Prepare next release (#3267)

* Create dig-cont_0640_s3_q.tflite

* Update edit_reference.html (#2924)

Zoom-Einstellungen ausblenden, wenn zoom deaktiviert ist

* Update edit_config_template.html (#2925)

Zoom-Einstellungen ausblenden, wenn zoom deaktiviert ist +
Kameraeinstellungen nicht nur in der config.ini speichern, sondern auch setzen

* The parameter "negative" is processed on the MCU

* Renamed menu entry Alignment -> References

* renamed model file to make naming consistent

* Fix test (#2933)

* always reset change absolute (#2956)

* Create dig-class11_1701_s2.tflite

* Update tflite

* Update tflite

* Camera settings (#3029)

* Add files via upload

* Add files via upload

* Add files via upload

* Add files via upload

* Add files via upload

* Add files via upload

* Add files via upload

* Add files via upload

* Fix minor typo and harmonize spaces (#3030)

* Update edit_digits.html

* Update edit_analog.html

* Update overview.html

* Update edit_reference.html

---------

Co-authored-by: jomjol <30766535+jomjol@users.noreply.github.com>

* Source code formatting, ClassFlowPostProcessing.cpp

* fix edit_config_template.html

Unfortunately, I didn't take out some entries from other experiments because I overlooked/forgot them^^

* fix readconfigparam.js

Unfortunately, I didn't take out some entries from other experiments because I overlooked/forgot them^^

* fix edit_config_template.html

TakeImage_CamZoomMode_value1 was replaced by TakeImage_CamZoomSize_value1, but not deleted.
This caused problems when saving the camera settings.

* Update info.html

function loadWLANSSID() was present three times

* Update overview.html

CamFrameSize is no longer needed/used for zoom

* Update reply-bot.yaml

* homeassistant service discovery: derive node_id when using nested topics (#3088)

* derive correct node_id for homeassistant service discovery in nested topics (fixes #1792)

* explicit use of std::string

* move nodeId creation to separate function
add unit-tests

* add documentation about node_id generation for Home Assistant MQTT Service Discovery

* add Prometheus/OpenMetrics exporter (#3081)

* add prometheus endpoint

* refine metrics implementation

* move metrics generator to ClassFlowControll

* add more metrics
align prefix

* add more metrics
clean up

* refine documentation

* revert dependencies change

* sanitize labels

* create separate module for openmetrics

* move openmetrics to separate folder

* clean up

* add basic unit-tests

* work with const numbers
add replaceAll for string replacement
avoid opening std namespace
adapt unit-tests

* Update code/main/server_main.cpp

---------

Co-authored-by: CaCO3 <caco3@ruinelli.ch>

* Typo

* update platformIO to 6.7.0 (ESP IDF 5.2.1) (#3098)

* update to platformio/espressif32 @ 6.7.0

* remove unused getReadout() as it throws errors (error: 'virtual std::string ClassFlow::getReadout()' was hidden).

---------

Co-authored-by: CaCO3 <caco@ruinelli.ch>

* Update reply-bot.yaml (#3107)

* Fix actions-label-commenter

* Update Helper.cpp

* Update Helper.h

* Update Helper.cpp

* Update readconfigparam.js

fix for:
In the selected field the value '1' in the section 'TakeImage' in the field 'CamGainceiling' is invalid. PLEASE CHECK BEFORE SAVING!

* proposal for renaming and documentation (#3115)

* Update server_camera.cpp

 Fix building with -D DEBUG_DETAIL_ON 

better alternative to:
https://github.com/jomjol/AI-on-the-edge-device/pull/3160

* Update ClassFlowPostProcessing.cpp

* Update ClassFlowAlignment.cpp

* Fix building with `-D DEBUG_DETAIL_ON` (#3160)

Building with `-D DEBUG_DETAIL_ON` has been broken since #3029.

Co-authored-by: CaCO3 <caco3@ruinelli.ch>

* Handle empty prevalue.ini gracefully (#3162)

Fixes #2149.

* Bugfix for boot loop (#3175)

* Add files via upload

* Add files via upload

* Add files via upload

* Delete param-docs/parameter-pages/TakeImage/Aec2.md

has been replaced by CamAec2.md

* Delete param-docs/parameter-pages/TakeImage/AutoExposureLevel.md

has been replaced by CamAeLevel.md

* Delete param-docs/parameter-pages/TakeImage/Brightness.md

has been replaced by CamBrightness.md

* Delete param-docs/parameter-pages/TakeImage/Contrast.md

has been replaced by CamContrast.md

* Delete param-docs/parameter-pages/TakeImage/Grayscale.md

has been replaced by CamSpecialEffect.md

* Delete param-docs/parameter-pages/TakeImage/Negative.md

has been replaced by CamSpecialEffect.md

* Delete param-docs/parameter-pages/TakeImage/Saturation.md

has been replaced by CamSaturation.md

* Delete param-docs/parameter-pages/TakeImage/Sharpness.md

has been replaced by CamSharpness.md

* Delete param-docs/parameter-pages/TakeImage/ImageQuality.md

has been replaced by CamQuality.md

* Delete param-docs/parameter-pages/TakeImage/Zoom.md

has been replaced by CamZoom.md

* Delete param-docs/parameter-pages/TakeImage/ZoomMode.md

has been replaced by CamZoomSize.md

* Delete param-docs/parameter-pages/TakeImage/ZoomOffsetX.md

has been replaced by CamZoomOffsetX.md

* Delete param-docs/parameter-pages/TakeImage/ZoomOffsetY.md

has been replaced by CamZoomOffsetY.md

* Delete param-docs/parameter-pages/TakeImage/ImageSize.md

has been replaced by CamZoomSize.md

* Delete param-docs/parameter-pages/TakeImage/FixedExposure.md

has been replaced by CamAec.md

* Delete param-docs/parameter-pages/Alignment/FlipImageSize.md

has been replaced by CamVflip.md

* Delete param-docs/parameter-pages/Alignment/InitialMirror.md

has been replaced by CamHmirror.md

* CamParameter documentation update

https://github.com/jomjol/AI-on-the-edge-device/issues/3185

* typo

* add Webhook #3148 (#3163)

* WIP add Webhook

* fix config html for webhook
add tooltips for webhook

* webhook: fix not enabling webhook

* send webhook as json

* Update ApiKey.md

* webhook: fix only sending last "Number"

* webhook JSON is now closer to the data log in CSV format

* webhook: drop timeStampTimeUTC and switch from timeStamp to lastvalue like lokal csv to fix no timestamp on error

---------

Co-authored-by: CaCO3 <caco3@ruinelli.ch>

* Bugfix for time stamp (#3180)

* Update ClassFlowPostProcessing.cpp

* Update ClassFlowDefineTypes.h

* Update ClassFlowPostProcessing.cpp

* Update ClassFlowPostProcessing.cpp

* Update ClassFlowPostProcessing.cpp

* Update ClassFlowPostProcessing.cpp

* Update interface_webhook.cpp

* Update readconfigcommon.js

fix for: The same message("Image Contrast got enhanced") came up with "Update Marker" and "Enhance Image Contrast".

