Compare commits

...

80 Commits

Author SHA1 Message Date
jomjol
7816e53db7 v8.2.0 2021-08-24 08:37:18 +02:00
jomjol
7ae08e572a Merge branch 'rolling' 2021-08-24 08:34:32 +02:00
jomjol
47d15d8adb v8.2.0 2021-08-24 08:33:56 +02:00
jomjol
0dac0e87e4 rolling 20210823 2021-08-23 18:57:48 +02:00
jomjol
b290099d5b v12.0.0 2021-08-12 07:25:12 +02:00
jomjol
f6b1a41a0b v12.0.0 2021-08-12 07:20:58 +02:00
jomjol
e529af04cf Update FeatureRequest.md 2021-08-10 20:19:05 +02:00
jomjol
6c365dd949 rolling v20210809 2021-08-09 21:53:07 +02:00
jomjol
32f15fc557 rolling 20210708 2021-08-07 15:25:27 +02:00
jomjol
6f06af1d5f Update README.md 2021-08-01 21:52:00 +02:00
jomjol
a91f99faab update 2021-08-01 21:49:29 +02:00
jomjol
17a87b23a1 v8.0.5 2021-08-01 21:46:17 +02:00
jomjol
d4b5ec2ae2 v8.0.4 2021-07-29 20:18:53 +02:00
jomjol
1bcaf09855 v8.0.4 2021-07-29 20:14:36 +02:00
jomjol
fa3842b2b4 v8.0.3 2021-07-25 18:15:35 +02:00
jomjol
ea72256e56 Merge branch 'rolling' 2021-07-25 18:08:43 +02:00
jomjol
be5828cb3e v8.0.3 2021-07-25 18:07:50 +02:00
jomjol
104b72505c Rolling - 20210725 2021-07-25 13:44:22 +02:00
jomjol
23728a0686 Update README.md 2021-07-23 21:02:19 +02:00
jomjol
eaaa856b13 Update README.md 2021-07-23 21:01:50 +02:00
jomjol
01e81d02b5 v8.0.2 2021-07-23 20:57:42 +02:00
jomjol
9ae8d0a512 Merge branch 'rolling' 2021-07-23 20:48:28 +02:00
jomjol
da16322fb8 v8.0.2 2021-07-23 20:47:23 +02:00
jomjol
a6d39afc26 rolling 20210723 2021-07-23 07:44:59 +02:00
jomjol
1b6a124f54 Update FeatureRequest.md 2021-07-21 07:00:12 +02:00
jomjol
8aff6bf8f3 Rolling 20210719 2021-07-19 21:54:14 +02:00
jomjol
21115752aa Merge pull request #280 from jomjol/rolling
v8.0.1
2021-07-18 16:58:23 +02:00
jomjol
025c2b88b9 v8.0.1 2021-07-18 16:57:35 +02:00
jomjol
655f9d7c97 Update version 2021-07-14 20:00:06 +02:00
jomjol
03b5e36114 Merge branch 'rolling' 2021-07-14 19:52:11 +02:00
jomjol
9c78c1e9ca v8.0.0 2021-07-14 19:48:49 +02:00
jomjol
136186a526 rolling 20210713 BETA v8.0.0 2021-07-13 21:41:17 +02:00
jomjol
1f6b02a671 Rolling 20210712 2021-07-12 22:06:32 +02:00
jomjol
76a0518d52 Rolling 20210721 BugFix 2021-07-11 23:47:24 +02:00
jomjol
a688a69af6 Merge branch 'rolling' of https://github.com/jomjol/AI-on-the-edge-device into rolling 2021-07-11 18:28:00 +02:00
jomjol
b890ffc5f3 Rolling 20210711 2021-07-11 18:27:25 +02:00
jomjol
b98558107e Merge pull request #263 from Zwer2k/rolling
Rolling
2021-07-11 17:51:09 +02:00
Zwer2k
3e360ad0fb add log in gpio handler
add nullpint check in tfliteCass
2021-07-11 16:19:45 +02:00
Zwer2k
a7ced407f8 Update README.md
improve case if gpio is disabled
remove /test html route
2021-07-11 13:56:37 +02:00
Zwer2k
45a1e137d1 Merge branch 'rolling' of https://github.com/jomjol/AI-on-the-edge-device into rolling 2021-07-11 11:24:26 +02:00
Zwer2k
a44e0d81cc gpio handler work 2021-07-10 12:36:13 +02:00
Zwer2k
749fc6699c Merge remote-tracking branch 'origin/gpio-handler' into rolling 2021-07-08 21:54:44 +02:00
jomjol
d7bb147a23 Rolling 20210708 2021-07-08 21:45:33 +02:00
jomjol
08b0b254f2 rolling 20210707 2021-07-07 21:57:59 +02:00
Zwer2k
5414a4c3f1 Merge remote-tracking branch 'upstream/rolling' into rolling 2021-07-06 23:33:01 +02:00
Zwer2k
7944ab329d litle improvements on html and config.ini 2021-07-06 21:32:49 +02:00
Zwer2k
8ca14a434c gpio handler works again
remove memory leak in FlowDigit
2021-07-06 01:25:20 +02:00
jomjol
e24ba68fec rolling 20210705 2021-07-05 07:30:04 +02:00
Zwer2k
b205326782 gpio handler is working 2021-07-04 23:59:59 +02:00
jomjol
daa1960dff rolling 20210704 bug fix 2021-07-04 10:20:07 +02:00
jomjol
894c7f6972 Revert "Revert "rolling 20210704 bugfix""
This reverts commit 737dcc76b8.
2021-07-04 08:12:50 +02:00
jomjol
737dcc76b8 Revert "rolling 20210704 bugfix"
This reverts commit b42f17916b.
2021-07-04 08:12:36 +02:00
jomjol
b42f17916b rolling 20210704 bugfix 2021-07-04 08:06:04 +02:00
jomjol
2c6ce6fd07 rolling 20210705 2021-07-04 07:54:17 +02:00
jomjol
f243f4b8ea Rolling 20210701 2021-07-01 19:47:44 +02:00
jomjol
02e881ebc0 Add files via upload 2021-07-01 19:15:36 +02:00
Zwer2k
7b8f10a14e work on GPIO handler
bigfix: memory leak in GetJPGStream
2021-06-25 01:19:23 +02:00
Zwer2k
d995c31b7b work on GPIO handler
bigfix: memory leak in GetJPGStream
2021-06-18 01:29:59 +02:00
jomjol
45154cb55c 20210617 2021-06-17 20:28:24 +02:00
jomjol
48067b10cd v7.1.2 2021-06-17 20:10:30 +02:00
Zwer2k
f24c40d780 work on GPIO handling 2021-06-13 01:24:02 +02:00
jomjol
f4edd36744 Update README.md 2021-06-11 07:41:06 +02:00
jomjol
a202a6abdc Rolling 20210611 2021-06-11 07:31:06 +02:00
Zwer2k
c25adfe28a add interrupt to gpio config
bugfix in gpio config
2021-06-09 00:16:31 +02:00
Zwer2k
822c6cc45c complete extended config.ini handling for GPIO settings
added TopicUptime and MainTopicGPIO
2021-06-08 22:24:53 +02:00
Zwer2k
c48b44d06a extend config.ini handler for GPIO settings
add BootTime incode
2021-06-08 00:59:28 +02:00
jomjol
21a59fbd35 Update README.md 2021-05-30 21:52:52 +02:00
jomjol
cdcf940d12 v7.1.1 2021-05-30 21:49:50 +02:00
jomjol
6cefc44fb6 Update README.md 2021-05-28 20:56:24 +02:00
jomjol
8308f159ad Merge pull request #237 from jomjol/master
Sync Rolling
2021-05-28 19:57:20 +02:00
jomjol
e5ff8f2164 Update Firmware 2021-05-28 19:56:10 +02:00
jomjol
a000252c8a Merge pull request #236 from jomjol/rolling
Update to v7.1.0
2021-05-28 19:53:08 +02:00
jomjol
9a42c580cf v7.1.0 2021-05-28 19:52:26 +02:00
jomjol
6e0a7a742e Rolling 210527 2021-05-27 19:22:27 +02:00
jomjol
026bac121f Rolling 20210522-v2 2021-05-22 11:37:46 +02:00
jomjol
8a26b817f7 Rolling 20210522 2021-05-22 07:39:10 +02:00
jomjol
528a4435a9 Rolling 20210520 2021-05-20 21:58:37 +02:00
jomjol
9b791bb7a7 rolling 20210520 2021-05-20 07:00:09 +02:00
jomjol
58eb0b1292 rolling 20210517 2021-05-17 19:35:38 +02:00
jomjol
39eda4a4be Merge pull request #224 from jomjol/master
sync rolling
2021-05-13 08:23:03 +02:00
219 changed files with 13483 additions and 4563 deletions

View File

@@ -2,6 +2,34 @@
##### 7.1.2 MQTT-Update - (2021-06-17)
* NEW: 7.1.2: bug fix setting hostname, Flash-LED not off during rebootNEW: 7.1.1: bug fix wlan password with "=" (again)
* MQTT error message: changes "no error", send retain flag
* Update wlan handling to esp-idf 4.1
* Upgrade digital CNN to v8.7.0 (added new images)
* Bug fix: MQTT, WLAN, LED-Controll, GPIO usage, fixed IP, calculation flow rate
##### 7.0.1 MQTT-Update - (2021-05-13)
* NEW: 7.0.1: bug fix wlan password with "="
* Upgrade digital CNN to v8.5.0 (added new images)
* New MQTT topics: flow rate (units/minute), time stamp (last correct read readout)
* Update MQTT/Error topic to " " in case no error (instead of empty string)
* Portrait or landscape image orientation in rotated image (avoid cropping)
##### 6.7.2 Image Processing in Memory - (2021-05-01)
* NEW 6.7.2: Updated html for setup modus - remove reboot on edit configuration)

View File

@@ -11,13 +11,41 @@
____
#### #6 Check for double ROI names
#### #10 Improve and bug fix logging of images
Check during configuration, that ROI names are unique.
* https://github.com/jomjol/AI-on-the-edge-device/issues/307
#### #9 Basic auth for the UI
* https://github.com/jomjol/AI-on-the-edge-device/issues/283
* Implementation of an authentication mechanism.
#### #8 MQTT configurable readout intervall
Make the readout intervall configurable via MQTT.
* Change the mqtt part to receive and process input and not only sending
#### #7 Extended Error Handling
Check different types of error (e.g. tflite not availabe) and generate an error on the html page.
To do:
* Implementation of ROI name checking in html code before saving analog or digital ROIs
* Make a list of "important" errors
* Implement a checking algo
* Extend the firmware and html page for the error handling
#### ~~#6 Check for double ROI names~~ - implemented v8.0.0
~~Check during configuration, that ROI names are unique.~~
~~To do:~~
* ~~Implementation of ROI name checking in html code before saving analog or digital ROIs~~
@@ -33,31 +61,31 @@ To do:
#### #4 Initial Shifting and Rotation
#### ~~#4 Initial Shifting and Rotation~~ - implemented v7.0.0
* https://github.com/jomjol/AI-on-the-edge-device/issues/123
* ~~https://github.com/jomjol/AI-on-the-edge-device/issues/123~~
Implementation of a shifting additional to the initial rotation of the raw camera input
~~Implementation of a shifting additional to the initial rotation of the raw camera input~~
To do:
~~To do:~~
* Implementation of shifting
* Extension of configuration
* Adaption of the html configuration to implement shifting
* ~~Implementation of shifting~~
* ~~Extension of configuration~~
* ~~Adaption of the html configuration to implement shifting~~
#### #3 Allow grouping of digits to multiple reading values
#### ~~#3 Allow grouping of digits to multiple reading values~~ - implemented v8.0.0
* https://github.com/jomjol/AI-on-the-edge-device/issues/123
* ~~https://github.com/jomjol/AI-on-the-edge-device/issues/123~~
Implementation of two different independent readouts in one setup
~~Implementation of two different independent readouts in one setup~~
To do:
~~To do:~~
* ~~Extend the configuration, setting and processing flow for two independend readouts~~
* Extend the configuration, setting and processing flow for two independend readouts
https://github.com/jomjol/AI-on-the-edge-device/issues/123
@@ -80,15 +108,16 @@ To do:
____
#### #1 Optional GPIO for external flash/lighting
#### ~~#1 Optional GPIO for external flash/lighting~~ - implemented (v8.0.0)
* https://github.com/jomjol/AI-on-the-edge-device/issues/133
* ~~https://github.com/jomjol/AI-on-the-edge-device/issues/133~~
Implementation of an an extrnal flash / lightning through GPIOs.
* available GPIOs: 12 & 13 (currently in use for html switching)
~~Implementation of an an extrnal flash / lightning through GPIOs.~~
To do:
* ~~available GPIOs: 12 & 13 (currently in use for html switching)~~
* Implementation of a software module for external light source (e.g. WS8132 LED controller, ...)
* Update of the camera module to use the external light instead of the internal flash light
* Adopt the configuration algorithm with a configurable light source
~~To do:~~
* ~~Implementation of a software module for external light source (e.g. WS8132 LED controller, ...)~~
* ~~Update of the camera module to use the external light instead of the internal flash light~~
* ~~Adopt the configuration algorithm with a configurable light source~~

View File

@@ -12,6 +12,8 @@ respectively ESP32-Cam housing only: https://www.thingiverse.com/thing:4571627
<img src="https://raw.githubusercontent.com/jomjol/AI-on-the-edge-device/master/images/watermeter.jpg" width="600">
<img src="https://raw.githubusercontent.com/jomjol/AI-on-the-edge-device/master/images/powermeter.jpg" width="600">
@@ -45,19 +47,34 @@ In other cases you can contact the developer via email: <img src="https://raw.gi
##### 7.0.1 MQTT-Update - (2021-05-13)
##### 8.2.0 - Multi Meter Support (2021-08-24)
* NEW: 7.0.1: bug fix wlan password with "="
* Improve server responsiveness
* Flow status and prevalue status in overview
* Improved prevalue handling
* Upgrade digital CNN to v8.5.0 (added new images)
##### 8.1.0 - Multi Meter Support (2021-08-12)
* New MQTT topics: flow rate (units/minute), time stamp (last correct read readout)
* GPIO: using the general mqtt main topic for GPIO
* Update MQTT/Error topic to " " in case no error (instead of empty string)
* Upgrade digital CNN to v12.0.0 (added new images)
* Update tfmicro to new master (2021-08-07)
* Bug fix: remove text in mqtt value, remove connect limit in wlan reconnet
* Portrait or landscape image orientation in rotated image (avoid cropping)
##### 8.0.5 - Multi Meter Support (2021-08-01)
* NEW 8.0.5: bug fix: saving prevalue
* NEW 8.0.4: bug fix: load config.ini after upgrade
* NEW 8.0.3: bug fix: reboot during `config.ini` handling, html error
* NEW 8.0.2: saving roundes prevalue, bug fix html server
* NEW 8.0.1: bug fix: html handling of parameter `FixedExposure` and `ImageSize`
* Dual / multi meter support (more than 1 number to be recognized)
This is implemented with the feature "number" on the ROI definition as well as selected options
* MQTT: standardization of the naming - including new topics (`json`, `freeMem `, `uptime`)c
* Preparation for extended GPIO support (thanks to Zwerk2k) - not tested and fully functional yet
* Bug fixing: html server, memory leak, MQTT connect, hostname, turn of flash LED
<span style="color: red;">**ATTENTION: the configuration and prevalue files are modified automatically and will not be backward compatible!**</span>
## Additional ideas
@@ -70,6 +87,10 @@ There are some ideas and feature request, which are not followed currently - mai
## History
##### 7.1.2 MQTT-Update - (2021-06-17)
**7.0.1 MQTT-Update - (2021-05-13)**
##### 6.7.2 Image Processing in Memory - (2021-05-01)
##### 5.0.0 Setup Modus - (2020-12-06)
@@ -92,8 +113,3 @@ There are some ideas and feature request, which are not followed currently - mai
#### [Full Changelog](Changelog.md)
## Solved topics
* n.a.

View File

@@ -1,3 +1,3 @@
copy "C:\Users\Muell\Documents\Programmieren\GitHub\AI-on-the-edge-device\code\.pio\build\esp32cam\firmware.bin" "C:\Users\Muell\Documents\Programmieren\GitHub\AI-on-the-edge-device\firmware\firmware.bin"
copy "C:\Users\Muell\Documents\Programmieren\GitHub\AI-on-the-edge-device\code\.pio\build\esp32cam\bootloader.bin" "C:\Users\Muell\Documents\Programmieren\GitHub\AI-on-the-edge-device\firmware\bootloader.bin"
copy "C:\Users\Muell\Documents\Programmieren\GitHub\AI-on-the-edge-device\code\.pio\build\esp32cam\partitions.bin" "C:\Users\Muell\Documents\Programmieren\GitHub\AI-on-the-edge-device\firmware\partitions.bin"
copy "..\..\code\.pio\build\esp32cam\firmware.bin" "..\..\firmware\firmware.bin"
copy "..\..\code\.pio\build\esp32cam\bootloader.bin" "..\..\firmware\bootloader.bin"
copy "..\..\code\.pio\build\esp32cam\partitions.bin" "..\..\firmware\partitions.bin"

View File

@@ -1 +1 @@
powershell Compress-Archive "C:\Users\Muell\Documents\Programmieren\GitHub\AI-on-the-edge-device\sd-card\html\*.*" "C:\Users\Muell\Documents\Programmieren\GitHub\AI-on-the-edge-device\firmware\html.zip"
powershell Compress-Archive "..\..\sd-card\html\*.*" "..\..\firmware\html.zip"

View File

@@ -1,492 +0,0 @@
#include "connect_wlan.h"
#include <string.h>
#include "esp_wifi.h"
#include "esp_event_loop.h"
#include "freertos/event_groups.h"
#include "esp_log.h"
#include <fstream>
#include <string>
#include <vector>
#include <sstream>
#include <iostream>
#include <arpa/inet.h>
#include "Helper.h"
static const char *MAIN_TAG = "connect_wlan";
std::string ssid = "";
std::string passphrase = "";
std::string hostname = "";
std::string ipaddress = "";
std::string gw = "";
std::string netmask = "";
std::string dns = "";
std::string std_hostname = "watermeter";
static EventGroupHandle_t wifi_event_group;
#define BLINK_GPIO GPIO_NUM_33
std::vector<string> ZerlegeZeile(std::string input, std::string _delimiter = "")
{
std::vector<string> Output;
std::string delimiter = " =,";
if (_delimiter.length() > 0){
delimiter = _delimiter;
}
input = trim(input, delimiter);
size_t pos = findDelimiterPos(input, delimiter);
std::string token;
while (pos != std::string::npos) {
token = input.substr(0, pos);
token = trim(token, delimiter);
Output.push_back(token);
input.erase(0, pos + 1);
input = trim(input, delimiter);
pos = findDelimiterPos(input, delimiter);
}
Output.push_back(input);
return Output;
}
void wifi_connect(){
wifi_config_t cfg = { };
strcpy((char*)cfg.sta.ssid, (const char*)ssid.c_str());
strcpy((char*)cfg.sta.password, (const char*)passphrase.c_str());
ESP_ERROR_CHECK( esp_wifi_disconnect() );
ESP_ERROR_CHECK( esp_wifi_set_config(ESP_IF_WIFI_STA, &cfg) );
ESP_ERROR_CHECK( esp_wifi_connect() );
}
void blinkstatus(int dauer, int _anzahl)
{
gpio_reset_pin(BLINK_GPIO);
gpio_set_direction(BLINK_GPIO, GPIO_MODE_OUTPUT);
for (int i = 0; i < _anzahl; ++i)
{
gpio_set_level(BLINK_GPIO, 0);
vTaskDelay(dauer / portTICK_PERIOD_MS);
gpio_set_level(BLINK_GPIO, 1);
vTaskDelay(dauer / portTICK_PERIOD_MS);
}
}
static esp_err_t event_handler(void *ctx, system_event_t *event)
{
switch(event->event_id) {
case SYSTEM_EVENT_STA_START:
blinkstatus(200, 1);
wifi_connect();
break;
case SYSTEM_EVENT_STA_GOT_IP:
xEventGroupSetBits(wifi_event_group, CONNECTED_BIT);
blinkstatus(1000, 3);
break;
case SYSTEM_EVENT_STA_DISCONNECTED:
blinkstatus(200, 5);
esp_wifi_connect();
xEventGroupClearBits(wifi_event_group, CONNECTED_BIT);
break;
default:
break;
}
return ESP_OK;
}
void initialise_wifi()
{
ESP_ERROR_CHECK(esp_event_loop_init(event_handler, NULL) );
wifi_event_group = xEventGroupCreate();
esp_log_level_set("wifi", ESP_LOG_NONE); // disable wifi driver logging
tcpip_adapter_init();
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
ESP_ERROR_CHECK( esp_wifi_init(&cfg) );
ESP_ERROR_CHECK( esp_wifi_set_mode(WIFI_MODE_STA) );
ESP_ERROR_CHECK( esp_wifi_start() );
esp_err_t ret = tcpip_adapter_set_hostname(TCPIP_ADAPTER_IF_STA , hostname.c_str());
if(ret != ESP_OK ){
ESP_LOGE(MAIN_TAG,"failed to set hostname:%d",ret);
}
xEventGroupWaitBits(wifi_event_group,CONNECTED_BIT,true,true,portMAX_DELAY);
tcpip_adapter_ip_info_t ip_info;
ESP_ERROR_CHECK(tcpip_adapter_get_ip_info(TCPIP_ADAPTER_IF_STA, &ip_info));
ipaddress = std::string(ip4addr_ntoa(&ip_info.ip));
netmask = std::string(ip4addr_ntoa(&ip_info.netmask));
gw = std::string(ip4addr_ntoa(&ip_info.gw));
printf("IPv4 : %s\n", ip4addr_ntoa(&ip_info.ip));
printf("HostName : %s\n", hostname.c_str());
}
///////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////
void strinttoip4(std::string ip, int &a, int &b, int &c, int &d) {
std::stringstream s(ip);
char ch; //to temporarily store the '.'
s >> a >> ch >> b >> ch >> c >> ch >> d;
}
void initialise_wifi_fixed_ip()
{
wifi_event_group = xEventGroupCreate();
ESP_ERROR_CHECK(esp_netif_init());
ESP_ERROR_CHECK(esp_event_loop_create_default());
esp_netif_t *my_sta = esp_netif_create_default_wifi_sta();
esp_netif_dhcpc_stop(my_sta);
esp_netif_ip_info_t ip_info;
int a, b, c, d;
strinttoip4(ipaddress, a, b, c, d);
IP4_ADDR(&ip_info.ip, a, b, c, d);
strinttoip4(gw, a, b, c, d);
IP4_ADDR(&ip_info.gw, a, b, c, d);
strinttoip4(netmask, a, b, c, d);
IP4_ADDR(&ip_info.netmask, a, b, c, d);
esp_netif_set_ip_info(my_sta, &ip_info);
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
ESP_ERROR_CHECK(esp_wifi_init(&cfg));
if (dns.length() > 0) {
esp_netif_dns_info_t dns_info;
ip4_addr_t ip;
ip.addr = esp_ip4addr_aton(dns.c_str());
ip_addr_set_ip4_u32(&dns_info.ip, ip.addr);
ESP_ERROR_CHECK(esp_netif_set_dns_info(my_sta, ESP_NETIF_DNS_MAIN, &dns_info));
}
ESP_ERROR_CHECK(esp_event_loop_init(event_handler, NULL) );
wifi_config_t wifi_config = { };
strcpy((char*)wifi_config.sta.ssid, (const char*)ssid.c_str());
strcpy((char*)wifi_config.sta.password, (const char*)passphrase.c_str());
ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA) );
ESP_ERROR_CHECK(esp_wifi_set_config(ESP_IF_WIFI_STA, &wifi_config) );
ESP_ERROR_CHECK(esp_wifi_start() );
ESP_LOGI(MAIN_TAG, "wifi_init_sta finished.");
EventBits_t bits = xEventGroupWaitBits(wifi_event_group,CONNECTED_BIT,true,true,portMAX_DELAY);
if (bits & CONNECTED_BIT) {
ESP_LOGI(MAIN_TAG, "connected to ap SSID:%s password:%s",
ssid.c_str(), passphrase.c_str());
} else {
ESP_LOGI(MAIN_TAG, "Failed to connect to SSID:%s, password:%s",
ssid.c_str(), passphrase.c_str());
}
tcpip_adapter_ip_info_t ip_info2;
ESP_ERROR_CHECK(tcpip_adapter_get_ip_info(TCPIP_ADAPTER_IF_STA, &ip_info2));
ipaddress = std::string(ip4addr_ntoa(&ip_info2.ip));
netmask = std::string(ip4addr_ntoa(&ip_info2.netmask));
gw = std::string(ip4addr_ntoa(&ip_info2.gw));
// vEventGroupDelete(wifi_event_group);
}
void ConnectToWLAN()
{
if (ipaddress.length() == 0 || gw.length() == 0 || netmask.length() == 0)
{
printf("Connect to WLAN with dyn. IP\n");
initialise_wifi();
}
else
{
printf("Connect to WLAN with fixed IP\n");
initialise_wifi_fixed_ip();
}
}
bool ChangeHostName(std::string fn, std::string _newhostname)
{
if (_newhostname == hostname)
return false;
string line = "";
std::vector<string> zerlegt;
bool found = false;
std::vector<string> neuesfile;
FILE* pFile;
fn = FormatFileName(fn);
pFile = OpenFileAndWait(fn.c_str(), "r");
printf("file loaded\n");
if (pFile == NULL)
return false;
char zw[1024];
fgets(zw, 1024, pFile);
line = std::string(zw);
while ((line.size() > 0) || !(feof(pFile)))
{
printf("%s", line.c_str());
zerlegt = ZerlegeZeile(line, "=");
zerlegt[0] = trim(zerlegt[0], " ");
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "HOSTNAME")){
line = "hostname = \"" + _newhostname + "\"\n";
found = true;
}
neuesfile.push_back(line);
if (fgets(zw, 1024, pFile) == NULL)
{
line = "";
}
else
{
line = std::string(zw);
}
}
if (!found)
{
line = "\nhostname = \"" + _newhostname + "\"\n";
neuesfile.push_back(line);
}
fclose(pFile);
pFile = OpenFileAndWait(fn.c_str(), "w+");
for (int i = 0; i < neuesfile.size(); ++i)
{
printf(neuesfile[i].c_str());
fputs(neuesfile[i].c_str(), pFile);
}
fclose(pFile);
printf("*** Update hostname done ***\n");
return true;
}
void LoadWlanFromFile(std::string fn)
{
string line = "";
std::vector<string> zerlegt;
hostname = std_hostname;
FILE* pFile;
fn = FormatFileName(fn);
pFile = OpenFileAndWait(fn.c_str(), "r");
printf("file loaded\n");
if (pFile == NULL)
return;
char zw[1024];
fgets(zw, 1024, pFile);
line = std::string(zw);
while ((line.size() > 0) || !(feof(pFile)))
{
printf("%s", line.c_str());
zerlegt = ZerlegeZeile(line, "=");
zerlegt[0] = trim(zerlegt[0], " ");
for (int i = 2; i < zerlegt.size(); ++i)
zerlegt[1] = zerlegt[1] + "=" + zerlegt[i];
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "HOSTNAME")){
hostname = trim(zerlegt[1]);
if ((hostname[0] == '"') && (hostname[hostname.length()-1] == '"')){
hostname = hostname.substr(1, hostname.length()-2);
}
}
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "SSID")){
ssid = trim(zerlegt[1]);
if ((ssid[0] == '"') && (ssid[ssid.length()-1] == '"')){
ssid = ssid.substr(1, ssid.length()-2);
}
}
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "PASSWORD")){
passphrase = zerlegt[1];
if ((passphrase[0] == '"') && (passphrase[passphrase.length()-1] == '"')){
passphrase = passphrase.substr(1, passphrase.length()-2);
}
}
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "IP")){
ipaddress = zerlegt[1];
if ((ipaddress[0] == '"') && (ipaddress[ipaddress.length()-1] == '"')){
ipaddress = ipaddress.substr(1, ipaddress.length()-2);
}
}
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "GATEWAY")){
gw = zerlegt[1];
if ((gw[0] == '"') && (gw[gw.length()-1] == '"')){
gw = gw.substr(1, gw.length()-2);
}
}
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "NETMASK")){
netmask = zerlegt[1];
if ((netmask[0] == '"') && (netmask[netmask.length()-1] == '"')){
netmask = netmask.substr(1, netmask.length()-2);
}
}
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "DNS")){
dns = zerlegt[1];
if ((dns[0] == '"') && (dns[dns.length()-1] == '"')){
dns = dns.substr(1, dns.length()-2);
}
}
if (fgets(zw, 1024, pFile) == NULL)
{
line = "";
}
else
{
line = std::string(zw);
}
}
fclose(pFile);
// Check if Hostname was empty in .ini if yes set to std_hostname
if(hostname.length() <= 0){
hostname = std_hostname;
}
printf("\nWLan: %s, %s\n", ssid.c_str(), passphrase.c_str());
printf("Hostename: %s\n", hostname.c_str());
printf("Fixed IP: %s, Gateway %s, Netmask %s, DNS %s\n", ipaddress.c_str(), gw.c_str(), netmask.c_str(), dns.c_str());
}
void LoadNetConfigFromFile(std::string fn, std::string &_ip, std::string &_gw, std::string &_netmask, std::string &_dns)
{
string line = "";
std::vector<string> zerlegt;
FILE* pFile;
fn = FormatFileName(fn);
pFile = OpenFileAndWait(fn.c_str(), "r");
printf("file loaded\n");
if (pFile == NULL)
return;
char zw[1024];
fgets(zw, 1024, pFile);
line = std::string(zw);
while ((line.size() > 0) || !(feof(pFile)))
{
printf("%s", line.c_str());
zerlegt = ZerlegeZeile(line, "=");
zerlegt[0] = trim(zerlegt[0], " ");
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "IP")){
_ip = zerlegt[1];
if ((_ip[0] == '"') && (_ip[_ip.length()-1] == '"')){
_ip = _ip.substr(1, _ip.length()-2);
}
}
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "GATEWAY")){
_gw = zerlegt[1];
if ((_gw[0] == '"') && (_gw[_gw.length()-1] == '"')){
_gw = _gw.substr(1, _gw.length()-2);
}
}
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "NETMASK")){
_netmask = zerlegt[1];
if ((_netmask[0] == '"') && (_netmask[_netmask.length()-1] == '"')){
_netmask = _netmask.substr(1, _netmask.length()-2);
}
}
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "DNS")){
_dns = zerlegt[1];
if ((_dns[0] == '"') && (_dns[_dns.length()-1] == '"')){
_dns = _dns.substr(1, _dns.length()-2);
}
}
if (fgets(zw, 1024, pFile) == NULL)
{
line = "";
}
else
{
line = std::string(zw);
}
}
fclose(pFile);
}
std::string getHostname(){
return hostname;
}
std::string getIPAddress(){
return ipaddress;
}
std::string getSSID(){
return ssid;
}
std::string getNetMask(){
return netmask;
}
std::string getGW(){
return gw;
}

View File

@@ -1,20 +0,0 @@
#ifndef CONNECT_WLAN_H
#define CONNECT_WLAN_H
#include <string>
#include "driver/gpio.h"
const int CONNECTED_BIT = BIT0;
void ConnectToWLAN();
void LoadWlanFromFile(std::string fn);
bool ChangeHostName(std::string fn, std::string _newhostname);
std::string getHostname();
std::string getIPAddress();
std::string getSSID();
std::string getNetMask();
std::string getGW();
#endif

View File

@@ -29,7 +29,7 @@
// ================================ CODE ======================================
#include <esp_event_loop.h>
#include <esp_event.h>
#include <esp_log.h>
#include <esp_system.h>
#include <nvs_flash.h>

View File

@@ -2,6 +2,6 @@ FILE(GLOB_RECURSE app_sources ${CMAKE_CURRENT_SOURCE_DIR}/*.*)
idf_component_register(SRCS ${app_sources}
INCLUDE_DIRS "."
REQUIRES jomjol_helper)
REQUIRES jomjol_logfile)

View File

@@ -0,0 +1,105 @@
#include <string.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "Helper.h"
#include "configFile.h"
//static const char *TAGCONFIGFILE = "configFile";
ConfigFile::ConfigFile(std::string filePath)
{
std::string config = FormatFileName(filePath);
pFile = OpenFileAndWait(config.c_str(), "r");
}
ConfigFile::~ConfigFile()
{
fclose(pFile);
}
bool ConfigFile::isNewParagraph(std::string input)
{
if ((input[0] == '[') || ((input[0] == ';') && (input[1] == '[')))
{
return true;
}
return false;
}
bool ConfigFile::GetNextParagraph(std::string& aktparamgraph, bool &disabled, bool &eof)
{
while (getNextLine(&aktparamgraph, disabled, eof) && !isNewParagraph(aktparamgraph));
if (isNewParagraph(aktparamgraph))
return true;
return false;
}
bool ConfigFile::getNextLine(std::string *rt, bool &disabled, bool &eof)
{
eof = false;
char zw[1024] = "";
if (pFile == NULL)
{
*rt = "";
return false;
}
if (fgets(zw, 1024, pFile))
{
printf("%s", zw);
if ((strlen(zw) == 0) && feof(pFile))
{
*rt = "";
eof = true;
return false;
}
}
else
{
*rt = "";
eof = true;
return false;
}
*rt = zw;
*rt = trim(*rt);
while ((zw[0] == ';' || zw[0] == '#' || (rt->size() == 0)) && !(zw[1] == '[')) // Kommentarzeilen (; oder #) und Leerzeilen überspringen, es sei denn es ist ein neuer auskommentierter Paragraph
{
fgets(zw, 1024, pFile);
printf("%s", zw);
if (feof(pFile))
{
*rt = "";
eof = true;
return false;
}
*rt = zw;
*rt = trim(*rt);
}
disabled = ((*rt)[0] == ';');
return true;
}
std::vector<string> ConfigFile::ZerlegeZeile(std::string input, std::string delimiter)
{
std::vector<string> Output;
// std::string delimiter = " =,";
input = trim(input, delimiter);
size_t pos = findDelimiterPos(input, delimiter);
std::string token;
while (pos != std::string::npos) {
token = input.substr(0, pos);
token = trim(token, delimiter);
Output.push_back(token);
input.erase(0, pos + 1);
input = trim(input, delimiter);
pos = findDelimiterPos(input, delimiter);
}
Output.push_back(input);
return Output;
}

View File

@@ -0,0 +1,16 @@
#include <string>
#include <vector>
class ConfigFile {
public:
ConfigFile(std::string filePath);
~ConfigFile();
bool isNewParagraph(std::string input);
bool GetNextParagraph(std::string& aktparamgraph, bool &disabled, bool &eof);
bool getNextLine(std::string* rt, bool &disabled, bool &eof);
std::vector<std::string> ZerlegeZeile(std::string input, std::string delimiter = " =, \t");
private:
FILE* pFile;
};

View File

@@ -3,7 +3,7 @@ FILE(GLOB_RECURSE app_sources ${CMAKE_CURRENT_SOURCE_DIR}/*.*)
list(APPEND EXTRA_COMPONENT_DIRS $ENV{IDF_PATH}/examples/common_components/protocol_examples_common)
idf_component_register(SRCS ${app_sources}
INCLUDE_DIRS "."
REQUIRES esp_http_server jomjol_logfile)
INCLUDE_DIRS "." "../../include"
REQUIRES esp_http_server jomjol_logfile jomjol_configfile jomjol_mqtt jomjol_flowcontroll)

View File

@@ -1,4 +1,5 @@
#include <string>
#include <functional>
#include "string.h"
#include <string.h>
@@ -6,22 +7,395 @@
#include "freertos/task.h"
#include "esp_system.h"
#include "esp_event.h"
#include "server_tflite.h"
//#define LOG_LOCAL_LEVEL ESP_LOG_DEBUG
#include "esp_log.h"
#include "driver/gpio.h"
//#include "errno.h"
#include <sys/stat.h>
#include <vector>
//#include <regex>
#include "defines.h"
#include "server_GPIO.h"
#include "ClassLogFile.h"
#include "configFile.h"
#include "Helper.h"
#include "interface_mqtt.h"
// #define DEBUG_DETAIL_ON
static const char *TAG_SERVERGPIO = "server_GPIO";
QueueHandle_t gpio_queue_handle = NULL;
esp_err_t handler_switch_GPIO(httpd_req_t *req)
#define DEBUG_DETAIL_ON
GpioPin::GpioPin(gpio_num_t gpio, const char* name, gpio_pin_mode_t mode, gpio_int_type_t interruptType, uint8_t dutyResolution, std::string mqttTopic, bool httpEnable)
{
_gpio = gpio;
_name = name;
_mode = mode;
_interruptType = interruptType;
_mqttTopic = mqttTopic;
}
GpioPin::~GpioPin()
{
ESP_LOGD(TAG_SERVERGPIO,"reset GPIO pin %d", _gpio);
if (_interruptType != GPIO_INTR_DISABLE) {
//hook isr handler for specific gpio pin
gpio_isr_handler_remove(_gpio);
}
gpio_reset_pin(_gpio);
}
static void IRAM_ATTR gpio_isr_handler(void* arg)
{
GpioResult gpioResult;
gpioResult.gpio = *(gpio_num_t*) arg;
gpioResult.value = gpio_get_level(gpioResult.gpio);
BaseType_t ContextSwitchRequest = pdFALSE;
xQueueSendToBackFromISR(gpio_queue_handle,(void*)&gpioResult,&ContextSwitchRequest);
if(ContextSwitchRequest){
taskYIELD();
}
}
static void gpioHandlerTask(void *arg) {
ESP_LOGD(TAG_SERVERGPIO,"start interrupt task");
while(1){
if(uxQueueMessagesWaiting(gpio_queue_handle)){
while(uxQueueMessagesWaiting(gpio_queue_handle)){
GpioResult gpioResult;
xQueueReceive(gpio_queue_handle,(void*)&gpioResult,10);
ESP_LOGD(TAG_SERVERGPIO,"gpio: %d state: %d", gpioResult.gpio, gpioResult.value);
((GpioHandler*)arg)->gpioInterrupt(&gpioResult);
}
}
((GpioHandler*)arg)->taskHandler();
vTaskDelay(pdMS_TO_TICKS(1000));
}
}
void GpioPin::gpioInterrupt(int value) {
if (_mqttTopic != "") {
ESP_LOGD(TAG_SERVERGPIO, "gpioInterrupt %s %d", _mqttTopic.c_str(), value);
MQTTPublish(_mqttTopic, value ? "true" : "false");
currentState = value;
}
}
void GpioPin::init()
{
gpio_config_t io_conf;
//set interrupt
io_conf.intr_type = _interruptType;
//set as output mode
io_conf.mode = (_mode == GPIO_PIN_MODE_OUTPUT) || (_mode == GPIO_PIN_MODE_BUILT_IN_FLASH_LED) ? gpio_mode_t::GPIO_MODE_OUTPUT : gpio_mode_t::GPIO_MODE_INPUT;
//bit mask of the pins that you want to set,e.g.GPIO18/19
io_conf.pin_bit_mask = (1ULL << _gpio);
//set pull-down mode
io_conf.pull_down_en = _mode == GPIO_PIN_MODE_INPUT_PULLDOWN ? gpio_pulldown_t::GPIO_PULLDOWN_ENABLE : gpio_pulldown_t::GPIO_PULLDOWN_DISABLE;
//set pull-up mode
io_conf.pull_up_en = _mode == GPIO_PIN_MODE_INPUT_PULLDOWN ? gpio_pullup_t::GPIO_PULLUP_ENABLE : gpio_pullup_t::GPIO_PULLUP_DISABLE;
//configure GPIO with the given settings
gpio_config(&io_conf);
if (_interruptType != GPIO_INTR_DISABLE) {
//hook isr handler for specific gpio pin
ESP_LOGD(TAG_SERVERGPIO, "GpioPin::init add isr handler for GPIO %d\r\n", _gpio);
gpio_isr_handler_add(_gpio, gpio_isr_handler, (void*)&_gpio);
}
if ((_mqttTopic != "") && ((_mode == GPIO_PIN_MODE_OUTPUT) || (_mode == GPIO_PIN_MODE_OUTPUT_PWM) || (_mode == GPIO_PIN_MODE_BUILT_IN_FLASH_LED))) {
std::function<bool(std::string, char*, int)> f = std::bind(&GpioPin::handleMQTT, this, std::placeholders::_1, std::placeholders::_2, std::placeholders::_3);
MQTTregisterSubscribeFunction(_mqttTopic, f);
}
}
bool GpioPin::getValue(std::string* errorText)
{
if ((_mode != GPIO_PIN_MODE_INPUT) && (_mode != GPIO_PIN_MODE_INPUT_PULLUP) && (_mode != GPIO_PIN_MODE_INPUT_PULLDOWN)) {
(*errorText) = "GPIO is not in input mode";
}
return gpio_get_level(_gpio) == 1;
}
void GpioPin::setValue(bool value, gpio_set_source setSource, std::string* errorText)
{
ESP_LOGD(TAG_SERVERGPIO, "GpioPin::setValue %d\r\n", value);
if ((_mode != GPIO_PIN_MODE_OUTPUT) && (_mode != GPIO_PIN_MODE_OUTPUT_PWM) && (_mode != GPIO_PIN_MODE_BUILT_IN_FLASH_LED)) {
(*errorText) = "GPIO is not in output mode";
} else {
gpio_set_level(_gpio, value);
if ((_mqttTopic != "") && (setSource != GPIO_SET_SOURCE_MQTT)) {
MQTTPublish(_mqttTopic, value ? "true" : "false");
}
}
}
void GpioPin::publishState() {
int newState = gpio_get_level(_gpio);
if (newState != currentState) {
ESP_LOGD(TAG_SERVERGPIO,"publish state of GPIO %d new state %d", _gpio, newState);
MQTTPublish(_mqttTopic, newState ? "true" : "false");
currentState = newState;
}
}
bool GpioPin::handleMQTT(std::string, char* data, int data_len) {
ESP_LOGD(TAG_SERVERGPIO, "GpioPin::handleMQTT data %.*s\r\n", data_len, data);
std::string dataStr(data, data_len);
dataStr = toLower(dataStr);
std::string errorText = "";
if ((dataStr == "true") || (dataStr == "1")) {
setValue(true, GPIO_SET_SOURCE_MQTT, &errorText);
} else if ((dataStr == "false") || (dataStr == "0")) {
setValue(false, GPIO_SET_SOURCE_MQTT, &errorText);
} else {
errorText = "wrong value ";
errorText.append(data, data_len);
}
if (errorText != "") {
ESP_LOGE(TAG_SERVERGPIO, "%s", errorText.c_str());
}
return (errorText == "");
}
esp_err_t callHandleHttpRequest(httpd_req_t *req)
{
ESP_LOGD(TAG_SERVERGPIO,"callHandleHttpRequest");
GpioHandler *gpioHandler = (GpioHandler*)req->user_ctx;
return gpioHandler->handleHttpRequest(req);
}
void taskGpioHandler(void *pvParameter)
{
ESP_LOGD(TAG_SERVERGPIO,"taskGpioHandler");
((GpioHandler*)pvParameter)->init();
}
GpioHandler::GpioHandler(std::string configFile, httpd_handle_t httpServer)
{
ESP_LOGI(TAG_SERVERGPIO,"start GpioHandler");
_configFile = configFile;
_httpServer = httpServer;
ESP_LOGI(TAG_SERVERGPIO, "register GPIO Uri");
registerGpioUri();
}
GpioHandler::~GpioHandler() {
if (gpioMap != NULL) {
clear();
delete gpioMap;
}
}
void GpioHandler::init()
{
// TickType_t xDelay = 60000 / portTICK_PERIOD_MS;
// printf("wait before start %ldms\r\n", (long) xDelay);
// vTaskDelay( xDelay );
if (gpioMap == NULL) {
gpioMap = new std::map<gpio_num_t, GpioPin*>();
} else {
clear();
}
ESP_LOGI(TAG_SERVERGPIO, "read GPIO config and init GPIO");
if (!readConfig()) {
clear();
delete gpioMap;
gpioMap = NULL;
ESP_LOGI(TAG_SERVERGPIO, "GPIO init comleted, handler is disabled");
return;
}
for(std::map<gpio_num_t, GpioPin*>::iterator it = gpioMap->begin(); it != gpioMap->end(); ++it) {
it->second->init();
}
std::function<void()> f = std::bind(&GpioHandler::handleMQTTconnect, this);
MQTTregisterConnectFunction("gpio-handler", f);
if (xHandleTaskGpio == NULL) {
gpio_queue_handle = xQueueCreate(10,sizeof(GpioResult));
BaseType_t xReturned = xTaskCreate(&gpioHandlerTask, "gpio_int", configMINIMAL_STACK_SIZE * 8, (void *)this, tskIDLE_PRIORITY + 2, &xHandleTaskGpio);
if(xReturned == pdPASS ) {
ESP_LOGD(TAG_SERVERGPIO, "xHandletaskGpioHandler started");
} else {
ESP_LOGD(TAG_SERVERGPIO, "xHandletaskGpioHandler not started %d ", (int)xHandleTaskGpio);
}
}
ESP_LOGI(TAG_SERVERGPIO, "GPIO init comleted, is enabled");
}
void GpioHandler::taskHandler() {
if (gpioMap != NULL) {
for(std::map<gpio_num_t, GpioPin*>::iterator it = gpioMap->begin(); it != gpioMap->end(); ++it) {
if ((it->second->getInterruptType() == GPIO_INTR_DISABLE))
it->second->publishState();
}
}
}
void GpioHandler::handleMQTTconnect()
{
if (gpioMap != NULL) {
for(std::map<gpio_num_t, GpioPin*>::iterator it = gpioMap->begin(); it != gpioMap->end(); ++it) {
if ((it->second->getMode() == GPIO_PIN_MODE_INPUT) || (it->second->getMode() == GPIO_PIN_MODE_INPUT_PULLDOWN) || (it->second->getMode() == GPIO_PIN_MODE_INPUT_PULLUP))
it->second->publishState();
}
}
}
void GpioHandler::deinit() {
MQTTunregisterConnectFunction("gpio-handler");
clear();
if (xHandleTaskGpio != NULL) {
vTaskDelete(xHandleTaskGpio);
xHandleTaskGpio = NULL;
}
}
void GpioHandler::gpioInterrupt(GpioResult* gpioResult) {
if ((gpioMap != NULL) && (gpioMap->find(gpioResult->gpio) != gpioMap->end())) {
(*gpioMap)[gpioResult->gpio]->gpioInterrupt(gpioResult->value);
}
}
bool GpioHandler::readConfig()
{
if (!gpioMap->empty())
clear();
ConfigFile configFile = ConfigFile(_configFile);
std::vector<std::string> zerlegt;
std::string line = "";
bool disabledLine = false;
bool eof = false;
while ((!configFile.GetNextParagraph(line, disabledLine, eof) || (line.compare("[GPIO]") != 0)) && !disabledLine && !eof) {}
if (eof)
return false;
_isEnabled = !disabledLine;
if (!_isEnabled)
return false;
// std::string mainTopicMQTT = "";
std::string mainTopicMQTT = GetMQTTMainTopic();
if (mainTopicMQTT.length() > 0)
{
mainTopicMQTT = mainTopicMQTT + "/GPIO";
ESP_LOGD(TAG_SERVERGPIO, "MAINTOPICMQTT found\r\n");
}
bool registerISR = false;
while (configFile.getNextLine(&line, disabledLine, eof) && !configFile.isNewParagraph(line))
{
zerlegt = configFile.ZerlegeZeile(line);
// const std::regex pieces_regex("IO([0-9]{1,2})");
// std::smatch pieces_match;
// if (std::regex_match(zerlegt[0], pieces_match, pieces_regex) && (pieces_match.size() == 2))
// {
// std::string gpioStr = pieces_match[1];
ESP_LOGD(TAG_SERVERGPIO, "conf param %s\r\n", toUpper(zerlegt[0]).c_str());
if (toUpper(zerlegt[0]) == "MAINTOPICMQTT") {
// ESP_LOGD(TAG_SERVERGPIO, "MAINTOPICMQTT found\r\n");
// mainTopicMQTT = zerlegt[1];
} else if ((zerlegt[0].rfind("IO", 0) == 0) && (zerlegt.size() >= 6))
{
ESP_LOGI(TAG_SERVERGPIO,"Enable GP%s in %s mode", zerlegt[0].c_str(), zerlegt[1].c_str());
std::string gpioStr = zerlegt[0].substr(2, 2);
gpio_num_t gpioNr = (gpio_num_t)atoi(gpioStr.c_str());
gpio_pin_mode_t pinMode = resolvePinMode(toLower(zerlegt[1]));
gpio_int_type_t intType = resolveIntType(toLower(zerlegt[2]));
uint16_t dutyResolution = (uint8_t)atoi(zerlegt[3].c_str());
bool mqttEnabled = toLower(zerlegt[4]) == "true";
bool httpEnabled = toLower(zerlegt[5]) == "true";
char gpioName[100];
if (zerlegt.size() >= 7) {
strcpy(gpioName, trim(zerlegt[6]).c_str());
} else {
sprintf(gpioName, "GPIO%d", gpioNr);
}
std::string mqttTopic = mqttEnabled ? (mainTopicMQTT + "/" + gpioName) : "";
GpioPin* gpioPin = new GpioPin(gpioNr, gpioName, pinMode, intType,dutyResolution, mqttTopic, httpEnabled);
(*gpioMap)[gpioNr] = gpioPin;
if (intType != GPIO_INTR_DISABLE) {
registerISR = true;
}
}
}
if (registerISR) {
//install gpio isr service
gpio_install_isr_service(ESP_INTR_FLAG_LOWMED | ESP_INTR_FLAG_IRAM);
}
return true;
}
void GpioHandler::clear()
{
ESP_LOGD(TAG_SERVERGPIO, "GpioHandler::clear\r\n");
if (gpioMap != NULL) {
for(std::map<gpio_num_t, GpioPin*>::iterator it = gpioMap->begin(); it != gpioMap->end(); ++it) {
delete it->second;
}
gpioMap->clear();
}
// gpio_uninstall_isr_service(); can't uninstall, isr service is used by camera
}
void GpioHandler::registerGpioUri()
{
ESP_LOGI(TAG_SERVERGPIO, "server_GPIO - Registering URI handlers");
httpd_uri_t camuri = { };
camuri.method = HTTP_GET;
camuri.uri = "/GPIO";
camuri.handler = callHandleHttpRequest;
camuri.user_ctx = (void*)this;
httpd_register_uri_handler(_httpServer, &camuri);
}
esp_err_t GpioHandler::handleHttpRequest(httpd_req_t *req)
{
ESP_LOGD(TAG_SERVERGPIO, "handleHttpRequest");
if (gpioMap == NULL) {
std::string resp_str = "GPIO handler not initialized";
httpd_resp_send(req, resp_str.c_str(), resp_str.length());
return ESP_OK;
}
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("handler_switch_GPIO - Start");
#endif
@@ -30,95 +404,183 @@ esp_err_t handler_switch_GPIO(httpd_req_t *req)
char _query[200];
char _valueGPIO[30];
char _valueStatus[30];
std::string gpio, status, zw;
int gpionum = 0;
gpio_num_t gpio_num;
std::string gpio, status;
if (httpd_req_get_url_query_str(req, _query, 200) == ESP_OK)
{
printf("Query: "); printf(_query); printf("\n");
if (httpd_req_get_url_query_str(req, _query, 200) == ESP_OK) {
ESP_LOGD(TAG_SERVERGPIO, "Query: %s", _query);
if (httpd_query_key_value(_query, "GPIO", _valueGPIO, 30) == ESP_OK)
{
printf("GPIO is found"); printf(_valueGPIO); printf("\n");
ESP_LOGD(TAG_SERVERGPIO, "GPIO is found %s", _valueGPIO);
gpio = std::string(_valueGPIO);
} else {
std::string resp_str = "GPIO No is not defined";
httpd_resp_send(req, resp_str.c_str(), resp_str.length());
return ESP_OK;
}
if (httpd_query_key_value(_query, "Status", _valueStatus, 30) == ESP_OK)
{
printf("Status is found"); printf(_valueStatus); printf("\n");
ESP_LOGD(TAG_SERVERGPIO, "Status is found %s", _valueStatus);
status = std::string(_valueStatus);
}
};
} else {
const char* resp_str = "Error in call. Use /GPIO?GPIO=12&Status=high";
httpd_resp_send(req, resp_str, strlen(resp_str));
return ESP_OK;
}
status = toUpper(status);
if (!(status == "HIGH") && !(status == "LOW"))
if ((status != "HIGH") && (status != "LOW") && (status != "TRUE") && (status != "FALSE") && (status != "0") && (status != "1") && (status != ""))
{
zw = "Status not valid: " + status;;
std::string zw = "Status not valid: " + status;
httpd_resp_sendstr_chunk(req, zw.c_str());
httpd_resp_sendstr_chunk(req, NULL);
return ESP_OK;
}
gpionum = stoi(gpio);
// frei: 16; 12-15; 2; 4 // nur 12 und 13 funktionieren 2: reboot, 4: BlitzLED, 14/15: DMA für SDKarte ???
int gpionum = stoi(gpio);
switch (gpionum) {
case 12:
gpio_num = GPIO_NUM_12;
break;
case 13:
gpio_num = GPIO_NUM_13;
break;
default:
zw = "GPIO" + std::to_string(gpionum) + " not support - only 12 & 13 free";
// frei: 16; 12-15; 2; 4 // nur 12 und 13 funktionieren 2: reboot, 4: BlitzLED, 15: PSRAM, 14/15: DMA für SDKarte ???
gpio_num_t gpio_num = resolvePinNr(gpionum);
if (gpio_num == GPIO_NUM_NC)
{
std::string zw = "GPIO" + std::to_string(gpionum) + " not support - only 12 & 13 free";
httpd_resp_sendstr_chunk(req, zw.c_str());
httpd_resp_sendstr_chunk(req, NULL);
return ESP_OK;
return ESP_OK;
}
if (status == "HIGH")
gpio_set_level(gpio_num, 1);
if (gpioMap->count(gpio_num) == 0) {
char resp_str [30];
sprintf(resp_str, "GPIO%d is not registred", gpio_num);
httpd_resp_send(req, resp_str, strlen(resp_str));
return ESP_OK;
}
if (status == "")
{
std::string resp_str = "";
status = (*gpioMap)[gpio_num]->getValue(&resp_str) ? "HIGH" : "LOW";
if (resp_str == "") {
resp_str = status;
}
httpd_resp_sendstr_chunk(req, resp_str.c_str());
httpd_resp_sendstr_chunk(req, NULL);
}
else
gpio_set_level(gpio_num, 0);
zw = "GPIO" + std::to_string(gpionum) + " switched to " + status;
httpd_resp_sendstr_chunk(req, zw.c_str());
httpd_resp_sendstr_chunk(req, NULL);
{
std::string resp_str = "";
(*gpioMap)[gpio_num]->setValue((status == "HIGH") || (status == "TRUE") || (status == "1"), GPIO_SET_SOURCE_HTTP, &resp_str);
if (resp_str == "") {
resp_str = "GPIO" + std::to_string(gpionum) + " switched to " + status;
}
httpd_resp_sendstr_chunk(req, resp_str.c_str());
httpd_resp_sendstr_chunk(req, NULL);
}
return ESP_OK;
};
void initGPIO()
void GpioHandler::flashLightEnable(bool value)
{
gpio_config_t io_conf;
//disable interrupt
io_conf.intr_type = GPIO_INTR_DISABLE;
//set as output mode
io_conf.mode = GPIO_MODE_OUTPUT;
//bit mask of the pins that you want to set,e.g.GPIO18/19
// io_conf.pin_bit_mask = ((1ULL<<GPIO_OUTPUT_IO_0) | (1ULL<<GPIO_OUTPUT_IO_1));
// io_conf.pin_bit_mask = ((1ULL << GPIO_NUM_12) | (1ULL << GPIO_NUM_2) | (1ULL << GPIO_NUM_4) | (1ULL << GPIO_NUM_12) | (1ULL << GPIO_NUM_13) | (1ULL << GPIO_NUM_14) | (1ULL << GPIO_NUM_15));
io_conf.pin_bit_mask = ((1ULL << GPIO_NUM_12) | (1ULL << GPIO_NUM_13));
//disable pull-down mode
io_conf.pull_down_en = (gpio_pulldown_t) 0;
//disable pull-up mode
io_conf.pull_up_en = (gpio_pullup_t) 0;
//configure GPIO with the given settings
gpio_config(&io_conf);
ESP_LOGD(TAG_SERVERGPIO, "GpioHandler::flashLightEnable %s\r\n", value ? "true" : "false");
if (gpioMap != NULL) {
for(std::map<gpio_num_t, GpioPin*>::iterator it = gpioMap->begin(); it != gpioMap->end(); ++it)
{
if (it->second->getMode() == GPIO_PIN_MODE_BUILT_IN_FLASH_LED) //|| (it->second->getMode() == GPIO_PIN_MODE_EXTERNAL_FLASH_PWM) || (it->second->getMode() == GPIO_PIN_MODE_EXTERNAL_FLASH_WS281X))
{
std::string resp_str = "";
it->second->setValue(value, GPIO_SET_SOURCE_INTERNAL, &resp_str);
if (resp_str == "") {
ESP_LOGD(TAG_SERVERGPIO, "Flash light pin GPIO %d switched to %s\r\n", (int)it->first, (value ? "on" : "off"));
} else {
ESP_LOGE(TAG_SERVERGPIO, "Can't set flash light pin GPIO %d. Error: %s\r\n", (int)it->first, resp_str.c_str());
}
}
}
}
}
void register_server_GPIO_uri(httpd_handle_t server)
gpio_num_t GpioHandler::resolvePinNr(uint8_t pinNr)
{
ESP_LOGI(TAGPARTGPIO, "server_GPIO - Registering URI handlers");
httpd_uri_t camuri = { };
camuri.method = HTTP_GET;
camuri.uri = "/GPIO";
camuri.handler = handler_switch_GPIO;
camuri.user_ctx = (void*) "switch GPIO";
httpd_register_uri_handler(server, &camuri);
initGPIO();
switch(pinNr) {
case 0:
return GPIO_NUM_0;
case 1:
return GPIO_NUM_1;
case 3:
return GPIO_NUM_3;
case 4:
return GPIO_NUM_4;
case 12:
return GPIO_NUM_12;
case 13:
return GPIO_NUM_13;
default:
return GPIO_NUM_NC;
}
}
gpio_pin_mode_t GpioHandler::resolvePinMode(std::string input)
{
if( input == "disabled" ) return GPIO_PIN_MODE_DISABLED;
if( input == "input" ) return GPIO_PIN_MODE_INPUT;
if( input == "input-pullup" ) return GPIO_PIN_MODE_INPUT_PULLUP;
if( input == "input-pulldown" ) return GPIO_PIN_MODE_INPUT_PULLDOWN;
if( input == "output" ) return GPIO_PIN_MODE_OUTPUT;
if( input == "built-in-led" ) return GPIO_PIN_MODE_BUILT_IN_FLASH_LED;
if( input == "output-pwm" ) return GPIO_PIN_MODE_OUTPUT_PWM;
if( input == "external-flash-pwm" ) return GPIO_PIN_MODE_EXTERNAL_FLASH_PWM;
if( input == "external-flash-ws281x" ) return GPIO_PIN_MODE_EXTERNAL_FLASH_WS281X;
return GPIO_PIN_MODE_DISABLED;
}
gpio_int_type_t GpioHandler::resolveIntType(std::string input)
{
if( input == "disabled" ) return GPIO_INTR_DISABLE;
if( input == "rising-edge" ) return GPIO_INTR_POSEDGE;
if( input == "falling-edge" ) return GPIO_INTR_NEGEDGE;
if( input == "rising-and-falling" ) return GPIO_INTR_ANYEDGE ;
if( input == "low-level-trigger" ) return GPIO_INTR_LOW_LEVEL;
if( input == "high-level-trigger" ) return GPIO_INTR_HIGH_LEVEL;
return GPIO_INTR_DISABLE;
}
static GpioHandler *gpioHandler = NULL;
void gpio_handler_create(httpd_handle_t server)
{
if (gpioHandler == NULL)
gpioHandler = new GpioHandler(CONFIG_FILE, server);
}
void gpio_handler_init()
{
if (gpioHandler != NULL) {
gpioHandler->init();
}
}
void gpio_handler_deinit() {
if (gpioHandler != NULL) {
gpioHandler->deinit();
}
}
void gpio_handler_destroy()
{
if (gpioHandler != NULL) {
delete gpioHandler;
gpioHandler = NULL;
}
}
GpioHandler* gpio_handler_get()
{
return gpioHandler;
}

