Files
AI-on-the-edge-device/code/components/jomjol_flowcontroll/ClassFlowCNNGeneral.cpp

956 lines
36 KiB
C++

#include "ClassFlowCNNGeneral.h"
#include <math.h>
#include <iomanip>
#include <sys/types.h>
#include <sstream> // std::stringstream
#include "CTfLiteClass.h"
#include "ClassLogFile.h"
static const char* TAG = "flow_analog";
bool debugdetailgeneral = false;
ClassFlowCNNGeneral::ClassFlowCNNGeneral(ClassFlowAlignment *_flowalign, t_CNNType _cnntype) : ClassFlowImage(NULL, TAG)
{
string cnnmodelfile = "";
modelxsize = 1;
modelysize = 1;
CNNGoodThreshold = 0.0;
ListFlowControll = NULL;
previousElement = NULL;
SaveAllFiles = false;
disabled = false;
isLogImageSelect = false;
CNNType = AutoDetect;
CNNType = _cnntype;
flowpostalignment = _flowalign;
}
string ClassFlowCNNGeneral::getReadout(int _analog = 0, bool _extendedResolution, int prev)
{
string result = "";
if (GENERAL[_analog]->ROI.size() == 0)
return result;
if (debugdetailgeneral) LogFile.WriteToFile("ClassFlowCNNGeneral::getReadout _analog=" + std::to_string(_analog) + ", _extendedResolution=" + std::to_string(_extendedResolution) + ", prev=" + std::to_string(prev));
if (CNNType == Analogue || CNNType == Analogue100)
{
float zahl = GENERAL[_analog]->ROI[GENERAL[_analog]->ROI.size() - 1]->result_float;
int ergebnis_nachkomma = ((int) floor(zahl * 10) + 10) % 10;
prev = ZeigerEval(GENERAL[_analog]->ROI[GENERAL[_analog]->ROI.size() - 1]->result_float, prev);
if (debugdetailgeneral) LogFile.WriteToFile("ClassFlowCNNGeneral::getReadout(analog) zahl=" + std::to_string(zahl) + ", ergebnis_nachkomma=" + std::to_string(ergebnis_nachkomma) + ", prev=" + std::to_string(prev));
result = std::to_string(prev);
if (_extendedResolution && (CNNType != Digital))
result = result + std::to_string(ergebnis_nachkomma);
for (int i = GENERAL[_analog]->ROI.size() - 2; i >= 0; --i)
{
prev = ZeigerEval(GENERAL[_analog]->ROI[i]->result_float, prev);
result = std::to_string(prev) + result;
}
return result;
}
if (CNNType == Digital)
{
for (int i = 0; i < GENERAL[_analog]->ROI.size(); ++i)
{
if (GENERAL[_analog]->ROI[i]->result_klasse >= 10)
result = result + "N";
else
result = result + std::to_string(GENERAL[_analog]->ROI[i]->result_klasse);
}
return result;
}
if ((CNNType == DoubleHyprid10) || (CNNType == Digital100))
{
float zahl = GENERAL[_analog]->ROI[GENERAL[_analog]->ROI.size() - 1]->result_float;
if (zahl >= 0) // NaN?
{
if (_extendedResolution) // ist nur gesetzt, falls es die erste Ziffer ist (kein Analog vorher!)
{
int ergebnis_nachkomma = ((int) floor(zahl * 10)) % 10;
int ergebnis_vorkomma = ((int) floor(zahl)) % 10;
result = std::to_string(ergebnis_vorkomma) + std::to_string(ergebnis_nachkomma);
prev = ergebnis_vorkomma;
if (debugdetailgeneral) LogFile.WriteToFile("ClassFlowCNNGeneral::getReadout(dig100-ext) ergebnis_vorkomma=" + std::to_string(ergebnis_vorkomma) + ", ergebnis_nachkomma=" + std::to_string(ergebnis_nachkomma) + ", prev=" + std::to_string(prev));
}
else
{
// prev = ZeigerEval(GENERAL[_analog]->ROI[GENERAL[_analog]->ROI.size() - 1]->result_float, prev);
prev = ZeigerEvalHybrid(GENERAL[_analog]->ROI[GENERAL[_analog]->ROI.size() - 1]->result_float, prev, prev);
result = std::to_string(prev);
if (debugdetailgeneral) LogFile.WriteToFile("ClassFlowCNNGeneral::getReadout(dig100) prev=" + std::to_string(prev));
}
}
else
{
result = "N";
if (_extendedResolution && (CNNType != Digital))
result = "NN";
}
for (int i = GENERAL[_analog]->ROI.size() - 2; i >= 0; --i)
{
if (GENERAL[_analog]->ROI[i]->result_float >= 0)
{
prev = ZeigerEvalHybrid(GENERAL[_analog]->ROI[i]->result_float, GENERAL[_analog]->ROI[i+1]->result_float, prev);
if (debugdetailgeneral) LogFile.WriteToFile("ClassFlowCNNGeneral::getReadout#ZeigerEvalHybrid()= " + std::to_string(prev));
result = std::to_string(prev) + result;
if (debugdetailgeneral) LogFile.WriteToFile("ClassFlowCNNGeneral::getReadout#result= " + result);
}
else
{
prev = -1;
result = "N" + result;
if (debugdetailgeneral) LogFile.WriteToFile("ClassFlowCNNGeneral::getReadout(result_float<0 /'N') result_float=" + std::to_string(GENERAL[_analog]->ROI[i]->result_float));
}
}
return result;
}
/*
if (CNNType == Digital100)
{
int zif_akt = -1;
float zahl = GENERAL[_analog]->ROI[GENERAL[_analog]->ROI.size() - 1]->result_float;
if (zahl >= 0) // NaN?