* fix svg favicon 

The svg one got added in 33893eb566 but does not work on Firefox

* Update platformIO to 6.8.1 (Contains ESP IDF 5.3) (#3196)

* Update platformIO to 6.8.1 (ESP IDF 5.3)

* removed now redundant typedef

* updated IDF manifest hash

* Add files via upload

so it should work now

* Update server_main.cpp

---------

Co-authored-by: CaCO3 <caco@ruinelli.ch>
Co-authored-by: michael <Heinrich-Tuning@web.de>

* Update MainFlowControl.cpp

* Add support for OV5640 camera (#3063)

* Add support for OV5640 camera

* clean up sharpness handling

* limit sharpness range to -2 and +2

* refactor

* Fix OV3660 sharpness handling

* refactor sharpness handling

* fix OV3660 zoom mode

* reinstate aspect ratio via imageSize

* Changed OV5640 full frame size to match datasheet

* various fixes

* add denoise config and general clean up

* fix line endings to LF

* Support enabling red blue swap via web interface

* update jpeg quality limits

* remove color swap config; color swap workaround dependent on vflip

* fix missing commit

* fix gain ceiling

* Update cam vflip param page

* fix typo: camdenoise, not camsdenoise

* fix compile errors

* Update MainFlowControl.cpp

* Add rate threshold parameter (#3195)

* still needs to be tested

https://github.com/jomjol/AI-on-the-edge-device/issues/3143

* Update ClassFlowPostProcessing.cpp

code formatting

* Update ClassFlowDefineTypes.h

code formatting

* Update ClassFlowPostProcessing.h

code formatting

* Update edit_config_template.html

* fix

* Update config.ini

* Update edit_config_template.html

* Updated param doc

* Rename parameters

* Update edit_config_template.html

* Update NUMBER.ChangeRateThreshold.md

* Update NUMBER.ChangeRateThreshold.md

---------

Co-authored-by: CaCO3 <caco3@ruinelli.ch>

* Update main.cpp

* Update config.ini

Adjusted camera settings to make the image brighter.

* Update readconfigparam.js

Adjusted camera settings to make the image brighter.

* add optional ImageUpload for Webhook (#3174)

* WIP add Webhook

* fix config html for webhook
add tooltips for webhook

* webhook: fix not enabling webhook

* send webhook as json

* Update ApiKey.md

* webhook: fix only sending last "Number"

* webhook JSON is now closer to the data log in CSV format

* webhook: add img upload

* webhoop added config for imgupload

* webhook html fixes

* webhook: drop timeStampTimeUTC and switch from timeStamp to lastvalue like lokal csv to fix no timestamp on error

* add checkbox for Webhook_UploadImg

* Update sd-card/html/edit_config_template.html

* Update edit_config_template.html

* Update edit_config_template.html

* Update edit_config_template.html

* added a long timestamp to both webhook requests

---------

Co-authored-by: CaCO3 <caco3@ruinelli.ch>

* Add files via upload (#3207)

* Update ClassFlowPostProcessing.cpp

deleted some unnecessary double entries
RateType renamed to MaxRateType

* Update ClassFlowDefineTypes.h

RateType renamed to MaxRateType

* Update text on recognition page

* Update digital CNN

* add a Delay between the WiFi reconnections (#3068)

* add a Delay between the WiFi reconnections

* log the delay between the WiFi reconnections

move the delay after the log

* cleanup

* cleanup

* cleanup

* Update edit_alignment.html

* cleanup

* cleanup

* Update platformIO to 6.9.0 (Contains ESP IDF 5.3.1)

* Handle crash on corrupted model (#3220)

* Upgrade esp-tflite-micro to 1.3.1

* Added log message to hint in case it crashes on loading a corrupted model

---------

Co-authored-by: CaCO3 <caco@ruinelli.ch>

* new dig-class100-173-s2-q on 23.800 images (#3257)

* new dig-class100-173-s2-q on 23.800 images

* platformio/espressif32 @ 6.8.1 for esp32cam-dev

* Revert "platformio/espressif32 @ 6.8.1 for esp32cam-dev"

This reverts commit cc9297d483.

* not using platformio 6.1.16

* Revert "not using platformio 6.1.16"

This reverts commit ef18e4fae7.

* moved number edit box styles into new file edit_style.css (#3262)

changed input[type=number] from 60px to 3em, to show 3 digits with current font size.

* added note about only TLS 1.2 is supported (#3213)

* Renamed digital to digit (#3219)

* renamed Digital to Digit

* added param migration

* Update .github/label-commenter-config.yaml

* renamed AnalogDigitTransition* to AnalogToDigitTransition*

---------

Co-authored-by: CaCO3 <caco@ruinelli.ch>

* Update Changelog.md

* Update Changelog.md

---------

Co-authored-by: jomjol <30766535+jomjol@users.noreply.github.com>
Co-authored-by: michael <Heinrich-Tuning@web.de>
Co-authored-by: Frank Haverland <fspapaping@googlemail.com>
Co-authored-by: kub3let <95883234+kub3let@users.noreply.github.com>
Co-authored-by: Marco H <myxor@users.noreply.github.com>
Co-authored-by: Henry Thasler <henrythasler@users.noreply.github.com>
Co-authored-by: CaCO3 <caco@ruinelli.ch>
Co-authored-by: Sebastian Lövdahl <slovdahl@hibox.fi>
Co-authored-by: Raphael Hehl <raphael@rhehl.de>
Co-authored-by: jasaw <jasaw@dius.com.au>
Co-authored-by: Francesco Carnielli <hex7c0@gmail.com>
Co-authored-by: kalwados <kalwados@gmx.de>
This commit is contained in:
CaCO3
2024-09-29 23:22:33 +02:00
committed by GitHub
parent 0d0b0187f4
commit ca01f5a38f
151 changed files with 11256 additions and 7449 deletions

