Files
AI-on-the-edge-device/code/components/jomjol_image_proc/CImageBasis.cpp
michael 4905663933 test1
2026-01-17 02:49:32 +01:00

797 lines
19 KiB
C++

#include "defines.h"
#include "CImageBasis.h"
#include "Helper.h"
#include "psram.h"
#include "ClassLogFile.h"
#include "server_ota.h"
#include <esp_log.h>
#include "esp_system.h"
#include <cstring>
#include <math.h>
#include <algorithm>
using namespace std;
static const char *TAG = "C IMG BASIS";
bool jpgFileTooLarge = false; // JPG creation verfication
uint8_t *CImageBasis::RGBImageLock(int _waitmaxsec)
{
if (islocked)
{
TickType_t xDelay;
xDelay = 1000 / portTICK_PERIOD_MS;
for (int i = 0; i <= _waitmaxsec; ++i)
{
vTaskDelay(xDelay);
if (!islocked)
{
break;
}
}
}
if (islocked)
{
return NULL;
}
return rgb_image;
}
void CImageBasis::RGBImageRelease()
{
islocked = false;
}
uint8_t *CImageBasis::RGBImageGet()
{
return rgb_image;
}
void writejpghelp(void *context, void *data, int size)
{
// ESP_LOGD(TAG, "Size all: %d, size %d", ((ImageData*)context)->size, size);
ImageData *_zw = (ImageData *)context;
uint8_t *voidstart = _zw->data;
uint8_t *datastart = (uint8_t *)data;
if ((_zw->size < MAX_JPG_SIZE))
{
// Abort copy to prevent buffer overflow
voidstart += _zw->size;
for (int i = 0; i < size; ++i)
{
*(voidstart + i) = *(datastart + i);
}
_zw->size += size;
}
else
{
jpgFileTooLarge = true;
}
}
ImageData *CImageBasis::writeToMemoryAsJPG(const int quality)
{
ImageData *ii = new ImageData;
RGBImageLock();
stbi_write_jpg_to_func(writejpghelp, ii, width, height, channels, rgb_image, quality);
RGBImageRelease();
if (jpgFileTooLarge)
{
jpgFileTooLarge = false;
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "writeToMemoryAsJPG: Creation aborted! JPG size > preallocated buffer: " + std::to_string(MAX_JPG_SIZE));
}
return ii;
}
void CImageBasis::writeToMemoryAsJPG(ImageData *i, const int quality)
{
ImageData *ii = new ImageData;
RGBImageLock();
stbi_write_jpg_to_func(writejpghelp, ii, width, height, channels, rgb_image, quality);
RGBImageRelease();
if (jpgFileTooLarge)
{
jpgFileTooLarge = false;
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "writeToMemoryAsJPG: Creation aborted! JPG size > preallocated buffer: " + std::to_string(MAX_JPG_SIZE));
}
memCopy((uint8_t *)ii, (uint8_t *)i, sizeof(ImageData));
delete ii;
}
struct SendJPGHTTP
{
httpd_req_t *req;
esp_err_t res;
char buf[HTTP_BUFFER_SENT];
int size = 0;
};
inline void writejpgtohttphelp(void *context, void *data, int size)
{
SendJPGHTTP *_send = (SendJPGHTTP *)context;
// data no longer fits in buffer
if ((_send->size + size) >= HTTP_BUFFER_SENT)
{
if (httpd_resp_send_chunk(_send->req, _send->buf, _send->size) != ESP_OK)
{
ESP_LOGE(TAG, "File sending failed!");
_send->res = ESP_FAIL;
}
_send->size = 0;
}
std::memcpy((void *)(&(_send->buf[0]) + _send->size), data, size);
_send->size += size;
}
esp_err_t CImageBasis::SendJPGtoHTTP(httpd_req_t *_req, const int quality)
{
SendJPGHTTP ii;
ii.req = _req;
ii.res = ESP_OK;
ii.size = 0;
RGBImageLock();
stbi_write_jpg_to_func(writejpgtohttphelp, &ii, width, height, channels, rgb_image, quality);
if (ii.size > 0)
{
// still send the rest
