#include "ClassFlowPostProcessing.h" #include "Helper.h" #include "ClassFlowTakeImage.h" #include "ClassLogFile.h" #include #include #include #include "time_sntp.h" #include "esp_log.h" #include "../../include/defines.h" static const char* TAG = "POSTPROC"; std::string ClassFlowPostProcessing::getNumbersName() { std::string ret=""; for (int i = 0; i < NUMBERS.size(); ++i) { ret += NUMBERS[i]->name; if (i < NUMBERS.size()-1) { ret = ret + "\t"; } } // ESP_LOGI(TAG, "Result ClassFlowPostProcessing::getNumbersName: %s", ret.c_str()); return ret; } std::string ClassFlowPostProcessing::GetJSON(std::string _lineend) { std::string json="{" + _lineend; for (int i = 0; i < NUMBERS.size(); ++i) { json += "\"" + NUMBERS[i]->name + "\":" + _lineend; json += getJsonFromNumber(i, _lineend) + _lineend; if ((i+1) < NUMBERS.size()) { json += "," + _lineend; } } json += "}"; return json; } string ClassFlowPostProcessing::getJsonFromNumber(int i, std::string _lineend) { std::string json = ""; json += " {" + _lineend; if (NUMBERS[i]->ReturnValue.length() > 0) { json += " \"value\": \"" + NUMBERS[i]->ReturnValue + "\"," + _lineend; } else { json += " \"value\": \"\"," + _lineend; } json += " \"raw\": \"" + NUMBERS[i]->ReturnRawValue + "\"," + _lineend; json += " \"pre\": \"" + NUMBERS[i]->ReturnPreValue + "\"," + _lineend; json += " \"error\": \"" + NUMBERS[i]->ErrorMessageText + "\"," + _lineend; if (NUMBERS[i]->ReturnRateValue.length() > 0) { json += " \"rate\": \"" + NUMBERS[i]->ReturnRateValue + "\"," + _lineend; } else { json += " \"rate\": \"\"," + _lineend; } json += " \"timestamp\": \"" + NUMBERS[i]->timeStamp + "\"" + _lineend; json += " }" + _lineend; return json; } string ClassFlowPostProcessing::GetPreValue(std::string _number) { std::string result; int index = -1; if (_number == "") { _number = "default"; } for (int i = 0; i < NUMBERS.size(); ++i) { if (NUMBERS[i]->name == _number) { index = i; } } if (index == -1) { return std::string(""); } result = RundeOutput(NUMBERS[index]->PreValue, NUMBERS[index]->Nachkomma); return result; } bool ClassFlowPostProcessing::SetPreValue(double _newvalue, string _numbers, bool _extern) { //ESP_LOGD(TAG, "SetPrevalue: %f, %s", zw, _numbers.c_str()); for (int j = 0; j < NUMBERS.size(); ++j) { //ESP_LOGD(TAG, "Number %d, %s", j, NUMBERS[j]->name.c_str()); if (NUMBERS[j]->name == _numbers) { if (_newvalue >= 0) { // if new value posivive, use provided value to preset PreValue NUMBERS[j]->PreValue = _newvalue; } else { // if new value negative, use last raw value to preset PreValue char* p; double ReturnRawValueAsDouble = strtod(NUMBERS[j]->ReturnRawValue.c_str(), &p); if (ReturnRawValueAsDouble == 0) { LogFile.WriteToFile(ESP_LOG_WARN, TAG, "SetPreValue: RawValue not a valid value for further processing: " + NUMBERS[j]->ReturnRawValue); return false; } NUMBERS[j]->PreValue = ReturnRawValueAsDouble; } NUMBERS[j]->ReturnPreValue = std::to_string(NUMBERS[j]->PreValue); NUMBERS[j]->PreValueOkay = true; if (_extern) { time(&(NUMBERS[j]->lastvalue)); localtime(&(NUMBERS[j]->lastvalue)); } //ESP_LOGD(TAG, "Found %d! - set to %.8f", j, NUMBERS[j]->PreValue); UpdatePreValueINI = true; // Only update prevalue file if a new value is set SavePreValue(); LogFile.WriteToFile(ESP_LOG_INFO, TAG, "SetPreValue: PreValue for " + NUMBERS[j]->name + " set to " + std::to_string(NUMBERS[j]->PreValue)); return true; } } LogFile.WriteToFile(ESP_LOG_WARN, TAG, "SetPreValue: Numbersname not found or not valid"); return false; // No new value was set (e.g. wrong numbersname, no numbers at all) } bool ClassFlowPostProcessing::LoadPreValue(void) { std::vector splitted; FILE* pFile; char zw[1024]; string zwtime, zwvalue, name; bool _done = false; UpdatePreValueINI = false; // Conversion to the new format pFile = fopen(FilePreValue.c_str(), "r"); if (pFile == NULL) { return false; } fgets(zw, 1024, pFile); ESP_LOGD(TAG, "Read line Prevalue.ini: %s", zw); zwtime = trim(std::string(zw)); if (zwtime.length() == 0) { return false; } splitted = HelperZerlegeZeile(zwtime, "\t"); // Conversion to the new format if (splitted.size() > 1) { while ((splitted.size() > 1) && !