View File

@@ -1,10 +1,99 @@
#ifndef SERVER_GPIO_H
#define SERVER_GPIO_H
#include <esp_log.h>
#include <esp_http_server.h>
#include <map>
#include "driver/gpio.h"
//#include "ClassControllCamera.h"
static const char *TAGPARTGPIO = "server_GPIO";
typedef enum {
GPIO_PIN_MODE_DISABLED = 0x0,
GPIO_PIN_MODE_INPUT = 0x1,
GPIO_PIN_MODE_INPUT_PULLUP = 0x2,
GPIO_PIN_MODE_INPUT_PULLDOWN = 0x3,
GPIO_PIN_MODE_OUTPUT = 0x4,
GPIO_PIN_MODE_BUILT_IN_FLASH_LED = 0x5,
GPIO_PIN_MODE_OUTPUT_PWM = 0x6,
GPIO_PIN_MODE_EXTERNAL_FLASH_PWM = 0x7,
GPIO_PIN_MODE_EXTERNAL_FLASH_WS281X = 0x8,
} gpio_pin_mode_t;
void register_server_GPIO_uri(httpd_handle_t server);
struct GpioResult {
gpio_num_t gpio;
int value;
};
typedef enum {
GPIO_SET_SOURCE_INTERNAL = 0,
GPIO_SET_SOURCE_MQTT = 1,
GPIO_SET_SOURCE_HTTP = 2,
} gpio_set_source;
class GpioPin {
public:
GpioPin(gpio_num_t gpio, const char* name, gpio_pin_mode_t mode, gpio_int_type_t interruptType, uint8_t dutyResolution, std::string mqttTopic, bool httpEnable);
~GpioPin();
void init();
bool getValue(std::string* errorText);
void setValue(bool value, gpio_set_source setSource, std::string* errorText);
bool handleMQTT(std::string, char* data, int data_len);
void publishState();
void gpioInterrupt(int value);
gpio_int_type_t getInterruptType() { return _interruptType; }
gpio_pin_mode_t getMode() { return _mode; }
private:
gpio_num_t _gpio;
const char* _name;
gpio_pin_mode_t _mode;
gpio_int_type_t _interruptType;
std::string _mqttTopic;
int currentState = -1;
};
esp_err_t callHandleHttpRequest(httpd_req_t *req);
void taskGpioHandler(void *pvParameter);
class GpioHandler {
public:
GpioHandler(std::string configFile, httpd_handle_t httpServer);
~GpioHandler();
void init();
void deinit();
void registerGpioUri();
esp_err_t handleHttpRequest(httpd_req_t *req);
void taskHandler();
void gpioInterrupt(GpioResult* gpioResult);
void flashLightEnable(bool value);
bool isEnabled() { return _isEnabled; }
void handleMQTTconnect();
private:
std::string _configFile;
httpd_handle_t _httpServer;
std::map<gpio_num_t, GpioPin*> *gpioMap = NULL;
TaskHandle_t xHandleTaskGpio = NULL;
bool _isEnabled = false;
bool readConfig();
void clear();
gpio_num_t resolvePinNr(uint8_t pinNr);
gpio_pin_mode_t resolvePinMode(std::string input);
gpio_int_type_t resolveIntType(std::string input);
};
void gpio_handler_create(httpd_handle_t server);
void gpio_handler_init();
void gpio_handler_deinit();
void gpio_handler_destroy();
GpioHandler* gpio_handler_get();
#endif //SERVER_GPIO_H

View File

@@ -4,6 +4,6 @@ list(APPEND EXTRA_COMPONENT_DIRS $ENV{IDF_PATH}/examples/common_components/proto
idf_component_register(SRCS ${app_sources}
INCLUDE_DIRS "."
REQUIRES esp32-camera-master esp_http_server jomjol_logfile jomjol_image_proc nvs_flash)
REQUIRES esp32-camera-master esp_http_server jomjol_logfile jomjol_image_proc nvs_flash jomjol_fileserver_ota jomjol_controlGPIO)

View File

@@ -9,11 +9,14 @@
#include "Helper.h"
#include "CImageBasis.h"
#include "server_ota.h"
#include "server_GPIO.h"
#define BOARD_ESP32CAM_AITHINKER
#include <esp_event_loop.h>
#include <esp_event.h>
#include <esp_log.h>
#include <esp_system.h>
#include <nvs_flash.h>
@@ -48,7 +51,7 @@
#define CAM_PIN_HREF 23
#define CAM_PIN_PCLK 22
static const char *TAG = "example:take_picture";
static const char *TAGCAMERACLASS = "server_part_camera";
static camera_config_t camera_config = {
.pin_pwdn = CAM_PIN_PWDN,
@@ -220,13 +223,17 @@ void CCamera::SetQualitySize(int qual, framesize_t resol)
void CCamera::EnableAutoExposure(int flashdauer)
{
LEDOnOff(true);
LightOnOff(true);
if (flashdauer > 0)
LightOnOff(true);
const TickType_t xDelay = flashdauer / portTICK_PERIOD_MS;
vTaskDelay( xDelay );
camera_fb_t * fb = esp_camera_fb_get();
if (!fb) {
ESP_LOGE(TAGCAMERACLASS, "Camera Capture Failed");
LEDOnOff(false);
LightOnOff(false);
doReboot();
}
esp_camera_fb_return(fb);
@@ -269,8 +276,11 @@ esp_err_t CCamera::CaptureToBasisImage(CImageBasis *_Image, int delay)
camera_fb_t * fb = esp_camera_fb_get();
if (!fb) {
ESP_LOGE(TAGCAMERACLASS, "Camera Capture Failed");
ESP_LOGE(TAGCAMERACLASS, "CaptureToBasisImage: Camera Capture Failed");
LEDOnOff(false);
LightOnOff(false);
doReboot();
return ESP_FAIL;
}
@@ -353,8 +363,11 @@ esp_err_t CCamera::CaptureToFile(std::string nm, int delay)
camera_fb_t * fb = esp_camera_fb_get();
if (!fb) {
ESP_LOGE(TAGCAMERACLASS, "Camera Capture Failed");
ESP_LOGE(TAGCAMERACLASS, "CaptureToFile: Camera Capture Failed");
LEDOnOff(false);
LightOnOff(false);
doReboot();
return ESP_FAIL;
}
LEDOnOff(false);
@@ -443,7 +456,11 @@ esp_err_t CCamera::CaptureToHTTP(httpd_req_t *req, int delay)
fb = esp_camera_fb_get();
if (!fb) {
ESP_LOGE(TAGCAMERACLASS, "Camera capture failed");
LEDOnOff(false);
LightOnOff(false);
httpd_resp_send_500(req);
// doReboot();
return ESP_FAIL;
}
@@ -480,15 +497,20 @@ esp_err_t CCamera::CaptureToHTTP(httpd_req_t *req, int delay)
void CCamera::LightOnOff(bool status)
{
// Init the GPIO
gpio_pad_select_gpio(FLASH_GPIO);
/* Set the GPIO as a push/pull output */
gpio_set_direction(FLASH_GPIO, GPIO_MODE_OUTPUT);
GpioHandler* gpioHandler = gpio_handler_get();
if ((gpioHandler != NULL) && (gpioHandler->isEnabled())) {
gpioHandler->flashLightEnable(status);
} else {
// Init the GPIO
gpio_pad_select_gpio(FLASH_GPIO);
/* Set the GPIO as a push/pull output */
gpio_set_direction(FLASH_GPIO, GPIO_MODE_OUTPUT);
if (status)
gpio_set_level(FLASH_GPIO, 1);
else
gpio_set_level(FLASH_GPIO, 0);
if (status)
gpio_set_level(FLASH_GPIO, 1);
else
gpio_set_level(FLASH_GPIO, 0);
}
}
void CCamera::LEDOnOff(bool status)

View File

@@ -16,9 +16,6 @@
#define CAMERA_MODEL_AI_THINKER
static const char *TAGCAMERACLASS = "server_part_camera";
class CCamera {
protected:
int ActualQuality;

View File

@@ -12,14 +12,17 @@
char scratch2[SCRATCH_BUFSIZE2];
//#define DEBUG_DETAIL_ON
static const char *TAGPARTCAMERA = "server_camera";
void PowerResetCamera(){
ESP_LOGD(TAGPARTCAMERA, "Resetting camera by power down line");
gpio_config_t conf = { 0 };
gpio_config_t conf;
conf.intr_type = GPIO_INTR_DISABLE;
conf.pin_bit_mask = 1LL << GPIO_NUM_32;
conf.mode = GPIO_MODE_OUTPUT;
conf.pull_down_en = GPIO_PULLDOWN_DISABLE;
conf.pull_up_en = GPIO_PULLUP_DISABLE;
gpio_config(&conf);
// carefull, logic is inverted compared to reset pin

View File

@@ -7,8 +7,6 @@
//#include "ClassControllCamera.h"
static const char *TAGPARTCAMERA = "server_camera";
void register_server_camera_uri(httpd_handle_t server);
void PowerResetCamera();

View File

@@ -1,7 +1,7 @@
FILE(GLOB_RECURSE app_sources ${CMAKE_CURRENT_SOURCE_DIR}/*.*)
idf_component_register(SRCS ${app_sources}
INCLUDE_DIRS "."
REQUIRES tfmicro esp_http_server app_update esp_http_client nvs_flash jomjol_tfliteclass jomjol_flowcontroll spiffs jomjol_helper)
INCLUDE_DIRS "." "../../include"
REQUIRES tfmicro esp_http_server app_update esp_http_client nvs_flash jomjol_tfliteclass jomjol_flowcontroll spiffs jomjol_helper jomjol_controlGPIO)

View File

@@ -26,9 +26,12 @@
#include <esp_spiffs.h>
#include "esp_http_server.h"
#include "defines.h"
#include "ClassLogFile.h"
#include "server_help.h"
#include "interface_mqtt.h"
#include "server_GPIO.h"
#include "Helper.h"
#include "miniz.h"
@@ -53,17 +56,17 @@ struct file_server_data {
char scratch[SCRATCH_BUFSIZE];
};
static const char *TAG = "file_server";
static const char *TAG_FILESERVER = "file_server";
/* Handler to redirect incoming GET request for /index.html to /
* This can be overridden by uploading file with same name */
static esp_err_t index_html_get_handler(httpd_req_t *req)
{
httpd_resp_set_status(req, "307 Temporary Redirect");
httpd_resp_set_hdr(req, "Location", "/");
httpd_resp_send(req, NULL, 0); // Response body can be empty
return ESP_OK;
}
// static esp_err_t index_html_get_handler(httpd_req_t *req)
// {
// httpd_resp_set_status(req, "307 Temporary Redirect");
// httpd_resp_set_hdr(req, "Location", "/");
// httpd_resp_send(req, NULL, 0); // Response body can be empty
// return ESP_OK;
// }
/* Send HTTP response with a run-time generated html consisting of
* a list of all files and folders under the requested path.
@@ -95,7 +98,7 @@ static esp_err_t http_resp_dir_html(httpd_req_t *req, const char *dirpath, const
printf("entrypath: <%s>\n", entrypath);
if (!dir) {
ESP_LOGE(TAG, "Failed to stat dir : %s", dirpath);
ESP_LOGE(TAG_FILESERVER, "Failed to stat dir : %s", dirpath);
/* Respond with 404 Not Found */
httpd_resp_send_err(req, HTTPD_404_NOT_FOUND, "Directory does not exist");
return ESP_FAIL;
@@ -115,7 +118,7 @@ static esp_err_t http_resp_dir_html(httpd_req_t *req, const char *dirpath, const
if (chunksize > 0){
if (httpd_resp_send_chunk(req, chunk, chunksize) != ESP_OK) {
fclose(fd);
ESP_LOGE(TAG, "File sending failed!");
ESP_LOGE(TAG_FILESERVER, "File sending failed!");
return ESP_FAIL;
}
}
@@ -154,11 +157,11 @@ static esp_err_t http_resp_dir_html(httpd_req_t *req, const char *dirpath, const
strlcpy(entrypath + dirpath_len, entry->d_name, sizeof(entrypath) - dirpath_len);
printf("Entrypath: %s\n", entrypath);
if (stat(entrypath, &entry_stat) == -1) {
ESP_LOGE(TAG, "Failed to stat %s : %s", entrytype, entry->d_name);
ESP_LOGE(TAG_FILESERVER, "Failed to stat %s : %s", entrytype, entry->d_name);
continue;
}
sprintf(entrysize, "%ld", entry_stat.st_size);
ESP_LOGI(TAG, "Found %s : %s (%s bytes)", entrytype, entry->d_name, entrysize);
ESP_LOGI(TAG_FILESERVER, "Found %s : %s (%s bytes)", entrytype, entry->d_name, entrysize);
/* Send chunk of HTML file containing table entries with file name and size */
httpd_resp_sendstr_chunk(req, "<tr><td><a href=\"");
@@ -206,19 +209,19 @@ static esp_err_t logfileact_get_handler(httpd_req_t *req)
LogFile.WriteToFile("logfileact_get_handler");
char filepath[FILE_PATH_MAX];
FILE *fd = NULL;
struct stat file_stat;
//struct stat file_stat;
printf("uri: %s\n", req->uri);
const char filename = 'log_current.txt';
const char* filename = "log_current.txt";
printf("uri: %s, filename: %s, filepath: %s\n", req->uri, &filename, filepath);
printf("uri: %s, filename: %s, filepath: %s\n", req->uri, filename, filepath);
std::string currentfilename = LogFile.GetCurrentFileName();
fd = OpenFileAndWait(currentfilename.c_str(), "r");
if (!fd) {
ESP_LOGE(TAG, "Failed to read existing file : %s", filepath);
ESP_LOGE(TAG_FILESERVER, "Failed to read existing file : %s", filepath);
/* Respond with 500 Internal Server Error */
httpd_resp_send_err(req, HTTPD_500_INTERNAL_SERVER_ERROR, "Failed to read existing file");
return ESP_FAIL;
@@ -226,8 +229,8 @@ static esp_err_t logfileact_get_handler(httpd_req_t *req)
httpd_resp_set_hdr(req, "Access-Control-Allow-Origin", "*");
// ESP_LOGI(TAG, "Sending file : %s (%ld bytes)...", &filename, file_stat.st_size);
set_content_type_from_file(req, &filename);
// ESP_LOGI(TAG_FILESERVER, "Sending file : %s (%ld bytes)...", &filename, file_stat.st_size);
set_content_type_from_file(req, filename);
/* Retrieve the pointer to scratch buffer for temporary storage */
char *chunk = ((struct file_server_data *)req->user_ctx)->scratch;
@@ -239,7 +242,7 @@ static esp_err_t logfileact_get_handler(httpd_req_t *req)
/* Send the buffer contents as HTTP response chunk */
if (httpd_resp_send_chunk(req, chunk, chunksize) != ESP_OK) {
fclose(fd);
ESP_LOGE(TAG, "File sending failed!");
ESP_LOGE(TAG_FILESERVER, "File sending failed!");
/* Abort sending file */
httpd_resp_sendstr_chunk(req, NULL);
/* Respond with 500 Internal Server Error */
@@ -252,7 +255,7 @@ static esp_err_t logfileact_get_handler(httpd_req_t *req)
/* Close file after sending complete */
fclose(fd);
ESP_LOGI(TAG, "File sending complete");
ESP_LOGI(TAG_FILESERVER, "File sending complete");
/* Respond with an empty chunk to signal HTTP response completion */
httpd_resp_send_chunk(req, NULL, 0);
@@ -284,7 +287,7 @@ static esp_err_t download_get_handler(httpd_req_t *req)
if (!filename) {
ESP_LOGE(TAG, "Filename is too long");
ESP_LOGE(TAG_FILESERVER, "Filename is too long");
/* Respond with 500 Internal Server Error */
httpd_resp_send_err(req, HTTPD_500_INTERNAL_SERVER_ERROR, "Filename too long");
return ESP_FAIL;
@@ -297,11 +300,11 @@ static esp_err_t download_get_handler(httpd_req_t *req)
if (buf_len > 1) {
char buf[buf_len];
if (httpd_req_get_url_query_str(req, buf, buf_len) == ESP_OK) {
ESP_LOGI(TAG, "Found URL query => %s", buf);
ESP_LOGI(TAG_FILESERVER, "Found URL query => %s", buf);
char param[32];
/* Get value of expected key from query string */
if (httpd_query_key_value(buf, "readonly", param, sizeof(param)) == ESP_OK) {
ESP_LOGI(TAG, "Found URL query parameter => readonly=%s", param);
ESP_LOGI(TAG_FILESERVER, "Found URL query parameter => readonly=%s", param);
readonly = param && strcmp(param,"true")==0;
}
}
@@ -316,7 +319,7 @@ static esp_err_t download_get_handler(httpd_req_t *req)
/* If file not present on SPIFFS check if URI
* corresponds to one of the hardcoded paths */
ESP_LOGE(TAG, "Failed to stat file : %s", filepath);
ESP_LOGE(TAG_FILESERVER, "Failed to stat file : %s", filepath);
/* Respond with 404 Not Found */
httpd_resp_send_err(req, HTTPD_404_NOT_FOUND, "File does not exist");
return ESP_FAIL;
@@ -324,7 +327,7 @@ static esp_err_t download_get_handler(httpd_req_t *req)
fd = OpenFileAndWait(filepath, "r");
if (!fd) {
ESP_LOGE(TAG, "Failed to read existing file : %s", filepath);
ESP_LOGE(TAG_FILESERVER, "Failed to read existing file : %s", filepath);
/* Respond with 500 Internal Server Error */
httpd_resp_send_err(req, HTTPD_500_INTERNAL_SERVER_ERROR, "Failed to read existing file");
return ESP_FAIL;
@@ -332,7 +335,7 @@ static esp_err_t download_get_handler(httpd_req_t *req)
httpd_resp_set_hdr(req, "Access-Control-Allow-Origin", "*");
ESP_LOGI(TAG, "Sending file : %s (%ld bytes)...", filename, file_stat.st_size);
ESP_LOGI(TAG_FILESERVER, "Sending file : %s (%ld bytes)...", filename, file_stat.st_size);
set_content_type_from_file(req, filename);
/* Retrieve the pointer to scratch buffer for temporary storage */
@@ -345,7 +348,7 @@ static esp_err_t download_get_handler(httpd_req_t *req)
/* Send the buffer contents as HTTP response chunk */
if (httpd_resp_send_chunk(req, chunk, chunksize) != ESP_OK) {
fclose(fd);
ESP_LOGE(TAG, "File sending failed!");
ESP_LOGE(TAG_FILESERVER, "File sending failed!");
/* Abort sending file */
httpd_resp_sendstr_chunk(req, NULL);
/* Respond with 500 Internal Server Error */
@@ -358,7 +361,7 @@ static esp_err_t download_get_handler(httpd_req_t *req)
/* Close file after sending complete */
fclose(fd);
ESP_LOGI(TAG, "File sending complete");
ESP_LOGI(TAG_FILESERVER, "File sending complete");
/* Respond with an empty chunk to signal HTTP response completion */
httpd_resp_send_chunk(req, NULL, 0);
@@ -385,13 +388,13 @@ static esp_err_t upload_post_handler(httpd_req_t *req)
/* Filename cannot have a trailing '/' */
if (filename[strlen(filename) - 1] == '/') {
ESP_LOGE(TAG, "Invalid filename : %s", filename);
ESP_LOGE(TAG_FILESERVER, "Invalid filename : %s", filename);
httpd_resp_send_err(req, HTTPD_500_INTERNAL_SERVER_ERROR, "Invalid filename");
return ESP_FAIL;
}
if (stat(filepath, &file_stat) == 0) {
ESP_LOGE(TAG, "File already exists : %s", filepath);
ESP_LOGE(TAG_FILESERVER, "File already exists : %s", filepath);
/* Respond with 400 Bad Request */
httpd_resp_send_err(req, HTTPD_400_BAD_REQUEST, "File already exists");
return ESP_FAIL;
@@ -399,7 +402,7 @@ static esp_err_t upload_post_handler(httpd_req_t *req)
/* File cannot be larger than a limit */
if (req->content_len > MAX_FILE_SIZE) {
ESP_LOGE(TAG, "File too large : %d bytes", req->content_len);
ESP_LOGE(TAG_FILESERVER, "File too large : %d bytes", req->content_len);
/* Respond with 400 Bad Request */
httpd_resp_send_err(req, HTTPD_400_BAD_REQUEST,
"File size must be less than "
@@ -411,13 +414,13 @@ static esp_err_t upload_post_handler(httpd_req_t *req)
fd = OpenFileAndWait(filepath, "w");
if (!fd) {
ESP_LOGE(TAG, "Failed to create file : %s", filepath);
ESP_LOGE(TAG_FILESERVER, "Failed to create file : %s", filepath);
/* Respond with 500 Internal Server Error */
httpd_resp_send_err(req, HTTPD_500_INTERNAL_SERVER_ERROR, "Failed to create file");
return ESP_FAIL;
}
ESP_LOGI(TAG, "Receiving file : %s...", filename);
ESP_LOGI(TAG_FILESERVER, "Receiving file : %s...", filename);
/* Retrieve the pointer to scratch buffer for temporary storage */
char *buf = ((struct file_server_data *)req->user_ctx)->scratch;
@@ -429,7 +432,7 @@ static esp_err_t upload_post_handler(httpd_req_t *req)
while (remaining > 0) {
ESP_LOGI(TAG, "Remaining size : %d", remaining);
ESP_LOGI(TAG_FILESERVER, "Remaining size : %d", remaining);
/* Receive the file part by part into a buffer */
if ((received = httpd_req_recv(req, buf, MIN(remaining, SCRATCH_BUFSIZE))) <= 0) {
if (received == HTTPD_SOCK_ERR_TIMEOUT) {
@@ -442,7 +445,7 @@ static esp_err_t upload_post_handler(httpd_req_t *req)
fclose(fd);
unlink(filepath);
ESP_LOGE(TAG, "File reception failed!");
ESP_LOGE(TAG_FILESERVER, "File reception failed!");
/* Respond with 500 Internal Server Error */
httpd_resp_send_err(req, HTTPD_500_INTERNAL_SERVER_ERROR, "Failed to receive file");
return ESP_FAIL;
@@ -455,7 +458,7 @@ static esp_err_t upload_post_handler(httpd_req_t *req)
fclose(fd);
unlink(filepath);
ESP_LOGE(TAG, "File write failed!");
ESP_LOGE(TAG_FILESERVER, "File write failed!");
/* Respond with 500 Internal Server Error */
httpd_resp_send_err(req, HTTPD_500_INTERNAL_SERVER_ERROR, "Failed to write file to storage");
return ESP_FAIL;
@@ -468,7 +471,7 @@ static esp_err_t upload_post_handler(httpd_req_t *req)
/* Close file upon upload completion */
fclose(fd);
ESP_LOGI(TAG, "File reception complete");
ESP_LOGI(TAG_FILESERVER, "File reception complete");
std::string directory = std::string(filepath);
size_t zw = directory.find("/");
@@ -483,10 +486,10 @@ static esp_err_t upload_post_handler(httpd_req_t *req)
int start_fn = strlen(((struct file_server_data *)req->user_ctx)->base_path);
printf("Directory: %s, start_fn: %d, found: %d\n", directory.c_str(), start_fn, found);
directory = directory.substr(start_fn, found - start_fn + 1);
printf("Directory danach: %s\n", directory.c_str());
printf("Directory danach 1: %s\n", directory.c_str());
directory = "/fileserver" + directory;
printf("Directory danach: %s\n", directory.c_str());
printf("Directory danach 2: %s\n", directory.c_str());
/* Redirect onto root to see the updated file list */
httpd_resp_set_status(req, "303 See Other");
@@ -496,6 +499,15 @@ static esp_err_t upload_post_handler(httpd_req_t *req)
httpd_resp_set_status(req, "303 See Other");
httpd_resp_set_hdr(req, "Location", directory.c_str());
httpd_resp_sendstr(req, "File uploaded successfully");
/*
if (strcmp(filepath, CONFIG_FILE) == 0) {
printf("New config found. Reload handler.");
gpio_handler_deinit();
MQTTdestroy();
}
*/
return ESP_OK;
}
@@ -567,19 +579,19 @@ static esp_err_t delete_post_handler(httpd_req_t *req)
/* Filename cannot have a trailing '/' */
if (filename[strlen(filename) - 1] == '/') {
ESP_LOGE(TAG, "Invalid filename : %s", filename);
ESP_LOGE(TAG_FILESERVER, "Invalid filename : %s", filename);
httpd_resp_send_err(req, HTTPD_500_INTERNAL_SERVER_ERROR, "Invalid filename");
return ESP_FAIL;
}
if (stat(filepath, &file_stat) == -1) {
ESP_LOGE(TAG, "File does not exist : %s", filename);
ESP_LOGE(TAG_FILESERVER, "File does not exist : %s", filename);
/* Respond with 400 Bad Request */
httpd_resp_send_err(req, HTTPD_400_BAD_REQUEST, "File does not exist");
return ESP_FAIL;
}
ESP_LOGI(TAG, "Deleting file : %s", filename);
ESP_LOGI(TAG_FILESERVER, "Deleting file : %s", filename);
/* Delete file */
unlink(filepath);
@@ -596,10 +608,10 @@ static esp_err_t delete_post_handler(httpd_req_t *req)
int start_fn = strlen(((struct file_server_data *)req->user_ctx)->base_path);
printf("Directory: %s, start_fn: %d, found: %d\n", directory.c_str(), start_fn, found);
directory = directory.substr(start_fn, found - start_fn + 1);
printf("Directory danach: %s\n", directory.c_str());
printf("Directory danach 3: %s\n", directory.c_str());
directory = "/fileserver" + directory;
printf("Directory danach: %s\n", directory.c_str());
printf("Directory danach 4: %s\n", directory.c_str());
}
@@ -623,7 +635,7 @@ void delete_all_in_directory(std::string _directory)
std::string filename;
if (!dir) {
ESP_LOGE(TAG, "Failed to stat dir : %s", _directory.c_str());
ESP_LOGE(TAG_FILESERVER, "Failed to stat dir : %s", _directory.c_str());
return;
}
@@ -632,7 +644,7 @@ void delete_all_in_directory(std::string _directory)
if (!(entry->d_type == DT_DIR)){
if (strcmp("wlan.ini", entry->d_name) != 0){ // auf wlan.ini soll nicht zugegriffen werden !!!
filename = _directory + "/" + std::string(entry->d_name);
ESP_LOGI(TAG, "Deleting file : %s", filename.c_str());
ESP_LOGI(TAG_FILESERVER, "Deleting file : %s", filename.c_str());
/* Delete file */
unlink(filename.c_str());
}
@@ -722,19 +734,19 @@ void register_server_file_uri(httpd_handle_t server, const char *base_path)
/* Validate file storage base path */
if (!base_path) {
// if (!base_path || strcmp(base_path, "/spiffs") != 0) {
ESP_LOGE(TAG, "File server base_path not set");
ESP_LOGE(TAG_FILESERVER, "File server base_path not set");
// return ESP_ERR_INVALID_ARG;
}
if (server_data) {
ESP_LOGE(TAG, "File server already started");
ESP_LOGE(TAG_FILESERVER, "File server already started");
// return ESP_ERR_INVALID_STATE;
}
/* Allocate memory for server data */
server_data = (file_server_data *) calloc(1, sizeof(struct file_server_data));
if (!server_data) {
ESP_LOGE(TAG, "Failed to allocate memory for server data");
ESP_LOGE(TAG_FILESERVER, "Failed to allocate memory for server data");
// return ESP_ERR_NO_MEM;
}
strlcpy(server_data->base_path, base_path,

View File

@@ -107,6 +107,8 @@ esp_err_t set_content_type_from_file(httpd_req_t *req, const char *filename)
return httpd_resp_set_type(req, "text/html");
} else if (IS_FILE_EXT(filename, ".jpeg")) {
return httpd_resp_set_type(req, "image/jpeg");
} else if (IS_FILE_EXT(filename, ".jpg")) {
return httpd_resp_set_type(req, "image/jpeg");
} else if (IS_FILE_EXT(filename, ".ico")) {
return httpd_resp_set_type(req, "image/x-icon");
}

View File

@@ -12,7 +12,7 @@
#include "freertos/task.h"
#include "esp_system.h"
#include "esp_event.h"
#include "esp_event_loop.h"
#include "esp_event.h"
#include "esp_log.h"
#include <esp_ota_ops.h>
#include "esp_http_client.h"
@@ -28,6 +28,7 @@
#include "server_tflite.h"
#include "server_file.h"
#include "server_GPIO.h"
#include "ClassLogFile.h"
@@ -46,6 +47,7 @@ static char ota_write_data[BUFFSIZE + 1] = { 0 };
#define OTA_URL_SIZE 256
static const char *TAGPARTOTA = "server_ota";
static void infinite_loop(void)
@@ -60,14 +62,14 @@ static void infinite_loop(void)
static bool ota_example_task(std::string fn)
static bool ota_update_task(std::string fn)
{
esp_err_t err;
/* update handle : set by esp_ota_begin(), must be freed via esp_ota_end() */
esp_ota_handle_t update_handle = 0 ;
const esp_partition_t *update_partition = NULL;
ESP_LOGI(TAGPARTOTA, "Starting OTA example");
ESP_LOGI(TAGPARTOTA, "Starting OTA update");
const esp_partition_t *configured = esp_ota_get_boot_partition();
const esp_partition_t *running = esp_ota_get_running_partition();
@@ -374,7 +376,9 @@ esp_err_t handler_ota_update(httpd_req_t *req)
const char* resp_str;
if (ota_example_task(fn))
KillTFliteTasks();
gpio_handler_deinit();
if (ota_update_task(fn))
{
resp_str = "Firmware Update Successfull!<br><br>You can restart now.";
}
@@ -400,8 +404,6 @@ void hard_restart() {
void task_reboot(void *pvParameter)
{
while(1)
{
vTaskDelay(5000 / portTICK_PERIOD_MS);
@@ -413,12 +415,14 @@ void task_reboot(void *pvParameter)
}
void doReboot(){
LogFile.WriteToFile("Reboot - now");
KillTFliteTasks();
ESP_LOGI(TAGPARTOTA, "Reboot in 5sec");
LogFile.WriteToFile("Reboot in 5sec");
xTaskCreate(&task_reboot, "reboot", configMINIMAL_STACK_SIZE * 64, NULL, 10, NULL);
// KillTFliteTasks(); // kills itself
gpio_handler_destroy();
vTaskDelay(5000 / portTICK_PERIOD_MS);
esp_restart();
hard_restart();
hard_restart();
}

View File

@@ -4,8 +4,6 @@
//#include "ClassControllCamera.h"
static const char *TAGPARTOTA = "server_ota";
void register_server_ota_sdcard_uri(httpd_handle_t server);
void CheckOTAUpdate();
void doReboot();

View File

@@ -2,6 +2,6 @@ FILE(GLOB_RECURSE app_sources ${CMAKE_CURRENT_SOURCE_DIR}/*.*)
idf_component_register(SRCS ${app_sources}
INCLUDE_DIRS "."
REQUIRES jomjol_tfliteclass jomjol_helper jomjol_controlcamera jomjol_mqtt jomjol_fileserver_ota jomjol_image_proc connect_wlan)
REQUIRES jomjol_tfliteclass jomjol_helper jomjol_controlcamera jomjol_mqtt jomjol_fileserver_ota jomjol_image_proc jomjol_wlan)

View File

@@ -94,6 +94,23 @@ string ClassFlow::getReadout()
return string();
}
std::string ClassFlow::GetParameterName(std::string _input)
{
string _param;
int _pospunkt = _input.find_first_of(".");
if (_pospunkt > -1)
{
_param = _input.substr(_pospunkt+1, _input.length() - _pospunkt - 1);
}
else
{
_param = _input;
}
// printf("Parameter: %s, Pospunkt: %d\n", _param.c_str(), _pospunkt);
return _param;
}
bool ClassFlow::getNextLine(FILE* pfile, string *rt)
{
char zw[1024];
@@ -102,24 +119,21 @@ bool ClassFlow::getNextLine(FILE* pfile, string *rt)
*rt = "";
return false;
}
fgets(zw, 1024, pfile);
printf("%s", zw);
if ((strlen(zw) == 0) && feof(pfile))
if (!fgets(zw, 1024, pfile))
{
*rt = "";
printf("END OF FILE\n");
return false;
}
printf("%s", zw);
*rt = zw;
*rt = trim(*rt);
while ((zw[0] == ';' || zw[0] == '#' || (rt->size() == 0)) && !(zw[1] == '[')) // Kommentarzeilen (; oder #) und Leerzeilen überspringen, es sei denn es ist ein neuer auskommentierter Paragraph
{
fgets(zw, 1024, pfile);
printf("%s", zw);
if (feof(pfile))
{
*rt = "";
*rt = "";
if (!fgets(zw, 1024, pfile))
return false;
}
printf("%s", zw);
*rt = zw;
*rt = trim(*rt);
}

View File

@@ -37,6 +37,8 @@ protected:
virtual void SetInitialParameter(void);
std::string GetParameterName(std::string _input);
bool disabled;
public:

View File

@@ -1,7 +1,7 @@
#include "ClassFlowAnalog.h"
#include <math.h>
#include <iomanip>
#include <iomanip>
#include <sys/types.h>
#include <sstream> // std::stringstream
@@ -46,9 +46,9 @@ ClassFlowAnalog::ClassFlowAnalog(std::vector<ClassFlow*>* lfc) : ClassFlowImage(
}
int ClassFlowAnalog::AnzahlROIs()
int ClassFlowAnalog::AnzahlROIs(int _analog = 0)
{
int zw = ROI.size();
int zw = ANALOG[_analog]->ROI.size();
if (extendedResolution)
zw++;
@@ -56,27 +56,27 @@ int ClassFlowAnalog::AnzahlROIs()
}
string ClassFlowAnalog::getReadout()
string ClassFlowAnalog::getReadout(int _analog = 0)
{
string result = "";
if (ROI.size() == 0)
if (ANALOG[_analog]->ROI.size() == 0)
return result;
float zahl = ROI[ROI.size() - 1]->result;
float zahl = ANALOG[_analog]->ROI[ANALOG[_analog]->ROI.size() - 1]->result;
int ergebnis_nachkomma = ((int) floor(zahl * 10)) % 10;
int prev = -1;
prev = ZeigerEval(ROI[ROI.size() - 1]->result, prev);
prev = ZeigerEval(ANALOG[_analog]->ROI[ANALOG[_analog]->ROI.size() - 1]->result, prev);
result = std::to_string(prev);
if (extendedResolution)
result = result + std::to_string(ergebnis_nachkomma);
for (int i = ROI.size() - 2; i >= 0; --i)
for (int i = ANALOG[_analog]->ROI.size() - 2; i >= 0; --i)
{
prev = ZeigerEval(ROI[i]->result, prev);
prev = ZeigerEval(ANALOG[_analog]->ROI[i]->result, prev);
result = std::to_string(prev) + result;
}
@@ -153,8 +153,8 @@ bool ClassFlowAnalog::ReadParameter(FILE* pfile, string& aktparamgraph)
}
if (zerlegt.size() >= 5)
{
roianalog* neuroi = new roianalog;
neuroi->name = zerlegt[0];
analog* _analog = GetANALOG(zerlegt[0], true);
roianalog* neuroi = _analog->ROI[_analog->ROI.size()-1];
neuroi->posx = std::stoi(zerlegt[1]);
neuroi->posy = std::stoi(zerlegt[2]);
neuroi->deltax = std::stoi(zerlegt[3]);
@@ -162,7 +162,7 @@ bool ClassFlowAnalog::ReadParameter(FILE* pfile, string& aktparamgraph)
neuroi->result = -1;
neuroi->image = NULL;
neuroi->image_org = NULL;
ROI.push_back(neuroi);
// ROI.push_back(neuroi);
}
if ((toUpper(zerlegt[0]) == "SAVEALLFILES") && (zerlegt.size() > 1))
@@ -178,15 +178,75 @@ bool ClassFlowAnalog::ReadParameter(FILE* pfile, string& aktparamgraph)
}
}
for (int i = 0; i < ROI.size(); ++i)
{
ROI[i]->image = new CImageBasis(modelxsize, modelysize, 3);
ROI[i]->image_org = new CImageBasis(ROI[i]->deltax, ROI[i]->deltay, 3);
}
for (int _ana = 0; _ana < ANALOG.size(); ++_ana)
for (int i = 0; i < ANALOG[_ana]->ROI.size(); ++i)
{
ANALOG[_ana]->ROI[i]->image = new CImageBasis(modelxsize, modelysize, 3);
ANALOG[_ana]->ROI[i]->image_org = new CImageBasis(ANALOG[_ana]->ROI[i]->deltax, ANALOG[_ana]->ROI[i]->deltay, 3);
}
return true;
}
analog* ClassFlowAnalog::FindANALOG(string _name_number)
{
for (int i = 0; i < ANALOG.size(); ++i)
{
if (ANALOG[i]->name == _name_number)
return ANALOG[i];
}
return NULL;
}
analog* ClassFlowAnalog::GetANALOG(string _name, bool _create = true)
{
string _analog, _roi;
int _pospunkt = _name.find_first_of(".");
// printf("Name: %s, Pospunkt: %d\n", _name.c_str(), _pospunkt);
if (_pospunkt > -1)
{
_analog = _name.substr(0, _pospunkt);
_roi = _name.substr(_pospunkt+1, _name.length() - _pospunkt - 1);
}
else
{
_analog = "default";
_roi = _name;
}
analog *_ret = NULL;
for (int i = 0; i < ANALOG.size(); ++i)
{
if (ANALOG[i]->name == _analog)
_ret = ANALOG[i];
}
if (!_create) // nicht gefunden und soll auch nicht erzeugt werden
return _ret;
if (_ret == NULL)
{
_ret = new analog;
_ret->name = _analog;
ANALOG.push_back(_ret);
}
roianalog* neuroi = new roianalog;
neuroi->name = _roi;
_ret->ROI.push_back(neuroi);
printf("GetANALOG - ANALOG %s - roi %s\n", _analog.c_str(), _roi.c_str());
return _ret;
}
string ClassFlowAnalog::getHTMLSingleStep(string host)
{
@@ -238,16 +298,29 @@ bool ClassFlowAnalog::doAlignAndCut(string time)
CAlignAndCutImage *caic = flowpostalignment->GetAlignAndCutImage();
for (int i = 0; i < ROI.size(); ++i)
{
printf("Analog %d - Align&Cut\n", i);
caic->CutAndSave(ROI[i]->posx, ROI[i]->posy, ROI[i]->deltax, ROI[i]->deltay, ROI[i]->image_org);
if (SaveAllFiles) ROI[i]->image_org->SaveToFile(FormatFileName("/sdcard/img_tmp/" + ROI[i]->name + ".jpg"));
for (int _ana = 0; _ana < ANALOG.size(); ++_ana)
for (int i = 0; i < ANALOG[_ana]->ROI.size(); ++i)
{
printf("Analog %d - Align&Cut\n", i);
caic->CutAndSave(ANALOG[_ana]->ROI[i]->posx, ANALOG[_ana]->ROI[i]->posy, ANALOG[_ana]->ROI[i]->deltax, ANALOG[_ana]->ROI[i]->deltay, ANALOG[_ana]->ROI[i]->image_org);
if (SaveAllFiles)
{
if (ANALOG[_ana]->name == "default")
ANALOG[_ana]->ROI[i]->image_org->SaveToFile(FormatFileName("/sdcard/img_tmp/" + ANALOG[_ana]->ROI[i]->name + ".jpg"));
else
ANALOG[_ana]->ROI[i]->image_org->SaveToFile(FormatFileName("/sdcard/img_tmp/" + ANALOG[_ana]->name + "_" + ANALOG[_ana]->ROI[i]->name + ".jpg"));
}
ROI[i]->image_org->Resize(modelxsize, modelysize, ROI[i]->image);
if (SaveAllFiles) ROI[i]->image->SaveToFile(FormatFileName("/sdcard/img_tmp/" + ROI[i]->name + ".bmp"));
}
ANALOG[_ana]->ROI[i]->image_org->Resize(modelxsize, modelysize, ANALOG[_ana]->ROI[i]->image);
if (SaveAllFiles)
{
if (ANALOG[_ana]->name == "default")
ANALOG[_ana]->ROI[i]->image->SaveToFile(FormatFileName("/sdcard/img_tmp/" + ANALOG[_ana]->ROI[i]->name + ".bmp"));
else
ANALOG[_ana]->ROI[i]->image->SaveToFile(FormatFileName("/sdcard/img_tmp/" + ANALOG[_ana]->name + "_" + ANALOG[_ana]->ROI[i]->name + ".bmp"));
}
}
return true;
}
@@ -258,13 +331,14 @@ void ClassFlowAnalog::DrawROI(CImageBasis *_zw)
int g = 255;
int b = 0;
for (int i = 0; i < ROI.size(); ++i)
{
_zw->drawRect(ROI[i]->posx, ROI[i]->posy, ROI[i]->deltax, ROI[i]->deltay, r, g, b, 1);
_zw->drawCircle((int) (ROI[i]->posx + ROI[i]->deltax/2), (int) (ROI[i]->posy + ROI[i]->deltay/2), (int) (ROI[i]->deltax/2), r, g, b, 2);
_zw->drawLine((int) (ROI[i]->posx + ROI[i]->deltax/2), (int) ROI[i]->posy, (int) (ROI[i]->posx + ROI[i]->deltax/2), (int) (ROI[i]->posy + ROI[i]->deltay), r, g, b, 2);
_zw->drawLine((int) ROI[i]->posx, (int) (ROI[i]->posy + ROI[i]->deltay/2), (int) ROI[i]->posx + ROI[i]->deltax, (int) (ROI[i]->posy + ROI[i]->deltay/2), r, g, b, 2);
}
for (int _ana = 0; _ana < ANALOG.size(); ++_ana)
for (int i = 0; i < ANALOG[_ana]->ROI.size(); ++i)
{
_zw->drawRect(ANALOG[_ana]->ROI[i]->posx, ANALOG[_ana]->ROI[i]->posy, ANALOG[_ana]->ROI[i]->deltax, ANALOG[_ana]->ROI[i]->deltay, r, g, b, 1);
_zw->drawCircle((int) (ANALOG[_ana]->ROI[i]->posx + ANALOG[_ana]->ROI[i]->deltax/2), (int) (ANALOG[_ana]->ROI[i]->posy + ANALOG[_ana]->ROI[i]->deltay/2), (int) (ANALOG[_ana]->ROI[i]->deltax/2), r, g, b, 2);
_zw->drawLine((int) (ANALOG[_ana]->ROI[i]->posx + ANALOG[_ana]->ROI[i]->deltax/2), (int) ANALOG[_ana]->ROI[i]->posy, (int) (ANALOG[_ana]->ROI[i]->posx + ANALOG[_ana]->ROI[i]->deltax/2), (int) (ANALOG[_ana]->ROI[i]->posy + ANALOG[_ana]->ROI[i]->deltay), r, g, b, 2);
_zw->drawLine((int) ANALOG[_ana]->ROI[i]->posx, (int) (ANALOG[_ana]->ROI[i]->posy + ANALOG[_ana]->ROI[i]->deltay/2), (int) ANALOG[_ana]->ROI[i]->posx + ANALOG[_ana]->ROI[i]->deltax, (int) (ANALOG[_ana]->ROI[i]->posy + ANALOG[_ana]->ROI[i]->deltay/2), r, g, b, 2);
}
}
bool ClassFlowAnalog::doNeuralNetwork(string time)
@@ -284,43 +358,46 @@ bool ClassFlowAnalog::doNeuralNetwork(string time)
string zwcnn = "/sdcard" + cnnmodelfile;
zwcnn = FormatFileName(zwcnn);
printf(zwcnn.c_str());printf("\n");
tflite->LoadModel(zwcnn);
if (!tflite->LoadModel(zwcnn)) {
printf("Can't read model file /sdcard%s\n", cnnmodelfile.c_str());
delete tflite;
return false;
}
tflite->MakeAllocate();
#endif
for (int i = 0; i < ROI.size(); ++i)
for (int _ana = 0; _ana < ANALOG.size(); ++_ana)
{
printf("Analog %d - TfLite\n", i);
ioresize = "/sdcard/img_tmp/ra" + std::to_string(i) + ".bmp";
ioresize = FormatFileName(ioresize);
float f1, f2;
f1 = 0; f2 = 0;
#ifndef OHNETFLITE
// LogFile.WriteToFile("ClassFlowAnalog::doNeuralNetwork vor CNN tflite->LoadInputImage(ioresize)");
// tflite->LoadInputImage(ioresize);
tflite->LoadInputImageBasis(ROI[i]->image);
tflite->Invoke();
if (debugdetailanalog) LogFile.WriteToFile("Nach Invoke");
f1 = tflite->GetOutputValue(0);
f2 = tflite->GetOutputValue(1);
#endif
float result = fmod(atan2(f1, f2) / (M_PI * 2) + 2, 1);
// printf("Result sin, cos, ziffer: %f, %f, %f\n", f1, f2, result);
ROI[i]->result = result * 10;
printf("Result Analog%i: %f\n", i, ROI[i]->result);
if (isLogImage)
for (int i = 0; i < ANALOG[_ana]->ROI.size(); ++i)
{
LogImage(logPath, ROI[i]->name, &ROI[i]->result, NULL, time, ROI[i]->image_org);
printf("Analog %d - TfLite\n", i);
float f1, f2;
f1 = 0; f2 = 0;
#ifndef OHNETFLITE
tflite->LoadInputImageBasis(ANALOG[_ana]->ROI[i]->image);
tflite->Invoke();
if (debugdetailanalog) LogFile.WriteToFile("Nach Invoke");
f1 = tflite->GetOutputValue(0);
f2 = tflite->GetOutputValue(1);
#endif
float result = fmod(atan2(f1, f2) / (M_PI * 2) + 2, 1);
// printf("Result sin, cos, ziffer: %f, %f, %f\n", f1, f2, result);
ANALOG[_ana]->ROI[i]->result = result * 10;
printf("Result Analog%i: %f\n", i, ANALOG[_ana]->ROI[i]->result);
if (isLogImage)
{
LogImage(logPath, ANALOG[_ana]->ROI[i]->name, &ANALOG[_ana]->ROI[i]->result, NULL, time, ANALOG[_ana]->ROI[i]->image_org);
}
}
}
#ifndef OHNETFLITE
delete tflite;
#endif
@@ -333,18 +410,78 @@ std::vector<HTMLInfo*> ClassFlowAnalog::GetHTMLInfo()
{
std::vector<HTMLInfo*> result;
for (int i = 0; i < ROI.size(); ++i)
{
HTMLInfo *zw = new HTMLInfo;
zw->filename = ROI[i]->name + ".bmp";
zw->filename_org = ROI[i]->name + ".jpg";
zw->val = ROI[i]->result;
zw->image = ROI[i]->image;
zw->image_org = ROI[i]->image_org;
result.push_back(zw);
}
for (int _ana = 0; _ana < ANALOG.size(); ++_ana)
for (int i = 0; i < ANALOG[_ana]->ROI.size(); ++i)
{
if (ANALOG[_ana]->name == "default")
ANALOG[_ana]->ROI[i]->image->SaveToFile(FormatFileName("/sdcard/img_tmp/" + ANALOG[_ana]->ROI[i]->name + ".bmp"));
else
ANALOG[_ana]->ROI[i]->image->SaveToFile(FormatFileName("/sdcard/img_tmp/" + ANALOG[_ana]->name + "_" + ANALOG[_ana]->ROI[i]->name + ".bmp"));
HTMLInfo *zw = new HTMLInfo;
if (ANALOG[_ana]->name == "default")
{
zw->filename = ANALOG[_ana]->ROI[i]->name + ".bmp";
zw->filename_org = ANALOG[_ana]->ROI[i]->name + ".jpg";
}
else
{
zw->filename = ANALOG[_ana]->name + "_" + ANALOG[_ana]->ROI[i]->name + ".bmp";
zw->filename_org = ANALOG[_ana]->name + "_" + ANALOG[_ana]->ROI[i]->name + ".jpg";
}
zw->val = ANALOG[_ana]->ROI[i]->result;
zw->image = ANALOG[_ana]->ROI[i]->image;
zw->image_org = ANALOG[_ana]->ROI[i]->image_org;
result.push_back(zw);
}
return result;
}
int ClassFlowAnalog::getAnzahlANALOG()
{
return ANALOG.size();
}
string ClassFlowAnalog::getNameANALOG(int _analog)
{
if (_analog < ANALOG.size())
return ANALOG[_analog]->name;
return "ANALOG DOES NOT EXIST";
}
analog* ClassFlowAnalog::GetANALOG(int _analog)
{
if (_analog < ANALOG.size())
return ANALOG[_analog];
return NULL;
}
void ClassFlowAnalog::UpdateNameNumbers(std::vector<std::string> *_name_numbers)
{
for (int _dig = 0; _dig < ANALOG.size(); _dig++)
{
std::string _name = ANALOG[_dig]->name;
bool found = false;
for (int i = 0; i < (*_name_numbers).size(); ++i)
{
if ((*_name_numbers)[i] == _name)
found = true;
}
if (!found)
(*_name_numbers).push_back(_name);
}
}