if (httpd_resp_send_chunk(_req, (char *)ii.buf, ii.size) != ESP_OK)
{
ESP_LOGE(TAG, "File sending failed!");
ii.res = ESP_FAIL;
}
}
RGBImageRelease();
return ii.res;
}
bool CImageBasis::CopyFromMemory(uint8_t *_source, int _size)
{
int gr = height * width * channels;
// Size does not fit
if (gr != _size)
{
ESP_LOGE(TAG, "Cannot copy image from memory - sizes do not match: should be %d, but is %d", _size, gr);
return false;
}
RGBImageLock();
memCopy(_source, rgb_image, _size);
RGBImageRelease();
return true;
}
uint8_t CImageBasis::GetPixelColor(int x, int y, int ch)
{
stbi_uc *p_source;
p_source = rgb_image + (channels * (y * width + x));
return p_source[ch];
}
void CImageBasis::memCopy(uint8_t *_source, uint8_t *_target, int _size)
{
#if CONFIG_SPIRAM
for (int i = 0; i < _size; ++i)
{
*(_target + i) = *(_source + i);
}
#else
memcpy(_target, _source, _size);
#endif
}
bool CImageBasis::isInImage(int x, int y)
{
if ((x < 0) || (x > width - 1))
{
return false;
}
if ((y < 0) || (y > height - 1))
{
return false;
}
return true;
}
void CImageBasis::setPixelColor(int x, int y, int r, int g, int b)
{
stbi_uc *p_source;
RGBImageLock();
p_source = rgb_image + (channels * (y * width + x));
p_source[0] = r;
if (channels > 2)
{
p_source[1] = g;
p_source[2] = b;
}
RGBImageRelease();
}
void CImageBasis::drawRect(int x, int y, int dx, int dy, int r, int g, int b, int thickness)
{
int zwx1, zwx2, zwy1, zwy2;
int _x, _y, _thick;
zwx1 = x - thickness + 1;
zwx2 = x + dx + thickness - 1;
zwy1 = y;
zwy2 = y;
RGBImageLock();
for (_thick = 0; _thick < thickness; _thick++)
{
for (_x = zwx1; _x <= zwx2; ++_x)
{
for (_y = zwy1; _y <= zwy2; _y++)
{
if (isInImage(_x, _y))
{
setPixelColor(_x, _y - _thick, r, g, b);
}
}
}
}
zwx1 = x - thickness + 1;
zwx2 = x + dx + thickness - 1;
zwy1 = y + dy;
zwy2 = y + dy;
for (_thick = 0; _thick < thickness; _thick++)
{
for (_x = zwx1; _x <= zwx2; ++_x)
{
for (_y = zwy1; _y <= zwy2; _y++)
{
if (isInImage(_x, _y))
{
setPixelColor(_x, _y + _thick, r, g, b);
}
}
}
}
zwx1 = x;
zwx2 = x;
zwy1 = y;
zwy2 = y + dy;
for (_thick = 0; _thick < thickness; _thick++)
{
for (_x = zwx1; _x <= zwx2; ++_x)
{
for (_y = zwy1; _y <= zwy2; _y++)
{
if (isInImage(_x, _y))
{
setPixelColor(_x - _thick, _y, r, g, b);
}
}
}
}
zwx1 = x + dx;
zwx2 = x + dx;
zwy1 = y;
zwy2 = y + dy;
for (_thick = 0; _thick < thickness; _thick++)
{
for (_x = zwx1; _x <= zwx2; ++_x)
{
for (_y = zwy1; _y <= zwy2; _y++)
{
if (isInImage(_x, _y))
{
setPixelColor(_x + _thick, _y, r, g, b);
}
}
}
}
RGBImageRelease();
}
void CImageBasis::drawLine(int x1, int y1, int x2, int y2, int r, int g, int b, int thickness)
{
int _x, _y, _thick;
int _zwy1, _zwy2;
thickness = (thickness - 1) / 2;
RGBImageLock();
for (_thick = 0; _thick <= thickness; ++_thick)
{
for (_x = x1 - _thick; _x <= x2 + _thick; ++_x)
{
if (x2 == x1)
{
_zwy1 = y1;
_zwy2 = y2;
}
else
{
_zwy1 = (y2 - y1) * (float)(_x - x1) / (float)(x2 - x1) + y1;
_zwy2 = (y2 - y1) * (float)(_x + 1 - x1) / (float)(x2 - x1) + y1;
}
for (_y = _zwy1 - _thick; _y <= _zwy2 + _thick; _y++)
{
if (isInImage(_x, _y))
{
setPixelColor(_x, _y, r, g, b);
}
}
}
}
RGBImageRelease();
}
