Files
AI-on-the-edge-device/code/components/jomjol_tfliteclass/CTfLiteClass.cpp
michael 4905663933 test1
2026-01-17 02:49:32 +01:00

412 lines
8.4 KiB
C++

#include "defines.h"
#include "CTfLiteClass.h"
#include "ClassLogFile.h"
#include "Helper.h"
#include "psram.h"
#include "esp_log.h"
#include <sys/stat.h>
static const char *TAG = "TFLITE";
CTfLiteClass::CTfLiteClass()
{
model = nullptr;
modelfile = NULL;
interpreter = nullptr;
input = nullptr;
output = nullptr;
kTensorArenaSize = TENSOR_ARENA_SIZE;
tensor_arena = (uint8_t *)psram_get_shared_tensor_arena_memory();
}
CTfLiteClass::~CTfLiteClass()
{
delete interpreter;
psram_free_shared_tensor_arena_and_model_memory();
}
bool CTfLiteClass::MakeStaticResolver(void)
{
if (resolver.AddFullyConnected() != kTfLiteOk)
{
ESP_LOGE(TAG, "load AddFullyConnected() failed");
return false;
}
if (resolver.AddReshape() != kTfLiteOk)
{
ESP_LOGE(TAG, "load AddReshape() failed");
return false;
}
if (resolver.AddSoftmax() != kTfLiteOk)
{
ESP_LOGE(TAG, "load AddSoftmax() failed");
return false;
}
if (resolver.AddConv2D() != kTfLiteOk)
{
ESP_LOGE(TAG, "load AddConv2D() failed");
return false;
}
if (resolver.AddMaxPool2D() != kTfLiteOk)
{
ESP_LOGE(TAG, "load AddMaxPool2D() failed");
return false;
}
if (resolver.AddQuantize() != kTfLiteOk)
{
ESP_LOGE(TAG, "load AddQuantize() failed");
return false;
}
if (resolver.AddMul() != kTfLiteOk)
{
ESP_LOGE(TAG, "load AddMul() failed");
return false;
}
if (resolver.AddAdd() != kTfLiteOk)
{
ESP_LOGE(TAG, "load AddAdd() failed");
return false;
}
if (resolver.AddLeakyRelu() != kTfLiteOk)
{
ESP_LOGE(TAG, "load AddLeakyRelu() failed");
return false;
}
if (resolver.AddDequantize() != kTfLiteOk)
{
ESP_LOGE(TAG, "load AddDequantize() failed");
return false;
}
return true;
}
float CTfLiteClass::GetOutputValue(int nr)
{
TfLiteTensor *output2 = interpreter->output(0);
int numer_output = output2->dims->data[1];
if ((nr + 1) > numer_output)
{
return -1000;
}
return output2->data.f[nr];
}
int CTfLiteClass::GetClassFromImageBasis(CImageBasis *rs)
{
if (!LoadInputImageBasis(rs))
{
return -1000;
}
Invoke();
return GetOutClassification();
}
int CTfLiteClass::GetOutClassification(int _von, int _bis)
{
TfLiteTensor *output2 = interpreter->output(0);
float zw_max;
float zw;
int zw_class;
if (output2 == NULL)
{
return -1;
}
int numeroutput = output2->dims->data[1];
// ESP_LOGD(TAG, "number output neurons: %d", numeroutput);
if (_bis == -1)
{
_bis = numeroutput - 1;
}
if (_von == -1)
{
_von = 0;
}
if (_bis >= numeroutput)
{
ESP_LOGD(TAG, "NUMBER OF OUTPUT NEURONS does not match required classification!");
return -1;
}
zw_max = output2->data.f[_von];
zw_class = _von;
for (int i = _von + 1; i <= _bis; ++i)
{
zw = output2->data.f[i];
if (zw > zw_max)
{
zw_max = zw;
zw_class = i;
}
}
return (zw_class - _von);
}
void CTfLiteClass::GetInputDimension(bool silent = false)
{
TfLiteTensor *input2 = interpreter->input(0);
int numdim = input2->dims->size;
if (!silent)
{
ESP_LOGD(TAG, "NumDimension: %d", numdim);
}
int sizeofdim;
for (int j = 0; j < numdim; ++j)
{
sizeofdim = input2->dims->data[j];
if (!silent)
{
ESP_LOGD(TAG, "SizeOfDimension %d: %d", j, sizeofdim);
}
if (j == 1)
{
im_height = sizeofdim;
}
if (j == 2)
{
im_width = sizeofdim;
}
if (j == 3)
{
im_channel = sizeofdim;
}
}
}
int CTfLiteClass::ReadInputDimenstion(int _dim)
{
if (_dim == 0)
{
return im_width;
}
if (_dim == 1)
{
return im_height;
}
if (_dim == 2)
{
return im_channel;
}
return -1;
}
int CTfLiteClass::GetAnzOutPut(bool silent)
{
TfLiteTensor *output2 = interpreter->output(0);
int numdim = output2->dims->size;
if (!silent)
{
ESP_LOGD(TAG, "NumDimension: %d", numdim);
}
int sizeofdim;
for (int j = 0; j < numdim; ++j)
{
sizeofdim = output2->dims->data[j];
if (!silent)
{
ESP_LOGD(TAG, "SizeOfDimension %d: %d", j, sizeofdim);
}
}
float fo;
// Process the inference results.