{
if (_extendedResolution)
{
int ergebnis_nachkomma = ((int) floor(zahl * 10)) % 10;
int ergebnis_vorkomma = ((int) floor(zahl)) % 10;
result = std::to_string(ergebnis_vorkomma) + std::to_string(ergebnis_nachkomma);
zif_akt = ergebnis_vorkomma;
}
else
{
zif_akt = ZeigerEvalHybrid(GENERAL[_analog]->ROI[GENERAL[_analog]->ROI.size() - 1]->result_float, -1, -1);
result = std::to_string(zif_akt);
}
}
else
{
result = "N";
if (_extendedResolution && (CNNType != Digital))
result = "NN";
}
for (int i = GENERAL[_analog]->ROI.size() - 2; i >= 0; --i)
{
if (GENERAL[_analog]->ROI[i]->result_float >= 0)
{
zif_akt = ZeigerEvalHybrid(GENERAL[_analog]->ROI[i]->result_float, GENERAL[_analog]->ROI[i+1]->result_float, zif_akt);
result = std::to_string(zif_akt) + result;
}
else
{
zif_akt = -1;
result = "N" + result;
}
}
return result;
}
*/
return result;
}
int ClassFlowCNNGeneral::ZeigerEvalHybrid(float zahl, float zahl_vorgaenger, int eval_vorgaenger)
{
if (debugdetailgeneral) LogFile.WriteToFile("ClassFlowCNNGeneral::ZeigerEvalHybrid( " + std::to_string(zahl) + ", " + std::to_string(zahl_vorgaenger) + ", " + std::to_string(eval_vorgaenger) + ")");
int ergebnis_nachkomma = ((int) floor(zahl * 10)) % 10;
int ergebnis_vorkomma = ((int) floor(zahl) + 10) % 10;
if (eval_vorgaenger < 0) // keine Vorzahl vorhanden !!! --> Runde die Zahl
{
if ((ergebnis_nachkomma <= 2) || (ergebnis_nachkomma >= 8)) // Band um die Ziffer --> Runden, da Ziffer im Rahmen Ungenauigkeit erreicht
return ((int) round(zahl) + 10) % 10;
else
return ((int) trunc(zahl) + 10) % 10;
}
// 9.0, da bei getReadout() prev als int übergeben wird (9 statt 9.5)
// tritt bei der ersten ziffer von digit auf, wenn analog davor (2. Aufruf von getReadout)
if ((zahl_vorgaenger >= 0.5 ) && (zahl_vorgaenger < 9.0))
{
// kein Ziffernwechsel, da Vorkomma weit genug weg ist (0+/-0.5) --> zahl wird gerundet
if ((ergebnis_nachkomma <= 2) || (ergebnis_nachkomma >= 8)) // Band um die Ziffer --> Runden, da Ziffer im Rahmen Ungenauigkeit erreicht
return ((int) round(zahl) + 10) % 10;
else
return ((int) trunc(zahl) + 10) % 10;
}
else
{
if (eval_vorgaenger <= 1) // Nulldurchgang hat stattgefunden (!Bewertung über Prev_value und nicht Zahl!) --> hier aufrunden (2.8 --> 3, aber auch 3.1 --> 3)
{
if (ergebnis_nachkomma > 5)
return (ergebnis_vorkomma + 1) % 10;
else
return ergebnis_vorkomma;
}
else // bleibt nur >= 9.5 --> noch kein Nulldurchgang --> 2.8 --> 2, und 3.1 --> 2
{
// hier auf 4 reduziert, da erst ab Vorgänder 9 anfängt umzustellen. Bei 9.5 Vorgänger kann die aktuelle
// Zahl noch x.4 - x.5 sein.