void CImageBasis::drawEllipse(int x1, int y1, int radx, int rady, int r, int g, int b, int thickness)
{
float deltarad, aktrad;
int _thick, _x, _y;
int rad = radx;
if (rady > radx)
{
rad = rady;
}
deltarad = 1 / (4 * M_PI * (rad + thickness - 1));
RGBImageLock();
for (aktrad = 0; aktrad <= (2 * M_PI); aktrad += deltarad)
{
for (_thick = 0; _thick < thickness; ++_thick)
{
_x = sin(aktrad) * (radx + _thick) + x1;
_y = cos(aktrad) * (rady + _thick) + y1;
if (isInImage(_x, _y))
{
setPixelColor(_x, _y, r, g, b);
}
}
}
RGBImageRelease();
}
void CImageBasis::drawCircle(int x1, int y1, int rad, int r, int g, int b, int thickness)
{
float deltarad, aktrad;
int _thick, _x, _y;
deltarad = 1 / (4 * M_PI * (rad + thickness - 1));
RGBImageLock();
for (aktrad = 0; aktrad <= (2 * M_PI); aktrad += deltarad)
{
for (_thick = 0; _thick < thickness; ++_thick)
{
_x = sin(aktrad) * (rad + _thick) + x1;
_y = cos(aktrad) * (rad + _thick) + y1;
if (isInImage(_x, _y))
{
setPixelColor(_x, _y, r, g, b);
}
}
}
RGBImageRelease();
}
CImageBasis::CImageBasis(string _name)
{
name = _name;
externalImage = false;
rgb_image = NULL;
width = 0;
height = 0;
channels = 0;
islocked = false;
}
void CImageBasis::CreateEmptyImage(int _width, int _height, int _channels)
{
bpp = _channels;
width = _width;
height = _height;
channels = _channels;
RGBImageLock();
memsize = width * height * channels;
if (name == "TempImage")
{
rgb_image = (unsigned char *)psram_reserve_shared_tmp_image_memory();
}
else
{
rgb_image = (unsigned char *)malloc_psram_heap(std::string(TAG) + "->CImageBasis (" + name + ")", memsize, MALLOC_CAP_SPIRAM);
}
if (rgb_image == NULL)
{
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "CreateEmptyImage: Can't allocate enough memory: " + std::to_string(memsize));
LogFile.WriteHeapInfo("CreateEmptyImage");
RGBImageRelease();
return;
}
stbi_uc *p_source;
for (int x = 0; x < width; ++x)
{
for (int y = 0; y < height; ++y)
{
p_source = rgb_image + (channels * (y * width + x));
for (int _channels = 0; _channels < channels; ++_channels)
{
p_source[_channels] = (uint8_t)0;
}
}
}
RGBImageRelease();
}
void CImageBasis::EmptyImage()
{
stbi_uc *p_source;
RGBImageLock();
for (int x = 0; x < width; ++x)
{
for (int y = 0; y < height; ++y)
{
p_source = rgb_image + (channels * (y * width + x));
for (int _channels = 0; _channels < channels; ++_channels)
{
p_source[_channels] = (uint8_t)0;
}
}
}
RGBImageRelease();
}
void CImageBasis::LoadFromMemory(stbi_uc *_buffer, int len)
{
RGBImageLock();
if (rgb_image != NULL)
{
stbi_image_free(rgb_image);
}
rgb_image = stbi_load_from_memory(_buffer, len, &width, &height, &channels, STBI_rgb);
bpp = channels;
ESP_LOGD(TAG, "Image loaded from memory: %d, %d, %d", width, height, channels);
if ((width * height * channels) == 0)
{
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "Image with size 0 loaded --> reboot to be done! "
"Check that your camera module is working and connected properly.");
LogFile.WriteHeapInfo("LoadFromMemory");
doReboot();
}
RGBImageRelease();
}
void CImageBasis::crop_image(unsigned short cropLeft, unsigned short cropRight, unsigned short cropTop, unsigned short cropBottom)