File diff suppressed because it is too large Load Diff

View File

@@ -15,66 +15,99 @@
#include "CImageBasis.h"
#include "../../include/defines.h"
class CCamera {
protected:
int ActualQuality;
framesize_t ActualResolution;
int brightness, contrast, saturation, autoExposureLevel;
bool isFixedExposure;
int waitbeforepicture_org;
int led_intensity = 4095;
typedef struct
{
uint16_t CamSensor_id;
void ledc_init(void);
bool CameraInitSuccessful = false;
bool demoMode = false;
framesize_t ImageFrameSize = FRAMESIZE_VGA; // 0 - 10
gainceiling_t ImageGainceiling; // Image gain (GAINCEILING_x2, x4, x8, x16, x32, x64 or x128)
bool loadNextDemoImage(camera_fb_t *fb);
long GetFileSize(std::string filename);
int ImageQuality; // 0 - 63
int ImageBrightness; // (-2 to 2) - set brightness
int ImageContrast; //-2 - 2
int ImageSaturation; //-2 - 2
int ImageSharpness; //-2 - 2
bool ImageAutoSharpness;
int ImageSpecialEffect; // 0 - 6
int ImageWbMode; // 0 to 4 - if awb_gain enabled (0 - Auto, 1 - Sunny, 2 - Cloudy, 3 - Office, 4 - Home)
int ImageAwb; // white balance enable (0 or 1)
int ImageAwbGain; // Auto White Balance enable (0 or 1)
int ImageAec; // auto exposure off (1 or 0)
int ImageAec2; // automatic exposure sensor (0 or 1)
int ImageAeLevel; // auto exposure levels (-2 to 2)
int ImageAecValue; // set exposure manually (0-1200)
int ImageAgc; // auto gain off (1 or 0)
int ImageAgcGain; // set gain manually (0 - 30)
int ImageBpc; // black pixel correction
int ImageWpc; // white pixel correction
int ImageRawGma; // (1 or 0)
int ImageLenc; // lens correction (1 or 0)
int ImageHmirror; // (0 or 1) flip horizontally
int ImageVflip; // Invert image (0 or 1)
int ImageDcw; // downsize enable (1 or 0)
void SetCamWindow(sensor_t *s, int resolution, int xOffset, int yOffset, int xLength, int yLength);
void SetImageWidthHeightFromResolution(framesize_t resol);
int ImageDenoiseLevel; // The OV2640 does not support it, OV3660 and OV5640 (0 to 8)
public:
int image_height, image_width;
bool imageZoomEnabled = false;
int imageZoomMode = 0;
int imageZoomOffsetX = 0;
int imageZoomOffsetY = 0;
bool imageNegative = false;
bool imageAec2 = false;
bool imageAutoSharpness = false;
int imageSharpnessLevel = 0;
#ifdef GRAYSCALE_AS_DEFAULT
bool imageGrayscale = true;
#else
bool imageGrayscale = false;
#endif
CCamera();
esp_err_t InitCam();
int ImageWidth;
int ImageHeight;
void LightOnOff(bool status);
void LEDOnOff(bool status);
esp_err_t CaptureToHTTP(httpd_req_t *req, int delay = 0);
esp_err_t CaptureToStream(httpd_req_t *req, bool FlashlightOn);
void SetQualitySize(int qual, framesize_t resol, bool zoomEnabled, int zoomMode, int zoomOffsetX, int zoomOffsetY);
bool SetBrightnessContrastSaturation(int _brightness, int _contrast, int _saturation, int _autoExposureLevel, bool _grayscale, bool _negative, bool _aec2, int _sharpnessLevel);
void SetZoom(bool zoomEnabled, int zoomMode, int zoomOffsetX, int zoomOffsetY);
void GetCameraParameter(httpd_req_t *req, int &qual, framesize_t &resol, bool &zoomEnabled, int &zoomMode, int &zoomOffsetX, int &zoomOffsetY);
void SetLEDIntensity(float _intrel);
bool testCamera(void);
void EnableAutoExposure(int flash_duration);
bool getCameraInitSuccessful();
void useDemoMode(void);
int ImageLedIntensity;
framesize_t TextToFramesize(const char * text);
bool ImageZoomEnabled;
int ImageZoomOffsetX;
int ImageZoomOffsetY;
int ImageZoomSize;
esp_err_t CaptureToFile(std::string nm, int delay = 0);
esp_err_t CaptureToBasisImage(CImageBasis *_Image, int delay = 0);
int WaitBeforePicture;
bool isImageSize;
bool CameraInitSuccessful;
bool changedCameraSettings;
bool DemoMode;
bool SaveAllFiles;
} camera_controll_config_temp_t;
extern camera_controll_config_temp_t CCstatus;
class CCamera
{
protected:
void ledc_init(void);
bool loadNextDemoImage(camera_fb_t *fb);
long GetFileSize(std::string filename);
void SetCamWindow(sensor_t *s, int frameSizeX, int frameSizeY, int xOffset, int yOffset, int xTotal, int yTotal, int xOutput, int yOutput, int imageVflip);
void SetImageWidthHeightFromResolution(framesize_t resol);
void SanitizeZoomParams(int imageSize, int frameSizeX, int frameSizeY, int &imageWidth, int &imageHeight, int &zoomOffsetX, int &zoomOffsetY);
public:
CCamera(void);
esp_err_t InitCam(void);
void LightOnOff(bool status);
void LEDOnOff(bool status);
esp_err_t setSensorDatenFromCCstatus(void);
esp_err_t getSensorDatenToCCstatus(void);
int ov5640_set_gainceiling(sensor_t *s, gainceiling_t level);
esp_err_t CaptureToHTTP(httpd_req_t *req, int delay = 0);
esp_err_t CaptureToStream(httpd_req_t *req, bool FlashlightOn);
void SetQualityZoomSize(int qual, framesize_t resol, bool zoomEnabled, int zoomOffsetX, int zoomOffsetY, int imageSize, int imageVflip);
void SetZoomSize(bool zoomEnabled, int zoomOffsetX, int zoomOffsetY, int imageSize, int imageVflip);
void SetCamSharpness(bool _autoSharpnessEnabled, int _sharpnessLevel);
void SetLEDIntensity(float _intrel);
bool testCamera(void);
bool getCameraInitSuccessful(void);
void useDemoMode(void);
framesize_t TextToFramesize(const char *text);
esp_err_t CaptureToFile(std::string nm, int delay = 0);
esp_err_t CaptureToBasisImage(CImageBasis *_Image, int delay = 0);
};
extern CCamera Camera;
#endif

