mirror of
https://github.com/jomjol/AI-on-the-edge-device.git
synced 2025-12-06 11:36:51 +03:00
260 lines
5.7 KiB
C++
260 lines
5.7 KiB
C++
#include "CTfLiteClass.h"
|
|
#include "ClassLogFile.h"
|
|
#include "Helper.h"
|
|
|
|
#include <sys/stat.h>
|
|
|
|
// #define DEBUG_DETAIL_ON
|
|
|
|
float CTfLiteClass::GetOutputValue(int nr)
|
|
{
|
|
TfLiteTensor* output2 = this->interpreter->output(0);
|
|
|
|
int numeroutput = output2->dims->data[1];
|
|
if ((nr+1) > numeroutput)
|
|
return -1000;
|
|
|
|
return output2->data.f[nr];
|
|
}
|
|
|
|
int CTfLiteClass::GetClassFromImageBasis(CImageBasis *rs)
|
|
{
|
|
if (!LoadInputImageBasis(rs))
|
|
return -1000;
|
|
|
|
Invoke();
|
|
|
|
return GetOutClassification();
|
|
}
|
|
|
|
int CTfLiteClass::GetOutClassification()
|
|
{
|
|
TfLiteTensor* output2 = interpreter->output(0);
|
|
|
|
float zw_max = 0;
|
|
float zw;
|
|
int zw_class = -1;
|
|
|
|
if (output2 == NULL)
|
|
return -1;
|
|
|
|
int numeroutput = output2->dims->data[1];
|
|
for (int i = 0; i < numeroutput; ++i)
|
|
{
|
|
zw = output2->data.f[i];
|
|
if (zw > zw_max)
|
|
{
|
|
zw_max = zw;
|
|
zw_class = i;
|
|
}
|
|
}
|
|
return zw_class;
|
|
}
|
|
|
|
void CTfLiteClass::GetInputDimension(bool silent = false)
|
|
{
|
|
TfLiteTensor* input2 = this->interpreter->input(0);
|
|
|
|
int numdim = input2->dims->size;
|
|
if (!silent) printf("NumDimension: %d\n", numdim);
|
|
|
|
int sizeofdim;
|
|
for (int j = 0; j < numdim; ++j)
|
|
{
|
|
sizeofdim = input2->dims->data[j];
|
|
if (!silent) printf("SizeOfDimension %d: %d\n", j, sizeofdim);
|
|
if (j == 1) im_height = sizeofdim;
|
|
if (j == 2) im_width = sizeofdim;
|
|
if (j == 3) im_channel = sizeofdim;
|
|
}
|
|
}
|
|
|
|
|
|
void CTfLiteClass::GetOutPut()
|
|
{
|
|
TfLiteTensor* output2 = this->interpreter->output(0);
|
|
|
|
int numdim = output2->dims->size;
|
|
printf("NumDimension: %d\n", numdim);
|
|
|
|
int sizeofdim;
|
|
for (int j = 0; j < numdim; ++j)
|
|
{
|
|
sizeofdim = output2->dims->data[j];
|
|
printf("SizeOfDimension %d: %d\n", j, sizeofdim);
|
|
}
|
|
|
|
|
|
float fo;
|
|
|
|
// Process the inference results.
|
|
int numeroutput = output2->dims->data[1];
|
|
for (int i = 0; i < numeroutput; ++i)
|
|
{
|
|
fo = output2->data.f[i];
|
|
printf("Result %d: %f\n", i, fo);
|
|
}
|
|
}
|
|
|
|
void CTfLiteClass::Invoke()
|
|
{
|
|
if (interpreter != nullptr)
|
|
interpreter->Invoke();
|
|
}
|
|
|
|
|
|
|
|
bool CTfLiteClass::LoadInputImageBasis(CImageBasis *rs)
|
|
{
|
|
std::string zw = "ClassFlowAnalog::doNeuralNetwork nach LoadInputResizeImage: ";
|
|
|
|
unsigned int w = rs->width;
|
|
unsigned int h = rs->height;
|
|
unsigned char red, green, blue;
|
|
// printf("Image: %s size: %d x %d\n", _fn.c_str(), w, h);
|
|
|
|
input_i = 0;
|
|
float* input_data_ptr = (interpreter->input(0))->data.f;
|
|
|
|
for (int y = 0; y < h; ++y)
|
|
for (int x = 0; x < w; ++x)
|
|
{
|
|
red = rs->GetPixelColor(x, y, 0);
|
|
green = rs->GetPixelColor(x, y, 1);
|
|
blue = rs->GetPixelColor(x, y, 2);
|
|
*(input_data_ptr) = (float) red;
|
|
input_data_ptr++;
|
|
*(input_data_ptr) = (float) green;
|
|
input_data_ptr++;
