Code translation (#1626)

* comment translation

* translation part #2

* code translation from DE to ENG #part3

* translation #4

* dismantled =>splitted

* bereich => range

* Update defines.h

Co-authored-by: jomjol <30766535+jomjol@users.noreply.github.com>
This commit is contained in:
Nicolas Liaudat
2022-12-19 22:05:45 +01:00
committed by GitHub
parent 67ff06f64e
commit f6369ff237
31 changed files with 686 additions and 750 deletions

View File

@@ -31,7 +31,7 @@ ClassFlowCNNGeneral::ClassFlowCNNGeneral(ClassFlowAlignment *_flowalign, t_CNNTy
logfileRetentionInDays = 5;
}
string ClassFlowCNNGeneral::getReadout(int _analog = 0, bool _extendedResolution, int prev, float _vorgaengerAnalog, float analogDigitalTransitionStart)
string ClassFlowCNNGeneral::getReadout(int _analog = 0, bool _extendedResolution, int prev, float _before_narrow_Analog, float analogDigitalTransitionStart)
{
string result = "";
@@ -41,19 +41,19 @@ string ClassFlowCNNGeneral::getReadout(int _analog = 0, bool _extendedResolution
if (CNNType == Analogue || CNNType == Analogue100)
{
float zahl = GENERAL[_analog]->ROI[GENERAL[_analog]->ROI.size() - 1]->result_float;
int ergebnis_nachkomma = ((int) floor(zahl * 10) + 10) % 10;
float number = GENERAL[_analog]->ROI[GENERAL[_analog]->ROI.size() - 1]->result_float;
int result_after_decimal_point = ((int) floor(number * 10) + 10) % 10;
prev = ZeigerEvalAnalogNeu(GENERAL[_analog]->ROI[GENERAL[_analog]->ROI.size() - 1]->result_float, prev);
// LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "getReadout(analog) zahl=" + std::to_string(zahl) + ", ergebnis_nachkomma=" + std::to_string(ergebnis_nachkomma) + ", prev=" + std::to_string(prev));
prev = PointerEvalAnalogNew(GENERAL[_analog]->ROI[GENERAL[_analog]->ROI.size() - 1]->result_float, prev);
// LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "getReadout(analog) number=" + std::to_string(number) + ", result_after_decimal_point=" + std::to_string(result_after_decimal_point) + ", prev=" + std::to_string(prev));
result = std::to_string(prev);
if (_extendedResolution && (CNNType != Digital))
result = result + std::to_string(ergebnis_nachkomma);
result = result + std::to_string(result_after_decimal_point);
for (int i = GENERAL[_analog]->ROI.size() - 2; i >= 0; --i)
{
prev = ZeigerEvalAnalogNeu(GENERAL[_analog]->ROI[i]->result_float, prev);
prev = PointerEvalAnalogNew(GENERAL[_analog]->ROI[i]->result_float, prev);
result = std::to_string(prev) + result;
}
return result;
@@ -74,25 +74,24 @@ string ClassFlowCNNGeneral::getReadout(int _analog = 0, bool _extendedResolution
if ((CNNType == DoubleHyprid10) || (CNNType == Digital100))
{
float zahl = GENERAL[_analog]->ROI[GENERAL[_analog]->ROI.size() - 1]->result_float;
if (zahl >= 0) // NaN?
float number = GENERAL[_analog]->ROI[GENERAL[_analog]->ROI.size() - 1]->result_float;
if (number >= 0) // NaN?
{
if (_extendedResolution) // ist nur gesetzt, falls es die erste Ziffer ist (kein Analog vorher!)
if (_extendedResolution) // is only set if it is the first digit (no analogue before!)