View File

@@ -3,71 +3,78 @@
#include "ov2640_sharpness.h"
#define OV2640_MAXLEVEL_SHARPNESS 6
const static uint8_t OV2640_SHARPNESS_AUTO[]=
{
0xFF, 0x00, 0xff,
0x92, 0x01, 0xff,
//reg, val, mask
0xFF, 0x00, 0xFF,
0x92, 0x01, 0xFF,
0x93, 0x20, 0x20,
0x00, 0x00, 0x00
};
const static uint8_t OV2640_SHARPNESS_MANUAL[]=
{
0xFF, 0x00, 0xff,
0x92, 0x01, 0xff,
//reg, val, mask
0xFF, 0x00, 0xFF,
0x92, 0x01, 0xFF,
0x93, 0x00, 0x20,
0x00, 0x00, 0x00
};
const static uint8_t OV2640_SHARPNESS_LEVEL0[]=
{
0xFF, 0x00, 0xff,
0x92, 0x01, 0xff,
0x93, 0xc0, 0x1f,
//reg, val, mask
0xFF, 0x00, 0xFF,
0x92, 0x01, 0xFF,
0x93, 0xC0, 0x1F,
0x00, 0x00, 0x00
};
const static uint8_t OV2640_SHARPNESS_LEVEL1[]=
{
0xFF, 0x00, 0xff,
0x92, 0x01, 0xff,
0x93, 0xc1, 0x1f,
//reg, val, mask
0xFF, 0x00, 0xFF,
0x92, 0x01, 0xFF,
0x93, 0xC1, 0x1F,
0x00, 0x00, 0x00
};
const static uint8_t OV2640_SHARPNESS_LEVEL2[]=
{
0xFF, 0x00, 0xff,
0x92, 0x01, 0xff,
0x93, 0xc2, 0x1f,
//reg, val, mask
0xFF, 0x00, 0xFF,
0x92, 0x01, 0xFF,
0x93, 0xC2, 0x1F,
0x00, 0x00, 0x00
};
const static uint8_t OV2640_SHARPNESS_LEVEL3[]=
{
0xFF, 0x00, 0xff,
0x92, 0x01, 0xff,
0x93, 0xc4, 0x1f,
//reg, val, mask
0xFF, 0x00, 0xFF,
0x92, 0x01, 0xFF,
0x93, 0xC4, 0x1F,
0x00, 0x00, 0x00
};
const static uint8_t OV2640_SHARPNESS_LEVEL4[]=
{
0xFF, 0x00, 0xff,
0x92, 0x01, 0xff,
0x93, 0xc8, 0x1f,
//reg, val, mask
0xFF, 0x00, 0xFF,
0x92, 0x01, 0xFF,
0x93, 0xC8, 0x1F,
0x00, 0x00, 0x00
};
const static uint8_t OV2640_SHARPNESS_LEVEL5[]=
{
0xFF, 0x00, 0xff,
0x92, 0x01, 0xff,
0x93, 0xd0, 0x1f,
//reg, val, mask
0xFF, 0x00, 0xFF,
0x92, 0x01, 0xFF,
0x93, 0xD0, 0x1F,
0x00, 0x00, 0x00
};
const static uint8_t OV2640_SHARPNESS_LEVEL6[]=
{
0xFF, 0x00, 0xff,
0x92, 0x01, 0xff,
0x93, 0xdf, 0x1f,
//reg, val, mask
0xFF, 0x00, 0xFF,
0x92, 0x01, 0xFF,
0x93, 0xDF, 0x1F,
0x00, 0x00, 0x00
};
@@ -82,6 +89,9 @@ const static uint8_t *OV2640_SETTING_SHARPNESS[]=
OV2640_SHARPNESS_LEVEL6 // +3 sharpness
};
#define OV2640_MAXLEVEL_SHARPNESS 6
static int table_mask_write(sensor_t *sensor, const uint8_t* ptab)
{
uint8_t address;
@@ -91,34 +101,52 @@ static int table_mask_write(sensor_t *sensor, const uint8_t* ptab)
const uint8_t *pdata = ptab;
if (pdata == NULL)
{
return -1;
}
while (1)
{
address = *pdata++;
value = *pdata++;
mask = *pdata++;
if ((address == 0) && (value == 0) && (mask == 0))
{
break;
}
sensor->set_reg(sensor, address, mask, value);
}
return 0;
}
int ov2640_enable_auto_sharpness(sensor_t *sensor)
{
table_mask_write(sensor, OV2640_SHARPNESS_AUTO);
return 0;
}
int ov2640_set_sharpness(sensor_t *sensor, int sharpness)
{
if ((sharpness < -3) || (sharpness > OV2640_MAXLEVEL_SHARPNESS - 3))
return -1;
int sharpness_temp = 0;
if (sharpness < -3)
{
sharpness_temp = -3;
}
if (sharpness > OV2640_MAXLEVEL_SHARPNESS - 3)
{
sharpness_temp = OV2640_MAXLEVEL_SHARPNESS - 3;
}
table_mask_write(sensor, OV2640_SHARPNESS_MANUAL);
table_mask_write(sensor, OV2640_SETTING_SHARPNESS[sharpness + 3]);
table_mask_write(sensor, OV2640_SETTING_SHARPNESS[sharpness_temp + 3]);
return 0;
}

