#include "ClassFlowAlignment.h" #include "ClassFlowTakeImage.h" #include "ClassFlow.h" #include "MainFlowControl.h" #include "CRotateImage.h" #include "esp_log.h" #include "ClassLogFile.h" #include "psram.h" #include "../../include/defines.h" static const char *TAG = "ALIGN"; // #define DEBUG_DETAIL_ON void ClassFlowAlignment::SetInitialParameter(void) { initialrotate = 0; anz_ref = 0; use_antialiasing = false; initialflip = false; SaveAllFiles = false; namerawimage = "/sdcard/img_tmp/raw.jpg"; FileStoreRefAlignment = "/sdcard/config/align.txt"; ListFlowControll = NULL; AlignAndCutImage = NULL; ImageBasis = NULL; ImageTMP = NULL; #ifdef ALGROI_LOAD_FROM_MEM_AS_JPG AlgROI = (ImageData *)malloc_psram_heap(std::string(TAG) + "->AlgROI", sizeof(ImageData), MALLOC_CAP_8BIT | MALLOC_CAP_SPIRAM); #endif previousElement = NULL; disabled = false; SAD_criteria = 0.05; } ClassFlowAlignment::ClassFlowAlignment(std::vector *lfc) { SetInitialParameter(); ListFlowControll = lfc; for (int i = 0; i < ListFlowControll->size(); ++i) { if (((*ListFlowControll)[i])->name().compare("ClassFlowTakeImage") == 0) { ImageBasis = ((ClassFlowTakeImage *)(*ListFlowControll)[i])->rawImage; } } // the function take pictures does not exist --> must be created first ONLY FOR TEST PURPOSES if (!ImageBasis) { ESP_LOGD(TAG, "CImageBasis had to be created"); ImageBasis = new CImageBasis("ImageBasis", namerawimage); } } bool ClassFlowAlignment::ReadParameter(FILE *pfile, string &aktparamgraph) { std::vector splitted; int suchex = 40; int suchey = 40; int alg_algo = 0; // default=0; 1 =HIGHACCURACY; 2= FAST; 3= OFF //add disable aligment algo |01.2023 aktparamgraph = trim(aktparamgraph); if (aktparamgraph.size() == 0) { if (!this->GetNextParagraph(pfile, aktparamgraph)) { return false; } } if (aktparamgraph.compare("[Alignment]") != 0) { // Paragraph does not fit Alignment return false; } while (this->getNextLine(pfile, &aktparamgraph) && !this->isNewParagraph(aktparamgraph)) { splitted = ZerlegeZeile(aktparamgraph); if ((toUpper(splitted[0]) == "FLIPIMAGESIZE") && (splitted.size() > 1)) { initialflip = alphanumericToBoolean(splitted[1]); } else if (((toUpper(splitted[0]) == "initialrotate") || (toUpper(splitted[0]) == "INITIALROTATE")) && (splitted.size() > 1)) { if (isStringNumeric(splitted[1])) { this->initialrotate = std::stod(splitted[1]); } } else if ((toUpper(splitted[0]) == "SEARCHFIELDX") && (splitted.size() > 1)) { if (isStringNumeric(splitted[1])) { suchex = std::stod(splitted[1]); } } else if ((toUpper(splitted[0]) == "SEARCHFIELDY") && (splitted.size() > 1)) { if (isStringNumeric(splitted[1])) { suchey = std::stod(splitted[1]); } } else if ((toUpper(splitted[0]) == "ANTIALIASING") && (splitted.size() > 1)) { use_antialiasing = alphanumericToBoolean(splitted[1]); } else if ((splitted.size() == 3) && (anz_ref < 2)) { if ((isStringNumeric(splitted[1])) && (isStringNumeric(splitted[2]))) { References[anz_ref].image_file = FormatFileName("/sdcard" + splitted[0]); References[anz_ref].target_x = std::stod(splitted[1]); References[anz_ref].target_y = std::stod(splitted[2]); anz_ref++; } else { References[anz_ref].image_file = FormatFileName("/sdcard" + splitted[0]); References[anz_ref].target_x = 10; References[anz_ref].target_y = 10; anz_ref++; } } else if ((toUpper(splitted[0]) == "SAVEALLFILES") && (splitted.size() > 1)) { SaveAllFiles = alphanumericToBoolean(splitted[1]); } else if ((toUpper(splitted[0]) == "ALIGNMENTALGO") && (splitted.size() > 1)) { #ifdef DEBUG_DETAIL_ON std::string zw2 = "Alignment mode selected: " + splitted[1]; LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, zw2); #endif if (toUpper(splitted[1]) == "HIGHACCURACY") { alg_algo = 1; } if (toUpper(splitted[1]) == "FAST") { alg_algo = 2; } if (toUpper(splitted[1]) == "OFF") { // no align algo if set to 3 = off => no draw ref //add disable aligment algo |01.2023 alg_algo = 3; } } } for (int i = 0; i < anz_ref; ++i) { References[i].search_x = suchex; References[i].search_y = suchey; References[i].fastalg_SAD_criteria = SAD_criteria; References[i].alignment_algo = alg_algo; #ifdef DEBUG_DETAIL_ON std::string zw2 = "Alignment mode written: " + std::to_string(alg_algo); LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, zw2); #endif } // no align algo if set to 3 = off => no draw ref //add disable aligment algo |01.2023 if (References[0].alignment_algo != 3) { return LoadReferenceAlignmentValues(); } return true; } string ClassFlowAlignment::getHTMLSingleStep(string host) { string result; result = "