_done) { name = trim(splitted[0]); zwtime = trim(splitted[1]); zwvalue = trim(splitted[2]); for (int j = 0; j < NUMBERS.size(); ++j) { if (NUMBERS[j]->name == name) { NUMBERS[j]->PreValue = stod(zwvalue.c_str()); NUMBERS[j]->ReturnPreValue = RundeOutput(NUMBERS[j]->PreValue, NUMBERS[j]->Nachkomma + 1); // To be on the safe side, 1 digit more, as Exgtended Resolution may be on (will only be set during the first run). time_t tStart; int yy, month, dd, hh, mm, ss; struct tm whenStart; sscanf(zwtime.c_str(), PREVALUE_TIME_FORMAT_INPUT, &yy, &month, &dd, &hh, &mm, &ss); whenStart.tm_year = yy - 1900; whenStart.tm_mon = month - 1; whenStart.tm_mday = dd; whenStart.tm_hour = hh; whenStart.tm_min = mm; whenStart.tm_sec = ss; whenStart.tm_isdst = -1; NUMBERS[j]->lastvalue = mktime(&whenStart); time(&tStart); localtime(&tStart); double difference = difftime(tStart, NUMBERS[j]->lastvalue); difference /= 60; if (difference > PreValueAgeStartup) { NUMBERS[j]->PreValueOkay = false; } else { NUMBERS[j]->PreValueOkay = true; } } } if (!fgets(zw, 1024, pFile)) { _done = true; } else { ESP_LOGD(TAG, "Read line Prevalue.ini: %s", zw); splitted = HelperZerlegeZeile(trim(std::string(zw)), "\t"); if (splitted.size() > 1) { name = trim(splitted[0]); zwtime = trim(splitted[1]); zwvalue = trim(splitted[2]); } } } fclose(pFile); } else { // Old Format fgets(zw, 1024, pFile); fclose(pFile); ESP_LOGD(TAG, "%s", zw); zwvalue = trim(std::string(zw)); NUMBERS[0]->PreValue = stod(zwvalue.c_str()); time_t tStart; int yy, month, dd, hh, mm, ss; struct tm whenStart; sscanf(zwtime.c_str(), PREVALUE_TIME_FORMAT_INPUT, &yy, &month, &dd, &hh, &mm, &ss); whenStart.tm_year = yy - 1900; whenStart.tm_mon = month - 1; whenStart.tm_mday = dd; whenStart.tm_hour = hh; whenStart.tm_min = mm; whenStart.tm_sec = ss; whenStart.tm_isdst = -1; ESP_LOGD(TAG, "TIME: %d, %d, %d, %d, %d, %d", whenStart.tm_year, whenStart.tm_mon, whenStart.tm_wday, whenStart.tm_hour, whenStart.tm_min, whenStart.tm_sec); NUMBERS[0]->lastvalue = mktime(&whenStart); time(&tStart); localtime(&tStart); double difference = difftime(tStart, NUMBERS[0]->lastvalue); difference /= 60; if (difference > PreValueAgeStartup) { return false; } NUMBERS[0]->Value = NUMBERS[0]->PreValue; NUMBERS[0]->ReturnValue = to_string(NUMBERS[0]->Value); if (NUMBERS[0]->digit_roi || NUMBERS[0]->analog_roi) { NUMBERS[0]->ReturnValue = RundeOutput(NUMBERS[0]->Value, NUMBERS[0]->Nachkomma); } UpdatePreValueINI = true; // Conversion to the new format SavePreValue(); } return true; } void ClassFlowPostProcessing::SavePreValue() { FILE* pFile; string _zw; // PreValues unchanged --> File does not have to be rewritten if (!UpdatePreValueINI) { return; } pFile = fopen(FilePreValue.c_str(), "w"); for (int j = 0; j < NUMBERS.size(); ++j) { char buffer[80]; struct tm* timeinfo = localtime(&NUMBERS[j]->lastvalue); strftime(buffer, 80, PREVALUE_TIME_FORMAT_OUTPUT, timeinfo); NUMBERS[j]->timeStamp = std::string(buffer); NUMBERS[j]->timeStampTimeUTC = NUMBERS[j]->lastvalue; // ESP_LOGD(TAG, "SaverPreValue %d, Value: %f, Nachkomma %d", j, NUMBERS[j]->PreValue, NUMBERS[j]->Nachkomma); _zw = NUMBERS[j]->name + "\t" + NUMBERS[j]->timeStamp + "\t" + RundeOutput(NUMBERS[j]->PreValue, NUMBERS[j]->Nachkomma) + "\n"; ESP_LOGD(TAG, "Write PreValue line: %s", _zw.c_str()); if (pFile) { fputs(_zw.c_str(), pFile); } } UpdatePreValueINI = false; fclose(pFile); } ClassFlowPostProcessing::ClassFlowPostProcessing(std::vector* lfc, ClassFlowCNNGeneral *_analog, ClassFlowCNNGeneral *_digit) { PreValueUse = false; PreValueAgeStartup = 30; ErrorMessage = false; ListFlowControll = NULL; FilePreValue = FormatFileName("/sdcard/config/prevalue.ini"); ListFlowControll = lfc; flowTakeImage = NULL; UpdatePreValueINI = false; IgnoreLeadingNaN = false; flowAnalog = _analog; flowDigit = _digit; for (int i = 0; i < ListFlowControll->size(); ++i) { if (((*ListFlowControll)[i])->name().compare("ClassFlowTakeImage") == 0) { flowTakeImage = (ClassFlowTakeImage*) (*ListFlowControll)[i]; } } } void ClassFlowPostProcessing::handleDecimalExtendedResolution(string _decsep, string _value) { string _digit, _decpos; int _pospunkt = _decsep.find_first_of("."); // ESP_LOGD(TAG, "Name: %s, Pospunkt: %d", _decsep.c_str(), _pospunkt); if (_pospunkt > -1) { _digit = _decsep.substr(0, _pospunkt); } else { _digit = "default"; } for (int j = 0; j < NUMBERS.size(); ++j) { bool _zwdc = false; if (toUpper(_value) == "TRUE") { _zwdc = true; } // Set to default first (if nothing else is set) if ((_digit == "default") || (NUMBERS[j]->name == _digit)) { NUMBERS[j]->isExtendedResolution = _zwdc; } } } void ClassFlowPostProcessing::handleDecimalSeparator(string _decsep, string _value) { string _digit, _decpos; int _pospunkt = _decsep.find_first_of("."); // ESP_LOGD(TAG, "Name: %s, Pospunkt: %d", _decsep.c_str(), _pospunkt); if (_pospunkt > -1) { _digit = _decsep.substr(0, _pospunkt); } else { _digit = "default"; } for (int j = 0; j < NUMBERS.size(); ++j) { int _zwdc = 0; _zwdc = stoi(_value); // Set to default first (if nothing else is set) if ((_digit == "default") || (NUMBERS[j]->name == _digit)) { NUMBERS[j]->DecimalShift = _zwdc; NUMBERS[j]->DecimalShiftInitial = _zwdc; } NUMBERS[j]->Nachkomma = NUMBERS[j]->AnzahlAnalog - NUMBERS[j]->DecimalShift; } } void ClassFlowPostProcessing::handleAnalogDigitalTransitionStart(string _decsep, string _value) { string _digit, _decpos; int _pospunkt = _decsep.find_first_of("."); // ESP_LOGD(TAG, "Name: %s, Pospunkt: %d", _decsep.c_str(), _pospunkt); if (_pospunkt > -1) { _digit = _decsep.substr(0, _pospunkt); } else { _digit = "default"; } for (int j = 0; j < NUMBERS.size(); ++j) { float _zwdc = 9.2; _zwdc = stof(_value); // Set to default first (if nothing else is set) if ((_digit == "default") || (NUMBERS[j]->name == _digit)) { NUMBERS[j]->AnalogDigitalTransitionStart = _zwdc; } } } void ClassFlowPostProcessing::handleAllowNegativeRate(string _decsep, string _value) { string _digit, _decpos; int _pospunkt = _decsep.find_first_of("."); // ESP_LOGD(TAG, "Name: %s, Pospunkt: %d", _decsep.c_str(), _pospunkt); if (_pospunkt > -1) { _digit = _decsep.substr(0, _pospunkt); } else { _digit = "default"; } for (int j = 0; j < NUMBERS.size(); ++j) { bool _rt = false; if (toUpper(_value) == "TRUE") { _rt = true; } // Set to default first (if nothing else is set) if ((_digit == "default") || (NUMBERS[j]->name == _digit)) { NUMBERS[j]->AllowNegativeRates = _rt; } } } void ClassFlowPostProcessing::handleMaxRateType(string _decsep, string _value) { string _digit, _decpos; int _pospunkt = _decsep.find_first_of("."); // ESP_LOGD(TAG, "Name: %s, Pospunkt: %d", _decsep.c_str(), _pospunkt); if (_pospunkt > -1) { _digit = _decsep.substr(0, _pospunkt); } else { _digit = "default"; } for (int j = 0; j < NUMBERS.size(); ++j) { t_RateType _rt = AbsoluteChange; if (toUpper(_value) == "RATECHANGE") { _rt = RateChange; } // Set to default first (if nothing else is set) if ((_digit == "default") || (NUMBERS[j]->name == _digit)) { NUMBERS[j]->RateType = _rt; } } } void ClassFlowPostProcessing::handleMaxRateValue(string _decsep, string _value) { string _digit, _decpos; int _pospunkt = _decsep.find_first_of("."); // ESP_LOGD(TAG, "Name: %s, Pospunkt: %d", _decsep.c_str(), _pospunkt); if (_pospunkt > -1) { _digit = _decsep.substr(0, _pospunkt); } else { _digit = "default"; } for (int j = 0; j < NUMBERS.size(); ++j) { float _zwdc = 1; _zwdc = stof(_value); // Set to default first (if nothing else is set) if ((_digit == "default") || (NUMBERS[j]->name == _digit)) { NUMBERS[j]->useMaxRateValue = true; NUMBERS[j]->MaxRateValue = _zwdc; } } } bool ClassFlowPostProcessing::ReadParameter(FILE* pfile, string& aktparamgraph) { std::vector splitted; int _n; aktparamgraph = trim(aktparamgraph); if (aktparamgraph.size() == 0) { if (!this->GetNextParagraph(pfile, aktparamgraph)) { return false; } } // Paragraph does not fit PostProcessing if (aktparamgraph.compare("[PostProcessing]") != 0) { return false; } InitNUMBERS(); while (this->getNextLine(pfile, &aktparamgraph) && !this->isNewParagraph(aktparamgraph)) { splitted = ZerlegeZeile(aktparamgraph); std::string _param = GetParameterName(splitted[0]); if ((toUpper(_param) == "EXTENDEDRESOLUTION") && (splitted.size() > 1)) { handleDecimalExtendedResolution(splitted[0], splitted[1]); } if ((toUpper(_param) == "DECIMALSHIFT") && (splitted.size() > 1)) { handleDecimalSeparator(splitted[0], splitted[1]); } if ((toUpper(_param) == "ANALOGDIGITALTRANSITIONSTART") && (splitted.size() > 1)) { handleAnalogDigitalTransitionStart(splitted[0], splitted[1]); } if ((toUpper(_param) == "MAXRATEVALUE") && (splitted.size() > 1)) { handleMaxRateValue(splitted[0], splitted[1]); } if ((toUpper(_param) == "MAXRATETYPE") && (splitted.size() > 1)) { handleMaxRateType(splitted[0], splitted[1]); } if ((toUpper(_param) == "PREVALUEUSE") && (splitted.size() > 1)) { if (toUpper(splitted[1]) == "TRUE") { PreValueUse = true; } } if ((toUpper(_param) == "CHECKDIGITINCREASECONSISTENCY") && (splitted.size() > 1)) { if (toUpper(splitted[1]) == "TRUE") { for (_n = 0; _n < NUMBERS.size(); ++_n) { NUMBERS[_n]->checkDigitIncreaseConsistency = true; } } } if ((toUpper(_param) == "ALLOWNEGATIVERATES") && (splitted.size() > 1)) { handleAllowNegativeRate(splitted[0], splitted[1]); } if ((toUpper(_param) == "ERRORMESSAGE") && (splitted.size() > 1)) { if (toUpper(splitted[1]) == "TRUE") { ErrorMessage = true; } } if ((toUpper(_param) == "IGNORELEADINGNAN") && (splitted.size() > 1)) { if (toUpper(splitted[1]) == "TRUE") { IgnoreLeadingNaN = true; } } if ((toUpper(_param) == "PREVALUEAGESTARTUP") && (splitted.size() > 1)) { PreValueAgeStartup = std::stoi(splitted[1]); } } if (PreValueUse) { LoadPreValue(); } return true; } void ClassFlowPostProcessing::InitNUMBERS() { int anzDIGIT = 0; int anzANALOG = 0; std::vector name_numbers; if (flowDigit) { anzDIGIT = flowDigit->getNumberGENERAL(); flowDigit->UpdateNameNumbers(&name_numbers); } if (flowAnalog) { anzANALOG = flowAnalog->getNumberGENERAL(); flowAnalog->UpdateNameNumbers(&name_numbers); } ESP_LOGD(TAG, "Anzahl NUMBERS: %d - DIGITS: %d, ANALOG: %d", name_numbers.size(), anzDIGIT, anzANALOG); for (int _num = 0; _num < name_numbers.size(); ++_num) { NumberPost *_number = new NumberPost; _number->name = name_numbers[_num]; _number->digit_roi = NULL; if (flowDigit) { _number->digit_roi = flowDigit->FindGENERAL(name_numbers[_num]); } if (_number->digit_roi) { _number->AnzahlDigital = _number->digit_roi->ROI.size(); } else { _number->AnzahlDigital = 0; } _number->analog_roi = NULL; if (flowAnalog) { _number->analog_roi = flowAnalog->FindGENERAL(name_numbers[_num]); } if (_number->analog_roi) { _number->AnzahlAnalog = _number->analog_roi->ROI.size(); } else { _number->AnzahlAnalog = 0; } _number->ReturnRawValue = ""; // Raw value (with N & leading 0). _number->ReturnValue = ""; // corrected return value, possibly with error message _number->ErrorMessageText = ""; // Error message for consistency