View File

@@ -5,6 +5,7 @@
#include "esp_camera.h"
#include "ClassControllCamera.h"
#include "MainFlowControl.h"
#include "ClassLogFile.h"
#include "esp_log.h"
@@ -13,191 +14,187 @@
static const char *TAG = "server_cam";
void PowerResetCamera()
{
#if CAM_PIN_PWDN == GPIO_NUM_NC // Use reset only if pin is available
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "No power down pin availbale to reset camera");
#else
ESP_LOGD(TAG, "Resetting camera by power down line");
gpio_config_t conf;
conf.intr_type = GPIO_INTR_DISABLE;
conf.pin_bit_mask = 1LL << CAM_PIN_PWDN;
conf.mode = GPIO_MODE_OUTPUT;
conf.pull_down_en = GPIO_PULLDOWN_DISABLE;
conf.pull_up_en = GPIO_PULLUP_DISABLE;
gpio_config(&conf);
void PowerResetCamera(){
ESP_LOGD(TAG, "Resetting camera by power down line");
gpio_config_t conf;
conf.intr_type = GPIO_INTR_DISABLE;
conf.pin_bit_mask = 1LL << GPIO_NUM_32;
conf.mode = GPIO_MODE_OUTPUT;
conf.pull_down_en = GPIO_PULLDOWN_DISABLE;
conf.pull_up_en = GPIO_PULLUP_DISABLE;
gpio_config(&conf);
// carefull, logic is inverted compared to reset pin
gpio_set_level(GPIO_NUM_32, 1);
vTaskDelay(1000 / portTICK_PERIOD_MS);
gpio_set_level(GPIO_NUM_32, 0);
vTaskDelay(1000 / portTICK_PERIOD_MS);
// carefull, logic is inverted compared to reset pin
gpio_set_level(CAM_PIN_PWDN, 1);
vTaskDelay(1000 / portTICK_PERIOD_MS);
gpio_set_level(CAM_PIN_PWDN, 0);
vTaskDelay(1000 / portTICK_PERIOD_MS);
#endif
}
esp_err_t handler_lightOn(httpd_req_t *req)
{
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("handler_lightOn - Start");
ESP_LOGD(TAG, "handler_lightOn uri: %s", req->uri);
#endif
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("handler_lightOn - Start");
ESP_LOGD(TAG, "handler_lightOn uri: %s", req->uri);
#endif
if (Camera.getCameraInitSuccessful())
if (Camera.getCameraInitSuccessful())
{
Camera.LightOnOff(true);
const char* resp_str = (const char*) req->user_ctx;
const char *resp_str = (const char *)req->user_ctx;
httpd_resp_send(req, resp_str, strlen(resp_str));
}
else
else
{
httpd_resp_send_err(req, HTTPD_403_FORBIDDEN, "Camera not initialized: REST API /lighton not available!");
return ESP_ERR_NOT_FOUND;
}
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("handler_lightOn - Done");
#endif
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("handler_lightOn - Done");
#endif
return ESP_OK;
}
esp_err_t handler_lightOff(httpd_req_t *req)
{
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("handler_lightOff - Start");
ESP_LOGD(TAG, "handler_lightOff uri: %s", req->uri);
#endif
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("handler_lightOff - Start");
ESP_LOGD(TAG, "handler_lightOff uri: %s", req->uri);
#endif
if (Camera.getCameraInitSuccessful())
if (Camera.getCameraInitSuccessful())
{
Camera.LightOnOff(false);
const char* resp_str = (const char*) req->user_ctx;
httpd_resp_send(req, resp_str, strlen(resp_str));
const char *resp_str = (const char *)req->user_ctx;
httpd_resp_send(req, resp_str, strlen(resp_str));
}
else
else
{
httpd_resp_send_err(req, HTTPD_403_FORBIDDEN, "Camera not initialized: REST API /lightoff not available!");
return ESP_ERR_NOT_FOUND;
}
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("handler_lightOff - Done");
#endif
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("handler_lightOff - Done");
#endif
return ESP_OK;
}
esp_err_t handler_capture(httpd_req_t *req)
{
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("handler_capture - Start");
#endif
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("handler_capture - Start");
#endif
if (Camera.getCameraInitSuccessful())
if (Camera.getCameraInitSuccessful())
{
int quality;
framesize_t res;
bool zoomEnabled;
int zoomMode;
int zoomOffsetX;
int zoomOffsetY;
// If the camera settings were changed by creating a new reference image, they must be reset
if (CFstatus.changedCameraSettings)
{
Camera.setSensorDatenFromCCstatus(); // CCstatus >>> Kamera
Camera.SetQualityZoomSize(CCstatus.ImageQuality, CCstatus.ImageFrameSize, CCstatus.ImageZoomEnabled, CCstatus.ImageZoomOffsetX, CCstatus.ImageZoomOffsetY, CCstatus.ImageZoomSize, CCstatus.ImageVflip);
CFstatus.changedCameraSettings = false;
}
Camera.GetCameraParameter(req, quality, res, zoomEnabled, zoomMode, zoomOffsetX, zoomOffsetY);
#ifdef DEBUG_DETAIL_ON
ESP_LOGD(TAG, "Size: %d, Quality: %d", res, quality);
#endif
Camera.SetQualitySize(quality, res, zoomEnabled, zoomMode, zoomOffsetX, zoomOffsetY);
#ifdef DEBUG_DETAIL_ON
ESP_LOGD(TAG, "Size: %d, Quality: %d", CCstatus.ImageFrameSize, CCstatus.ImageQuality);
#endif
esp_err_t result;
result = Camera.CaptureToHTTP(req);
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("handler_capture - Done");
#endif
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("handler_capture - Done");
#endif
return result;
}
else
else
{
httpd_resp_send_err(req, HTTPD_403_FORBIDDEN, "Camera not initialized: REST API /capture not available!");
return ESP_ERR_NOT_FOUND;
}
}
esp_err_t handler_capture_with_light(httpd_req_t *req)
{
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("handler_capture_with_light - Start");
#endif
if (Camera.getCameraInitSuccessful())
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("handler_capture_with_light - Start");
#endif
if (Camera.getCameraInitSuccessful())
{
char _query[100];
char _delay[10];
int quality;
framesize_t res;
bool zoomEnabled;
int zoomMode;
int zoomOffsetX;
int zoomOffsetY;
int delay = 2500;
if (httpd_req_get_url_query_str(req, _query, 100) == ESP_OK)
{
ESP_LOGD(TAG, "Query: %s", _query);
if (httpd_query_key_value(_query, "delay", _delay, 10) == ESP_OK)
{
#ifdef DEBUG_DETAIL_ON
ESP_LOGD(TAG, "Delay: %s", _delay);
#endif
#ifdef DEBUG_DETAIL_ON
ESP_LOGD(TAG, "Delay: %s", _delay);
#endif
delay = atoi(_delay);
if (delay < 0)
{
delay = 0;
}
}
}
Camera.GetCameraParameter(req, quality, res, zoomEnabled, zoomMode, zoomOffsetX, zoomOffsetY);
// If the camera settings were changed by creating a new reference image, they must be reset
if (CFstatus.changedCameraSettings)
{
Camera.setSensorDatenFromCCstatus(); // CCstatus >>> Kamera
Camera.SetQualityZoomSize(CCstatus.ImageQuality, CCstatus.ImageFrameSize, CCstatus.ImageZoomEnabled, CCstatus.ImageZoomOffsetX, CCstatus.ImageZoomOffsetY, CCstatus.ImageZoomSize, CCstatus.ImageVflip);
CFstatus.changedCameraSettings = false;
}
#ifdef DEBUG_DETAIL_ON
ESP_LOGD(TAG, "Size: %d, Quality: %d", res, quality);
#endif
#ifdef DEBUG_DETAIL_ON
ESP_LOGD(TAG, "Size: %d, Quality: %d", CCstatus.ImageFrameSize, CCstatus.ImageQuality);
#endif
Camera.SetQualitySize(quality, res, zoomEnabled, zoomMode, zoomOffsetX, zoomOffsetY);
Camera.LightOnOff(true);
const TickType_t xDelay = delay / portTICK_PERIOD_MS;
vTaskDelay( xDelay );
vTaskDelay(xDelay);
esp_err_t result;
result = Camera.CaptureToHTTP(req);
result = Camera.CaptureToHTTP(req);
Camera.LightOnOff(false);
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("handler_capture_with_light - Done");
#endif
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("handler_capture_with_light - Done");
#endif
return result;
}
else
else
{
httpd_resp_send_err(req, HTTPD_403_FORBIDDEN, "Camera not initialized: REST API /capture_with_flashlight not available!");
return ESP_ERR_NOT_FOUND;
}
}
esp_err_t handler_capture_save_to_file(httpd_req_t *req)
{
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("handler_capture_save_to_file - Start");
#endif
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("handler_capture_save_to_file - Start");
#endif
if (Camera.getCameraInitSuccessful())
if (Camera.getCameraInitSuccessful())
{
char _query[100];
char _delay[10];
@@ -205,98 +202,102 @@ esp_err_t handler_capture_save_to_file(httpd_req_t *req)
char filename[100];
std::string fn = "/sdcard/";
int quality;
framesize_t res;
bool zoomEnabled;
int zoomMode;
int zoomOffsetX;
int zoomOffsetY;
if (httpd_req_get_url_query_str(req, _query, 100) == ESP_OK)
{
ESP_LOGD(TAG, "Query: %s", _query);
if (httpd_query_key_value(_query, "filename", filename, 100) == ESP_OK)
{
fn.append(filename);
#ifdef DEBUG_DETAIL_ON
ESP_LOGD(TAG, "Filename: %s", fn.c_str());
#endif
#ifdef DEBUG_DETAIL_ON
ESP_LOGD(TAG, "Filename: %s", fn.c_str());
#endif
}
else
{
fn.append("noname.jpg");
}
if (httpd_query_key_value(_query, "delay", _delay, 10) == ESP_OK)
{
#ifdef DEBUG_DETAIL_ON
ESP_LOGD(TAG, "Delay: %s", _delay);
#endif
#ifdef DEBUG_DETAIL_ON
ESP_LOGD(TAG, "Delay: %s", _delay);
#endif
delay = atoi(_delay);
if (delay < 0)
{
delay = 0;
}
}
}
else
{
fn.append("noname.jpg");
}
Camera.GetCameraParameter(req, quality, res, zoomEnabled, zoomMode, zoomOffsetX, zoomOffsetY);
#ifdef DEBUG_DETAIL_ON
ESP_LOGD(TAG, "Size: %d, Quality: %d", res, quality);
#endif
Camera.SetQualitySize(quality, res, zoomEnabled, zoomMode, zoomOffsetX, zoomOffsetY);
// If the camera settings were changed by creating a new reference image, they must be reset
if (CFstatus.changedCameraSettings)
{
Camera.setSensorDatenFromCCstatus(); // CCstatus >>> Kamera
Camera.SetQualityZoomSize(CCstatus.ImageQuality, CCstatus.ImageFrameSize, CCstatus.ImageZoomEnabled, CCstatus.ImageZoomOffsetX, CCstatus.ImageZoomOffsetY, CCstatus.ImageZoomSize, CCstatus.ImageVflip);
CFstatus.changedCameraSettings = false;
}
#ifdef DEBUG_DETAIL_ON
ESP_LOGD(TAG, "Size: %d, Quality: %d", CCstatus.ImageFrameSize, CCstatus.ImageQuality);
#endif
esp_err_t result;
result = Camera.CaptureToFile(fn, delay);
result = Camera.CaptureToFile(fn, delay);
const char* resp_str = (const char*) fn.c_str();
const char *resp_str = (const char *)fn.c_str();
httpd_resp_send(req, resp_str, strlen(resp_str));
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("handler_capture_save_to_file - Done");
#endif
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("handler_capture_save_to_file - Done");
#endif
return result;
}
else
else
{
httpd_resp_send_err(req, HTTPD_403_FORBIDDEN, "Camera not initialized: REST API /save not available!");
return ESP_ERR_NOT_FOUND;
}
}
void register_server_camera_uri(httpd_handle_t server)
{
#ifdef DEBUG_DETAIL_ON
#ifdef DEBUG_DETAIL_ON
ESP_LOGI(TAG, "server_part_camera - Registering URI handlers");
#endif
httpd_uri_t camuri = { };
camuri.method = HTTP_GET;
httpd_uri_t camuri = {};
camuri.method = HTTP_GET;
camuri.uri = "/lighton";
camuri.handler = handler_lightOn;
camuri.user_ctx = (void*) "Light On";
camuri.uri = "/lighton";
camuri.handler = handler_lightOn;
camuri.user_ctx = (void *)"Light On";
httpd_register_uri_handler(server, &camuri);
camuri.uri = "/lightoff";
camuri.handler = handler_lightOff;
camuri.user_ctx = (void*) "Light Off";
httpd_register_uri_handler(server, &camuri);
camuri.uri = "/lightoff";
camuri.handler = handler_lightOff;
camuri.user_ctx = (void *)"Light Off";
httpd_register_uri_handler(server, &camuri);
camuri.uri = "/capture";
camuri.handler = handler_capture;
camuri.user_ctx = NULL;
httpd_register_uri_handler(server, &camuri);
camuri.uri = "/capture";
camuri.handler = handler_capture;
camuri.user_ctx = NULL;
httpd_register_uri_handler(server, &camuri);
camuri.uri = "/capture_with_flashlight";
camuri.handler = handler_capture_with_light;
camuri.user_ctx = NULL;
httpd_register_uri_handler(server, &camuri);
camuri.uri = "/capture_with_flashlight";
camuri.handler = handler_capture_with_light;
camuri.user_ctx = NULL;
httpd_register_uri_handler(server, &camuri);
camuri.uri = "/save";
camuri.handler = handler_capture_save_to_file;
camuri.user_ctx = NULL;
httpd_register_uri_handler(server, &camuri);
camuri.uri = "/save";
camuri.handler = handler_capture_save_to_file;
camuri.user_ctx = NULL;
httpd_register_uri_handler(server, &camuri);
}