{
unsigned int maxTopIndex = cropTop * width * channels;
unsigned int minBottomIndex = ((width * height) - (cropBottom * width)) * channels;
unsigned short maxX = width - cropRight; // In pixels
unsigned short newWidth = width - cropLeft - cropRight;
unsigned short newHeight = height - cropTop - cropBottom;
unsigned int writeIndex = 0;
// Loop over all bytes
for (int i = 0; i < width * height * channels; i += channels)
{
// Calculate current X, Y pixel position
int x = (i / channels) % width;
// Crop from the top
if (i < maxTopIndex)
{
continue;
}
// Crop from the bottom
if (i > minBottomIndex)
{
continue;
}
// Crop from the left
if (x <= cropLeft)
{
continue;
}
// Crop from the right
if (x > maxX)
{
continue;
}
// If we get here, keep the pixels
for (int c = 0; c < channels; c++)
{
rgb_image[writeIndex++] = rgb_image[i + c];
}
}
// Set the new dimensions of the framebuffer for further use.
width = newWidth;
height = newHeight;
}
CImageBasis::CImageBasis(string _name, CImageBasis *_copyfrom)
{
name = _name;
islocked = false;
externalImage = false;
channels = _copyfrom->channels;
width = _copyfrom->width;
height = _copyfrom->height;
bpp = _copyfrom->bpp;
RGBImageLock();
memsize = width * height * channels;
if (name == "TempImage")
{
rgb_image = (unsigned char *)psram_reserve_shared_tmp_image_memory();
}
else
{
rgb_image = (unsigned char *)malloc_psram_heap(std::string(TAG) + "->CImageBasis (" + name + ")", memsize, MALLOC_CAP_SPIRAM);
}
if (rgb_image == NULL)
{
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "CImageBasis-Copyfrom: Can't allocate enough memory: " + std::to_string(memsize));
LogFile.WriteHeapInfo("CImageBasis-Copyfrom");
RGBImageRelease();
return;
}
memCopy(_copyfrom->rgb_image, rgb_image, memsize);
RGBImageRelease();
}
CImageBasis::CImageBasis(string _name, int _width, int _height, int _channels)
{
name = _name;
islocked = false;
externalImage = false;
channels = _channels;
width = _width;
height = _height;
bpp = _channels;
RGBImageLock();
memsize = width * height * channels;
if (name == "TempImage")
{
rgb_image = (unsigned char *)psram_reserve_shared_tmp_image_memory();
}
else
{
rgb_image = (unsigned char *)malloc_psram_heap(std::string(TAG) + "->CImageBasis (" + name + ")", memsize, MALLOC_CAP_SPIRAM);
}
if (rgb_image == NULL)
{
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "CImageBasis-width,height,ch: Can't allocate enough memory: " + std::to_string(memsize));
LogFile.WriteHeapInfo("CImageBasis-width,height,ch");
RGBImageRelease();
return;
}
RGBImageRelease();
}
CImageBasis::CImageBasis(string _name, std::string _image)
{
name = _name;
islocked = false;
channels = 3;
externalImage = false;
filename = _image;
if (file_size(_image.c_str()) == 0)
{
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, _image + " is empty!");
return;
}
RGBImageLock();
rgb_image = stbi_load(_image.c_str(), &width, &height, &bpp, channels);
if (rgb_image == NULL)
{
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "CImageBasis-image: Failed to load " + _image + "! Is it corrupted?");
LogFile.WriteHeapInfo("CImageBasis-image");
RGBImageRelease();
return;
}