View File

@@ -10,12 +10,19 @@ struct roianalog {
string name;
};
struct analog {
string name;
std::vector<roianalog*> ROI;
};
class ClassFlowAnalog :
public ClassFlowImage
{
protected:
std::vector<roianalog*> ROI;
// std::vector<roianalog*> ROI;
std::vector<analog*> ANALOG;
string cnnmodelfile;
int modelxsize, modelysize;
int ZeigerEval(float zahl, int ziffer_vorgaenger);
@@ -24,7 +31,8 @@ protected:
ClassFlowAlignment* flowpostalignment;
void SetInitialParameter(void);
void SetInitialParameter(void);
public:
bool extendedResolution;
@@ -34,14 +42,23 @@ public:
bool ReadParameter(FILE* pfile, string& aktparamgraph);
bool doFlow(string time);
string getHTMLSingleStep(string host);
string getReadout();
string getReadout(int _analog);
void DrawROI(CImageBasis *_zw);
bool doNeuralNetwork(string time);
bool doAlignAndCut(string time);
std::vector<HTMLInfo*> GetHTMLInfo();
int AnzahlROIs();
int AnzahlROIs(int _analog);
int getAnzahlANALOG();
analog* GetANALOG(int _analog);
analog* GetANALOG(string _name, bool _create);
analog* FindANALOG(string _name_number);
string getNameANALOG(int _analog);
void UpdateNameNumbers(std::vector<std::string> *_name_numbers);
string name(){return "ClassFlowAnalog";};
};

View File

@@ -1,6 +1,7 @@
#include "ClassFlowControll.h"
#include "connect_wlan.h"
#include "read_wlanini.h"
#include "freertos/task.h"
@@ -11,6 +12,9 @@
#include "Helper.h"
#include "server_ota.h"
//#include "CImg.h"
#include "server_help.h"
//#define DEBUG_DETAIL_ON
@@ -21,13 +25,16 @@ static const char* TAG = "flow_controll";
std::string ClassFlowControll::doSingleStep(std::string _stepname, std::string _host){
std::string _classname = "";
std::string result = "";
// printf("_stepname: %s\n", _stepname.c_str());
if ((_stepname.compare("[MakeImage]") == 0) || (_stepname.compare(";[MakeImage]") == 0)){
_classname = "ClassFlowMakeImage";
}
if ((_stepname.compare("[Alignment]") == 0) || (_stepname.compare(";[Alignment]") == 0)){
_classname = "ClassFlowAlignment";
}
if ((_stepname.compare("[Digits]") == 0) || (_stepname.compare(";[Digits]") == 0)){
if ((_stepname.compare(0, 7, "[Digits") == 0) || (_stepname.compare(0, 8, ";[Digits") == 0)) {
// if ((_stepname.compare("[Digits]") == 0) || (_stepname.compare(";[Digits]") == 0)){
// printf("Digits!!!\n");
_classname = "ClassFlowDigit";
}
if ((_stepname.compare("[Analog]") == 0) || (_stepname.compare(";[Analog]") == 0)){
@@ -47,6 +54,25 @@ std::string ClassFlowControll::doSingleStep(std::string _stepname, std::string _
return result;
}
std::string ClassFlowControll::TranslateAktstatus(std::string _input)
{
if (_input.compare("ClassFlowMakeImage") == 0)
return ("Take Image");
if (_input.compare("ClassFlowAlignment") == 0)
return ("Aligning");
if (_input.compare("ClassFlowAnalog") == 0)
return ("Analog ROIs");
if (_input.compare("ClassFlowDigit") == 0)
return ("Digital ROIs");
if (_input.compare("ClassFlowMQTT") == 0)
return ("Sending MQTT");
if (_input.compare("ClassFlowPostProcessing") == 0)
return ("Processing");
return "Unkown Status";
}
std::vector<HTMLInfo*> ClassFlowControll::GetAllDigital()
{
for (int i = 0; i < FlowControll.size(); ++i)
@@ -68,6 +94,19 @@ std::vector<HTMLInfo*> ClassFlowControll::GetAllAnalog()
}
string ClassFlowControll::GetMQTTMainTopic()
{
for (int i = 0; i < FlowControll.size(); ++i)
if (FlowControll[i]->name().compare("ClassFlowMQTT") == 0)
return ((ClassFlowMQTT*) (FlowControll[i]))->GetMQTTMainTopic();
return "";
}
void ClassFlowControll::SetInitialParameter(void)
{
AutoStart = false;
@@ -78,7 +117,7 @@ void ClassFlowControll::SetInitialParameter(void)
flowpostprocessing = NULL;
disabled = false;
aktRunNr = 0;
aktstatus = "Startup";
aktstatus = "Booting ...";
}
@@ -109,13 +148,14 @@ ClassFlow* ClassFlowControll::CreateClassFlow(std::string _type)
cfc = new ClassFlowAnalog(&FlowControll);
flowanalog = (ClassFlowAnalog*) cfc;
}
if (toUpper(_type).compare("[DIGITS]") == 0)
if (toUpper(_type).compare(0, 7, "[DIGITS") == 0)
{
cfc = new ClassFlowDigit(&FlowControll);
flowdigit = (ClassFlowDigit*) cfc;
}
if (toUpper(_type).compare("[MQTT]") == 0)
cfc = new ClassFlowMQTT(&FlowControll);
if (toUpper(_type).compare("[POSTPROCESSING]") == 0)
{
cfc = new ClassFlowPostProcessing(&FlowControll);
@@ -168,9 +208,12 @@ void ClassFlowControll::InitFlow(std::string config)
}
else
{
fgets(zw, 1024, pFile);
printf("%s", zw);
line = std::string(zw);
line = "";
if (fgets(zw, 1024, pFile) && !feof(pFile))
{
printf("Read: %s", zw);
line = std::string(zw);
}
}
}
@@ -188,9 +231,9 @@ void ClassFlowControll::doFlowMakeImageOnly(string time){
for (int i = 0; i < FlowControll.size(); ++i)
{
if (FlowControll[i]->name() == "ClassFlowMakeImage") {
zw_time = gettimestring("%Y%m%d-%H%M%S");
aktstatus = zw_time + ": " + FlowControll[i]->name();
string zw = "FlowControll.doFlowMakeImageOnly - " + FlowControll[i]->name();
// zw_time = gettimestring("%Y%m%d-%H%M%S");
zw_time = gettimestring("%H:%M:%S");
aktstatus = TranslateAktstatus(FlowControll[i]->name()) + " (" + zw_time + ")";
FlowControll[i]->doFlow(time);
}
}
@@ -205,13 +248,16 @@ bool ClassFlowControll::doFlow(string time)
int repeat = 0;
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("ClassFlowAnalog::doFlow - Start");
LogFile.WriteHeapInfo("ClassFlowControll::doFlow - Start");
#endif
for (int i = 0; i < FlowControll.size(); ++i)
{
zw_time = gettimestring("%Y%m%d-%H%M%S");
aktstatus = zw_time + ": " + FlowControll[i]->name();
zw_time = gettimestring("%H:%M:%S");
aktstatus = TranslateAktstatus(FlowControll[i]->name()) + "(" + zw_time + ")";
// zw_time = gettimestring("%Y%m%d-%H%M%S");
// aktstatus = zw_time + ": " + FlowControll[i]->name();
string zw = "FlowControll.doFlow - " + FlowControll[i]->name();
@@ -234,28 +280,54 @@ bool ClassFlowControll::doFlow(string time)
}
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("ClassFlowAnalog::doFlow");
LogFile.WriteHeapInfo("ClassFlowControll::doFlow");
#endif
}
zw_time = gettimestring("%Y%m%d-%H%M%S");
aktstatus = zw_time + ": Flow is done";
zw_time = gettimestring("%H:%M:%S");
aktstatus = "Flow finished (" + zw_time + ")";
return result;
}
void ClassFlowControll::UpdateAktStatus(std::string _flow)
string ClassFlowControll::getReadoutAll(int _type)
{
aktstatus = gettimestring("%Y%m%d-%H%M%S");
aktstatus = aktstatus + "\t" + std::to_string(aktRunNr) + "\t";
if (_flow == "ClassFlowMakeImage")
aktstatus = aktstatus + "Taking Raw Image";
else
if (_flow == "ClassFlowAlignment")
aktstatus = aktstatus + "Aligning Image";
std::vector<NumberPost*> numbers = flowpostprocessing->GetNumbers();
std::string out = "";
for (int i = 0; i < numbers.size(); ++i)
{
out = out + numbers[i]->name + "\t";
switch (_type) {
case READOUT_TYPE_VALUE:
out = out + numbers[i]->ReturnValueNoError;
break;
case READOUT_TYPE_PREVALUE:
if (flowpostprocessing->PreValueUse)
{
if (numbers[i]->PreValueOkay)
out = out + numbers[i]->ReturnPreValue;
else
out = out + "PreValue too old";
}
else
out = out + "PreValue deactivated";
break;
case READOUT_TYPE_RAWVALUE:
out = out + numbers[i]->ReturnRawValue;
break;
case READOUT_TYPE_ERROR:
out = out + numbers[i]->ErrorMessageText;
break;
}
if (i < numbers.size()-1)
out = out + "\r\n";
}
}
// printf("OUT: %s", out.c_str());
return out;
}
string ClassFlowControll::getReadout(bool _rawvalue = false, bool _noerror = false)
@@ -281,17 +353,17 @@ string ClassFlowControll::getReadout(bool _rawvalue = false, bool _noerror = fal
return result;
}
string ClassFlowControll::GetPrevalue()
string ClassFlowControll::GetPrevalue(std::string _number)
{
if (flowpostprocessing)
{
return flowpostprocessing->GetPreValue();
return flowpostprocessing->GetPreValue(_number);
}
return std::string();
}
std::string ClassFlowControll::UpdatePrevalue(std::string _newvalue)
std::string ClassFlowControll::UpdatePrevalue(std::string _newvalue, std::string _numbers, bool _extern)
{
float zw;
char* p;
@@ -313,7 +385,7 @@ std::string ClassFlowControll::UpdatePrevalue(std::string _newvalue)
if (flowpostprocessing)
{
flowpostprocessing->SavePreValue(zw);
flowpostprocessing->SetPreValue(zw, _numbers, _extern);
return _newvalue;
}
@@ -405,6 +477,7 @@ bool ClassFlowControll::ReadParameter(FILE* pfile, string& aktparamgraph)
return true;
}
int ClassFlowControll::CleanTempFolder() {
const char* folderPath = "/sdcard/img_tmp";
@@ -438,7 +511,7 @@ int ClassFlowControll::CleanTempFolder() {
esp_err_t ClassFlowControll::SendRawJPG(httpd_req_t *req)
{
return flowmakeimage->SendRawJPG(req);
return flowmakeimage != NULL ? flowmakeimage->SendRawJPG(req) : ESP_FAIL;
}
@@ -450,6 +523,12 @@ esp_err_t ClassFlowControll::GetJPGStream(std::string _fn, httpd_req_t *req)
esp_err_t result = ESP_FAIL;
bool Dodelete = false;
if (flowalignment == NULL)
{
printf("Can't continue, flowalignment is NULL\n");
return ESP_FAIL;
}
if (_fn == "alg.jpg")
{
_send = flowalignment->ImageBasis;
@@ -463,6 +542,18 @@ esp_err_t ClassFlowControll::GetJPGStream(std::string _fn, httpd_req_t *req)
flowalignment->DrawRef(_imgzw);
if (flowdigit) flowdigit->DrawROI(_imgzw);
if (flowanalog) flowanalog->DrawROI(_imgzw);
/*/////////////////////////////////////
cimg_library::CImg<unsigned char> cimg(_imgzw->rgb_image, _imgzw->bpp, _imgzw->width, _imgzw->height, 1);
//Convert cimg type
// cimg.permute_axes("yzcx");
cimg.draw_text(300, 300, "Dies ist ein Test", "black");
//Convert back to stb type to save
// cimg.permute_axes("cxyz");
*////////////////////////////////////
_send = _imgzw;
Dodelete = true;
}
@@ -481,7 +572,9 @@ esp_err_t ClassFlowControll::GetJPGStream(std::string _fn, httpd_req_t *req)
if (htmlinfo[i]->image_org)
_send = htmlinfo[i]->image_org;
}
delete htmlinfo[i];
}
htmlinfo.clear();
htmlinfo = GetAllAnalog();
for (int i = 0; i < htmlinfo.size(); ++i)
@@ -496,7 +589,9 @@ esp_err_t ClassFlowControll::GetJPGStream(std::string _fn, httpd_req_t *req)
if (htmlinfo[i]->image_org)
_send = htmlinfo[i]->image_org;
}
delete htmlinfo[i];
}
htmlinfo.clear();
if (_send)
{

View File

@@ -11,6 +11,12 @@
#include "ClassFlowMQTT.h"
#define READOUT_TYPE_VALUE 0
#define READOUT_TYPE_PREVALUE 1
#define READOUT_TYPE_RAWVALUE 2
#define READOUT_TYPE_ERROR 3
class ClassFlowControll :
public ClassFlow
{
@@ -30,18 +36,21 @@ protected:
std::string aktstatus;
int aktRunNr;
void UpdateAktStatus(std::string _flow);
public:
void InitFlow(std::string config);
bool doFlow(string time);
void doFlowMakeImageOnly(string time);
bool getStatusSetupModus(){return SetupModeActive;};
string getReadout(bool _rawvalue, bool _noerror);
string UpdatePrevalue(std::string _newvalue);
string GetPrevalue();
string getReadoutAll(int _type);
string UpdatePrevalue(std::string _newvalue, std::string _numbers, bool _extern);
string GetPrevalue(std::string _number = "");
bool ReadParameter(FILE* pfile, string& aktparamgraph);
string TranslateAktstatus(std::string _input);
string GetMQTTMainTopic();
esp_err_t GetJPGStream(std::string _fn, httpd_req_t *req);
esp_err_t SendRawJPG(httpd_req_t *req);

View File

@@ -26,7 +26,9 @@ void ClassFlowDigit::SetInitialParameter(void)
previousElement = NULL;
SaveAllFiles = false;
disabled = false;
DecimalShift = 0;
DecimalShiftEnabled = false;
isLogImageSelect = false;
}
ClassFlowDigit::ClassFlowDigit() : ClassFlowImage(TAG)
@@ -63,16 +65,16 @@ ClassFlowDigit::ClassFlowDigit(std::vector<ClassFlow*>* lfc, ClassFlow *_prev) :
}
}
string ClassFlowDigit::getReadout()
string ClassFlowDigit::getReadout(int _digit = 0)
{
string rst = "";
for (int i = 0; i < ROI.size(); ++i)
for (int i = 0; i < DIGIT[_digit]->ROI.size(); ++i)
{
if (ROI[i]->resultklasse == 10)
if (DIGIT[_digit]->ROI[i]->resultklasse == 10)
rst = rst + "N";
else
rst = rst + std::to_string(ROI[i]->resultklasse);
rst = rst + std::to_string(DIGIT[_digit]->ROI[i]->resultklasse);
}
return rst;
@@ -88,9 +90,19 @@ bool ClassFlowDigit::ReadParameter(FILE* pfile, string& aktparamgraph)
if (!this->GetNextParagraph(pfile, aktparamgraph))
return false;
if ((aktparamgraph.compare("[Digits]") != 0) && (aktparamgraph.compare(";[Digits]") != 0)) // Paragraph passt nich zu MakeImage
printf("aktparamgraph: %s\n", aktparamgraph.c_str());
if ((aktparamgraph.compare(0, 7, "[Digits") != 0) && (aktparamgraph.compare(0, 8, ";[Digits") != 0)) // Paragraph passt nich zu MakeImage
return false;
int _pospkt = aktparamgraph.find_first_of(".");
int _posklammerzu = aktparamgraph.find_first_of("]");
if (_pospkt > -1)
NameDigit = aktparamgraph.substr(_pospkt+1, _posklammerzu - _pospkt-1);
else
NameDigit = "";
printf("Name Digit: %s\n", NameDigit.c_str());
if (aktparamgraph[0] == ';')
{
disabled = true;
@@ -108,6 +120,13 @@ bool ClassFlowDigit::ReadParameter(FILE* pfile, string& aktparamgraph)
LogImageLocation = "/sdcard" + zerlegt[1];
isLogImage = true;
}
if ((zerlegt[0] == "LogImageSelect") && (zerlegt.size() > 1))
{
LogImageSelect = zerlegt[1];
isLogImageSelect = true;
}
if ((zerlegt[0] == "Model") && (zerlegt.size() > 1))
{
cnnmodelfile = zerlegt[1];
@@ -119,8 +138,8 @@ bool ClassFlowDigit::ReadParameter(FILE* pfile, string& aktparamgraph)
}
if (zerlegt.size() >= 5)
{
roi* neuroi = new roi;
neuroi->name = zerlegt[0];
digit* _digit = GetDIGIT(zerlegt[0], true);
roi* neuroi = _digit->ROI[_digit->ROI.size()-1];
neuroi->posx = std::stoi(zerlegt[1]);
neuroi->posy = std::stoi(zerlegt[2]);
neuroi->deltax = std::stoi(zerlegt[3]);
@@ -128,7 +147,6 @@ bool ClassFlowDigit::ReadParameter(FILE* pfile, string& aktparamgraph)
neuroi->resultklasse = -1;
neuroi->image = NULL;
neuroi->image_org = NULL;
ROI.push_back(neuroi);
}
if ((toUpper(zerlegt[0]) == "SAVEALLFILES") && (zerlegt.size() > 1))
@@ -139,15 +157,72 @@ bool ClassFlowDigit::ReadParameter(FILE* pfile, string& aktparamgraph)
}
for (int i = 0; i < ROI.size(); ++i)
{
ROI[i]->image = new CImageBasis(modelxsize, modelysize, 3);
ROI[i]->image_org = new CImageBasis(ROI[i]->deltax, ROI[i]->deltay, 3);
}
for (int _dig = 0; _dig < DIGIT.size(); ++_dig)
for (int i = 0; i < DIGIT[_dig]->ROI.size(); ++i)
{
DIGIT[_dig]->ROI[i]->image = new CImageBasis(modelxsize, modelysize, 3);
DIGIT[_dig]->ROI[i]->image_org = new CImageBasis(DIGIT[_dig]->ROI[i]->deltax, DIGIT[_dig]->ROI[i]->deltay, 3);
}
return true;
}
digit* ClassFlowDigit::FindDIGIT(string _name_number)
{
for (int i = 0; i < DIGIT.size(); ++i)
{
if (DIGIT[i]->name == _name_number)
return DIGIT[i];
}
return NULL;
}
digit* ClassFlowDigit::GetDIGIT(string _name, bool _create = true)
{
string _digit, _roi;
int _pospunkt = _name.find_first_of(".");
// printf("Name: %s, Pospunkt: %d\n", _name.c_str(), _pospunkt);
if (_pospunkt > -1)
{
_digit = _name.substr(0, _pospunkt);
_roi = _name.substr(_pospunkt+1, _name.length() - _pospunkt - 1);
}
else
{
_digit = "default";
_roi = _name;
}
digit *_ret = NULL;
for (int i = 0; i < DIGIT.size(); ++i)
{
if (DIGIT[i]->name == _digit)
_ret = DIGIT[i];
}
if (!_create) // nicht gefunden und soll auch nicht erzeugt werden, ggf. geht eine NULL zurück
return _ret;
if (_ret == NULL)
{
_ret = new digit;
_ret->name = _digit;
DIGIT.push_back(_ret);
}
roi* neuroi = new roi;
neuroi->name = _roi;
_ret->ROI.push_back(neuroi);
printf("GetDIGIT - digit %s - roi %s\n", _digit.c_str(), _roi.c_str());
return _ret;
}
string ClassFlowDigit::getHTMLSingleStep(string host)
{
@@ -198,17 +273,32 @@ bool ClassFlowDigit::doAlignAndCut(string time)
CAlignAndCutImage *caic = flowpostalignment->GetAlignAndCutImage();
for (int i = 0; i < ROI.size(); ++i)
for (int _dig = 0; _dig < DIGIT.size(); ++_dig)
{
printf("DigitalDigit %d - Align&Cut\n", i);
caic->CutAndSave(ROI[i]->posx, ROI[i]->posy, ROI[i]->deltax, ROI[i]->deltay, ROI[i]->image_org);
if (SaveAllFiles) ROI[i]->image_org->SaveToFile(FormatFileName("/sdcard/img_tmp/" + ROI[i]->name + ".jpg"));
printf("DIGIT[_dig]->ROI.size() %d\n", DIGIT[_dig]->ROI.size());
for (int i = 0; i < DIGIT[_dig]->ROI.size(); ++i)
{
printf("DigitalDigit %d - Align&Cut\n", i);
caic->CutAndSave(DIGIT[_dig]->ROI[i]->posx, DIGIT[_dig]->ROI[i]->posy, DIGIT[_dig]->ROI[i]->deltax, DIGIT[_dig]->ROI[i]->deltay, DIGIT[_dig]->ROI[i]->image_org);
if (SaveAllFiles)
{
if (DIGIT[_dig]->name == "default")
DIGIT[_dig]->ROI[i]->image_org->SaveToFile(FormatFileName("/sdcard/img_tmp/" + DIGIT[_dig]->ROI[i]->name + ".jpg"));
else
DIGIT[_dig]->ROI[i]->image_org->SaveToFile(FormatFileName("/sdcard/img_tmp/" + DIGIT[_dig]->name + "_" + DIGIT[_dig]->ROI[i]->name + ".jpg"));
}
ROI[i]->image_org->Resize(modelxsize, modelysize, ROI[i]->image);
if (SaveAllFiles) ROI[i]->image->SaveToFile(FormatFileName("/sdcard/img_tmp/" + ROI[i]->name + ".bmp"));
DIGIT[_dig]->ROI[i]->image_org->Resize(modelxsize, modelysize, DIGIT[_dig]->ROI[i]->image);
if (SaveAllFiles)
{
if (DIGIT[_dig]->name == "default")
DIGIT[_dig]->ROI[i]->image->SaveToFile(FormatFileName("/sdcard/img_tmp/" + DIGIT[_dig]->ROI[i]->name + ".bmp"));
else
DIGIT[_dig]->ROI[i]->image->SaveToFile(FormatFileName("/sdcard/img_tmp/" + DIGIT[_dig]->name + "_" + DIGIT[_dig]->ROI[i]->name + ".bmp"));
}
}
}
return true;
}
@@ -223,26 +313,42 @@ bool ClassFlowDigit::doNeuralNetwork(string time)
CTfLiteClass *tflite = new CTfLiteClass;
string zwcnn = FormatFileName("/sdcard" + cnnmodelfile);
printf(zwcnn.c_str());printf("\n");
tflite->LoadModel(zwcnn);
if (!tflite->LoadModel(zwcnn)) {
printf("Can't read model file /sdcard%s\n", cnnmodelfile.c_str());
delete tflite;
return false;
}
tflite->MakeAllocate();
#endif
for (int i = 0; i < ROI.size(); ++i)
{
printf("DigitalDigit %d - TfLite\n", i);
ROI[i]->resultklasse = 0;
#ifndef OHNETFLITE
ROI[i]->resultklasse = tflite->GetClassFromImageBasis(ROI[i]->image);
#endif
printf("Result Digit%i: %d\n", i, ROI[i]->resultklasse);
if (isLogImage)
for (int _dig = 0; _dig < DIGIT.size(); ++_dig)
for (int i = 0; i < DIGIT[_dig]->ROI.size(); ++i)
{
LogImage(logPath, ROI[i]->name, NULL, &ROI[i]->resultklasse, time, ROI[i]->image_org);
printf("DigitalDigit %d - TfLite\n", i);
DIGIT[_dig]->ROI[i]->resultklasse = 0;
#ifndef OHNETFLITE
DIGIT[_dig]->ROI[i]->resultklasse = tflite->GetClassFromImageBasis(DIGIT[_dig]->ROI[i]->image);
#endif
printf("Result Digit%i: %d\n", i, DIGIT[_dig]->ROI[i]->resultklasse);
if (isLogImage)
{
if (isLogImageSelect)
{
if (LogImageSelect.find(DIGIT[_dig]->ROI[i]->name) != std::string::npos)
{
LogImage(logPath, DIGIT[_dig]->ROI[i]->name, NULL, &DIGIT[_dig]->ROI[i]->resultklasse, time, DIGIT[_dig]->ROI[i]->image_org);
}
}
else
{
LogImage(logPath, DIGIT[_dig]->ROI[i]->name, NULL, &DIGIT[_dig]->ROI[i]->resultklasse, time, DIGIT[_dig]->ROI[i]->image_org);
}
}
}
}
#ifndef OHNETFLITE
delete tflite;
#endif
@@ -251,25 +357,82 @@ bool ClassFlowDigit::doNeuralNetwork(string time)
void ClassFlowDigit::DrawROI(CImageBasis *_zw)
{
for (int i = 0; i < ROI.size(); ++i)
_zw->drawRect(ROI[i]->posx, ROI[i]->posy, ROI[i]->deltax, ROI[i]->deltay, 0, 0, 255, 2);
for (int _dig = 0; _dig < DIGIT.size(); ++_dig)
for (int i = 0; i < DIGIT[_dig]->ROI.size(); ++i)
_zw->drawRect(DIGIT[_dig]->ROI[i]->posx, DIGIT[_dig]->ROI[i]->posy, DIGIT[_dig]->ROI[i]->deltax, DIGIT[_dig]->ROI[i]->deltay, 0, 0, (255 - _dig*100), 2);
}
std::vector<HTMLInfo*> ClassFlowDigit::GetHTMLInfo()
{
std::vector<HTMLInfo*> result;
for (int i = 0; i < ROI.size(); ++i)
{
HTMLInfo *zw = new HTMLInfo;
zw->filename = ROI[i]->name + ".bmp";
zw->filename_org = ROI[i]->name + ".jpg";
zw->val = ROI[i]->resultklasse;
zw->image = ROI[i]->image;
zw->image_org = ROI[i]->image_org;
result.push_back(zw);
}
for (int _dig = 0; _dig < DIGIT.size(); ++_dig)
for (int i = 0; i < DIGIT[_dig]->ROI.size(); ++i)
{
if (DIGIT[_dig]->name == "default")
DIGIT[_dig]->ROI[i]->image->SaveToFile(FormatFileName("/sdcard/img_tmp/" + DIGIT[_dig]->ROI[i]->name + ".bmp"));
else
DIGIT[_dig]->ROI[i]->image->SaveToFile(FormatFileName("/sdcard/img_tmp/" + DIGIT[_dig]->name + "_" + DIGIT[_dig]->ROI[i]->name + ".bmp"));
HTMLInfo *zw = new HTMLInfo;
if (DIGIT[_dig]->name == "default")
{
zw->filename = DIGIT[_dig]->ROI[i]->name + ".bmp";
zw->filename_org = DIGIT[_dig]->ROI[i]->name + ".jpg";
}
else
{
zw->filename = DIGIT[_dig]->name + "_" + DIGIT[_dig]->ROI[i]->name + ".bmp";
zw->filename_org = DIGIT[_dig]->name + "_" + DIGIT[_dig]->ROI[i]->name + ".jpg";
}
zw->val = DIGIT[_dig]->ROI[i]->resultklasse;
zw->image = DIGIT[_dig]->ROI[i]->image;
zw->image_org = DIGIT[_dig]->ROI[i]->image_org;
result.push_back(zw);
}
return result;
}
int ClassFlowDigit::getAnzahlDIGIT()
{
return DIGIT.size();
}
string ClassFlowDigit::getNameDIGIT(int _digit)
{
if (_digit < DIGIT.size())
return DIGIT[_digit]->name;
return "DIGIT DOES NOT EXIST";
}
digit* ClassFlowDigit::GetDIGIT(int _digit)
{
if (_digit < DIGIT.size())
return DIGIT[_digit];
return NULL;
}
void ClassFlowDigit::UpdateNameNumbers(std::vector<std::string> *_name_numbers)
{
for (int _dig = 0; _dig < DIGIT.size(); _dig++)
{
std::string _name = DIGIT[_dig]->name;
bool found = false;
for (int i = 0; i < (*_name_numbers).size(); ++i)
{
if ((*_name_numbers)[i] == _name)
found = true;
}
if (!found)
(*_name_numbers).push_back(_name);
}
}

View File

@@ -5,6 +5,8 @@
#include <string>
struct roi {
int posx, posy, deltax, deltay;
int resultklasse;
@@ -13,20 +15,34 @@ struct roi {
roi* next;
};
struct digit {
string name;
std::vector<roi*> ROI;
};
class ClassFlowDigit :
public ClassFlowImage
{
protected:
std::vector<roi*> ROI;
// std::vector<roi*> ROI;
std::vector<digit*> DIGIT;
string cnnmodelfile;
int modelxsize, modelysize;
bool SaveAllFiles;
string NameDigit;
int DecimalShift;
bool DecimalShiftEnabled;
bool isLogImageSelect;
string LogImageSelect;
ClassFlowAlignment* flowpostalignment;
bool doNeuralNetwork(string time);
bool doAlignAndCut(string time);
void SetInitialParameter(void);
public:
@@ -36,9 +52,18 @@ public:
bool ReadParameter(FILE* pfile, string& aktparamgraph);
bool doFlow(string time);
string getHTMLSingleStep(string host);
string getReadout();
string getReadout(int _digit);
std::vector<HTMLInfo*> GetHTMLInfo();
int getAnzahlDIGIT();
digit* GetDIGIT(int _digit);
digit* GetDIGIT(string _name, bool _create);
digit* FindDIGIT(string _name_number);
string getNameDIGIT(int _digit);
void UpdateNameNumbers(std::vector<std::string> *_name_numbers);
void DrawROI(CImageBasis *_zw);
string name(){return "ClassFlowDigit";};

View File

@@ -1,6 +1,8 @@
#include <sstream>
#include "ClassFlowMQTT.h"
#include "Helper.h"
#include "time_sntp.h"
#include "interface_mqtt.h"
#include "ClassFlowPostProcessing.h"
@@ -13,6 +15,11 @@ void ClassFlowMQTT::SetInitialParameter(void)
topicError = "";
topicRate = "";
topicTimeStamp = "";
maintopic = "";
mainerrortopic = "";
topicUptime = "";
topicFreeMem = "";
clientname = "watermeter";
OldValue = "";
flowpostprocessing = NULL;
@@ -21,6 +28,9 @@ void ClassFlowMQTT::SetInitialParameter(void)
previousElement = NULL;
ListFlowControll = NULL;
disabled = false;
MQTTenable = false;
}
@@ -88,53 +98,98 @@ bool ClassFlowMQTT::ReadParameter(FILE* pfile, string& aktparamgraph)
{
this->uri = zerlegt[1];
}
if ((toUpper(zerlegt[0]) == "TOPIC") && (zerlegt.size() > 1))
{
this->topic = zerlegt[1];
}
if ((toUpper(zerlegt[0]) == "TOPICERROR") && (zerlegt.size() > 1))
{
this->topicError = zerlegt[1];
}
if ((toUpper(zerlegt[0]) == "TOPICRATE") && (zerlegt.size() > 1))
{
this->topicRate = zerlegt[1];
}
if ((toUpper(zerlegt[0]) == "TOPICTIMESTAMP") && (zerlegt.size() > 1))
{
this->topicTimeStamp = zerlegt[1];
}
if ((toUpper(zerlegt[0]) == "CLIENTID") && (zerlegt.size() > 1))
{
this->clientname = zerlegt[1];
}
if (((toUpper(zerlegt[0]) == "TOPIC") || (toUpper(zerlegt[0]) == "MAINTOPIC")) && (zerlegt.size() > 1))
{
maintopic = zerlegt[1];
}
}
if ((uri.length() > 0) && (topic.length() > 0))
if (!MQTTisConnected() && (uri.length() > 0) && (maintopic.length() > 0))
{
MQTTInit(uri, clientname, user, password, topicError, 60);
mainerrortopic = maintopic + "/connection";
MQTTInit(uri, clientname, user, password, mainerrortopic, 60);
MQTTPublish(mainerrortopic, "connected");
MQTTenable = true;
}
return true;
}
string ClassFlowMQTT::GetMQTTMainTopic()
{
return maintopic;
}
bool ClassFlowMQTT::doFlow(string zwtime)
{
if (!MQTTenable)
return true;
std::string result;
std::string resulterror = "";
std::string resultrate = "";
std::string resulttimestamp = "";
string zw = "";
string namenumber = "";
MQTTPublish(mainerrortopic, "connected");
zw = maintopic + "/" + "uptime";
char uptimeStr[11];
sprintf(uptimeStr, "%ld", (long)getUpTime());
MQTTPublish(zw, uptimeStr);
zw = maintopic + "/" + "freeMem";
char freeheapmem[11];
sprintf(freeheapmem, "%zu", esp_get_free_heap_size());
MQTTPublish(zw, freeheapmem);
if (flowpostprocessing)
{
result = flowpostprocessing->getReadoutParam(false, true);
resulterror = flowpostprocessing->getReadoutError();
resultrate = flowpostprocessing->getReadoutRate();
resulttimestamp = flowpostprocessing->getReadoutTimeStamp();
std::vector<NumberPost*> NUMBERS = flowpostprocessing->GetNumbers();
for (int i = 0; i < NUMBERS.size(); ++i)
{
result = NUMBERS[i]->ReturnValueNoError;
resulterror = NUMBERS[i]->ErrorMessageText;
resultrate = std::to_string(NUMBERS[i]->FlowRateAct);
resulttimestamp = NUMBERS[i]->timeStamp;
namenumber = NUMBERS[i]->name;
if (namenumber == "default")
namenumber = maintopic + "/";
else
namenumber = maintopic + "/" + namenumber + "/";
zw = namenumber + "value";
MQTTPublish(zw, result);
zw = namenumber + "error";
MQTTPublish(zw, resulterror, 1);
zw = namenumber + "rate";
MQTTPublish(zw, resultrate);
zw = namenumber + "timestamp";
MQTTPublish(zw, resulttimestamp);
std::string json="{\"value\":"+result;
json += ",\"error\":\""+resulterror;
json += "\",\"rate\":"+resultrate;
json += ",\"timestamp\":\""+resulttimestamp+"\"}";
zw = namenumber + "json";
MQTTPublish(zw, json);
}
}
else
{
@@ -149,26 +204,9 @@ bool ClassFlowMQTT::doFlow(string zwtime)
result = result + "\t" + zw;
}
}
MQTTPublish(topic, result);
}
MQTTPublish(topic, result);
if (topicError.length() > 0) {
if (resulterror.length() == 0)
{
resulterror = " ";
}
MQTTPublish(topicError, resulterror);
}
if (topicRate.length() > 0) {
MQTTPublish(topicRate, resultrate);
}
if (topicRate.length() > 0) {
MQTTPublish(topicTimeStamp, resulttimestamp);
}
OldValue = result;
return true;

View File

@@ -9,10 +9,13 @@ class ClassFlowMQTT :
public ClassFlow
{
protected:
std::string uri, topic, topicError, clientname, topicRate, topicTimeStamp;
std::string uri, topic, topicError, clientname, topicRate, topicTimeStamp, topicUptime, topicFreeMem;
std::string OldValue;
ClassFlowPostProcessing* flowpostprocessing;
std::string user, password;
std::string user, password;
bool MQTTenable;
std::string maintopic, mainerrortopic;
void SetInitialParameter(void);
public:
@@ -20,6 +23,8 @@ public:
ClassFlowMQTT(std::vector<ClassFlow*>* lfc);
ClassFlowMQTT(std::vector<ClassFlow*>* lfc, ClassFlow *_prev);
string GetMQTTMainTopic();
bool ReadParameter(FILE* pfile, string& aktparamgraph);
bool doFlow(string time);
string name(){return "ClassFlowMQTT";};

View File

@@ -14,6 +14,9 @@ static const char* TAG = "flow_make_image";
esp_err_t ClassFlowMakeImage::camera_capture(){
string nm = namerawimage;
Camera.CaptureToFile(nm);
time(&TimeImageTaken);
localtime(&TimeImageTaken);
return ESP_OK;
}
@@ -23,7 +26,11 @@ void ClassFlowMakeImage::takePictureWithFlash(int flashdauer)
rawImage->width = image_width;
rawImage->height = image_height;
/////////////////////////////////////////////////////////////////////////////////////
printf("Flashdauer: %d\n", flashdauer);
Camera.CaptureToBasisImage(rawImage, flashdauer);
time(&TimeImageTaken);
localtime(&TimeImageTaken);
if (SaveAllFiles) rawImage->SaveToFile(namerawimage);
}
@@ -86,6 +93,12 @@ bool ClassFlowMakeImage::ReadParameter(FILE* pfile, string& aktparamgraph)
if (toUpper(zerlegt[1]) == "TRUE")
SaveAllFiles = true;
}
if ((toUpper(zerlegt[0]) == "WAITBEFORETAKINGPICTURE") && (zerlegt.size() > 1))
{
waitbeforepicture = stoi(zerlegt[1]);
}
if ((toUpper(zerlegt[0]) == "BRIGHTNESS") && (zerlegt.size() > 1))
{
@@ -118,9 +131,9 @@ bool ClassFlowMakeImage::ReadParameter(FILE* pfile, string& aktparamgraph)
rawImage->CreateEmptyImage(image_width, image_height, 3);
waitbeforepicture_store = waitbeforepicture;
if (FixedExposure)
if (FixedExposure && (waitbeforepicture > 0))
{
printf("Fixed Exposure enabled!\n");
// printf("Fixed Exposure enabled!\n");
int flashdauer = (int) (waitbeforepicture * 1000);
Camera.EnableAutoExposure(flashdauer);
waitbeforepicture = 0.2;
@@ -169,6 +182,9 @@ bool ClassFlowMakeImage::doFlow(string zwtime)
esp_err_t ClassFlowMakeImage::SendRawJPG(httpd_req_t *req)
{
int flashdauer = (int) (waitbeforepicture * 1000);
time(&TimeImageTaken);
localtime(&TimeImageTaken);
return Camera.CaptureToHTTP(req, flashdauer);
}
@@ -179,6 +195,9 @@ ImageData* ClassFlowMakeImage::SendRawImage()
ImageData *id;
int flashdauer = (int) (waitbeforepicture * 1000);
Camera.CaptureToBasisImage(zw, flashdauer);
time(&TimeImageTaken);
localtime(&TimeImageTaken);
id = zw->writeToMemoryAsJPG();
delete zw;
return id;

