#include "ClassFlowAnalog.h" #include #include #include #include // std::stringstream // #define OHNETFLITE #ifndef OHNETFLITE #include "CTfLiteClass.h" #endif #include "ClassLogFile.h" static const char* TAG = "flow_analog"; bool debugdetailanalog = false; void ClassFlowAnalog::SetInitialParameter(void) { string cnnmodelfile = ""; modelxsize = 1; modelysize = 1; ListFlowControll = NULL; previousElement = NULL; SaveAllFiles = false; disabled = false; extendedResolution = false; } ClassFlowAnalog::ClassFlowAnalog(std::vector* lfc) : ClassFlowImage(lfc, TAG) { SetInitialParameter(); ListFlowControll = lfc; for (int i = 0; i < ListFlowControll->size(); ++i) { if (((*ListFlowControll)[i])->name().compare("ClassFlowAlignment") == 0) { flowpostalignment = (ClassFlowAlignment*) (*ListFlowControll)[i]; } } } int ClassFlowAnalog::AnzahlROIs() { int zw = ROI.size(); if (extendedResolution) zw++; return zw; } string ClassFlowAnalog::getReadout() { string result = ""; if (ROI.size() == 0) return result; float zahl = ROI[ROI.size() - 1]->result; int ergebnis_nachkomma = ((int) floor(zahl * 10)) % 10; int prev = -1; prev = ZeigerEval(ROI[ROI.size() - 1]->result, prev); result = std::to_string(prev); if (extendedResolution) result = result + std::to_string(ergebnis_nachkomma); for (int i = ROI.size() - 2; i >= 0; --i) { prev = ZeigerEval(ROI[i]->result, prev); result = std::to_string(prev) + result; } return result; } int ClassFlowAnalog::ZeigerEval(float zahl, int ziffer_vorgaenger) { int ergebnis_nachkomma = ((int) floor(zahl * 10)) % 10; int ergebnis_vorkomma = ((int) floor(zahl)) % 10; int ergebnis, ergebnis_rating; if (ziffer_vorgaenger == -1) return ergebnis_vorkomma % 10; ergebnis_rating = ergebnis_nachkomma - ziffer_vorgaenger; if (ergebnis_nachkomma >= 5) ergebnis_rating-=5; else ergebnis_rating+=5; ergebnis = (int) round(zahl); if (ergebnis_rating < 0) ergebnis-=1; if (ergebnis == -1) ergebnis+=10; ergebnis = ergebnis % 10; return ergebnis; } bool ClassFlowAnalog::ReadParameter(FILE* pfile, string& aktparamgraph) { std::vector zerlegt; aktparamgraph = trim(aktparamgraph); if (aktparamgraph.size() == 0) if (!this->GetNextParagraph(pfile, aktparamgraph)) return false; if ((aktparamgraph.compare("[Analog]") != 0) && (aktparamgraph.compare(";[Analog]") != 0)) // Paragraph passt nich zu MakeImage return false; if (aktparamgraph[0] == ';') { disabled = true; while (getNextLine(pfile, &aktparamgraph) && !isNewParagraph(aktparamgraph)); printf("[Analog] is disabled !!!\n"); return true; } while (this->getNextLine(pfile, &aktparamgraph) && !this->isNewParagraph(aktparamgraph)) { zerlegt = this->ZerlegeZeile(aktparamgraph); if ((zerlegt[0] == "LogImageLocation") && (zerlegt.size() > 1)) { this->LogImageLocation = "/sdcard" + zerlegt[1]; this->isLogImage = true; } if ((toUpper(zerlegt[0]) == "LOGFILERETENTIONINDAYS") && (zerlegt.size() > 1)) { this->logfileRetentionInDays = std::stoi(zerlegt[1]); } if ((zerlegt[0] == "Model") && (zerlegt.size() > 1)) { this->cnnmodelfile = zerlegt[1]; } if ((zerlegt[0] == "ModelInputSize") && (zerlegt.size() > 2)) { this->modelxsize = std::stoi(zerlegt[1]); this->modelysize = std::stoi(zerlegt[2]); } if (zerlegt.size() >= 5) { roianalog* neuroi = new roianalog; neuroi->name = zerlegt[0]; neuroi->posx = std::stoi(zerlegt[1]); neuroi->posy = std::stoi(zerlegt[2]); neuroi->deltax = std::stoi(zerlegt[3]); neuroi->deltay = std::stoi(zerlegt[4]); neuroi->result = -1; neuroi->image = NULL; neuroi->image_org = NULL; ROI.push_back(neuroi); } if ((toUpper(zerlegt[0]) == "SAVEALLFILES") && (zerlegt.size() > 1)) { if (toUpper(zerlegt[1]) == "TRUE") SaveAllFiles = true; } if ((toUpper(zerlegt[0]) == "EXTENDEDRESOLUTION") && (zerlegt.size() > 1)) { if (toUpper(zerlegt[1]) == "TRUE") extendedResolution = true; } } for (int i = 0; i < ROI.size(); ++i) { ROI[i]->image = new CImageBasis(modelxsize, modelysize, 3); ROI[i]->image_org = new CImageBasis(ROI[i]->deltax, ROI[i]->deltay, 3); } return true; } string ClassFlowAnalog::getHTMLSingleStep(string host) { string result, zw; std::vector htmlinfo; result = "