View File

@@ -10,7 +10,6 @@
//#include "ClassControllCamera.h"
void register_server_camera_uri(httpd_handle_t server);
void PowerResetCamera();
#endif

View File

@@ -4,5 +4,5 @@ It should be possible to include the repo directly as a submodule, how ever it c
- https://github.com/richgel999/miniz/issues/145
- https://github.com/espressif/esptool/pull/500#issuecomment-574879468
For sumplicity we therefore use the release files as suggested in the readme.
Additionally we added the CMakeLists.txt and this readme.
For simplicity we therefore use the release files as suggested in the readme.
Additionally we added the CMakeLists.txt and this readme.

View File

@@ -2,6 +2,6 @@ FILE(GLOB_RECURSE app_sources ${CMAKE_CURRENT_SOURCE_DIR}/*.*)
idf_component_register(SRCS ${app_sources}
INCLUDE_DIRS "."
REQUIRES esp_timer esp_wifi jomjol_tfliteclass jomjol_helper jomjol_controlcamera jomjol_mqtt jomjol_influxdb jomjol_fileserver_ota jomjol_image_proc jomjol_wlan)
REQUIRES esp_timer esp_wifi jomjol_tfliteclass jomjol_helper jomjol_controlcamera jomjol_mqtt jomjol_influxdb jomjol_webhook jomjol_fileserver_ota jomjol_image_proc jomjol_wlan openmetrics)

View File

@@ -67,11 +67,6 @@ string ClassFlow::getHTMLSingleStep(string host){
return "";
}
string ClassFlow::getReadout()
{
return string();
}
std::string ClassFlow::GetParameterName(std::string _input)
{
string _param;

View File

@@ -46,7 +46,6 @@ public:
virtual bool ReadParameter(FILE* pfile, string &aktparamgraph);
virtual bool doFlow(string time);
virtual string getHTMLSingleStep(string host);
virtual string getReadout();
virtual string name(){return "ClassFlow";};
};