View File

@@ -1,8 +1,6 @@
#include "ClassFlowPostProcessing.h"
#include "Helper.h"
#include "ClassFlowAnalog.h"
#include "ClassFlowDigit.h"
#include "ClassFlowMakeImage.h"
#include "ClassLogFile.h"
@@ -11,130 +9,223 @@
#include <time.h>
string ClassFlowPostProcessing::GetPreValue()
#include "time_sntp.h"
#define PREVALUE_TIME_FORMAT_OUTPUT "%Y-%m-%dT%H:%M:%S"
#define PREVALUE_TIME_FORMAT_INPUT "%d-%d-%dT%d:%d:%d"
string ClassFlowPostProcessing::GetPreValue(std::string _number)
{
std::string result;
bool isAnalog = false;
bool isDigit = false;
int index = -1;
int AnzahlAnalog = 0;
result = RundeOutput(PreValue, -DecimalShift);
if (_number == "")
_number = "default";
for (int i = 0; i < ListFlowControll->size(); ++i)
{
if (((*ListFlowControll)[i])->name().compare("ClassFlowAnalog") == 0)
{
isAnalog = true;
AnzahlAnalog = ((ClassFlowAnalog*)(*ListFlowControll)[i])->AnzahlROIs();
}
if (((*ListFlowControll)[i])->name().compare("ClassFlowDigit") == 0)
{
isDigit = true;
}
}
for (int i = 0; i < NUMBERS.size(); ++i)
if (NUMBERS[i]->name == _number)
index = i;
if (isDigit && isAnalog)
result = RundeOutput(PreValue, AnzahlAnalog - DecimalShift);
// result = RundeOutput(NUMBERS[index]->PreValue, -NUMBERS[index]->DecimalShift);
result = RundeOutput(NUMBERS[index]->PreValue, NUMBERS[index]->Nachkomma);
// if (NUMBERS[index]->digit_roi && NUMBERS[index]->analog_roi)
// result = RundeOutput(NUMBERS[index]->PreValue, NUMBERS[index]->AnzahlAnalog - NUMBERS[index]->DecimalShift);
return result;
}
void ClassFlowPostProcessing::SetPreValue(float zw, string _numbers, bool _extern)
{
printf("SetPrevalue: %f, %s\n", zw, _numbers.c_str());
for (int j = 0; j < NUMBERS.size(); ++j)
{
// printf("Number %d, %s\n", j, NUMBERS[j]->name.c_str());
if (NUMBERS[j]->name == _numbers)
{
NUMBERS[j]->PreValue = zw;
if (_extern)
{
time(&(NUMBERS[j]->lastvalue));
localtime(&(NUMBERS[j]->lastvalue));
}
// printf("Found %d! - set to %f\n", j, NUMBERS[j]->PreValue);
}
}
UpdatePreValueINI = true;
SavePreValue();
}
bool ClassFlowPostProcessing::LoadPreValue(void)
{
std::vector<string> zerlegt;
FILE* pFile;
char zw[1024];
string zwtime, zwvalue;
string zwtime, zwvalue, name;
bool _done = false;
UpdatePreValueINI = false; // Konvertierung ins neue Format
pFile = fopen(FilePreValue.c_str(), "r");
if (pFile == NULL)
return false;
fgets(zw, 1024, pFile);
printf("%s", zw);
printf("Read Zeile Prevalue.ini: %s", zw);
zwtime = trim(std::string(zw));
fgets(zw, 1024, pFile);
fclose(pFile);
printf("%s", zw);
zwvalue = trim(std::string(zw));
PreValue = stof(zwvalue.c_str());
time_t tStart;
int yy, month, dd, hh, mm, ss;
struct tm whenStart;
sscanf(zwtime.c_str(), "%d-%d-%dT%d:%d:%d", &yy, &month, &dd, &hh, &mm, &ss);
whenStart.tm_year = yy - 1900;
whenStart.tm_mon = month - 1;
whenStart.tm_mday = dd;
whenStart.tm_hour = hh;
whenStart.tm_min = mm;
whenStart.tm_sec = ss;
whenStart.tm_isdst = -1;
tStart = mktime(&whenStart);
time(&lastvalue);
localtime(&lastvalue);
double difference = difftime(lastvalue, tStart);
difference /= 60;
if (difference > PreValueAgeStartup)
if (zwtime.length() == 0)
return false;
Value = PreValue;
ReturnValue = to_string(Value);
ReturnValueNoError = ReturnValue;
bool isAnalog = false;
bool isDigit = false;
int AnzahlAnalog = 0;
for (int i = 0; i < ListFlowControll->size(); ++i)
zerlegt = HelperZerlegeZeile(zwtime, "\t");
if (zerlegt.size() > 1) // neues Format
{
if (((*ListFlowControll)[i])->name().compare("ClassFlowAnalog") == 0)
isAnalog = true;
if (((*ListFlowControll)[i])->name().compare("ClassFlowDigit") == 0)
isDigit = true;
}
while ((zerlegt.size() > 1) && !_done)
{
name = trim(zerlegt[0]);
zwtime = trim(zerlegt[1]);
zwvalue = trim(zerlegt[2]);
if (isDigit || isAnalog)
for (int j = 0; j < NUMBERS.size(); ++j)
{
if (NUMBERS[j]->name == name)
{
NUMBERS[j]->PreValue = stof(zwvalue.c_str());
NUMBERS[j]->ReturnPreValue = RundeOutput(NUMBERS[j]->PreValue, NUMBERS[j]->Nachkomma);
time_t tStart;
int yy, month, dd, hh, mm, ss;
struct tm whenStart;
sscanf(zwtime.c_str(), PREVALUE_TIME_FORMAT_INPUT, &yy, &month, &dd, &hh, &mm, &ss);
whenStart.tm_year = yy - 1900;
whenStart.tm_mon = month - 1;
whenStart.tm_mday = dd;
whenStart.tm_hour = hh;
whenStart.tm_min = mm;
whenStart.tm_sec = ss;
whenStart.tm_isdst = -1;
NUMBERS[j]->lastvalue = mktime(&whenStart);
time(&tStart);
localtime(&tStart);
double difference = difftime(tStart, NUMBERS[j]->lastvalue);
difference /= 60;
if (difference > PreValueAgeStartup)
{
NUMBERS[j]->PreValueOkay = false;
}
else
{
NUMBERS[j]->PreValueOkay = true;
NUMBERS[j]->Value = NUMBERS[j]->PreValue;
NUMBERS[j]->ReturnValue = to_string(NUMBERS[j]->Value);
NUMBERS[j]->ReturnValueNoError = NUMBERS[j]->ReturnValue;
if (NUMBERS[j]->digit_roi || NUMBERS[j]->analog_roi)
{
NUMBERS[j]->ReturnValue = RundeOutput(NUMBERS[j]->Value, NUMBERS[j]->AnzahlAnalog - NUMBERS[j]->DecimalShift);
NUMBERS[j]->ReturnValueNoError = NUMBERS[j]->ReturnValue;
}
}
}
}
if (!fgets(zw, 1024, pFile))
_done = true;
else
{
printf("Read Zeile Prevalue.ini: %s", zw);
zerlegt = HelperZerlegeZeile(trim(std::string(zw)), "\t");
if (zerlegt.size() > 1)
{
name = trim(zerlegt[0]);
zwtime = trim(zerlegt[1]);
zwvalue = trim(zerlegt[2]);
}
}
}
fclose(pFile);
}
else // altes Format
{
ReturnValue = RundeOutput(Value, AnzahlAnalog - DecimalShift);
ReturnValueNoError = ReturnValue;
}
fgets(zw, 1024, pFile);
fclose(pFile);
printf("%s", zw);
zwvalue = trim(std::string(zw));
NUMBERS[0]->PreValue = stof(zwvalue.c_str());
time_t tStart;
int yy, month, dd, hh, mm, ss;
struct tm whenStart;
sscanf(zwtime.c_str(), PREVALUE_TIME_FORMAT_INPUT, &yy, &month, &dd, &hh, &mm, &ss);
whenStart.tm_year = yy - 1900;
whenStart.tm_mon = month - 1;
whenStart.tm_mday = dd;
whenStart.tm_hour = hh;
whenStart.tm_min = mm;
whenStart.tm_sec = ss;
whenStart.tm_isdst = -1;
printf("TIME: %d, %d, %d, %d, %d, %d\n", whenStart.tm_year, whenStart.tm_mon, whenStart.tm_wday, whenStart.tm_hour, whenStart.tm_min, whenStart.tm_sec);
NUMBERS[0]->lastvalue = mktime(&whenStart);
time(&tStart);
localtime(&tStart);
double difference = difftime(tStart, NUMBERS[0]->lastvalue);
difference /= 60;
if (difference > PreValueAgeStartup)
return false;
NUMBERS[0]->Value = NUMBERS[0]->PreValue;
NUMBERS[0]->ReturnValue = to_string(NUMBERS[0]->Value);
NUMBERS[0]->ReturnValueNoError = NUMBERS[0]->ReturnValue;
if (NUMBERS[0]->digit_roi || NUMBERS[0]->analog_roi)
{
NUMBERS[0]->ReturnValue = RundeOutput(NUMBERS[0]->Value, NUMBERS[0]->AnzahlAnalog - NUMBERS[0]->DecimalShift);
NUMBERS[0]->ReturnValueNoError = NUMBERS[0]->ReturnValue;
}
UpdatePreValueINI = true; // Konvertierung ins neue Format
SavePreValue();
}
return true;
}
void ClassFlowPostProcessing::SavePreValue(float value, string zwtime)
void ClassFlowPostProcessing::SavePreValue()
{
FILE* pFile;
string _zw;
if (!UpdatePreValueINI) // PreValues unverändert --> File muss nicht neu geschrieben werden
return;
pFile = fopen(FilePreValue.c_str(), "w");
if (strlen(zwtime.c_str()) == 0)
for (int j = 0; j < NUMBERS.size(); ++j)
{
time_t rawtime;
struct tm* timeinfo;
char buffer[80];
struct tm* timeinfo = localtime(&NUMBERS[j]->lastvalue);
strftime(buffer, 80, PREVALUE_TIME_FORMAT_OUTPUT, timeinfo);
NUMBERS[j]->timeStamp = std::string(buffer);
// printf("SaverPreValue %d, Value: %f, Nachkomma %d\n", j, NUMBERS[j]->PreValue, NUMBERS[j]->Nachkomma);
time(&rawtime);
timeinfo = localtime(&rawtime);
_zw = NUMBERS[j]->name + "\t" + NUMBERS[j]->timeStamp + "\t" + RundeOutput(NUMBERS[j]->PreValue, NUMBERS[j]->Nachkomma) + "\n";
printf("Write PreValue Zeile: %s\n", _zw.c_str());
strftime(buffer, 80, "%Y-%m-%dT%H:%M:%S", timeinfo);
timeStamp = std::string(buffer);
}
else
{
timeStamp = zwtime;
fputs(_zw.c_str(), pFile);
}
PreValue = value;
fputs(timeStamp.c_str(), pFile);
fputs("\n", pFile);
fputs(to_string(value).c_str(), pFile);
fputs("\n", pFile);
UpdatePreValueINI = false;
fclose(pFile);
}
@@ -142,27 +233,105 @@ void ClassFlowPostProcessing::SavePreValue(float value, string zwtime)
ClassFlowPostProcessing::ClassFlowPostProcessing(std::vector<ClassFlow*>* lfc)
{
FlowRateAct = 0;
// FlowRateAct = 0;
PreValueUse = false;
PreValueAgeStartup = 30;
AllowNegativeRates = false;
MaxRateValue = 0.1;
ErrorMessage = false;
ListFlowControll = NULL;
PreValueOkay = false;
useMaxRateValue = false;
checkDigitIncreaseConsistency = false;
DecimalShift = 0;
ErrorMessageText = "";
timeStamp = "";
// PreValueOkay = false;
// DecimalShift = 0;
// ErrorMessageText = "";
// timeStamp = "";
FilePreValue = FormatFileName("/sdcard/config/prevalue.ini");
ListFlowControll = lfc;
flowMakeImage = NULL;
UpdatePreValueINI = false;
for (int i = 0; i < ListFlowControll->size(); ++i)
{
if (((*ListFlowControll)[i])->name().compare("ClassFlowMakeImage") == 0)
{
flowMakeImage = (ClassFlowMakeImage*) (*ListFlowControll)[i];
}
}
}
void ClassFlowPostProcessing::handleDecimalSeparator(string _decsep, string _value)
{
string _digit, _decpos;
int _pospunkt = _decsep.find_first_of(".");
// printf("Name: %s, Pospunkt: %d\n", _decsep.c_str(), _pospunkt);
if (_pospunkt > -1)
_digit = _decsep.substr(0, _pospunkt);
else
_digit = "default";
for (int j = 0; j < NUMBERS.size(); ++j)
{
int _zwdc = 0;
try
{
_zwdc = stoi(_value);
}
catch(const std::exception& e)
{
printf("ERROR - Decimalshift is not a number: %s\n", _value.c_str());
}
if (_digit == "default") // erstmal auf default setzen (falls sonst nichts gesetzt)
NUMBERS[j]->DecimalShift = _zwdc;
if (NUMBERS[j]->name == _digit)
NUMBERS[j]->DecimalShift = _zwdc;
NUMBERS[j]->Nachkomma = NUMBERS[j]->AnzahlAnalog - NUMBERS[j]->DecimalShift;
}
}
void ClassFlowPostProcessing::handleMaxRateValue(string _decsep, string _value)
{
string _digit, _decpos;
int _pospunkt = _decsep.find_first_of(".");
// printf("Name: %s, Pospunkt: %d\n", _decsep.c_str(), _pospunkt);
if (_pospunkt > -1)
_digit = _decsep.substr(0, _pospunkt);
else
_digit = "default";
for (int j = 0; j < NUMBERS.size(); ++j)
{
float _zwdc = 1;
try
{
_zwdc = stof(_value);
}
catch(const std::exception& e)
{
printf("ERROR - MaxRateValue is not a number: %s\n", _value.c_str());
}
if (_digit == "default") // erstmal auf default setzen (falls sonst nichts gesetzt)
{
NUMBERS[j]->useMaxRateValue = true;
NUMBERS[j]->MaxRateValue = _zwdc;
}
if (NUMBERS[j]->name == _digit)
{
NUMBERS[j]->useMaxRateValue = true;
NUMBERS[j]->MaxRateValue = _zwdc;
}
}
}
bool ClassFlowPostProcessing::ReadParameter(FILE* pfile, string& aktparamgraph)
{
std::vector<string> zerlegt;
int _n;
aktparamgraph = trim(aktparamgraph);
@@ -174,53 +343,148 @@ bool ClassFlowPostProcessing::ReadParameter(FILE* pfile, string& aktparamgraph)
if (aktparamgraph.compare("[PostProcessing]") != 0) // Paragraph passt nich zu MakeImage
return false;
InitNUMBERS();
while (this->getNextLine(pfile, &aktparamgraph) && !this->isNewParagraph(aktparamgraph))
{
zerlegt = this->ZerlegeZeile(aktparamgraph);
if ((toUpper(zerlegt[0]) == "DECIMALSHIFT") && (zerlegt.size() > 1))
std::string _param = GetParameterName(zerlegt[0]);
if ((toUpper(_param) == "DECIMALSHIFT") && (zerlegt.size() > 1))
{
DecimalShift = stoi(zerlegt[1]);
handleDecimalSeparator(zerlegt[0], zerlegt[1]);
}
if ((toUpper(_param) == "MAXRATEVALUE") && (zerlegt.size() > 1))
{
handleMaxRateValue(zerlegt[0], zerlegt[1]);
}
if ((toUpper(zerlegt[0]) == "PREVALUEUSE") && (zerlegt.size() > 1))
if ((toUpper(_param) == "PREVALUEUSE") && (zerlegt.size() > 1))
{
if (toUpper(zerlegt[1]) == "TRUE")
{
PreValueUse = true;
}
}
if ((toUpper(zerlegt[0]) == "CHECKDIGITINCREASECONSISTENCY") && (zerlegt.size() > 1))
if ((toUpper(_param) == "CHECKDIGITINCREASECONSISTENCY") && (zerlegt.size() > 1))
{
if (toUpper(zerlegt[1]) == "TRUE")
checkDigitIncreaseConsistency = true;
for (_n = 0; _n < NUMBERS.size(); ++_n)
NUMBERS[_n]->checkDigitIncreaseConsistency = true;
}
if ((toUpper(zerlegt[0]) == "ALLOWNEGATIVERATES") && (zerlegt.size() > 1))
if ((toUpper(_param) == "ALLOWNEGATIVERATES") && (zerlegt.size() > 1))
{
if (toUpper(zerlegt[1]) == "TRUE")
AllowNegativeRates = true;
for (_n = 0; _n < NUMBERS.size(); ++_n)
NUMBERS[_n]->AllowNegativeRates = true;
}
if ((toUpper(zerlegt[0]) == "ERRORMESSAGE") && (zerlegt.size() > 1))
if ((toUpper(_param) == "ERRORMESSAGE") && (zerlegt.size() > 1))
{
if (toUpper(zerlegt[1]) == "TRUE")
ErrorMessage = true;
}
if ((toUpper(zerlegt[0]) == "PREVALUEAGESTARTUP") && (zerlegt.size() > 1))
if ((toUpper(_param) == "PREVALUEAGESTARTUP") && (zerlegt.size() > 1))
{
PreValueAgeStartup = std::stoi(zerlegt[1]);
}
if ((toUpper(zerlegt[0]) == "MAXRATEVALUE") && (zerlegt.size() > 1))
{
useMaxRateValue = true;
MaxRateValue = std::stof(zerlegt[1]);
}
}
if (PreValueUse) {
PreValueOkay = LoadPreValue();
LoadPreValue();
}
return true;
}
void ClassFlowPostProcessing::InitNUMBERS()
{
// ClassFlowDigit* _cdigit = NULL;
// ClassFlowAnalog* _canalog = NULL;
int anzDIGIT = 0;
int anzANALOG = 0;
std::vector<std::string> name_numbers;
flowAnalog = NULL;
flowDigit = NULL;
for (int i = 0; i < ListFlowControll->size(); ++i)
{
if (((*ListFlowControll)[i])->name().compare("ClassFlowDigit") == 0)
{
flowDigit = (ClassFlowDigit*) (*ListFlowControll)[i];
anzDIGIT = flowDigit->getAnzahlDIGIT();
}
if (((*ListFlowControll)[i])->name().compare("ClassFlowAnalog") == 0)
{
flowAnalog = (ClassFlowAnalog*)(*ListFlowControll)[i];
anzANALOG = flowAnalog->getAnzahlANALOG();
}
}
if (flowDigit)
flowDigit->UpdateNameNumbers(&name_numbers);
if (flowAnalog)
flowAnalog->UpdateNameNumbers(&name_numbers);
printf("Anzahl NUMBERS: %d - DIGITS: %d, ANALOG: %d\n", name_numbers.size(), anzDIGIT, anzANALOG);
for (int _num = 0; _num < name_numbers.size(); ++_num)
{
NumberPost *_number = new NumberPost;
_number->name = name_numbers[_num];
_number->digit_roi = NULL;
if (flowDigit)
_number->digit_roi = flowDigit->FindDIGIT(name_numbers[_num]);
if (_number->digit_roi)
_number->AnzahlDigital = _number->digit_roi->ROI.size();
else
_number->AnzahlDigital = 0;
_number->analog_roi = NULL;
if (flowAnalog)
_number->analog_roi = flowAnalog->FindANALOG(name_numbers[_num]);
if (_number->analog_roi)
_number->AnzahlAnalog = _number->analog_roi->ROI.size();
else
_number->AnzahlAnalog = 0;
_number->ReturnRawValue = ""; // Rohwert (mit N & führenden 0)
_number->ReturnValue = ""; // korrigierter Rückgabewert, ggf. mit Fehlermeldung
_number->ReturnValueNoError = ""; // korrigierter Rückgabewert ohne Fehlermeldung
_number->ErrorMessageText = ""; // Fehlermeldung bei Consistency Check
_number->ReturnPreValue = "";
_number->PreValueOkay = false;
_number->AllowNegativeRates = false;
_number->MaxRateValue = 0.1;
_number->useMaxRateValue = false;
_number->checkDigitIncreaseConsistency = false;
_number->PreValueOkay = false;
_number->useMaxRateValue = false;
_number->DecimalShift = 0;
_number->FlowRateAct = 0; // m3 / min
_number->PreValue = 0; // letzter Wert, der gut ausgelesen wurde
_number->Value = 0; // letzer ausgelesener Wert, inkl. Korrekturen
_number->ReturnRawValue = ""; // Rohwert (mit N & führenden 0)
_number->ReturnValue = ""; // korrigierter Rückgabewert, ggf. mit Fehlermeldung
_number->ReturnValueNoError = ""; // korrigierter Rückgabewert ohne Fehlermeldung
_number->ErrorMessageText = ""; // Fehlermeldung bei Consistency Check
_number->Nachkomma = _number->AnzahlAnalog;
NUMBERS.push_back(_number);
}
for (int i = 0; i < NUMBERS.size(); ++i)
printf("Number %s, Anz DIG: %d, Anz ANA %d\n", NUMBERS[i]->name.c_str(), NUMBERS[i]->AnzahlDigital, NUMBERS[i]->AnzahlAnalog);
}
string ClassFlowPostProcessing::ShiftDecimal(string in, int _decShift){
if (_decShift == 0){
@@ -269,151 +533,127 @@ bool ClassFlowPostProcessing::doFlow(string zwtime)
string digit = "";
string analog = "";
string zwvalue;
bool isdigit = false;
bool isanalog = false;
int AnzahlAnalog = 0;
string zw;
time_t imagetime = 0;
string rohwert;
ErrorMessageText = "";
for (int i = 0; i < ListFlowControll->size(); ++i)
{
if (((*ListFlowControll)[i])->name().compare("ClassFlowMakeImage") == 0)
{
imagetime = ((ClassFlowMakeImage*)(*ListFlowControll)[i])->getTimeImageTaken();
}
if (((*ListFlowControll)[i])->name().compare("ClassFlowDigit") == 0)
{
isdigit = true;
digit = (*ListFlowControll)[i]->getReadout();
}
if (((*ListFlowControll)[i])->name().compare("ClassFlowAnalog") == 0)
{
isanalog = true;
analog = (*ListFlowControll)[i]->getReadout();
AnzahlAnalog = ((ClassFlowAnalog*)(*ListFlowControll)[i])->AnzahlROIs();
}
}
// ErrorMessageText = "";
imagetime = flowMakeImage->getTimeImageTaken();
if (imagetime == 0)
time(&imagetime);
struct tm* timeinfo;
timeinfo = localtime(&imagetime);
char strftime_buf[64];
strftime(strftime_buf, sizeof(strftime_buf), "%Y-%m-%dT%H:%M:%S", timeinfo);
zwtime = std::string(strftime_buf);
printf("Anzahl NUMBERS: %d\n", NUMBERS.size());
// // TESTING ONLY////////////////////
// isdigit = true; digit = "12N";
// isanalog = true; analog = "456";
ReturnRawValue = "";
if (isdigit)
ReturnRawValue = digit;
if (isdigit && isanalog)
ReturnRawValue = ReturnRawValue + ".";
if (isanalog)
ReturnRawValue = ReturnRawValue + analog;
if (!isdigit)
for (int j = 0; j < NUMBERS.size(); ++j)
{
AnzahlAnalog = 0;
}
NUMBERS[j]->ReturnRawValue = "";
NUMBERS[j]->ErrorMessageText = "";
ReturnRawValue = ShiftDecimal(ReturnRawValue, DecimalShift);
if (NUMBERS[j]->digit_roi)
NUMBERS[j]->ReturnRawValue = flowDigit->getReadout(j);
if (NUMBERS[j]->digit_roi && NUMBERS[j]->analog_roi)
NUMBERS[j]->ReturnRawValue = NUMBERS[j]->ReturnRawValue + ".";
if (NUMBERS[j]->analog_roi)
NUMBERS[j]->ReturnRawValue = NUMBERS[j]->ReturnRawValue + flowAnalog->getReadout(j);
rohwert = ReturnRawValue;
NUMBERS[j]->ReturnRawValue = ShiftDecimal(NUMBERS[j]->ReturnRawValue, NUMBERS[j]->DecimalShift);
if (!PreValueUse || !PreValueOkay)
{
ReturnValue = ReturnRawValue;
ReturnValueNoError = ReturnRawValue;
rohwert = NUMBERS[j]->ReturnRawValue;
if ((findDelimiterPos(ReturnValue, "N") == std::string::npos) && (ReturnValue.length() > 0))
if (!PreValueUse || !NUMBERS[j]->PreValueOkay)
{
while ((ReturnValue.length() > 1) && (ReturnValue[0] == '0'))
NUMBERS[j]->ReturnValue = NUMBERS[j]->ReturnRawValue;
NUMBERS[j]->ReturnValueNoError = NUMBERS[j]->ReturnRawValue;
if ((findDelimiterPos(NUMBERS[j]->ReturnValue, "N") == std::string::npos) && (NUMBERS[j]->ReturnValue.length() > 0))
{
ReturnValue.erase(0, 1);
while ((NUMBERS[j]->ReturnValue.length() > 1) && (NUMBERS[j]->ReturnValue[0] == '0'))
{
NUMBERS[j]->ReturnValue.erase(0, 1);
}
NUMBERS[j]->Value = std::stof(NUMBERS[j]->ReturnValue);
NUMBERS[j]->ReturnValueNoError = NUMBERS[j]->ReturnValue;
NUMBERS[j]->PreValueOkay = true;
NUMBERS[j]->PreValue = NUMBERS[j]->Value;
NUMBERS[j]->ReturnPreValue = RundeOutput(NUMBERS[j]->PreValue, NUMBERS[j]->Nachkomma);
NUMBERS[j]->lastvalue = flowMakeImage->getTimeImageTaken();
zwtime = ConvertTimeToString(NUMBERS[j]->lastvalue, PREVALUE_TIME_FORMAT_OUTPUT);
UpdatePreValueINI = true;
SavePreValue();
}
}
else
{
zw = ErsetzteN(NUMBERS[j]->ReturnRawValue, NUMBERS[j]->PreValue);
NUMBERS[j]->Value = std::stof(zw);
if (NUMBERS[j]->checkDigitIncreaseConsistency)
{
NUMBERS[j]->Value = checkDigitConsistency(NUMBERS[j]->Value, NUMBERS[j]->DecimalShift, NUMBERS[j]->analog_roi != NULL, NUMBERS[j]->PreValue);
}
zwvalue = RundeOutput(NUMBERS[j]->Value, NUMBERS[j]->AnzahlAnalog - NUMBERS[j]->DecimalShift);
if ((!NUMBERS[j]->AllowNegativeRates) && (NUMBERS[j]->Value < NUMBERS[j]->PreValue))
{
NUMBERS[j]->ErrorMessageText = NUMBERS[j]->ErrorMessageText + "Neg. Rate - Read: " + zwvalue + " - Raw: " + NUMBERS[j]->ReturnRawValue + " - Pre: " + RundeOutput(NUMBERS[j]->PreValue, NUMBERS[j]->Nachkomma) + " ";
NUMBERS[j]->Value = NUMBERS[j]->PreValue;
zwvalue = RundeOutput(NUMBERS[j]->Value, NUMBERS[j]->AnzahlAnalog - NUMBERS[j]->DecimalShift);
}
if (NUMBERS[j]->useMaxRateValue && (abs(NUMBERS[j]->Value - NUMBERS[j]->PreValue) > NUMBERS[j]->MaxRateValue))
{
NUMBERS[j]->ErrorMessageText = NUMBERS[j]->ErrorMessageText + "Rate too high - Read: " + RundeOutput(NUMBERS[j]->Value, NUMBERS[j]->Nachkomma) + " - Pre: " + RundeOutput(NUMBERS[j]->PreValue, NUMBERS[j]->Nachkomma);
NUMBERS[j]->Value = NUMBERS[j]->PreValue;
zwvalue = RundeOutput(NUMBERS[j]->Value, NUMBERS[j]->Nachkomma);
}
NUMBERS[j]->ReturnValueNoError = zwvalue;
NUMBERS[j]->ReturnValue = zwvalue;
if (NUMBERS[j]->ErrorMessage && (NUMBERS[j]->ErrorMessageText.length() > 0))
NUMBERS[j]->ReturnValue = NUMBERS[j]->ReturnValue + "\t" + NUMBERS[j]->ErrorMessageText;
double difference = difftime(imagetime, NUMBERS[j]->lastvalue); // in Sekunden
difference /= 60; // in Minuten
NUMBERS[j]->FlowRateAct = (NUMBERS[j]->Value - NUMBERS[j]->PreValue) / difference;
NUMBERS[j]->lastvalue = imagetime;
if (NUMBERS[j]->ErrorMessageText.length() == 0)
{
NUMBERS[j]->PreValue = NUMBERS[j]->Value;
NUMBERS[j]->ReturnPreValue = RundeOutput(NUMBERS[j]->PreValue, NUMBERS[j]->Nachkomma);
NUMBERS[j]->ErrorMessageText = "no error";
UpdatePreValueINI = true;
}
Value = std::stof(ReturnValue);
ReturnValueNoError = ReturnValue;
PreValueOkay = true;
PreValue = Value;
time(&lastvalue);
localtime(&lastvalue);
SavePreValue(Value, zwtime);
}
return true;
}
zw = ErsetzteN(ReturnRawValue);
Value = std::stof(zw);
if (checkDigitIncreaseConsistency)
{
Value = checkDigitConsistency(Value, DecimalShift, isanalog);
}
zwvalue = RundeOutput(Value, AnzahlAnalog - DecimalShift);
if ((!AllowNegativeRates) && (Value < PreValue))
{
ErrorMessageText = ErrorMessageText + "Negative Rate - Returned old value - read value: " + zwvalue + " - raw value: " + ReturnRawValue + " - checked value: " + std::to_string(Value) + " ";
Value = PreValue;
zwvalue = RundeOutput(Value, AnzahlAnalog - DecimalShift);
}
if (useMaxRateValue && (abs(Value - PreValue) > MaxRateValue))
{
ErrorMessageText = ErrorMessageText + "Rate too high - Returned old value - read value: " + zwvalue + " - checked value: " + RundeOutput(Value, AnzahlAnalog - DecimalShift) + " ";
Value = PreValue;
zwvalue = RundeOutput(Value, AnzahlAnalog - DecimalShift);
}
ReturnValueNoError = zwvalue;
ReturnValue = zwvalue;
if (ErrorMessage && (ErrorMessageText.length() > 0))
ReturnValue = ReturnValue + "\t" + ErrorMessageText;
if (ErrorMessageText.length() == 0)
{
time_t currenttime;
time(&currenttime);
localtime(&currenttime);
double difference = difftime(currenttime, lastvalue); // in Sekunden
difference /= 60; // in Minuten
FlowRateAct = (Value - PreValue) / difference;
PreValue = Value;
SavePreValue(Value, zwtime);
}
SavePreValue();
return true;
}
string ClassFlowPostProcessing::getReadout()
string ClassFlowPostProcessing::getReadout(int _number)
{
return ReturnValue;
return NUMBERS[_number]->ReturnValue;
}
string ClassFlowPostProcessing::getReadoutParam(bool _rawValue, bool _noerror)
string ClassFlowPostProcessing::getReadoutParam(bool _rawValue, bool _noerror, int _number)
{
if (_rawValue)
return ReturnRawValue;
return NUMBERS[_number]->ReturnRawValue;
if (_noerror)
return ReturnValueNoError;
return ReturnValue;
return NUMBERS[_number]->ReturnValueNoError;
return NUMBERS[_number]->ReturnValue;
}
string ClassFlowPostProcessing::RundeOutput(float _in, int _anzNachkomma){
@@ -440,7 +680,7 @@ string ClassFlowPostProcessing::RundeOutput(float _in, int _anzNachkomma){
}
string ClassFlowPostProcessing::ErsetzteN(string input)
string ClassFlowPostProcessing::ErsetzteN(string input, float _prevalue)
{
int posN, posPunkt;
int pot, ziffer;
@@ -461,7 +701,7 @@ string ClassFlowPostProcessing::ErsetzteN(string input)
pot = posPunkt - posN;
}
zw = PreValue / pow(10, pot);
zw =_prevalue / pow(10, pot);
ziffer = ((int) zw) % 10;
input[posN] = ziffer + 48;
@@ -471,7 +711,7 @@ string ClassFlowPostProcessing::ErsetzteN(string input)
return input;
}
float ClassFlowPostProcessing::checkDigitConsistency(float input, int _decilamshift, bool _isanalog){
float ClassFlowPostProcessing::checkDigitConsistency(float input, int _decilamshift, bool _isanalog, float _preValue){
int aktdigit, olddigit;
int aktdigit_before, olddigit_before;
int pot, pot_max;
@@ -489,12 +729,12 @@ float ClassFlowPostProcessing::checkDigitConsistency(float input, int _decilamsh
{
zw = input / pow(10, pot-1);
aktdigit_before = ((int) zw) % 10;
zw = PreValue / pow(10, pot-1);
zw = _preValue / pow(10, pot-1);
olddigit_before = ((int) zw) % 10;
zw = input / pow(10, pot);
aktdigit = ((int) zw) % 10;
zw = PreValue / pow(10, pot);
zw = _preValue / pow(10, pot);
olddigit = ((int) zw) % 10;
no_nulldurchgang = (olddigit_before <= aktdigit_before);
@@ -520,18 +760,18 @@ float ClassFlowPostProcessing::checkDigitConsistency(float input, int _decilamsh
return input;
}
string ClassFlowPostProcessing::getReadoutRate()
string ClassFlowPostProcessing::getReadoutRate(int _number)
{
return std::to_string(FlowRateAct);
return std::to_string(NUMBERS[_number]->FlowRateAct);
}
string ClassFlowPostProcessing::getReadoutTimeStamp()
string ClassFlowPostProcessing::getReadoutTimeStamp(int _number)
{
return timeStamp;
return NUMBERS[_number]->timeStamp;
}
string ClassFlowPostProcessing::getReadoutError()
string ClassFlowPostProcessing::getReadoutError(int _number)
{
return ErrorMessageText;
return NUMBERS[_number]->ErrorMessageText;
}

View File

@@ -1,53 +1,95 @@
#pragma once
#include "ClassFlow.h"
#include "ClassFlowMakeImage.h"
#include "ClassFlowAnalog.h"
#include "ClassFlowDigit.h"
#include <string>
struct NumberPost {
// int PreValueAgeStartup;
float MaxRateValue;
bool useMaxRateValue;
bool ErrorMessage;
bool PreValueOkay;
bool AllowNegativeRates;
bool checkDigitIncreaseConsistency;
time_t lastvalue;
string timeStamp;
float FlowRateAct; // m3 / min
float PreValue; // letzter Wert, der gut ausgelesen wurde
float Value; // letzer ausgelesener Wert, inkl. Korrekturen
string ReturnRawValue; // Rohwert (mit N & führenden 0)
string ReturnValue; // korrigierter Rückgabewert, ggf. mit Fehlermeldung
string ReturnPreValue; // korrigierter Rückgabewert ohne Fehlermeldung
string ReturnValueNoError;
string ErrorMessageText; // Fehlermeldung bei Consistency Check
int AnzahlAnalog;
int AnzahlDigital;
int DecimalShift;
int Nachkomma;
// ClassFlowAnalog* ANALOG;
// ClassFlowDigit* DIGIT;
digit *digit_roi;
analog *analog_roi;
string name;
};
class ClassFlowPostProcessing :
public ClassFlow
{
protected:
bool PreValueUse;
std::vector<NumberPost*> NUMBERS;
bool UpdatePreValueINI;
int PreValueAgeStartup;
bool AllowNegativeRates;
float MaxRateValue;
bool useMaxRateValue;
bool ErrorMessage;
bool PreValueOkay;
bool checkDigitIncreaseConsistency;
int DecimalShift;
time_t lastvalue;
float FlowRateAct; // m3 / min
ClassFlowAnalog* flowAnalog;
ClassFlowDigit* flowDigit;
string FilePreValue;
float PreValue; // letzter Wert, der gut ausgelesen wurde
float Value; // letzer ausgelesener Wert, inkl. Korrekturen
string ReturnRawValue; // Rohwert (mit N & führenden 0)
string ReturnValue; // korrigierter Rückgabewert, ggf. mit Fehlermeldung
string ReturnValueNoError; // korrigierter Rückgabewert ohne Fehlermeldung
string ErrorMessageText; // Fehlermeldung bei Consistency Check
string timeStamp;
ClassFlowMakeImage *flowMakeImage;
bool LoadPreValue(void);
string ShiftDecimal(string in, int _decShift);
string ErsetzteN(string);
float checkDigitConsistency(float input, int _decilamshift, bool _isanalog);
string ErsetzteN(string, float _prevalue);
float checkDigitConsistency(float input, int _decilamshift, bool _isanalog, float _preValue);
string RundeOutput(float _in, int _anzNachkomma);
void InitNUMBERS();
void handleDecimalSeparator(string _decsep, string _value);
void handleMaxRateValue(string _decsep, string _value);
public:
bool PreValueUse;
ClassFlowPostProcessing(std::vector<ClassFlow*>* lfc);
bool ReadParameter(FILE* pfile, string& aktparamgraph);
bool doFlow(string time);
string getReadout();
string getReadoutParam(bool _rawValue, bool _noerror);
string getReadoutError();
string getReadoutRate();
string getReadoutTimeStamp();
void SavePreValue(float value, string time = "");
string GetPreValue();
string getReadout(int _number);
string getReadoutParam(bool _rawValue, bool _noerror, int _number = 0);
string getReadoutError(int _number = 0);
string getReadoutRate(int _number = 0);
string getReadoutTimeStamp(int _number = 0);
void SavePreValue();
string GetPreValue(std::string _number = "");
void SetPreValue(float zw, string _numbers, bool _extern = false);
std::vector<NumberPost*> GetNumbers(){return NUMBERS;};
string name(){return "ClassFlowPostProcessing";};
};

View File

@@ -10,6 +10,7 @@
#include <string.h>
#include <esp_log.h>
#include "ClassLogFile.h"
//#include "ClassLogFile.h"
@@ -77,8 +78,9 @@ void memCopyGen(uint8_t* _source, uint8_t* _target, int _size)
FILE* OpenFileAndWait(const char* nm, char* _mode, int _waitsec)
FILE* OpenFileAndWait(const char* nm, const char* _mode, int _waitsec)
{
printf("open config file %s in mode %s\n", nm, _mode);
FILE *pfile = fopen(nm, _mode);
if (pfile == NULL)
@@ -313,6 +315,14 @@ string toUpper(string in)
return in;
}
string toLower(string in)
{
for (int i = 0; i < in.length(); ++i)
in[i] = tolower(in[i]);
return in;
}
// CPU Temp
extern "C" uint8_t temprature_sens_read();
float temperatureRead()
@@ -358,3 +368,30 @@ int removeFolder(const char* folderPath, const char* logTag) {
return deleted;
}
std::vector<string> HelperZerlegeZeile(std::string input, std::string _delimiter = "")
{
std::vector<string> Output;
std::string delimiter = " =,";
if (_delimiter.length() > 0){
delimiter = _delimiter;
}
input = trim(input, delimiter);
size_t pos = findDelimiterPos(input, delimiter);
std::string token;
while (pos != std::string::npos) {
token = input.substr(0, pos);
token = trim(token, delimiter);
Output.push_back(token);
input.erase(0, pos + 1);
input = trim(input, delimiter);
pos = findDelimiterPos(input, delimiter);
}
Output.push_back(input);
return Output;
}

View File

@@ -1,6 +1,7 @@
#pragma once
#include <string>
#include <fstream>
#include <vector>
using namespace std;
@@ -10,7 +11,7 @@ void FindReplace(std::string& line, std::string& oldString, std::string& newStri
void CopyFile(string input, string output);
FILE* OpenFileAndWait(const char* nm, char* _mode, int _waitsec = 1);
FILE* OpenFileAndWait(const char* nm, const char* _mode, int _waitsec = 1);
size_t findDelimiterPos(string input, string delimiter);
//string trim(string istring);
@@ -22,6 +23,7 @@ string getFileType(string filename);
int mkdir_r(const char *dir, const mode_t mode);
int removeFolder(const char* folderPath, const char* logTag);
string toLower(string in);
string toUpper(string in);
float temperatureRead();
@@ -30,6 +32,8 @@ time_t addDays(time_t startTime, int days);
void memCopyGen(uint8_t* _source, uint8_t* _target, int _size);
std::vector<string> HelperZerlegeZeile(std::string input, std::string _delimiter);
///////////////////////////
size_t getInternalESPHeapSize();
size_t getESPHeapSize();

View File

@@ -354,12 +354,10 @@ CImageBasis::CImageBasis(CImageBasis *_copyfrom, int _anzrepeat)
int memsize = width * height * channels;
rgb_image = (unsigned char*)GET_MEMORY(memsize);
TickType_t xDelay;
int anz = 1;
while (!rgb_image && (anz < _anzrepeat))
{
printf("Create Image from Copy - Speicher ist voll - Versuche es erneut: %d.\n", anz);
xDelay = 1000 / portTICK_PERIOD_MS;
printf("Create Image from Copy - Speicher ist voll - Versuche es erneut: %d.\n", anz);
rgb_image = (unsigned char*) malloc(memsize);
anz++;
}

View File

@@ -12,7 +12,7 @@ ClassLogFile LogFile("/sdcard/log/message", "log_%Y-%m-%d.txt");
void ClassLogFile::WriteHeapInfo(std::string _id)
{
std::string _zw = "\t" + _id;
std::string _zw = "\t" + _id;
if (loglevel > 0)
_zw = _zw + "\t" + getESPHeapInfo();

View File

@@ -1,12 +1,14 @@
#include "interface_mqtt.h"
//#define LOG_LOCAL_LEVEL ESP_LOG_DEBUG
#include "esp_log.h"
#include "mqtt_client.h"
#include "ClassLogFile.h"
static const char *TAG = "interface_mqtt";
static const char *TAG_INTERFACEMQTT = "interface_mqtt";
std::map<std::string, std::function<void()>>* connectFunktionMap = NULL;
std::map<std::string, std::function<bool(std::string, char*, int)>>* subscribeFunktionMap = NULL;
bool debugdetail = true;
// #define CONFIG_BROKER_URL "mqtt://192.168.178.43:1883"
@@ -16,51 +18,74 @@ esp_mqtt_event_id_t esp_mmqtt_ID = MQTT_EVENT_ANY;
bool mqtt_connected = false;
esp_mqtt_client_handle_t client = NULL;
void MQTTPublish(std::string _key, std::string _content){
void MQTTPublish(std::string _key, std::string _content, int retained_flag){
if (client && mqtt_connected) {
int msg_id;
std::string zw;
msg_id = esp_mqtt_client_publish(client, _key.c_str(), _content.c_str(), 0, 1, 0);
msg_id = esp_mqtt_client_publish(client, _key.c_str(), _content.c_str(), 0, 1, retained_flag);
zw = "sent publish successful in MQTTPublish, msg_id=" + std::to_string(msg_id) + ", " + _key + ", " + _content;
if (debugdetail) LogFile.WriteToFile(zw);
ESP_LOGI(TAG, "sent publish successful in MQTTPublish, msg_id=%d, %s, %s", msg_id, _key.c_str(), _content.c_str());
ESP_LOGD(TAG_INTERFACEMQTT, "sent publish successful in MQTTPublish, msg_id=%d, %s, %s", msg_id, _key.c_str(), _content.c_str());
}
else {
ESP_LOGI(TAG, "Problem with Publish, client=%d, mqtt_connected %d", (int) client, (int) mqtt_connected);
ESP_LOGW(TAG_INTERFACEMQTT, "Problem with Publish, client=%d, mqtt_connected %d", (int) client, (int) mqtt_connected);
}
}
static esp_err_t mqtt_event_handler_cb(esp_mqtt_event_handle_t event)
{
int msg_id;
std::string topic = "";
switch (event->event_id) {
case MQTT_EVENT_BEFORE_CONNECT:
ESP_LOGI(TAG_INTERFACEMQTT, "MQTT_EVENT_BEFORE_CONNECT");
break;
case MQTT_EVENT_CONNECTED:
ESP_LOGI(TAG, "MQTT_EVENT_CONNECTED");
ESP_LOGI(TAG_INTERFACEMQTT, "MQTT_EVENT_CONNECTED");
mqtt_connected = true;
MQTTconnected();
break;
case MQTT_EVENT_DISCONNECTED:
ESP_LOGI(TAG, "MQTT_EVENT_DISCONNECTED");
ESP_LOGI(TAG_INTERFACEMQTT, "MQTT_EVENT_DISCONNECTED");
break;
case MQTT_EVENT_SUBSCRIBED:
ESP_LOGI(TAG_INTERFACEMQTT, "MQTT_EVENT_SUBSCRIBED, msg_id=%d", event->msg_id);
msg_id = esp_mqtt_client_publish(client, "/topic/qos0", "data", 0, 0, 0);
ESP_LOGI(TAG_INTERFACEMQTT, "sent publish successful, msg_id=%d", msg_id);
break;
case MQTT_EVENT_UNSUBSCRIBED:
ESP_LOGI(TAG_INTERFACEMQTT, "MQTT_EVENT_UNSUBSCRIBED, msg_id=%d", event->msg_id);
break;
case MQTT_EVENT_PUBLISHED:
ESP_LOGI(TAG, "MQTT_EVENT_PUBLISHED, msg_id=%d", event->msg_id);
ESP_LOGI(TAG_INTERFACEMQTT, "MQTT_EVENT_PUBLISHED, msg_id=%d", event->msg_id);
break;
case MQTT_EVENT_DATA:
ESP_LOGI(TAG, "MQTT_EVENT_DATA");
printf("TOPIC=%.*s\r\n", event->topic_len, event->topic);
printf("DATA=%.*s\r\n", event->data_len, event->data);
ESP_LOGI(TAG_INTERFACEMQTT, "MQTT_EVENT_DATA");
ESP_LOGI(TAG_INTERFACEMQTT, "TOPIC=%.*s\r\n", event->topic_len, event->topic);
ESP_LOGI(TAG_INTERFACEMQTT, "DATA=%.*s\r\n", event->data_len, event->data);
topic.assign(event->topic, event->topic_len);
if (subscribeFunktionMap != NULL) {
if (subscribeFunktionMap->find(topic) != subscribeFunktionMap->end()) {
ESP_LOGD(TAG_INTERFACEMQTT, "call handler function\r\n");
(*subscribeFunktionMap)[topic](topic, event->data, event->data_len);
}
} else {
ESP_LOGW(TAG_INTERFACEMQTT, "no handler available\r\n");
}
break;
case MQTT_EVENT_ERROR:
ESP_LOGI(TAG, "MQTT_EVENT_ERROR");
ESP_LOGI(TAG_INTERFACEMQTT, "MQTT_EVENT_ERROR");
break;
default:
ESP_LOGI(TAG, "Other event id:%d", event->event_id);
ESP_LOGI(TAG_INTERFACEMQTT, "Other event id:%d", event->event_id);
break;
}
return ESP_OK;
}
static void mqtt_event_handler(void *handler_args, esp_event_base_t base, int32_t event_id, void *event_data) {
ESP_LOGD(TAG, "Event dispatched from event loop base=%s, event_id=%d", base, event_id);
ESP_LOGD(TAG_INTERFACEMQTT, "Event dispatched from event loop base=%s, event_id=%d", base, event_id);
mqtt_event_handler_cb((esp_mqtt_event_handle_t) event_data);
}
@@ -74,6 +99,7 @@ void MQTTInit(std::string _mqttURI, std::string _clientid, std::string _user, st
.client_id = _clientid.c_str(),
.lwt_topic = _LWTContext.c_str(),
.lwt_msg = _zwmessage.c_str(),
.lwt_retain = 1,
.lwt_msg_len = _lzw,
.keepalive = _keepalive
};
@@ -81,12 +107,100 @@ void MQTTInit(std::string _mqttURI, std::string _clientid, std::string _user, st
if (_user.length() && _password.length()){
mqtt_cfg.username = _user.c_str();
mqtt_cfg.password = _password.c_str();
printf("Connect to MQTT: %s, %s", mqtt_cfg.username, mqtt_cfg.password);
ESP_LOGI(TAG_INTERFACEMQTT, "Connect to MQTT: %s, %s", mqtt_cfg.username, mqtt_cfg.password);
};
client = esp_mqtt_client_init(&mqtt_cfg);
esp_mqtt_client_register_event(client, esp_mmqtt_ID, mqtt_event_handler, client);
esp_mqtt_client_start(client);
MQTTPublish(_LWTContext, "");
MQTTPublish(_LWTContext, "", 1);
}
void MQTTdestroy() {
if (client != NULL) {
esp_mqtt_client_stop(client);
esp_mqtt_client_destroy(client);
}
}
bool MQTTisConnected() {
return mqtt_connected;
}
void MQTTregisterConnectFunction(std::string name, std::function<void()> func){
ESP_LOGD(TAG_INTERFACEMQTT, "MQTTregisteronnectFunction %s\r\n", name.c_str());
if (connectFunktionMap == NULL) {
connectFunktionMap = new std::map<std::string, std::function<void()>>();
}
if ((*connectFunktionMap)[name] != NULL) {
ESP_LOGW(TAG_INTERFACEMQTT, "connect function %s already registred", name.c_str());
return;
}
(*connectFunktionMap)[name] = func;
if (mqtt_connected) {
func();
}
}
void MQTTunregisterConnectFunction(std::string name){
ESP_LOGD(TAG_INTERFACEMQTT, "MQTTregisteronnectFunction %s\r\n", name.c_str());
if ((connectFunktionMap != NULL) && (connectFunktionMap->find(name) != connectFunktionMap->end())) {
connectFunktionMap->erase(name);
}
}
void MQTTregisterSubscribeFunction(std::string topic, std::function<bool(std::string, char*, int)> func){
ESP_LOGD(TAG_INTERFACEMQTT, "MQTTregisterSubscribeFunction %s\r\n", topic.c_str());
if (subscribeFunktionMap == NULL) {
subscribeFunktionMap = new std::map<std::string, std::function<bool(std::string, char*, int)>>();
}
if ((*subscribeFunktionMap)[topic] != NULL) {
ESP_LOGW(TAG_INTERFACEMQTT, "topic %s already registred for subscription", topic.c_str());
return;
}
(*subscribeFunktionMap)[topic] = func;
if (mqtt_connected) {
int msg_id = esp_mqtt_client_subscribe(client, topic.c_str(), 0);
ESP_LOGD(TAG_INTERFACEMQTT, "topic %s subscribe successful, msg_id=%d", topic.c_str(), msg_id);
}
}
void MQTTconnected(){
if (mqtt_connected) {
if (connectFunktionMap != NULL) {
for(std::map<std::string, std::function<void()>>::iterator it = connectFunktionMap->begin(); it != connectFunktionMap->end(); ++it) {
it->second();
ESP_LOGD(TAG_INTERFACEMQTT, "call connect function %s", it->first.c_str());
}
}
if (subscribeFunktionMap != NULL) {
for(std::map<std::string, std::function<bool(std::string, char*, int)>>::iterator it = subscribeFunktionMap->begin(); it != subscribeFunktionMap->end(); ++it) {
int msg_id = esp_mqtt_client_subscribe(client, it->first.c_str(), 0);
ESP_LOGD(TAG_INTERFACEMQTT, "topic %s subscribe successful, msg_id=%d", it->first.c_str(), msg_id);
}
}
}
}
void MQTTdestroySubscribeFunction(){
if (subscribeFunktionMap != NULL) {
if (mqtt_connected) {
for(std::map<std::string, std::function<bool(std::string, char*, int)>>::iterator it = subscribeFunktionMap->begin(); it != subscribeFunktionMap->end(); ++it) {
int msg_id = esp_mqtt_client_unsubscribe(client, it->first.c_str());
ESP_LOGI(TAG_INTERFACEMQTT, "topic %s unsubscribe successful, msg_id=%d", it->first.c_str(), msg_id);
}
}
subscribeFunktionMap->clear();
delete subscribeFunktionMap;
subscribeFunktionMap = NULL;
}
}

View File

@@ -1,7 +1,23 @@
#ifndef INTERFACE_MQTT_H
#define INTERFACE_MQTT_H
#include <string>
#include <map>
#include <functional>
void MQTTInit(std::string _mqttURI, std::string _clientid, std::string _user, std::string _password, std::string _LWTContext, int _keepalive);
void MQTTdestroy();
//void MQTTInit(std::string _mqttURI, std::string _clientid, std::string _user = "", std::string _password = "");
void MQTTPublish(std::string _key, std::string _content);
void MQTTPublish(std::string _key, std::string _content, int retained_flag = 0);
bool MQTTisConnected();
void MQTTregisterConnectFunction(std::string name, std::function<void()> func);
void MQTTunregisterConnectFunction(std::string name);
void MQTTregisterSubscribeFunction(std::string topic, std::function<bool(std::string, char*, int)> func);
void MQTTdestroySubscribeFunction();
void MQTTconnected();
#endif //INTERFACE_MQTT_H

View File

@@ -17,6 +17,7 @@ float CTfLiteClass::GetOutputValue(int nr)
return output2->data.f[nr];
}
int CTfLiteClass::GetClassFromImageBasis(CImageBasis *rs)
{
if (!LoadInputImageBasis(rs))
@@ -98,7 +99,8 @@ void CTfLiteClass::GetOutPut()
void CTfLiteClass::Invoke()
{
interpreter->Invoke();
if (interpreter != nullptr)
interpreter->Invoke();
}
@@ -155,9 +157,9 @@ void CTfLiteClass::MakeAllocate()
}
void CTfLiteClass::GetInputTensorSize(){
#ifdef DEBUG_DETAIL_ON
float *zw = this->input;
int test = sizeof(zw);
#ifdef DEBUG_DETAIL_ON
printf("Input Tensor Dimension: %d\n", test);
#endif
}
@@ -184,13 +186,11 @@ unsigned char* CTfLiteClass::ReadFileToCharArray(std::string _fn)
unsigned char *result = (unsigned char*) malloc(size);
int anz = 1;
TickType_t xDelay;
while (!result && (anz < 6)) // maximal 5x versuchen (= 5s)
{
#ifdef DEBUG_DETAIL_ON
printf("Speicher ist voll - Versuche es erneut: %d.\n", anz);
#endif
xDelay = 1000 / portTICK_PERIOD_MS;
result = (unsigned char*) malloc(size);
anz++;
}
@@ -208,7 +208,7 @@ unsigned char* CTfLiteClass::ReadFileToCharArray(std::string _fn)
return result;
}
void CTfLiteClass::LoadModel(std::string _fn){
bool CTfLiteClass::LoadModel(std::string _fn){
#ifdef SUPRESS_TFLITE_ERRORS
this->error_reporter = new tflite::OwnMicroErrorReporter;
@@ -219,9 +219,14 @@ void CTfLiteClass::LoadModel(std::string _fn){
unsigned char *rd;
rd = ReadFileToCharArray(_fn.c_str());
if (rd == NULL)
return false;
this->model = tflite::GetModel(rd);
free(rd);
TFLITE_MINIMAL_CHECK(model != nullptr);
return true;
}

View File

@@ -56,7 +56,7 @@ class CTfLiteClass
public:
CTfLiteClass();
~CTfLiteClass();
void LoadModel(std::string _fn);
bool LoadModel(std::string _fn);
void MakeAllocate();
void GetInputTensorSize();
bool LoadInputImageBasis(CImageBasis *rs);
@@ -64,6 +64,7 @@ class CTfLiteClass
void GetOutPut();
int GetOutClassification();
int GetClassFromImageBasis(CImageBasis *rs);
std::string GetStatusFlow();
float GetOutputValue(int nr);
void GetInputDimension(bool silent);

View File

@@ -8,6 +8,7 @@
#include <iomanip>
#include <sstream>
#include "defines.h"
#include "Helper.h"
#include "esp_camera.h"
@@ -17,8 +18,9 @@
#include "ClassFlowControll.h"
#include "ClassLogFile.h"
#include "server_GPIO.h"
//#define DEBUG_DETAIL_ON
// #define DEBUG_DETAIL_ON
ClassFlowControll tfliteflow;
@@ -37,6 +39,9 @@ bool auto_isrunning = false;
int countRounds = 0;
static const char *TAGTFLITE = "server_tflite";
int getCountFlowRounds() {
return countRounds;
}
@@ -64,9 +69,11 @@ void KillTFliteTasks()
#ifdef DEBUG_DETAIL_ON
printf("Handle: xHandleblink_task_doFlow: %ld\n", (long) xHandleblink_task_doFlow);
#endif
if (xHandleblink_task_doFlow)
if (xHandleblink_task_doFlow != NULL)
{
vTaskDelete(xHandleblink_task_doFlow);
TaskHandle_t xHandleblink_task_doFlowTmp = xHandleblink_task_doFlow;
xHandleblink_task_doFlow = NULL;
vTaskDelete(xHandleblink_task_doFlowTmp);
#ifdef DEBUG_DETAIL_ON
printf("Killed: xHandleblink_task_doFlow\n");
#endif
@@ -75,9 +82,11 @@ void KillTFliteTasks()
#ifdef DEBUG_DETAIL_ON
printf("Handle: xHandletask_autodoFlow: %ld\n", (long) xHandletask_autodoFlow);
#endif
if (xHandletask_autodoFlow)
if (xHandletask_autodoFlow != NULL)
{
vTaskDelete(xHandletask_autodoFlow);
TaskHandle_t xHandletask_autodoFlowTmp = xHandletask_autodoFlow;
xHandletask_autodoFlow = NULL;
vTaskDelete(xHandletask_autodoFlowTmp);
#ifdef DEBUG_DETAIL_ON
printf("Killed: xHandletask_autodoFlow\n");
#endif
@@ -87,11 +96,10 @@ void KillTFliteTasks()
void doInit(void)
{
string config = "/sdcard/config/config.ini";
#ifdef DEBUG_DETAIL_ON
printf("Start tfliteflow.InitFlow(config);\n");
#endif
tfliteflow.InitFlow(config);
tfliteflow.InitFlow(CONFIG_FILE);
#ifdef DEBUG_DETAIL_ON
printf("Finished tfliteflow.InitFlow(config);\n");
#endif
@@ -136,7 +144,7 @@ esp_err_t handler_init(httpd_req_t *req)
printf("handler_doinit uri:\n"); printf(req->uri); printf("\n");
#endif
char* resp_str = "Init started<br>";
const char* resp_str = "Init started<br>";
httpd_resp_send(req, resp_str, strlen(resp_str));
doInit();
@@ -159,8 +167,6 @@ esp_err_t handler_doflow(httpd_req_t *req)
LogFile.WriteHeapInfo("handler_doflow - Start");
#endif
char* resp_str;
printf("handler_doFlow uri: "); printf(req->uri); printf("\n");
if (flowisrunning)
@@ -173,7 +179,7 @@ esp_err_t handler_doflow(httpd_req_t *req)
{
xTaskCreate(&blink_task_doFlow, "blink_doFlow", configMINIMAL_STACK_SIZE * 64, NULL, tskIDLE_PRIORITY+1, &xHandleblink_task_doFlow);
}
resp_str = "doFlow gestartet - dauert ca. 60 Sekunden";
const char* resp_str = "doFlow gestartet - dauert ca. 60 Sekunden";
httpd_resp_send(req, resp_str, strlen(resp_str));
/* Respond with an empty chunk to signal HTTP response completion */
httpd_resp_send_chunk(req, NULL, 0);
@@ -196,6 +202,8 @@ esp_err_t handler_wasserzaehler(httpd_req_t *req)
bool _rawValue = false;
bool _noerror = false;
bool _all = false;
std::string _type = "value";
string zw;
printf("handler_wasserzaehler uri:\n"); printf(req->uri); printf("\n");
@@ -206,6 +214,22 @@ esp_err_t handler_wasserzaehler(httpd_req_t *req)
if (httpd_req_get_url_query_str(req, _query, 100) == ESP_OK)
{
// printf("Query: "); printf(_query); printf("\n");
if (httpd_query_key_value(_query, "all", _size, 10) == ESP_OK)
{
#ifdef DEBUG_DETAIL_ON
printf("all is found"); printf(_size); printf("\n");
#endif
_all = true;
}
if (httpd_query_key_value(_query, "type", _size, 10) == ESP_OK)
{
#ifdef DEBUG_DETAIL_ON
printf("all is found"); printf(_size); printf("\n");
#endif
_type = std::string(_size);
}
if (httpd_query_key_value(_query, "rawvalue", _size, 10) == ESP_OK)
{
#ifdef DEBUG_DETAIL_ON
@@ -222,6 +246,29 @@ esp_err_t handler_wasserzaehler(httpd_req_t *req)
}
}
httpd_resp_set_hdr(req, "Access-Control-Allow-Origin", "*");
if (_all)
{
httpd_resp_set_type(req, "text/plain");
printf("TYPE: %s\n", _type.c_str());
int _intype = READOUT_TYPE_VALUE;
if (_type == "prevalue")
_intype = READOUT_TYPE_PREVALUE;
if (_type == "raw")
_intype = READOUT_TYPE_RAWVALUE;
if (_type == "error")
_intype = READOUT_TYPE_ERROR;
zw = tfliteflow.getReadoutAll(_intype);
printf("ZW: %s\n", zw.c_str());
if (zw.length() > 0)
httpd_resp_sendstr_chunk(req, zw.c_str());
httpd_resp_sendstr_chunk(req, NULL);
return ESP_OK;
}
zw = tfliteflow.getReadout(_rawValue, _noerror);
if (zw.length() > 0)
httpd_resp_sendstr_chunk(req, zw.c_str());
@@ -429,7 +476,7 @@ esp_err_t handler_editflow(httpd_req_t *req)
// printf("Parameter host: "); printf(_host.c_str()); printf("\n");
// string zwzw = "Do " + _task + " start\n"; printf(zwzw.c_str());
bool changed = Camera.SetBrightnessContrastSaturation(bri, con, sat);
Camera.SetBrightnessContrastSaturation(bri, con, sat);
std::string zw = tfliteflow.doSingleStep("[MakeImage]", _host);
httpd_resp_sendstr_chunk(req, zw.c_str());
}
@@ -483,6 +530,36 @@ esp_err_t handler_editflow(httpd_req_t *req)
};
esp_err_t handler_statusflow(httpd_req_t *req)
{
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("handler_prevalue - Start");
#endif
const char* resp_str;
string zw;
#ifdef DEBUG_DETAIL_ON
printf("handler_prevalue:\n"); printf(req->uri); printf("\n");
#endif
zw = tfliteflow.getActStatus();
resp_str = zw.c_str();
httpd_resp_set_hdr(req, "Access-Control-Allow-Origin", "*");
httpd_resp_send(req, resp_str, strlen(resp_str));
/* Respond with an empty chunk to signal HTTP response completion */
httpd_resp_send_chunk(req, NULL, 0);
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("handler_prevalue - Start");
#endif
return ESP_OK;
};
esp_err_t handler_prevalue(httpd_req_t *req)
{
#ifdef DEBUG_DETAIL_ON
@@ -498,6 +575,7 @@ esp_err_t handler_prevalue(httpd_req_t *req)
char _query[100];
char _size[10] = "";
char _numbers[50] = "default";
if (httpd_req_get_url_query_str(req, _query, 100) == ESP_OK)
{
@@ -511,15 +589,24 @@ esp_err_t handler_prevalue(httpd_req_t *req)
printf("Value: "); printf(_size); printf("\n");
#endif
}
httpd_query_key_value(_query, "numbers", _numbers, 50);
}
if (strlen(_size) == 0)
zw = tfliteflow.GetPrevalue();
{
zw = tfliteflow.GetPrevalue(std::string(_numbers));
}
else
zw = "SetPrevalue to " + tfliteflow.UpdatePrevalue(_size);
{
zw = "SetPrevalue to " + tfliteflow.UpdatePrevalue(_size, _numbers, true);
}
resp_str = zw.c_str();
httpd_resp_set_hdr(req, "Access-Control-Allow-Origin", "*");
httpd_resp_send(req, resp_str, strlen(resp_str));
/* Respond with an empty chunk to signal HTTP response completion */
httpd_resp_send_chunk(req, NULL, 0);
@@ -535,17 +622,17 @@ void task_autodoFlow(void *pvParameter)
{
int64_t fr_start, fr_delta_ms;
printf("task_autodoFlow: start\r\n");
doInit();
auto_isrunning = tfliteflow.isAutoStart(auto_intervall);
gpio_handler_init();
auto_isrunning = tfliteflow.isAutoStart(auto_intervall);
if (isSetupModusActive()) {
auto_isrunning = false;
std::string zw_time = gettimestring(LOGFILE_TIME_FORMAT);
tfliteflow.doFlowMakeImageOnly(zw_time);
}
while (auto_isrunning)
{
std::string _zw = "task_autodoFlow - next round - Round #" + std::to_string(++countRounds);
@@ -590,6 +677,7 @@ void task_autodoFlow(void *pvParameter)
}
vTaskDelete(NULL); //Delete this task if it exits from the loop above
xHandletask_autodoFlow = NULL;
printf("task_autodoFlow: end\r\n");
}
void TFliteDoAutoStart()
@@ -597,6 +685,11 @@ void TFliteDoAutoStart()
xTaskCreate(&task_autodoFlow, "task_autodoFlow", configMINIMAL_STACK_SIZE * 64, NULL, tskIDLE_PRIORITY+1, &xHandletask_autodoFlow);
}
std::string GetMQTTMainTopic()
{
return tfliteflow.GetMQTTMainTopic();
}
void register_server_tflite_uri(httpd_handle_t server)
@@ -621,6 +714,10 @@ void register_server_tflite_uri(httpd_handle_t server)
camuri.user_ctx = (void*) "Light Off";
httpd_register_uri_handler(server, &camuri);
camuri.uri = "/statusflow.html";
camuri.handler = handler_statusflow;
camuri.user_ctx = (void*) "Light Off";
httpd_register_uri_handler(server, &camuri);
camuri.uri = "/editflow.html";
camuri.handler = handler_editflow;

View File

@@ -1,12 +1,11 @@
#include <esp_log.h>
#include <string>
#include <esp_http_server.h>
#include "CImageBasis.h"
//#include "ClassControllCamera.h"
static const char *TAGTFLITE = "server_tflite";
void register_server_tflite_uri(httpd_handle_t server);
void KillTFliteTasks();
@@ -15,6 +14,8 @@ void TFliteDoAutoStart();
bool isSetupModusActive();
std::string GetMQTTMainTopic();
esp_err_t GetJPG(std::string _filename, httpd_req_t *req);
esp_err_t GetRawJPG(httpd_req_t *req);

View File

@@ -18,6 +18,7 @@
static const char *TAG = "sntp";
bool setTimeAlwaysOnReboot = true;
time_t bootTime;
static void obtain_time(void);
static void initialize_sntp(void);
@@ -27,6 +28,17 @@ void time_sync_notification_cb(struct timeval *tv)
ESP_LOGI(TAG, "Notification of a time synchronization event");
}
std::string ConvertTimeToString(time_t _time, const char * frm)
{
struct tm timeinfo;
char strftime_buf[64];
localtime_r(&_time, &timeinfo);
strftime(strftime_buf, sizeof(strftime_buf), frm, &timeinfo);
std::string result(strftime_buf);
return result;
}
std::string gettimestring(const char * frm)
{
time_t now;
@@ -114,4 +126,17 @@ static void initialize_sntp(void)
sntp_setservername(0, "pool.ntp.org");
// sntp_set_time_sync_notification_cb(time_sync_notification_cb);
sntp_init();
}
void setBootTime()
{
time(&bootTime);
}
time_t getUpTime()
{
time_t now;
time(&now);
return now - bootTime;
}

View File

@@ -15,5 +15,10 @@
void setup_time(void);
std::string gettimestring(const char * frm);
std::string ConvertTimeToString(time_t _time, const char * frm);
void setTimeZone(std::string _tzstring);
void reset_servername(std::string _servername);
void reset_servername(std::string _servername);
void setBootTime();
time_t getUpTime();

View File

@@ -0,0 +1,7 @@
FILE(GLOB_RECURSE app_sources ${CMAKE_CURRENT_SOURCE_DIR}/*.*)
idf_component_register(SRCS ${app_sources}
INCLUDE_DIRS "."
REQUIRES nvs_flash jomjol_helper)