if (ergebnis_nachkomma >= 4)
return ergebnis_vorkomma;
else
return (ergebnis_vorkomma - 1 + 10) % 10;
}
}
if (debugdetailgeneral) LogFile.WriteToFile("ClassFlowCNNGeneral::ZeigerEvalHybrid(return -1) zahl=" + std::to_string(zahl)
+ ", zahl_vorgaenger=" + std::to_string(zahl_vorgaenger) + ", eval_vorgaenger=" + std::to_string(eval_vorgaenger));
return -1;
/*
if (zahl_vorgaenger > 9.2) // Ziffernwechsel beginnt
{
if (eval_vorgaenger == 0) // Wechsel hat schon stattgefunden
{
return ((int) round(zahl) + 10) % 10; // Annahme, dass die neue Zahl schon in der Nähe des Ziels ist
}
else
{
if (zahl_vorgaenger <= 9.5) // Wechsel startet gerade, aber beginnt erst
{
if ((ergebnis_nachkomma <= 2) || (ergebnis_nachkomma >= 8)) // Band um die Ziffer --> Runden, da Ziffer im Rahmen Ungenauigkeit erreicht
return ((int) round(zahl) + 10) % 10;
else
return ((int) trunc(zahl) + 10) % 10;
}
else
{
return ((int) trunc(zahl) + 10) % 10; // Wechsel schon weiter fortgeschritten, d.h. über 2 als Nachkomma
}
}
}
if ((ergebnis_nachkomma <= 2) || (ergebnis_nachkomma >= 8)) // Band um die Ziffer --> Runden, da Ziffer im Rahmen Ungenauigkeit erreicht
return ((int) round(zahl) + 10) % 10;
return ((int) trunc(zahl) + 10) % 10;
*/
}
int ClassFlowCNNGeneral::ZeigerEval(float zahl, int ziffer_vorgaenger)
{
int ergebnis_nachkomma = ((int) floor(zahl * 10) + 10) % 10;
int ergebnis_vorkomma = ((int) floor(zahl) + 10) % 10;
int ergebnis;
float ergebnis_rating;
if (debugdetailgeneral) LogFile.WriteToFile("ClassFlowCNNGeneral::ZeigerEval erg_v=" + std::to_string(ergebnis_vorkomma) + ", erg_n=" + std::to_string(ergebnis_nachkomma) + ", ziff_v=" + std::to_string(ziffer_vorgaenger));
if (ziffer_vorgaenger == -1)
return ergebnis_vorkomma % 10;
// Ist die aktuelle Stelle schon umgesprungen und die Vorstelle noch nicht?
// Akt.: 2.1, Vorstelle = 0.9 => 1.9
// Problem sind mehrere Rundungen
// Bsp. zahl=4.5, Vorgänger= 9.6 (ziffer_vorgaenger=0)
// Tritt nur auf bei Übergang von analog auf digit
ergebnis_rating = ergebnis_nachkomma - ziffer_vorgaenger;
if (ergebnis_nachkomma >= 5)
ergebnis_rating-=5.1;
else
ergebnis_rating+=5;
ergebnis = (int) round(zahl);
if (ergebnis_rating < 0)
ergebnis-=1;
if (ergebnis == -1)
ergebnis+=10;
ergebnis = (ergebnis + 10) % 10;
return ergebnis;
}
bool ClassFlowCNNGeneral::ReadParameter(FILE* pfile, string& aktparamgraph)
{
std::vector<string> zerlegt;
aktparamgraph = trim(aktparamgraph);
if (aktparamgraph.size() == 0)
if (!this->GetNextParagraph(pfile, aktparamgraph))
return false;
if ((toUpper(aktparamgraph) != "[ANALOG]") && (toUpper(aktparamgraph) != ";[ANALOG]")
&& (toUpper(aktparamgraph) != "[DIGIT]") && (toUpper(aktparamgraph) != ";[DIGIT]")
&& (toUpper(aktparamgraph) != "[DIGITS]") && (toUpper(aktparamgraph) != ";[DIGITS]")
) // Paragraph passt nicht
return false;
if (aktparamgraph[0] == ';')
{
disabled = true;
while (getNextLine(pfile, &aktparamgraph) && !isNewParagraph(aktparamgraph));
printf("[Analog/Digit] is disabled !!!\n");
return true;
}
while (this->getNextLine(pfile, &aktparamgraph) && !this->isNewParagraph(aktparamgraph))
{
zerlegt = this->ZerlegeZeile(aktparamgraph);
if ((toUpper(zerlegt[0]) == "LOGIMAGELOCATION") && (zerlegt.size() > 1))
{
this->LogImageLocation = "/sdcard" + zerlegt[1];
this->isLogImage = true;
}
if ((toUpper(zerlegt[0]) == "LOGIMAGESELECT") && (zerlegt.size() > 1))
{