{
int ergebnis_nachkomma = ((int) floor(zahl * 10)) % 10;
int ergebnis_vorkomma = ((int) floor(zahl)) % 10;
int result_after_decimal_point = ((int) floor(number * 10)) % 10;
int result_before_decimal_point = ((int) floor(number)) % 10;
result = std::to_string(ergebnis_vorkomma) + std::to_string(ergebnis_nachkomma);
prev = ergebnis_vorkomma;
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "getReadout(dig100-ext) ergebnis_vorkomma=" + std::to_string(ergebnis_vorkomma) + ", ergebnis_nachkomma=" + std::to_string(ergebnis_nachkomma) + ", prev=" + std::to_string(prev));
result = std::to_string(result_before_decimal_point) + std::to_string(result_after_decimal_point);
prev = result_before_decimal_point;
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "getReadout(dig100-ext) result_before_decimal_point=" + std::to_string(result_before_decimal_point) + ", result_after_decimal_point=" + std::to_string(result_after_decimal_point) + ", prev=" + std::to_string(prev));
}
else
{
// prev = ZeigerEval(GENERAL[_analog]->ROI[GENERAL[_analog]->ROI.size() - 1]->result_float, prev);
if (_vorgaengerAnalog >= 0)
prev = ZeigerEvalHybridNeu(GENERAL[_analog]->ROI[GENERAL[_analog]->ROI.size() - 1]->result_float, _vorgaengerAnalog, prev, true, analogDigitalTransitionStart);
if (_before_narrow_Analog >= 0)
prev = PointerEvalHybridNew(GENERAL[_analog]->ROI[GENERAL[_analog]->ROI.size() - 1]->result_float, _before_narrow_Analog, prev, true, analogDigitalTransitionStart);
else
prev = ZeigerEvalHybridNeu(GENERAL[_analog]->ROI[GENERAL[_analog]->ROI.size() - 1]->result_float, prev, prev);
prev = PointerEvalHybridNew(GENERAL[_analog]->ROI[GENERAL[_analog]->ROI.size() - 1]->result_float, prev, prev);
result = std::to_string(prev);
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "getReadout(dig100) prev=" + std::to_string(prev));
@@ -109,8 +108,8 @@ string ClassFlowCNNGeneral::getReadout(int _analog = 0, bool _extendedResolution
{
if (GENERAL[_analog]->ROI[i]->result_float >= 0)
{
prev = ZeigerEvalHybridNeu(GENERAL[_analog]->ROI[i]->result_float, GENERAL[_analog]->ROI[i+1]->result_float, prev);
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "getReadout#ZeigerEvalHybridNeu()= " + std::to_string(prev));
prev = PointerEvalHybridNew(GENERAL[_analog]->ROI[i]->result_float, GENERAL[_analog]->ROI[i+1]->result_float, prev);
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "getReadout#PointerEvalHybridNew()= " + std::to_string(prev));
result = std::to_string(prev) + result;
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "getReadout#result= " + result);
@@ -130,115 +129,115 @@ string ClassFlowCNNGeneral::getReadout(int _analog = 0, bool _extendedResolution
return result;
}
int ClassFlowCNNGeneral::ZeigerEvalHybridNeu(float zahl, float zahl_vorgaenger, int eval_vorgaenger, bool AnalogerVorgaenger, float digitalAnalogTransitionStart)
int ClassFlowCNNGeneral::PointerEvalHybridNew(float number, float number_of_predecessors, int eval_predecessors, bool Analog_Predecessors, float digitalAnalogTransitionStart)
{
int result;
int ergebnis_nachkomma = ((int) floor(zahl * 10)) % 10;
int ergebnis_vorkomma = ((int) floor(zahl) + 10) % 10;
int result_after_decimal_point = ((int) floor(number * 10)) % 10;
int result_before_decimal_point = ((int) floor(number) + 10) % 10;
if (eval_vorgaenger < 0)
if (eval_predecessors < 0)
{
if ((ergebnis_nachkomma <= DigitalUnschaerfe * 10) || (ergebnis_nachkomma >= DigitalUnschaerfe * 10)) // Band um die Ziffer --> Runden, da Ziffer im Rahmen Ungenauigkeit erreicht
result = (int) (round(zahl) + 10) % 10;
if ((result_after_decimal_point <= Digital_Uncertainty * 10) || (result_after_decimal_point >= Digital_Uncertainty * 10)) // Band around the digit --> Rounding, as digit reaches inaccuracy in the frame
result = (int) (round(number) + 10) % 10;
else
result = (int) ((int) trunc(zahl) + 10) % 10;
result = (int) ((int) trunc(number) + 10) % 10;
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "ZeigerEvalHybridNeu - kein Vorgänger - Ergebnis = " + std::to_string(result) +
" zahl: " + std::to_string(zahl) + " zahl_vorgaenger = " + std::to_string(zahl_vorgaenger)+ " eval_vorgaenger = " + std::to_string(eval_vorgaenger) + " DigitalUnschaerfe = " + std::to_string(DigitalUnschaerfe));
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "PointerEvalHybridNew - No predecessor - Result = " + std::to_string(result) +
" number: " + std::to_string(number) + " number_of_predecessors = " + std::to_string(number_of_predecessors)+ " eval_predecessors = " + std::to_string(eval_predecessors) + " Digital_Uncertainty = " + std::to_string(Digital_Uncertainty));
return result;
}
if (AnalogerVorgaenger)
if (Analog_Predecessors)
{
result = ZeigerEvalAnalogToDigitNeu(zahl, zahl_vorgaenger, eval_vorgaenger, digitalAnalogTransitionStart);