View File

@@ -1,393 +1,374 @@
#include "ClassFlowAlignment.h"
#include "ClassFlowTakeImage.h"
#include "ClassFlow.h"
#include "MainFlowControl.h"
#include "CRotateImage.h"
#include "esp_log.h"
#include "ClassLogFile.h"
#include "psram.h"
#include "../../include/defines.h"
static const char *TAG = "ALIGN";
// #define DEBUG_DETAIL_ON
void ClassFlowAlignment::SetInitialParameter(void)
{
initialrotate = 0;
anz_ref = 0;
initialmirror = false;
use_antialiasing = false;
initialflip = false;
SaveAllFiles = false;
namerawimage = "/sdcard/img_tmp/raw.jpg";
FileStoreRefAlignment = "/sdcard/config/align.txt";
ListFlowControll = NULL;
AlignAndCutImage = NULL;
ImageBasis = NULL;
ImageTMP = NULL;
#ifdef ALGROI_LOAD_FROM_MEM_AS_JPG
AlgROI = (ImageData*)malloc_psram_heap(std::string(TAG) + "->AlgROI", sizeof(ImageData), MALLOC_CAP_8BIT | MALLOC_CAP_SPIRAM);
#endif
previousElement = NULL;
disabled = false;
SAD_criteria = 0.05;
}
ClassFlowAlignment::ClassFlowAlignment(std::vector<ClassFlow*>* lfc)
{
SetInitialParameter();
ListFlowControll = lfc;
for (int i = 0; i < ListFlowControll->size(); ++i)
{
if (((*ListFlowControll)[i])->name().compare("ClassFlowTakeImage") == 0)
{
ImageBasis = ((ClassFlowTakeImage*) (*ListFlowControll)[i])->rawImage;
}
}
if (!ImageBasis) // the function take pictures does not exist --> must be created first ONLY FOR TEST PURPOSES
{
ESP_LOGD(TAG, "CImageBasis had to be created");
ImageBasis = new CImageBasis("ImageBasis", namerawimage);
}
}
bool ClassFlowAlignment::ReadParameter(FILE* pfile, string& aktparamgraph)
{
std::vector<string> splitted;
int suchex = 40;
int suchey = 40;
int alg_algo = 0; //default=0; 1 =HIGHACCURACY; 2= FAST; 3= OFF //add disable aligment algo |01.2023
aktparamgraph = trim(aktparamgraph);
if (aktparamgraph.size() == 0)
if (!this->GetNextParagraph(pfile, aktparamgraph))
return false;
if (aktparamgraph.compare("[Alignment]") != 0) //Paragraph does not fit Alignment
return false;
while (this->getNextLine(pfile, &aktparamgraph) && !this->isNewParagraph(aktparamgraph))
{
splitted = ZerlegeZeile(aktparamgraph);
if ((toUpper(splitted[0]) == "FLIPIMAGESIZE") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
initialflip = true;
}
if ((toUpper(splitted[0]) == "INITIALMIRROR") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
initialmirror = true;
}
if (((toUpper(splitted[0]) == "initialrotate") || (toUpper(splitted[0]) == "INITIALROTATE")) && (splitted.size() > 1))
{
this->initialrotate = std::stod(splitted[1]);
}
if ((toUpper(splitted[0]) == "SEARCHFIELDX") && (splitted.size() > 1))
{
suchex = std::stod(splitted[1]);
}
if ((toUpper(splitted[0]) == "SEARCHFIELDY") && (splitted.size() > 1))
{
suchey = std::stod(splitted[1]);
}
if ((toUpper(splitted[0]) == "ANTIALIASING") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
use_antialiasing = true;
}
if ((splitted.size() == 3) && (anz_ref < 2))
{
References[anz_ref].image_file = FormatFileName("/sdcard" + splitted[0]);
References[anz_ref].target_x = std::stod(splitted[1]);
References[anz_ref].target_y = std::stod(splitted[2]);
anz_ref++;
}
if ((toUpper(splitted[0]) == "SAVEALLFILES") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
SaveAllFiles = true;
}
if ((toUpper(splitted[0]) == "ALIGNMENTALGO") && (splitted.size() > 1))
{
#ifdef DEBUG_DETAIL_ON
std::string zw2 = "Alignment mode selected: " + splitted[1];
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, zw2);
#endif
if (toUpper(splitted[1]) == "HIGHACCURACY")
alg_algo = 1;
if (toUpper(splitted[1]) == "FAST")
alg_algo = 2;
if (toUpper(splitted[1]) == "OFF") //no align algo if set to 3 = off => no draw ref //add disable aligment algo |01.2023
alg_algo = 3;
}
}
for (int i = 0; i < anz_ref; ++i)
{
References[i].search_x = suchex;
References[i].search_y = suchey;
References[i].fastalg_SAD_criteria = SAD_criteria;
References[i].alignment_algo = alg_algo;
#ifdef DEBUG_DETAIL_ON
std::string zw2 = "Alignment mode written: " + std::to_string(alg_algo);
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, zw2);
#endif
}
//no align algo if set to 3 = off => no draw ref //add disable aligment algo |01.2023
if(References[0].alignment_algo != 3){
LoadReferenceAlignmentValues();
}
return true;
}
string ClassFlowAlignment::getHTMLSingleStep(string host)
{
string result;
result = "<p>Rotated Image: </p> <p><img src=\"" + host + "/img_tmp/rot.jpg\"></p>\n";
result = result + "<p>Found Alignment: </p> <p><img src=\"" + host + "/img_tmp/rot_roi.jpg\"></p>\n";
result = result + "<p>Aligned Image: </p> <p><img src=\"" + host + "/img_tmp/alg.jpg\"></p>\n";
return result;
}
bool ClassFlowAlignment::doFlow(string time)
{
#ifdef ALGROI_LOAD_FROM_MEM_AS_JPG
if (!AlgROI) // AlgROI needs to be allocated before ImageTMP to avoid heap fragmentation
{
AlgROI = (ImageData*)heap_caps_realloc(AlgROI, sizeof(ImageData), MALLOC_CAP_8BIT | MALLOC_CAP_SPIRAM);
if (!AlgROI)
{
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "Can't allocate AlgROI");
LogFile.WriteHeapInfo("ClassFlowAlignment-doFlow");
}
}
if (AlgROI)
{
ImageBasis->writeToMemoryAsJPG((ImageData*)AlgROI, 90);
}
#endif
if (!ImageTMP)
{
ImageTMP = new CImageBasis("tmpImage", ImageBasis); // Make sure the name does not get change, it is relevant for the PSRAM allocation!
if (!ImageTMP)
{
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "Can't allocate tmpImage -> Exec this round aborted!");
LogFile.WriteHeapInfo("ClassFlowAlignment-doFlow");
return false;
}
}
delete AlignAndCutImage;
AlignAndCutImage = new CAlignAndCutImage("AlignAndCutImage", ImageBasis, ImageTMP);
if (!AlignAndCutImage)
{
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "Can't allocate AlignAndCutImage -> Exec this round aborted!");
LogFile.WriteHeapInfo("ClassFlowAlignment-doFlow");
return false;
}
CRotateImage rt("rawImage", AlignAndCutImage, ImageTMP, initialflip);
if (initialflip)
{
int _zw = ImageBasis->height;
ImageBasis->height = ImageBasis->width;
ImageBasis->width = _zw;
_zw = ImageTMP->width;
ImageTMP->width = ImageTMP->height;
ImageTMP->height = _zw;
}
if (initialmirror)
{
ESP_LOGD(TAG, "do mirror");
rt.Mirror();
if (SaveAllFiles)
AlignAndCutImage->SaveToFile(FormatFileName("/sdcard/img_tmp/mirror.jpg"));
}
if ((initialrotate != 0) || initialflip)
{
if (use_antialiasing)
rt.RotateAntiAliasing(initialrotate);
else
rt.Rotate(initialrotate);
if (SaveAllFiles)
AlignAndCutImage->SaveToFile(FormatFileName("/sdcard/img_tmp/rot.jpg"));
}
//no align algo if set to 3 = off //add disable aligment algo |01.2023
if(References[0].alignment_algo != 3){
if (!AlignAndCutImage->Align(&References[0], &References[1]))
{
SaveReferenceAlignmentValues();
}
}// no align
#ifdef ALGROI_LOAD_FROM_MEM_AS_JPG
if (AlgROI) {