LogImageSelect = zerlegt[1];
isLogImageSelect = true;
}
if ((toUpper(zerlegt[0]) == "LOGFILERETENTIONINDAYS") && (zerlegt.size() > 1))
{
this->logfileRetentionInDays = std::stoi(zerlegt[1]);
}
// if ((toUpper(zerlegt[0]) == "MODELTYPE") && (zerlegt.size() > 1))
// {
// if (toUpper(zerlegt[1]) == "DIGITHYPRID")
// CNNType = DigitalHyprid;
// }
if ((toUpper(zerlegt[0]) == "MODEL") && (zerlegt.size() > 1))
{
this->cnnmodelfile = zerlegt[1];
}
if ((toUpper(zerlegt[0]) == "CNNGOODTHRESHOLD") && (zerlegt.size() > 1))
{
CNNGoodThreshold = std::stof(zerlegt[1]);
}
if (zerlegt.size() >= 5)
{
general* _analog = GetGENERAL(zerlegt[0], true);
roi* neuroi = _analog->ROI[_analog->ROI.size()-1];
neuroi->posx = std::stoi(zerlegt[1]);
neuroi->posy = std::stoi(zerlegt[2]);
neuroi->deltax = std::stoi(zerlegt[3]);
neuroi->deltay = std::stoi(zerlegt[4]);
neuroi->result_float = -1;
neuroi->image = NULL;
neuroi->image_org = NULL;
}
if ((toUpper(zerlegt[0]) == "SAVEALLFILES") && (zerlegt.size() > 1))
{
if (toUpper(zerlegt[1]) == "TRUE")
SaveAllFiles = true;
}
}
if (!getNetworkParameter())
return false;
for (int _ana = 0; _ana < GENERAL.size(); ++_ana)
for (int i = 0; i < GENERAL[_ana]->ROI.size(); ++i)
{
GENERAL[_ana]->ROI[i]->image = new CImageBasis(modelxsize, modelysize, modelchannel);
GENERAL[_ana]->ROI[i]->image_org = new CImageBasis(GENERAL[_ana]->ROI[i]->deltax, GENERAL[_ana]->ROI[i]->deltay, 3);
}
return true;
}
general* ClassFlowCNNGeneral::FindGENERAL(string _name_number)
{
for (int i = 0; i < GENERAL.size(); ++i)
if (GENERAL[i]->name == _name_number)
return GENERAL[i];
return NULL;
}
general* ClassFlowCNNGeneral::GetGENERAL(string _name, bool _create = true)
{
string _analog, _roi;
int _pospunkt = _name.find_first_of(".");
if (_pospunkt > -1)
{
_analog = _name.substr(0, _pospunkt);
_roi = _name.substr(_pospunkt+1, _name.length() - _pospunkt - 1);
}
else
{
_analog = "default";
_roi = _name;
}
general *_ret = NULL;
for (int i = 0; i < GENERAL.size(); ++i)
if (GENERAL[i]->name == _analog)
_ret = GENERAL[i];
if (!_create) // nicht gefunden und soll auch nicht erzeugt werden
return _ret;
if (_ret == NULL)
{
_ret = new general;
_ret->name = _analog;
GENERAL.push_back(_ret);
}
roi* neuroi = new roi;
neuroi->name = _roi;
_ret->ROI.push_back(neuroi);
printf("GetGENERAL - GENERAL %s - roi %s\n", _analog.c_str(), _roi.c_str());
return _ret;
}
string ClassFlowCNNGeneral::getHTMLSingleStep(string host)
{
string result, zw;
std::vector<HTMLInfo*> htmlinfo;
result = "<p>Found ROIs: </p> <p><img src=\"" + host + "/img_tmp/alg_roi.jpg\"></p>\n";
result = result + "Analog Pointers: <p> ";
htmlinfo = GetHTMLInfo();
for (int i = 0; i < htmlinfo.size(); ++i)
{
std::stringstream stream;
stream << std::fixed << std::setprecision(1) << htmlinfo[i]->val;
zw = stream.str();
result = result + "<img src=\"" + host + "/img_tmp/" + htmlinfo[i]->filename + "\"> " + zw;
delete htmlinfo[i];
}
htmlinfo.clear();
return result;
}
bool ClassFlowCNNGeneral::doFlow(string time)
{
if (disabled)
return true;
if (!doAlignAndCut(time)){
return false;
};
if (debugdetailgeneral) LogFile.WriteToFile("ClassFlowCNNGeneral::doFlow nach Alignment");
doNeuralNetwork(time);
RemoveOldLogs();
return true;
}
bool ClassFlowCNNGeneral::doAlignAndCut(string time)
{
if (disabled)
return true;
CAlignAndCutImage *caic = flowpostalignment->GetAlignAndCutImage();
