#include "ClassFlowPostProcessing.h" #include "Helper.h" #include "ClassFlowMakeImage.h" #include "ClassLogFile.h" #include #include #include #include "time_sntp.h" #define PREVALUE_TIME_FORMAT_OUTPUT "%Y-%m-%dT%H:%M:%S" #define PREVALUE_TIME_FORMAT_INPUT "%d-%d-%dT%d:%d:%d" string ClassFlowPostProcessing::GetPreValue(std::string _number) { std::string result; int index = -1; if (_number == "") _number = "default"; for (int i = 0; i < NUMBERS.size(); ++i) if (NUMBERS[i]->name == _number) index = i; result = RundeOutput(NUMBERS[index]->PreValue, NUMBERS[index]->Nachkomma); return result; } void ClassFlowPostProcessing::SetPreValue(float zw, string _numbers, bool _extern) { printf("SetPrevalue: %f, %s\n", zw, _numbers.c_str()); for (int j = 0; j < NUMBERS.size(); ++j) { // printf("Number %d, %s\n", j, NUMBERS[j]->name.c_str()); if (NUMBERS[j]->name == _numbers) { NUMBERS[j]->PreValue = zw; if (_extern) { time(&(NUMBERS[j]->lastvalue)); localtime(&(NUMBERS[j]->lastvalue)); } // printf("Found %d! - set to %f\n", j, NUMBERS[j]->PreValue); } } UpdatePreValueINI = true; SavePreValue(); } bool ClassFlowPostProcessing::LoadPreValue(void) { std::vector zerlegt; FILE* pFile; char zw[1024]; string zwtime, zwvalue, name; bool _done = false; UpdatePreValueINI = false; // Konvertierung ins neue Format pFile = fopen(FilePreValue.c_str(), "r"); if (pFile == NULL) return false; fgets(zw, 1024, pFile); printf("Read Zeile Prevalue.ini: %s", zw); zwtime = trim(std::string(zw)); if (zwtime.length() == 0) return false; zerlegt = HelperZerlegeZeile(zwtime, "\t"); if (zerlegt.size() > 1) // neues Format { while ((zerlegt.size() > 1) && !_done) { name = trim(zerlegt[0]); zwtime = trim(zerlegt[1]); zwvalue = trim(zerlegt[2]); for (int j = 0; j < NUMBERS.size(); ++j) { if (NUMBERS[j]->name == name) { NUMBERS[j]->PreValue = stof(zwvalue.c_str()); NUMBERS[j]->ReturnPreValue = RundeOutput(NUMBERS[j]->PreValue, NUMBERS[j]->Nachkomma); time_t tStart; int yy, month, dd, hh, mm, ss; struct tm whenStart; sscanf(zwtime.c_str(), PREVALUE_TIME_FORMAT_INPUT, &yy, &month, &dd, &hh, &mm, &ss); whenStart.tm_year = yy - 1900; whenStart.tm_mon = month - 1; whenStart.tm_mday = dd; whenStart.tm_hour = hh; whenStart.tm_min = mm; whenStart.tm_sec = ss; whenStart.tm_isdst = -1; NUMBERS[j]->lastvalue = mktime(&whenStart); time(&tStart); localtime(&tStart); double difference = difftime(tStart, NUMBERS[j]->lastvalue); difference /= 60; if (difference > PreValueAgeStartup) { NUMBERS[j]->PreValueOkay = false; } else { NUMBERS[j]->PreValueOkay = true; NUMBERS[j]->Value = NUMBERS[j]->PreValue; NUMBERS[j]->ReturnValue = to_string(NUMBERS[j]->Value); NUMBERS[j]->ReturnValueNoError = NUMBERS[j]->ReturnValue; if (NUMBERS[j]->digit_roi || NUMBERS[j]->analog_roi) { NUMBERS[j]->ReturnValue = RundeOutput(NUMBERS[j]->Value, NUMBERS[j]->AnzahlAnalog - NUMBERS[j]->DecimalShift); NUMBERS[j]->ReturnValueNoError = NUMBERS[j]->ReturnValue; } } } } if (!fgets(zw, 1024, pFile)) _done = true; else { printf("Read Zeile Prevalue.ini: %s", zw); zerlegt = HelperZerlegeZeile(trim(std::string(zw)), "\t"); if (zerlegt.size() > 1) { name = trim(zerlegt[0]); zwtime = trim(zerlegt[1]); zwvalue = trim(zerlegt[2]); } } } fclose(pFile); } else // altes Format { fgets(zw, 1024, pFile); fclose(pFile); printf("%s", zw); zwvalue = trim(std::string(zw)); NUMBERS[0]->PreValue = stof(zwvalue.c_str()); time_t tStart; int yy, month, dd, hh, mm, ss; struct tm whenStart; sscanf(zwtime.c_str(), PREVALUE_TIME_FORMAT_INPUT, &yy, &month, &dd, &hh, &mm, &ss); whenStart.tm_year = yy - 1900; whenStart.tm_mon = month - 1; whenStart.tm_mday = dd; whenStart.tm_hour = hh; whenStart.tm_min = mm; whenStart.tm_sec = ss; whenStart.tm_isdst = -1; printf("TIME: %d, %d, %d, %d, %d, %d\n", whenStart.tm_year, whenStart.tm_mon, whenStart.tm_wday, whenStart.tm_hour, whenStart.tm_min, whenStart.tm_sec); NUMBERS[0]->lastvalue = mktime(&whenStart); time(&tStart); localtime(&tStart); double difference = difftime(tStart, NUMBERS[0]->lastvalue); difference /= 60; if (difference > PreValueAgeStartup) return false; NUMBERS[0]->Value = NUMBERS[0]->PreValue; NUMBERS[0]->ReturnValue = to_string(NUMBERS[0]->Value); NUMBERS[0]->ReturnValueNoError = NUMBERS[0]->ReturnValue; if (NUMBERS[0]->digit_roi || NUMBERS[0]->analog_roi) { NUMBERS[0]->ReturnValue = RundeOutput(NUMBERS[0]->Value, NUMBERS[0]->AnzahlAnalog - NUMBERS[0]->DecimalShift); NUMBERS[0]->ReturnValueNoError = NUMBERS[0]->ReturnValue; } UpdatePreValueINI = true; // Konvertierung ins neue Format SavePreValue(); } return true; } void ClassFlowPostProcessing::SavePreValue() { FILE* pFile; string _zw; if (!UpdatePreValueINI) // PreValues unverändert --> File muss nicht neu geschrieben werden return; pFile = fopen(FilePreValue.c_str(), "w"); for (int j = 0; j < NUMBERS.size(); ++j) { char buffer[80]; struct tm* timeinfo = localtime(&NUMBERS[j]->lastvalue); strftime(buffer, 80, PREVALUE_TIME_FORMAT_OUTPUT, timeinfo); NUMBERS[j]->timeStamp = std::string(buffer); // printf("SaverPreValue %d, Value: %f, Nachkomma %d\n", j, NUMBERS[j]->PreValue, NUMBERS[j]->Nachkomma); _zw = NUMBERS[j]->name + "\t" + NUMBERS[j]->timeStamp + "\t" + RundeOutput(NUMBERS[j]->PreValue, NUMBERS[j]->Nachkomma) + "\n"; printf("Write PreValue Zeile: %s\n", _zw.c_str()); fputs(_zw.c_str(), pFile); } UpdatePreValueINI = false; fclose(pFile); } ClassFlowPostProcessing::ClassFlowPostProcessing(std::vector* lfc, ClassFlowCNNGeneral *_analog, ClassFlowCNNGeneral *_digit) { PreValueUse = false; PreValueAgeStartup = 30; ErrorMessage = false; ListFlowControll = NULL; FilePreValue = FormatFileName("/sdcard/config/prevalue.ini"); ListFlowControll = lfc; flowMakeImage = NULL; UpdatePreValueINI = false; IgnoreLeadingNaN = false; flowAnalog = _analog; flowDigit = _digit; for (int i = 0; i < ListFlowControll->size(); ++i) { if (((*ListFlowControll)[i])->name().compare("ClassFlowMakeImage") == 0) { flowMakeImage = (ClassFlowMakeImage*) (*ListFlowControll)[i]; } } } void ClassFlowPostProcessing::handleDecimalSeparator(string _decsep, string _value) { string _digit, _decpos; int _pospunkt = _decsep.find_first_of("."); // printf("Name: %s, Pospunkt: %d\n", _decsep.c_str(), _pospunkt); if (_pospunkt > -1) _digit = _decsep.substr(0, _pospunkt); else _digit = "default"; for (int j = 0; j < NUMBERS.size(); ++j) { int _zwdc = 0; try { _zwdc = stoi(_value); } catch(const std::exception& e) { printf("ERROR - Decimalshift is not a number: %s\n", _value.c_str()); } if (_digit == "default") // erstmal auf default setzen (falls sonst nichts gesetzt) { NUMBERS[j]->DecimalShift = _zwdc; NUMBERS[j]->DecimalShiftInitial = _zwdc; } if (NUMBERS[j]->name == _digit) { NUMBERS[j]->DecimalShift = _zwdc; NUMBERS[j]->DecimalShiftInitial = _zwdc; } NUMBERS[j]->Nachkomma = NUMBERS[j]->AnzahlAnalog - NUMBERS[j]->DecimalShift; } } void ClassFlowPostProcessing::handleMaxRateValue(string _decsep, string _value) { string _digit, _decpos; int _pospunkt = _decsep.find_first_of("."); // printf("Name: %s, Pospunkt: %d\n", _decsep.c_str(), _pospunkt); if (_pospunkt > -1) _digit = _decsep.substr(0, _pospunkt); else _digit = "default"; for (int j = 0; j < NUMBERS.size(); ++j) { float _zwdc = 1; try { _zwdc = stof(_value); } catch(const std::exception& e) { printf("ERROR - MaxRateValue is not a number: %s\n", _value.c_str()); } if (_digit == "default") // erstmal auf default setzen (falls sonst nichts gesetzt) { NUMBERS[j]->useMaxRateValue = true; NUMBERS[j]->MaxRateValue = _zwdc; } if (NUMBERS[j]->name == _digit) { NUMBERS[j]->useMaxRateValue = true; NUMBERS[j]->MaxRateValue = _zwdc; } } } bool ClassFlowPostProcessing::ReadParameter(FILE* pfile, string& aktparamgraph) { std::vector zerlegt; int _n; aktparamgraph = trim(aktparamgraph); if (aktparamgraph.size() == 0) if (!this->GetNextParagraph(pfile, aktparamgraph)) return false; if (aktparamgraph.compare("[PostProcessing]") != 0) // Paragraph passt nich zu MakeImage return false; InitNUMBERS(); while (this->getNextLine(pfile, &aktparamgraph) && !this->isNewParagraph(aktparamgraph)) { zerlegt = this->ZerlegeZeile(aktparamgraph); std::string _param = GetParameterName(zerlegt[0]); if ((toUpper(_param) == "DECIMALSHIFT") && (zerlegt.size() > 1)) { handleDecimalSeparator(zerlegt[0], zerlegt[1]); } if ((toUpper(_param) == "MAXRATEVALUE") && (zerlegt.size() > 1)) { handleMaxRateValue(zerlegt[0], zerlegt[1]); } if ((toUpper(_param) == "PREVALUEUSE") && (zerlegt.size() > 1)) { if (toUpper(zerlegt[1]) == "TRUE") { PreValueUse = true; } } if ((toUpper(_param) == "CHECKDIGITINCREASECONSISTENCY") && (zerlegt.size() > 