Files
AI-on-the-edge-device/code/components/jomjol_tfliteclass/CTfLiteClass.cpp
jomjol 40a1aa0430 Update submodules, include only needed layers of tflite (#2586)
* Initial version

* Working Version

* Update

* Update main.cpp

* Updated Docu
2023-08-20 21:49:28 +02:00

371 lines
8.6 KiB
C++

#include "CTfLiteClass.h"
#include "ClassLogFile.h"
#include "Helper.h"
#include "psram.h"
#include "esp_log.h"
#include "../../include/defines.h"
#include <sys/stat.h>
// #define DEBUG_DETAIL_ON
static const char *TAG = "TFLITE";
/// Static Resolver muss mit allen Operatoren geladen Werden, die benöägit werden - ABER nur 1x --> gesonderte Funktion /////////////////////////////
static bool MakeStaticResolverDone = false;
static tflite::MicroMutableOpResolver<15> resolver;
void MakeStaticResolver()
{
if (MakeStaticResolverDone)
return;
MakeStaticResolverDone = true;
resolver.AddFullyConnected();
resolver.AddReshape();
resolver.AddSoftmax();
resolver.AddConv2D();
resolver.AddMaxPool2D();
resolver.AddQuantize();
resolver.AddMul();
resolver.AddAdd();
resolver.AddLeakyRelu();
resolver.AddDequantize();
}
////////////////////////////////////////////////////////////////////////////////////////
float CTfLiteClass::GetOutputValue(int nr)
{
TfLiteTensor* output2 = this->interpreter->output(0);
int numeroutput = output2->dims->data[1];
if ((nr+1) > numeroutput)
return -1000;
return output2->data.f[nr];
}
int CTfLiteClass::GetClassFromImageBasis(CImageBasis *rs)
{
if (!LoadInputImageBasis(rs))
return -1000;
Invoke();
return GetOutClassification();
}
int CTfLiteClass::GetOutClassification(int _von, int _bis)
{
TfLiteTensor* output2 = interpreter->output(0);
float zw_max;
float zw;
int zw_class;
if (output2 == NULL)
return -1;
int numeroutput = output2->dims->data[1];
//ESP_LOGD(TAG, "number output neurons: %d", numeroutput);
if (_bis == -1)
_bis = numeroutput -1;
if (_von == -1)
_von = 0;
if (_bis >= numeroutput)
{
ESP_LOGD(TAG, "NUMBER OF OUTPUT NEURONS does not match required classification!");
return -1;
}
zw_max = output2->data.f[_von];
zw_class = _von;
for (int i = _von + 1; i <= _bis; ++i)
{
zw = output2->data.f[i];
if (zw > zw_max)
{
zw_max = zw;
zw_class = i;
}
}
return (zw_class - _von);
}
void CTfLiteClass::GetInputDimension(bool silent = false)
{
TfLiteTensor* input2 = this->interpreter->input(0);
int numdim = input2->dims->size;
if (!silent) ESP_LOGD(TAG, "NumDimension: %d", numdim);
int sizeofdim;
for (int j = 0; j < numdim; ++j)
{
sizeofdim = input2->dims->data[j];
if (!silent) ESP_LOGD(TAG, "SizeOfDimension %d: %d", j, sizeofdim);
if (j == 1) im_height = sizeofdim;
if (j == 2) im_width = sizeofdim;
if (j == 3) im_channel = sizeofdim;
}
}
int CTfLiteClass::ReadInputDimenstion(int _dim)
{
if (_dim == 0)
return im_width;
if (_dim == 1)
return im_height;
if (_dim == 2)
return im_channel;
return -1;
}
int CTfLiteClass::GetAnzOutPut(bool silent)
{
TfLiteTensor* output2 = this->interpreter->output(0);
int numdim = output2->dims->size;
if (!silent) ESP_LOGD(TAG, "NumDimension: %d", numdim);
int sizeofdim;
for (int j = 0; j < numdim; ++j)
{
sizeofdim = output2->dims->data[j];
if (!silent) ESP_LOGD(TAG, "SizeOfDimension %d: %d", j, sizeofdim);
}
float fo;
// Process the inference results.
int numeroutput = output2->dims->data[1];
for (int i = 0; i < numeroutput; ++i)
{
fo = output2->data.f[i];
if (!silent) ESP_LOGD(TAG, "Result %d: %f", i, fo);
}
return numeroutput;
}
void CTfLiteClass::Invoke()
{
if (interpreter != nullptr)
interpreter->Invoke();
}
bool CTfLiteClass::LoadInputImageBasis(CImageBasis *rs)
{
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("CTfLiteClass::LoadInputImageBasis - Start");
#endif
unsigned int w = rs->width;
unsigned int h = rs->height;
unsigned char red, green, blue;
// ESP_LOGD(TAG, "Image: %s size: %d x %d\n", _fn.c_str(), w, h);
input_i = 0;
float* input_data_ptr = (interpreter->input(0))->data.f;
for (int y = 0; y < h; ++y)
for (int x = 0; x < w; ++x)
{
red = rs->GetPixelColor(x, y, 0);
green = rs->GetPixelColor(x, y, 1);
blue = rs->GetPixelColor(x, y, 2);
*(input_data_ptr) = (float) red;
