BELL_QUEUE_H
#include <queue>
#include <atomic>
#include <condition_variable>
#include <atomic>
namespace bell
{
template <typename dataType>
class Queue
{
private:
/// Queue
std::queue<dataType> m_queue;
/// Mutex to controll multiple access
mutable std::mutex m_mutex;
/// Conditional variable used to fire event
std::condition_variable m_cv;
/// Atomic variable used to terminate immediately wpop and wtpop functions
std::atomic<bool> m_forceExit = false;
public:
/// <summary> Add a new element in the queue. </summary>
/// <param name="data"> New element. </param>
void push(dataType const &data)
{
m_forceExit.store(false);
std::unique_lock<std::mutex> lk(m_mutex);
m_queue.push(data);
lk.unlock();
m_cv.notify_one();
}
/// <summary> Check queue empty. </summary>
/// <returns> True if the queue is empty. </returns>
bool isEmpty() const
{
std::unique_lock<std::mutex> lk(m_mutex);
return m_queue.empty();
}
/// <summary> Pop element from queue. </summary>
/// <param name="popped_value"> [in,out] Element. </param>
/// <returns> false if the queue is empty. </returns>
bool pop(dataType &popped_value)
{
std::unique_lock<std::mutex> lk(m_mutex);
if (m_queue.empty())
{
return false;
}
else
{
popped_value = m_queue.front();
m_queue.pop();
return true;
}
}
/// <summary> Wait and pop an element in the queue. </summary>
/// <param name="popped_value"> [in,out] Element. </param>
/// <returns> False for forced exit. </returns>
bool wpop(dataType &popped_value)
{
std::unique_lock<std::mutex> lk(m_mutex);
m_cv.wait(lk, [&]() -> bool
{ return !m_queue.empty() || m_forceExit.load(); });
if (m_forceExit.load())
return false;
popped_value = m_queue.front();
m_queue.pop();
return true;
}
/// <summary> Timed wait and pop an element in the queue. </summary>
/// <param name="popped_value"> [in,out] Element. </param>
/// <param name="milliseconds"> [in] Wait time. </param>
/// <returns> False for timeout or forced exit. </returns>
bool wtpop(dataType &popped_value, long milliseconds = 1000)
{
std::unique_lock<std::mutex> lk(m_mutex);
m_cv.wait_for(lk, std::chrono::milliseconds(milliseconds), [&]() -> bool
{ return !m_queue.empty() || m_forceExit.load(); });
if (m_forceExit.load())
return false;
if (m_queue.empty())
return false;
popped_value = m_queue.front();
m_queue.pop();
return true;
}
/// <summary> Queue size. </summary>
int size()
{
std::unique_lock<std::mutex> lk(m_mutex);
return static_cast<int>(m_queue.size());
}
/// <summary> Free the queue and force stop. </summary>
void clear()
{
m_forceExit.store(true);
std::unique_lock<std::mutex> lk(m_mutex);
while (!m_queue.empty())
{
//delete m_queue.front();
m_queue.pop();
}
lk.unlock();
m_cv.notify_one();
}
/// <summary> Check queue in forced exit state. </summary>
bool isExit() const
{
return m_forceExit.load();
}
};
}
#endif

View File

@@ -0,0 +1,8 @@
//
// Created by Filip Grzywok on 28/02/2022.
//
#ifndef EUPHONIUMCLI_TIMEDEFS_H
#define EUPHONIUMCLI_TIMEDEFS_H
#endif // EUPHONIUMCLI_TIMEDEFS_H

View File

@@ -0,0 +1,91 @@
#ifndef _AES_H_
#define _AES_H_
#include <stdint.h>
#include <stddef.h>
// #define the macros below to 1/0 to enable/disable the mode of operation.
//
// CBC enables AES encryption in CBC-mode of operation.
// CTR enables encryption in counter-mode.
// ECB enables the basic ECB 16-byte block algorithm. All can be enabled simultaneously.
// The #ifndef-guard allows it to be configured before #include'ing or at compile time.
#ifndef CBC
#define CBC 1
#endif
#ifndef ECB
#define ECB 1
#endif
#ifndef CTR
#define CTR 1
#endif
// #define AES128 1
#define AES192 1
//#define AES256 1
#define AES_BLOCKLEN 16 // Block length in bytes - AES is 128b block only
#if defined(AES256) && (AES256 == 1)
#define AES_KEYLEN 32
#define AES_keyExpSize 240
#elif defined(AES192) && (AES192 == 1)
#define AES_KEYLEN 24
#define AES_keyExpSize 208
#else
#define AES_KEYLEN 16 // Key length in bytes
#define AES_keyExpSize 176
#endif
struct AES_ctx
{
uint8_t RoundKey[AES_keyExpSize];
#if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1))
uint8_t Iv[AES_BLOCKLEN];
#endif
};
void AES_init_ctx(struct AES_ctx* ctx, const uint8_t* key);
#if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1))
void AES_init_ctx_iv(struct AES_ctx* ctx, const uint8_t* key, const uint8_t* iv);
void AES_ctx_set_iv(struct AES_ctx* ctx, const uint8_t* iv);
#endif
#if defined(ECB) && (ECB == 1)
// buffer size is exactly AES_BLOCKLEN bytes;
// you need only AES_init_ctx as IV is not used in ECB
// NB: ECB is considered insecure for most uses
void AES_ECB_encrypt(const struct AES_ctx* ctx, uint8_t* buf);
void AES_ECB_decrypt(const struct AES_ctx* ctx, uint8_t* buf);
#endif // #if defined(ECB) && (ECB == !)
#if defined(CBC) && (CBC == 1)
// buffer size MUST be mutile of AES_BLOCKLEN;
// Suggest https://en.wikipedia.org/wiki/Padding_(cryptography)#PKCS7 for padding scheme
// NOTES: you need to set IV in ctx via AES_init_ctx_iv() or AES_ctx_set_iv()
// no IV should ever be reused with the same key
void AES_CBC_encrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length);
void AES_CBC_decrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length);
#endif // #if defined(CBC) && (CBC == 1)
#if defined(CTR) && (CTR == 1)
// Same function for encrypting as for decrypting.
// IV is incremented for every block, and used after encryption as XOR-compliment for output
// Suggesting https://en.wikipedia.org/wiki/Padding_(cryptography)#PKCS7 for padding scheme
// NOTES: you need to set IV in ctx with AES_init_ctx_iv() or AES_ctx_set_iv()
// no IV should ever be reused with the same key
void AES_CTR_xcrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length);
#endif // #if defined(CTR) && (CTR == 1)
#endif // _AES_H_

View File

@@ -0,0 +1,4 @@
#ifdef __XTENSA__
#include <xtensa/config/core-isa.h>
#include <xtensa/config/core-matmap.h>
#endif