mirror of
https://github.com/jomjol/AI-on-the-edge-device.git
synced 2025-12-09 13:06:54 +03:00
Rolling 20210910
This commit is contained in:
@@ -28,6 +28,48 @@ int CTfLiteClass::GetClassFromImageBasis(CImageBasis *rs)
|
||||
return GetOutClassification();
|
||||
}
|
||||
|
||||
|
||||
int CTfLiteClass::GetOutClassification(int _von, int _bis)
|
||||
{
|
||||
TfLiteTensor* output2 = interpreter->output(0);
|
||||
|
||||
float zw_max;
|
||||
float zw;
|
||||
int zw_class;
|
||||
|
||||
if (output2 == NULL)
|
||||
return -1;
|
||||
|
||||
int numeroutput = output2->dims->data[1];
|
||||
//printf("\n number output neurons: %d\n\n", numeroutput);
|
||||
|
||||
if (_bis == -1)
|
||||
_bis = numeroutput;
|
||||
|
||||
if (_von == -1)
|
||||
_von = 0;
|
||||
|
||||
if (_bis > numeroutput)
|
||||
{
|
||||
printf("ANZAHL OUTPUT NEURONS passt nicht zu geforderter Classifizierung!");
|
||||
return -1;
|
||||
}
|
||||
|
||||
zw_max = output2->data.f[_von];
|
||||
zw_class = _von;
|
||||
for (int i = _von+1; i <= _bis; ++i)
|
||||
{
|
||||
zw = output2->data.f[i];
|
||||
if (zw > zw_max)
|
||||
{
|
||||
zw_max = zw;
|
||||
zw_class = i;
|
||||
}
|
||||
}
|
||||
return (zw_class - _von);
|
||||
}
|
||||
|
||||
/*
|
||||
int CTfLiteClass::GetOutClassification()
|
||||
{
|
||||
TfLiteTensor* output2 = interpreter->output(0);
|
||||
@@ -51,6 +93,7 @@ int CTfLiteClass::GetOutClassification()
|
||||
}
|
||||
return zw_class;
|
||||
}
|
||||
*/
|
||||
|
||||
void CTfLiteClass::GetInputDimension(bool silent = false)
|
||||
{
|
||||
@@ -71,18 +114,18 @@ void CTfLiteClass::GetInputDimension(bool silent = false)
|
||||
}
|
||||
|
||||
|
||||
void CTfLiteClass::GetOutPut()
|
||||
int CTfLiteClass::GetAnzOutPut(bool silent)
|
||||
{
|
||||
TfLiteTensor* output2 = this->interpreter->output(0);
|
||||
|
||||
int numdim = output2->dims->size;
|
||||
printf("NumDimension: %d\n", numdim);
|
||||
if (!silent) printf("NumDimension: %d\n", numdim);
|
||||
|
||||
int sizeofdim;
|
||||
for (int j = 0; j < numdim; ++j)
|
||||
{
|
||||
sizeofdim = output2->dims->data[j];
|
||||
printf("SizeOfDimension %d: %d\n", j, sizeofdim);
|
||||
if (!silent) printf("SizeOfDimension %d: %d\n", j, sizeofdim);
|
||||
}
|
||||
|
||||
|
||||
@@ -93,8 +136,9 @@ void CTfLiteClass::GetOutPut()
|
||||
for (int i = 0; i < numeroutput; ++i)
|
||||
{
|
||||
fo = output2->data.f[i];
|
||||
printf("Result %d: %f\n", i, fo);
|
||||
if (!silent) printf("Result %d: %f\n", i, fo);
|
||||
}
|
||||
return numeroutput;
|
||||
}
|
||||
|
||||
void CTfLiteClass::Invoke()
|
||||
@@ -107,7 +151,7 @@ void CTfLiteClass::Invoke()
|
||||
|
||||
bool CTfLiteClass::LoadInputImageBasis(CImageBasis *rs)
|
||||
{
|
||||
std::string zw = "ClassFlowAnalog::doNeuralNetwork nach LoadInputResizeImage: ";
|
||||
std::string zw = "ClassFlowCNNGeneral::doNeuralNetwork nach LoadInputResizeImage: ";
|
||||