check _number->ReturnPreValue = ""; _number->PreValueOkay = false; _number->AllowNegativeRates = false; _number->MaxRateValue = 0.1; _number->RateType = AbsoluteChange; _number->useMaxRateValue = false; _number->checkDigitIncreaseConsistency = false; _number->DecimalShift = 0; _number->DecimalShiftInitial = 0; _number->isExtendedResolution = false; _number->AnalogDigitalTransitionStart=9.2; _number->FlowRateAct = 0; // m3 / min _number->PreValue = 0; // last value read out well _number->Value = 0; // last value read out, incl. corrections _number->ReturnRawValue = ""; // raw value (with N & leading 0) _number->ReturnValue = ""; // corrected return value, possibly with error message _number->ErrorMessageText = ""; // Error message for consistency check _number->Nachkomma = _number->AnzahlAnalog; NUMBERS.push_back(_number); } for (int i = 0; i < NUMBERS.size(); ++i) { ESP_LOGD(TAG, "Number %s, Anz DIG: %d, Anz ANA %d", NUMBERS[i]->name.c_str(), NUMBERS[i]->AnzahlDigital, NUMBERS[i]->AnzahlAnalog); } } string ClassFlowPostProcessing::ShiftDecimal(string in, int _decShift) { if (_decShift == 0) { return in; } int _pos_dec_org, _pos_dec_neu; _pos_dec_org = findDelimiterPos(in, "."); if (_pos_dec_org == std::string::npos) { _pos_dec_org = in.length(); } else { in = in.erase(_pos_dec_org, 1); } _pos_dec_neu = _pos_dec_org + _decShift; // comma is before the first digit if (_pos_dec_neu <= 0) { for (int i = 0; i > _pos_dec_neu; --i) { in = in.insert(0, "0"); } in = "0." + in; return in; } // Comma should be after string (123 --> 1230) if (_pos_dec_neu > in.length()) { for (int i = in.length(); i < _pos_dec_neu; ++i) { in = in.insert(in.length(), "0"); } return in; } string zw; zw = in.substr(0, _pos_dec_neu); zw = zw + "."; zw = zw + in.substr(_pos_dec_neu, in.length() - _pos_dec_neu); return zw; } bool ClassFlowPostProcessing::doFlow(string zwtime) { string result = ""; string digit = ""; string analog = ""; string zwvalue; string zw; time_t imagetime = 0; string rohwert; // Update decimal point, as the decimal places can also change when changing from CNNType Auto --> xyz: imagetime = flowTakeImage->getTimeImageTaken(); if (imagetime == 0) { time(&imagetime); } struct tm* timeinfo; timeinfo = localtime(&imagetime); char strftime_buf[64]; strftime(strftime_buf, sizeof(strftime_buf), "%Y-%m-%dT%H:%M:%S", timeinfo); zwtime = std::string(strftime_buf); ESP_LOGD(TAG, "Quantity NUMBERS: %d", NUMBERS.size()); for (int j = 0; j < NUMBERS.size(); ++j) { NUMBERS[j]->ReturnRawValue = ""; NUMBERS[j]->ReturnRateValue = ""; NUMBERS[j]->ReturnValue = ""; NUMBERS[j]->ReturnChangeAbsolute = RundeOutput(0.0, NUMBERS[j]->Nachkomma); // always reset change absolute NUMBERS[j]->ErrorMessageText = ""; NUMBERS[j]->Value = -1; // calculate time difference BEFORE we overwrite the 'lastvalue' double difference = difftime(imagetime, NUMBERS[j]->lastvalue); // in seconds // TODO: // We could call `NUMBERS[j]->lastvalue = imagetime;` here and remove all other such calls further down. // But we should check nothing breaks! UpdateNachkommaDecimalShift(); int previous_value = -1; if (NUMBERS[j]->analog_roi) { NUMBERS[j]->ReturnRawValue = flowAnalog->getReadout(j, NUMBERS[j]->isExtendedResolution); if (NUMBERS[j]->ReturnRawValue.length() > 0) { char zw = NUMBERS[j]->ReturnRawValue[0]; if (zw >= 48 && zw <=57) { previous_value = zw - 48; } } } #ifdef SERIAL_DEBUG ESP_LOGD(TAG, "After analog->getReadout: ReturnRaw %s", NUMBERS[j]->ReturnRawValue.c_str()); #endif if (NUMBERS[j]->digit_roi && NUMBERS[j]->analog_roi) { NUMBERS[j]->ReturnRawValue = "." + NUMBERS[j]->ReturnRawValue; } if (NUMBERS[j]->digit_roi) { if (NUMBERS[j]->analog_roi) { NUMBERS[j]->ReturnRawValue = flowDigit->getReadout(j, false, previous_value, NUMBERS[j]->analog_roi->ROI[0]->result_float, NUMBERS[j]->AnalogDigitalTransitionStart) + NUMBERS[j]->ReturnRawValue; } else { NUMBERS[j]->ReturnRawValue = flowDigit->getReadout(j, NUMBERS[j]->isExtendedResolution, previous_value); // Extended Resolution only if there are no analogue digits } } #ifdef SERIAL_DEBUG ESP_LOGD(TAG, "After digital->getReadout: ReturnRaw %s", NUMBERS[j]->ReturnRawValue.c_str()); #endif NUMBERS[j]->ReturnRawValue = ShiftDecimal(NUMBERS[j]->ReturnRawValue, NUMBERS[j]->DecimalShift); #ifdef SERIAL_DEBUG ESP_LOGD(TAG, "After ShiftDecimal: ReturnRaw %s", NUMBERS[j]->ReturnRawValue.c_str()); #endif if (IgnoreLeadingNaN) { while ((NUMBERS[j]->ReturnRawValue.length() > 1) && (NUMBERS[j]->ReturnRawValue[0] == 'N')) { NUMBERS[j]->ReturnRawValue.erase(0, 1); } } #ifdef SERIAL_DEBUG ESP_LOGD(TAG, "After IgnoreLeadingNaN: ReturnRaw %s", NUMBERS[j]->ReturnRawValue.c_str()); #endif NUMBERS[j]->ReturnValue = NUMBERS[j]->ReturnRawValue; if (findDelimiterPos(NUMBERS[j]->ReturnValue, "N") != std::string::npos) { if (PreValueUse && NUMBERS[j]->PreValueOkay) { NUMBERS[j]->ReturnValue = ErsetzteN(NUMBERS[j]->ReturnValue, NUMBERS[j]->PreValue); } else { string _zw = NUMBERS[j]->name + ": Raw: " + NUMBERS[j]->ReturnRawValue + ", Value: " + NUMBERS[j]->ReturnValue + ", Status: " + NUMBERS[j]->ErrorMessageText; LogFile.WriteToFile(ESP_LOG_INFO, TAG, _zw); /* TODO to be discussed, see https://github.com/jomjol/AI-on-the-edge-device/issues/1617 */ NUMBERS[j]->lastvalue = imagetime; WriteDataLog(j); continue; // there is no number because there is still an N. } } #ifdef SERIAL_DEBUG ESP_LOGD(TAG, "After findDelimiterPos: ReturnValue %s", NUMBERS[j]->ReturnRawValue.c_str()); #endif // Delete leading zeros (unless there is only one 0 left) while ((NUMBERS[j]->ReturnValue.length() > 1) && (NUMBERS[j]->ReturnValue[0] == '0')) { NUMBERS[j]->ReturnValue.erase(0, 1); } #ifdef SERIAL_DEBUG ESP_LOGD(TAG, "After removeLeadingZeros: ReturnValue %s", NUMBERS[j]->ReturnRawValue.c_str()); #endif NUMBERS[j]->Value = std::stod(NUMBERS[j]->ReturnValue); #ifdef SERIAL_DEBUG ESP_LOGD(TAG, "After setting the Value: Value %f and as double is %f", NUMBERS[j]->Value, std::stod(NUMBERS[j]->ReturnValue)); #endif if (NUMBERS[j]->checkDigitIncreaseConsistency) { if (flowDigit) { if (flowDigit->getCNNType() != Digital) { ESP_LOGD(TAG, "checkDigitIncreaseConsistency = true - ignored due to wrong CNN-Type (not Digital Classification)"); } else { NUMBERS[j]->Value = checkDigitConsistency(NUMBERS[j]->Value, NUMBERS[j]->DecimalShift, NUMBERS[j]->analog_roi != NULL, NUMBERS[j]->PreValue); } } else { #ifdef SERIAL_DEBUG ESP_LOGD(TAG, "checkDigitIncreaseConsistency = true - no digital numbers defined!"); #endif } } #ifdef SERIAL_DEBUG ESP_LOGD(TAG, "After checkDigitIncreaseConsistency: Value %f", NUMBERS[j]->Value); #endif if (!NUMBERS[j]->AllowNegativeRates) { LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "handleAllowNegativeRate for device: " + NUMBERS[j]->name); if ((NUMBERS[j]->Value < NUMBERS[j]->PreValue)) { // more debug if extended resolution is on, see #2447 if (NUMBERS[j]->isExtendedResolution) { LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "Neg: value=" + std::to_string(NUMBERS[j]->Value) + ", preValue=" + std::to_string(NUMBERS[j]->PreValue) + ", preToll=" + std::to_string(NUMBERS[j]->PreValue-(2/pow(10, NUMBERS[j]->Nachkomma)))); } // Include inaccuracy of 0.2 for isExtendedResolution. if ((NUMBERS[j]->Value >= (NUMBERS[j]->PreValue-(2/pow(10, NUMBERS[j]->Nachkomma))) && NUMBERS[j]->isExtendedResolution) // not extended resolution allows -1 on the lowest digit || (NUMBERS[j]->Value >= (NUMBERS[j]->PreValue-(1/pow(10, NUMBERS[j]->Nachkomma))) && !NUMBERS[j]->isExtendedResolution)) { NUMBERS[j]->Value = NUMBERS[j]->PreValue; NUMBERS[j]->ReturnValue = to_string(NUMBERS[j]->PreValue); } else { NUMBERS[j]->ErrorMessageText = NUMBERS[j]->ErrorMessageText + "Neg. Rate - Read: " + zwvalue + " - Raw: " + NUMBERS[j]->ReturnRawValue + " - Pre: " + RundeOutput(NUMBERS[j]->PreValue, NUMBERS[j]->Nachkomma) + " "; NUMBERS[j]->Value = NUMBERS[j]->PreValue; NUMBERS[j]->ReturnValue = ""; NUMBERS[j]->lastvalue = imagetime; string _zw = NUMBERS[j]->name + ": Raw: " + NUMBERS[j]->ReturnRawValue + ", Value: " + NUMBERS[j]->ReturnValue + ", Status: " + NUMBERS[j]->ErrorMessageText; LogFile.WriteToFile(ESP_LOG_ERROR, TAG, _zw); WriteDataLog(j); continue; } } } #ifdef SERIAL_DEBUG ESP_LOGD(TAG, "After AllowNegativeRates: Value %f", NUMBERS[j]->Value); #endif difference /= 60; NUMBERS[j]->FlowRateAct = (NUMBERS[j]->Value - NUMBERS[j]->PreValue) / difference; NUMBERS[j]->ReturnRateValue = to_string(NUMBERS[j]->FlowRateAct); if (NUMBERS[j]->useMaxRateValue && PreValueUse && NUMBERS[j]->PreValueOkay) { double _ratedifference; if (NUMBERS[j]->RateType == RateChange) { _ratedifference = NUMBERS[j]->FlowRateAct; } else { _ratedifference = (NUMBERS[j]->Value - NUMBERS[j]->PreValue); } if (abs(_ratedifference) > abs(NUMBERS[j]->MaxRateValue)) { NUMBERS[j]->ErrorMessageText = NUMBERS[j]->ErrorMessageText + "Rate too high - Read: " + RundeOutput(NUMBERS[j]->Value, NUMBERS[j]->Nachkomma) + " - Pre: " + RundeOutput(NUMBERS[j]->PreValue, NUMBERS[j]->Nachkomma) + " - Rate: " + RundeOutput(_ratedifference, NUMBERS[j]->Nachkomma); NUMBERS[j]->Value = NUMBERS[j]->PreValue; NUMBERS[j]->ReturnValue = ""; NUMBERS[j]->ReturnRateValue = ""; NUMBERS[j]->lastvalue = imagetime; string _zw = NUMBERS[j]->name + ": Raw: " + NUMBERS[j]->ReturnRawValue + ", Value: " + NUMBERS[j]->ReturnValue + ", Status: " + NUMBERS[j]->ErrorMessageText; LogFile.WriteToFile(ESP_LOG_ERROR, TAG, _zw); WriteDataLog(j); continue; } } #ifdef SERIAL_DEBUG ESP_LOGD(TAG, "After MaxRateCheck: Value %f", NUMBERS[j]->Value); #endif NUMBERS[j]->ReturnChangeAbsolute = RundeOutput(NUMBERS[j]->Value - NUMBERS[j]->PreValue, NUMBERS[j]->Nachkomma); NUMBERS[j]->PreValue = NUMBERS[j]->Value; NUMBERS[j]->PreValueOkay = true; NUMBERS[j]->lastvalue = imagetime; NUMBERS[j]->ReturnValue = RundeOutput(NUMBERS[j]->Value, NUMBERS[j]->Nachkomma); NUMBERS[j]->ReturnPreValue = RundeOutput(NUMBERS[j]->PreValue, NUMBERS[j]->Nachkomma); NUMBERS[j]->ErrorMessageText = "no error"; UpdatePreValueINI = true; string _zw = NUMBERS[j]->name + ": Raw: " + NUMBERS[j]->ReturnRawValue + ", Value: " + NUMBERS[j]->ReturnValue + ", Status: " + NUMBERS[j]->ErrorMessageText; LogFile.WriteToFile(ESP_LOG_INFO, TAG, _zw); WriteDataLog(j); } SavePreValue(); return true; } void ClassFlowPostProcessing::WriteDataLog(int _index) { if (!LogFile.GetDataLogToSD()) { return; } string analog = ""; string digital = ""; string timezw = ""; char buffer[80]; struct tm* timeinfo = localtime(&NUMBERS[_index]->lastvalue); strftime(buffer, 80, PREVALUE_TIME_FORMAT_OUTPUT, timeinfo); timezw = std::string(buffer); if (flowAnalog) { analog = flowAnalog->getReadoutRawString(_index); } if (flowDigit) { digital = flowDigit->getReadoutRawString(_index); } LogFile.WriteToData(timezw, NUMBERS[_index]->name, NUMBERS[_index]->ReturnRawValue, NUMBERS[_index]->ReturnValue, NUMBERS[_index]->ReturnPreValue, NUMBERS[_index]->ReturnRateValue, NUMBERS[_index]->ReturnChangeAbsolute, NUMBERS[_index]->ErrorMessageText, digital, analog); ESP_LOGD(TAG, "WriteDataLog: %s, %s, %s, %s, %s", NUMBERS[_index]->ReturnRawValue.c_str(), NUMBERS[_index]->ReturnValue.c_str(), NUMBERS[_index]->ErrorMessageText.c_str(), digital.c_str(), analog.c_str()); } void ClassFlowPostProcessing::UpdateNachkommaDecimalShift() { for (int j = 0; j < NUMBERS.size(); ++j) { // There are only digital digits if (NUMBERS[j]->digit_roi && !NUMBERS[j]->analog_roi) { // ESP_LOGD(TAG, "Nurdigital"); NUMBERS[j]->DecimalShift = NUMBERS[j]->DecimalShiftInitial; // Extended resolution is on and should also be used for this digit. if (NUMBERS[j]->isExtendedResolution && flowDigit->isExtendedResolution()) { NUMBERS[j]->DecimalShift = NUMBERS[j]->DecimalShift-1; } NUMBERS[j]->Nachkomma = -NUMBERS[j]->DecimalShift; } if (!NUMBERS[j]->digit_roi && NUMBERS[j]->analog_roi) { // ESP_LOGD(TAG, "Nur analog"); NUMBERS[j]->DecimalShift = NUMBERS[j]->DecimalShiftInitial; if (NUMBERS[j]->isExtendedResolution && flowAnalog->isExtendedResolution()) { NUMBERS[j]->DecimalShift = NUMBERS[j]->DecimalShift-1; } NUMBERS[j]->Nachkomma = -NUMBERS[j]->DecimalShift; } // digital + analog if (NUMBERS[j]->digit_roi && NUMBERS[j]->analog_roi) { // ESP_LOGD(TAG, "Nur digital + analog"); NUMBERS[j]->DecimalShift = NUMBERS[j]->DecimalShiftInitial; NUMBERS[j]->Nachkomma = NUMBERS[j]->analog_roi->ROI.size() - NUMBERS[j]->DecimalShift; // Extended resolution is on and should also be used for this digit. if (NUMBERS[j]->isExtendedResolution && flowAnalog->isExtendedResolution()) { NUMBERS[j]->Nachkomma = NUMBERS[j]->Nachkomma+1; } } ESP_LOGD(TAG, "UpdateNachkommaDecShift NUMBER%i: Nachkomma %i, DecShift %i", j, NUMBERS[j]->Nachkomma,NUMBERS[j]->DecimalShift); } } string ClassFlowPostProcessing::getReadout(int _number) { return NUMBERS[_number]->ReturnValue; } string ClassFlowPostProcessing::getReadoutParam(bool _rawValue, bool _noerror, int _number) { if (_rawValue) { return NUMBERS[_number]->ReturnRawValue; } if (_noerror) { return NUMBERS[_number]->ReturnValue; } return NUMBERS[_number]->ReturnValue; } string ClassFlowPostProcessing::ErsetzteN(string input, double _prevalue) { int posN, posPunkt; int pot, ziffer; float zw; posN = findDelimiterPos(input, "N"); posPunkt = findDelimiterPos(input, "."); if (posPunkt == std::string::npos) { posPunkt = input.length(); } while (posN != std::string::npos) { if (posN < posPunkt) { pot = posPunkt - posN - 1; } else { pot = posPunkt - posN; } zw =_prevalue / pow(10, pot); ziffer = ((int) zw) % 10; input[posN] = ziffer + 48; posN = findDelimiterPos(input, "N"); } return input; } float ClassFlowPostProcessing::checkDigitConsistency(double input, int _decilamshift, bool _isanalog, double _preValue) { int aktdigit, olddigit; int aktdigit_before, olddigit_before; int pot, pot_max; float zw; bool no_nulldurchgang = false; pot = _decilamshift; // if there are no analogue values, the last one cannot be evaluated if (!_isanalog) { pot++; } #ifdef SERIAL_DEBUG ESP_LOGD(TAG, "checkDigitConsistency: pot=%d, decimalshift=%d", pot, _decilamshift); #endif pot_max = ((int) log10(input)) + 1; while (pot <= pot_max) { zw = input / pow(10, pot-1); aktdigit_before = ((int) zw) % 10; zw = _preValue / pow(10, pot-1); olddigit_before = ((int) zw) % 10; zw = input / pow(10, pot); aktdigit = ((int) zw) % 10; zw = _preValue / pow(10, pot); olddigit = ((int) zw) % 10; no_nulldurchgang = (olddigit_before <= aktdigit_before); if (no_nulldurchgang) { if (aktdigit != olddigit) { input = input + ((float) (olddigit - aktdigit)) * pow(10, pot); // New Digit is replaced by old Digit; } } else { // despite zero crossing, digit was not incremented --> add 1 if (aktdigit == olddigit) { input = input + ((float) (1)) * pow(10, pot); // add 1 at the point } } #ifdef SERIAL_DEBUG ESP_LOGD(TAG, "checkDigitConsistency: input=%f", input); #endif pot++; } return input; } string ClassFlowPostProcessing::getReadoutRate(int _number) { return std::to_string(NUMBERS[_number]->FlowRateAct); } string ClassFlowPostProcessing::getReadoutTimeStamp(int _number) { return NUMBERS[_number]->timeStamp; } string ClassFlowPostProcessing::getReadoutError(int _number) { return NUMBERS[_number]->ErrorMessageText; }