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "ZeigerEvalHybridNeu - Analoger Vorgänger, Bewertung über ZeigerEvalAnalogNeu = " + std::to_string(result) +
" zahl: " + std::to_string(zahl) + " zahl_vorgaenger = " + std::to_string(zahl_vorgaenger)+ " eval_vorgaenger = " + std::to_string(eval_vorgaenger) + " DigitalUnschaerfe = " + std::to_string(DigitalUnschaerfe));
result = PointerEvalAnalogToDigitNew(number, number_of_predecessors, eval_predecessors, digitalAnalogTransitionStart);
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "PointerEvalHybridNew - Analog predecessor, evaluation over PointerEvalAnalogNew = " + std::to_string(result) +
" number: " + std::to_string(number) + " number_of_predecessors = " + std::to_string(number_of_predecessors)+ " eval_predecessors = " + std::to_string(eval_predecessors) + " Digital_Uncertainty = " + std::to_string(Digital_Uncertainty));
return result;
}
if ((zahl_vorgaenger >= DigitalUebergangsbereichVorgaenger ) && (zahl_vorgaenger <= (10.0 - DigitalUebergangsbereichVorgaenger)))
if ((number_of_predecessors >= Digital_Transition_Area_Predecessor ) && (number_of_predecessors <= (10.0 - Digital_Transition_Area_Predecessor)))
{
// kein Ziffernwechsel, da Vorgänger weit genug weg ist (0+/-DigitalUebergangsbereichVorgaenger) --> zahl wird gerundet
if ((ergebnis_nachkomma <= DigitalBand) || (ergebnis_nachkomma >= (10-DigitalBand))) // Band um die Ziffer --> Runden, da Ziffer im Rahmen Ungenauigkeit erreicht
result = ((int) round(zahl) + 10) % 10;
// no digit change, because predecessor is far enough away (0+/-DigitalTransitionRangePredecessor) --> number is rounded
if ((result_after_decimal_point <= DigitalBand) || (result_after_decimal_point >= (10-DigitalBand))) // Band around the digit --> Round off, as digit reaches inaccuracy in the frame
result = ((int) round(number) + 10) % 10;
else
result = ((int) trunc(zahl) + 10) % 10;
result = ((int) trunc(number) + 10) % 10;
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "ZeigerEvalHybridNeu - KEIN Analoger Vorgänger, kein Ziffernwechsel, da Vorkomma weit genug weg = " + std::to_string(result) +
" zahl: " + std::to_string(zahl) + " zahl_vorgaenger = " + std::to_string(zahl_vorgaenger)+ " eval_vorgaenger = " + std::to_string(eval_vorgaenger) + " DigitalUnschaerfe = " + std::to_string(DigitalUnschaerfe));
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "PointerEvalHybridNew - NO analogue predecessor, no change of digits, as pre-decimal point far enough away = " + std::to_string(result) +
" number: " + std::to_string(number) + " number_of_predecessors = " + std::to_string(number_of_predecessors)+ " eval_predecessors = " + std::to_string(eval_predecessors) + " Digital_Uncertainty = " + std::to_string(Digital_Uncertainty));
return result;
}
if (eval_vorgaenger <= 1) // Nulldurchgang beim Vorgänger hat stattgefunden (!Bewertung über Prev_value und nicht Zahl!) --> hier aufrunden (2.8 --> 3, aber auch 3.1 --> 3)
if (eval_predecessors <= 1) // Zero crossing at the predecessor has taken place (! evaluation via Prev_value and not number!) --> round up here (2.8 --> 3, but also 3.1 --> 3)
{
// Wir nehmen einfach an, dass das aktuelle Digit nach dem Nulldurchgang des Vorgängers
// mindestens zur Hälfte (x.5) durchlaufen hat
if (ergebnis_nachkomma > 5)
// Das akt. digit hat noch keinen Nulldurchgang, aber der Vorgänger schon.
result = (ergebnis_vorkomma + 1) % 10;
// We simply assume that the current digit after the zero crossing of the predecessor
// has passed through at least half (x.5)
if (result_after_decimal_point > 5)
// The current digit does not yet have a zero crossing, but the predecessor does..
result = (result_before_decimal_point + 1) % 10;
else
// Akt. digit und Vorgänger haben Nulldurchgang
result = ergebnis_vorkomma % 10;
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "ZeigerEvalHybridNeu - KEIN Analoger Vorgänger, Nulldurchgang hat stattgefunden = " + std::to_string(result) +
" zahl: " + std::to_string(zahl) + " zahl_vorgaenger = " + std::to_string(zahl_vorgaenger)+ " eval_vorgaenger = " + std::to_string(eval_vorgaenger) + " DigitalUnschaerfe = " + std::to_string(DigitalUnschaerfe));
// Act. digit and predecessor have zero crossing
result = result_before_decimal_point % 10;
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "PointerEvalHybridNew - NO analogue predecessor, zero crossing has taken placen = " + std::to_string(result) +
" number: " + std::to_string(number) + " number_of_predecessors = " + std::to_string(number_of_predecessors)+ " eval_predecessors = " + std::to_string(eval_predecessors) + " Digital_Uncertainty = " + std::to_string(Digital_Uncertainty));
return result;
}
// bleibt nur >= 9.x --> noch kein Nulldurchgang --> 2.8 --> 2,
// und ab 9.7(DigitalUebergangsbereichVorlauf) 3.1 --> 2
// alles >=x.4 kann als aktuelle Zahl gelten im Übergang. Bei 9.x Vorgänger kann die aktuelle
// Zahl noch x.6 - x.7 sein.