RGBImageRelease();
}
bool CImageBasis::ImageOkay()
{
return rgb_image != NULL;
}
CImageBasis::CImageBasis(string _name, uint8_t *_rgb_image, int _channels, int _width, int _height, int _bpp)
{
name = _name;
islocked = false;
rgb_image = _rgb_image;
channels = _channels;
width = _width;
height = _height;
bpp = _bpp;
externalImage = true;
}
void CImageBasis::Negative(void)
{
RGBImageLock();
for (int i = 0; i < width * height * channels; i += channels)
{
for (int c = 0; c < channels; c++)
{
rgb_image[i + c] = 255 - rgb_image[i + c];
}
}
RGBImageRelease();
}
// input range [-100..100]
void CImageBasis::Contrast(float _contrast)
{
stbi_uc *p_source;
float contrast = (_contrast / 100) + 1; // convert to decimal & shift range: [0..2]
float intercept = 128 * (1 - contrast);
RGBImageLock();
for (int x = 0; x < width; ++x)
{
for (int y = 0; y < height; ++y)
{
p_source = rgb_image + (channels * (y * width + x));
for (int _channels = 0; _channels < channels; ++_channels)
{
p_source[_channels] = (uint8_t)std::min(255, std::max(0, (int)(p_source[_channels] * contrast + intercept)));
}
}
}
RGBImageRelease();
}
CImageBasis::~CImageBasis()
{
RGBImageLock();
if (!externalImage)
{
if (name == "TempImage")
{
// This image should be placed in the shared part of PSRAM
psram_free_shared_temp_image_memory();
}
else
{
// All other images are much smaller and can go into the normal PSRAM region
if (memsize == 0)
{
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "Not freeing (" + name + " as there was never PSRAM allocated for it)");
}
else
{
free_psram_heap(std::string(TAG) + "->CImageBasis (" + name + ", " + to_string(memsize) + ")", rgb_image);
}
}
}
RGBImageRelease();
}
void CImageBasis::SaveToFile(std::string _imageout)
{
string typ = get_file_type(_imageout);
RGBImageLock();
if ((typ == "jpg") || (typ == "JPG"))
{
// CAUTION PROBLEMATIC IN ESP32
stbi_write_jpg(_imageout.c_str(), width, height, channels, rgb_image, 0);
}
#ifndef STBI_ONLY_JPEG
if ((typ == "bmp") || (typ == "BMP"))
{
stbi_write_bmp(_imageout.c_str(), width, height, channels, rgb_image);
}
#endif
RGBImageRelease();
}
void CImageBasis::Resize(int _new_dx, int _new_dy)
{
memsize = _new_dx * _new_dy * channels;
uint8_t *temp_image = (unsigned char *)malloc_psram_heap(std::string(TAG) + "->temp_image", memsize, MALLOC_CAP_SPIRAM);
RGBImageLock();
stbir_resize_uint8(rgb_image, width, height, 0, temp_image, _new_dx, _new_dy, 0, channels);
rgb_image = (unsigned char *)malloc_psram_heap(std::string(TAG) + "->CImageBasis Resize (" + name + ")", memsize, MALLOC_CAP_SPIRAM);
memCopy(temp_image, rgb_image, memsize);
width = _new_dx;
height = _new_dy;
free_psram_heap(std::string(TAG) + "->temp_image", temp_image);
RGBImageRelease();
}
void CImageBasis::Resize(int _new_dx, int _new_dy, CImageBasis *_target)
{
if ((_target->height != _new_dy) || (_target->width != _new_dx) || (_target->channels != channels))
{
ESP_LOGE(TAG, "Resize - Target image size does not fit!");
return;
}
RGBImageLock();
uint8_t *temp_image = _target->rgb_image;
stbir_resize_uint8(rgb_image, width, height, 0, temp_image, _new_dx, _new_dy, 0, channels);
RGBImageRelease();
}