Rotated Image:

\n"; result = result + "

Found Alignment:

\n"; result = result + "

Aligned Image:

\n"; return result; } bool ClassFlowAlignment::doFlow(string time) { #ifdef ALGROI_LOAD_FROM_MEM_AS_JPG // AlgROI needs to be allocated before ImageTMP to avoid heap fragmentation if (!AlgROI) { AlgROI = (ImageData *)heap_caps_realloc(AlgROI, sizeof(ImageData), MALLOC_CAP_8BIT | MALLOC_CAP_SPIRAM); if (!AlgROI) { LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "Can't allocate AlgROI"); LogFile.WriteHeapInfo("ClassFlowAlignment-doFlow"); } } if (AlgROI) { ImageBasis->writeToMemoryAsJPG((ImageData *)AlgROI, 90); } #endif if (!ImageTMP) { ImageTMP = new CImageBasis("tmpImage", ImageBasis); // Make sure the name does not get change, it is relevant for the PSRAM allocation! if (!ImageTMP) { LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "Can't allocate tmpImage -> Exec this round aborted!"); LogFile.WriteHeapInfo("ClassFlowAlignment-doFlow"); return false; } } delete AlignAndCutImage; AlignAndCutImage = new CAlignAndCutImage("AlignAndCutImage", ImageBasis, ImageTMP); if (!AlignAndCutImage) { LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "Can't allocate AlignAndCutImage -> Exec this round aborted!"); LogFile.WriteHeapInfo("ClassFlowAlignment-doFlow"); return false; } CRotateImage rt("rawImage", AlignAndCutImage, ImageTMP, initialflip); if (initialflip) { int _zw = ImageBasis->height; ImageBasis->height = ImageBasis->width; ImageBasis->width = _zw; _zw = ImageTMP->width; ImageTMP->width = ImageTMP->height; ImageTMP->height = _zw; } if ((initialrotate != 0) || initialflip) { if (use_antialiasing) { rt.RotateAntiAliasing(initialrotate); } else { rt.Rotate(initialrotate); } if (SaveAllFiles) { AlignAndCutImage->SaveToFile(FormatFileName("/sdcard/img_tmp/rot.jpg")); } } // no align algo if set to 3 = off //add disable aligment algo |01.2023 if (References[0].alignment_algo != 3) { if (!AlignAndCutImage->Align(&References[0], &References[1])) { SaveReferenceAlignmentValues(); } } // no align #ifdef ALGROI_LOAD_FROM_MEM_AS_JPG if (AlgROI) { // no align algo if set to 3 = off => no draw ref //add disable aligment algo |01.2023 if (References[0].alignment_algo != 3) { DrawRef(ImageTMP); } flowctrl.DigitalDrawROI(ImageTMP); flowctrl.AnalogDrawROI(ImageTMP); ImageTMP->writeToMemoryAsJPG((ImageData *)AlgROI, 90); } #endif if (SaveAllFiles) { AlignAndCutImage->SaveToFile(FormatFileName("/sdcard/img_tmp/alg.jpg")); ImageTMP->SaveToFile(FormatFileName("/sdcard/img_tmp/alg_roi.jpg")); } // must be deleted to have memory space for loading tflite delete ImageTMP; ImageTMP = NULL; // no align algo if set to 3 = off => no draw ref //add disable aligment algo |01.2023 if (References[0].alignment_algo != 3) { return LoadReferenceAlignmentValues(); } return true; } void ClassFlowAlignment::SaveReferenceAlignmentValues() { FILE *pFile; std::string zwtime, zwvalue; pFile = fopen(FileStoreRefAlignment.c_str(), "w"); if (strlen(zwtime.c_str()) == 0) { time_t rawtime; struct tm *timeinfo; char buffer[80]; time(&rawtime); timeinfo = localtime(&rawtime); strftime(buffer, 80, "%Y-%m-%dT%H:%M:%S", timeinfo); zwtime = std::string(buffer); } fputs(zwtime.c_str(), pFile); fputs("\n", pFile); zwvalue = std::to_string(References[0].fastalg_x) + "\t" + std::to_string(References[0].fastalg_y); zwvalue = zwvalue + "\t" + std::to_string(References[0].fastalg_SAD) + "\t" + std::to_string(References[0].fastalg_min); zwvalue = zwvalue + "\t" + std::to_string(References[0].fastalg_max) + "\t" + std::to_string(References[0].fastalg_avg); fputs(zwvalue.c_str(), pFile); fputs("\n", pFile); zwvalue = std::to_string(References[1].fastalg_x) + "\t" + std::to_string(References[1].fastalg_y); zwvalue = zwvalue + "\t" + std::to_string(References[1].fastalg_SAD) + "\t" + std::to_string(References[1].fastalg_min); zwvalue = zwvalue + "\t" + std::to_string(References[1].fastalg_max) + "\t" + std::to_string(References[1].fastalg_avg); fputs(zwvalue.c_str(), pFile); fputs("\n", pFile); fclose(pFile); } bool ClassFlowAlignment::LoadReferenceAlignmentValues(void) { FILE *pFile; char zw[1024]; string zwvalue; std::vector splitted; pFile = fopen(FileStoreRefAlignment.c_str(), "r"); if (pFile == NULL) { return false; } fgets(zw, 1024, pFile); ESP_LOGD(TAG, "%s", zw); fgets(zw, 1024, pFile); splitted = ZerlegeZeile(std::string(zw), " \t"); if (splitted.size() < 6) { fclose(pFile); return false; } References[0].fastalg_x = stoi(splitted[0]); References[0].fastalg_y = stoi(splitted[1]); References[0].fastalg_SAD = stof(splitted[2]); References[0].fastalg_min = stoi(splitted[3]); References[0].fastalg_max = stoi(splitted[4]); References[0].fastalg_avg = stof(splitted[5]); fgets(zw, 1024, pFile); splitted = ZerlegeZeile(std::string(zw)); if (splitted.size() < 6) { fclose(pFile); return false; } References[1].fastalg_x = stoi(splitted[0]); References[1].fastalg_y = stoi(splitted[1]); References[1].fastalg_SAD = stof(splitted[2]); References[1].fastalg_min = stoi(splitted[3]); References[1].fastalg_max = stoi(splitted[4]); References[1].fastalg_avg = stof(splitted[5]); fclose(pFile); /*#ifdef DEBUG_DETAIL_ON std::string _zw = "\tLoadReferences[0]\tx,y:\t" + std::to_string(References[0].fastalg_x) + "\t" + std::to_string(References[0].fastalg_x); _zw = _zw + "\tSAD, min, max, avg:\t" + std::to_string(References[0].fastalg_SAD) + "\t" + std::to_string(References[0].fastalg_min); _zw = _zw + "\t" + std::to_string(References[0].fastalg_max) + "\t" + std::to_string(References[0].fastalg_avg); LogFile.WriteToDedicatedFile("/sdcard/alignment.txt", _zw); _zw = "\tLoadReferences[1]\tx,y:\t" + std::to_string(References[1].fastalg_x) + "\t" + std::to_string(References[1].fastalg_x); _zw = _zw + "\tSAD, min, max, avg:\t" + std::to_string(References[1].fastalg_SAD) + "\t" + std::to_string(References[1].fastalg_min); _zw = _zw + "\t" + std::to_string(References[1].fastalg_max) + "\t" + std::to_string(References[1].fastalg_avg); LogFile.WriteToDedicatedFile("/sdcard/alignment.txt", _zw); #endif*/ return true; } void ClassFlowAlignment::DrawRef(CImageBasis *_zw) { if (_zw->ImageOkay()) { _zw->drawRect(References[0].target_x, References[0].target_y, References[0].width, References[0].height, 255, 0, 0, 2); _zw->drawRect(References[1].target_x, References[1].target_y, References[1].width, References[1].height, 255, 0, 0, 2); } }