Files
AI-on-the-edge-device/code/components/jomjol_tfliteclass/CTfLiteClass.cpp
CaCO3 03c84a1ff3 Release 15.1.1 (#2232)
* Testcase for #2145 and debug-log (#2151)

* new models ana-cont-11.0.5, ana-class100-1.5.7, dig-class100-1.6.0

* Testcase for #2145
Added debug log, if allowNegativeRates is handeled

* Fix timezone config parser (#2169)

* make sure to parse the whole config line

* fix crash on empty timezone parameter

---------

Co-authored-by: CaCO3 <caco@ruinelli.ch>

* Enhance ROI pages (#2161)

* Check if the ROIs are equidistant. Only if not, untick the checkbox

* renaming

* Check if the ROIs have same y, dy and dx. If so, tick the sync checkbox

* only allow editing space when box is checked

* fix sync check

* show inner frame on all ROIs

* cleanup

* Check if the ROIs have same dy and dx. If so, tick the sync checkbox

* checkbox position

* renaming

* renaming

* show inner frame and cross hairs on all ROIs

* update ROIs on ticking checkboxes

* show timezone hint

* fix deleting last ROI

* cleanup

---------

Co-authored-by: CaCO3 <caco@ruinelli.ch>

* restart timeout on progress, catch error (#2170)

* restart timeout on progress, catch error

* .

---------

Co-authored-by: CaCO3 <caco@ruinelli.ch>

* BugFix #2167

* Release 15.1 preparations (#2171)

* Update Changelog.md

* Update Changelog.md

* Update Changelog.md

* Update changelog

* Fix links to PR

* Formating

* Update Changelog.md

* Update Changelog.md

* Update Changelog.md

* Update Changelog.md

* Update Changelog.md

* Update Changelog.md

* Update Changelog.md

* Update Changelog.md

* Update Changelog.md

* Update Changelog.md

* Update Changelog.md

* Update Changelog.md

---------

Co-authored-by: Slider0007 <jobbelle@gmx.net>
Co-authored-by: Slider0007 <115730895+Slider0007@users.noreply.github.com>

* fix typo

* Replace relative documentation links with absolute ones pointing to the external documentation (#2180)

Co-authored-by: CaCO3 <caco@ruinelli.ch>

* Sort model files in configuration combobox (#2189)

* new models ana-cont-11.0.5, ana-class100-1.5.7, dig-class100-1.6.0

* Testcase for #2145
Added debug log, if allowNegativeRates is handeled

* Sort model files in combobox

* reboot task - increase stack size (#2201)

Avoid stack overflow

* Update interface_influxdb.cpp

* Update Changelog.md

* Show PSRAM usage (#2206)

* centralize PSRAM usage (application code only)

* update logging

* update logging

* fix use after free

* initialize buffer

* free rgb_image before ussing it for new allocation

* use wrapper function

* switch log level to debug

* .

* undo adding free() calls

* .

* add names to all CImage instances

* .

* .

* .

* revert changes of stbi_image_free() with free_psram_heap() on the places where is is not in PSRAM

* .

* typos

* typo

* Added MQTT Outbox explanation/warning

* added CONFIG_SPIRAM_USE_MEMMAP explanation

---------

Co-authored-by: CaCO3 <caco@ruinelli.ch>

* Disable custom MQTT Outbox. This also moves the MQTT Publishing memory usage back to the internal RAM!

* log MQTT connection refused reasons (#2216)

* Revert PSRAM usage as it lead to memory fragmentation. (#2224)

See https://github.com/jomjol/AI-on-the-edge-device/issues/2200 for details

Co-authored-by: CaCO3 <caco@ruinelli.ch>

* Fix missing value data in graph (#2230)

* fix missing value data

---------

Co-authored-by: CaCO3 <caco@ruinelli.ch>

* Update Changelog.md (#2231)

---------

Co-authored-by: Frank Haverland <fspapaping@googlemail.com>
Co-authored-by: CaCO3 <caco@ruinelli.ch>
Co-authored-by: jomjol <30766535+jomjol@users.noreply.github.com>
Co-authored-by: Slider0007 <jobbelle@gmx.net>
Co-authored-by: Slider0007 <115730895+Slider0007@users.noreply.github.com>
2023-03-23 21:38:43 +01:00