View File

@@ -0,0 +1,289 @@
#include "connect_wlan.h"
#include <string.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/event_groups.h"
#include "driver/gpio.h"
#include "esp_system.h"
#include "esp_wifi.h"
#include "esp_event.h"
#include "esp_log.h"
#include "nvs_flash.h"
#include "lwip/err.h"
#include "lwip/sys.h"
#include <fstream>
#include <string>
#include <vector>
#include <sstream>
#include <iostream>
#define EXAMPLE_ESP_MAXIMUM_RETRY 1000
/* FreeRTOS event group to signal when we are connected*/
static EventGroupHandle_t s_wifi_event_group;
/* The event group allows multiple bits for each event, but we only care about two events:
* - we are connected to the AP with an IP
* - we failed to connect after the maximum amount of retries */
#define WIFI_CONNECTED_BIT BIT0
#define WIFI_FAIL_BIT BIT1
static const char *TAG = "wifi station";
static int s_retry_num = 0;
///////////////////////////////////////////////////////////
#define BLINK_GPIO GPIO_NUM_33
int BlinkDauer;
int BlinkAnzahl;
bool BlinkOff;
bool BlinkIsRunning = false;
std::string hostname = "";
std::string std_hostname = "watermeter";
std::string ipadress = "";
std::string ssid = "";
std::string getIPAddress()
{
return ipadress;
}
std::string getSSID()
{
return ssid;
}
void task_doBlink(void *pvParameter)
{
ESP_LOGI("BLINK", "Blinken - start");
while (BlinkIsRunning)
{
// ESP_LOGI("BLINK", "Blinken - wait");
vTaskDelay(100 / portTICK_PERIOD_MS);
}
BlinkIsRunning = true;
// Init the GPIO
gpio_pad_select_gpio(BLINK_GPIO);
/* Set the GPIO as a push/pull output */
gpio_set_direction(BLINK_GPIO, GPIO_MODE_OUTPUT);
for (int i = 0; i < BlinkAnzahl; ++i)
{
if (BlinkAnzahl > 1)
{
gpio_set_level(BLINK_GPIO, 1);
vTaskDelay(BlinkDauer / portTICK_PERIOD_MS);
}
gpio_set_level(BLINK_GPIO, 0);
vTaskDelay(BlinkDauer / portTICK_PERIOD_MS);
}
if (BlinkOff)
gpio_set_level(BLINK_GPIO, 1);
ESP_LOGI("BLINK", "Blinken - done");
BlinkIsRunning = false;
vTaskDelete(NULL); //Delete this task if it exits from the loop above
}
void LEDBlinkTask(int _dauer, int _anz, bool _off)
{
BlinkDauer = _dauer;
BlinkAnzahl = _anz;
BlinkOff = _off;
xTaskCreate(&task_doBlink, "task_doBlink", configMINIMAL_STACK_SIZE * 8, NULL, tskIDLE_PRIORITY+1, NULL);
}
/////////////////////////////////////////////////////////
static void event_handler(void* arg, esp_event_base_t event_base,
int32_t event_id, void* event_data)
{
if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_START) {
LEDBlinkTask(200, 1, true);
esp_wifi_connect();
} else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_DISCONNECTED) {
// if (s_retry_num < EXAMPLE_ESP_MAXIMUM_RETRY){
esp_wifi_connect();
s_retry_num++;
ESP_LOGI(TAG, "retry to connect to the AP");
ESP_LOGI(TAG,"connect to the AP fail");
} else if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) {
ip_event_got_ip_t* event = (ip_event_got_ip_t*) event_data;
ESP_LOGI(TAG, "got ip:" IPSTR, IP2STR(&event->ip_info.ip));
ipadress = std::string(ip4addr_ntoa((const ip4_addr*) &event->ip_info.ip));
s_retry_num = 0;
xEventGroupSetBits(s_wifi_event_group, WIFI_CONNECTED_BIT);
LEDBlinkTask(1000, 5, true);
}
}
void strinttoip4(const char *ip, int &a, int &b, int &c, int &d) {
std::string zw = std::string(ip);
std::stringstream s(zw);
char ch; //to temporarily store the '.'
s >> a >> ch >> b >> ch >> c >> ch >> d;
}
void wifi_init_sta(const char *_ssid, const char *_password, const char *_hostname, const char *_ipadr, const char *_gw, const char *_netmask, const char *_dns)
{
ssid = std::string(_ssid);
s_wifi_event_group = xEventGroupCreate();
ESP_ERROR_CHECK(esp_netif_init());
ESP_ERROR_CHECK(esp_event_loop_create_default());
/////////////////////////////////////////////////////////////////
esp_netif_t *my_sta = esp_netif_create_default_wifi_sta();
if ((_ipadr != NULL) && (_gw != NULL) && (_netmask != NULL))
{
ESP_LOGI(TAG, "set IP %s, GW %s, Netmask %s manual", _ipadr, _gw, _netmask);
esp_netif_dhcpc_stop(my_sta);
esp_netif_ip_info_t ip_info;
int a, b, c, d;
strinttoip4(_ipadr, a, b, c, d);
IP4_ADDR(&ip_info.ip, a, b, c, d);
strinttoip4(_gw, a, b, c, d);
IP4_ADDR(&ip_info.gw, a, b, c, d);
strinttoip4(_netmask, a, b, c, d);
IP4_ADDR(&ip_info.netmask, a, b, c, d);
esp_netif_set_ip_info(my_sta, &ip_info);
}
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
ESP_ERROR_CHECK(esp_wifi_init(&cfg));
if ((_ipadr != NULL) && (_gw != NULL) && (_netmask != NULL))
{
if (_dns == NULL)
_dns = _gw;
ESP_LOGI(TAG, "set DNS manual");
esp_netif_dns_info_t dns_info;
ip4_addr_t ip;
ip.addr = esp_ip4addr_aton(_dns);
ip_addr_set_ip4_u32(&dns_info.ip, ip.addr);
ESP_ERROR_CHECK(esp_netif_set_dns_info(my_sta, ESP_NETIF_DNS_MAIN, &dns_info));
}
/////////////////////////////////////////////////////////////////
// esp_netif_create_default_wifi_sta();
// wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
// ESP_ERROR_CHECK(esp_wifi_init(&cfg));
/*
////////////////////////////// esp-idf 4.2 //////////////////////////
esp_event_handler_instance_t instance_any_id;
esp_event_handler_instance_t instance_got_ip;
ESP_ERROR_CHECK(esp_event_handler_instance_register(WIFI_EVENT,
ESP_EVENT_ANY_ID,
&event_handler,
NULL,
&instance_any_id));
ESP_ERROR_CHECK(esp_event_handler_instance_register(IP_EVENT,
IP_EVENT_STA_GOT_IP,
&event_handler,
NULL,
&instance_got_ip));
////////////////////////// ENDE esp-idf 4.2 ///////////////////////////
*/
ESP_ERROR_CHECK(esp_event_handler_register(WIFI_EVENT, ESP_EVENT_ANY_ID, &event_handler, NULL));
ESP_ERROR_CHECK(esp_event_handler_register(IP_EVENT, IP_EVENT_STA_GOT_IP, &event_handler, NULL));
wifi_config_t wifi_config = { };
strcpy((char*)wifi_config.sta.ssid, (const char*)_ssid);
strcpy((char*)wifi_config.sta.password, (const char*)_password);
ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA) );
ESP_ERROR_CHECK(esp_wifi_set_config(WIFI_IF_STA, &wifi_config) );
ESP_ERROR_CHECK(esp_wifi_start() );
if (_hostname != NULL)
{
esp_err_t ret = tcpip_adapter_set_hostname(TCPIP_ADAPTER_IF_STA , _hostname);
hostname = std::string(_hostname);
if(ret != ESP_OK ){
ESP_LOGE(TAG,"failed to set hostname:%d",ret);
}
}
ESP_LOGI(TAG, "wifi_init_sta finished.");
/* Waiting until either the connection is established (WIFI_CONNECTED_BIT) or connection failed for the maximum
* number of re-tries (WIFI_FAIL_BIT). The bits are set by event_handler() (see above) */
EventBits_t bits = xEventGroupWaitBits(s_wifi_event_group,
WIFI_CONNECTED_BIT | WIFI_FAIL_BIT,
pdFALSE,
pdFALSE,
portMAX_DELAY);
/* xEventGroupWaitBits() returns the bits before the call returned, hence we can test which event actually
* happened. */
if (bits & WIFI_CONNECTED_BIT) {
ESP_LOGI(TAG, "connected to ap SSID:%s password:%s",
_ssid, _password);
} else if (bits & WIFI_FAIL_BIT) {
ESP_LOGI(TAG, "Failed to connect to SSID:%s, password:%s",
_ssid, _password);
} else {
ESP_LOGE(TAG, "UNEXPECTED EVENT");
}
/* The event will not be processed after unregister */
/*
////////////////////////////// esp-idf 4.2 //////////////////////////
ESP_ERROR_CHECK(esp_event_handler_instance_unregister(IP_EVENT, IP_EVENT_STA_GOT_IP, instance_got_ip));
ESP_ERROR_CHECK(esp_event_handler_instance_unregister(WIFI_EVENT, ESP_EVENT_ANY_ID, instance_any_id));
////////////////////////// ENDE esp-idf 4.2 ///////////////////////////
*/
/* Deaktiveren, damit bei einen Verbindungsabbruch neu aufgebaut wird
ESP_ERROR_CHECK(esp_event_handler_unregister(IP_EVENT, IP_EVENT_STA_GOT_IP, &event_handler));
ESP_ERROR_CHECK(esp_event_handler_unregister(WIFI_EVENT, ESP_EVENT_ANY_ID, &event_handler));
vEventGroupDelete(s_wifi_event_group);
*/
/*
while (BlinkIsRunning)
{
vTaskDelay(100 / portTICK_PERIOD_MS);
}
*/
}
void wifi_init_sta(const char *_ssid, const char *_password, const char *_hostname)
{
wifi_init_sta(_ssid, _password, _hostname, NULL, NULL, NULL, NULL);
}
void wifi_init_sta(const char *_ssid, const char *_password)
{
wifi_init_sta(_ssid, _password, NULL, NULL, NULL, NULL, NULL);
}

View File

@@ -0,0 +1,16 @@
#ifndef CONNECT_WLAN_H
#define CONNECT_WLAN_H
#include <string>
void wifi_init_sta(const char *_ssid, const char *_password, const char *_hostname, const char *_ipadr, const char *_gw, const char *_netmask, const char *_dns);
void wifi_init_sta(const char *_ssid, const char *_password, const char *_hostname);
void wifi_init_sta(const char *_ssid, const char *_password);
std::string getIPAddress();
std::string getSSID();
extern std::string hostname;
extern std::string std_hostname;
#endif

View File

@@ -0,0 +1,257 @@
#include "read_wlanini.h"
#include "Helper.h"
#include "connect_wlan.h"
#include <fstream>
#include <string>
#include <vector>
#include <sstream>
#include <iostream>
#include <string.h>
std::vector<string> ZerlegeZeile(std::string input, std::string _delimiter = "")
{
std::vector<string> Output;
std::string delimiter = " =,";
if (_delimiter.length() > 0){
delimiter = _delimiter;
}
input = trim(input, delimiter);
size_t pos = findDelimiterPos(input, delimiter);
std::string token;
while (pos != std::string::npos) {
token = input.substr(0, pos);
token = trim(token, delimiter);
Output.push_back(token);
input.erase(0, pos + 1);
input = trim(input, delimiter);
pos = findDelimiterPos(input, delimiter);
}
Output.push_back(input);
return Output;
}
void LoadWlanFromFile(std::string fn, char *&_ssid, char *&_password, char *&_hostname, char *&_ipadr, char *&_gw, char *&_netmask, char *&_dns)
{
std::string ssid = "";
std::string passphrase = "";
std::string ipaddress = "";
std::string gw = "";
std::string netmask = "";
std::string dns = "";
std::string line = "";
std::vector<string> zerlegt;
hostname = std_hostname;
FILE* pFile;
fn = FormatFileName(fn);
pFile = OpenFileAndWait(fn.c_str(), "r");
printf("file loaded\n");
if (pFile == NULL)
return;
char zw[1024];
fgets(zw, 1024, pFile);
line = std::string(zw);
while ((line.size() > 0) || !(feof(pFile)))
{
// printf("%s", line.c_str());
zerlegt = ZerlegeZeile(line, "=");
zerlegt[0] = trim(zerlegt[0], " ");
for (int i = 2; i < zerlegt.size(); ++i)
zerlegt[1] = zerlegt[1] + "=" + zerlegt[i];
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "HOSTNAME")){
hostname = trim(zerlegt[1]);
if ((hostname[0] == '"') && (hostname[hostname.length()-1] == '"')){
hostname = hostname.substr(1, hostname.length()-2);
}
}
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "SSID")){
ssid = trim(zerlegt[1]);
if ((ssid[0] == '"') && (ssid[ssid.length()-1] == '"')){
ssid = ssid.substr(1, ssid.length()-2);
}
}
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "PASSWORD")){
passphrase = zerlegt[1];
if ((passphrase[0] == '"') && (passphrase[passphrase.length()-1] == '"')){
passphrase = passphrase.substr(1, passphrase.length()-2);
}
}
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "IP")){
ipaddress = zerlegt[1];
if ((ipaddress[0] == '"') && (ipaddress[ipaddress.length()-1] == '"')){
ipaddress = ipaddress.substr(1, ipaddress.length()-2);
}
}
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "GATEWAY")){
gw = zerlegt[1];
if ((gw[0] == '"') && (gw[gw.length()-1] == '"')){
gw = gw.substr(1, gw.length()-2);
}
}
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "NETMASK")){
netmask = zerlegt[1];
if ((netmask[0] == '"') && (netmask[netmask.length()-1] == '"')){
netmask = netmask.substr(1, netmask.length()-2);
}
}
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "DNS")){
dns = zerlegt[1];
if ((dns[0] == '"') && (dns[dns.length()-1] == '"')){
dns = dns.substr(1, dns.length()-2);
}
}
if (fgets(zw, 1024, pFile) == NULL)
{
line = "";
}
else
{
line = std::string(zw);
}
}
fclose(pFile);
// Check if Hostname was empty in .ini if yes set to std_hostname
if(hostname.length() == 0){
hostname = std_hostname;
}
_hostname = new char[hostname.length() + 1];
strcpy(_hostname, hostname.c_str());
_ssid = new char[ssid.length() + 1];
strcpy(_ssid, ssid.c_str());
_password = new char[passphrase.length() + 1];
strcpy(_password, passphrase.c_str());
if (ipaddress.length() > 0)
{
_ipadr = new char[ipaddress.length() + 1];
strcpy(_ipadr, ipaddress.c_str());
}
else
_ipadr = NULL;
if (gw.length() > 0)
{
_gw = new char[gw.length() + 1];
strcpy(_gw, gw.c_str());
}
else
_gw = NULL;
if (netmask.length() > 0)
{
_netmask = new char[netmask.length() + 1];
strcpy(_netmask, netmask.c_str());
}
else
_netmask = NULL;
if (dns.length() > 0)
{
_dns = new char[dns.length() + 1];
strcpy(_dns, dns.c_str());
}
else
_dns = NULL;
}
bool ChangeHostName(std::string fn, std::string _newhostname)
{
if (_newhostname == hostname)
return false;
string line = "";
std::vector<string> zerlegt;
bool found = false;
std::vector<string> neuesfile;
FILE* pFile;
fn = FormatFileName(fn);
pFile = OpenFileAndWait(fn.c_str(), "r");
printf("file loaded\n");
if (pFile == NULL)
return false;
char zw[1024];
fgets(zw, 1024, pFile);
line = std::string(zw);
while ((line.size() > 0) || !(feof(pFile)))
{
printf("%s", line.c_str());
zerlegt = ZerlegeZeile(line, "=");
zerlegt[0] = trim(zerlegt[0], " ");
if ((zerlegt.size() > 1) && (toUpper(zerlegt[0]) == "HOSTNAME")){
line = "hostname = \"" + _newhostname + "\"\n";
found = true;
}
neuesfile.push_back(line);
if (fgets(zw, 1024, pFile) == NULL)
{
line = "";
}
else
{
line = std::string(zw);
}
}
if (!found)
{
line = "\nhostname = \"" + _newhostname + "\"\n";
neuesfile.push_back(line);
}
fclose(pFile);
pFile = OpenFileAndWait(fn.c_str(), "w+");
for (int i = 0; i < neuesfile.size(); ++i)
{
printf(neuesfile[i].c_str());
fputs(neuesfile[i].c_str(), pFile);
}
fclose(pFile);
printf("*** Update hostname done ***\n");
return true;
}

View File

@@ -0,0 +1,11 @@
#ifndef READ_WLANINI_H
#define READ_WLANINI_H
#include <string>
void LoadWlanFromFile(std::string fn, char *&_ssid, char *&_password, char *&_hostname, char *&_ipadr, char *&_gw, char *&_netmask, char *&_dns);
bool ChangeHostName(std::string fn, std::string _newhostname);
#endif

BIN
code/components/tfmicro.zip Normal file

Binary file not shown.

View File

@@ -23,7 +23,7 @@ if(NOT DEFINED ENV{IDF_PATH})
endif()
idf_component_register(
SRCS tensorflow/lite/micro/simple_memory_allocator.cc tensorflow/lite/micro/micro_error_reporter.cc tensorflow/lite/micro/memory_helpers.cc tensorflow/lite/micro/test_helpers.cc tensorflow/lite/micro/recording_micro_allocator.cc tensorflow/lite/micro/micro_time.cc tensorflow/lite/micro/recording_simple_memory_allocator.cc tensorflow/lite/micro/micro_string.cc tensorflow/lite/micro/micro_profiler.cc tensorflow/lite/micro/debug_log.cc tensorflow/lite/micro/all_ops_resolver.cc tensorflow/lite/micro/micro_utils.cc tensorflow/lite/micro/micro_interpreter.cc tensorflow/lite/micro/micro_allocator.cc tensorflow/lite/micro/system_setup.cc tensorflow/lite/micro/memory_planner/linear_memory_planner.cc tensorflow/lite/micro/memory_planner/greedy_memory_planner.cc tensorflow/lite/c/common.c tensorflow/lite/core/api/error_reporter.cc tensorflow/lite/core/api/flatbuffer_conversions.cc tensorflow/lite/core/api/op_resolver.cc tensorflow/lite/core/api/tensor_utils.cc tensorflow/lite/kernels/internal/quantization_util.cc tensorflow/lite/kernels/kernel_util.cc tensorflow/lite/schema/schema_utils.cc tensorflow/lite/micro/kernels/activations.cc tensorflow/lite/micro/kernels/add.cc tensorflow/lite/micro/kernels/add_n.cc tensorflow/lite/micro/kernels/arg_min_max.cc tensorflow/lite/micro/kernels/batch_to_space_nd.cc tensorflow/lite/micro/kernels/cast.cc tensorflow/lite/micro/kernels/ceil.cc tensorflow/lite/micro/kernels/circular_buffer.cc tensorflow/lite/micro/kernels/comparisons.cc tensorflow/lite/micro/kernels/concatenation.cc tensorflow/lite/micro/kernels/conv.cc tensorflow/lite/micro/kernels/conv_common.cc tensorflow/lite/micro/kernels/depthwise_conv.cc tensorflow/lite/micro/kernels/depthwise_conv_common.cc tensorflow/lite/micro/kernels/dequantize.cc tensorflow/lite/micro/kernels/detection_postprocess.cc tensorflow/lite/micro/kernels/div.cc tensorflow/lite/micro/kernels/elementwise.cc tensorflow/lite/micro/kernels/elu.cc tensorflow/lite/micro/kernels/ethosu.cc tensorflow/lite/micro/kernels/exp.cc tensorflow/lite/micro/kernels/expand_dims.cc tensorflow/lite/micro/kernels/fill.cc tensorflow/lite/micro/kernels/floor.cc tensorflow/lite/micro/kernels/fully_connected.cc tensorflow/lite/micro/kernels/fully_connected_common.cc tensorflow/lite/micro/kernels/hard_swish.cc tensorflow/lite/micro/kernels/kernel_runner.cc tensorflow/lite/micro/kernels/kernel_util.cc tensorflow/lite/micro/kernels/l2norm.cc tensorflow/lite/micro/kernels/l2_pool_2d.cc tensorflow/lite/micro/kernels/leaky_relu.cc tensorflow/lite/micro/kernels/logical.cc tensorflow/lite/micro/kernels/logistic.cc tensorflow/lite/micro/kernels/maximum_minimum.cc tensorflow/lite/micro/kernels/mul.cc tensorflow/lite/micro/kernels/neg.cc tensorflow/lite/micro/kernels/pack.cc tensorflow/lite/micro/kernels/pad.cc tensorflow/lite/micro/kernels/pooling.cc tensorflow/lite/micro/kernels/prelu.cc tensorflow/lite/micro/kernels/quantize.cc tensorflow/lite/micro/kernels/quantize_common.cc tensorflow/lite/micro/kernels/reduce.cc tensorflow/lite/micro/kernels/reshape.cc tensorflow/lite/micro/kernels/resize_nearest_neighbor.cc tensorflow/lite/micro/kernels/round.cc tensorflow/lite/micro/kernels/shape.cc tensorflow/lite/micro/kernels/softmax.cc tensorflow/lite/micro/kernels/softmax_common.cc tensorflow/lite/micro/kernels/space_to_batch_nd.cc tensorflow/lite/micro/kernels/split.cc tensorflow/lite/micro/kernels/split_v.cc tensorflow/lite/micro/kernels/squeeze.cc tensorflow/lite/micro/kernels/strided_slice.cc tensorflow/lite/micro/kernels/sub.cc tensorflow/lite/micro/kernels/svdf.cc tensorflow/lite/micro/kernels/svdf_common.cc tensorflow/lite/micro/kernels/tanh.cc tensorflow/lite/micro/kernels/transpose_conv.cc tensorflow/lite/micro/kernels/unpack.cc tensorflow/lite/micro/kernels/zeros_like.cc
SRCS tensorflow/lite/micro/simple_memory_allocator.cc tensorflow/lite/micro/debug_log.cc tensorflow/lite/micro/micro_error_reporter.cc tensorflow/lite/micro/memory_helpers.cc tensorflow/lite/micro/test_helpers.cc tensorflow/lite/micro/recording_micro_allocator.cc tensorflow/lite/micro/micro_time.cc tensorflow/lite/micro/recording_simple_memory_allocator.cc tensorflow/lite/micro/micro_string.cc tensorflow/lite/micro/micro_profiler.cc tensorflow/lite/micro/flatbuffer_utils.cc tensorflow/lite/micro/micro_graph.cc tensorflow/lite/micro/mock_micro_graph.cc tensorflow/lite/micro/all_ops_resolver.cc tensorflow/lite/micro/micro_utils.cc tensorflow/lite/micro/micro_interpreter.cc tensorflow/lite/micro/micro_allocator.cc tensorflow/lite/micro/system_setup.cc tensorflow/lite/micro/memory_planner/linear_memory_planner.cc tensorflow/lite/micro/memory_planner/greedy_memory_planner.cc tensorflow/lite/schema/schema_utils.cc tensorflow/lite/c/common.c tensorflow/lite/core/api/tensor_utils.cc tensorflow/lite/core/api/error_reporter.cc tensorflow/lite/core/api/flatbuffer_conversions.cc tensorflow/lite/core/api/op_resolver.cc tensorflow/lite/kernels/kernel_util.cc tensorflow/lite/kernels/internal/quantization_util.cc tensorflow/lite/kernels/internal/reference/portable_tensor_utils.cc tensorflow/lite/micro/kernels/activations.cc tensorflow/lite/micro/kernels/activations_common.cc tensorflow/lite/micro/kernels/add.cc tensorflow/lite/micro/kernels/add_n.cc tensorflow/lite/micro/kernels/arg_min_max.cc tensorflow/lite/micro/kernels/batch_to_space_nd.cc tensorflow/lite/micro/kernels/cast.cc tensorflow/lite/micro/kernels/ceil.cc tensorflow/lite/micro/kernels/circular_buffer.cc tensorflow/lite/micro/kernels/comparisons.cc tensorflow/lite/micro/kernels/concatenation.cc tensorflow/lite/micro/kernels/conv.cc tensorflow/lite/micro/kernels/conv_common.cc tensorflow/lite/micro/kernels/cumsum.cc tensorflow/lite/micro/kernels/depth_to_space.cc tensorflow/lite/micro/kernels/depthwise_conv.cc tensorflow/lite/micro/kernels/depthwise_conv_common.cc tensorflow/lite/micro/kernels/dequantize.cc tensorflow/lite/micro/kernels/detection_postprocess.cc tensorflow/lite/micro/kernels/elementwise.cc tensorflow/lite/micro/kernels/elu.cc tensorflow/lite/micro/kernels/ethosu.cc tensorflow/lite/micro/kernels/exp.cc tensorflow/lite/micro/kernels/expand_dims.cc tensorflow/lite/micro/kernels/fill.cc tensorflow/lite/micro/kernels/floor.cc tensorflow/lite/micro/kernels/floor_div.cc tensorflow/lite/micro/kernels/floor_mod.cc tensorflow/lite/micro/kernels/fully_connected.cc tensorflow/lite/micro/kernels/fully_connected_common.cc tensorflow/lite/micro/kernels/gather.cc tensorflow/lite/micro/kernels/gather_nd.cc tensorflow/lite/micro/kernels/hard_swish.cc tensorflow/lite/micro/kernels/hard_swish_common.cc tensorflow/lite/micro/kernels/if.cc tensorflow/lite/micro/kernels/kernel_runner.cc tensorflow/lite/micro/kernels/kernel_util.cc tensorflow/lite/micro/kernels/l2norm.cc tensorflow/lite/micro/kernels/l2_pool_2d.cc tensorflow/lite/micro/kernels/leaky_relu.cc tensorflow/lite/micro/kernels/logical.cc tensorflow/lite/micro/kernels/logical_common.cc tensorflow/lite/micro/kernels/logistic.cc tensorflow/lite/micro/kernels/logistic_common.cc tensorflow/lite/micro/kernels/log_softmax.cc tensorflow/lite/micro/kernels/maximum_minimum.cc tensorflow/lite/micro/kernels/mul.cc tensorflow/lite/micro/kernels/neg.cc tensorflow/lite/micro/kernels/pack.cc tensorflow/lite/micro/kernels/pad.cc tensorflow/lite/micro/kernels/pooling.cc tensorflow/lite/micro/kernels/pooling_common.cc tensorflow/lite/micro/kernels/prelu.cc tensorflow/lite/micro/kernels/quantize.cc tensorflow/lite/micro/kernels/quantize_common.cc tensorflow/lite/micro/kernels/reduce.cc tensorflow/lite/micro/kernels/reshape.cc tensorflow/lite/micro/kernels/resize_bilinear.cc tensorflow/lite/micro/kernels/resize_nearest_neighbor.cc tensorflow/lite/micro/kernels/round.cc tensorflow/lite/micro/kernels/shape.cc tensorflow/lite/micro/kernels/softmax.cc tensorflow/lite/micro/kernels/softmax_common.cc tensorflow/lite/micro/kernels/space_to_batch_nd.cc tensorflow/lite/micro/kernels/space_to_depth.cc tensorflow/lite/micro/kernels/split.cc tensorflow/lite/micro/kernels/split_v.cc tensorflow/lite/micro/kernels/squeeze.cc tensorflow/lite/micro/kernels/strided_slice.cc tensorflow/lite/micro/kernels/sub.cc tensorflow/lite/micro/kernels/svdf.cc tensorflow/lite/micro/kernels/svdf_common.cc tensorflow/lite/micro/kernels/tanh.cc tensorflow/lite/micro/kernels/transpose.cc tensorflow/lite/micro/kernels/transpose_conv.cc tensorflow/lite/micro/kernels/unpack.cc tensorflow/lite/micro/kernels/zeros_like.cc
INCLUDE_DIRS . third_party/gemmlowp third_party/flatbuffers/include third_party/ruy)
# Reduce the level of paranoia to be able to compile TF sources
@@ -32,7 +32,7 @@ target_compile_options(${COMPONENT_LIB} PRIVATE
-Wno-missing-field-initializers
-Wno-type-limits)
target_compile_options(${COMPONENT_LIB} PRIVATE -fno-unwind-tables -ffunction-sections -fdata-sections -fmessage-length=0 -DTF_LITE_STATIC_MEMORY -DTF_LITE_DISABLE_X86_NEON -O3 -Werror -Wsign-compare -Wdouble-promotion -Wshadow -Wunused-variable -Wmissing-field-initializers -Wunused-function -Wswitch -Wvla -Wall -Wextra -Wstrict-aliasing -Wno-unused-parameter -DESP)
target_compile_options(${COMPONENT_LIB} PRIVATE $<$<COMPILE_LANGUAGE:CXX>: -std=c++11 -fno-rtti -fno-exceptions -fno-threadsafe-statics -fno-unwind-tables -ffunction-sections -fdata-sections -fmessage-length=0 -DTF_LITE_STATIC_MEMORY -DTF_LITE_DISABLE_X86_NEON -O3 -Werror -Wsign-compare -Wdouble-promotion -Wshadow -Wunused-variable -Wmissing-field-initializers -Wunused-function -Wswitch -Wvla -Wall -Wextra -Wstrict-aliasing -Wno-unused-parameter -DESP >)
target_compile_options(${COMPONENT_LIB} PRIVATE -Wimplicit-function-declaration -Werror -fno-unwind-tables -ffunction-sections -fdata-sections -fmessage-length=0 -DTF_LITE_STATIC_MEMORY -DTF_LITE_DISABLE_X86_NEON -Wsign-compare -Wdouble-promotion -Wshadow -Wunused-variable -Wmissing-field-initializers -Wunused-function -Wswitch -Wvla -Wall -Wextra -Wstrict-aliasing -Wno-unused-parameter -DESP)
target_compile_options(${COMPONENT_LIB} PRIVATE $<$<COMPILE_LANGUAGE:CXX>: -std=c++11 -fno-rtti -fno-exceptions -fno-threadsafe-statics -Werror -fno-unwind-tables -ffunction-sections -fdata-sections -fmessage-length=0 -DTF_LITE_STATIC_MEMORY -DTF_LITE_DISABLE_X86_NEON -Wsign-compare -Wdouble-promotion -Wshadow -Wunused-variable -Wmissing-field-initializers -Wunused-function -Wswitch -Wvla -Wall -Wextra -Wstrict-aliasing -Wno-unused-parameter -DESP >)
target_compile_options(${COMPONENT_LIB} INTERFACE $<$<IN_LIST:-DTF_LITE_STATIC_MEMORY,$<TARGET_PROPERTY:${COMPONENT_LIB},COMPILE_OPTIONS>>:-DTF_LITE_STATIC_MEMORY>)
target_link_libraries(${COMPONENT_LIB} PRIVATE -lm)

View File

@@ -63,7 +63,6 @@ typedef struct {
} TfLiteMirrorPaddingParams;
// Possible fused activation functions.
// TODO(aselle): rename to TfLiteActivation
typedef enum {
kTfLiteActNone = 0,
kTfLiteActRelu,
@@ -98,6 +97,8 @@ typedef struct {
TfLiteFusedActivation activation;
} TfLiteConv3DParams;
typedef TfLiteConv3DParams TfLiteConv3DTransposeParams;
typedef struct {
TfLitePadding padding;
int stride_width;
@@ -328,8 +329,9 @@ typedef struct {
} TfLitePadV2Params;
typedef struct {
// TODO(ahentz): We can't have dynamic data in this struct, at least not yet.
// For now we will fix the maximum possible number of dimensions.
// These fields are only used in old models for backward compatibility.
// In the current implementation, we use the 2nd input of the op as the shape,
// and these fields are unused.
int shape[TFLITE_RESHAPE_PARAMS_MAX_DIMENSION_COUNT];
int num_dimensions;
} TfLiteReshapeParams;
@@ -495,6 +497,11 @@ typedef struct {
TfLiteType value_dtype;
} TfLiteHashtableParams;
typedef struct {
const char* container;
const char* shared_name;
} TfLiteVarHandleParams;
#ifdef __cplusplus
} // extern "C"
#endif // __cplusplus

View File

@@ -29,7 +29,9 @@ extern "C" {
// library.
#ifdef SWIG
#define TFL_CAPI_EXPORT
#else
#elif defined(TFL_STATIC_LIBRARY_BUILD)
#define TFL_CAPI_EXPORT
#else // not definded TFL_STATIC_LIBRARY_BUILD
#if defined(_WIN32)
#ifdef TFL_COMPILE_LIBRARY
#define TFL_CAPI_EXPORT __declspec(dllexport)
@@ -54,7 +56,19 @@ typedef enum TfLiteStatus {
// incompatibility between runtime and delegate, e.g., this error is returned
// when trying to apply a TfLite delegate onto a model graph that's already
// immutable.
kTfLiteApplicationError = 3
kTfLiteApplicationError = 3,
// Generally referring to serialized delegate data not being found.
// See tflite::delegates::Serialization.
kTfLiteDelegateDataNotFound = 4,
// Generally referring to data-writing issues in delegate serialization.
// See tflite::delegates::Serialization.
kTfLiteDelegateDataWriteError = 5,
// Generally referring to data-reading issues in delegate serialization.
// See tflite::delegates::Serialization.
kTfLiteDelegateDataReadError = 5,
} TfLiteStatus;
// Types supported by tensor

View File

@@ -45,8 +45,10 @@ int TfLiteIntArrayEqualsArray(const TfLiteIntArray* a, int b_size,
#ifndef TF_LITE_STATIC_MEMORY
TfLiteIntArray* TfLiteIntArrayCreate(int size) {
TfLiteIntArray* ret =
(TfLiteIntArray*)malloc(TfLiteIntArrayGetSizeInBytes(size));
int alloc_size = TfLiteIntArrayGetSizeInBytes(size);
if (alloc_size <= 0) return NULL;
TfLiteIntArray* ret = (TfLiteIntArray*)malloc(alloc_size);
if (!ret) return ret;
ret->size = size;
return ret;
}
@@ -181,9 +183,9 @@ void TfLiteTensorRealloc(size_t num_bytes, TfLiteTensor* tensor) {
}
// TODO(b/145340303): Tensor data should be aligned.
if (!tensor->data.raw) {
tensor->data.raw = malloc(num_bytes);
tensor->data.raw = (char*)malloc(num_bytes);
} else if (num_bytes > tensor->bytes) {
tensor->data.raw = realloc(tensor->data.raw, num_bytes);
tensor->data.raw = (char*)realloc(tensor->data.raw, num_bytes);
}
tensor->bytes = num_bytes;
}
@@ -229,7 +231,7 @@ const char* TfLiteTypeGetName(TfLiteType type) {
return "Unknown type";
}
TfLiteDelegate TfLiteDelegateCreate() {
TfLiteDelegate TfLiteDelegateCreate(void) {
TfLiteDelegate d = {
.data_ = NULL,
.Prepare = NULL,

View File

@@ -456,8 +456,8 @@ typedef struct TfLiteTensor {
} TfLiteTensor;
// A structure representing an instance of a node.
// This structure only exhibits the inputs, outputs and user defined data, not
// other features like the type.
// This structure only exhibits the inputs, outputs, user defined data and some
// node properties (like statefulness), not other features like the type.
typedef struct TfLiteNode {
// Inputs to this node expressed as indices into the simulator's tensors.
TfLiteIntArray* inputs;
@@ -490,6 +490,9 @@ typedef struct TfLiteNode {
// created by calling `interpreter.ModifyGraphWithDelegate`.
// WARNING: This is an experimental interface that is subject to change.
struct TfLiteDelegate* delegate;
// Whether this op might have side effect (e.g. stateful op).
bool might_have_side_effect;
} TfLiteNode;
#else // defined(TF_LITE_STATIC_MEMORY)?
// NOTE: This flag is opt-in only at compile time.
@@ -640,6 +643,7 @@ typedef struct TfLiteContext {
// TfLiteDelegates can traverse the current execution plan by iterating
// through each member of this array and using GetNodeAndRegistration() to
// access details about a node. i.e.
//
// TfLiteIntArray* execution_plan;
// TF_LITE_ENSURE_STATUS(context->GetExecutionPlan(context, &execution_plan));
// for (int exec_index = 0; exec_index < execution_plan->size; exec_index++) {
@@ -648,6 +652,28 @@ typedef struct TfLiteContext {
// TfLiteRegistration* reg;
// context->GetNodeAndRegistration(context, node_index, &node, &reg);
// }
// Note: the memory pointed by '`*execution_plan` is OWNED by TfLite runtime.
// Future calls to GetExecutionPlan invalidates earlier outputs. The following
// code snippet shows the issue of such an invocation pattern. After calling
// CheckNode, subsequent access to `plan_1st` is undefined.
//
// void CheckNode(const TfLiteNode* node) {
// ...
// TfLiteIntArray* plan_2nd;
// TF_LITE_ENSURE_STATUS(context->GetExecutionPlan(context, &plan_2nd));
// ...
// }
//
// TfLiteIntArray* plan_1st;
// TF_LITE_ENSURE_STATUS(context->GetExecutionPlan(context, &plan_1st));
// for (int exec_index = 0; exec_index < plan_1st->size; exec_index++) {
// int node_index = plan_1st->data[exec_index];
// TfLiteNode* node;
// TfLiteRegistration* reg;
// context->GetNodeAndRegistration(context, node_index, &node, &reg);
// CheckNode(node);
// }
//
// WARNING: This is an experimental interface that is subject to change.
TfLiteStatus (*GetExecutionPlan)(struct TfLiteContext* context,
TfLiteIntArray** execution_plan);
@@ -777,6 +803,18 @@ typedef struct TfLiteContext {
// WARNING: This method may not be available on all platforms.
TfLiteEvalTensor* (*GetEvalTensor)(const struct TfLiteContext* context,
int tensor_idx);
// Retrieves named metadata buffer from the TFLite model.
// Returns kTfLiteOk if metadata is successfully obtained from the flatbuffer
// Model: that is, there exists a `metadata` entry with given `name` string.
// (see TFLite's schema.fbs).
// The corresponding `buffer` information is populated in `ptr` & `bytes`.
// The data from `ptr` is valid for the lifetime of the Interpreter.
//
// WARNING: This is an experimental interface that is subject to change.
TfLiteStatus (*GetModelMetadata)(const struct TfLiteContext* context,
const char* name, const char** ptr,
size_t* bytes);
} TfLiteContext;
typedef struct TfLiteRegistration {
@@ -918,7 +956,7 @@ typedef struct TfLiteDelegate {
// Build a 'null' delegate, with all the fields properly set to their default
// values.
TfLiteDelegate TfLiteDelegateCreate();
TfLiteDelegate TfLiteDelegateCreate(void);
#ifdef __cplusplus
} // extern "C"

View File

@@ -373,6 +373,10 @@ TfLiteStatus ParseOpDataTfLite(const Operator* op, BuiltinOperator op_type,
return ParseReducer(op, error_reporter, allocator, builtin_data);
}
case BuiltinOperator_REDUCE_ALL: {
return ParseReducer(op, error_reporter, allocator, builtin_data);
}
case BuiltinOperator_REDUCE_MAX: {
return ParseReducer(op, error_reporter, allocator, builtin_data);
}
@@ -663,7 +667,6 @@ TfLiteStatus ParseOpDataTfLite(const Operator* op, BuiltinOperator op_type,
return kTfLiteOk;
}
case BuiltinOperator_DELEGATE: {
// TODO(ycling): Revisit when supporting saving delegated models.
TF_LITE_REPORT_ERROR(error_reporter,
"DELEGATE op shouldn't exist in model.");
return kTfLiteError;
@@ -757,7 +760,8 @@ TfLiteStatus ParseOpDataTfLite(const Operator* op, BuiltinOperator op_type,
*builtin_data = params.release();
return kTfLiteOk;
}
case BuiltinOperator_CONV_3D: {
case BuiltinOperator_CONV_3D:
case BuiltinOperator_CONV_3D_TRANSPOSE: {
auto params = safe_allocator.Allocate<TfLiteConv3DParams>();
TF_LITE_ENSURE(error_reporter, params != nullptr);
if (const auto* conv3d_params = op->builtin_options_as_Conv3DOptions()) {
@@ -789,6 +793,21 @@ TfLiteStatus ParseOpDataTfLite(const Operator* op, BuiltinOperator op_type,
*builtin_data = params.release();
return kTfLiteOk;
}
case BuiltinOperator_VAR_HANDLE: {
auto params = safe_allocator.Allocate<TfLiteVarHandleParams>();
TF_LITE_ENSURE(error_reporter, params != nullptr);
params->container = nullptr;
params->shared_name = nullptr;
if (const auto* var_handle_params =
op->builtin_options_as_VarHandleOptions()) {
if (var_handle_params->container())
params->container = var_handle_params->container()->c_str();
if (var_handle_params->shared_name())
params->shared_name = var_handle_params->shared_name()->c_str();
}
*builtin_data = params.release();
return kTfLiteOk;
}
// Below are the ops with no builtin_data structure.
// TODO(aselle): Implement call in BuiltinOptions, but nullptrs are
// ok for now, since there is no call implementation either.
@@ -825,6 +844,9 @@ TfLiteStatus ParseOpDataTfLite(const Operator* op, BuiltinOperator op_type,
case BuiltinOperator_HASHTABLE_FIND:
case BuiltinOperator_HASHTABLE_IMPORT:
case BuiltinOperator_HASHTABLE_SIZE:
case BuiltinOperator_READ_VARIABLE:
case BuiltinOperator_ASSIGN_VARIABLE:
case BuiltinOperator_BROADCAST_ARGS:
return kTfLiteOk;
case BuiltinOperator_PLACEHOLDER_FOR_GREATER_OP_CODES:
return kTfLiteError;
@@ -1372,6 +1394,30 @@ TfLiteStatus ParseHardSwish(const Operator*, ErrorReporter*,
return kTfLiteOk;
}
TfLiteStatus ParseIf(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator, void** builtin_data) {
CheckParsePointerParams(op, error_reporter, allocator, builtin_data);
SafeBuiltinDataAllocator safe_allocator(allocator);
std::unique_ptr<TfLiteIfParams, SafeBuiltinDataAllocator::BuiltinDataDeleter>
params = safe_allocator.Allocate<TfLiteIfParams>();
TF_LITE_ENSURE(error_reporter, params != nullptr);
const IfOptions* schema_params = op->builtin_options_as_IfOptions();
if (schema_params != nullptr) {
params->then_subgraph_index = schema_params->then_subgraph_index();
params->else_subgraph_index = schema_params->else_subgraph_index();
} else {
// TODO(b/157480169): We should either return kTfLiteError or fill in some
// reasonable defaults in the params struct. We are not doing so until we
// better undertand the ramifications of changing the legacy behavior.
}
*builtin_data = params.release();
return kTfLiteOk;
}
TfLiteStatus ParseL2Normalization(const Operator* op,
ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator,

View File

@@ -181,6 +181,9 @@ TfLiteStatus ParseHardSwish(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator,
void** builtin_data);
TfLiteStatus ParseIf(const Operator* op, ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator, void** builtin_data);
TfLiteStatus ParseL2Normalization(const Operator* op,
ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator,

View File

@@ -30,8 +30,7 @@ TfLiteStatus GetRegistrationFromOpCode(
auto builtin_code = GetBuiltinCode(opcode);
int version = opcode->version();
if (builtin_code > BuiltinOperator_MAX ||
builtin_code < BuiltinOperator_MIN) {
if (builtin_code > BuiltinOperator_MAX) {
TF_LITE_REPORT_ERROR(
error_reporter,
"Op builtin_code out of range: %d. Are you using old TFLite binary "

View File

@@ -46,6 +46,22 @@ class OpResolver {
}
virtual ~OpResolver() {}
private:
/// Returns true if this OpResolver may contain any "user defined" ops.
/// By "user defined" ops, we mean any op definitions other than those
/// contained in tflite::ops::builtin::BuiltinOpResolver.
///
/// If this method returns true, it doesn't necessarily mean that the
/// OpResolver contains a user-defined op, just that the absence of
/// user-defined ops can't be guaranteed.
///
/// Note that "user-defined" ops are not the same as "custom" ops;
/// BuiltinOpResolver may support certain "custom" ops, in addition to
/// "builtin" ops, and may not support all of the "builtin" op enum values.
virtual bool MayContainUserDefinedOps() const { return true; }
friend class OpResolverInternal;
};
// Handles the logic for converting between an OperatorCode structure extracted

View File

@@ -279,81 +279,125 @@ inline Integer FloorLog2(Integer n) {
}
}
// generate INT16 LUT for function(), e.g., table exp(x) and 1/(1+x) used in
// softmax
// func - the function to build the LUT for (e.g exp(x))
// min,max - table limits
// table - pointer to buffer
// num - number of elements in the LUT
inline void gen_lut(double (*func)(double), double min, double max,
int16_t* table, const int num) {
// size of table should equal to num + 1
// last element only for slope calculation
double step = (max - min) / (num - 1);
double half_step = step / 2.0;
for (int i = 0; i < num - 1; i++) {
double sample_val = TfLiteRound(func(min + i * step) * 32768.0);
double midpoint_interp_val =
TfLiteRound((func(min + (i + 1) * step) * 32768.0 +
TfLiteRound(func(min + i * step) * 32768.0)) /
2.0);
double midpoint_val =
TfLiteRound(func(min + i * step + half_step) * 32768.0);
double midpoint_err = midpoint_interp_val - midpoint_val;
double bias = TfLiteRound(midpoint_err / 2.0);
table[i] = std::min<double>(std::max<double>(sample_val - bias, -32768.0),
32767.0);
}
table[num - 1] = std::min<double>(
std::max<double>(TfLiteRound(func(max) * 32768.0), -32768.0), 32767.0);
// The size of the LUT depends on the type of input. For int8 inputs a simple
// 256 entries LUT is used. For int16 inputs the high 9 bits are used for
// indexing and the 7 remaining bits are used for interpolation. We thus use a
// 513-entries LUT for int16 cases, 512 for the 9-bit indexing and 1 extra entry
// to interpolate the last value.
template <typename LutInT>
constexpr int lut_size() {
static_assert(std::is_same<LutInT, int8_t>::value ||
std::is_same<LutInT, int16_t>::value,
"Only LUTs with int8 or int16 inputs are supported.");
return std::is_same<LutInT, int8_t>::value ? 256 : 513;
}
// generate INT16 LUT for function(), e.g., table exp(x) and 1/(1+x) used in
// softmax
// func - the function to build the LUT for (e.g exp(x))
// min,max - table limits
// table - pointer to buffer
// num - number of elements in the LUT
inline void gen_lut(float (*func)(float), float min, float max, int16_t* table,
const int num) {
// size of table should equal to num + 1
// last element only for slope calculation
float step = (max - min) / (num - 1);
float half_step = step / 2.0f;
for (int i = 0; i < num - 1; i++) {
float sample_val = TfLiteRound(func(min + i * step) * 32768.0f);
float midpoint_interp_val =
TfLiteRound((func(min + (i + 1) * step) * 32768.0f +
TfLiteRound(func(min + i * step) * 32768.0f)) /
2.0f);
float midpoint_val =
TfLiteRound(func(min + i * step + half_step) * 32768.0f);
float midpoint_err = midpoint_interp_val - midpoint_val;
float bias = TfLiteRound(midpoint_err / 2.0f);
table[i] = std::min<float>(std::max<float>(sample_val - bias, -32768.0f),
32767.0f);
// Generate a LUT for 'func' which can be used to approximate functions like
// exp, log, ...
//
// - func: the function to build the LUT for (e.g exp(x))
// - input_min, input_max: range of the func inputs
// - output_min, output_max: range of the func outputs
// - lut: pointer to the LUT table to fill, the table must be of size
// lut_size<LutInT>()
template <typename FloatT, typename LutInT, typename LutOutT>
inline void gen_lut(FloatT (*func)(FloatT), FloatT input_min, FloatT input_max,
FloatT output_min, FloatT output_max, LutOutT* lut) {
static_assert(std::is_same<LutInT, int8_t>::value ||
std::is_same<LutInT, int16_t>::value,
"Only LUTs with int8 or int16 inputs are supported.");
static_assert(std::is_same<LutOutT, int8_t>::value ||
std::is_same<LutOutT, int16_t>::value,
"Only LUTs with int8 or int16 outputs are supported.");
static_assert(std::is_floating_point<FloatT>::value,
"FloatT must be a floating-point type.");
const int nb_steps = std::is_same<LutInT, int8_t>::value ? 256 : 512;
const FloatT step = (input_max - input_min) / nb_steps;
const FloatT half_step = step / 2;
const FloatT output_scaling_inv =
static_cast<FloatT>(std::numeric_limits<LutOutT>::max() -
std::numeric_limits<LutOutT>::min() + 1) /
(output_max - output_min);
const FloatT table_min =
static_cast<FloatT>(std::numeric_limits<LutOutT>::min());
const FloatT table_max =
static_cast<FloatT>(std::numeric_limits<LutOutT>::max());
for (int i = 0; i < nb_steps; i++) {
const FloatT val = func(input_min + i * step);
const FloatT val_midpoint = func(input_min + i * step + half_step);
const FloatT val_next = func(input_min + (i + 1) * step);
const FloatT sample_val = TfLiteRound(val * output_scaling_inv);
const FloatT midpoint_interp_val =
TfLiteRound((val_next * output_scaling_inv +
TfLiteRound(val * output_scaling_inv)) /
2);
const FloatT midpoint_val = TfLiteRound(val_midpoint * output_scaling_inv);
const FloatT midpoint_err = midpoint_interp_val - midpoint_val;
const FloatT bias = TfLiteRound(midpoint_err / 2);
lut[i] = static_cast<LutOutT>(std::min<FloatT>(
std::max<FloatT>(sample_val - bias, table_min), table_max));
}
const bool with_extra_interpolation_value =
std::is_same<LutInT, int16_t>::value;
if (with_extra_interpolation_value) {
lut[nb_steps] = static_cast<LutOutT>(std::min<FloatT>(
std::max<FloatT>(TfLiteRound(func(input_max) * output_scaling_inv),
table_min),
table_max));
}
table[num - 1] = std::min<float>(
std::max<float>(TfLiteRound(func(max) * 32768.0f), -32768.0f), 32767.0f);
}
// int16_t func table lookup, e.g., lookup exp() and 1/(1+x) used in softmax
inline int16_t generic_int16_table_lookup(int16_t value, const int16_t* lut) {
// 512 base value, lut[513] only for calculate slope
uint16_t index = static_cast<uint16_t>(256 + (value >> 7));
// LUT must have 513 values
template <typename LutOutT>
inline LutOutT lut_lookup_with_interpolation(int16_t value,
const LutOutT* lut) {
static_assert(std::is_same<LutOutT, int8_t>::value ||
std::is_same<LutOutT, int16_t>::value,
"Only LUTs with int8 or int16 outputs are supported.");
// 512 base values, lut[513] is only used to calculate the slope
const uint16_t index = static_cast<uint16_t>(256 + (value >> 7));
assert(index < 512 && "LUT index out of range.");
int16_t offset = value & 0x7f;
const int16_t offset = value & 0x7f;
// base and slope are Q0.15
int16_t base = lut[index];
int16_t slope = lut[index + 1] - lut[index];
// Base and slope are Q0.x
const LutOutT base = lut[index];
const LutOutT slope = lut[index + 1] - lut[index];
// Q0.15 * Q0.7 = Q0.22
// Round and convert from Q0.22 to Q0.15
int32_t delta = (static_cast<int32_t>(slope) * offset + 64) >> 7;
// Q0.x * Q0.7 = Q0.(x + 7)
// Round and convert from Q0.(x + 7) to Q0.x
const int delta = (slope * offset + 64) >> 7;
// Q0.15 + Q0.15
return base + delta;
return static_cast<LutOutT>(base + delta);
}
// int16_t -> int16_t table lookup with interpolation
// LUT must have 513 values
inline int16_t lut_lookup(int16_t value, const int16_t* lut) {
return lut_lookup_with_interpolation(value, lut);
}
// int16_t -> int8_t table lookup with interpolation
// LUT must have 513 values
inline int8_t lut_lookup(int16_t value, const int8_t* lut) {
return lut_lookup_with_interpolation(value, lut);
}
// int8_t -> int8_t table lookup without interpolation
// LUT must have 256 values
inline int8_t lut_lookup(int8_t value, const int8_t* lut) {
return lut[128 + value];
}
// int8_t -> int16_t table lookup without interpolation
// LUT must have 256 values
inline int16_t lut_lookup(int8_t value, const int16_t* lut) {
return lut[128 + value];
}
// Table of sigmoid(i/24) at 0.16 format - 256 elements.
@@ -575,7 +619,8 @@ log_x_for_x_greater_than_or_equal_to_1_impl(
// InputIntegerBits - z_b_headroom - 0.25);
const FixedPointAccum z_a_pow_2_adj = SaturatingAddNonGemmlowp(
FixedPointAccum::FromRaw(SaturatingRoundingMultiplyByPOTParam(
InputIntegerBits - z_a_headroom_plus_1, 31 - kAccumIntegerBits)),
static_cast<int32_t>(InputIntegerBits - z_a_headroom_plus_1),
31 - kAccumIntegerBits)),
shifted_quarter);
// z_b is treated like z_a, but premultiplying by sqrt(0.5).
@@ -585,7 +630,8 @@ log_x_for_x_greater_than_or_equal_to_1_impl(
SaturatingRoundingMultiplyByPOTParam(z_a.raw(), z_b_headroom);
const FixedPointAccum z_b_pow_2_adj = SaturatingSub(
FixedPointAccum::FromRaw(SaturatingRoundingMultiplyByPOTParam(
InputIntegerBits - z_b_headroom, 31 - kAccumIntegerBits)),
static_cast<int32_t>(InputIntegerBits - z_b_headroom),
31 - kAccumIntegerBits)),
shifted_quarter);
const FixedPoint0 r = FixedPoint0::FromRaw(std::min(r_a_raw, r_b_raw));

View File

@@ -19,9 +19,8 @@ limitations under the License.
namespace tflite {
#if defined(TF_LITE_USE_GLOBAL_CMATH_FUNCTIONS) || \
(defined(__ANDROID__) && !defined(__NDK_MAJOR__)) || defined(ARDUINO) || \
defined(__ZEPHYR__)
#if defined(TF_LITE_USE_GLOBAL_CMATH_FUNCTIONS) || \
(defined(__ANDROID__) && !defined(__NDK_MAJOR__)) || defined(__ZEPHYR__)
#define TF_LITE_GLOBAL_STD_PREFIX
#else
#define TF_LITE_GLOBAL_STD_PREFIX std

View File

@@ -15,26 +15,6 @@ limitations under the License.
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_OPTIMIZED_NEON_CHECK_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_OPTIMIZED_NEON_CHECK_H_
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
#define USE_NEON
#include <arm_neon.h>
#endif
#if defined __GNUC__ && defined __SSE4_1__ && !defined TF_LITE_DISABLE_X86_NEON
#define USE_NEON
#include "NEON_2_SSE.h"
#endif
// NEON_OR_PORTABLE(SomeFunc, args) calls NeonSomeFunc(args) if USE_NEON is
// defined, PortableSomeFunc(args) otherwise.
#ifdef USE_NEON
// Always use Neon code
#define NEON_OR_PORTABLE(funcname, ...) Neon##funcname(__VA_ARGS__)
#else
// No NEON available: Use Portable code
#define NEON_OR_PORTABLE(funcname, ...) Portable##funcname(__VA_ARGS__)
#endif // defined(USE_NEON)
// TFLM does not need to utilize any Neon optimizations.
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_OPTIMIZED_NEON_CHECK_H_