// Vorlauf (else - Zweig) passiert nicht bereits ab 9.
if (DigitalUebergangsbereichVorlauf>=zahl_vorgaenger || ergebnis_nachkomma >= 4)
// aktuelles digit hat genauso wie das Vorgängerdigit noch keinen Nulldurchgang.
result = ergebnis_vorkomma % 10;
// remains only >= 9.x --> no zero crossing yet --> 2.8 --> 2,
// and from 9.7(DigitalTransitionRangeLead) 3.1 --> 2
// everything >=x.4 can be considered as current number in transition. With 9.x predecessor the current
// number can still be x.6 - x.7.
// Preceding (else - branch) does not already happen from 9.
if (Digital_Transition_Area_Forward>=number_of_predecessors || result_after_decimal_point >= 4)
// The current digit, like the previous digit, does not yet have a zero crossing.
result = result_before_decimal_point % 10;
else
// aktuelles digit läuft dem kleineren digit (9.x) vor. Also schon >=x.0 während das vorherige Digit noch
// keinen Nulldurchgang hat. Daher wird um 1 reduziert.
result = (ergebnis_vorkomma - 1 + 10) % 10;
// current digit precedes the smaller digit (9.x). So already >=x.0 while the previous digit has not yet
// has no zero crossing. Therefore, it is reduced by 1.
result = (result_before_decimal_point - 1 + 10) % 10;
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "ZeigerEvalHybridNeu - KEIN Analoger Vorgänger, >= 9.5 --> noch kein Nulldurchgang = " + std::to_string(result) +
" zahl: " + std::to_string(zahl) + " zahl_vorgaenger = " + std::to_string(zahl_vorgaenger)+ " eval_vorgaenger = " + std::to_string(eval_vorgaenger) + " DigitalUnschaerfe = " + std::to_string(DigitalUnschaerfe) + " ergebnis_nachkomma = " + std::to_string(ergebnis_nachkomma));
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "PointerEvalHybridNew - O analogue predecessor, >= 9.5 --> no zero crossing yet = " + std::to_string(result) +
" number: " + std::to_string(number) + " number_of_predecessors = " + std::to_string(number_of_predecessors)+ " eval_predecessors = " + std::to_string(eval_predecessors) + " Digital_Uncertainty = " + std::to_string(Digital_Uncertainty) + " result_after_decimal_point = " + std::to_string(result_after_decimal_point));
return result;
}
int ClassFlowCNNGeneral::ZeigerEvalAnalogToDigitNeu(float zahl, float ziffer_vorgaenger, int eval_vorgaenger, float analogDigitalTransitionStart)
int ClassFlowCNNGeneral::PointerEvalAnalogToDigitNew(float number, float numeral_preceder, int eval_predecessors, float analogDigitalTransitionStart)
{
int result;
int ergebnis_nachkomma = ((int) floor(zahl * 10)) % 10;
int ergebnis_vorkomma = ((int) floor(zahl) + 10) % 10;
int result_after_decimal_point = ((int) floor(number * 10)) % 10;
int result_before_decimal_point = ((int) floor(number) + 10) % 10;
bool roundedUp = false;
// Innerhalb der digitalen Unschaefe
if ((ergebnis_nachkomma >= (10-DigitalUnschaerfe * 10)) // Band um die Ziffer --> Runden, da Ziffer im Rahmen Ungenauigkeit erreicht
|| (eval_vorgaenger <= 4 && ergebnis_nachkomma>=6)) { // oder digit läuft nach (analog =0..4, digit >=6)
result = (int) (round(zahl) + 10) % 10;
// Within the digital inequalities
if ((result_after_decimal_point >= (10-Digital_Uncertainty * 10)) // Band around the digit --> Round off, as digit reaches inaccuracy in the frame
|| (eval_predecessors <= 4 && result_after_decimal_point>=6)) { // or digit runs after (analogue =0..4, digit >=6)
result = (int) (round(number) + 10) % 10;
roundedUp = true;
// vor/nachkomma neu berechnen, da wir anhand der Unschaefe die Zahl anpassen.