1)) { if (toUpper(zerlegt[1]) == "TRUE") for (_n = 0; _n < NUMBERS.size(); ++_n) NUMBERS[_n]->checkDigitIncreaseConsistency = true; } if ((toUpper(_param) == "ALLOWNEGATIVERATES") && (zerlegt.size() > 1)) { if (toUpper(zerlegt[1]) == "TRUE") for (_n = 0; _n < NUMBERS.size(); ++_n) NUMBERS[_n]->AllowNegativeRates = true; } if ((toUpper(_param) == "ERRORMESSAGE") && (zerlegt.size() > 1)) { if (toUpper(zerlegt[1]) == "TRUE") ErrorMessage = true; } if ((toUpper(_param) == "IGNORELEADINGNAN") && (zerlegt.size() > 1)) { if (toUpper(zerlegt[1]) == "TRUE") IgnoreLeadingNaN = true; } if ((toUpper(_param) == "PREVALUEAGESTARTUP") && (zerlegt.size() > 1)) { PreValueAgeStartup = std::stoi(zerlegt[1]); } } if (PreValueUse) { LoadPreValue(); } return true; } void ClassFlowPostProcessing::InitNUMBERS() { int anzDIGIT = 0; int anzANALOG = 0; std::vector name_numbers; if (flowDigit) { anzDIGIT = flowDigit->getAnzahlGENERAL(); flowDigit->UpdateNameNumbers(&name_numbers); } if (flowAnalog) { anzANALOG = flowAnalog->getAnzahlGENERAL(); flowAnalog->UpdateNameNumbers(&name_numbers); } printf("Anzahl NUMBERS: %d - DIGITS: %d, ANALOG: %d\n", name_numbers.size(), anzDIGIT, anzANALOG); for (int _num = 0; _num < name_numbers.size(); ++_num) { NumberPost *_number = new NumberPost; _number->name = name_numbers[_num]; _number->digit_roi = NULL; if (flowDigit) _number->digit_roi = flowDigit->FindGENERAL(name_numbers[_num]); if (_number->digit_roi) _number->AnzahlDigital = _number->digit_roi->ROI.size(); else _number->AnzahlDigital = 0; _number->analog_roi = NULL; if (flowAnalog) _number->analog_roi = flowAnalog->FindGENERAL(name_numbers[_num]); if (_number->analog_roi) _number->AnzahlAnalog = _number->analog_roi->ROI.size(); else _number->AnzahlAnalog = 0; _number->ReturnRawValue = ""; // Rohwert (mit N & führenden 0) _number->ReturnValue = ""; // korrigierter Rückgabewert, ggf. mit Fehlermeldung _number->ReturnValueNoError = ""; // korrigierter Rückgabewert ohne Fehlermeldung _number->ErrorMessageText = ""; // Fehlermeldung bei Consistency Check _number->ReturnPreValue = ""; _number->PreValueOkay = false; _number->AllowNegativeRates = false; _number->MaxRateValue = 0.1; _number->useMaxRateValue = false; _number->checkDigitIncreaseConsistency = false; _number->PreValueOkay = false; _number->useMaxRateValue = false; _number->DecimalShift = 0; _number->DecimalShiftInitial = 0; _number->FlowRateAct = 0; // m3 / min _number->PreValue = 0; // letzter Wert, der gut ausgelesen wurde _number->Value = 0; // letzer ausgelesener Wert, inkl. Korrekturen _number->ReturnRawValue = ""; // Rohwert (mit N & führenden 0) _number->ReturnValue = ""; // korrigierter Rückgabewert, ggf. mit Fehlermeldung _number->ReturnValueNoError = ""; // korrigierter Rückgabewert ohne Fehlermeldung _number->ErrorMessageText = ""; // Fehlermeldung bei Consistency Check _number->Nachkomma = _number->AnzahlAnalog; NUMBERS.push_back(_number); } for (int i = 0; i < NUMBERS.size(); ++i) printf("Number %s, Anz DIG: %d, Anz ANA %d\n", NUMBERS[i]->name.c_str(), NUMBERS[i]->AnzahlDigital, NUMBERS[i]->AnzahlAnalog); } string ClassFlowPostProcessing::ShiftDecimal(string in, int _decShift){ if (_decShift == 0){ return in; } int _pos_dec_org, _pos_dec_neu; _pos_dec_org = findDelimiterPos(in, "."); if (_pos_dec_org == std::string::npos) { _pos_dec_org = in.length(); } else { in = in.erase(_pos_dec_org, 1); } _pos_dec_neu = _pos_dec_org + _decShift; if (_pos_dec_neu <= 0) { // Komma ist vor der ersten Ziffer for (int i = 0; i > _pos_dec_neu; --i){ in = in.insert(0, "0"); } in = "0." + in; return in; } if (_pos_dec_neu > in.length()){ // Komma soll hinter String (123 --> 1230) for (int i = in.length(); i < _pos_dec_neu; ++i){ in = in.insert(in.length(), "0"); } return in; } string zw; zw = in.substr(0, _pos_dec_neu); zw = zw + "."; zw = zw + in.substr(_pos_dec_neu, in.length() - _pos_dec_neu); return zw; } bool ClassFlowPostProcessing::doFlow(string zwtime) { string result = ""; string digit = ""; string analog = ""; string zwvalue; string zw; time_t imagetime = 0; string rohwert; // ErrorMessageText = ""; // Update Nachkomma, da sich beim Wechsel von CNNType Auto --> xyz auch die Nachkommastellen ändern können: imagetime = flowMakeImage->getTimeImageTaken(); if (imagetime == 0) time(&imagetime); struct tm* timeinfo; timeinfo = localtime(&imagetime); char strftime_buf[64]; strftime(strftime_buf, sizeof(strftime_buf), "%Y-%m-%dT%H:%M:%S", timeinfo); zwtime = std::string(strftime_buf); printf("Anzahl NUMBERS: %d\n", NUMBERS.size()); for (int j = 0; j < NUMBERS.size(); ++j) { NUMBERS[j]->ReturnRawValue = ""; NUMBERS[j]->ErrorMessageText = ""; if (flowAnalog) NUMBERS[j]->AnzahlAnalog = flowAnalog->AnzahlROIs(j); if (flowDigit) NUMBERS[j]->AnzahlDigital = flowDigit->AnzahlROIs(j); if (flowDigit->isExtendedResolution()) NUMBERS[j]->DecimalShift = NUMBERS[j]->DecimalShiftInitial - 1; NUMBERS[j]->Nachkomma = NUMBERS[j]->AnzahlAnalog - NUMBERS[j]->DecimalShift; if (NUMBERS[j]->digit_roi) NUMBERS[j]->ReturnRawValue = flowDigit->getReadout(j); if (NUMBERS[j]->digit_roi && NUMBERS[j]->analog_roi) NUMBERS[j]->ReturnRawValue = NUMBERS[j]->ReturnRawValue + "."; if (NUMBERS[j]->analog_roi) NUMBERS[j]->ReturnRawValue = NUMBERS[j]->ReturnRawValue + flowAnalog->getReadout(j); NUMBERS[j]->ReturnRawValue = ShiftDecimal(NUMBERS[j]->ReturnRawValue, NUMBERS[j]->DecimalShift); ///////////////// SPEZIALFALL für User Gustl /////////////////////////////////////////////////////// if (IgnoreLeadingNaN) { while ((NUMBERS[j]->ReturnRawValue.length() > 1) && (NUMBERS[j]->ReturnRawValue[0] == 'N')) { NUMBERS[j]->ReturnRawValue.erase(0, 