input_data_ptr++;
*(input_data_ptr) = (float) green;
input_data_ptr++;
*(input_data_ptr) = (float) blue;
input_data_ptr++;
}
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("CTfLiteClass::LoadInputImageBasis - done");
#endif
return true;
}
bool CTfLiteClass::MakeAllocate()
{
MakeStaticResolver();
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("CTLiteClass::Alloc start");
#endif
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "CTfLiteClass::MakeAllocate");
this->interpreter = new tflite::MicroInterpreter(this->model, resolver, this->tensor_arena, this->kTensorArenaSize);
// this->interpreter = new tflite::MicroInterpreter(this->model, resolver, this->tensor_arena, this->kTensorArenaSize, this->error_reporter);
if (this->interpreter)
{
TfLiteStatus allocate_status = this->interpreter->AllocateTensors();
if (allocate_status != kTfLiteOk) {
TF_LITE_REPORT_ERROR(error_reporter, "AllocateTensors() failed");
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "AllocateTensors() failed");
this->GetInputDimension();
return false;
}
}
else
{
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "new tflite::MicroInterpreter failed");
LogFile.WriteHeapInfo("CTfLiteClass::MakeAllocate-new tflite::MicroInterpreter failed");
return false;
}
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("CTLiteClass::Alloc done");
#endif
return true;
}
void CTfLiteClass::GetInputTensorSize()
{
#ifdef DEBUG_DETAIL_ON
float *zw = this->input;
int test = sizeof(zw);
ESP_LOGD(TAG, "Input Tensor Dimension: %d", test);
#endif
}
long CTfLiteClass::GetFileSize(std::string filename)
{
struct stat stat_buf;
long rc = stat(filename.c_str(), &stat_buf);
return rc == 0 ? stat_buf.st_size : -1;
}
bool CTfLiteClass::ReadFileToModel(std::string _fn)
{
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "CTfLiteClass::ReadFileToModel: " + _fn);
long size = GetFileSize(_fn);
if (size == -1)
{
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "Model file doesn't exist: " + _fn + "!");
return false;
}
else if(size > MAX_MODEL_SIZE) {
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "Unable to load model '" + _fn + "'! It does not fit in the reserved shared memory in PSRAM!");
return false;
}
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "Loading Model " + _fn + " /size: " + std::to_string(size) + " bytes...");
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("CTLiteClass::Alloc modelfile start");
#endif
modelfile = (unsigned char*)psram_get_shared_model_memory();
if(modelfile != NULL)
{
FILE* f = fopen(_fn.c_str(), "rb"); // previously only "r
fread(modelfile, 1, size, f);
fclose(f);
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("CTLiteClass::Alloc modelfile successful");
#endif
return true;
}
else
{
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "CTfLiteClass::ReadFileToModel: Can't allocate enough memory: " + std::to_string(size));
LogFile.WriteHeapInfo("CTfLiteClass::ReadFileToModel");
return false;
}
}
bool CTfLiteClass::LoadModel(std::string _fn)
{
#ifdef SUPRESS_TFLITE_ERRORS
// this->error_reporter = new tflite::ErrorReporter;
this->error_reporter = new tflite::OwnMicroErrorReporter;
#else
this->error_reporter = new tflite::MicroErrorReporter;
#endif
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "CTfLiteClass::LoadModel");
if (!ReadFileToModel(_fn.c_str())) {
return false;
}
model = tflite::GetModel(modelfile);
if(model == nullptr)
return false;
return true;
}
CTfLiteClass::CTfLiteClass()
{
this->model = nullptr;
this->modelfile = NULL;
this->interpreter = nullptr;
this->input = nullptr;
this->output = nullptr;
this->kTensorArenaSize = TENSOR_ARENA_SIZE;
this->tensor_arena = (uint8_t*)psram_get_shared_tensor_arena_memory();
}
CTfLiteClass::~CTfLiteClass()
{
delete this->interpreter;
// delete this->error_reporter;
psram_free_shared_tensor_arena_and_model_memory();
}
#ifdef SUPRESS_TFLITE_ERRORS
namespace tflite
{
//tflite::ErrorReporter
// int OwnMicroErrorReporter::Report(const char* format, va_list args)
int OwnMicroErrorReporter::Report(const char* format, va_list args)
{
return 0;
}
}
#endif