Files
AI-on-the-edge-device/code/components/esp-nn/src/softmax/softmax_common.h
2022-05-26 20:31:26 +02:00

104 lines
4.2 KiB
C

// Copyright 2022 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdint.h>
#include <common_functions.h>
#define MASK_IF_ZERO(x) (x) == 0 ? ~0 : 0
#define MASK_IF_NON_ZERO(x) (x) != 0 ? ~0 : 0
#define SELECT_USING_MASK(mask, a, b) ((mask) & (a)) ^ (~(mask) & (b))
#define SAT_HIGH_MUL(x, y) esp_nn_sat_round_doubling_high_mul((x), (y))
#define DIV_POW2(x,y) esp_nn_div_by_power_of_two((x), (y))
__NN_FORCE_INLINE__ int32_t mul_power_of_2(int val, int exp)
{
const int32_t thresh = ((1 << (31 - exp)) - 1);
int32_t result = val << exp;
result = SELECT_USING_MASK(MASK_IF_NON_ZERO(val > thresh), INT32_MAX, result);
result = SELECT_USING_MASK(MASK_IF_NON_ZERO(val < -thresh), INT32_MIN, result);
return result;
}
/**
* @brief Calculate `1 / (1 + x)` for x in [0, 1]
*
* @param val input value to calculate `1/(1+x)` for
* @return `int32_t` result
* @note Newton-Raphson division
*
* https://en.wikipedia.org/wiki/Division_algorithm#Newton.E2.80.93Raphson_division
* Refer to that page for the logic behind the 48/17 and 32/17 constants.
* Pseudocode: https://en.wikipedia.org/wiki/Division_algorithm#Pseudocode
*/
__NN_FORCE_INLINE__ int32_t esp_nn_one_over_one_plus_x_for_x_in_0_1(int32_t val)
{
const int64_t sum = (int64_t) val + INT32_MAX;
const int32_t half_denominator = (int32_t) ((sum + (sum >= 0 ? 1 : -1)) / 2L);
int32_t constant_48_over_17 = 1515870810;
int32_t constant_neg_32_over_17 = -1010580540;
int32_t x = constant_48_over_17 + SAT_HIGH_MUL(half_denominator, constant_neg_32_over_17);
const int32_t fixed_2_one = (1 << 29);
x += mul_power_of_2(SAT_HIGH_MUL(x, fixed_2_one - SAT_HIGH_MUL(half_denominator, x)), 2);
x += mul_power_of_2(SAT_HIGH_MUL(x, fixed_2_one - SAT_HIGH_MUL(half_denominator, x)), 2);
x += mul_power_of_2(SAT_HIGH_MUL(x, fixed_2_one - SAT_HIGH_MUL(half_denominator, x)), 2);
return mul_power_of_2(x, 1);
}
#define ONE_OVER_ONE_X(x) esp_nn_one_over_one_plus_x_for_x_in_0_1((x))
/**
* @brief Return exp(x) for x < 0.
*
*/
__NN_FORCE_INLINE__ int32_t esp_nn_exp_on_negative_values(int32_t val)
{
int32_t shift = 24;
const int32_t one_quarter = (1 << shift);
int32_t mask = one_quarter - 1;
const int32_t val_mod_minus_quarter = (val & mask) - one_quarter;
const int32_t remainder = val_mod_minus_quarter - val;
// calculate exponent for x in [-1/4, 0) in `result`
const int32_t x = (val_mod_minus_quarter << 5) + (1 << 28);
const int32_t x2 = SAT_HIGH_MUL(x, x);
const int32_t x3 = SAT_HIGH_MUL(x2, x);
const int32_t x4 = SAT_HIGH_MUL(x2, x2);
const int32_t one_over_3 = 715827883;
const int32_t one_over_8 = 1895147668;
const int32_t x4_over_4 = DIV_POW2(x4, 2);
const int32_t x4_over_4_plus_x3_over_6_plus_x2_over_2 = DIV_POW2(SAT_HIGH_MUL(x4_over_4 + x3, one_over_3) + x2, 1);
int32_t result = one_over_8 + SAT_HIGH_MUL(one_over_8, x + x4_over_4_plus_x3_over_6_plus_x2_over_2);
#define SELECT_IF_NON_ZERO(x) { \
mask = MASK_IF_NON_ZERO(remainder & (1 << shift++)); \
result = SELECT_USING_MASK(mask, SAT_HIGH_MUL(result, x), result); \
}
SELECT_IF_NON_ZERO(1672461947)
SELECT_IF_NON_ZERO(1302514674)
SELECT_IF_NON_ZERO(790015084)
SELECT_IF_NON_ZERO(290630308)
SELECT_IF_NON_ZERO(39332535)
SELECT_IF_NON_ZERO(720401)
SELECT_IF_NON_ZERO(242)
#undef SELECT_IF_NON_ZERO
mask = MASK_IF_ZERO(val);
return SELECT_USING_MASK(mask, INT32_MAX, result);
}