View File

@@ -15,6 +15,8 @@ limitations under the License.
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ADD_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ADD_H_
#include <type_traits>
#include "fixedpoint/fixedpoint.h"
#include "tensorflow/lite/kernels/internal/common.h"
@@ -27,25 +29,14 @@ inline void Add(const ArithmeticParams& params,
const RuntimeShape& input1_shape, const T* input1_data,
const RuntimeShape& input2_shape, const T* input2_data,
const RuntimeShape& output_shape, T* output_data) {
T activation_min, activation_max;
GetActivationParams(params, &activation_min, &activation_max);
const int flat_size =
MatchingElementsSize(input1_shape, input2_shape, output_shape);
for (int i = 0; i < flat_size; ++i) {
output_data[i] = ActivationFunctionWithMinMax(
input1_data[i] + input2_data[i], params.quantized_activation_min,
params.quantized_activation_max);
}
}
inline void Add(const ArithmeticParams& params,
const RuntimeShape& input1_shape, const float* input1_data,
const RuntimeShape& input2_shape, const float* input2_data,
const RuntimeShape& output_shape, float* output_data) {
const int flat_size =
MatchingElementsSize(input1_shape, input2_shape, output_shape);
for (int i = 0; i < flat_size; i++) {
auto x = input1_data[i] + input2_data[i];
output_data[i] = ActivationFunctionWithMinMax(
x, params.float_activation_min, params.float_activation_max);
input1_data[i] + input2_data[i], activation_min, activation_max);
}
}
@@ -202,13 +193,12 @@ inline void Add(const ArithmeticParams& params,
}
}
inline void BroadcastAdd4DSlow(const ArithmeticParams& params,
const RuntimeShape& input1_shape,
const float* input1_data,
const RuntimeShape& input2_shape,
const float* input2_data,
const RuntimeShape& output_shape,
float* output_data) {
template <typename T>
inline typename std::enable_if<!is_small_integer<T>::value, void>::type
BroadcastAdd4DSlow(const ArithmeticParams& params,
const RuntimeShape& input1_shape, const T* input1_data,
const RuntimeShape& input2_shape, const T* input2_data,
const RuntimeShape& output_shape, T* output_data) {
NdArrayDesc<4> desc1;
NdArrayDesc<4> desc2;
NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
@@ -216,6 +206,9 @@ inline void BroadcastAdd4DSlow(const ArithmeticParams& params,
const RuntimeShape extended_output_shape =
RuntimeShape::ExtendedShape(4, output_shape);
T activation_min, activation_max;
GetActivationParams(params, &activation_min, &activation_max);
// In Tensorflow, the dimensions are canonically named (batch_number, row,
// col, channel), with extents (batches, height, width, depth), with the
// trailing dimension changing most rapidly (channels has the smallest stride,
@@ -232,51 +225,10 @@ inline void BroadcastAdd4DSlow(const ArithmeticParams& params,
for (int x = 0; x < extended_output_shape.Dims(2); ++x) {
for (int c = 0; c < extended_output_shape.Dims(3); ++c) {
output_data[Offset(extended_output_shape, b, y, x, c)] =
ActivationFunctionWithMinMax(
ActivationFunctionWithMinMax<T>(
input1_data[SubscriptToIndex(desc1, b, y, x, c)] +
input2_data[SubscriptToIndex(desc2, b, y, x, c)],
params.float_activation_min, params.float_activation_max);
}
}
}
}
}
inline void BroadcastAdd4DSlow(const ArithmeticParams& params,
const RuntimeShape& input1_shape,
const int32_t* input1_data,
const RuntimeShape& input2_shape,
const int32_t* input2_data,
const RuntimeShape& output_shape,
int32_t* output_data) {
NdArrayDesc<4> desc1;
NdArrayDesc<4> desc2;
NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
&desc2);
const RuntimeShape extended_output_shape =
RuntimeShape::ExtendedShape(4, output_shape);
// In Tensorflow, the dimensions are canonically named (batch_number, row,
// col, channel), with extents (batches, height, width, depth), with the
// trailing dimension changing most rapidly (channels has the smallest stride,
// typically 1 element).
//
// In generated C code, we store arrays with the dimensions reversed. The
// first dimension has smallest stride.
//
// We name our variables by their Tensorflow convention, but generate C code
// nesting loops such that the innermost loop has the smallest stride for the
// best cache behavior.
for (int b = 0; b < extended_output_shape.Dims(0); ++b) {
for (int y = 0; y < extended_output_shape.Dims(1); ++y) {
for (int x = 0; x < extended_output_shape.Dims(2); ++x) {
for (int c = 0; c < extended_output_shape.Dims(3); ++c) {
output_data[Offset(extended_output_shape, b, y, x, c)] =
ActivationFunctionWithMinMax(
input1_data[SubscriptToIndex(desc1, b, y, x, c)] +
input2_data[SubscriptToIndex(desc2, b, y, x, c)],
params.quantized_activation_min,
params.quantized_activation_max);
activation_min, activation_max);
}
}
}
@@ -287,10 +239,11 @@ inline void BroadcastAdd4DSlow(const ArithmeticParams& params,
// is 32-bit for both cases. The overflow does not happen due to the
// choice of the shift (20 or 15, accordingly - see add.cc for more comments).
template <typename T>
inline void BroadcastAdd4DSlow(
const ArithmeticParams& params, const RuntimeShape& input1_shape,
const T* input1_data, const RuntimeShape& input2_shape,
const T* input2_data, const RuntimeShape& output_shape, T* output_data) {
inline typename std::enable_if<is_small_integer<T>::value, void>::type
BroadcastAdd4DSlow(const ArithmeticParams& params,
const RuntimeShape& input1_shape, const T* input1_data,
const RuntimeShape& input2_shape, const T* input2_data,
const RuntimeShape& output_shape, T* output_data) {
NdArrayDesc<4> desc1;
NdArrayDesc<4> desc2;
NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,

View File

@@ -15,7 +15,10 @@ limitations under the License.
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ADD_N_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ADD_N_H_
#include "tensorflow/lite/kernels/internal/types.h"
#include <algorithm>
#include <limits>
#include "tensorflow/lite/kernels/internal/common.h"
namespace tflite {
namespace reference_ops {
@@ -36,6 +39,47 @@ inline void AddN(const RuntimeShape& input_shape, const size_t num_inputs,
}
}
inline void AddN(const ArithmeticParams& params,
const RuntimeShape& input_shape, const size_t num_inputs,
const int8_t* const* input_data, int8_t* output_data) {
TFLITE_DCHECK_LE(params.quantized_activation_min,
params.quantized_activation_max);
// Input offset is negative input zero point. Activation tensors are
// asymmetric quantized so they span the full int8 range.
// All inputs should have same zero-point and scale, this is checked during
// Prepare stage.
TFLITE_DCHECK_GE(-params.input1_offset, std::numeric_limits<int8_t>::min());
TFLITE_DCHECK_LE(-params.input1_offset, std::numeric_limits<int8_t>::max());
// All inputs and output should have the same shape, this is checked during
// Prepare stage.
const size_t size = input_shape.FlatSize();
for (size_t i = 0; i < size; ++i) {
// accumulate in scaled_x before clamping to avoid overflow
const int32_t x = params.input1_offset; // x = 0
const int32_t shifted_x = x * (1 << params.left_shift);
int32_t scaled_x = MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_x, params.input1_multiplier, params.input1_shift);
for (size_t j = 0; j < num_inputs; ++j) {
const int32_t y = params.input1_offset + input_data[j][i];
const int32_t shifted_y = y * (1 << params.left_shift);
int32_t scaled_y = MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_y, params.input1_multiplier, params.input1_shift);
scaled_x += scaled_y;
}
const int32_t raw_output =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
scaled_x, params.output_multiplier, params.output_shift) +
params.output_offset;
const int32_t clamped_output =
std::min(params.quantized_activation_max,
std::max(params.quantized_activation_min, raw_output));
output_data[i] = static_cast<int8_t>(clamped_output);
}
}
} // namespace reference_ops
} // namespace tflite

View File

@@ -0,0 +1,275 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_BATCH_MATMUL_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_BATCH_MATMUL_H_
#include <algorithm>
#include <cstdint>
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/compatibility.h"
#include "tensorflow/lite/kernels/internal/tensor_utils_common.h"
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
namespace reference_ops {
namespace batch_matmul {
// Determine which dimension is the broadcast dimension.
inline int broadcast_dim(int lhs_dim, int rhs_dim) {
if (lhs_dim == rhs_dim) return lhs_dim;
if (lhs_dim == 1) return rhs_dim;
TFLITE_DCHECK_EQ(rhs_dim, 1);
return lhs_dim;
}
// Compute the "extent" for iterating on this dimension.
// If we are broadcasting, then don't advance (i.e return 0).
inline int extent(const RuntimeShape& shape, int x) {
if (shape.Dims(x) == 1) {
return 0;
}
int prod = 1;
for (int i = x + 1; i < shape.DimensionsCount(); ++i) {
prod *= shape.Dims(i);
}
return prod;
}
} // namespace batch_matmul
template <typename Ta, typename Tb, typename Tout>
inline void BatchMatMul(const RuntimeShape& lhs_shape, const Ta* lhs_data,
const RuntimeShape& rhs_shape, const Tb* rhs_data,
const RuntimeShape& output_shape, Tout* output_data) {
const RuntimeShape extended_lhs_shape =
RuntimeShape::ExtendedShape(5, lhs_shape);
const RuntimeShape extended_rhs_shape =
RuntimeShape::ExtendedShape(5, rhs_shape);
const int batch_dim0 = batch_matmul::broadcast_dim(
extended_lhs_shape.Dims(0), extended_rhs_shape.Dims(0));
const int batch_dim1 = batch_matmul::broadcast_dim(
extended_lhs_shape.Dims(1), extended_rhs_shape.Dims(1));
const int batch_dim2 = batch_matmul::broadcast_dim(
extended_lhs_shape.Dims(2), extended_rhs_shape.Dims(2));
const int lhs_ext0 = batch_matmul::extent(extended_lhs_shape, 0);
const int lhs_ext1 = batch_matmul::extent(extended_lhs_shape, 1);
const int lhs_ext2 = batch_matmul::extent(extended_lhs_shape, 2);
const int rhs_ext0 = batch_matmul::extent(extended_rhs_shape, 0);
const int rhs_ext1 = batch_matmul::extent(extended_rhs_shape, 1);
const int rhs_ext2 = batch_matmul::extent(extended_rhs_shape, 2);
// Set params for each matrix multiply.
const int lhs_rows = extended_lhs_shape.Dims(3);
const int rhs_cols = extended_rhs_shape.Dims(4);
const int accum_depth = extended_lhs_shape.Dims(4);
for (int b0 = 0; b0 < batch_dim0; ++b0) {
const Ta* lhs_ptr0 = lhs_data + (b0 * lhs_ext0);
const Tb* rhs_ptr0 = rhs_data + (b0 * rhs_ext0);
for (int b1 = 0; b1 < batch_dim1; ++b1) {
const Ta* lhs_ptr1 = lhs_ptr0 + b1 * lhs_ext1;
const Tb* rhs_ptr1 = rhs_ptr0 + b1 * rhs_ext1;
for (int b2 = 0; b2 < batch_dim2; ++b2) {
const Ta* lhs_ptr2 = lhs_ptr1 + b2 * lhs_ext2;
const Tb* rhs_ptr2 = rhs_ptr1 + b2 * rhs_ext2;
Tout* out_ptr = output_data + ((b0 * batch_dim1 * batch_dim2) +
b1 * batch_dim2 + b2) *
lhs_rows * rhs_cols;
for (int j = 0; j < rhs_cols; ++j) {
for (int i = 0; i < lhs_rows; ++i) {
Tout total = 0;
for (int k = 0; k < accum_depth; ++k) {
total += static_cast<Tout>(lhs_ptr2[accum_depth * i + k]) *
static_cast<Tout>(rhs_ptr2[j * accum_depth + k]);
}
int idx = lhs_rows * j + i;
out_ptr[idx] = total;
}
}
}
}
}
}
inline void BatchMatMul(const RuntimeShape& lhs_shape, const int8_t* lhs_data,
const RuntimeShape& rhs_shape, const int8_t* rhs_data,
const float* scaling_factors,
const int32_t* input_offset, int32_t* row_sums,
const RuntimeShape& output_shape, float* output_data,
bool* compute_row_sums) {
const RuntimeShape extended_lhs_shape =
RuntimeShape::ExtendedShape(5, lhs_shape);
const RuntimeShape extended_rhs_shape =
RuntimeShape::ExtendedShape(5, rhs_shape);
const int batch_dim0 = batch_matmul::broadcast_dim(
extended_lhs_shape.Dims(0), extended_rhs_shape.Dims(0));
const int batch_dim1 = batch_matmul::broadcast_dim(
extended_lhs_shape.Dims(1), extended_rhs_shape.Dims(1));
const int batch_dim2 = batch_matmul::broadcast_dim(
extended_lhs_shape.Dims(2), extended_rhs_shape.Dims(2));
const int lhs_ext0 = batch_matmul::extent(extended_lhs_shape, 0);
const int lhs_ext1 = batch_matmul::extent(extended_lhs_shape, 1);
const int lhs_ext2 = batch_matmul::extent(extended_lhs_shape, 2);
const int rhs_ext0 = batch_matmul::extent(extended_rhs_shape, 0);
const int rhs_ext1 = batch_matmul::extent(extended_rhs_shape, 1);
const int rhs_ext2 = batch_matmul::extent(extended_rhs_shape, 2);
// Set params for each matrix multiply.
const int lhs_rows = extended_lhs_shape.Dims(3);
const int rhs_cols = extended_rhs_shape.Dims(4);
const int accum_depth = extended_lhs_shape.Dims(4);
const int ioff_ext0 = rhs_ext0 == 0 ? 0 : rhs_cols;
const int ioff_ext1 = rhs_ext1 == 0 ? 0 : rhs_cols;
const int ioff_ext2 = rhs_ext2 == 0 ? 0 : rhs_cols;
const int woff_ext0 = lhs_ext0 == 0 ? 0 : lhs_rows;
const int woff_ext1 = lhs_ext1 == 0 ? 0 : lhs_rows;
const int woff_ext2 = lhs_ext2 == 0 ? 0 : lhs_rows;
if (!compute_row_sums || *compute_row_sums) {
int num_weights_matrices = 1;
for (int i = 1; i < extended_lhs_shape.DimensionsCount() - 2; ++i) {
num_weights_matrices *= extended_lhs_shape.Dims(i);
}
tensor_utils::ReductionSumVector(
lhs_data, row_sums, num_weights_matrices * lhs_rows, accum_depth);
if (compute_row_sums) {
*compute_row_sums = false;
}
}
for (int b0 = 0; b0 < batch_dim0; ++b0) {
const int8_t* lhs_ptr0 = lhs_data + (b0 * lhs_ext0);
const int8_t* rhs_ptr0 = rhs_data + (b0 * rhs_ext0);
const int32_t* ioff_ptr0 = input_offset + (b0 * ioff_ext0);
const float* scale_ptr0 = scaling_factors + (b0 * ioff_ext0);
const int32_t* woff_ptr0 = row_sums + (b0 * woff_ext0);
for (int b1 = 0; b1 < batch_dim1; ++b1) {
const int8_t* lhs_ptr1 = lhs_ptr0 + b1 * lhs_ext1;
const int8_t* rhs_ptr1 = rhs_ptr0 + b1 * rhs_ext1;
const int32_t* ioff_ptr1 = ioff_ptr0 + (b1 * ioff_ext1);
const float* scale_ptr1 = scale_ptr0 + (b1 * ioff_ext1);
const int32_t* woff_ptr1 = woff_ptr0 + (b1 * woff_ext1);
for (int b2 = 0; b2 < batch_dim2; ++b2) {
const int8_t* lhs_ptr2 = lhs_ptr1 + b2 * lhs_ext2;
const int8_t* rhs_ptr2 = rhs_ptr1 + b2 * rhs_ext2;
const int32_t* ioff_ptr2 = ioff_ptr1 + (b2 * ioff_ext2);
const float* scale_ptr2 = scale_ptr1 + (b2 * ioff_ext2);
const int32_t* woff_ptr2 = woff_ptr1 + (b2 * woff_ext2);
float* out_ptr = output_data + ((b0 * batch_dim1 * batch_dim2) +
b1 * batch_dim2 + b2) *
lhs_rows * rhs_cols;
for (int j = 0; j < rhs_cols; ++j) {
const float batch_scaling_factor = scale_ptr2[j];
const float batch_offset = static_cast<float>(ioff_ptr2[j]);
for (int i = 0; i < lhs_rows; ++i) {
int32_t total = 0;
for (int k = 0; k < accum_depth; ++k) {
total +=
lhs_ptr2[accum_depth * i + k] * rhs_ptr2[j * accum_depth + k];
}
int32_t row_sum = woff_ptr2[i];
total -= row_sum * batch_offset;
int idx = lhs_rows * j + i;
out_ptr[idx] += batch_scaling_factor * total;
}
}
}
}
}
}
template <typename T, typename AccumT>
inline void BatchMatMul(const FullyConnectedParams& params,
const RuntimeShape& lhs_shape, const T* lhs_data,
const RuntimeShape& rhs_shape, const T* rhs_data,
const RuntimeShape& output_shape, T* output_data) {
const RuntimeShape extended_lhs_shape =
RuntimeShape::ExtendedShape(5, lhs_shape);
const RuntimeShape extended_rhs_shape =
RuntimeShape::ExtendedShape(5, rhs_shape);
const int batch_dim0 = batch_matmul::broadcast_dim(
extended_lhs_shape.Dims(0), extended_rhs_shape.Dims(0));
const int batch_dim1 = batch_matmul::broadcast_dim(
extended_lhs_shape.Dims(1), extended_rhs_shape.Dims(1));
const int batch_dim2 = batch_matmul::broadcast_dim(
extended_lhs_shape.Dims(2), extended_rhs_shape.Dims(2));
const int lhs_ext0 = batch_matmul::extent(extended_lhs_shape, 0);
const int lhs_ext1 = batch_matmul::extent(extended_lhs_shape, 1);
const int lhs_ext2 = batch_matmul::extent(extended_lhs_shape, 2);
const int rhs_ext0 = batch_matmul::extent(extended_rhs_shape, 0);
const int rhs_ext1 = batch_matmul::extent(extended_rhs_shape, 1);
const int rhs_ext2 = batch_matmul::extent(extended_rhs_shape, 2);
// Set params for each matrix multiply.
const int lhs_rows = extended_lhs_shape.Dims(3);
const int rhs_cols = extended_rhs_shape.Dims(4);
const int accum_depth = extended_lhs_shape.Dims(4);
const int32_t input_offset = params.input_offset;
const int32_t filter_offset = params.weights_offset;
const int32_t output_offset = params.output_offset;
const int32_t output_multiplier = params.output_multiplier;
const int output_shift = params.output_shift;
const int32_t output_activation_min = params.quantized_activation_min;
const int32_t output_activation_max = params.quantized_activation_max;
TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
for (int b0 = 0; b0 < batch_dim0; ++b0) {
const T* lhs_ptr0 = lhs_data + (b0 * lhs_ext0);
const T* rhs_ptr0 = rhs_data + (b0 * rhs_ext0);
for (int b1 = 0; b1 < batch_dim1; ++b1) {
const T* lhs_ptr1 = lhs_ptr0 + b1 * lhs_ext1;
const T* rhs_ptr1 = rhs_ptr0 + b1 * rhs_ext1;
for (int b2 = 0; b2 < batch_dim2; ++b2) {
const T* lhs_ptr2 = lhs_ptr1 + b2 * lhs_ext2;
const T* rhs_ptr2 = rhs_ptr1 + b2 * rhs_ext2;
T* out_ptr = output_data +
((b0 * batch_dim1 * batch_dim2) + b1 * batch_dim2 + b2) *
lhs_rows * rhs_cols;
for (int j = 0; j < rhs_cols; ++j) {
for (int i = 0; i < lhs_rows; ++i) {
AccumT total = 0;
for (int k = 0; k < accum_depth; ++k) {
AccumT lhs_val = lhs_ptr2[accum_depth * i + k];
AccumT rhs_val = rhs_ptr2[accum_depth * j + k];
total += (lhs_val + filter_offset) * (rhs_val + input_offset);
}
int32_t total_scaled = MultiplyByQuantizedMultiplier(
total, output_multiplier, output_shift);
total_scaled += output_offset;
total_scaled = std::max(total_scaled, output_activation_min);
total_scaled = std::min(total_scaled, output_activation_max);
const int idx = lhs_rows * j + i;
out_ptr[idx] = static_cast<T>(total_scaled);
}
}
}
}
}
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_BATCH_MATMUL_H_

View File

@@ -0,0 +1,175 @@
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_CUMSUM_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_CUMSUM_H_
#include <algorithm>
#include <cstdint>
#include <limits>
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/compatibility.h"
namespace tflite {
namespace reference_ops {
template <typename T>
inline void CumSum(const T* input_data, const RuntimeShape& shape, int32_t axis,
bool exclusive, bool reverse, T* output_data) {
const int32_t rank = shape.DimensionsCount();
TFLITE_DCHECK_GE(rank, 1);
TFLITE_DCHECK_GE(axis, 0);
TFLITE_DCHECK_LT(axis, rank);
size_t inner = 1;
size_t outer = 1;
size_t depth = 1;
for (int32_t i = 0; i < rank; i++) {
if (i < axis)
inner *= shape.Dims(i);
else if (i > axis)
outer *= shape.Dims(i);
else
depth = shape.Dims(i);
}
for (size_t outer_index = 0; outer_index < outer; outer_index++) {
size_t outer_index_adj;
if (reverse)
outer_index_adj = (outer - 1) - outer_index;
else
outer_index_adj = outer_index;
for (size_t inner_index = 0; inner_index < inner; inner_index++) {
T accumulator = 0;
size_t inner_index_adj;
if (reverse)
inner_index_adj = (inner - 1) - inner_index;
else
inner_index_adj = inner_index;
for (size_t depth_index = 0; depth_index < depth; depth_index++) {
size_t depth_index_adj;
if (reverse)
depth_index_adj = (depth - 1) - depth_index;
else
depth_index_adj = depth_index;
size_t index = outer_index_adj;
index += inner_index_adj * depth * outer;
index += depth_index_adj * outer;
if (exclusive) {
output_data[index] = accumulator;
accumulator += input_data[index];
} else {
accumulator += input_data[index];
output_data[index] = accumulator;
}
}
}
}
}
//
// Quantized INT8 CUMSUM
//
inline void CumSum(const ArithmeticParams& params, const int8_t* input_data,
const RuntimeShape& shape, int32_t axis, bool exclusive,
bool reverse, int8_t* output_data) {
TFLITE_DCHECK_LE(params.quantized_activation_min,
params.quantized_activation_max);
// Input offset is negative input zero point. Activation tensors are
// asymmetric quantized so they span the full int8 range.
// All inputs should have same zero-point and scale, this is checked during
// Prepare stage.
TFLITE_DCHECK_GE(-params.input1_offset, std::numeric_limits<int8_t>::min());
TFLITE_DCHECK_LE(-params.input1_offset, std::numeric_limits<int8_t>::max());
const int32_t rank = shape.DimensionsCount();
TFLITE_DCHECK_GE(rank, 1);
TFLITE_DCHECK_GE(axis, 0);
TFLITE_DCHECK_LT(axis, rank);
size_t inner = 1;
size_t outer = 1;
size_t depth = 1;
for (int32_t i = 0; i < rank; i++) {
if (i < axis)
inner *= shape.Dims(i);
else if (i > axis)
outer *= shape.Dims(i);
else
depth = shape.Dims(i);
}
for (size_t outer_index = 0; outer_index < outer; outer_index++) {
size_t outer_index_adj;
if (reverse)
outer_index_adj = (outer - 1) - outer_index;
else
outer_index_adj = outer_index;
for (size_t inner_index = 0; inner_index < inner; inner_index++) {
int32_t accumulator = params.input1_offset; // accumulator = 0
accumulator *= (1 << params.left_shift);
accumulator = MultiplyByQuantizedMultiplierSmallerThanOneExp(
accumulator, params.input1_multiplier, params.input1_shift);
size_t inner_index_adj;
if (reverse)
inner_index_adj = (inner - 1) - inner_index;
else
inner_index_adj = inner_index;
for (size_t depth_index = 0; depth_index < depth; depth_index++) {
size_t depth_index_adj;
if (reverse)
depth_index_adj = (depth - 1) - depth_index;
else
depth_index_adj = depth_index;
size_t index = outer_index_adj;
index += inner_index_adj * depth * outer;
index += depth_index_adj * outer;
const int32_t y = params.input1_offset + input_data[index];
const int32_t shifted_y = y * (1 << params.left_shift);
const int32_t scaled_y = MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_y, params.input1_multiplier, params.input1_shift);
int32_t scaled_output;
if (exclusive) {
scaled_output = accumulator;
accumulator += scaled_y;
} else {
accumulator += scaled_y;
scaled_output = accumulator;
}
const int32_t raw_output =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
scaled_output, params.output_multiplier, params.output_shift) +
params.output_offset;
const int32_t clamped_output =
std::min(params.quantized_activation_max,
std::max(params.quantized_activation_min, raw_output));
output_data[index] = static_cast<int8_t>(clamped_output);
}
}
}
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_CUMSUM_H_

View File

@@ -0,0 +1,79 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DEPTH_TO_SPACE_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DEPTH_TO_SPACE_H_
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
namespace reference_ops {
template <typename T>
inline void DepthToSpace(const tflite::DepthToSpaceParams& op_params,
const RuntimeShape& unextended_input_shape,
const T* input_data,
const RuntimeShape& unextended_output_shape,
T* output_data) {
TFLITE_DCHECK_LE(unextended_input_shape.DimensionsCount(), 4);
TFLITE_DCHECK_LE(unextended_output_shape.DimensionsCount(), 4);
const RuntimeShape input_shape =
RuntimeShape::ExtendedShape(4, unextended_input_shape);
const RuntimeShape output_shape =
RuntimeShape::ExtendedShape(4, unextended_output_shape);
const int input_depth = input_shape.Dims(3);
const int input_width = input_shape.Dims(2);
const int input_height = input_shape.Dims(1);
const int input_batch = input_shape.Dims(0);
const int output_depth = output_shape.Dims(3);
const int output_width = output_shape.Dims(2);
const int output_height = output_shape.Dims(1);
const int output_batch = output_shape.Dims(0);
const int32_t block_size = op_params.block_size;
TFLITE_DCHECK_EQ(input_width * block_size, output_width);
TFLITE_DCHECK_EQ(input_height * block_size, output_height);
TFLITE_DCHECK_EQ(input_depth, output_depth * block_size * block_size);
TFLITE_DCHECK_EQ(input_batch, output_batch);
for (int out_b = 0; out_b < output_batch; ++out_b) {
for (int out_h = 0; out_h < output_height; ++out_h) {
for (int out_w = 0; out_w < output_width; ++out_w) {
for (int out_d = 0; out_d < output_depth; ++out_d) {
const int in_d =
out_d + ((out_h % block_size) * block_size + out_w % block_size) *
output_depth;
const int in_w = out_w / block_size;
const int in_h = out_h / block_size;
const int in_b = out_b;
const int input_index = Offset(input_shape, in_b, in_h, in_w, in_d);
const int output_index =
Offset(output_shape, out_b, out_h, out_w, out_d);
output_data[output_index] = input_data[input_index];
}
}
}
}
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DEPTH_TO_SPACE_H_

View File

@@ -1,239 +0,0 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DIV_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DIV_H_
#include <algorithm>
#include "tensorflow/lite/kernels/internal/common.h"
namespace tflite {
namespace reference_ops {
template <typename T>
inline void DivCheckArithmeticParams(const ArithmeticParams& params) {
TFLITE_DCHECK_LE(params.quantized_activation_min,
params.quantized_activation_max);
// Input offset is negative input zero point. Activation tensors are
// asymmetric quantized so they span the full int8 range.
constexpr int32_t max_value =
static_cast<int32_t>(std::numeric_limits<T>::max());
TFLITE_DCHECK_GE(params.input1_offset, -max_value);
TFLITE_DCHECK_LE(params.input1_offset, max_value);
TFLITE_DCHECK_GE(params.input2_offset, -max_value);
TFLITE_DCHECK_LE(params.input2_offset, max_value);
TFLITE_DCHECK_GE(params.output_offset, -max_value);
TFLITE_DCHECK_LE(params.output_offset, max_value);
}
// Element-wise div that can often be used for inner loop of broadcast Div as
// well as the non-broadcast Div.
template <typename T>
inline void DivElementwise(int size, const ArithmeticParams& params,
const T* input1_data, const T* input2_data,
T* output_data) {
DivCheckArithmeticParams<T>(params);
for (int i = 0; i < size; ++i) {
const int32_t input1_val = params.input1_offset + input1_data[i];
const int32_t input2_val = params.input2_offset + input2_data[i];
TFLITE_DCHECK_NE(input2_val, 0);
int recip_shift;
const int32_t input2_inv =
(input2_val > 0) ? GetReciprocal(input2_val, 31, &recip_shift)
: -GetReciprocal(-input2_val, 31, &recip_shift);
const int headroom = CountLeadingSignBits(input1_val);
const int32_t unscaled_quotient =
MultiplyByQuantizedMultiplierGreaterThanOne(input1_val, input2_inv,
headroom);
const int total_shift = params.output_shift - recip_shift - headroom;
const int32_t unclamped_result =
params.output_offset +
MultiplyByQuantizedMultiplierSmallerThanOneExp(
unscaled_quotient, params.output_multiplier, total_shift);
const int32_t clamped_output =
std::min(params.quantized_activation_max,
std::max(params.quantized_activation_min, unclamped_result));
output_data[i] = static_cast<T>(clamped_output);
}
}
inline void Div(const ArithmeticParams& params,
const RuntimeShape& input1_shape, const uint8_t* input1_data,
const RuntimeShape& input2_shape, const uint8_t* input2_data,
const RuntimeShape& output_shape, uint8_t* output_data) {
TFLITE_DCHECK_LE(params.quantized_activation_min,
params.quantized_activation_max);
const int flat_size =
MatchingElementsSize(input1_shape, input2_shape, output_shape);
DivElementwise(flat_size, params, input1_data, input2_data, output_data);
}
inline void Div(const ArithmeticParams& params,
const RuntimeShape& input1_shape, const int8_t* input1_data,
const RuntimeShape& input2_shape, const int8_t* input2_data,
const RuntimeShape& output_shape, int8_t* output_data) {
TFLITE_DCHECK_LE(params.quantized_activation_min,
params.quantized_activation_max);
const int flat_size =
MatchingElementsSize(input1_shape, input2_shape, output_shape);
DivElementwise(flat_size, params, input1_data, input2_data, output_data);
}
template <typename T, int N = 5>
inline void BroadcastDivSlowQuantized(
const ArithmeticParams& params, const RuntimeShape& unextended_input1_shape,
const T* input1_data, const RuntimeShape& unextended_input2_shape,
const T* input2_data, const RuntimeShape& unextended_output_shape,
T* output_data) {
TFLITE_DCHECK_LE(unextended_input1_shape.DimensionsCount(), N);
TFLITE_DCHECK_LE(unextended_input2_shape.DimensionsCount(), N);
TFLITE_DCHECK_LE(unextended_output_shape.DimensionsCount(), N);
NdArrayDesc<N> desc1;
NdArrayDesc<N> desc2;
NdArrayDesc<N> output_desc;
NdArrayDescsForElementwiseBroadcast(unextended_input1_shape,
unextended_input2_shape, &desc1, &desc2);
CopyDimsToDesc(RuntimeShape::ExtendedShape(N, unextended_output_shape),
&output_desc);
DivCheckArithmeticParams<T>(params);
auto div_func = [&](int indexes[N]) {
const int32_t input1_val =
params.input1_offset + input1_data[SubscriptToIndex(desc1, indexes)];
const int32_t input2_val =
params.input2_offset + input2_data[SubscriptToIndex(desc2, indexes)];
TFLITE_DCHECK_NE(input2_val, 0);
int recip_shift;
const int32_t input2_inv =
(input2_val > 0) ? GetReciprocal(input2_val, 31, &recip_shift)
: -GetReciprocal(-input2_val, 31, &recip_shift);
const int headroom = CountLeadingSignBits(input1_val);
const int32_t unscaled_quotient =
MultiplyByQuantizedMultiplierGreaterThanOne(input1_val, input2_inv,
headroom);
const int total_shift = params.output_shift - recip_shift - headroom;
const int32_t unclamped_result =
params.output_offset +
MultiplyByQuantizedMultiplierSmallerThanOneExp(
unscaled_quotient, params.output_multiplier, total_shift);
const int32_t clamped_output =
std::min(params.quantized_activation_max,
std::max(params.quantized_activation_min, unclamped_result));
output_data[SubscriptToIndex(output_desc, indexes)] =
static_cast<T>(clamped_output);
};
NDOpsHelper<N>(output_desc, div_func);
}
template <int N = 5>
inline void BroadcastDivSlow(const ArithmeticParams& params,
const RuntimeShape& unextended_input1_shape,
const uint8_t* input1_data,
const RuntimeShape& unextended_input2_shape,
const uint8_t* input2_data,
const RuntimeShape& unextended_output_shape,
uint8_t* output_data) {
BroadcastDivSlowQuantized<uint8_t, N>(
params, unextended_input1_shape, input1_data, unextended_input2_shape,
input2_data, unextended_output_shape, output_data);
}
template <int N = 5>
inline void BroadcastDivSlow(const ArithmeticParams& params,
const RuntimeShape& unextended_input1_shape,
const int8_t* input1_data,
const RuntimeShape& unextended_input2_shape,
const int8_t* input2_data,
const RuntimeShape& unextended_output_shape,
int8_t* output_data) {
BroadcastDivSlowQuantized<int8_t, N>(
params, unextended_input1_shape, input1_data, unextended_input2_shape,
input2_data, unextended_output_shape, output_data);
}
// TODO(jiawen): We can implement BroadcastDiv on buffers of arbitrary
// dimensionality if the runtime code does a single loop over one dimension
// that handles broadcasting as the base case. The code generator would then
// generate max(D1, D2) nested for loops.
template <typename T, int N = 5>
void BroadcastDivSlow(const ArithmeticParams& params,
const RuntimeShape& unextended_input1_shape,
const T* input1_data,
const RuntimeShape& unextended_input2_shape,
const T* input2_data,
const RuntimeShape& unextended_output_shape,
T* output_data) {
T output_activation_min;
T output_activation_max;
GetActivationParams(params, &output_activation_min, &output_activation_max);
TFLITE_DCHECK_LE(unextended_input1_shape.DimensionsCount(), N);
TFLITE_DCHECK_LE(unextended_input2_shape.DimensionsCount(), N);
TFLITE_DCHECK_LE(unextended_output_shape.DimensionsCount(), N);
NdArrayDesc<N> desc1;
NdArrayDesc<N> desc2;
NdArrayDesc<N> output_desc;
NdArrayDescsForElementwiseBroadcast(unextended_input1_shape,
unextended_input2_shape, &desc1, &desc2);
CopyDimsToDesc(RuntimeShape::ExtendedShape(N, unextended_output_shape),
&output_desc);
// In Tensorflow, the dimensions are canonically named (batch_number, row,
// col, channel), with extents (batches, height, width, depth), with the
// trailing dimension changing most rapidly (channels has the smallest
// stride, typically 1 element).
//
// In generated C code, we store arrays with the dimensions reversed. The
// first dimension has smallest stride.
auto div_func = [&](int indexes[N]) {
output_data[SubscriptToIndex(output_desc, indexes)] =
ActivationFunctionWithMinMax(
input1_data[SubscriptToIndex(desc1, indexes)] /
input2_data[SubscriptToIndex(desc2, indexes)],
output_activation_min, output_activation_max);
};
NDOpsHelper<N>(output_desc, div_func);
}
template <typename T>
inline void Div(const ArithmeticParams& params,
const RuntimeShape& input1_shape, const T* input1_data,
const RuntimeShape& input2_shape, const T* input2_data,
const RuntimeShape& output_shape, T* output_data) {
T output_activation_min;
T output_activation_max;
GetActivationParams(params, &output_activation_min, &output_activation_max);
const int flat_size =
MatchingElementsSize(input1_shape, input2_shape, output_shape);
for (int i = 0; i < flat_size; ++i) {
output_data[i] = ActivationFunctionWithMinMax(
input1_data[i] / input2_data[i], output_activation_min,
output_activation_max);
}
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DIV_H_

View File

@@ -0,0 +1,35 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_FLOOR_DIV_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_FLOOR_DIV_H_
#include <cmath>
#include <functional>
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
namespace reference_ops {
template <typename T>
T FloorDiv(T input1, T input2) {
return std::floor(std::divides<double>()(static_cast<double>(input1),
static_cast<double>(input2)));
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_FLOOR_DIV_H_

View File

@@ -0,0 +1,44 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_FLOOR_MOD_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_FLOOR_MOD_H_
#include <cmath>
#include <functional>
namespace tflite {
namespace reference_ops {
template <typename T>
T FloorMod(T input1, T input2) {
struct FloatMod {
float operator()(const float lhs, const float rhs) const {
return std::fmod(lhs, rhs);
}
};
using ModFunc = typename std::conditional<std::is_integral<T>::value,
std::modulus<T>, FloatMod>::type;
ModFunc mod_func;
T trunc_mod = mod_func(input1, input2);
return (trunc_mod != 0) && ((input2 < 0) != (trunc_mod < 0))
? (trunc_mod + input2)
: trunc_mod;
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_FLOOR_MOD_H_

View File

@@ -21,7 +21,7 @@ limitations under the License.
namespace tflite {
namespace reference_integer_ops {
inline void AveragePool(const PoolParams& params,
inline bool AveragePool(const PoolParams& params,
const RuntimeShape& input_shape,
const int8_t* input_data,
const RuntimeShape& output_shape, int8_t* output_data) {
@@ -66,6 +66,7 @@ inline void AveragePool(const PoolParams& params,
filter_count++;
}
}
if (filter_count == 0) return false;
// Round to the closest integer value.
acc = acc > 0 ? (acc + filter_count / 2) / filter_count
: (acc - filter_count / 2) / filter_count;
@@ -77,6 +78,7 @@ inline void AveragePool(const PoolParams& params,
}
}
}
return true;
}
inline void MaxPool(const PoolParams& params, const RuntimeShape& input_shape,
@@ -136,7 +138,7 @@ inline void MaxPool(const PoolParams& params, const RuntimeShape& input_shape,
}
}
inline void AveragePool(const PoolParams& params,
inline bool AveragePool(const PoolParams& params,
const RuntimeShape& input_shape,
const int16_t* input_data,
const RuntimeShape& output_shape,
@@ -182,6 +184,7 @@ inline void AveragePool(const PoolParams& params,
filter_count++;
}
}
if (filter_count == 0) return false;
// Round to the closest integer value.
acc = acc > 0 ? (acc + filter_count / 2) / filter_count
: (acc - filter_count / 2) / filter_count;
@@ -193,6 +196,7 @@ inline void AveragePool(const PoolParams& params,
}
}
}
return true;
}
inline void MaxPool(const PoolParams& params, const RuntimeShape& input_shape,

View File

@@ -0,0 +1,256 @@
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_LOG_SOFTMAX_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_LOG_SOFTMAX_H_
#include <algorithm>
#include <cstddef>
#include <limits>
#include "fixedpoint/fixedpoint.h"
#include "tensorflow/lite/kernels/internal/common.h"
namespace tflite {
namespace reference_ops {
inline void LogSoftmax(const SoftmaxParams& params,
const RuntimeShape& input_shape, const float* input_data,
const RuntimeShape& output_shape, float* output_data) {
const int trailing_dim = input_shape.DimensionsCount() - 1;
const int outer_size =
MatchingFlatSizeSkipDim(input_shape, trailing_dim, output_shape);
const int depth =
MatchingDim(input_shape, trailing_dim, output_shape, trailing_dim);
for (int i = 0; i < outer_size; ++i) {
// Find max element value which we'll use to ensure numerical stability
// taking advantage of the following equality:
// log(exp(x[i])/sum(exp(x[i]))) == log(exp(x[i]+C)/sum(exp(x[i]+C)))
float max = std::numeric_limits<float>::lowest();
for (int c = 0; c < depth; ++c) {
max = std::max(max, input_data[i * depth + c]);
}
// Compute sum.
float sum = 0.f;
for (int c = 0; c < depth; ++c) {
sum += std::exp(input_data[i * depth + c] - max);
}
// Compute result.
const float log_sum = std::log(sum);
for (int c = 0; c < depth; ++c) {
output_data[i * depth + c] = input_data[i * depth + c] - max - log_sum;
}
}
}
inline void LogSoftmax(const SoftmaxParams& params,
const RuntimeShape& input_shape,
const uint8_t* input_data,
const RuntimeShape& output_shape, uint8_t* output_data) {
const int32_t input_multiplier = params.input_multiplier;
const int32_t input_left_shift = params.input_left_shift;
const int32_t reverse_scaling_divisor = params.reverse_scaling_divisor;
const int32_t reverse_scaling_right_shift =
params.reverse_scaling_right_shift;
const int diff_min = params.diff_min;
// The representation chosen for the input to the exp() function is Q5.26.
// We need to leave extra space since values that we skip might be as large
// as -32 before multiplying by input_beta_multiplier, and therefore as
// large as -16 afterwards. Note that exp(-8) is definitely not
// insignificant to accumulation, but exp(-16) definitely is.
static constexpr int kScaledDiffIntegerBits = 5;
static constexpr int kAccumulationIntegerBits = 12;
static constexpr int kOutputIntegerBits = 4;
using FixedPointScaledDiff =
gemmlowp::FixedPoint<int32_t, kScaledDiffIntegerBits>;
using FixedPointAccum =
gemmlowp::FixedPoint<int32_t, kAccumulationIntegerBits>;
const int trailing_dim = input_shape.DimensionsCount() - 1;
const int outer_size =
MatchingFlatSizeSkipDim(input_shape, trailing_dim, output_shape);
const int depth =
MatchingDim(input_shape, trailing_dim, output_shape, trailing_dim);
for (int i = 0; i < outer_size; ++i) {
uint8_t max_in_row = 0;
for (int c = 0; c < depth; ++c) {
max_in_row = std::max(max_in_row, input_data[i * depth + c]);
}
FixedPointAccum sum_of_exps = FixedPointAccum::Zero();
for (int c = 0; c < depth; ++c) {
int32_t input_diff =
static_cast<int32_t>(input_data[i * depth + c]) - max_in_row;
if (input_diff >= diff_min) {
const int32_t input_diff_rescaled =
MultiplyByQuantizedMultiplierGreaterThanOne(
input_diff, input_multiplier, input_left_shift);
const FixedPointScaledDiff scaled_diff_f8 =
FixedPointScaledDiff::FromRaw(input_diff_rescaled);
sum_of_exps = sum_of_exps + gemmlowp::Rescale<kAccumulationIntegerBits>(
exp_on_negative_values(scaled_diff_f8));
}
}
const int32_t fixed_log_sum_of_exps =
log_x_for_x_greater_than_or_equal_to_1<kScaledDiffIntegerBits>(
sum_of_exps)
.raw();
// rescaled_diff_min is smallest representable in
// Q(kScaledDiffIntegerBits).(31-kScaledDiffIntegerBits) plus the
// log-sub-exps that will be subtracted in the loop.
//
// The thresholds diff_min, etc are negative.
const int rescaled_diff_min =
fixed_log_sum_of_exps + std::numeric_limits<int32_t>::lowest();
const int adjusted_diff_min =
std::max(static_cast<int32_t>(
diff_min - 1), // Note use of > below instead of >= above.
MultiplyByQuantizedMultiplierSmallerThanOneExp(
rescaled_diff_min, reverse_scaling_divisor,
-reverse_scaling_right_shift));
for (int c = 0; c < depth; ++c) {
int32_t input_diff =
static_cast<int32_t>(input_data[i * depth + c]) - max_in_row;
if (input_diff > adjusted_diff_min) {
const int32_t input_diff_rescaled =
MultiplyByQuantizedMultiplierGreaterThanOne(
input_diff, input_multiplier, input_left_shift);
int32_t unsat_output =
gemmlowp::RoundingDivideByPOT(
(input_diff_rescaled - fixed_log_sum_of_exps),
31 - kScaledDiffIntegerBits - kOutputIntegerBits) +
255;
output_data[i * depth + c] = static_cast<uint8_t>(
std::max(std::min(unsat_output, static_cast<int32_t>(255)),
static_cast<int32_t>(0)));
} else {
// Set output to smallest value.
output_data[i * depth + c] = 0;
}
}
}
}
template <typename T>
inline void LogSoftmaxQuantized(const SoftmaxParams& params,
const size_t outer_size, const size_t depth,
const RuntimeShape& input_shape,
const T* input_data,
const RuntimeShape& output_shape,
T* output_data) {
const int32_t input_multiplier = params.input_multiplier;
const int32_t input_left_shift = params.input_left_shift;
const int32_t reverse_scaling_divisor = params.reverse_scaling_divisor;
const int32_t reverse_scaling_right_shift =
params.reverse_scaling_right_shift;
const int diff_min = params.diff_min;
static constexpr T kMinT8 = std::numeric_limits<T>::min();
static constexpr T kMaxT8 = std::numeric_limits<T>::max();
static constexpr int32_t kMinInt32 = std::numeric_limits<int32_t>::min();
// All IntegerBits must agree with Prepare function.
// Input is chosen as Q5.26 so exp(-1 * 2^5 * 2^-1) = exp(-16) is negligible.
static constexpr int kInputIntegerBits = 5;
static constexpr int kAccumulationIntegerBits = 12;
static constexpr int kOutputIntegerBits = 4;
using F5 = gemmlowp::FixedPoint<int32_t, kInputIntegerBits>;
using F12 = gemmlowp::FixedPoint<int32_t, kAccumulationIntegerBits>;
for (size_t outer_index = 0; outer_index < outer_size; ++outer_index) {
T max_in_row = kMinT8;
for (size_t inner_index = 0; inner_index < depth; ++inner_index) {
max_in_row =
std::max(max_in_row, input_data[outer_index * depth + inner_index]);
}
// Accumulator "sum_of_exps_in_q12" is safe from overflowing in 2^12 steps.
F12 sum_of_exps_in_q12 = F12::FromRaw(0);
for (size_t inner_index = 0; inner_index < depth; ++inner_index) {
int32_t input_diff =
static_cast<int32_t>(input_data[outer_index * depth + inner_index]) -
max_in_row;
if (input_diff >= diff_min) {
const int32_t input_diff_in_q5 = MultiplyByQuantizedMultiplier(
input_diff, input_multiplier, input_left_shift);
sum_of_exps_in_q12 =
sum_of_exps_in_q12 +
gemmlowp::Rescale<kAccumulationIntegerBits>(
exp_on_negative_values(F5::FromRaw(input_diff_in_q5)));
}
}
const int32_t log_sum_of_exps_in_q5 =
log_x_for_x_greater_than_or_equal_to_1<kInputIntegerBits>(
sum_of_exps_in_q12)
.raw();
// Potentially reduced the valid range. shifted_log_sum_of_exps_in_q5 is
// smallest representable in Q5.26 plus the log_sum_of_exps.
const int32_t shifted_log_sum_of_exps_in_q5 =
log_sum_of_exps_in_q5 + kMinInt32;
const int32_t adjusted_diff_min =
std::max(static_cast<int32_t>(diff_min - 1),
MultiplyByQuantizedMultiplier(shifted_log_sum_of_exps_in_q5,
reverse_scaling_divisor,
-reverse_scaling_right_shift));
for (size_t inner_index = 0; inner_index < depth; ++inner_index) {
int32_t input_diff =
static_cast<int32_t>(input_data[outer_index * depth + inner_index]) -
max_in_row;
// Note use of > below instead of >= above.
if (input_diff > adjusted_diff_min) {
const int32_t input_diff_in_q5 = MultiplyByQuantizedMultiplier(
input_diff, input_multiplier, input_left_shift);
// Rescale and downcast.
int32_t output_in_q27 =
gemmlowp::RoundingDivideByPOT(
(input_diff_in_q5 - log_sum_of_exps_in_q5),
31 - kInputIntegerBits - kOutputIntegerBits) +
kMaxT8;
output_in_q27 =
std::max(std::min(output_in_q27, static_cast<int32_t>(kMaxT8)),
static_cast<int32_t>(kMinT8));
output_data[outer_index * depth + inner_index] =
static_cast<T>(output_in_q27);
} else {
output_data[outer_index * depth + inner_index] = kMinT8;
}
}
}
}
inline void LogSoftmax(const SoftmaxParams& params, const size_t outer_size,
const size_t depth, const RuntimeShape& input_shape,
const int8_t* input_data,
const RuntimeShape& output_shape, int8_t* output_data) {
LogSoftmaxQuantized(params, outer_size, depth, input_shape, input_data,
output_shape, output_data);
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_LOG_SOFTMAX_H_

View File

@@ -51,7 +51,7 @@ inline void Mul(const ArithmeticParams& params,
GetActivationParams(params, &output_activation_min, &output_activation_max);
const int flat_size =
MatchingFlatSize(input1_shape, input2_shape, output_shape);
MatchingExtendedShapeFlatSize(input1_shape, input2_shape, output_shape);
for (int i = 0; i < flat_size; ++i) {
output_data[i] = ActivationFunctionWithMinMax(
input1_data[i] * input2_data[i], output_activation_min,
@@ -66,7 +66,7 @@ inline void Mul(const ArithmeticParams& params,
TFLITE_DCHECK_LE(params.quantized_activation_min,
params.quantized_activation_max);
const int flat_size =
MatchingFlatSize(input1_shape, input2_shape, output_shape);
MatchingExtendedShapeFlatSize(input1_shape, input2_shape, output_shape);
MulElementwise(flat_size, params, input1_data, input2_data, output_data);
}

View File

@@ -24,8 +24,8 @@ namespace tflite {
namespace reference_ops {
// TFLite Pad supports activation tensors with up to 4 dimensions.
constexpr int PadKernelMaxDimensionCount() { return 4; }
// TFLite Pad supports activation tensors with up to 5 dimensions.
constexpr int PadKernelMaxDimensionCount() { return 5; }
// There are two versions of pad: Pad and PadV2. In PadV2 there is a second
// scalar input that provides the padding value. Therefore pad_value_ptr can be
@@ -46,8 +46,8 @@ inline void PadImpl(const tflite::PadParams& op_params,
TFLITE_DCHECK_LE(op_params.left_padding_count, PadKernelMaxDimensionCount());
TFLITE_DCHECK_LE(op_params.right_padding_count, PadKernelMaxDimensionCount());
// Runtime calls are currently fixed at 4 dimensions. Copy inputs so we can
// pad them to 4 dims (yes, we are "padding the padding").
// Runtime calls are currently fixed at 5 dimensions. Copy inputs so we can
// pad them to 5 dims (yes, we are "padding the padding").
int left_padding_copy[PadKernelMaxDimensionCount()];
for (int i = 0; i < PadKernelMaxDimensionCount(); i++) {
left_padding_copy[i] = 0;
@@ -67,39 +67,46 @@ inline void PadImpl(const tflite::PadParams& op_params,
}
const int output_batch = ext_output_shape.Dims(0);
const int output_height = ext_output_shape.Dims(1);
const int output_width = ext_output_shape.Dims(2);
const int output_depth = ext_output_shape.Dims(3);
const int output_plane = ext_output_shape.Dims(1);
const int output_height = ext_output_shape.Dims(2);
const int output_width = ext_output_shape.Dims(3);
const int output_depth = ext_output_shape.Dims(4);
const int left_b_padding = left_padding_copy[0];
const int left_h_padding = left_padding_copy[1];
const int left_w_padding = left_padding_copy[2];
const int left_d_padding = left_padding_copy[3];
const int left_p_padding = left_padding_copy[1];
const int left_h_padding = left_padding_copy[2];
const int left_w_padding = left_padding_copy[3];
const int left_d_padding = left_padding_copy[4];
const int right_b_padding = right_padding_copy[0];
const int right_h_padding = right_padding_copy[1];
const int right_w_padding = right_padding_copy[2];
const int right_d_padding = right_padding_copy[3];
const int right_p_padding = right_padding_copy[1];
const int right_h_padding = right_padding_copy[2];
const int right_w_padding = right_padding_copy[3];
const int right_d_padding = right_padding_copy[4];
const T pad_value = *pad_value_ptr;
const T* in_ptr = input_data;
T* out_ptr = output_data;
for (int out_b = 0; out_b < output_batch; ++out_b) {
for (int out_h = 0; out_h < output_height; ++out_h) {
for (int out_w = 0; out_w < output_width; ++out_w) {
for (int out_d = 0; out_d < output_depth; ++out_d) {
if (out_b < left_b_padding ||
out_b >= output_batch - right_b_padding ||
out_h < left_h_padding ||
out_h >= output_height - right_h_padding ||
out_w < left_w_padding ||
out_w >= output_width - right_w_padding ||
out_d < left_d_padding ||
out_d >= output_depth - right_d_padding) {
*out_ptr++ = pad_value;
} else {
*out_ptr++ = *in_ptr++;
for (int out_p = 0; out_p < output_plane; ++out_p) {
for (int out_h = 0; out_h < output_height; ++out_h) {
for (int out_w = 0; out_w < output_width; ++out_w) {
for (int out_d = 0; out_d < output_depth; ++out_d) {
if (out_b < left_b_padding ||
out_b >= output_batch - right_b_padding ||
out_p < left_p_padding ||
out_p >= output_plane - right_p_padding ||
out_h < left_h_padding ||
out_h >= output_height - right_h_padding ||
out_w < left_w_padding ||
out_w >= output_width - right_w_padding ||
out_d < left_d_padding ||
out_d >= output_depth - right_d_padding) {
*out_ptr++ = pad_value;
} else {
*out_ptr++ = *in_ptr++;
}
}
}
}

View File

@@ -23,7 +23,7 @@ limitations under the License.
namespace tflite {
namespace reference_ops {
inline void AveragePool(const PoolParams& params,
inline bool AveragePool(const PoolParams& params,
const RuntimeShape& input_shape,
const float* input_data,
const RuntimeShape& output_shape, float* output_data) {
@@ -66,6 +66,7 @@ inline void AveragePool(const PoolParams& params,
filter_count++;
}
}
if (filter_count == 0) return false;
const float average = total / filter_count;
output_data[Offset(output_shape, batch, out_y, out_x, channel)] =
ActivationFunctionWithMinMax(average, params.float_activation_min,
@@ -74,9 +75,10 @@ inline void AveragePool(const PoolParams& params,
}
}
}
return true;
}
inline void AveragePool(const PoolParams& params,
inline bool AveragePool(const PoolParams& params,
const RuntimeShape& input_shape,
const uint8_t* input_data,
const RuntimeShape& output_shape,
@@ -122,6 +124,7 @@ inline void AveragePool(const PoolParams& params,
filter_count++;
}
}
if (filter_count == 0) return false;
acc = (acc + filter_count / 2) / filter_count;
acc = std::max(acc, params.quantized_activation_min);
acc = std::min(acc, params.quantized_activation_max);
@@ -131,6 +134,7 @@ inline void AveragePool(const PoolParams& params,
}
}
}
return true;
}
inline void L2Pool(const PoolParams& params, const RuntimeShape& input_shape,