ergebnis_nachkomma = ((int) floor(result * 10)) % 10;
ergebnis_vorkomma = ((int) floor(result) + 10) % 10;
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "ZeigerEvalAnalogToDigitNeu - digitaleUnschaerfe - Ergebnis = " + std::to_string(result) +
" zahl: " + std::to_string(zahl) + " ziffer_vorgaenger: " + std::to_string(ziffer_vorgaenger) +
" erg_vorkomma: " + std::to_string(ergebnis_vorkomma) +
" erg_nachkomma: " + std::to_string(ergebnis_nachkomma));
// before/ after decimal point, because we adjust the number based on the uncertainty.
result_after_decimal_point = ((int) floor(result * 10)) % 10;
result_before_decimal_point = ((int) floor(result) + 10) % 10;
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "PointerEvalAnalogToDigitNew - Digital Uncertainty - Result = " + std::to_string(result) +
" number: " + std::to_string(number) + " numeral_preceder: " + std::to_string(numeral_preceder) +
" erg before comma: " + std::to_string(result_before_decimal_point) +
" erg after comma: " + std::to_string(result_after_decimal_point));
} else {
result = (int) ((int) trunc(zahl) + 10) % 10;
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "ZeigerEvalAnalogToDigitNeu - KEINE digitaleUnschaerfe - Ergebnis = " + std::to_string(result) +
" zahl: " + std::to_string(zahl) + " ziffer_vorgaenger = " + std::to_string(ziffer_vorgaenger));
result = (int) ((int) trunc(number) + 10) % 10;
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "PointerEvalAnalogToDigitNew - NO digital Uncertainty - Result = " + std::to_string(result) +
" number: " + std::to_string(number) + " numeral_preceder = " + std::to_string(numeral_preceder));
}
// Kein Nulldurchgang hat stattgefunden.
// Nur eval_vorgaenger verwendet, da ziffer_vorgaenger hier falsch sein könnte.
// ziffer_vorgaenger<=0.1 & eval_vorgaenger=9 entspricht analog wurde zurückgesetzt wegen vorhergehender analog, die noch nicht auf 0 sind.
if ((eval_vorgaenger>=6 && (ziffer_vorgaenger>analogDigitalTransitionStart || ziffer_vorgaenger<=0.2) && roundedUp))
// No zero crossing has taken place.
// Only eval_predecessors used because numeral_preceder could be wrong here.
// numeral_preceder<=0.1 & eval_predecessors=9 corresponds to analogue was reset because of previous analogue that are not yet at 0.
if ((eval_predecessors>=6 && (numeral_preceder>analogDigitalTransitionStart || numeral_preceder<=0.2) && roundedUp))
{
result = ((ergebnis_vorkomma+10) - 1) % 10;
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "ZeigerEvalAnalogToDigitNeu - Nulldurchgang noch nicht stattgefunden = " + std::to_string(result) +
" zahl: " + std::to_string(zahl) +
" ziffer_vorgaenger = " + std::to_string(ziffer_vorgaenger) +
" erg_nachkomma = " + std::to_string(ergebnis_nachkomma));
result = ((result_before_decimal_point+10) - 1) % 10;
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "PointerEvalAnalogToDigitNew - Nulldurchgang noch nicht stattgefunden = " + std::to_string(result) +
" number: " + std::to_string(number) +
" numeral_preceder = " + std::to_string(numeral_preceder) +
" eerg after comma = " + std::to_string(result_after_decimal_point));
}
@@ -246,44 +245,44 @@ int ClassFlowCNNGeneral::ZeigerEvalAnalogToDigitNeu(float zahl, float ziffer_vor
}
int ClassFlowCNNGeneral::ZeigerEvalAnalogNeu(float zahl, int ziffer_vorgaenger)
int ClassFlowCNNGeneral::PointerEvalAnalogNew(float number, int numeral_preceder)
{
float zahl_min, zahl_max;
float number_min, number_max;
int result;
if (ziffer_vorgaenger == -1)
if (numeral_preceder == -1)
{
result = (int) floor(zahl);
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "ZeigerEvalAnalogNeu - kein Vorgänger - Ergebnis = " + std::to_string(result) +
" zahl: " + std::to_string(zahl) + " ziffer_vorgaenger = " + std::to_string(ziffer_vorgaenger) + " AnalogFehler = " + std::to_string(AnalogFehler));
result = (int) floor(number);
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "PointerEvalAnalogNew - No predecessor - Result = " + std::to_string(result) +