1); } } //////////////////////////////////////////////////////////////////////////////////////////////////// rohwert = NUMBERS[j]->ReturnRawValue; if (!PreValueUse || !NUMBERS[j]->PreValueOkay) { NUMBERS[j]->ReturnValue = NUMBERS[j]->ReturnRawValue; NUMBERS[j]->ReturnValueNoError = NUMBERS[j]->ReturnRawValue; if ((findDelimiterPos(NUMBERS[j]->ReturnValue, "N") == std::string::npos) && (NUMBERS[j]->ReturnValue.length() > 0)) { while ((NUMBERS[j]->ReturnValue.length() > 1) && (NUMBERS[j]->ReturnValue[0] == '0')) { NUMBERS[j]->ReturnValue.erase(0, 1); } NUMBERS[j]->Value = std::stof(NUMBERS[j]->ReturnValue); NUMBERS[j]->ReturnValueNoError = NUMBERS[j]->ReturnValue; NUMBERS[j]->PreValueOkay = true; NUMBERS[j]->PreValue = NUMBERS[j]->Value; NUMBERS[j]->ReturnPreValue = RundeOutput(NUMBERS[j]->PreValue, NUMBERS[j]->Nachkomma); NUMBERS[j]->lastvalue = flowMakeImage->getTimeImageTaken(); zwtime = ConvertTimeToString(NUMBERS[j]->lastvalue, PREVALUE_TIME_FORMAT_OUTPUT); UpdatePreValueINI = true; SavePreValue(); } } else { zw = ErsetzteN(NUMBERS[j]->ReturnRawValue, NUMBERS[j]->PreValue); NUMBERS[j]->Value = std::stof(zw); if (NUMBERS[j]->checkDigitIncreaseConsistency) { NUMBERS[j]->Value = checkDigitConsistency(NUMBERS[j]->Value, NUMBERS[j]->DecimalShift, NUMBERS[j]->analog_roi != NULL, NUMBERS[j]->PreValue); } zwvalue = RundeOutput(NUMBERS[j]->Value, NUMBERS[j]->AnzahlAnalog - NUMBERS[j]->DecimalShift); if ((!NUMBERS[j]->AllowNegativeRates) && (NUMBERS[j]->Value < NUMBERS[j]->PreValue)) { NUMBERS[j]->ErrorMessageText = NUMBERS[j]->ErrorMessageText + "Neg. Rate - Read: " + zwvalue + " - Raw: " + NUMBERS[j]->ReturnRawValue + " - Pre: " + RundeOutput(NUMBERS[j]->PreValue, NUMBERS[j]->Nachkomma) + " "; NUMBERS[j]->Value = NUMBERS[j]->PreValue; zwvalue = RundeOutput(NUMBERS[j]->Value, NUMBERS[j]->AnzahlAnalog - NUMBERS[j]->DecimalShift); } if (NUMBERS[j]->useMaxRateValue && (abs(NUMBERS[j]->Value - NUMBERS[j]->PreValue) > NUMBERS[j]->MaxRateValue)) { NUMBERS[j]->ErrorMessageText = NUMBERS[j]->ErrorMessageText + "Rate too high - Read: " + RundeOutput(NUMBERS[j]->Value, NUMBERS[j]->Nachkomma) + " - Pre: " + RundeOutput(NUMBERS[j]->PreValue, NUMBERS[j]->Nachkomma); NUMBERS[j]->Value = NUMBERS[j]->PreValue; zwvalue = RundeOutput(NUMBERS[j]->Value, NUMBERS[j]->Nachkomma); } NUMBERS[j]->ReturnValueNoError = zwvalue; NUMBERS[j]->ReturnValue = zwvalue; if (NUMBERS[j]->ErrorMessage && (NUMBERS[j]->ErrorMessageText.length() > 0)) NUMBERS[j]->ReturnValue = NUMBERS[j]->ReturnValue + "\t" + NUMBERS[j]->ErrorMessageText; double difference = difftime(imagetime, NUMBERS[j]->lastvalue); // in Sekunden difference /= 60; // in Minuten NUMBERS[j]->FlowRateAct = (NUMBERS[j]->Value - NUMBERS[j]->PreValue) / difference; NUMBERS[j]->lastvalue = imagetime; if (NUMBERS[j]->ErrorMessageText.length() == 0) { NUMBERS[j]->PreValue = NUMBERS[j]->Value; NUMBERS[j]->ReturnPreValue = RundeOutput(NUMBERS[j]->PreValue, NUMBERS[j]->Nachkomma); NUMBERS[j]->ErrorMessageText = "no error"; UpdatePreValueINI = true; } } } SavePreValue(); return true; } string ClassFlowPostProcessing::getReadout(int _number) { return NUMBERS[_number]->ReturnValue; } string ClassFlowPostProcessing::getReadoutParam(bool _rawValue, bool _noerror, int _number) { if (_rawValue) return NUMBERS[_number]->ReturnRawValue; if (_noerror) return NUMBERS[_number]->ReturnValueNoError; return NUMBERS[_number]->ReturnValue; } string ClassFlowPostProcessing::RundeOutput(float _in, int _anzNachkomma){ std::stringstream stream; int _zw = _in; // printf("AnzNachkomma: %d\n", _anzNachkomma); if (_anzNachkomma < 0) { _anzNachkomma = 0; } if (_anzNachkomma > 0) { stream << std::fixed << std::setprecision(_anzNachkomma) << _in; return stream.str(); } else { stream << _zw; } return stream.str(); } string ClassFlowPostProcessing::ErsetzteN(string input, float _prevalue) { int posN, posPunkt; int pot, ziffer; float zw; posN = findDelimiterPos(input, "N"); posPunkt = findDelimiterPos(input, "."); if (posPunkt == std::string::npos){ posPunkt = input.length(); } while (posN != std::string::npos) { if (posN < posPunkt) { pot = posPunkt - posN - 1; } else { pot = posPunkt - posN; } zw =_prevalue / pow(10, pot); ziffer = ((int) zw) % 10; input[posN] = ziffer + 48; posN = findDelimiterPos(input, "N"); } return input; } float ClassFlowPostProcessing::checkDigitConsistency(float input, int _decilamshift, bool _isanalog, float _preValue){ int aktdigit, olddigit; int aktdigit_before, olddigit_before; int pot, pot_max; float zw; bool no_nulldurchgang = false; pot = _decilamshift; if (!_isanalog) // falls es keine analogwerte gibt, kann die letzte nicht bewertet werden { pot++; } pot_max = ((int) log10(input)) + 1; while (pot <= pot_max) { zw = input / pow(10, pot-1); aktdigit_before = ((int) zw) % 10; zw = _preValue / pow(10, pot-1); olddigit_before = ((int) zw) % 10; zw = input / pow(10, pot); aktdigit = ((int) zw) % 10; zw = _preValue / pow(10, pot); olddigit = ((int) zw) % 10; no_nulldurchgang = (olddigit_before <= aktdigit_before); if (no_nulldurchgang) { if (aktdigit != olddigit) { input = input + ((float) (olddigit - aktdigit)) * pow(10, pot); // Neue Digit wird durch alte Digit ersetzt; } } else { if (aktdigit == olddigit) // trotz Nulldurchgang wurde Stelle nicht hochgezählt --> addiere 1 { input = input + ((float) (1)) * pow(10, pot); // addiere 1 an der Stelle } } pot++; } return input; } string ClassFlowPostProcessing::getReadoutRate(int _number) { return std::to_string(NUMBERS[_number]->FlowRateAct); } string ClassFlowPostProcessing::getReadoutTimeStamp(int _number) { return NUMBERS[_number]->timeStamp; } string ClassFlowPostProcessing::getReadoutError(int _number) { return NUMBERS[_number]->ErrorMessageText; }