View File

@@ -0,0 +1,774 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <cstring>
#include <limits>
#include <utility>
#include "fixedpoint/fixedpoint.h"
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/compatibility.h"
#include "tensorflow/lite/kernels/internal/cppmath.h"
#include "tensorflow/lite/kernels/internal/reference/portable_tensor_utils_impl.h"
#if defined(_MSC_VER)
#define __restrict__ __restrict
#endif
namespace tflite {
namespace tensor_utils {
namespace {
const int32_t kInt16Max = std::numeric_limits<int16_t>::max();
const int32_t kInt16Min = std::numeric_limits<int16_t>::min();
} // namespace
void PortableSymmetricQuantizeFloats(const float* values, const int size,
int8_t* quantized_values, float* min_value,
float* max_value, float* scaling_factor) {
auto minmax = std::minmax_element(values, values + size);
*min_value = *minmax.first;
*max_value = *minmax.second;
PortableSymmetricQuantizeFloats(values, size, quantized_values, *min_value,
*max_value, scaling_factor);
}
void PortableSymmetricQuantizeFloats(const float* values, const int size,
int8_t* quantized_values, float min_value,
float max_value, float* scaling_factor) {
const int32_t kScale = 127;
const float range = std::max(std::abs(min_value), std::abs(max_value));
if (range == 0) {
memset(quantized_values, 0, size * sizeof(int8_t));
*scaling_factor = 1;
return;
}
*scaling_factor = range / kScale;
const float scaling_factor_inv = kScale / range;
for (int i = 0; i < size; ++i) {
const int32_t quantized_value =
static_cast<int32_t>(TfLiteRound(values[i] * scaling_factor_inv));
// Clamp: just in case some odd numeric offset.
quantized_values[i] = static_cast<int8_t>(
std::min(kScale, std::max(-kScale, quantized_value)));
}
}
void PortableAsymmetricQuantizeFloats(const float* values, const int size,
int8_t* quantized_values,
float* scaling_factor, int32_t* offset) {
const int32_t kMinScale = -128;
const int32_t kMaxScale = 127;
const double qmin_double = kMinScale;
const double qmax_double = kMaxScale;
const auto minmax = std::minmax_element(values, values + size);
const double rmin = std::fmin(0, *minmax.first);
const double rmax = std::fmax(0, *minmax.second);
if (rmin == rmax) {
memset(quantized_values, 0, size * sizeof(int8_t));
*scaling_factor = 1;
*offset = 0;
return;
} else {
double scale = (rmax - rmin) / (qmax_double - qmin_double);
const double zero_point_from_min = qmin_double - rmin / scale;
const double zero_point_from_max = qmax_double - rmax / scale;
const double zero_point_from_min_error =
std::abs(qmin_double) + std::abs(rmin / scale);
const double zero_point_from_max_error =
std::abs(qmax_double) + std::abs(rmax / scale);
const double zero_point_double =
zero_point_from_min_error < zero_point_from_max_error
? zero_point_from_min
: zero_point_from_max;
int8_t nudged_zero_point = 0;
if (zero_point_double <= qmin_double) {
nudged_zero_point = kMinScale;
} else if (zero_point_double >= qmax_double) {
nudged_zero_point = kMaxScale;
} else {
nudged_zero_point = static_cast<int8_t>(round(zero_point_double));
}
*scaling_factor = scale;
*offset = nudged_zero_point;
}
const float scaling_factor_inv = 1.0f / *scaling_factor;
for (int i = 0; i < size; ++i) {
const int32_t quantized_value = static_cast<int32_t>(
TfLiteRound(*offset + values[i] * scaling_factor_inv));
quantized_values[i] =
std::min(kMaxScale, std::max(kMinScale, quantized_value));
}
}
void PortableMatrixBatchVectorMultiplyAccumulate(const float* matrix,
int m_rows, int m_cols,
const float* vector,
int n_batch, float* result) {
float* result_in_batch = result;
for (int b = 0; b < n_batch; b++) {
const float* matrix_ptr = matrix;
for (int r = 0; r < m_rows; r++) {
float dot_prod = 0.0f;
const float* vector_in_batch = vector + b * m_cols;
for (int c = 0; c < m_cols; c++) {
dot_prod += *matrix_ptr++ * *vector_in_batch++;
}
*result_in_batch += dot_prod;
++result_in_batch;
}
}
}
void PortableMatrixBatchVectorMultiplyAccumulate(
const int8_t* __restrict__ matrix, const int m_rows, const int m_cols,
const int8_t* __restrict__ vectors, const float* scaling_factors,
int n_batch, float* __restrict__ result) {
for (int batch = 0; batch < n_batch; ++batch, vectors += m_cols) {
const float batch_scaling_factor = scaling_factors[batch];
// Get the address of the first row.
const int8_t* row_ptr = matrix;
for (int row = 0; row < m_rows; ++row) {
// Initialize the dot product sum for the row to 0.
int32_t dotprod = 0;
#if defined(__GNUC__)
// Prefetch the row to cache.
__builtin_prefetch(row_ptr, 0 /* prefetch for read */,
3 /* temporal locality */);
#endif
for (int col = 0; col < m_cols; ++col, ++row_ptr) {
dotprod += (*row_ptr) * (vectors[col]);
} // for col
*result += dotprod * batch_scaling_factor;
++result;
} // for row
} // for batch
}
void PortableMatrixBatchVectorMultiplyAccumulate(
const int8_t* __restrict__ matrix, const int m_rows, const int m_cols,
const int8_t* __restrict__ vectors, const float* scaling_factors,
int n_batch, float* __restrict__ result, const float* per_channel_scale,
const int32_t* input_offset, int32_t* scratch, int32_t* row_sums,
bool* compute_row_sums, CpuBackendContext* context) {
if (input_offset == nullptr) {
PortableMatrixBatchVectorMultiplyAccumulate(
matrix, m_rows, m_cols, vectors, scaling_factors, n_batch, result);
return;
}
if (!compute_row_sums || *compute_row_sums) {
PortableReductionSumVector(matrix, row_sums, m_rows, m_cols);
if (compute_row_sums) {
*compute_row_sums = false;
}
}
for (int batch = 0; batch < n_batch; ++batch, vectors += m_cols) {
const float batch_scaling_factor = scaling_factors[batch];
const int32_t batch_offset = input_offset[batch];
const int8_t* row_ptr = matrix;
for (int row = 0; row < m_rows; ++row) {
int32_t dotprod = 0;
float scale = batch_scaling_factor;
if (per_channel_scale) {
scale *= per_channel_scale[row];
}
#if defined(__GNUC__)
// Prefetch the row to cache.
__builtin_prefetch(row_ptr, 0 /* prefetch for read */,
3 /* temporal locality */);
#endif
for (int col = 0; col < m_cols; ++col, ++row_ptr) {
dotprod += (*row_ptr) * vectors[col];
} // for col
dotprod -= row_sums[row] * batch_offset;
*result += dotprod * scale;
++result;
} // for row
} // for batch
}
void PortableSparseMatrixBatchVectorMultiplyAccumulate1x4(
const float* __restrict__ matrix, const int32_t* __restrict__ segments,
const int32_t* __restrict__ indices, int m_rows, int m_cols,
const float* __restrict__ vector, int n_batch, float* __restrict__ result) {
const int kBlockSize = 4;
TFLITE_DCHECK_EQ(m_cols % kBlockSize, 0);
for (int batch = 0; batch < n_batch; batch++) {
const float* matrix_ptr = matrix;
for (int row = 0; row < m_rows; row++) {
float dot_prod = 0.0f;
const float* vector_in_batch = vector + batch * m_cols;
for (int i = segments[row]; i < segments[row + 1]; i++) {
const int block_start_index = indices[i] * kBlockSize;
const float* vector_block_in_batch_ptr =
vector_in_batch + block_start_index;
for (int c = 0; c < kBlockSize; c++) {
dot_prod += *matrix_ptr++ * *vector_block_in_batch_ptr++;
}
}
result[batch * m_rows + row] += dot_prod;
}
}
}
void PortableSparseMatrixBatchVectorMultiplyAccumulate(
const float* __restrict__ matrix, const uint8_t* __restrict__ ledger,
int m_rows, int m_cols, const float* __restrict__ vector, int n_batch,
float* __restrict__ result) {
const int kBlockSize = 16;
TFLITE_DCHECK_EQ( // NOLINT
m_cols % kBlockSize, 0);
for (int batch = 0; batch < n_batch; batch++) {
const float* matrix_ptr = matrix;
const uint8_t* ledger_ptr = ledger;
for (int row = 0; row < m_rows; row++) {
float dot_prod = 0.0f;
int num_nonzero_blocks = *ledger_ptr++;
if (num_nonzero_blocks > 0) {
const float* vector_in_batch = vector + batch * m_cols;
for (int i = 0; i < num_nonzero_blocks; i++) {
const int block_start_index = *ledger_ptr++ * kBlockSize;
const float* vector_block_in_batch_ptr =
vector_in_batch + block_start_index;
for (int c = 0; c < kBlockSize; c++) {
dot_prod += *matrix_ptr++ * *vector_block_in_batch_ptr++;
}
}
}
result[batch * m_rows + row] += dot_prod;
}
}
}
void PortableSparseMatrixBatchVectorMultiplyAccumulate(
const int8_t* __restrict__ matrix, const uint8_t* ledger, const int m_rows,
const int m_cols, const int8_t* __restrict__ vectors,
const float* scaling_factors, int n_batch, float* __restrict__ result) {
static const int kBlockSize = 16;
TFLITE_DCHECK_EQ( // NOLINT
m_cols % kBlockSize, 0);
for (int batch = 0; batch < n_batch; ++batch, vectors += m_cols) {
const float batch_scaling_factor = scaling_factors[batch];
const uint8_t* ledger_ptr = ledger;
// Get the address of the first row.
const int8_t* row_ptr = matrix;
for (int row = 0; row < m_rows; ++row) {
// Initialize the dot product sum for the row to 0.
int32_t dotprod = 0;
#if defined(__GNUC__)
// Prefetch the row to cache.
__builtin_prefetch(row_ptr, 0 /* prefetch for read */,
3 /* temporal locality */);
#endif
int num_nonzero_blocks = *ledger_ptr++;
for (int i = 0; i < num_nonzero_blocks; i++) {
const int block_start_index = *ledger_ptr++ * kBlockSize;
const int8_t* vector_block_ptr = vectors + block_start_index;
for (int c = 0; c < kBlockSize; c++) {
dotprod += (*row_ptr++) * (*vector_block_ptr++);
} // for block
} // for num_nonzero_blocks
result[batch * m_rows + row] += dotprod * batch_scaling_factor;
} // for row
} // for batch
}
template <typename T>
void PortableMatrixBatchVectorMultiplyAccumulateImpl(
const int8_t* input, const int32_t* bias,
const int8_t* input_to_gate_weights, int32_t multiplier, int32_t shift,
int32_t n_batch, int32_t n_input, int32_t n_output, int32_t output_zp,
T* output) {
const int16_t output_max = std::numeric_limits<T>::max();
const int16_t output_min = std::numeric_limits<T>::min();
for (int batch = 0; batch < n_batch; ++batch) {
for (int row = 0; row < n_output; ++row) {
int32_t acc = bias[row];
for (int col = 0; col < n_input; ++col) {
int8_t input_val = input[batch * n_input + col];
int8_t weights_val = input_to_gate_weights[row * n_input + col];
acc += input_val * weights_val;
}
acc = MultiplyByQuantizedMultiplier(acc, multiplier, shift);
acc += output_zp;
acc += output[batch * n_output + row];
if (acc > output_max) {
acc = output_max;
}
if (acc < output_min) {
acc = output_min;
}
output[batch * n_output + row] = static_cast<T>(acc);
}
}
}
void PortableMatrixBatchVectorMultiplyAccumulate(
const int8_t* input, const int32_t* bias,
const int8_t* input_to_gate_weights, int32_t multiplier, int32_t shift,
int32_t n_batch, int32_t n_input, int32_t n_output, int32_t output_zp,
int32_t* scratch, int16_t* output, CpuBackendContext* context) {
PortableMatrixBatchVectorMultiplyAccumulateImpl(
input, bias, input_to_gate_weights, multiplier, shift, n_batch, n_input,
n_output, output_zp, output);
}
void PortableMatrixBatchVectorMultiplyAccumulate(
const int8_t* input, const int32_t* bias,
const int8_t* input_to_gate_weights, int32_t multiplier, int32_t shift,
int32_t n_batch, int32_t n_input, int32_t n_output, int32_t output_zp,
int32_t* scratch, int8_t* output, CpuBackendContext* context) {
PortableMatrixBatchVectorMultiplyAccumulateImpl(
input, bias, input_to_gate_weights, multiplier, shift, n_batch, n_input,
n_output, output_zp, output);
}
void PortableMatrixBatchVectorMultiply(const int8_t* input,
int32_t input_zeropoint,
const int8_t* input_to_gate_weights,
int32_t input_to_gate_effective_scale_a,
int32_t input_to_gate_effective_scale_b,
int32_t n_batch, int32_t n_input,
int32_t n_cell, int8_t* gate_output,
int8_t gate_output_zp) {
const int32_t int8_max = std::numeric_limits<int8_t>::max();
const int32_t int8_min = std::numeric_limits<int8_t>::min();
for (int batch = 0; batch < n_batch; ++batch) {
for (int row = 0; row < n_cell; ++row) {
int32_t acc = 0;
for (int col = 0; col < n_input; ++col) {
int32_t input_val = input[batch * n_input + col];
int8_t weights_val = input_to_gate_weights[row * n_input + col];
acc += (input_val - input_zeropoint) * weights_val;
}
acc = MultiplyByQuantizedMultiplier(acc, input_to_gate_effective_scale_a,
input_to_gate_effective_scale_b);
acc += gate_output_zp;
if (acc > int8_max) {
acc = int8_max;
}
if (acc < int8_min) {
acc = int8_min;
}
gate_output[batch * n_cell + row] = static_cast<int8_t>(acc);
}
}
}
void PortableMatrixBatchVectorMultiply(
const int16_t* hidden, const int8_t* hidden_to_output_weights,
int32_t proj_effective_scale_a, int32_t proj_effective_scale_b,
const int32_t* gate_bias, int32_t n_batch, int32_t n_hidden,
int32_t n_output, int32_t output_zp, int8_t* proj_output) {
const int16_t int8_max = std::numeric_limits<int8_t>::max();
const int16_t int8_min = std::numeric_limits<int8_t>::min();
for (int batch = 0; batch < n_batch; ++batch) {
for (int row = 0; row < n_output; ++row) {
int64_t acc = gate_bias[row];
for (int col = 0; col < n_hidden; ++col) {
int16_t input_val = hidden[batch * n_hidden + col];
int8_t weights_val = hidden_to_output_weights[row * n_hidden + col];
int64_t curr = acc;
acc += input_val * weights_val;
if (input_val * weights_val > 0 && acc < curr) {
acc = std::numeric_limits<int32_t>::max();
}
if (input_val * weights_val < 0 && acc > curr) {
acc = std::numeric_limits<int32_t>::min();
}
}
acc = MultiplyByQuantizedMultiplier(acc, proj_effective_scale_a,
proj_effective_scale_b);
acc += output_zp;
if (acc > int8_max) {
acc = int8_max;
}
if (acc < int8_min) {
acc = int8_min;
}
proj_output[batch * n_output + row] = acc;
}
}
}
void PortableApplyLayerNorm(const int16_t* input,
const int16_t* layer_norm_weights,
const int32_t* bias, int32_t layer_norm_scale_a,
int32_t layer_norm_scale_b, int32_t variance_limit,
int n_batch, int n_input, int16_t* output) {
// The square of std::pow(2, 10), which is the extra factor that makes sure
// normalized values has enough resolution.
static const int kTwoToPower20 = 1 << 20;
for (int i = 0; i < n_batch; ++i) {
int64_t sum = 0;
int64_t sum_sq = 0;
for (int j = 0; j < n_input; ++j) {
const int32_t index = i * n_input + j;
int32_t val = static_cast<int32_t>(input[index]);
sum += val;
sum_sq += val * val;
}
int32_t mean =
static_cast<int32_t>(static_cast<int64_t>(sum) * 1024 / n_input);
// TODO(b/173994730): Avoids overflow but only works for POT n_input.
int32_t temp = kTwoToPower20 / n_input;
int64_t variance =
sum_sq * temp - static_cast<int64_t>(mean) * static_cast<int64_t>(mean);
int32_t variance2 = static_cast<int32_t>(variance / kTwoToPower20);
if (variance2 < 1) {
variance2 = variance_limit;
}
int32_t stddev_inverse_a;
int stddev_inverse_b;
GetInvSqrtQuantizedMultiplierExp(variance2, /*reverse_shift*/ -1,
&stddev_inverse_a, &stddev_inverse_b);
for (int j = 0; j < n_input; ++j) {
const int32_t index = i * n_input + j;
int32_t val = static_cast<int32_t>(input[index]);
int32_t shifted = 1024 * val - mean;
int32_t rescaled = MultiplyByQuantizedMultiplier(
shifted, stddev_inverse_a, stddev_inverse_b);
// TODO(jianlijianli): Saturate this.
int64_t val3 = rescaled * layer_norm_weights[j] + bias[j];
int32_t val4 =
static_cast<int32_t>((val3 > 0 ? val3 + 512 : val3 - 512) / 1024);
int32_t val5 = MultiplyByQuantizedMultiplier(val4, layer_norm_scale_a,
layer_norm_scale_b + 12);
val5 = std::min(std::max(kInt16Min, val5), kInt16Max);
output[index] = static_cast<int16_t>(val5);
}
}
}
void PortableApplyLayerNormFloat(const int16_t* input,
const int16_t* layer_norm_weights,
int32_t layer_norm_scale_a,
int32_t layer_norm_scale_b,
const int32_t* bias, int n_batch, int n_input,
int16_t* output) {
const int32_t int16_max = std::numeric_limits<int16_t>::max();
const int32_t int16_min = std::numeric_limits<int16_t>::min();
const float layer_norm_scale =
layer_norm_scale_a *
std::pow(2.0, static_cast<double>(layer_norm_scale_b - 31));
const float bias_scale =
static_cast<float>(std::pow(2.0, -10)) * layer_norm_scale;
for (int batch = 0; batch < n_batch; ++batch) {
float sum = 0.0f;
float sum_sq = 0.0f;
for (int i = 0; i < n_input; ++i) {
const int index = batch * n_input + i;
const float value = static_cast<float>(input[index]);
sum += value;
sum_sq += value * value;
}
const float mean = sum / n_input;
float stddev_inv = 0.0f;
const float variance = sum_sq / n_input - mean * mean;
if (variance == 0) {
stddev_inv = 1.0f / std::sqrt(1e-8f);
} else {
stddev_inv = 1.0f / std::sqrt(variance);
}
for (int i = 0; i < n_input; ++i) {
const int index = batch * n_input + i;
const float normalized_value =
(static_cast<float>(input[index]) - mean) * stddev_inv;
const float weighted_normalized_value =
normalized_value * layer_norm_weights[i] * layer_norm_scale +
bias[i] * bias_scale;
const int32_t quant_output = static_cast<int32_t>(std::round(
weighted_normalized_value * static_cast<float>(std::pow(2, 12))));
output[index] = std::min(int16_max, std::max(int16_min, quant_output));
}
}
}
void PortableMatrixScalarMultiplyAccumulate(const int8_t* matrix,
int32_t scalar, int32_t n_row,
int32_t n_col, int32_t* output) {
for (int i = 0; i < n_row; ++i) {
int32_t row_sum = 0;
for (int j = 0; j < n_col; ++j) {
row_sum += *matrix++;
}
output[i] += row_sum * scalar;
}
}
void PortableApplySigmoid(const int16_t* input, int32_t n_batch,
int32_t n_input, int16_t* output) {
for (int batch = 0; batch < n_batch; ++batch) {
for (int c = 0; c < n_input; c++) {
using F3 = gemmlowp::FixedPoint<std::int16_t, 3>;
using F0 = gemmlowp::FixedPoint<std::int16_t, 0>;
const int index = batch * n_input + c;
F3 sigmoid_input = F3::FromRaw(input[index]);
F0 sigmoid_output = gemmlowp::logistic(sigmoid_input);
output[index] = sigmoid_output.raw();
}
}
}
void PortableApplySigmoidFloat(const int16_t* input, int32_t n_batch,
int32_t n_input, int16_t* output) {
const int32_t int16_max = std::numeric_limits<int16_t>::max();
const int32_t int16_min = std::numeric_limits<int16_t>::min();
for (int batch = 0; batch < n_batch; ++batch) {
for (int i = 0; i < n_input; ++i) {
const int index = batch * n_input + i;
const float float_input =
input[index] * static_cast<float>(std::pow(2, -12));
const float float_output = 1.0f / (1.0f + std::exp(-float_input));
const int32_t quant_output = static_cast<int32_t>(
float_output * static_cast<float>(std::pow(2, 15)));
const int32_t quant_output_clamped =
std::min(int16_max, std::max(int16_min, quant_output));
output[index] = static_cast<int16_t>(quant_output_clamped);
}
}
}
template <int IntegerBits>
void PortableApplyTanhImpl(const int16_t* input, int32_t n_batch,
int32_t n_input, int16_t* output) {
using FX = gemmlowp::FixedPoint<std::int16_t, IntegerBits>;
using F0 = gemmlowp::FixedPoint<std::int16_t, 0>;
for (int batch = 0; batch < n_batch; ++batch) {
for (int i = 0; i < n_input; ++i) {
const int index = batch * n_input + i;
FX tanh_input = FX::FromRaw(input[index]);
F0 tanh_output = gemmlowp::tanh(tanh_input);
output[index] = tanh_output.raw();
}
}
}
void PortableApplyTanh(int32_t integer_bits, const int16_t* input,
int32_t n_batch, int32_t n_input, int16_t* output) {
assert(integer_bits <= 6);
#define DISPATCH_TANH(i) \
case i: \
PortableApplyTanhImpl<i>(input, n_batch, n_input, output); \
break;
switch (integer_bits) {
DISPATCH_TANH(0);
DISPATCH_TANH(1);
DISPATCH_TANH(2);
DISPATCH_TANH(3);
DISPATCH_TANH(4);
DISPATCH_TANH(5);
DISPATCH_TANH(6);
default:
return;
}
#undef DISPATCH_TANH
}
void PortableApplyTanhFloat(const int16_t* input, int32_t n_batch,
int32_t n_input, int32_t integer_bits,
int16_t* output) {
const int32_t int16_max = std::numeric_limits<int16_t>::max();
const int32_t int16_min = std::numeric_limits<int16_t>::min();
const double two = 2.0;
for (int batch = 0; batch < n_batch; ++batch) {
for (int i = 0; i < n_input; ++i) {
const int index = batch * n_input + i;
const float float_input =
input[index] * std::pow(two, static_cast<double>(integer_bits));
const float float_output = std::tanh(float_input);
const int32_t quant_output = static_cast<int32_t>(
float_output * static_cast<float>(std::pow(2, 15)));
const int32_t quant_output_clamped =
std::min(int16_max, std::max(int16_min, quant_output));
output[index] = static_cast<int16_t>(quant_output_clamped);
}
}
}
void PortableCwiseMul(const int16_t* input_1, const int16_t* input_2,
int n_batch, int n_input, int shift, int16_t* output) {
for (int batch = 0; batch < n_batch; ++batch) {
for (int i = 0; i < n_input; ++i) {
const int index = batch * n_input + i;
const int16_t a = input_1[index];
const int16_t b = input_2[index];
const int32_t value = static_cast<int32_t>(a) * static_cast<int32_t>(b);
output[index] =
static_cast<int16_t>(gemmlowp::RoundingDivideByPOT(value, shift));
}
}
}
void PortableCwiseMul(const int16_t* input_1, const int16_t* input_2,
int32_t multiplier, int32_t shift, int32_t n_batch,
int32_t n_input, int32_t output_zp, int8_t* output) {
for (int batch = 0; batch < n_batch; ++batch) {
for (int i = 0; i < n_input; ++i) {
const int index = batch * n_input + i;
const int16_t a = input_1[index];
const int16_t b = input_2[index];
int32_t value = static_cast<int32_t>(a) * static_cast<int32_t>(b);
value = MultiplyByQuantizedMultiplier(value, multiplier, shift);
value -= output_zp;
value = std::min(std::max(static_cast<int32_t>(-128), value),
static_cast<int32_t>(127));
output[index] = static_cast<int8_t>(value);
}
}
}
void PortableCwiseAdd(const int16_t* input_1, const int16_t* input_2,
int n_batch, int n_input, int16_t* output) {
for (int batch = 0; batch < n_batch; ++batch) {
for (int i = 0; i < n_input; ++i) {
const int index = batch * n_input + i;
int32_t sum = input_1[index] + input_2[index];
const int32_t sum_clamped = std::min(kInt16Max, std::max(kInt16Min, sum));
output[index] = static_cast<int16_t>(sum_clamped);
}
}
}
float PortableVectorVectorDotProduct(const float* vector1, const float* vector2,
int v_size) {
float result = 0.0;
for (int v = 0; v < v_size; v++) {
result += *vector1++ * *vector2++;
}
return result;
}
namespace {
inline int32_t VectorVectorDotProduct(const int16_t* vector1,
const int16_t* vector2, int v_size) {
int32_t result = 0;
for (int v = 0; v < v_size; v++) {
result += *vector1++ * *vector2++;
}
return result;
}
} // namespace
void PortableBatchVectorBatchVectorDotProduct(const int16_t* vector1,
const int16_t* vector2,
int v_size, int n_batch,
int32_t* result) {
for (int b = 0; b < n_batch; b++) {
result[b] = VectorVectorDotProduct(vector1, vector2, v_size);
vector1 += v_size;
vector2 += v_size;
}
}
void PortableVectorBatchVectorCwiseProductAccumulate(
const int16_t* vector, int v_size, const int16_t* batch_vector, int n_batch,
int32_t multiplier, int shift, int16_t* result) {
for (int b = 0; b < n_batch; b++) {
for (int v = 0; v < v_size; v++) {
int32_t prod = vector[v] * *batch_vector++;
prod = MultiplyByQuantizedMultiplier(prod, multiplier, shift);
int32_t output = prod + *result;
output = std::max(std::min(static_cast<int32_t>(32767), output),
static_cast<int32_t>(-32768));
*result++ = output;
}
}
}
void PortableSub1Vector(const float* vector, int v_size, float* result) {
for (int v = 0; v < v_size; v++) {
*result++ = 1.0f - *vector++;
}
}
void PortableSub1Vector(const int16_t* vector, int v_size, int16_t* result) {
static const int16_t kOne = 32767;
for (int v = 0; v < v_size; v++) {
*result++ = kOne - *vector++;
}
}
void PortableVectorScalarMultiply(const int8_t* vector, const int v_size,
const float scale, float* result) {
for (int v = 0; v < v_size; ++v) {
*result++ = scale * *vector++;
}
}
void PortableMeanStddevNormalization(const float* __restrict__ input_vector,
float* __restrict__ output_vector,
int v_size, int n_batch) {
for (int batch = 0; batch < n_batch; ++batch) {
float sum = 0.0f;
for (int i = 0; i < v_size; ++i) {
sum += input_vector[i];
}
const float mean = sum / v_size;
float sum_diff_sq = 0.0f;
for (int i = 0; i < v_size; ++i) {
const float diff = input_vector[i] - mean;
sum_diff_sq += diff * diff;
}
const float variance = sum_diff_sq / v_size;
constexpr float kNormalizationConstant = 1e-8f;
const float stddev_inv =
1.0f / std::sqrt(variance + kNormalizationConstant);
for (int i = 0; i < v_size; ++i) {
output_vector[i] = (input_vector[i] - mean) * stddev_inv;
}
input_vector += v_size;
output_vector += v_size;
}
}
void PortableTwoGateSaturatingAdd(const int8_t* input, int8_t input_zp,
const int8_t* recurrent, int8_t recurrent_zp,
int32_t input_effective_scale_a,
int32_t input_effective_scale_b,
int32_t recurrent_effective_scale_a,
int32_t recurrent_effective_scale_b,
int32_t n_batch, int32_t n_cell,
int16_t* output) {
const int32_t int16_max = std::numeric_limits<int16_t>::max();
const int32_t int16_min = std::numeric_limits<int16_t>::min();
for (int i = 0; i < n_batch * n_cell; ++i) {
int32_t x = static_cast<int32_t>(input[i]) - static_cast<int32_t>(input_zp);
int32_t h =
static_cast<int32_t>(recurrent[i]) - static_cast<int32_t>(recurrent_zp);
int32_t x_scaled = MultiplyByQuantizedMultiplier(x, input_effective_scale_a,
input_effective_scale_b);
int32_t h_scaled = MultiplyByQuantizedMultiplier(
h, recurrent_effective_scale_a, recurrent_effective_scale_b);
int32_t y = h_scaled + x_scaled;
if (y > int16_max) {
y = int16_max;
}
if (y < int16_min) {
y = int16_min;
}
output[i] = static_cast<int16_t>(y);
}
}
} // namespace tensor_utils
} // namespace tflite

View File

@@ -0,0 +1,235 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_PORTABLE_TENSOR_UTILS_IMPL_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_PORTABLE_TENSOR_UTILS_IMPL_H_
#include <algorithm>
#include <cstdint>
#if defined(_MSC_VER)
#define __restrict__ __restrict
#endif
namespace tflite {
// Not all backends support CpuBackendContext usage, so forward declare to avoid
// pulling in its implementation.
class CpuBackendContext;
namespace tensor_utils {
template <typename T>
bool PortableIsZeroVector(const T* vector, int v_size) {
for (int i = 0; i < v_size; ++i) {
if (vector[i] != 0) {
return false;
}
}
return true;
}
void PortableSymmetricQuantizeFloats(const float* values, const int size,
int8_t* quantized_values, float* min_value,
float* max_value, float* scaling_factor);
void PortableSymmetricQuantizeFloats(const float* values, const int size,
int8_t* quantized_values, float min_value,
float max_value, float* scaling_factor);
void PortableAsymmetricQuantizeFloats(const float* values, const int size,
int8_t* quantized_values,
float* scaling_factor, int32_t* offset);
// Multiply a matrix by a batch vector, and store results in a batch-size
// vector.
void PortableMatrixBatchVectorMultiplyAccumulate(const float* matrix,
int m_rows, int m_cols,
const float* vector,
int n_batch, float* result);
void PortableMatrixBatchVectorMultiplyAccumulate(
const int8_t* __restrict__ matrix, const int m_rows, const int m_cols,
const int8_t* __restrict__ vectors, const float* scaling_factors,
int n_batch, float* __restrict__ result);
void PortableMatrixBatchVectorMultiplyAccumulate(
const int8_t* __restrict__ matrix, const int m_rows, const int m_cols,
const int8_t* __restrict__ vectors, const float* scaling_factors,
int n_batch, float* __restrict__ result, const float* per_channel_scale,
const int32_t* input_offset, int32_t* scratch, int32_t* row_sums,
bool* compute_row_sums, CpuBackendContext* context);
void PortableMatrixBatchVectorMultiplyAccumulate(
const int8_t* __restrict__ matrix, const int m_rows, const int m_cols,
const int8_t* __restrict__ vector, const float* scaling_factors,
int n_batch, int32_t* scratch, float* __restrict__ result,
CpuBackendContext* context);
void PortableSparseMatrixBatchVectorMultiplyAccumulate1x4(
const float* __restrict__ matrix, const int32_t* __restrict__ segments,
const int32_t* __restrict__ indices, int m_rows, int m_cols,
const float* __restrict__ vector, int n_batch, float* __restrict__ result);
void PortableSparseMatrixBatchVectorMultiplyAccumulate(
const float* __restrict__ matrix, const uint8_t* __restrict__ ledger,
int m_rows, int m_cols, const float* __restrict__ vector, int n_batch,
float* __restrict__ result);
void PortableSparseMatrixBatchVectorMultiplyAccumulate(
const int8_t* __restrict__ matrix, const uint8_t* ledger, const int m_rows,
const int m_cols, const int8_t* __restrict__ vectors,
const float* scaling_factors, int n_batch, float* __restrict__ result);
// Dot product of two vectors.
float PortableVectorVectorDotProduct(const float* vector1, const float* vector2,
int v_size);
void PortableBatchVectorBatchVectorDotProduct(const int16_t* vector1,
const int16_t* vector2,
int v_size, int n_batch,
int32_t* result);
void PortableVectorBatchVectorCwiseProductAccumulate(
const int16_t* vector, int v_size, const int16_t* batch_vector, int n_batch,
int32_t multiplier, int shift, int16_t* result);
void PortableMatrixBatchVectorMultiplyAccumulate(
const int8_t* input, const int32_t* bias,
const int8_t* input_to_gate_weights, int32_t multiplier, int32_t shift,
int32_t n_batch, int32_t n_input, int32_t n_output, int32_t output_zp,
int32_t* scratch, int16_t* output, CpuBackendContext* context);
void PortableMatrixBatchVectorMultiplyAccumulate(
const int8_t* input, const int32_t* bias,
const int8_t* input_to_gate_weights, int32_t multiplier, int32_t shift,
int32_t n_batch, int32_t n_input, int32_t n_output, int32_t output_zp,
int32_t* scratch, int8_t* output, CpuBackendContext* context);
void PortableMatrixBatchVectorMultiply(const int8_t* input,
int32_t input_zeropoint,
const int8_t* input_to_gate_weights,
int32_t input_to_gate_effective_scale_a,
int32_t input_to_gate_effective_scale_b,
int32_t n_batch, int32_t n_input,
int32_t n_cell, int8_t* gate_output,
int8_t gate_output_zp);
void PortableMatrixBatchVectorMultiply(
const int16_t* hidden, const int8_t* hidden_to_output_weights,
int32_t proj_effective_scale_a, int32_t proj_effective_scale_b,
const int32_t* gate_bias, int32_t n_batch, int32_t n_hidden,
int32_t n_output, int32_t output_zp, int8_t* proj_output);
void PortableMatrixScalarMultiplyAccumulate(const int8_t* matrix,
int32_t scalar, int32_t n_row,
int32_t n_col, int32_t* output);
void PortableApplyLayerNorm(const int16_t* input,
const int16_t* layer_norm_weights,
const int32_t* bias, int32_t layer_norm_scale_a,
int32_t layer_norm_scale_b, int32_t variance_limit,
int n_batch, int n_input, int16_t* output);
void PortableApplyLayerNormFloat(const int16_t* input,
const int16_t* layer_norm_weights,
int32_t layer_norm_scale_a,
int32_t layer_norm_scale_b,
const int32_t* bias, int n_batch, int n_input,
int16_t* output);
void PortableApplySigmoid(const int16_t* input, int32_t n_batch,
int32_t n_input, int16_t* output);
void PortableApplySigmoidFloat(const int16_t* input, int32_t n_batch,
int32_t n_input, int16_t* output);
void PortableApplyTanh(int32_t integer_bits, const int16_t* input,
int32_t n_batch, int32_t n_input, int16_t* output);
void PortableApplyTanhFloat(const int16_t* input, int32_t n_batch,
int32_t n_input, int32_t integer_bits,
int16_t* output);
void PortableCwiseMul(const int16_t* input_1, const int16_t* input_2,
int n_batch, int n_input, int shift, int16_t* output);
void PortableCwiseMul(const int16_t* input_1, const int16_t* input_2,
int32_t multiplier, int32_t shift, int32_t n_batch,
int32_t n_input, int32_t output_zp, int8_t* output);
void PortableCwiseAdd(const int16_t* input_1, const int16_t* input_2,
int n_batch, int n_input, int16_t* output);
template <typename T>
void PortableCwiseClipping(T* vector, const int v_size,
const T& clipping_value) {
for (int i = 0; i < v_size; i++) {
vector[i] = std::max(std::min(clipping_value, vector[i]),
static_cast<T>(-clipping_value));
}
}
// Batch vector initialization with another vector.
void PortableVectorBatchVectorAssign(const float* vector, int v_size,
int n_batch, float* batch_vector);
// Compute "1.0f - elements of vector" (used in CIFG).
void PortableSub1Vector(const float* vector, int v_size, float* result);
void PortableSub1Vector(const int16_t* vector, int v_size, int16_t* result);
// Multiply all elements of vector with a scalar.
void PortableVectorScalarMultiply(const int8_t* vector, int v_size, float scale,
float* result);
// Reduce-sum on a vector:
// input_vector: pointer to input vector.
// output_vector: pointer to vector.
// output_size: output vector size.
// reduction_size: number of consecutive elements from input vector which are
// added to get one element of output.
template <typename INPUT, typename OUTPUT>
void PortableReductionSumVector(const INPUT* input_vector,
OUTPUT* output_vector, int output_size,
int reduction_size) {
for (int o = 0; o < output_size; o++) {
OUTPUT result = 0;
for (int r = 0; r < reduction_size; r++) {
result += input_vector[r];
}
output_vector[o] = result;
input_vector += reduction_size;
}
}
// Layer norm for each batch.
void PortableMeanStddevNormalization(const float* __restrict__ input_vector,
float* __restrict__ output_vector,
int v_size, int n_batch);
// Saturate Add.
void PortableTwoGateSaturatingAdd(const int8_t* input, int8_t input_zp,
const int8_t* recurrent, int8_t recurrent_zp,
int32_t input_effective_scale_a,
int32_t input_effective_scale_b,
int32_t recurrent_effective_scale_a,
int32_t recurrent_effective_scale_b,
int32_t n_batch, int32_t n_cell,
int16_t* output);
} // namespace tensor_utils
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_PORTABLE_TENSOR_UTILS_IMPL_H_

View File

@@ -23,6 +23,25 @@ limitations under the License.
#include "tensorflow/lite/kernels/internal/quantization_util.h"
#include "tensorflow/lite/kernels/internal/types.h"
// Check if the reduction at index is the first one along the dimensions given
// in axis.
inline bool IsFirstReduction(const int* index, const int num_axis,
const int* axis) {
if (num_axis == 0) {
return true;
}
TFLITE_DCHECK(index != nullptr);
TFLITE_DCHECK(axis != nullptr);
for (int axis_idx = 0; axis_idx < num_axis; ++axis_idx) {
if (index[axis[axis_idx]] != 0) {
return false;
}
}
return true;
}
namespace tflite {
namespace reference_ops {
@@ -35,8 +54,7 @@ inline bool Reduce(const In* input_data, const int* input_dims,
const int* output_dims, const int input_num_dims,
const int output_num_dims, const int* axis,
const int num_axis, int* input_iter,
Out reducer(const Out current, const In in),
Out* output_data) {
Out reducer(Out current, const In in), Out* output_data) {
// Reset input iterator.
for (int idx = 0; idx < input_num_dims; ++idx) {
input_iter[idx] = 0;
@@ -53,6 +71,37 @@ inline bool Reduce(const In* input_data, const int* input_dims,
return true;
}
// Similar to above Reduce function but takes two reducer functions.
// The 'reducer_first' is called with the first value of the reduction,
// 'reducer_next' is then called for all the others.
template <typename In, typename Out>
inline bool Reduce(const In* input_data, const int* input_dims,
const int* output_dims, const int input_num_dims,
const int output_num_dims, const int* axis,
const int num_axis, int* input_iter,
const std::function<Out(In in)>& reducer_first,
const std::function<Out(Out current, In in)>& reducer_next,
Out* output_data) {
// Reset input iterator.
for (int idx = 0; idx < input_num_dims; ++idx) {
input_iter[idx] = 0;
}
// Iterate through input_data.
do {
size_t input_offset =
ReducedOutputOffset(input_num_dims, input_dims, input_iter, 0, nullptr);
size_t output_offset = ReducedOutputOffset(input_num_dims, input_dims,
input_iter, num_axis, axis);
if (IsFirstReduction(input_iter, num_axis, axis)) {
output_data[output_offset] = reducer_first(input_data[input_offset]);
} else {
output_data[output_offset] =
reducer_next(output_data[output_offset], input_data[input_offset]);
}
} while (NextIndex(input_num_dims, input_dims, input_iter));
return true;
}
// This method parses the input 'axis' to remove duplicates and handle negative
// values, and returns a valid 'out_axis'
inline bool ResolveAxis(const int num_dims, const int* axis,
@@ -111,7 +160,8 @@ inline bool InitTensorDataForReduce(const int* dims, const int num_dims,
for (int idx = 0; idx < num_dims; ++idx) {
size_t current = static_cast<size_t>(dims[idx]);
// Overflow prevention.
if (num_elements > std::numeric_limits<size_t>::max() / current) {
if (current > 0 &&
num_elements > std::numeric_limits<size_t>::max() / current) {
return false;
}
num_elements *= current;
@@ -132,17 +182,20 @@ inline bool ReduceGeneric(const T* input_data, const int* input_dims,
bool keep_dims, int* temp_index, int* resolved_axis,
T init_value,
T reducer(const T current, const T in)) {
// Return early when input shape has zero dim.
for (int i = 0; i < input_num_dims; ++i) {
if (input_dims[i] == 0) return true;
}
// Reset output data.
if (!InitTensorDataForReduce(output_dims, output_num_dims, init_value,
output_data)) {
return false;
}
// Return early when input shape has zero dim. This is done after initializing
// data for output tensor because there are cases that the input tensor is
// empty but output tensor is not. In that case, output tensor should be
// filled with init_value.
for (int i = 0; i < input_num_dims; ++i) {
if (input_dims[i] == 0) return true;
}
// Resolve axis.
int num_resolved_axis = 0;
if (!ResolveAxis(input_num_dims, axis, num_axis_dimensions, resolved_axis,
@@ -290,9 +343,9 @@ inline void Mean(const tflite::MeanParams& op_params,
constexpr int32_t kMinValue = std::numeric_limits<uint8_t>::min();
constexpr int32_t kMaxValue = std::numeric_limits<uint8_t>::max();
int32_t bias =
output_zero_point -
static_cast<int32_t>(input_zero_point * input_scale / output_scale);
float temp = input_zero_point * input_scale / output_scale;
temp = temp > 0 ? temp + 0.5f : temp - 0.5f;
int32_t bias = output_zero_point - static_cast<int32_t>(temp);
double real_scale =
static_cast<double>(input_scale / (num_elements_in_axis * output_scale));
@@ -353,6 +406,14 @@ inline bool QuantizedMeanOrSum(const T* input_data, int32_t input_zero_point,
temp_sum[idx] = U();
}
// Return early when input shape has zero dim. This is done after initializing
// data for output tensor because there are cases that the input tensor is
// empty but output tensor is not. In that case, output tensor should be
// filled with init_value.
for (int i = 0; i < input_num_dims; ++i) {
if (input_dims[i] == 0) return true;
}
// Resolve axis.
int num_resolved_axis = 0;
if (!ResolveAxis(input_num_dims, axis, num_axis_dimensions, resolved_axis,
@@ -405,6 +466,57 @@ inline bool QuantizedMeanOrSum(const T* input_data, int32_t input_zero_point,
return true;
}
template <typename T>
inline bool QuantizedReduceProd(const T* input_data, int32_t input_zero_point,
const RuntimeShape& input_shape, T* output_data,
int32_t output_zero_point,
const RuntimeShape& output_shape,
const int* axis,
const int64_t num_axis_dimensions,
bool keep_dims, int* temp_index,
int* resolved_axis, int32_t* temp_prod,
int32_t scaling_multiplier, int scaling_shift) {
const int32_t kMinValue = std::numeric_limits<T>::min();
const int32_t kMaxValue = std::numeric_limits<T>::max();
// Resolve axis.
int num_resolved_axis = 0;
if (!ResolveAxis(input_shape.DimensionsCount(), axis, num_axis_dimensions,
resolved_axis, &num_resolved_axis)) {
return false;
}
// Calculate the reduced product by rescaling each multiplication step to
// avoid an overflow.
auto reducer_first = [&](T in) -> int32_t { return in - input_zero_point; };
auto reducer_next = [&](int32_t current, T in) -> int32_t {
const int64_t result =
static_cast<int64_t>(current) * (in - input_zero_point);
return MultiplyByQuantizedMultiplier(result, scaling_multiplier,
scaling_shift);
};
if (!Reduce<T, int32_t>(
input_data, input_shape.DimsData(), output_shape.DimsData(),
input_shape.DimensionsCount(), output_shape.DimensionsCount(),
resolved_axis, num_resolved_axis, temp_index, reducer_first,
reducer_next, temp_prod)) {
return false;
}
for (int i = 0; i < output_shape.FlatSize(); i++) {
int32_t result =
MultiplyByQuantizedMultiplier(static_cast<int64_t>(temp_prod[i]),
scaling_multiplier, scaling_shift) +
output_zero_point;
result = std::min(std::max(result, kMinValue), kMaxValue);
output_data[i] = static_cast<T>(result);
}
return true;
}
} // namespace reference_ops
} // namespace tflite

View File

@@ -0,0 +1,228 @@
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_RESIZE_BILINEAR_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_RESIZE_BILINEAR_H_
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <limits>
#include "tensorflow/lite/kernels/internal/cppmath.h"
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
namespace reference_ops {
inline void ComputeInterpolationValues(const float value, const float scale,
const bool half_pixel_centers,
int32_t input_size, float* scaled_value,
int32_t* lower_bound,
int32_t* upper_bound) {
if (half_pixel_centers) {
*scaled_value = (value + 0.5f) * scale - 0.5f;
} else {
*scaled_value = value * scale;
}
float scaled_value_floor = std::floor(*scaled_value);
*lower_bound = std::max(static_cast<int32_t>(scaled_value_floor),
static_cast<int32_t>(0));
*upper_bound =
std::min(static_cast<int32_t>(std::ceil(*scaled_value)), input_size - 1);
}
template <typename T>
inline void ResizeBilinear(const tflite::ResizeBilinearParams& op_params,
const RuntimeShape& unextended_input_shape,
const T* input_data,
const RuntimeShape& unextended_output_size_shape,
const int32_t* output_size_data,
const RuntimeShape& unextended_output_shape,
T* output_data) {
// If half_pixel_centers is True, align_corners must be False.
TFLITE_DCHECK(!op_params.half_pixel_centers || !op_params.align_corners);
TFLITE_DCHECK_LE(unextended_input_shape.DimensionsCount(), 4);
TFLITE_DCHECK_LE(unextended_output_size_shape.DimensionsCount(), 4);
TFLITE_DCHECK_LE(unextended_output_shape.DimensionsCount(), 4);
const RuntimeShape input_shape =
RuntimeShape::ExtendedShape(4, unextended_input_shape);
const RuntimeShape output_size_shape =
RuntimeShape::ExtendedShape(4, unextended_output_size_shape);
const RuntimeShape output_shape =
RuntimeShape::ExtendedShape(4, unextended_output_shape);
int32_t batches = MatchingDim(input_shape, 0, output_shape, 0);
int32_t input_height = input_shape.Dims(1);
int32_t input_width = input_shape.Dims(2);
int32_t depth = MatchingDim(input_shape, 3, output_shape, 3);
TFLITE_DCHECK_EQ(output_size_shape.Dims(0), 1);
TFLITE_DCHECK_EQ(output_size_shape.Dims(1), 1);
TFLITE_DCHECK_EQ(output_size_shape.Dims(2), 1);
TFLITE_DCHECK_EQ(output_size_shape.Dims(3), 2);
int32_t output_height =
output_size_data[Offset(output_size_shape, 0, 0, 0, 0)];
int32_t output_width =
output_size_data[Offset(output_size_shape, 0, 0, 0, 1)];
float height_scale = static_cast<float>(input_height) / output_height;
float width_scale = static_cast<float>(input_width) / output_width;
if (op_params.align_corners && output_height > 1) {
height_scale = static_cast<float>(input_height - 1) / (output_height - 1);
}
if (op_params.align_corners && output_width > 1) {
width_scale = static_cast<float>(input_width - 1) / (output_width - 1);
}
const float rounding_offset = std::numeric_limits<T>::is_integer ? .5f : .0f;
for (int b = 0; b < batches; ++b) {
for (int y = 0; y < output_height; ++y) {
float input_y;
int32_t y0, y1;
ComputeInterpolationValues(y, height_scale, op_params.half_pixel_centers,
input_height, &input_y, &y0, &y1);
for (int x = 0; x < output_width; ++x) {
float input_x;
int32_t x0, x1;
ComputeInterpolationValues(x, width_scale, op_params.half_pixel_centers,
input_width, &input_x, &x0, &x1);
for (int c = 0; c < depth; ++c) {
T interpolation =
static_cast<T>(input_data[Offset(input_shape, b, y0, x0, c)] *
(1 - (input_y - y0)) * (1 - (input_x - x0)) +
input_data[Offset(input_shape, b, y1, x0, c)] *
(input_y - y0) * (1 - (input_x - x0)) +
input_data[Offset(input_shape, b, y0, x1, c)] *
(1 - (input_y - y0)) * (input_x - x0) +
input_data[Offset(input_shape, b, y1, x1, c)] *
(input_y - y0) * (input_x - x0) +
rounding_offset);
output_data[Offset(output_shape, b, y, x, c)] = interpolation;
}
}
}
}
}
inline void ComputeInterpolationValuesInteger(
const int32_t value, const int32_t scale_10, const bool half_pixel_centers,
int32_t input_size, int32_t* scaled_value, int32_t* lower_bound,
int32_t* upper_bound) {
if (half_pixel_centers) {
*scaled_value = value * scale_10 + scale_10 / 2 - (1 << 9);
} else {
*scaled_value = value * scale_10;
}
constexpr int32_t zero = 0;
*lower_bound = std::max(*scaled_value / (1 << 10), zero);
*upper_bound =
std::min((*scaled_value + (1 << 10) - 1) / (1 << 10), input_size - 1);
}
// Same as above but doesn't use any floating-point for the resize
template <typename T>
inline void ResizeBilinearInteger(
const tflite::ResizeBilinearParams& op_params,
const RuntimeShape& unextended_input_shape, const T* input_data,
const RuntimeShape& unextended_output_size_shape,
const int32_t* output_size_data,
const RuntimeShape& unextended_output_shape, T* output_data) {
// If half_pixel_centers is True, align_corners must be False.
TFLITE_DCHECK(!op_params.half_pixel_centers || !op_params.align_corners);
TFLITE_DCHECK_LE(unextended_input_shape.DimensionsCount(), 4);
TFLITE_DCHECK_LE(unextended_output_size_shape.DimensionsCount(), 4);
TFLITE_DCHECK_LE(unextended_output_shape.DimensionsCount(), 4);
const RuntimeShape input_shape =
RuntimeShape::ExtendedShape(4, unextended_input_shape);
const RuntimeShape output_size_shape =
RuntimeShape::ExtendedShape(4, unextended_output_size_shape);
const RuntimeShape output_shape =
RuntimeShape::ExtendedShape(4, unextended_output_shape);
const int32_t batches = MatchingDim(input_shape, 0, output_shape, 0);
const int32_t input_height = input_shape.Dims(1);
const int32_t input_width = input_shape.Dims(2);
const int32_t depth = MatchingDim(input_shape, 3, output_shape, 3);
TFLITE_DCHECK_EQ(output_size_shape.Dims(0), 1);
TFLITE_DCHECK_EQ(output_size_shape.Dims(1), 1);
TFLITE_DCHECK_EQ(output_size_shape.Dims(2), 1);
TFLITE_DCHECK_EQ(output_size_shape.Dims(3), 2);
const int32_t output_height =
output_size_data[Offset(output_size_shape, 0, 0, 0, 0)];
const int32_t output_width =
output_size_data[Offset(output_size_shape, 0, 0, 0, 1)];
int32_t height_scale_10 =
((1 << 10) * input_height + output_height / 2) / output_height;
int32_t width_scale_10 =
((1 << 10) * input_width + output_width / 2) / output_width;
if (op_params.align_corners && output_height > 1) {
height_scale_10 =
((1 << 10) * (input_height - 1) + (output_height - 1) / 2) /
(output_height - 1);
}
if (op_params.align_corners && output_width > 1) {
width_scale_10 = ((1 << 10) * (input_width - 1) + (output_width - 1) / 2) /
(output_width - 1);
}
for (int b = 0; b < batches; ++b) {
for (int y = 0; y < output_height; ++y) {
int32_t input_y, y0, y1;
ComputeInterpolationValuesInteger(y, height_scale_10,
op_params.half_pixel_centers,
input_height, &input_y, &y0, &y1);
for (int x = 0; x < output_width; ++x) {
int32_t input_x, x0, x1;
ComputeInterpolationValuesInteger(x, width_scale_10,
op_params.half_pixel_centers,
input_width, &input_x, &x0, &x1);
for (int c = 0; c < depth; ++c) {
const int64_t output_20_ll =
static_cast<int64_t>(
input_data[Offset(input_shape, b, y0, x0, c)]) *
((1 << 10) - (input_y - (1 << 10) * y0)) *
((1 << 10) - (input_x - (1 << 10) * x0));
const int64_t output_20_lu =
static_cast<int64_t>(
input_data[Offset(input_shape, b, y1, x0, c)]) *
(input_y - (1 << 10) * y0) *
((1 << 10) - (input_x - (1 << 10) * x0));
const int64_t output_20_rl =
static_cast<int64_t>(
input_data[Offset(input_shape, b, y0, x1, c)]) *
((1 << 10) - (input_y - (1 << 10) * y0)) *
(input_x - (1 << 10) * x0);
const int64_t output_20_ru =
static_cast<int64_t>(
input_data[Offset(input_shape, b, y1, x1, c)]) *
(input_y - (1 << 10) * y0) * (input_x - (1 << 10) * x0);
const int64_t output_20 =
output_20_ll + output_20_lu + output_20_rl + output_20_ru;
const int64_t round = (output_20 > 0) ? (1 << 19) : -(1 << 19);
const T interpolation =
static_cast<T>((output_20 + round) / (1 << 20));
output_data[Offset(output_shape, b, y, x, c)] = interpolation;
}
}
}
}
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_RESIZE_BILINEAR_H_

View File

@@ -159,7 +159,7 @@ inline int16_t SoftMaxCalculateExp(const SoftmaxParams& params,
std::min(std::max(sym_scaled_diff, static_cast<int32_t>(-32768)),
static_cast<int32_t>(32767));
// apply the exp() LUT activation function
return generic_int16_table_lookup(sat_sym_scaled_diff, params.exp_lut);
return lut_lookup(sat_sym_scaled_diff, params.exp_lut);
}
// Quantized softmax with int16_t input and int16_t output.
inline void SoftmaxInt16(const SoftmaxParams& params,
@@ -207,8 +207,8 @@ inline void SoftmaxInt16(const SoftmaxParams& params,
std::min(std::max(sym_shifted_sum, static_cast<int32_t>(-32768)),
static_cast<int32_t>(32767)));
// apply 1/(1 + x) LUT activation function
int16_t reciprocal_scale_Q015 = generic_int16_table_lookup(
sat_sym_shifted_sum, params.one_over_one_plus_x_lut);
int16_t reciprocal_scale_Q015 =
lut_lookup(sat_sym_shifted_sum, params.one_over_one_plus_x_lut);
// Rescale the exp_result with reciprocal
// range of output is [0, 32767] correspond to [0.0, 1.0]