" number: " + std::to_string(number) + " numeral_preceder = " + std::to_string(numeral_preceder) + " Analog_error = " + std::to_string(Analog_error));
return result;
}
zahl_min = zahl - AnalogFehler / 10.0;
zahl_max = zahl + AnalogFehler / 10.0;
number_min = number - Analog_error / 10.0;
number_max = number + Analog_error / 10.0;
if ((int) floor(zahl_max) - (int) floor(zahl_min) != 0)
if ((int) floor(number_max) - (int) floor(number_min) != 0)
{
if (ziffer_vorgaenger <= AnalogFehler)
if (numeral_preceder <= Analog_error)
{
result = ((int) floor(zahl_max) + 10) % 10;
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "ZeigerEvalAnalogNeu - Zahl uneindeutig, Korrektur nach oben - Ergebnis = " + std::to_string(result) +
" zahl: " + std::to_string(zahl) + " ziffer_vorgaenger = " + std::to_string(ziffer_vorgaenger) + " AnalogFehler = " + std::to_string(AnalogFehler));
result = ((int) floor(number_max) + 10) % 10;
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "PointerEvalAnalogNew - number ambiguous, correction upwards - result = " + std::to_string(result) +
" number: " + std::to_string(number) + " numeral_preceder = " + std::to_string(numeral_preceder) + " Analog_error = " + std::to_string(Analog_error));
return result;
}
if (ziffer_vorgaenger >= 10 - AnalogFehler)
if (numeral_preceder >= 10 - Analog_error)
{
result = ((int) floor(zahl_min) + 10) % 10;
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "ZeigerEvalAnalogNeu - Zahl uneindeutig, Korrektur nach unten - Ergebnis = " + std::to_string(result) +
" zahl: " + std::to_string(zahl) + " ziffer_vorgaenger = " + std::to_string(ziffer_vorgaenger) + " AnalogFehler = " + std::to_string(AnalogFehler));
result = ((int) floor(number_min) + 10) % 10;
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "PointerEvalAnalogNew - number ambiguous, downward correction - result = " + std::to_string(result) +
" number: " + std::to_string(number) + " numeral_preceder = " + std::to_string(numeral_preceder) + " Analog_error = " + std::to_string(Analog_error));
return result;
}
}
result = ((int) floor(zahl) + 10) % 10;
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "ZeigerEvalAnalogNeu - Zahl eindeutig, keine Korrektur notwendig - Ergebnis = " + std::to_string(result) +
" zahl: " + std::to_string(zahl) + " ziffer_vorgaenger = " + std::to_string(ziffer_vorgaenger) + " AnalogFehler = " + std::to_string(AnalogFehler));
result = ((int) floor(number) + 10) % 10;
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "PointerEvalAnalogNew - number unambiguous, no correction necessary - result = " + std::to_string(result) +
" number: " + std::to_string(number) + " numeral_preceder = " + std::to_string(numeral_preceder) + " Analog_error = " + std::to_string(Analog_error));
return result;
@@ -292,7 +291,7 @@ int ClassFlowCNNGeneral::ZeigerEvalAnalogNeu(float zahl, int ziffer_vorgaenger)
bool ClassFlowCNNGeneral::ReadParameter(FILE* pfile, string& aktparamgraph)
{
std::vector<string> zerlegt;
std::vector<string> splitted;
aktparamgraph = trim(aktparamgraph);
@@ -318,53 +317,53 @@ bool ClassFlowCNNGeneral::ReadParameter(FILE* pfile, string& aktparamgraph)
while (this->getNextLine(pfile, &aktparamgraph) && !this->isNewParagraph(aktparamgraph))
{
zerlegt = ZerlegeZeile(aktparamgraph);
if ((toUpper(zerlegt[0]) == "LOGIMAGELOCATION") && (zerlegt.size() > 1))
splitted = ZerlegeZeile(aktparamgraph);
if ((toUpper(splitted[0]) == "LOGIMAGELOCATION") && (splitted.size() > 1))
{
this->LogImageLocation = "/sdcard" + zerlegt[1];
this->LogImageLocation = "/sdcard" + splitted[1];
this->isLogImage = true;
}
if ((toUpper(zerlegt[0]) == "LOGIMAGESELECT") && (zerlegt.size() > 1))
if ((toUpper(splitted[0]) == "LOGIMAGESELECT") && (splitted.size() > 1))
{
LogImageSelect = zerlegt[1];
LogImageSelect = splitted[1];
isLogImageSelect = true;
}
if ((toUpper(zerlegt[0]) == "LOGFILERETENTIONINDAYS") && (zerlegt.size() > 1))