for (int _ana = 0; _ana < GENERAL.size(); ++_ana)
for (int i = 0; i < GENERAL[_ana]->ROI.size(); ++i)
{
printf("General %d - Align&Cut\n", i);
caic->CutAndSave(GENERAL[_ana]->ROI[i]->posx, GENERAL[_ana]->ROI[i]->posy, GENERAL[_ana]->ROI[i]->deltax, GENERAL[_ana]->ROI[i]->deltay, GENERAL[_ana]->ROI[i]->image_org);
if (SaveAllFiles)
{
if (GENERAL[_ana]->name == "default")
GENERAL[_ana]->ROI[i]->image_org->SaveToFile(FormatFileName("/sdcard/img_tmp/" + GENERAL[_ana]->ROI[i]->name + ".jpg"));
else
GENERAL[_ana]->ROI[i]->image_org->SaveToFile(FormatFileName("/sdcard/img_tmp/" + GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name + ".jpg"));
}
GENERAL[_ana]->ROI[i]->image_org->Resize(modelxsize, modelysize, GENERAL[_ana]->ROI[i]->image);
if (SaveAllFiles)
{
if (GENERAL[_ana]->name == "default")
GENERAL[_ana]->ROI[i]->image->SaveToFile(FormatFileName("/sdcard/img_tmp/" + GENERAL[_ana]->ROI[i]->name + ".bmp"));
else
GENERAL[_ana]->ROI[i]->image->SaveToFile(FormatFileName("/sdcard/img_tmp/" + GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name + ".bmp"));
}
}
return true;
}
void ClassFlowCNNGeneral::DrawROI(CImageBasis *_zw)
{
if (CNNType == Analogue || CNNType == Analogue100)
{
int r = 0;
int g = 255;
int b = 0;
for (int _ana = 0; _ana < GENERAL.size(); ++_ana)
for (int i = 0; i < GENERAL[_ana]->ROI.size(); ++i)
{
_zw->drawRect(GENERAL[_ana]->ROI[i]->posx, GENERAL[_ana]->ROI[i]->posy, GENERAL[_ana]->ROI[i]->deltax, GENERAL[_ana]->ROI[i]->deltay, r, g, b, 1);
_zw->drawEllipse( (int) (GENERAL[_ana]->ROI[i]->posx + GENERAL[_ana]->ROI[i]->deltax/2), (int) (GENERAL[_ana]->ROI[i]->posy + GENERAL[_ana]->ROI[i]->deltay/2), (int) (GENERAL[_ana]->ROI[i]->deltax/2), (int) (GENERAL[_ana]->ROI[i]->deltay/2), r, g, b, 2);
_zw->drawLine((int) (GENERAL[_ana]->ROI[i]->posx + GENERAL[_ana]->ROI[i]->deltax/2), (int) GENERAL[_ana]->ROI[i]->posy, (int) (GENERAL[_ana]->ROI[i]->posx + GENERAL[_ana]->ROI[i]->deltax/2), (int) (GENERAL[_ana]->ROI[i]->posy + GENERAL[_ana]->ROI[i]->deltay), r, g, b, 2);
_zw->drawLine((int) GENERAL[_ana]->ROI[i]->posx, (int) (GENERAL[_ana]->ROI[i]->posy + GENERAL[_ana]->ROI[i]->deltay/2), (int) GENERAL[_ana]->ROI[i]->posx + GENERAL[_ana]->ROI[i]->deltax, (int) (GENERAL[_ana]->ROI[i]->posy + GENERAL[_ana]->ROI[i]->deltay/2), r, g, b, 2);
}
}
else
{
for (int _dig = 0; _dig < GENERAL.size(); ++_dig)
for (int i = 0; i < GENERAL[_dig]->ROI.size(); ++i)
_zw->drawRect(GENERAL[_dig]->ROI[i]->posx, GENERAL[_dig]->ROI[i]->posy, GENERAL[_dig]->ROI[i]->deltax, GENERAL[_dig]->ROI[i]->deltay, 0, 0, (255 - _dig*100), 2);
}
}
bool ClassFlowCNNGeneral::getNetworkParameter()
{
if (disabled)
return true;
CTfLiteClass *tflite = new CTfLiteClass;
string zwcnn = "/sdcard" + cnnmodelfile;
zwcnn = FormatFileName(zwcnn);
printf(zwcnn.c_str());printf("\n");
if (!tflite->LoadModel(zwcnn)) {
printf("Can't read model file /sdcard%s\n", cnnmodelfile.c_str());
LogFile.WriteToFile("Cannot load model");
delete tflite;
return false;
}
tflite->MakeAllocate();
if (CNNType == AutoDetect)
{
tflite->GetInputDimension(false);
modelxsize = tflite->ReadInputDimenstion(0);
modelysize = tflite->ReadInputDimenstion(1);
modelchannel = tflite->ReadInputDimenstion(2);
int _anzoutputdimensions = tflite->GetAnzOutPut();
switch (_anzoutputdimensions)
{
case 2:
CNNType = Analogue;
printf("TFlite-Type set to Analogue\n");
break;
case 10:
CNNType = DoubleHyprid10;
printf("TFlite-Type set to DoubleHyprid10\n");
break;
case 11:
CNNType = Digital;
printf("TFlite-Type set to Digital\n");
break;
case 20:
CNNType = DigitalHyprid10;
printf("TFlite-Type set to DigitalHyprid10\n");
break;
// case 22:
// CNNType = DigitalHyprid;
// printf("TFlite-Type set to DigitalHyprid\n");
// break;
case 100:
if (modelxsize==32 && modelysize == 32) {
CNNType = Analogue100;
printf("TFlite-Type set to Analogue100\n");
} else {
CNNType = Digital100;
printf("TFlite-Type set to Digital\n");
}
break;
default:
LogFile.WriteToFile("ERROR ERROR ERROR - tflite passt nicht zur Firmware - ERROR ERROR ERROR (outout_dimension=" + std::to_string(_anzoutputdimensions) + ")");
printf("ERROR ERROR ERROR - tflite passt nicht zur Firmware - ERROR ERROR ERROR\n");
}
}
delete tflite;
return true;
}
bool ClassFlowCNNGeneral::doNeuralNetwork(string time)
{
if (disabled)
return true;
string logPath = CreateLogFolder(time);
CTfLiteClass *tflite = new CTfLiteClass;
string zwcnn = "/sdcard" + cnnmodelfile;
zwcnn = FormatFileName(zwcnn);
printf(zwcnn.c_str());printf("\n");
if (!tflite->LoadModel(zwcnn)) {
printf("Can't read model file /sdcard%s\n", cnnmodelfile.c_str());
LogFile.WriteToFile("Cannot load model");
delete tflite;
return false;
}
tflite->MakeAllocate();
for (int _ana = 0; _ana < GENERAL.size(); ++_ana)
{
for (int i = 0; i < GENERAL[_ana]->ROI.size(); ++i)
{
printf("General %d - TfLite\n", i);
switch (CNNType) {
case Analogue:
{
float f1, f2;
f1 = 0; f2 = 0;
tflite->LoadInputImageBasis(GENERAL[_ana]->ROI[i]->image);
tflite->Invoke();
if (debugdetailgeneral) LogFile.WriteToFile("Nach Invoke");
f1 = tflite->GetOutputValue(0);
f2 = tflite->GetOutputValue(1);
float result = fmod(atan2(f1, f2) / (M_PI * 2) + 2, 1);
GENERAL[_ana]->ROI[i]->result_float = result * 10;
printf("Result General(Analog)%i: %f\n", i, GENERAL[_ana]->ROI[i]->result_float);
if (isLogImage)
LogImage(logPath, GENERAL[_ana]->ROI[i]->name, &GENERAL[_ana]->ROI[i]->result_float, NULL, time, GENERAL[_ana]->ROI[i]->image_org);
} break;
case Digital:
{
GENERAL[_ana]->ROI[i]->result_klasse = 0;
GENERAL[_ana]->ROI[i]->result_klasse = tflite->GetClassFromImageBasis(GENERAL[_ana]->ROI[i]->image);
printf("Result General(Digit)%i: %d\n", i, GENERAL[_ana]->ROI[i]->result_klasse);
if (isLogImage)
{
string _imagename = GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name;
if (isLogImageSelect)
{
if (LogImageSelect.find(GENERAL[_ana]->ROI[i]->name) != std::string::npos)
LogImage(logPath, _imagename, NULL, &GENERAL[_ana]->ROI[i]->result_klasse, time, GENERAL[_ana]->ROI[i]->image_org);
}
else
{
LogImage(logPath, _imagename, NULL, &GENERAL[_ana]->ROI[i]->result_klasse, time, GENERAL[_ana]->ROI[i]->image_org);
}
}
} break;
/*
case DigitalHyprid:
{
int _num, _nachkomma;
tflite->LoadInputImageBasis(GENERAL[_ana]->ROI[i]->image);
tflite->Invoke();
if (debugdetailgeneral) LogFile.WriteToFile("Nach Invoke");
_num = tflite->GetOutClassification(0, 10);
_nachkomma = tflite->GetOutClassification(11, 21);
string _zwres = "Nach Invoke - Nummer: " + to_string(_num) + " Nachkomma: " + to_string(_nachkomma);
if (debugdetailgeneral) LogFile.WriteToFile(_zwres);
if ((_num == 10) || (_nachkomma == 10)) // NaN detektiert
GENERAL[_ana]->ROI[i]->result_float = -1;
else
GENERAL[_ana]->ROI[i]->result_float = fmod((double) _num + (((double)_nachkomma)-5)/10 + (double) 10, 10);