View File

@@ -0,0 +1,80 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_SPACE_TO_DEPTH_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_SPACE_TO_DEPTH_H_
#include <cstdint>
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
namespace reference_ops {
template <typename T>
inline void SpaceToDepth(const tflite::SpaceToDepthParams& op_params,
const RuntimeShape& unextended_input_shape,
const T* input_data,
const RuntimeShape& unextended_output_shape,
T* output_data) {
TFLITE_DCHECK_LE(unextended_input_shape.DimensionsCount(), 4);
TFLITE_DCHECK_LE(unextended_output_shape.DimensionsCount(), 4);
const RuntimeShape input_shape =
RuntimeShape::ExtendedShape(4, unextended_input_shape);
const RuntimeShape output_shape =
RuntimeShape::ExtendedShape(4, unextended_output_shape);
const int input_depth = input_shape.Dims(3);
const int input_width = input_shape.Dims(2);
const int input_height = input_shape.Dims(1);
const int input_batch = input_shape.Dims(0);
const int output_depth = output_shape.Dims(3);
const int output_width = output_shape.Dims(2);
const int output_height = output_shape.Dims(1);
const int output_batch = output_shape.Dims(0);
const int32_t block_size = op_params.block_size;
TFLITE_DCHECK_EQ(input_width, output_width * block_size);
TFLITE_DCHECK_EQ(input_height, output_height * block_size);
TFLITE_DCHECK_EQ(input_depth * block_size * block_size, output_depth);
TFLITE_DCHECK_EQ(input_batch, output_batch);
for (int in_b = 0; in_b < input_batch; ++in_b) {
for (int in_h = 0; in_h < input_height; ++in_h) {
for (int in_w = 0; in_w < input_width; ++in_w) {
for (int in_d = 0; in_d < input_depth; ++in_d) {
const int out_d =
in_d + ((in_h % block_size) * block_size + in_w % block_size) *
input_depth;
const int out_w = in_w / block_size;
const int out_h = in_h / block_size;
const int out_b = in_b;
const int input_index = Offset(input_shape, in_b, in_h, in_w, in_d);
const int output_index =
Offset(output_shape, out_b, out_h, out_w, out_d);
output_data[output_index] = input_data[input_index];
}
}
}
}
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_SPACE_TO_DEPTH_H_

View File

@@ -0,0 +1,111 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_TRANSPOSE_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_TRANSPOSE_H_
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
namespace reference_ops {
template <typename T, int N>
void TransposeImpl(const TransposeParams& params,
const RuntimeShape& unextended_input_shape,
const T* input_data,
const RuntimeShape& unextended_output_shape,
T* output_data) {
const int unextended_input_size = unextended_input_shape.DimensionsCount();
const int unextended_output_size = unextended_output_shape.DimensionsCount();
TFLITE_DCHECK_LE(unextended_input_size, N);
TFLITE_DCHECK_LE(unextended_output_size, N);
TFLITE_DCHECK_EQ(unextended_output_size, params.perm_count);
const int input_ext_size = N - unextended_input_size;
const int output_ext_size = N - unextended_output_size;
NdArrayDesc<N> input_desc;
NdArrayDesc<N> output_desc;
CopyDimsToDesc(RuntimeShape::ExtendedShape(N, unextended_input_shape),
&input_desc);
CopyDimsToDesc(RuntimeShape::ExtendedShape(N, unextended_output_shape),
&output_desc);
// The perm data is extended to match the output, each index incremented by
// the amount of front padding of the input shape.
int extended_perm[N];
for (int i = 0; i < N; ++i) {
extended_perm[i] = i < output_ext_size
? i
: params.perm[i - output_ext_size] + input_ext_size;
}
// Permutes the input shape so we don't need to permute the indexes inside
// the loop. Check to make sure output_dims is matching input_dims.
NdArrayDesc<N> perm_input_desc;
for (int k = 0; k < N; ++k) {
TFLITE_DCHECK_EQ(input_desc.extents[extended_perm[k]],
output_desc.extents[k]);
perm_input_desc.extents[k] = input_desc.extents[extended_perm[k]];
perm_input_desc.strides[k] = input_desc.strides[extended_perm[k]];
}
// Naive transpose loop (iterate on output index and compute input index).
auto tranpose_func = [&](int indexes[N]) {
output_data[SubscriptToIndex(output_desc, indexes)] =
input_data[SubscriptToIndex(perm_input_desc, indexes)];
};
NDOpsHelper<N>(output_desc, tranpose_func);
}
template <typename T, int N = 5>
void Transpose(const TransposeParams& params,
const RuntimeShape& unextended_input_shape, const T* input_data,
const RuntimeShape& unextended_output_shape, T* output_data) {
// Transpose kernel only does rearranging values not numeric evaluations on
// each cell. It's safe to implement per size of scalar type and this trick
// keeps the total code size in a reasonable range.
switch (sizeof(T)) {
case 1:
TransposeImpl<int8_t, N>(params, unextended_input_shape,
reinterpret_cast<const int8_t*>(input_data),
unextended_output_shape,
reinterpret_cast<int8_t*>(output_data));
break;
case 2:
TransposeImpl<int16_t, N>(params, unextended_input_shape,
reinterpret_cast<const int16_t*>(input_data),
unextended_output_shape,
reinterpret_cast<int16_t*>(output_data));
break;
case 4:
TransposeImpl<int32_t, N>(params, unextended_input_shape,
reinterpret_cast<const int32_t*>(input_data),
unextended_output_shape,
reinterpret_cast<int32_t*>(output_data));
break;
case 8:
TransposeImpl<int64_t, N>(params, unextended_input_shape,
reinterpret_cast<const int64_t*>(input_data),
unextended_output_shape,
reinterpret_cast<int64_t*>(output_data));
break;
}
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_TRANSPOSE_H_

View File

@@ -400,13 +400,22 @@ inline size_t ReducedOutputOffset(const int num_dims, const int* dims,
return offset;
}
// Since tensors with '0' in their shape are valid in TF, these offset functions
// allow that as long as the corresponding index is also 0. It is upto the
// calling ops to ensure that they perform verification checks on tensor shapes
// if they don't support a particular behavior.
inline int Offset(const RuntimeShape& shape, int i0, int i1, int i2, int i3) {
TFLITE_DCHECK_EQ(shape.DimensionsCount(), 4);
const int* dims_data = reinterpret_cast<const int*>(shape.DimsDataUpTo5D());
TFLITE_DCHECK(i0 >= 0 && i0 < dims_data[0]);
TFLITE_DCHECK(i1 >= 0 && i1 < dims_data[1]);
TFLITE_DCHECK(i2 >= 0 && i2 < dims_data[2]);
TFLITE_DCHECK(i3 >= 0 && i3 < dims_data[3]);
TFLITE_DCHECK((dims_data[0] == 0 && i0 == 0) ||
(i0 >= 0 && i0 < dims_data[0]));
TFLITE_DCHECK((dims_data[1] == 0 && i1 == 0) ||
(i1 >= 0 && i1 < dims_data[1]));
TFLITE_DCHECK((dims_data[2] == 0 && i2 == 0) ||
(i2 >= 0 && i2 < dims_data[2]));
TFLITE_DCHECK((dims_data[3] == 0 && i3 == 0) ||
(i3 >= 0 && i3 < dims_data[3]));
return ((i0 * dims_data[1] + i1) * dims_data[2] + i2) * dims_data[3] + i3;
}
@@ -414,21 +423,34 @@ inline int Offset(const RuntimeShape& shape, int i0, int i1, int i2, int i3,
int i4) {
TFLITE_DCHECK_EQ(shape.DimensionsCount(), 5);
const int* dims_data = reinterpret_cast<const int*>(shape.DimsDataUpTo5D());
TFLITE_DCHECK(i0 >= 0 && i0 < dims_data[0]);
TFLITE_DCHECK(i1 >= 0 && i1 < dims_data[1]);
TFLITE_DCHECK(i2 >= 0 && i2 < dims_data[2]);
TFLITE_DCHECK(i3 >= 0 && i3 < dims_data[3]);
TFLITE_DCHECK(i4 >= 0 && i4 < dims_data[4]);
TFLITE_DCHECK((dims_data[0] == 0 && i0 == 0) ||
(i0 >= 0 && i0 < dims_data[0]));
TFLITE_DCHECK((dims_data[1] == 0 && i1 == 0) ||
(i1 >= 0 && i1 < dims_data[1]));
TFLITE_DCHECK((dims_data[2] == 0 && i2 == 0) ||
(i2 >= 0 && i2 < dims_data[2]));
TFLITE_DCHECK((dims_data[3] == 0 && i3 == 0) ||
(i3 >= 0 && i3 < dims_data[3]));
TFLITE_DCHECK((dims_data[4] == 0 && i4 == 0) ||
(i4 >= 0 && i4 < dims_data[4]));
return (((i0 * dims_data[1] + i1) * dims_data[2] + i2) * dims_data[3] + i3) *
dims_data[4] +
i4;
}
inline int Offset(const RuntimeShape& shape, int* index) {
return Offset(shape, index[0], index[1], index[2], index[3]);
}
inline int Offset(const Dims<4>& dims, int i0, int i1, int i2, int i3) {
TFLITE_DCHECK(i0 >= 0 && i0 < dims.sizes[0]);
TFLITE_DCHECK(i1 >= 0 && i1 < dims.sizes[1]);
TFLITE_DCHECK(i2 >= 0 && i2 < dims.sizes[2]);
TFLITE_DCHECK(i3 >= 0 && i3 < dims.sizes[3]);
TFLITE_DCHECK((i0 == 0 && dims.sizes[0] == 0) ||
(i0 >= 0 && i0 < dims.sizes[0]));
TFLITE_DCHECK((i1 == 0 && dims.sizes[1] == 0) ||
(i1 >= 0 && i1 < dims.sizes[1]));
TFLITE_DCHECK((i2 == 0 && dims.sizes[2] == 0) ||
(i2 >= 0 && i2 < dims.sizes[2]));
TFLITE_DCHECK((i3 == 0 && dims.sizes[3] == 0) ||
(i3 >= 0 && i3 < dims.sizes[3]));
return i0 * dims.strides[0] + i1 * dims.strides[1] + i2 * dims.strides[2] +
i3 * dims.strides[3];
}
@@ -437,10 +459,6 @@ inline int Offset(const Dims<4>& dims, int* index) {
return Offset(dims, index[0], index[1], index[2], index[3]);
}
inline int Offset(const RuntimeShape& shape, int* index) {
return Offset(shape, index[0], index[1], index[2], index[3]);
}
// Get array size, DCHECKing that the dim index is in range.
//
// Note that this will be phased out with Dims<4>, since RuntimeShape::Dims()
@@ -602,6 +620,58 @@ inline int MatchingFlatSize(const Dims<N>& dims, const Dims<N>& check_dims_0,
return MatchingFlatSize(dims, check_dims_1, check_dims_2, check_dims_3);
}
// Flat size calculation, checking if their extended shapes match.
inline int MatchingExtendedShapeFlatSize(const RuntimeShape& shape,
const RuntimeShape& check_shape_0) {
const int shape_dims = shape.DimensionsCount();
const int check_shape_0_dims = check_shape_0.DimensionsCount();
const int min_dims = std::min(shape_dims, check_shape_0_dims);
for (int i = 0; i < min_dims; ++i) {
TFLITE_DCHECK_EQ(shape.Dims(shape_dims - 1 - i),
check_shape_0.Dims(check_shape_0_dims - 1 - i));
}
for (int i = min_dims; i < shape_dims; ++i) {
TFLITE_DCHECK_EQ(shape.Dims(shape_dims - 1 - i), 1);
}
for (int i = min_dims; i < check_shape_0_dims; ++i) {
TFLITE_DCHECK_EQ(check_shape_0.Dims(check_shape_0_dims - 1 - i), 1);
}
return shape.FlatSize();
}
inline int MatchingExtendedShapeFlatSize(const RuntimeShape& shape,
const RuntimeShape& check_shape_0,
const RuntimeShape& check_shape_1) {
const int flat_size = MatchingExtendedShapeFlatSize(shape, check_shape_0);
TFLITE_DCHECK_EQ(MatchingExtendedShapeFlatSize(shape, check_shape_1),
flat_size);
return flat_size;
}
inline int MatchingExtendedShapeFlatSize(const RuntimeShape& shape,
const RuntimeShape& check_shape_0,
const RuntimeShape& check_shape_1,
const RuntimeShape& check_shape_2) {
const int flat_size = MatchingExtendedShapeFlatSize(shape, check_shape_0);
TFLITE_DCHECK_EQ(
MatchingExtendedShapeFlatSize(shape, check_shape_1, check_shape_2),
flat_size);
return flat_size;
}
inline int MatchingExtendedShapeFlatSize(const RuntimeShape& shape,
const RuntimeShape& check_shape_0,
const RuntimeShape& check_shape_1,
const RuntimeShape& check_shape_2,
const RuntimeShape& check_shape_3) {
const int flat_size = MatchingExtendedShapeFlatSize(shape, check_shape_0);
TFLITE_DCHECK_EQ(MatchingExtendedShapeFlatSize(shape, check_shape_1,
check_shape_2, check_shape_3),
flat_size);
return flat_size;
}
// Data is required to be contiguous, and so many operators can use either the
// full array flat size or the flat size with one dimension skipped (commonly
// the depth).
@@ -885,6 +955,8 @@ struct Conv3DParams {
float float_activation_max;
};
typedef Conv3DParams Conv3DTransposeParams;
struct DepthToSpaceParams {
int32_t block_size;
};
@@ -1019,9 +1091,9 @@ struct PackParams {
struct PadParams {
int8_t left_padding_count;
int32_t left_padding[4];
int32_t left_padding[5];
int8_t right_padding_count;
int32_t right_padding[4];
int32_t right_padding[5];
ResizingCategory resizing_category;
};
@@ -1196,6 +1268,23 @@ inline void GetActivationParams(const P& params, int64_t* min, int64_t* max) {
*min = params.int64_activation_min;
*max = params.int64_activation_max;
}
// Type trait to check of given type has size smaller than 4 bytes.
template <typename T>
struct is_small_integer
: public std::integral_constant<bool,
std::is_same<T, int8_t>::value ||
std::is_same<T, uint8_t>::value ||
std::is_same<T, int16_t>::value ||
std::is_same<T, uint16_t>::value> {};
// Type trait to check of given type is int32 or int64.
template <typename T>
struct is_int32_or_int64
: public std::integral_constant<bool, std::is_same<T, int32_t>::value ||
std::is_same<T, int64_t>::value> {
};
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_TYPES_H_

View File

@@ -119,6 +119,7 @@ TfLiteStatus GetInputSafe(const TfLiteContext* context, const TfLiteNode* node,
TfLiteTensor* GetVariableInput(TfLiteContext* context, const TfLiteNode* node,
int index) {
TfLiteTensor* tensor = GetMutableInput(context, node, index);
if (tensor == nullptr) return nullptr;
return tensor->is_variable ? tensor : nullptr;
}
@@ -197,7 +198,7 @@ TfLiteStatus PopulateConvolutionQuantizationParams(
const TfLiteTensor* filter, const TfLiteTensor* bias, TfLiteTensor* output,
const TfLiteFusedActivation& activation, int32_t* multiplier, int* shift,
int32_t* output_activation_min, int32_t* output_activation_max,
int32_t* per_channel_multiplier, int* per_channel_shift) {
int32_t* per_channel_multiplier, int32_t* per_channel_shift) {
const auto* affine_quantization =
reinterpret_cast<TfLiteAffineQuantization*>(filter->quantization.params);
return PopulateConvolutionQuantizationParams(
@@ -212,7 +213,8 @@ TfLiteStatus PopulateConvolutionQuantizationParams(
const TfLiteTensor* filter, const TfLiteTensor* bias, TfLiteTensor* output,
const TfLiteFusedActivation& activation, int32_t* multiplier, int* shift,
int32_t* output_activation_min, int32_t* output_activation_max,
int32_t* per_channel_multiplier, int* per_channel_shift, int num_channels) {
int32_t* per_channel_multiplier, int32_t* per_channel_shift,
int num_channels) {
TF_LITE_ENSURE_EQ(context, input->quantization.type,
kTfLiteAffineQuantization);
TF_LITE_ENSURE_EQ(context, filter->quantization.type,
@@ -333,30 +335,49 @@ TfLiteStatus GetQuantizedConvolutionMultipler(TfLiteContext* context,
}
namespace {
void CalculateActivationRangeQuantizedImpl(TfLiteFusedActivation activation,
int32_t qmin, int32_t qmax,
TfLiteTensor* output,
int32_t* act_min, int32_t* act_max) {
inline TfLiteStatus Quantize(TfLiteContext* context, float scale,
int32_t zero_point, float f, int32_t& q) {
const float tmp = TfLiteRound(f / scale);
const bool no_integer_overflow_from_quantization =
(tmp >= static_cast<float>(std::numeric_limits<int32_t>::min()) &&
tmp <= static_cast<float>(std::numeric_limits<int32_t>::max()));
TF_LITE_ENSURE(context, no_integer_overflow_from_quantization);
q = zero_point + static_cast<int32_t>(tmp);
return kTfLiteOk;
}
TfLiteStatus CalculateActivationRangeQuantizedImpl(
TfLiteContext* context, TfLiteFusedActivation activation, int32_t qmin,
int32_t qmax, TfLiteTensor* output, int32_t* act_min, int32_t* act_max) {
const auto scale = output->params.scale;
const auto zero_point = output->params.zero_point;
auto quantize = [scale, zero_point](float f) {
return zero_point + static_cast<int32_t>(TfLiteRound(f / scale));
};
int32_t tmp_q;
if (activation == kTfLiteActRelu) {
*act_min = std::max(qmin, quantize(0.0));
TF_LITE_ENSURE_OK(context,
Quantize(context, scale, zero_point, 0.0, tmp_q));
*act_min = std::max(qmin, tmp_q);
*act_max = qmax;
} else if (activation == kTfLiteActRelu6) {
*act_min = std::max(qmin, quantize(0.0));
*act_max = std::min(qmax, quantize(6.0));
TF_LITE_ENSURE_OK(context,
Quantize(context, scale, zero_point, 0.0, tmp_q));
*act_min = std::max(qmin, tmp_q);
TF_LITE_ENSURE_OK(context,
Quantize(context, scale, zero_point, 6.0, tmp_q));
*act_max = std::min(qmax, tmp_q);
} else if (activation == kTfLiteActReluN1To1) {
*act_min = std::max(qmin, quantize(-1.0));
*act_max = std::min(qmax, quantize(1.0));
TF_LITE_ENSURE_OK(context,
Quantize(context, scale, zero_point, -1.0, tmp_q));
*act_min = std::max(qmin, tmp_q);
TF_LITE_ENSURE_OK(context,
Quantize(context, scale, zero_point, 1.0, tmp_q));
*act_max = std::min(qmax, tmp_q);
} else {
*act_min = qmin;
*act_max = qmax;
}
return kTfLiteOk;
}
} // namespace
@@ -380,9 +401,8 @@ TfLiteStatus CalculateActivationRangeQuantized(TfLiteContext* context,
TF_LITE_ENSURE(context, false);
}
CalculateActivationRangeQuantizedImpl(activation, qmin, qmax, output, act_min,
act_max);
return kTfLiteOk;
return CalculateActivationRangeQuantizedImpl(context, activation, qmin, qmax,
output, act_min, act_max);
}
bool HaveSameShapes(const TfLiteTensor* input1, const TfLiteTensor* input2) {
@@ -412,18 +432,15 @@ TfLiteStatus CalculateShapeForBroadcast(TfLiteContext* context,
const TfLiteTensor* input1,
const TfLiteTensor* input2,
TfLiteIntArray** output_shape) {
int dims1 = NumDimensions(input1);
int dims2 = NumDimensions(input2);
int out_dims = std::max(dims1, dims2);
if (NumElements(input1) == 0) {
*output_shape = TfLiteIntArrayCopy(input1->dims);
return kTfLiteOk;
}
const int dims1 = NumDimensions(input1);
const int dims2 = NumDimensions(input2);
const int out_dims = std::max(dims1, dims2);
std::unique_ptr<TfLiteIntArray, void (*)(TfLiteIntArray*)> shape(
TfLiteIntArrayCreate(out_dims), TfLiteIntArrayFree);
for (int i = 0; i < out_dims; ++i) {
int d1 = i >= dims1 ? 1 : SizeOfDimension(input1, dims1 - i - 1);
int d2 = i >= dims2 ? 1 : SizeOfDimension(input2, dims2 - i - 1);
const int d1 = i >= dims1 ? 1 : SizeOfDimension(input1, dims1 - i - 1);
const int d2 = i >= dims2 ? 1 : SizeOfDimension(input2, dims2 - i - 1);
if (!(d1 == d2 || d1 == 1 || d2 == 1)) {
context->ReportError(context,
"Given shapes, %s and %s, are not broadcastable.",
@@ -431,7 +448,12 @@ TfLiteStatus CalculateShapeForBroadcast(TfLiteContext* context,
GetShapeDebugString(input2->dims).c_str());
return kTfLiteError;
}
shape->data[out_dims - i - 1] = std::max(d1, d2);
if (d1 == 0 || d2 == 0) {
shape->data[out_dims - i - 1] = 0;
} else {
shape->data[out_dims - i - 1] = std::max(d1, d2);
}
}
*output_shape = shape.release();
return kTfLiteOk;
@@ -442,17 +464,20 @@ TfLiteStatus CalculateShapeForBroadcast(TfLiteContext* context,
const TfLiteTensor* input2,
const TfLiteTensor* input3,
TfLiteIntArray** output_shape) {
int dims1 = NumDimensions(input1);
int dims2 = NumDimensions(input2);
int dims3 = NumDimensions(input3);
int out_dims = std::max(std::max(dims1, dims2), dims3);
const int dims1 = NumDimensions(input1);
const int dims2 = NumDimensions(input2);
const int dims3 = NumDimensions(input3);
const int out_dims = std::max(std::max(dims1, dims2), dims3);
std::unique_ptr<TfLiteIntArray, void (*)(TfLiteIntArray*)> shape(
TfLiteIntArrayCreate(out_dims), TfLiteIntArrayFree);
for (int i = 0; i < out_dims; ++i) {
int d1 = i >= dims1 ? 1 : SizeOfDimension(input1, dims1 - i - 1);
int d2 = i >= dims2 ? 1 : SizeOfDimension(input2, dims2 - i - 1);
int d3 = i >= dims3 ? 1 : SizeOfDimension(input3, dims3 - i - 1);
const int d1 = i >= dims1 ? 1 : SizeOfDimension(input1, dims1 - i - 1);
const int d2 = i >= dims2 ? 1 : SizeOfDimension(input2, dims2 - i - 1);
const int d3 = i >= dims3 ? 1 : SizeOfDimension(input3, dims3 - i - 1);
const int min_value = std::min(std::min(d1, d2), d3);
int max_value = std::max(std::max(d1, d2), d3);
// If one dimention is 0, others must be 0 or 1.
if (min_value == 0) max_value = 0;
if (!(d1 == 1 || d1 == max_value) || !(d2 == 1 || d2 == max_value) ||
!(d3 == 1 || d3 == max_value)) {
context->ReportError(
@@ -473,42 +498,42 @@ TfLiteStatus CalculateShapeForBroadcast(TfLiteContext* context,
int TfLiteTypeGetSize(TfLiteType type) {
switch (type) {
case kTfLiteUInt8:
TF_LITE_ASSERT_EQ(sizeof(uint8_t), 1);
static_assert(sizeof(uint8_t) == 1, "");
return 1;
case kTfLiteInt8:
TF_LITE_ASSERT_EQ(sizeof(int8_t), 1);
static_assert(sizeof(int8_t) == 1, "");
return 1;
case kTfLiteBool:
return sizeof(bool);
case kTfLiteInt16:
TF_LITE_ASSERT_EQ(sizeof(int16_t), 2);
static_assert(sizeof(int16_t) == 2, "");
return 2;
case kTfLiteFloat16:
TF_LITE_ASSERT_EQ(sizeof(int16_t), 2);
static_assert(sizeof(int16_t) == 2, "");
return 2;
case kTfLiteFloat32:
TF_LITE_ASSERT_EQ(sizeof(float), 4);
static_assert(sizeof(float) == 4, "");
return 4;
case kTfLiteInt32:
TF_LITE_ASSERT_EQ(sizeof(int32_t), 4);
static_assert(sizeof(int32_t) == 4, "");
return 4;
case kTfLiteUInt32:
TF_LITE_ASSERT_EQ(sizeof(uint32_t), 4);
static_assert(sizeof(uint32_t) == 4, "");
return 4;
case kTfLiteInt64:
TF_LITE_ASSERT_EQ(sizeof(int64_t), 8);
static_assert(sizeof(int64_t) == 8, "");
return 8;
case kTfLiteUInt64:
TF_LITE_ASSERT_EQ(sizeof(uint64_t), 8);
static_assert(sizeof(uint64_t) == 8, "");
return 8;
case kTfLiteFloat64:
TF_LITE_ASSERT_EQ(sizeof(double), 8);
static_assert(sizeof(double) == 8, "");
return 8;
case kTfLiteComplex64:
TF_LITE_ASSERT_EQ(sizeof(std::complex<float>), 8);
static_assert(sizeof(std::complex<float>) == 8, "");
return 8;
case kTfLiteComplex128:
TF_LITE_ASSERT_EQ(sizeof(std::complex<double>), 16);
static_assert(sizeof(std::complex<double>) == 16, "");
return 16;
default:
return 0;

View File

@@ -214,14 +214,15 @@ TfLiteStatus PopulateConvolutionQuantizationParams(
const TfLiteTensor* filter, const TfLiteTensor* bias, TfLiteTensor* output,
const TfLiteFusedActivation& activation, int32_t* multiplier, int* shift,
int32_t* output_activation_min, int32_t* output_activation_max,
int32_t* per_channel_multiplier, int* per_channel_shift);
int32_t* per_channel_multiplier, int32_t* per_channel_shift);
TfLiteStatus PopulateConvolutionQuantizationParams(
TfLiteContext* context, const TfLiteTensor* input,
const TfLiteTensor* filter, const TfLiteTensor* bias, TfLiteTensor* output,
const TfLiteFusedActivation& activation, int32_t* multiplier, int* shift,
int32_t* output_activation_min, int32_t* output_activation_max,
int32_t* per_channel_multiplier, int* per_channel_shift, int num_channels);
int32_t* per_channel_multiplier, int32_t* per_channel_shift,
int num_channels);
// Calculates the multiplication factor for a quantized convolution (or
// quantized depthwise convolution) involving the given tensors. Returns an

View File

@@ -15,69 +15,24 @@ limitations under the License.
#ifndef TENSORFLOW_LITE_KERNELS_OP_MACROS_H_
#define TENSORFLOW_LITE_KERNELS_OP_MACROS_H_
// If we're on a platform without standard IO functions, fall back to a
// non-portable function.
#ifdef TF_LITE_MCU_DEBUG_LOG
#include "tensorflow/lite/micro/debug_log.h"
#define DEBUG_LOG(x) \
do { \
DebugLog(x); \
} while (0)
inline void InfiniteLoop() {
DEBUG_LOG("HALTED\n");
#if !defined(TF_LITE_MCU_DEBUG_LOG)
#include <cstdlib>
#define TFLITE_ABORT abort()
#else
inline void AbortImpl() {
DebugLog("HALTED\n");
while (1) {
}
}
#define TFLITE_ABORT AbortImpl();
#endif
#define TFLITE_ABORT InfiniteLoop();
#else // TF_LITE_MCU_DEBUG_LOG
#include <cstdio>
#include <cstdlib>
#define DEBUG_LOG(x) \
do { \
fprintf(stderr, "%s", (x)); \
} while (0)
// Report Error for unsupported type by op 'op_name' and returns kTfLiteError.
#define TF_LITE_UNSUPPORTED_TYPE(context, type, op_name) \
do { \
TF_LITE_KERNEL_LOG((context), "%s:%d Type %s is unsupported by op %s.", \
__FILE__, __LINE__, TfLiteTypeGetName(type), \
(op_name)); \
return kTfLiteError; \
} while (0)
#define TFLITE_ABORT abort()
#endif // TF_LITE_MCU_DEBUG_LOG
#if defined(NDEBUG) || defined(ARDUINO)
#if defined(NDEBUG)
#define TFLITE_ASSERT_FALSE (static_cast<void>(0))
#else
#define TFLITE_ASSERT_FALSE TFLITE_ABORT
#endif
#define TF_LITE_FATAL(msg) \
do { \
DEBUG_LOG(msg); \
DEBUG_LOG("\nFATAL\n"); \
TFLITE_ABORT; \
} while (0)
#define TF_LITE_ASSERT(x) \
do { \
if (!(x)) TF_LITE_FATAL(#x); \
} while (0)
#define TF_LITE_ASSERT_EQ(x, y) \
do { \
if ((x) != (y)) TF_LITE_FATAL(#x " didn't equal " #y); \
} while (0)
#endif // TENSORFLOW_LITE_KERNELS_OP_MACROS_H_

View File

@@ -20,7 +20,6 @@ limitations under the License.
namespace tflite {
// TODO(renjieliu): Migrate others to use ComputePaddingWithLeftover.
inline int ComputePadding(int stride, int dilation_rate, int in_size,
int filter_size, int out_size) {
int effective_filter_size = (filter_size - 1) * dilation_rate + 1;
@@ -45,6 +44,11 @@ inline int ComputePaddingWithOffset(int stride, int dilation_rate, int in_size,
inline int ComputeOutSize(TfLitePadding padding, int image_size,
int filter_size, int stride, int dilation_rate = 1) {
int effective_filter_size = (filter_size - 1) * dilation_rate + 1;
// TODO(b/186448822): This uses 0 since the function has no other way to
// report error case
if (stride == 0) return 0;
switch (padding) {
case kTfLitePaddingSame:
return (image_size + stride - 1) / stride;

View File

@@ -32,14 +32,18 @@ AllOpsResolver::AllOpsResolver() {
AddConcatenation();
AddConv2D();
AddCos();
AddCumSum();
AddDepthToSpace();
AddDepthwiseConv2D();
AddDequantize();
AddDetectionPostprocess();
AddDiv();
AddElu();
AddEqual();
AddEthosU();
AddExpandDims();
AddFloor();
AddFloorDiv();
AddFloorMod();
AddFullyConnected();
AddGreater();
AddGreaterEqual();
@@ -70,6 +74,7 @@ AllOpsResolver::AllOpsResolver() {
AddRelu();
AddRelu6();
AddReshape();
AddResizeBilinear();
AddResizeNearestNeighbor();
AddRound();
AddRsqrt();
@@ -77,6 +82,7 @@ AllOpsResolver::AllOpsResolver() {
AddSin();
AddSoftmax();
AddSpaceToBatchNd();
AddSpaceToDepth();
AddSplit();
AddSplitV();
AddSqrt();
@@ -87,6 +93,7 @@ AllOpsResolver::AllOpsResolver() {
AddSvdf();
AddTanh();
AddTransposeConv();
AddTranspose();
AddUnpack();
}

View File

@@ -0,0 +1,64 @@
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/micro/flatbuffer_utils.h"
namespace tflite {
FlexbufferWrapper::FlexbufferWrapper(const uint8_t* buffer, size_t size)
: flexbuffers::Vector(flexbuffers::GetRoot(buffer, size).AsVector()) {}
int64_t FlexbufferWrapper::ElementAsInt64(size_t i) const {
const uint8_t* elem = data_ + i * byte_width_;
return ::flexbuffers::ReadInt64(elem, byte_width_);
}
uint64_t FlexbufferWrapper::ElementAsUInt64(size_t i) const {
const uint8_t* elem = data_ + i * byte_width_;
return ::flexbuffers::ReadUInt64(elem, byte_width_);
}
int32_t FlexbufferWrapper::ElementAsInt32(size_t i) const {
return static_cast<int32_t>(ElementAsInt64(i));
}
bool FlexbufferWrapper::ElementAsBool(size_t i) const {
return static_cast<bool>(ElementAsUInt64(i));
}
double FlexbufferWrapper::ElementAsDouble(size_t i) const {
const uint8_t* elem = data_ + i * byte_width_;
return ::flexbuffers::ReadDouble(elem, byte_width_);
}
float FlexbufferWrapper::ElementAsFloat(size_t i) const {
return static_cast<float>(FlexbufferWrapper::ElementAsDouble(i));
}
// TODO(b/192589496): Ops must always be there. Remove this function when fixed
uint32_t NumSubgraphOperators(const SubGraph* subgraph) {
if (subgraph->operators() != nullptr) {
return subgraph->operators()->size();
} else {
return 0;
}
}
// TODO(b/192589496): Ops must always be there. Remove this function when fixed
uint32_t NumSubgraphOperators(const Model* model, int subgraph_idx) {
const SubGraph* subgraph = model->subgraphs()->Get(subgraph_idx);
return NumSubgraphOperators(subgraph);
}
} // namespace tflite

View File

@@ -0,0 +1,56 @@
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef THIRD_PARTY_TFLITE_MICRO_TENSORFLOW_LITE_MICRO_FLATBUFFER_UTILS_H_
#define THIRD_PARTY_TFLITE_MICRO_TENSORFLOW_LITE_MICRO_FLATBUFFER_UTILS_H_
#include "flatbuffers/flatbuffers.h"
#include "flatbuffers/flexbuffers.h"
#include "tensorflow/lite/schema/schema_generated.h"
namespace tflite {
// Kernels use flexbuffers::Map to pack their init parameters in a tflite file,
// with the parameter names as map keys and the parameter values as the
// corresponding map values.
// Accessing the map values using the flexbuffers:Map class is inline heavy,
// which can cause the code size to bloat beyond what's reasonable for a micro
// application. Use this class instead, when possible.
// FlexbufferWrapper takes advantage of the following properties of
// flexbuffers::Map:
// 1. It can be viewed as a flexbuffers::Vector of the values.
// 2. The values in the vector are ordered alphabetically by their keys.
// 3. All integer and Boolean values are stored as 64-bit numbers.
// 4. All floating point values are stored as double precision numbers.
// The properties are mentioned in the flexbuffers docs, but we rely on
// a unit test to catch design changes.
class FlexbufferWrapper : public flexbuffers::Vector {
public:
// Construct with a serialized flexbuffer 'buffer' of 'size' bytes
explicit FlexbufferWrapper(const uint8_t* buffer, size_t size);
int64_t ElementAsInt64(size_t i) const;
uint64_t ElementAsUInt64(size_t i) const;
int32_t ElementAsInt32(size_t i) const;
bool ElementAsBool(size_t i) const;
double ElementAsDouble(size_t i) const;
float ElementAsFloat(size_t i) const;
};
// Return the number of operators in a subgraph tflite
uint32_t NumSubgraphOperators(const SubGraph* subgraph);
uint32_t NumSubgraphOperators(const Model* model, int subgraph_idx);
} // namespace tflite
#endif // THIRD_PARTY_TFLITE_MICRO_TENSORFLOW_LITE_MICRO_FLATBUFFER_UTILS_H_

View File

@@ -1,4 +1,4 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
@@ -13,6 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/micro/kernels/activations.h"
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/common.h"
@@ -25,141 +27,21 @@ limitations under the License.
#include "tensorflow/lite/micro/micro_utils.h"
namespace tflite {
namespace ops {
namespace micro {
namespace activations {
namespace {
struct ReluOpData {
ReluParams params;
};
struct Relu6OpData {
int8_t six_int8;
int8_t zero_int8;
uint8_t six_uint8;
uint8_t zero_uint8;
};
} // namespace
constexpr int kInputTensor = 0;
constexpr int kOutputTensor = 0;
template <typename T>
inline void ReluQuantized(const ReluOpData& data,
const RuntimeShape& input_shape,
const RuntimeShape& output_shape, const T* input_data,
T* output_data) {
const int flat_size = MatchingFlatSize(input_shape, output_shape);
for (int i = 0; i < flat_size; ++i) {
const int32_t val = static_cast<int32_t>(input_data[i]);
int32_t clamped =
data.params.output_offset +
MultiplyByQuantizedMultiplier(val - data.params.input_offset,
data.params.output_multiplier,
data.params.output_shift);
clamped = std::max(data.params.quantized_activation_min, clamped);
clamped = std::min(data.params.quantized_activation_max, clamped);
output_data[i] = static_cast<T>(clamped);
}
}
template <typename T>
inline void CalculateReluOpData(const TfLiteTensor* input, TfLiteTensor* output,
ReluOpData* data) {
float act_min = 0.0;
float act_max = std::numeric_limits<float>::infinity();
double real_multiplier =
static_cast<double>(input->params.scale / output->params.scale);
const RuntimeShape input_shape = GetTensorShape(input);
const RuntimeShape output_shape = GetTensorShape(output);
QuantizeMultiplier(real_multiplier, &data->params.output_multiplier,
&data->params.output_shift);
data->params.quantized_activation_min = std::max(
static_cast<int32_t>(std::numeric_limits<T>::min()),
output->params.zero_point +
static_cast<int32_t>(roundf(act_min / output->params.scale)));
data->params.quantized_activation_max =
act_max == std::numeric_limits<float>::infinity()
? static_cast<int32_t>(std::numeric_limits<T>::max())
: std::min(static_cast<int32_t>(std::numeric_limits<T>::max()),
output->params.zero_point +
static_cast<int32_t>(
roundf(act_max / output->params.scale)));
data->params.input_offset = input->params.zero_point;
data->params.output_offset = output->params.zero_point;
}
inline void ReluFloat(const RuntimeShape& input_shape, const float* input_data,
const RuntimeShape& output_shape, float* output_data) {
const int flat_size = MatchingFlatSize(input_shape, output_shape);
for (int i = 0; i < flat_size; ++i) {
const float val = input_data[i];
const float lower = 0.0f;
const float clamped = val < lower ? lower : val;
output_data[i] = clamped;
}
}
inline void Relu6Float(const RuntimeShape& input_shape, const float* input_data,
const RuntimeShape& output_shape, float* output_data) {
const int flat_size = MatchingFlatSize(input_shape, output_shape);
for (int i = 0; i < flat_size; ++i) {
const float val = input_data[i];
const float upper = 6.0f;
const float lower = 0.0f;
const float clamped = val > upper ? upper : val < lower ? lower : val;
output_data[i] = clamped;
}
}
template <typename Q>
inline void Relu6Quantized(Q lower, Q upper, const RuntimeShape& input_shape,
const Q* input_data,
const RuntimeShape& output_shape, Q* output_data) {
const int flat_size = MatchingFlatSize(input_shape, output_shape);
for (int i = 0; i < flat_size; ++i) {
const Q val = input_data[i];
const Q clamped = val > upper ? upper : val < lower ? lower : val;
output_data[i] = clamped;
}
}
void* ReluInit(TfLiteContext* context, const char* buffer, size_t length) {
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
return context->AllocatePersistentBuffer(context, sizeof(ReluOpData));
}
TfLiteStatus ReluPrepare(TfLiteContext* context, TfLiteNode* node) {
TFLITE_DCHECK(node->user_data != nullptr);
ReluOpData* data = static_cast<ReluOpData*>(node->user_data);
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TF_LITE_ENSURE(context, input != nullptr);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TF_LITE_ENSURE(context, output != nullptr);
if (input->type == kTfLiteInt8) {
CalculateReluOpData<int8_t>(input, output, data);
} else if (input->type == kTfLiteUInt8) {
CalculateReluOpData<uint8_t>(input, output, data);
}
return kTfLiteOk;
}
TfLiteStatus ReluEval(TfLiteContext* context, TfLiteNode* node) {
TFLITE_DCHECK(node->user_data != nullptr);
const ReluOpData& data = *(static_cast<const ReluOpData*>(node->user_data));
const TfLiteEvalTensor* input =
tflite::micro::GetEvalInput(context, node, kInputTensor);
tflite::micro::GetEvalInput(context, node, kActivationsInputTensor);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
tflite::micro::GetEvalOutput(context, node, kActivationsOutputTensor);
switch (input->type) {
case kTfLiteFloat32: {
@@ -171,19 +53,12 @@ TfLiteStatus ReluEval(TfLiteContext* context, TfLiteNode* node) {
return kTfLiteOk;
}
case kTfLiteInt8: {
ReluQuantized<int8_t>(data, tflite::micro::GetTensorShape(input),
tflite::ReluQuantized(data, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int8_t>(input),
tflite::micro::GetTensorData<int8_t>(output));
return kTfLiteOk;
}
case kTfLiteUInt8: {
ReluQuantized<uint8_t>(data, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<uint8_t>(input),
tflite::micro::GetTensorData<uint8_t>(output));
return kTfLiteOk;
}
default: {
TF_LITE_KERNEL_LOG(context, "Only float32 is supported currently, got %s",
TfLiteTypeGetName(input->type));
@@ -197,34 +72,14 @@ void* Relu6Init(TfLiteContext* context, const char* buffer, size_t length) {
return context->AllocatePersistentBuffer(context, sizeof(Relu6OpData));
}
TfLiteStatus Relu6Prepare(TfLiteContext* context, TfLiteNode* node) {
TFLITE_DCHECK(node->user_data != nullptr);
Relu6OpData* data = static_cast<Relu6OpData*>(node->user_data);
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TF_LITE_ENSURE(context, input != nullptr);
if (input->type == kTfLiteInt8) {
data->six_int8 = FloatToQuantizedType<int8_t>(6.0f, input->params.scale,
input->params.zero_point);
data->zero_int8 = input->params.zero_point;
} else if (input->type == kTfLiteUInt8) {
data->six_uint8 = FloatToQuantizedType<uint8_t>(6.0f, input->params.scale,
input->params.zero_point);
data->zero_uint8 = input->params.zero_point;
}
return kTfLiteOk;
}
TfLiteStatus Relu6Eval(TfLiteContext* context, TfLiteNode* node) {
TFLITE_DCHECK(node->user_data != nullptr);
const Relu6OpData& data = *(static_cast<const Relu6OpData*>(node->user_data));
const TfLiteEvalTensor* input =
tflite::micro::GetEvalInput(context, node, kInputTensor);
tflite::micro::GetEvalInput(context, node, kActivationsInputTensor);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
tflite::micro::GetEvalOutput(context, node, kActivationsOutputTensor);
switch (input->type) {
case kTfLiteFloat32: {
@@ -236,19 +91,11 @@ TfLiteStatus Relu6Eval(TfLiteContext* context, TfLiteNode* node) {
return kTfLiteOk;
}
case kTfLiteInt8: {
Relu6Quantized<int8_t>(data.zero_int8, data.six_int8,
tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<int8_t>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int8_t>(output));
return kTfLiteOk;
}
case kTfLiteUInt8: {
Relu6Quantized<uint8_t>(data.zero_uint8, data.six_uint8,
tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<uint8_t>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<uint8_t>(output));
Relu6Quantized(data.zero_int8, data.six_int8,
tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<int8_t>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int8_t>(output));
return kTfLiteOk;
}
default: {
@@ -259,13 +106,13 @@ TfLiteStatus Relu6Eval(TfLiteContext* context, TfLiteNode* node) {
}
}
} // namespace activations
} // namespace
TfLiteRegistration Register_RELU() {
return {/*init=*/activations::ReluInit,
return {/*init=*/ReluInit,
/*free=*/nullptr,
/*prepare=*/activations::ReluPrepare,
/*invoke=*/activations::ReluEval,
/*prepare=*/ReluPrepare,
/*invoke=*/ReluEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
@@ -273,16 +120,14 @@ TfLiteRegistration Register_RELU() {
}
TfLiteRegistration Register_RELU6() {
return {/*init=*/activations::Relu6Init,
return {/*init=*/Relu6Init,
/*free=*/nullptr,
/*prepare=*/activations::Relu6Prepare,
/*invoke=*/activations::Relu6Eval,
/*prepare=*/Relu6Prepare,
/*invoke=*/Relu6Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
} // namespace micro
} // namespace ops
} // namespace tflite

View File

@@ -0,0 +1,63 @@
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_MICRO_KERNELS_ACTIVATIONS_H_
#define TENSORFLOW_LITE_MICRO_KERNELS_ACTIVATIONS_H_
#include <cstdint>
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
extern const int kActivationsInputTensor;
extern const int kActivationsOutputTensor;
struct ReluOpData {
ReluParams params;
};
struct Relu6OpData {
int8_t six_int8;
int8_t zero_int8;
};
void ReluQuantized(const ReluOpData& data, const RuntimeShape& input_shape,
const RuntimeShape& output_shape, const int8_t* input_data,
int8_t* output_data);
template <typename T>
void CalculateReluOpData(const TfLiteTensor* input, TfLiteTensor* output,
ReluOpData* data);
void ReluFloat(const RuntimeShape& input_shape, const float* input_data,
const RuntimeShape& output_shape, float* output_data);
void Relu6Float(const RuntimeShape& input_shape, const float* input_data,
const RuntimeShape& output_shape, float* output_data);
void Relu6Quantized(int8_t lower, int8_t upper, const RuntimeShape& input_shape,
const int8_t* input_data, const RuntimeShape& output_shape,
int8_t* output_data);
TfLiteStatus ReluPrepare(TfLiteContext* context, TfLiteNode* node);
TfLiteStatus Relu6Prepare(TfLiteContext* context, TfLiteNode* node);
} // namespace tflite
#endif // TENSORFLOW_LITE_MICRO_KERNELS_ACTIVATIONS_H_

View File

@@ -0,0 +1,148 @@
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <algorithm>
#include <cstdint>
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/quantization_util.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/internal/types.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/kernels/op_macros.h"
#include "tensorflow/lite/micro/kernels/activations.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
#include "tensorflow/lite/micro/micro_utils.h"
namespace tflite {
const int kActivationsInputTensor = 0;
const int kActivationsOutputTensor = 0;
void ReluQuantized(const ReluOpData& data, const RuntimeShape& input_shape,
const RuntimeShape& output_shape, const int8_t* input_data,
int8_t* output_data) {
const int flat_size = MatchingFlatSize(input_shape, output_shape);
for (int i = 0; i < flat_size; ++i) {
const int32_t val = static_cast<int32_t>(input_data[i]);
int32_t clamped =
data.params.output_offset +
MultiplyByQuantizedMultiplier(val - data.params.input_offset,
data.params.output_multiplier,
data.params.output_shift);
clamped = std::max(data.params.quantized_activation_min, clamped);
clamped = std::min(data.params.quantized_activation_max, clamped);
output_data[i] = static_cast<int8_t>(clamped);
}
}
template <typename T>
void CalculateReluOpData(const TfLiteTensor* input, TfLiteTensor* output,
ReluOpData* data) {
float act_min = 0.0;
float act_max = std::numeric_limits<float>::infinity();
double real_multiplier =
static_cast<double>(input->params.scale / output->params.scale);
const RuntimeShape input_shape = GetTensorShape(input);
const RuntimeShape output_shape = GetTensorShape(output);
QuantizeMultiplier(real_multiplier, &data->params.output_multiplier,
&data->params.output_shift);
data->params.quantized_activation_min = std::max(
static_cast<int32_t>(std::numeric_limits<T>::min()),
output->params.zero_point +
static_cast<int32_t>(roundf(act_min / output->params.scale)));
data->params.quantized_activation_max =
act_max == std::numeric_limits<float>::infinity()
? static_cast<int32_t>(std::numeric_limits<T>::max())
: std::min(static_cast<int32_t>(std::numeric_limits<T>::max()),
output->params.zero_point +
static_cast<int32_t>(
roundf(act_max / output->params.scale)));
data->params.input_offset = input->params.zero_point;
data->params.output_offset = output->params.zero_point;
}
void ReluFloat(const RuntimeShape& input_shape, const float* input_data,
const RuntimeShape& output_shape, float* output_data) {
const int flat_size = MatchingFlatSize(input_shape, output_shape);
for (int i = 0; i < flat_size; ++i) {
const float val = input_data[i];
const float lower = 0.0f;
const float clamped = val < lower ? lower : val;
output_data[i] = clamped;
}
}
void Relu6Float(const RuntimeShape& input_shape, const float* input_data,
const RuntimeShape& output_shape, float* output_data) {
const int flat_size = MatchingFlatSize(input_shape, output_shape);
for (int i = 0; i < flat_size; ++i) {
const float val = input_data[i];
const float upper = 6.0f;
const float lower = 0.0f;
const float clamped = val > upper ? upper : val < lower ? lower : val;
output_data[i] = clamped;
}
}
void Relu6Quantized(int8_t lower, int8_t upper, const RuntimeShape& input_shape,
const int8_t* input_data, const RuntimeShape& output_shape,
int8_t* output_data) {
const int flat_size = MatchingFlatSize(input_shape, output_shape);
for (int i = 0; i < flat_size; ++i) {
const int8_t val = input_data[i];
const int8_t clamped = val > upper ? upper : val < lower ? lower : val;
output_data[i] = clamped;
}
}
TfLiteStatus ReluPrepare(TfLiteContext* context, TfLiteNode* node) {
TFLITE_DCHECK(node->user_data != nullptr);
ReluOpData* data = static_cast<ReluOpData*>(node->user_data);
const TfLiteTensor* input = GetInput(context, node, kActivationsInputTensor);
TF_LITE_ENSURE(context, input != nullptr);
TfLiteTensor* output = GetOutput(context, node, kActivationsOutputTensor);
TF_LITE_ENSURE(context, output != nullptr);
if (input->type == kTfLiteInt8) {
CalculateReluOpData<int8_t>(input, output, data);
}
return kTfLiteOk;
}
TfLiteStatus Relu6Prepare(TfLiteContext* context, TfLiteNode* node) {
TFLITE_DCHECK(node->user_data != nullptr);
Relu6OpData* data = static_cast<Relu6OpData*>(node->user_data);
const TfLiteTensor* input = GetInput(context, node, kActivationsInputTensor);
TF_LITE_ENSURE(context, input != nullptr);
if (input->type == kTfLiteInt8) {
data->six_int8 = FloatToQuantizedType<int8_t>(6.0f, input->params.scale,
input->params.zero_point);
data->zero_int8 = input->params.zero_point;
}
return kTfLiteOk;
}
} // namespace tflite

View File

@@ -66,12 +66,12 @@ TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteAddParams* params,
OpData* data) {
data->requires_broadcast = !HaveSameShapes(input1, input2);
if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) {
if (output->type == kTfLiteInt8 || output->type == kTfLiteInt16) {
// 8bit -> 8bit general quantized path, with general rescalings
data->input1_offset = -input1->params.zero_point;
data->input2_offset = -input2->params.zero_point;
data->output_offset = output->params.zero_point;
data->left_shift = 20;
data->left_shift = (output->type == kTfLiteInt16) ? 15 : 20;
const double twice_max_input_scale =
2 * static_cast<double>(
std::max(input1->params.scale, input2->params.scale));
@@ -133,24 +133,25 @@ TfLiteStatus EvalAddQuantized(TfLiteContext* context, TfLiteNode* node,
const TfLiteEvalTensor* input1,
const TfLiteEvalTensor* input2,
TfLiteEvalTensor* output) {
if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) {
tflite::ArithmeticParams op_params;
op_params.left_shift = data->left_shift;
op_params.input1_offset = data->input1_offset;
op_params.input1_multiplier = data->input1_multiplier;
op_params.input1_shift = data->input1_shift;
op_params.input2_offset = data->input2_offset;
op_params.input2_multiplier = data->input2_multiplier;
op_params.input2_shift = data->input2_shift;
op_params.output_offset = data->output_offset;
op_params.output_multiplier = data->output_multiplier;
op_params.output_shift = data->output_shift;
SetActivationParams(data->output_activation_min,
data->output_activation_max, &op_params);
bool need_broadcast = reference_ops::ProcessBroadcastShapes(
tflite::micro::GetTensorShape(input1),
tflite::micro::GetTensorShape(input2), &op_params);
if (output->type == kTfLiteInt8) {
tflite::ArithmeticParams op_params;
op_params.left_shift = data->left_shift;
op_params.input1_offset = data->input1_offset;
op_params.input1_multiplier = data->input1_multiplier;
op_params.input1_shift = data->input1_shift;
op_params.input2_offset = data->input2_offset;
op_params.input2_multiplier = data->input2_multiplier;
op_params.input2_shift = data->input2_shift;
op_params.output_offset = data->output_offset;
op_params.output_multiplier = data->output_multiplier;
op_params.output_shift = data->output_shift;
SetActivationParams(data->output_activation_min, data->output_activation_max,
&op_params);
bool need_broadcast = reference_ops::ProcessBroadcastShapes(
tflite::micro::GetTensorShape(input1),
tflite::micro::GetTensorShape(input2), &op_params);
switch (output->type) {
case kTfLiteInt8: {
if (need_broadcast) {
reference_integer_ops::BroadcastAdd4DSlow(
op_params, tflite::micro::GetTensorShape(input1),
@@ -168,24 +169,32 @@ TfLiteStatus EvalAddQuantized(TfLiteContext* context, TfLiteNode* node,
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int8_t>(output));
}
} else {
break;
}
case kTfLiteInt16: {
if (need_broadcast) {
reference_ops::BroadcastAdd4DSlow(
op_params, tflite::micro::GetTensorShape(input1),
tflite::micro::GetTensorData<uint8_t>(input1),
tflite::micro::GetTensorData<int16_t>(input1),
tflite::micro::GetTensorShape(input2),
tflite::micro::GetTensorData<uint8_t>(input2),
tflite::micro::GetTensorData<int16_t>(input2),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<uint8_t>(output));
tflite::micro::GetTensorData<int16_t>(output));
} else {
reference_ops::Add(op_params, tflite::micro::GetTensorShape(input1),
tflite::micro::GetTensorData<uint8_t>(input1),
tflite::micro::GetTensorData<int16_t>(input1),
tflite::micro::GetTensorShape(input2),
tflite::micro::GetTensorData<uint8_t>(input2),
tflite::micro::GetTensorData<int16_t>(input2),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<uint8_t>(output));
tflite::micro::GetTensorData<int16_t>(output),
false);
}
break;
}
default:
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
TfLiteTypeGetName(output->type), output->type);
return kTfLiteError;
}
return kTfLiteOk;
@@ -231,7 +240,7 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
if (output->type == kTfLiteFloat32) {
EvalAdd(context, node, params, data, input1, input2, output);
} else if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) {
} else if (output->type == kTfLiteInt8 || output->type == kTfLiteInt16) {
TF_LITE_ENSURE_OK(context, EvalAddQuantized(context, node, params, data,
input1, input2, output));
} else {

Some files were not shown because too many files have changed in this diff Show More