if ((toUpper(splitted[0]) == "LOGFILERETENTIONINDAYS") && (splitted.size() > 1))
{
this->logfileRetentionInDays = std::stoi(zerlegt[1]);
this->logfileRetentionInDays = std::stoi(splitted[1]);
}
if ((toUpper(zerlegt[0]) == "MODEL") && (zerlegt.size() > 1))
if ((toUpper(splitted[0]) == "MODEL") && (splitted.size() > 1))
{
this->cnnmodelfile = zerlegt[1];
this->cnnmodelfile = splitted[1];
}
if ((toUpper(zerlegt[0]) == "CNNGOODTHRESHOLD") && (zerlegt.size() > 1))
if ((toUpper(splitted[0]) == "CNNGOODTHRESHOLD") && (splitted.size() > 1))
{
CNNGoodThreshold = std::stof(zerlegt[1]);
CNNGoodThreshold = std::stof(splitted[1]);
}
if (zerlegt.size() >= 5)
if (splitted.size() >= 5)
{
general* _analog = GetGENERAL(zerlegt[0], true);
general* _analog = GetGENERAL(splitted[0], true);
roi* neuroi = _analog->ROI[_analog->ROI.size()-1];
neuroi->posx = std::stoi(zerlegt[1]);
neuroi->posy = std::stoi(zerlegt[2]);
neuroi->deltax = std::stoi(zerlegt[3]);
neuroi->deltay = std::stoi(zerlegt[4]);
neuroi->posx = std::stoi(splitted[1]);
neuroi->posy = std::stoi(splitted[2]);
neuroi->deltax = std::stoi(splitted[3]);
neuroi->deltay = std::stoi(splitted[4]);
neuroi->CCW = false;
if (zerlegt.size() >= 6)
if (splitted.size() >= 6)
{
neuroi->CCW = toUpper(zerlegt[5]) == "TRUE";
neuroi->CCW = toUpper(splitted[5]) == "TRUE";
}
neuroi->result_float = -1;
neuroi->image = NULL;
neuroi->image_org = NULL;
}
if ((toUpper(zerlegt[0]) == "SAVEALLFILES") && (zerlegt.size() > 1))
if ((toUpper(splitted[0]) == "SAVEALLFILES") && (splitted.size() > 1))
{
if (toUpper(zerlegt[1]) == "TRUE")
if (toUpper(splitted[1]) == "TRUE")
SaveAllFiles = true;
}
}
@@ -414,7 +413,7 @@ general* ClassFlowCNNGeneral::GetGENERAL(string _name, bool _create = true)
if (GENERAL[i]->name == _analog)
_ret = GENERAL[i];
if (!_create) // nicht gefunden und soll auch nicht erzeugt werden
if (!_create) // not found and should not be created
return _ret;
if (_ret == NULL)
@@ -470,7 +469,7 @@ bool ClassFlowCNNGeneral::doFlow(string time)
return false;
};
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "doFlow nach Alignment");
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "doFlow after alignment");
doNeuralNetwork(time);
@@ -594,7 +593,7 @@ bool ClassFlowCNNGeneral::getNetworkParameter()
}
break;
default:
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "tflite passt nicht zur Firmware (outout_dimension=" + std::to_string(_anzoutputdimensions) + ")");
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "tflite does not fit the firmware (outout_dimension=" + std::to_string(_anzoutputdimensions) + ")");
}
}
@@ -638,7 +637,7 @@ bool ClassFlowCNNGeneral::doNeuralNetwork(string time)
tflite->LoadInputImageBasis(GENERAL[n]->ROI[roi]->image);
tflite->Invoke();
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "Nach Invoke");
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "After Invoke");
f1 = tflite->GetOutputValue(0);
f2 = tflite->GetOutputValue(1);
@@ -649,7 +648,7 @@ bool ClassFlowCNNGeneral::doNeuralNetwork(string time)
else
GENERAL[n]->ROI[roi]->result_float = result * 10;
ESP_LOGD(TAG, "Result General(Analog)%i - CCW: %d - %f", roi, GENERAL[n]->ROI[roi]->CCW, GENERAL[n]->ROI[roi]->result_float);
ESP_LOGD(TAG, "General result (Analog)%i - CCW: %d - %f", roi, GENERAL[n]->ROI[roi]->CCW, GENERAL[n]->ROI[roi]->result_float);
if (isLogImage)
LogImage(logPath, GENERAL[n]->ROI[roi]->name, &GENERAL[n]->ROI[roi]->result_float, NULL, time, GENERAL[n]->ROI[roi]->image_org);
} break;
@@ -659,7 +658,7 @@ bool ClassFlowCNNGeneral::doNeuralNetwork(string time)
{
GENERAL[n]->ROI[roi]->result_klasse = 0;
GENERAL[n]->ROI[roi]->result_klasse = tflite->GetClassFromImageBasis(GENERAL[n]->ROI[roi]->image);
ESP_LOGD(TAG, "Result General(Digit)%i: %d", roi, GENERAL[n]->ROI[roi]->result_klasse);
ESP_LOGD(TAG, "General result (Digit)%i: %d", roi, GENERAL[n]->ROI[roi]->result_klasse);
if (isLogImage)
{
@@ -675,85 +674,7 @@ bool ClassFlowCNNGeneral::doNeuralNetwork(string time)