330 lines
7.6 KiB
C++

#include "CTfLiteClass.h"
#include "ClassLogFile.h"
#include "Helper.h"
#include "psram.h"
#include "esp_log.h"
#include "../../include/defines.h"
#include <sys/stat.h>
// #define DEBUG_DETAIL_ON
static const char *TAG = "TFLITE";
float CTfLiteClass::GetOutputValue(int nr)
{
TfLiteTensor* output2 = this->interpreter->output(0);
int numeroutput = output2->dims->data[1];
if ((nr+1) > numeroutput)
return -1000;
return output2->data.f[nr];
}
int CTfLiteClass::GetClassFromImageBasis(CImageBasis *rs)
{
if (!LoadInputImageBasis(rs))
return -1000;
Invoke();
return GetOutClassification();
}
int CTfLiteClass::GetOutClassification(int _von, int _bis)
{
TfLiteTensor* output2 = interpreter->output(0);
float zw_max;
float zw;
int zw_class;
if (output2 == NULL)
return -1;
int numeroutput = output2->dims->data[1];
//ESP_LOGD(TAG, "number output neurons: %d", numeroutput);
if (_bis == -1)
_bis = numeroutput -1;
if (_von == -1)
_von = 0;
if (_bis >= numeroutput)
{
ESP_LOGD(TAG, "NUMBER OF OUTPUT NEURONS does not match required classification!");
return -1;
}
zw_max = output2->data.f[_von];
zw_class = _von;
for (int i = _von + 1; i <= _bis; ++i)
{
zw = output2->data.f[i];
if (zw > zw_max)
{
zw_max = zw;
zw_class = i;
}
}
return (zw_class - _von);
}
void CTfLiteClass::GetInputDimension(bool silent = false)
{
TfLiteTensor* input2 = this->interpreter->input(0);
int numdim = input2->dims->size;
if (!silent) ESP_LOGD(TAG, "NumDimension: %d", numdim);
int sizeofdim;
for (int j = 0; j < numdim; ++j)
{
sizeofdim = input2->dims->data[j];
if (!silent) ESP_LOGD(TAG, "SizeOfDimension %d: %d", j, sizeofdim);
if (j == 1) im_height = sizeofdim;
if (j == 2) im_width = sizeofdim;
if (j == 3) im_channel = sizeofdim;
}
}
int CTfLiteClass::ReadInputDimenstion(int _dim)
{
if (_dim == 0)
return im_width;
if (_dim == 1)
return im_height;
if (_dim == 2)
return im_channel;
return -1;
}
int CTfLiteClass::GetAnzOutPut(bool silent)
{
TfLiteTensor* output2 = this->interpreter->output(0);
int numdim = output2->dims->size;
if (!silent) ESP_LOGD(TAG, "NumDimension: %d", numdim);
int sizeofdim;
for (int j = 0; j < numdim; ++j)
{
sizeofdim = output2->dims->data[j];
if (!silent) ESP_LOGD(TAG, "SizeOfDimension %d: %d", j, sizeofdim);
}
float fo;
// Process the inference results.
int numeroutput = output2->dims->data[1];
for (int i = 0; i < numeroutput; ++i)
{
fo = output2->data.f[i];
if (!silent) ESP_LOGD(TAG, "Result %d: %f", i, fo);
}
return numeroutput;
}
void CTfLiteClass::Invoke()
{
if (interpreter != nullptr)
interpreter->Invoke();
}
bool CTfLiteClass::LoadInputImageBasis(CImageBasis *rs)
{
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("CTfLiteClass::LoadInputImageBasis - Start");
#endif
unsigned int w = rs->width;
unsigned int h = rs->height;
unsigned char red, green, blue;
// ESP_LOGD(TAG, "Image: %s size: %d x %d\n", _fn.c_str(), w, h);
input_i = 0;
float* input_data_ptr = (interpreter->input(0))->data.f;
for (int y = 0; y < h; ++y)
for (int x = 0; x < w; ++x)
{
red = rs->GetPixelColor(x, y, 0);
green = rs->GetPixelColor(x, y, 1);
blue = rs->GetPixelColor(x, y, 2);
*(input_data_ptr) = (float) red;
input_data_ptr++;
*(input_data_ptr) = (float) green;
input_data_ptr++;
*(input_data_ptr) = (float) blue;
input_data_ptr++;
}
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("CTfLiteClass::LoadInputImageBasis - done");
#endif
return true;
}
bool CTfLiteClass::MakeAllocate()
{