printf("Result General(DigitalHyprid)%i: %f\n", i, GENERAL[_ana]->ROI[i]->result_float);
_zwres = "Result General(DigitalHyprid)" + to_string(i) + ": " + to_string(GENERAL[_ana]->ROI[i]->result_float);
if (debugdetailgeneral) LogFile.WriteToFile(_zwres);
if (isLogImage)
{
string _imagename = GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name;
if (isLogImageSelect)
{
if (LogImageSelect.find(GENERAL[_ana]->ROI[i]->name) != std::string::npos)
LogImage(logPath, _imagename, NULL, &GENERAL[_ana]->ROI[i]->result_klasse, time, GENERAL[_ana]->ROI[i]->image_org);
}
else
{
LogImage(logPath, _imagename, NULL, &GENERAL[_ana]->ROI[i]->result_klasse, time, GENERAL[_ana]->ROI[i]->image_org);
}
}
} break;
*/
case DigitalHyprid10:
{
int _num, _nachkomma;
tflite->LoadInputImageBasis(GENERAL[_ana]->ROI[i]->image);
tflite->Invoke();
if (debugdetailgeneral) LogFile.WriteToFile("Nach Invoke");
_num = tflite->GetOutClassification(0, 9);
_nachkomma = tflite->GetOutClassification(10, 19);
string _zwres = "Nach Invoke - Nummer: " + to_string(_num) + " Nachkomma: " + to_string(_nachkomma);
if (debugdetailgeneral) LogFile.WriteToFile(_zwres);
GENERAL[_ana]->ROI[i]->result_float = fmod((double) _num + (((double)_nachkomma)-5)/10 + (double) 10, 10);
printf("Result General(DigitalHyprid)%i: %f\n", i, GENERAL[_ana]->ROI[i]->result_float);
_zwres = "Result General(DigitalHyprid)" + to_string(i) + ": " + to_string(GENERAL[_ana]->ROI[i]->result_float);
if (debugdetailgeneral) LogFile.WriteToFile(_zwres);
if (isLogImage)
{
string _imagename = GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name;
if (isLogImageSelect)
{
if (LogImageSelect.find(GENERAL[_ana]->ROI[i]->name) != std::string::npos)
LogImage(logPath, _imagename, NULL, &GENERAL[_ana]->ROI[i]->result_klasse, time, GENERAL[_ana]->ROI[i]->image_org);
}
else
{
LogImage(logPath, _imagename, NULL, &GENERAL[_ana]->ROI[i]->result_klasse, time, GENERAL[_ana]->ROI[i]->image_org);
}
}
} break;
case DoubleHyprid10:
{
int _num, _numplus, _numminus;
float _val, _valplus, _valminus;
float _fit;
float _result_save_file;
tflite->LoadInputImageBasis(GENERAL[_ana]->ROI[i]->image);
tflite->Invoke();
if (debugdetailgeneral) LogFile.WriteToFile("Nach Invoke");
_num = tflite->GetOutClassification(0, 9);
_numplus = (_num + 1) % 10;
_numminus = (_num - 1 + 10) % 10;
_val = tflite->GetOutputValue(_num);
_valplus = tflite->GetOutputValue(_numplus);
_valminus = tflite->GetOutputValue(_numminus);
float result = _num;
if (_valplus > _valminus)
{
result = result + _valplus / (_valplus + _val);
_fit = _val + _valplus;
}
else
{
result = result - _valminus / (_val + _valminus);
_fit = _val + _valminus;
}
if (result > 10)
result = result - 10;
if (result < 0)
result = result + 10;
string zw = "_num (p, m): " + to_string(_num) + " " + to_string(_numplus) + " " + to_string(_numminus);
zw = zw + " _val (p, m): " + to_string(_val) + " " + to_string(_valplus) + " " + to_string(_valminus);
zw = zw + " result: " + to_string(result) + " _fit: " + to_string(_fit);
printf("details cnn: %s\n", zw.c_str());
LogFile.WriteToFile(zw);
_result_save_file = result;
if (_fit < CNNGoodThreshold)
{
GENERAL[_ana]->ROI[i]->isReject = true;
result = -1;
_result_save_file+= 100; // Für den Fall, dass fit nicht ausreichend, soll trotzdem das Ergebnis mit "-10x.y" abgespeichert werden.