}
}
} break;
/*
case DigitalHyprid:
{
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "CNN Type: DigitalHyprid");
int _num, _nachkomma;
tflite->LoadInputImageBasis(GENERAL[_ana]->ROI[i]->image);
tflite->Invoke();
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "Nach Invoke");
_num = tflite->GetOutClassification(0, 10);
_nachkomma = tflite->GetOutClassification(11, 21);
string _zwres = "Nach Invoke - Nummer: " + to_string(_num) + " Nachkomma: " + to_string(_nachkomma);
LogFile.WriteToFile(ESP_LOG_DEBUG, _zwres);
if ((_num == 10) || (_nachkomma == 10)) // NaN detektiert
GENERAL[_ana]->ROI[i]->result_float = -1;
else
GENERAL[_ana]->ROI[i]->result_float = fmod((double) _num + (((double)_nachkomma)-5)/10 + (double) 10, 10);
ESP_LOGD(TAG, "Result General(DigitalHyprid)%i: %f\n", i, GENERAL[_ana]->ROI[i]->result_float);
_zwres = "Result General(DigitalHyprid)" + to_string(i) + ": " + to_string(GENERAL[_ana]->ROI[i]->result_float);
LogFile.WriteToFile(ESP_LOG_DEBUG, _zwres);
if (isLogImage)
{
string _imagename = GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name;
if (isLogImageSelect)
{
if (LogImageSelect.find(GENERAL[_ana]->ROI[i]->name) != std::string::npos)
LogImage(logPath, _imagename, NULL, &GENERAL[_ana]->ROI[i]->result_klasse, time, GENERAL[_ana]->ROI[i]->image_org);
}
else
{
LogImage(logPath, _imagename, NULL, &GENERAL[_ana]->ROI[i]->result_klasse, time, GENERAL[_ana]->ROI[i]->image_org);
}
}
} break;
*/
/*
case DigitalHyprid10:
{
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "CNN Type: DigitalHyprid10");
int _num, _nachkomma;
tflite->LoadInputImageBasis(GENERAL[_ana]->ROI[i]->image);
tflite->Invoke();
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "Nach Invoke");
_num = tflite->GetOutClassification(0, 9);
_nachkomma = tflite->GetOutClassification(10, 19);
string _zwres = "Nach Invoke - Nummer: " + to_string(_num) + " Nachkomma: " + to_string(_nachkomma);
LogFile.WriteToFile(ESP_LOG_DEBUG, _zwres);
GENERAL[_ana]->ROI[i]->result_float = fmod((double) _num + (((double)_nachkomma)-5)/10 + (double) 10, 10);
ESP_LOGD(TAG, "Result General(DigitalHyprid)%i: %f\n", i, GENERAL[_ana]->ROI[i]->result_float);
_zwres = "Result General(DigitalHyprid)" + to_string(i) + ": " + to_string(GENERAL[_ana]->ROI[i]->result_float);
LogFile.WriteToFile(ESP_LOG_DEBUG, _zwres);
if (isLogImage)
{
string _imagename = GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name;
if (isLogImageSelect)
{
if (LogImageSelect.find(GENERAL[_ana]->ROI[i]->name) != std::string::npos)
LogImage(logPath, _imagename, NULL, &GENERAL[_ana]->ROI[i]->result_klasse, time, GENERAL[_ana]->ROI[i]->image_org);
}
else
{
LogImage(logPath, _imagename, NULL, &GENERAL[_ana]->ROI[i]->result_klasse, time, GENERAL[_ana]->ROI[i]->image_org);
}
}
} break;
*/
case DoubleHyprid10:
{
@@ -765,7 +686,7 @@ bool ClassFlowCNNGeneral::doNeuralNetwork(string time)
tflite->LoadInputImageBasis(GENERAL[n]->ROI[roi]->image);
tflite->Invoke();
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "Nach Invoke");
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "After Invoke");
_num = tflite->GetOutClassification(0, 9);
_numplus = (_num + 1) % 10;
@@ -805,7 +726,7 @@ bool ClassFlowCNNGeneral::doNeuralNetwork(string time)
{
GENERAL[n]->ROI[roi]->isReject = true;
result = -1;
_result_save_file+= 100; // Für den Fall, dass fit nicht ausreichend, soll trotzdem das Ergebnis mit "-10x.y" abgespeichert werden.
_result_save_file+= 100; // In case fit is not sufficient, the result should still be saved with "-10x.y".
string zw = "Value Rejected due to Threshold (Fit: " + to_string(_fit) + "Threshold: " + to_string(CNNGoodThreshold) + ")";
LogFile.WriteToFile(ESP_LOG_WARN, TAG, zw);
}
@@ -935,7 +856,7 @@ std::vector<HTMLInfo*> ClassFlowCNNGeneral::GetHTMLInfo()
return result;
}
int ClassFlowCNNGeneral::getAnzahlGENERAL()
int ClassFlowCNNGeneral::getNumberGENERAL()
{
return GENERAL.size();
}