static tflite::AllOpsResolver resolver;
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("CTLiteClass::Alloc start");
#endif
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "CTfLiteClass::MakeAllocate");
this->interpreter = new tflite::MicroInterpreter(this->model, resolver, this->tensor_arena, this->kTensorArenaSize, this->error_reporter);
if (this->interpreter)
{
TfLiteStatus allocate_status = this->interpreter->AllocateTensors();
if (allocate_status != kTfLiteOk) {
TF_LITE_REPORT_ERROR(error_reporter, "AllocateTensors() failed");
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "AllocateTensors() failed");
this->GetInputDimension();
return false;
}
}
else
{
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "new tflite::MicroInterpreter failed");
LogFile.WriteHeapInfo("CTfLiteClass::MakeAllocate-new tflite::MicroInterpreter failed");
return false;
}
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("CTLiteClass::Alloc done");
#endif
return true;
}
void CTfLiteClass::GetInputTensorSize()
{
#ifdef DEBUG_DETAIL_ON
float *zw = this->input;
int test = sizeof(zw);
ESP_LOGD(TAG, "Input Tensor Dimension: %d", test);
#endif
}
long CTfLiteClass::GetFileSize(std::string filename)
{
struct stat stat_buf;
long rc = stat(filename.c_str(), &stat_buf);
return rc == 0 ? stat_buf.st_size : -1;
}
bool CTfLiteClass::ReadFileToModel(std::string _fn)
{
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "CTfLiteClass::ReadFileToModel: " + _fn);
long size = GetFileSize(_fn);
if (size == -1)
{
ESP_LOGE(TAG, "CTfLiteClass::ReadFileToModel: Model file doesn't exist: %s", _fn.c_str());
return false;
}
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("CTLiteClass::Alloc modelfile start");
#endif
modelfile = (unsigned char*)malloc_psram_heap(std::string(TAG) + "->modelfile", size, MALLOC_CAP_SPIRAM);
if(modelfile != NULL)
{
FILE* f = fopen(_fn.c_str(), "rb"); // previously only "r
fread(modelfile, 1, size, f);
fclose(f);
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("CTLiteClass::Alloc modelfile successful");
#endif
return true;
}
else
{
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "CTfLiteClass::ReadFileToModel: Can't allocate enough memory: " + std::to_string(size));
LogFile.WriteHeapInfo("CTfLiteClass::ReadFileToModel");
return false;
}
}
bool CTfLiteClass::LoadModel(std::string _fn)
{
#ifdef SUPRESS_TFLITE_ERRORS
this->error_reporter = new tflite::OwnMicroErrorReporter;
#else
this->error_reporter = new tflite::MicroErrorReporter;
#endif
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "CTfLiteClass::LoadModel");
if (!ReadFileToModel(_fn.c_str())) {
return false;
}
model = tflite::GetModel(modelfile);
if(model == nullptr)
return false;
return true;
}
CTfLiteClass::CTfLiteClass()
{
this->model = nullptr;
this->modelfile = NULL;
this->interpreter = nullptr;
this->input = nullptr;
this->output = nullptr;
this->kTensorArenaSize = 800 * 1024; /// according to testfile: 108000 - so far 600;; 2021-09-11: 200 * 1024
this->tensor_arena = (uint8_t*)malloc_psram_heap(std::string(TAG) + "->tensor_arena", kTensorArenaSize, MALLOC_CAP_SPIRAM);
}
CTfLiteClass::~CTfLiteClass()
{
delete this->interpreter;
delete this->error_reporter;
free_psram_heap(std::string(TAG) + "->modelfile", modelfile);
free_psram_heap(std::string(TAG) + "->tensor_arena", this->tensor_arena);
}
namespace tflite
{
int OwnMicroErrorReporter::Report(const char* format, va_list args)
{
return 0;
}
}