Found ROIs:

\n"; result = result + "Analog Pointers:

"; htmlinfo = GetHTMLInfo(); for (int i = 0; i < htmlinfo.size(); ++i) { std::stringstream stream; stream << std::fixed << std::setprecision(1) << htmlinfo[i]->val; zw = stream.str(); result = result + "filename + "\"> " + zw; delete htmlinfo[i]; } htmlinfo.clear(); return result; } bool ClassFlowAnalog::doFlow(string time) { if (disabled) return true; if (!doAlignAndCut(time)){ return false; }; if (debugdetailanalog) LogFile.WriteToFile("ClassFlowAnalog::doFlow nach Alignment"); doNeuralNetwork(time); RemoveOldLogs(); return true; } bool ClassFlowAnalog::doAlignAndCut(string time) { if (disabled) return true; CAlignAndCutImage *caic = flowpostalignment->GetAlignAndCutImage(); for (int i = 0; i < ROI.size(); ++i) { printf("Analog %d - Align&Cut\n", i); caic->CutAndSave(ROI[i]->posx, ROI[i]->posy, ROI[i]->deltax, ROI[i]->deltay, ROI[i]->image_org); if (SaveAllFiles) ROI[i]->image_org->SaveToFile(FormatFileName("/sdcard/img_tmp/" + ROI[i]->name + ".jpg")); ROI[i]->image_org->Resize(modelxsize, modelysize, ROI[i]->image); if (SaveAllFiles) ROI[i]->image->SaveToFile(FormatFileName("/sdcard/img_tmp/" + ROI[i]->name + ".bmp")); } return true; } void ClassFlowAnalog::DrawROI(CImageBasis *_zw) { int r = 0; int g = 255; int b = 0; for (int i = 0; i < ROI.size(); ++i) { _zw->drawRect(ROI[i]->posx, ROI[i]->posy, ROI[i]->deltax, ROI[i]->deltay, r, g, b, 1); _zw->drawCircle((int) (ROI[i]->posx + ROI[i]->deltax/2), (int) (ROI[i]->posy + ROI[i]->deltay/2), (int) (ROI[i]->deltax/2), r, g, b, 2); _zw->drawLine((int) (ROI[i]->posx + ROI[i]->deltax/2), (int) ROI[i]->posy, (int) (ROI[i]->posx + ROI[i]->deltax/2), (int) (ROI[i]->posy + ROI[i]->deltay), r, g, b, 2); _zw->drawLine((int) ROI[i]->posx, (int) (ROI[i]->posy + ROI[i]->deltay/2), (int) ROI[i]->posx + ROI[i]->deltax, (int) (ROI[i]->posy + ROI[i]->deltay/2), r, g, b, 2); } } bool ClassFlowAnalog::doNeuralNetwork(string time) { if (disabled) return true; string logPath = CreateLogFolder(time); string input = "/sdcard/img_tmp/alg.jpg"; string ioresize = "/sdcard/img_tmp/resize.bmp"; string output; input = FormatFileName(input); #ifndef OHNETFLITE CTfLiteClass *tflite = new CTfLiteClass; string zwcnn = "/sdcard" + cnnmodelfile; zwcnn = FormatFileName(zwcnn); printf(zwcnn.c_str());printf("\n"); tflite->LoadModel(zwcnn); tflite->MakeAllocate(); #endif for (int i = 0; i < ROI.size(); ++i) { printf("Analog %d - TfLite\n", i); ioresize = "/sdcard/img_tmp/ra" + std::to_string(i) + ".bmp"; ioresize = FormatFileName(ioresize); float f1, f2; f1 = 0; f2 = 0; #ifndef OHNETFLITE // LogFile.WriteToFile("ClassFlowAnalog::doNeuralNetwork vor CNN tflite->LoadInputImage(ioresize)"); // tflite->LoadInputImage(ioresize); tflite->LoadInputImageBasis(ROI[i]->image); tflite->Invoke(); if (debugdetailanalog) LogFile.WriteToFile("Nach Invoke"); f1 = tflite->GetOutputValue(0); f2 = tflite->GetOutputValue(1); #endif float result = fmod(atan2(f1, f2) / (M_PI * 2) + 2, 1); // printf("Result sin, cos, ziffer: %f, %f, %f\n", f1, f2, result); ROI[i]->result = result * 10; printf("Result Analog%i: %f\n", i, ROI[i]->result); if (isLogImage) { LogImage(logPath, ROI[i]->name, &ROI[i]->result, NULL, time, ROI[i]->image_org); } } #ifndef OHNETFLITE delete tflite; #endif return true; } std::vector ClassFlowAnalog::GetHTMLInfo() { std::vector result; for (int i = 0; i < ROI.size(); ++i) { HTMLInfo *zw = new HTMLInfo; zw->filename = ROI[i]->name + ".bmp"; zw->filename_org = ROI[i]->name + ".jpg"; zw->val = ROI[i]->result; zw->image = ROI[i]->image; zw->image_org = ROI[i]->image_org; result.push_back(zw); } return result; }