|
||||
unsigned int w = rs->width;
|
||||
unsigned int h = rs->height;
|
||||
|
||||
@@ -61,8 +61,11 @@ class CTfLiteClass
|
||||
void GetInputTensorSize();
|
||||
bool LoadInputImageBasis(CImageBasis *rs);
|
||||
void Invoke();
|
||||
void GetOutPut();
|
||||
int GetOutClassification();
|
||||
int GetAnzOutPut(bool silent = true);
|
||||
// void GetOutPut();
|
||||
// int GetOutClassification();
|
||||
int GetOutClassification(int _von = -1, int _bis = -1);
|
||||
|
||||
int GetClassFromImageBasis(CImageBasis *rs);
|
||||
std::string GetStatusFlow();
|
||||
|
||||
|
||||
@@ -284,16 +284,27 @@ esp_err_t handler_wasserzaehler(httpd_req_t *req)
|
||||
httpd_resp_sendstr_chunk(req, txt.c_str());
|
||||
|
||||
std::vector<HTMLInfo*> htmlinfo;
|
||||
htmlinfo = tfliteflow.GetAllDigital();
|
||||
htmlinfo = tfliteflow.GetAllDigital();
|
||||
printf("Size of htmlinfo: %i\n", htmlinfo.size());
|
||||
for (int i = 0; i < htmlinfo.size(); ++i)
|
||||
{
|
||||
if (htmlinfo[i]->val == 10)
|
||||
zw = "NaN";
|
||||
if (tfliteflow.GetTypeDigital() == Digital)
|
||||
{
|
||||
if (htmlinfo[i]->val == 10)
|
||||
zw = "NaN";
|
||||
else
|
||||
zw = to_string((int) htmlinfo[i]->val);
|
||||
|
||||
txt = "<img src=\"/img_tmp/" + htmlinfo[i]->filename + "\"> " + zw;
|
||||
}
|
||||
else
|
||||
{
|
||||
zw = to_string((int) htmlinfo[i]->val);
|
||||
std::stringstream stream;
|
||||
stream << std::fixed << std::setprecision(1) << htmlinfo[i]->val;
|
||||
zw = stream.str();
|
||||
|
||||
txt = "<img src=\"/img_tmp/" + htmlinfo[i]->filename + "\"> " + zw;
|
||||
}
|
||||
txt = "<img src=\"/img_tmp/" + htmlinfo[i]->filename + "\"> " + zw;
|
||||
httpd_resp_sendstr_chunk(req, txt.c_str());
|
||||
delete htmlinfo[i];
|
||||
}
|
||||
@@ -493,7 +504,9 @@ esp_err_t handler_editflow(httpd_req_t *req)
|
||||
// string zwzw = "Do " + _task + " start\n"; printf(zwzw.c_str());
|
||||
std::string zw = tfliteflow.doSingleStep("[Alignment]", _host);
|
||||
httpd_resp_sendstr_chunk(req, zw.c_str());
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
if (_task.compare("test_analog") == 0)
|
||||
{
|
||||
std::string _host = "";
|
||||
@@ -504,7 +517,9 @@ esp_err_t handler_editflow(httpd_req_t *req)
|
||||
// string zwzw = "Do " + _task + " start\n"; printf(zwzw.c_str());
|
||||
std::string zw = tfliteflow.doSingleStep("[Analog]", _host);
|
||||
httpd_resp_sendstr_chunk(req, zw.c_str());
|
||||
}
|
||||
}
|
||||
*/
|
||||
/*
|
||||
if (_task.compare("test_digits") == 0)
|
||||
{
|
||||
std::string _host = "";
|
||||
@@ -517,6 +532,7 @@ esp_err_t handler_editflow(httpd_req_t *req)
|
||||
std::string zw = tfliteflow.doSingleStep("[Digits]", _host);
|
||||
httpd_resp_sendstr_chunk(req, zw.c_str());
|
||||
}
|
||||
*/
|
||||
|
||||
|
||||
/* Respond with an empty chunk to signal HTTP response completion */
|
||||
|
||||
Reference in New Issue
Block a user