string zw = "Value Rejected due to Threshold (Fit: " + to_string(_fit) + "Threshold: " + to_string(CNNGoodThreshold);
printf("Value Rejected due to Threshold (Fit: %f, Threshold: %f\n", _fit, CNNGoodThreshold);
LogFile.WriteToFile(zw);
}
else
{
GENERAL[_ana]->ROI[i]->isReject = false;
}
GENERAL[_ana]->ROI[i]->result_float = result;
printf("Result General(Analog)%i: %f\n", i, GENERAL[_ana]->ROI[i]->result_float);
if (isLogImage)
{
string _imagename = GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name;
if (isLogImageSelect)
{
if (LogImageSelect.find(GENERAL[_ana]->ROI[i]->name) != std::string::npos)
LogImage(logPath, _imagename, &_result_save_file, NULL, time, GENERAL[_ana]->ROI[i]->image_org);
}
else
{
LogImage(logPath, _imagename, &_result_save_file, NULL, time, GENERAL[_ana]->ROI[i]->image_org);
}
}
}
break;
case Digital100:
case Analogue100:
{
int _num;
float _result_save_file;
tflite->LoadInputImageBasis(GENERAL[_ana]->ROI[i]->image);
tflite->Invoke();
_num = tflite->GetOutClassification();
GENERAL[_ana]->ROI[i]->result_float = (float)_num / 10.0;
_result_save_file = GENERAL[_ana]->ROI[i]->result_float;
GENERAL[_ana]->ROI[i]->isReject = false;
printf("Result General(Analog)%i: %f\n", i, GENERAL[_ana]->ROI[i]->result_float);
if (isLogImage)
{
string _imagename = GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name;
if (isLogImageSelect)
{
if (LogImageSelect.find(GENERAL[_ana]->ROI[i]->name) != std::string::npos)
LogImage(logPath, _imagename, &_result_save_file, NULL, time, GENERAL[_ana]->ROI[i]->image_org);
}
else
{
LogImage(logPath, _imagename, &_result_save_file, NULL, time, GENERAL[_ana]->ROI[i]->image_org);
}
}
} break;
default:
break;
}
}
}
delete tflite;
return true;
}
bool ClassFlowCNNGeneral::isExtendedResolution(int _number)
{
if (!(CNNType == Digital))
return true;
return false;
}
std::vector<HTMLInfo*> ClassFlowCNNGeneral::GetHTMLInfo()
{
std::vector<HTMLInfo*> result;
for (int _ana = 0; _ana < GENERAL.size(); ++_ana)
for (int i = 0; i < GENERAL[_ana]->ROI.size(); ++i)
{
printf("Image: %d\n", (int) GENERAL[_ana]->ROI[i]->image);
if (GENERAL[_ana]->ROI[i]->image)
{
if (GENERAL[_ana]->name == "default")
GENERAL[_ana]->ROI[i]->image->SaveToFile(FormatFileName("/sdcard/img_tmp/" + GENERAL[_ana]->ROI[i]->name + ".bmp"));
else
GENERAL[_ana]->ROI[i]->image->SaveToFile(FormatFileName("/sdcard/img_tmp/" + GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name + ".bmp"));
}
HTMLInfo *zw = new HTMLInfo;
if (GENERAL[_ana]->name == "default")
{
zw->filename = GENERAL[_ana]->ROI[i]->name + ".bmp";
zw->filename_org = GENERAL[_ana]->ROI[i]->name + ".jpg";
}
else
{
zw->filename = GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name + ".bmp";
zw->filename_org = GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name + ".jpg";
}
if (CNNType == Digital)
zw->val = GENERAL[_ana]->ROI[i]->result_klasse;
else
zw->val = GENERAL[_ana]->ROI[i]->result_float;
zw->image = GENERAL[_ana]->ROI[i]->image;
zw->image_org = GENERAL[_ana]->ROI[i]->image_org;
result.push_back(zw);
}
return result;
}
int ClassFlowCNNGeneral::getAnzahlGENERAL()
{
return GENERAL.size();
}
string ClassFlowCNNGeneral::getNameGENERAL(int _analog)
{
if (_analog < GENERAL.size())
return GENERAL[_analog]->name;
return "GENERAL DOES NOT EXIST";
}
general* ClassFlowCNNGeneral::GetGENERAL(int _analog)
{
if (_analog < GENERAL.size())
return GENERAL[_analog];
return NULL;
}
void ClassFlowCNNGeneral::UpdateNameNumbers(std::vector<std::string> *_name_numbers)
{
for (int _dig = 0; _dig < GENERAL.size(); _dig++)
{
std::string _name = GENERAL[_dig]->name;
bool found = false;
for (int i = 0; i < (*_name_numbers).size(); ++i)
{
if ((*_name_numbers)[i] == _name)
found = true;
}
if (!found)
(*_name_numbers).push_back(_name);
}
}