int numeroutput = output2->dims->data[1];
for (int i = 0; i < numeroutput; ++i)
{
fo = output2->data.f[i];
if (!silent)
{
ESP_LOGD(TAG, "Result %d: %f", i, fo);
}
}
return numeroutput;
}
void CTfLiteClass::Invoke()
{
if (interpreter != nullptr)
{
interpreter->Invoke();
}
}
bool CTfLiteClass::LoadInputImageBasis(CImageBasis *rs)
{
unsigned int w = rs->width;
unsigned int h = rs->height;
unsigned char red, green, blue;
// ESP_LOGD(TAG, "Image: %s size: %d x %d\n", _fn.c_str(), w, h);
input_i = 0;
float *input_data_ptr = (interpreter->input(0))->data.f;
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
red = rs->GetPixelColor(x, y, 0);
green = rs->GetPixelColor(x, y, 1);
blue = rs->GetPixelColor(x, y, 2);
*(input_data_ptr) = (float)red;
input_data_ptr++;
*(input_data_ptr) = (float)green;
input_data_ptr++;
*(input_data_ptr) = (float)blue;
input_data_ptr++;
}
}
return true;
}
bool CTfLiteClass::MakeAllocate(void)
{
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "CTfLiteClass::MakeAllocate");
if (!MakeStaticResolver())
{
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "CTfLiteClass::MakeAllocate - resolver could not be loaded!");
return false;
}
if (!model)
{
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "CTfLiteClass::MakeAllocate - no model loaded!");
return false;
}
if (model->version() != TFLITE_SCHEMA_VERSION)
{
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "The selected model does not match the tflite schema version!");
return false;
}
if (!tensor_arena)
{
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "CTfLiteClass::MakeAllocate - tensor_arena not allocate");
return false;
}
interpreter = new tflite::MicroInterpreter(model, resolver, tensor_arena, kTensorArenaSize);
// LogFile.WriteToFile(ESP_LOG_INFO, TAG, "Trying to load the model. If it crashes here, it ist most likely due to a corrupted model!");
if (interpreter)
{
TfLiteStatus allocate_status = interpreter->AllocateTensors();
if (allocate_status != kTfLiteOk)
{
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "AllocateTensors() failed");
GetInputDimension();
return false;
}
}
else
{
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "new tflite::MicroInterpreter failed");
LogFile.WriteHeapInfo("CTfLiteClass::MakeAllocate-new tflite::MicroInterpreter failed");
return false;
}
return true;
}
long CTfLiteClass::GetFileSize(std::string filename)
{
struct stat stat_buf;
long rc = -1;
FILE *pFile = fopen(filename.c_str(), "rb"); // previously only "rb
if (pFile != NULL)
{
rc = stat(filename.c_str(), &stat_buf);
fclose(pFile);
}
return (rc == 0 ? stat_buf.st_size : -1);
}
bool CTfLiteClass::ReadFileToModel(std::string filename)
{
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "CTfLiteClass::ReadFileToModel: " + filename);
long size = GetFileSize(filename);
if (size == -1)
{
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "Model file doesn't exist: " + filename + "!");
return false;
}
else if (size > MAX_MODEL_SIZE)
{
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "Unable to load model '" + filename + "'! It does not fit in the reserved shared memory in PSRAM!");
return false;
}
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "Loading Model " + filename + " /size: " + std::to_string(size) + " bytes...");
modelfile = (unsigned char *)psram_get_shared_model_memory();
if (modelfile != NULL)
{
FILE *pFile = fopen(filename.c_str(), "rb"); // previously only "rb
if (pFile != NULL)
{
fread(modelfile, 1, size, pFile);
fclose(pFile);
return true;
}
else
{
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "CTfLiteClass::ReadFileToModel: Model does not exist");
return false;
}
}
else
{
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "CTfLiteClass::ReadFileToModel: Can't allocate enough memory: " + std::to_string(size));
LogFile.WriteHeapInfo("CTfLiteClass::ReadFileToModel");
return false;
}
}
bool CTfLiteClass::LoadModel(std::string filename)
{
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "CTfLiteClass::LoadModel");
if (!ReadFileToModel(filename.c_str()))
{
return false;
}
model = tflite::GetModel(modelfile);
if (model == nullptr)
{
return false;
}
return true;
}