|
|
*(input_data_ptr) = (float) blue;
|
|
input_data_ptr++;
|
|
}
|
|
|
|
#ifdef DEBUG_DETAIL_ON
|
|
LogFile.WriteToFile("Nach dem Laden in input");
|
|
#endif
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
void CTfLiteClass::MakeAllocate()
|
|
{
|
|
static tflite::AllOpsResolver resolver;
|
|
|
|
// printf(LogFile.getESPHeapInfo().c_str()); printf("\n");
|
|
this->interpreter = new tflite::MicroInterpreter(this->model, resolver, this->tensor_arena, this->kTensorArenaSize, this->error_reporter);
|
|
// printf(LogFile.getESPHeapInfo().c_str()); printf("\n");
|
|
|
|
TfLiteStatus allocate_status = this->interpreter->AllocateTensors();
|
|
if (allocate_status != kTfLiteOk) {
|
|
TF_LITE_REPORT_ERROR(error_reporter, "AllocateTensors() failed");
|
|
this->GetInputDimension();
|
|
return;
|
|
}
|
|
// printf("Allocate Done.\n");
|
|
}
|
|
|
|
void CTfLiteClass::GetInputTensorSize(){
|
|
#ifdef DEBUG_DETAIL_ON
|
|
float *zw = this->input;
|
|
int test = sizeof(zw);
|
|
printf("Input Tensor Dimension: %d\n", test);
|
|
#endif
|
|
}
|
|
|
|
long CTfLiteClass::GetFileSize(std::string filename)
|
|
{
|
|
struct stat stat_buf;
|
|
long rc = stat(filename.c_str(), &stat_buf);
|
|
return rc == 0 ? stat_buf.st_size : -1;
|
|
}
|
|
|
|
|
|
unsigned char* CTfLiteClass::ReadFileToCharArray(std::string _fn)
|
|
{
|
|
long size;
|
|
|
|
size = GetFileSize(_fn);
|
|
|
|
if (size == -1)
|
|
{
|
|
printf("\nFile existiert nicht.\n");
|
|
return NULL;
|
|
}
|
|
|
|
unsigned char *result = (unsigned char*) malloc(size);
|
|
int anz = 1;
|
|
while (!result && (anz < 6)) // maximal 5x versuchen (= 5s)
|
|
{
|
|
#ifdef DEBUG_DETAIL_ON
|
|
printf("Speicher ist voll - Versuche es erneut: %d.\n", anz);
|
|
#endif
|
|
result = (unsigned char*) malloc(size);
|
|
anz++;
|
|
}
|
|
|
|
|
|
if(result != NULL) {
|
|
FILE* f = OpenFileAndWait(_fn.c_str(), "rb"); // vorher nur "r"
|
|
fread(result, 1, size, f);
|
|
fclose(f);
|
|
}else {
|
|
printf("\nKein freier Speicher vorhanden.\n");
|
|
}
|
|
|
|
|
|
return result;
|
|
}
|
|
|
|
bool CTfLiteClass::LoadModel(std::string _fn){
|
|
|
|
#ifdef SUPRESS_TFLITE_ERRORS
|
|
this->error_reporter = new tflite::OwnMicroErrorReporter;
|
|
#else
|
|
this->error_reporter = new tflite::MicroErrorReporter;
|
|
#endif
|
|
|
|
unsigned char *rd;
|
|
rd = ReadFileToCharArray(_fn.c_str());
|
|
|
|
if (rd == NULL)
|
|
return false;
|
|
|
|
this->model = tflite::GetModel(rd);
|
|
free(rd);
|
|
TFLITE_MINIMAL_CHECK(model != nullptr);
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
CTfLiteClass::CTfLiteClass()
|
|
{
|
|
this->model = nullptr;
|
|
this->interpreter = nullptr;
|
|
this->input = nullptr;
|
|
this->output = nullptr;
|
|
this->kTensorArenaSize = 200 * 1024; /// laut testfile: 108000 - bisher 600
|
|
this->tensor_arena = new uint8_t[kTensorArenaSize];
|
|
}
|
|
|
|
CTfLiteClass::~CTfLiteClass()
|
|
{
|
|
delete this->tensor_arena;
|
|
delete this->interpreter;
|
|
delete this->error_reporter;
|
|
}
|
|
|
|
|
|
namespace tflite {
|
|
|
|
int OwnMicroErrorReporter::Report(const char* format, va_list args) {
|
|
return 0;
|
|
}
|
|
|
|
}
|
|
|
|
|