//no align algo if set to 3 = off => no draw ref //add disable aligment algo |01.2023
if(References[0].alignment_algo != 3){
DrawRef(ImageTMP);
}
flowctrl.DigitalDrawROI(ImageTMP);
flowctrl.AnalogDrawROI(ImageTMP);
ImageTMP->writeToMemoryAsJPG((ImageData*)AlgROI, 90);
}
#endif
if (SaveAllFiles)
{
AlignAndCutImage->SaveToFile(FormatFileName("/sdcard/img_tmp/alg.jpg"));
ImageTMP->SaveToFile(FormatFileName("/sdcard/img_tmp/alg_roi.jpg"));
}
// must be deleted to have memory space for loading tflite
delete ImageTMP;
ImageTMP = NULL;
//no align algo if set to 3 = off => no draw ref //add disable aligment algo |01.2023
if(References[0].alignment_algo != 3){
LoadReferenceAlignmentValues();
}
return true;
}
void ClassFlowAlignment::SaveReferenceAlignmentValues()
{
FILE* pFile;
std::string zwtime, zwvalue;
pFile = fopen(FileStoreRefAlignment.c_str(), "w");
if (strlen(zwtime.c_str()) == 0)
{
time_t rawtime;
struct tm* timeinfo;
char buffer[80];
time(&rawtime);
timeinfo = localtime(&rawtime);
strftime(buffer, 80, "%Y-%m-%dT%H:%M:%S", timeinfo);
zwtime = std::string(buffer);
}
fputs(zwtime.c_str(), pFile);
fputs("\n", pFile);
zwvalue = std::to_string(References[0].fastalg_x) + "\t" + std::to_string(References[0].fastalg_y);
zwvalue = zwvalue + "\t" +std::to_string(References[0].fastalg_SAD)+ "\t" +std::to_string(References[0].fastalg_min);
zwvalue = zwvalue + "\t" +std::to_string(References[0].fastalg_max)+ "\t" +std::to_string(References[0].fastalg_avg);
fputs(zwvalue.c_str(), pFile);
fputs("\n", pFile);
zwvalue = std::to_string(References[1].fastalg_x) + "\t" + std::to_string(References[1].fastalg_y);
zwvalue = zwvalue + "\t" +std::to_string(References[1].fastalg_SAD)+ "\t" +std::to_string(References[1].fastalg_min);
zwvalue = zwvalue + "\t" +std::to_string(References[1].fastalg_max)+ "\t" +std::to_string(References[1].fastalg_avg);
fputs(zwvalue.c_str(), pFile);
fputs("\n", pFile);
fclose(pFile);
}
bool ClassFlowAlignment::LoadReferenceAlignmentValues(void)
{
FILE* pFile;
char zw[1024];
string zwvalue;
std::vector<string> splitted;
pFile = fopen(FileStoreRefAlignment.c_str(), "r");
if (pFile == NULL)
return false;
fgets(zw, 1024, pFile);
ESP_LOGD(TAG, "%s", zw);
fgets(zw, 1024, pFile);
splitted = ZerlegeZeile(std::string(zw), " \t");
if (splitted.size() < 6)
{
fclose(pFile);
return false;
}
References[0].fastalg_x = stoi(splitted[0]);
References[0].fastalg_y = stoi(splitted[1]);
References[0].fastalg_SAD = stof(splitted[2]);
References[0].fastalg_min = stoi(splitted[3]);
References[0].fastalg_max = stoi(splitted[4]);
References[0].fastalg_avg = stof(splitted[5]);
fgets(zw, 1024, pFile);
splitted = ZerlegeZeile(std::string(zw));
if (splitted.size() < 6)
{
fclose(pFile);
return false;
}
References[1].fastalg_x = stoi(splitted[0]);
References[1].fastalg_y = stoi(splitted[1]);
References[1].fastalg_SAD = stof(splitted[2]);
References[1].fastalg_min = stoi(splitted[3]);
References[1].fastalg_max = stoi(splitted[4]);
References[1].fastalg_avg = stof(splitted[5]);
fclose(pFile);
/*#ifdef DEBUG_DETAIL_ON
std::string _zw = "\tLoadReferences[0]\tx,y:\t" + std::to_string(References[0].fastalg_x) + "\t" + std::to_string(References[0].fastalg_x);
_zw = _zw + "\tSAD, min, max, avg:\t" + std::to_string(References[0].fastalg_SAD) + "\t" + std::to_string(References[0].fastalg_min);
_zw = _zw + "\t" + std::to_string(References[0].fastalg_max) + "\t" + std::to_string(References[0].fastalg_avg);
LogFile.WriteToDedicatedFile("/sdcard/alignment.txt", _zw);
_zw = "\tLoadReferences[1]\tx,y:\t" + std::to_string(References[1].fastalg_x) + "\t" + std::to_string(References[1].fastalg_x);
_zw = _zw + "\tSAD, min, max, avg:\t" + std::to_string(References[1].fastalg_SAD) + "\t" + std::to_string(References[1].fastalg_min);
_zw = _zw + "\t" + std::to_string(References[1].fastalg_max) + "\t" + std::to_string(References[1].fastalg_avg);
LogFile.WriteToDedicatedFile("/sdcard/alignment.txt", _zw);
#endif*/
return true;
}
void ClassFlowAlignment::DrawRef(CImageBasis *_zw)
{
if (_zw->ImageOkay())
{
_zw->drawRect(References[0].target_x, References[0].target_y, References[0].width, References[0].height, 255, 0, 0, 2);
_zw->drawRect(References[1].target_x, References[1].target_y, References[1].width, References[1].height, 255, 0, 0, 2);
}
}
#include "ClassFlowAlignment.h"
#include "ClassFlowTakeImage.h"
#include "ClassFlow.h"
#include "MainFlowControl.h"
#include "CRotateImage.h"
#include "esp_log.h"
#include "ClassLogFile.h"
#include "psram.h"
#include "../../include/defines.h"
static const char *TAG = "ALIGN";
// #define DEBUG_DETAIL_ON
void ClassFlowAlignment::SetInitialParameter(void)
{
initialrotate = 0;
anz_ref = 0;
use_antialiasing = false;
initialflip = false;
SaveAllFiles = false;
namerawimage = "/sdcard/img_tmp/raw.jpg";
FileStoreRefAlignment = "/sdcard/config/align.txt";
ListFlowControll = NULL;
AlignAndCutImage = NULL;
ImageBasis = NULL;
ImageTMP = NULL;
#ifdef ALGROI_LOAD_FROM_MEM_AS_JPG
AlgROI = (ImageData *)malloc_psram_heap(std::string(TAG) + "->AlgROI", sizeof(ImageData), MALLOC_CAP_8BIT | MALLOC_CAP_SPIRAM);
#endif
previousElement = NULL;
disabled = false;
SAD_criteria = 0.05;
}
ClassFlowAlignment::ClassFlowAlignment(std::vector<ClassFlow *> *lfc)
{
SetInitialParameter();
ListFlowControll = lfc;
for (int i = 0; i < ListFlowControll->size(); ++i) {
if (((*ListFlowControll)[i])->name().compare("ClassFlowTakeImage") == 0) {
ImageBasis = ((ClassFlowTakeImage *)(*ListFlowControll)[i])->rawImage;
}
}
// the function take pictures does not exist --> must be created first ONLY FOR TEST PURPOSES
if (!ImageBasis) {
ESP_LOGD(TAG, "CImageBasis had to be created");
ImageBasis = new CImageBasis("ImageBasis", namerawimage);
}
}
bool ClassFlowAlignment::ReadParameter(FILE *pfile, string &aktparamgraph)
{
std::vector<string> splitted;
int suchex = 40;
int suchey = 40;
int alg_algo = 0; // default=0; 1 =HIGHACCURACY; 2= FAST; 3= OFF //add disable aligment algo |01.2023
aktparamgraph = trim(aktparamgraph);
if (aktparamgraph.size() == 0)
{
if (!this->GetNextParagraph(pfile, aktparamgraph)) {
return false;
}
}
if (aktparamgraph.compare("[Alignment]") != 0)
{
// Paragraph does not fit Alignment
return false;
}
while (this->getNextLine(pfile, &aktparamgraph) && !this->isNewParagraph(aktparamgraph))
{
splitted = ZerlegeZeile(aktparamgraph);
if ((toUpper(splitted[0]) == "FLIPIMAGESIZE") && (splitted.size() > 1)) {
initialflip = alphanumericToBoolean(splitted[1]);
}
else if (((toUpper(splitted[0]) == "initialrotate") || (toUpper(splitted[0]) == "INITIALROTATE")) && (splitted.size() > 1)) {
if (isStringNumeric(splitted[1])) {
this->initialrotate = std::stod(splitted[1]);
}
}
else if ((toUpper(splitted[0]) == "SEARCHFIELDX") && (splitted.size() > 1)) {
if (isStringNumeric(splitted[1])) {
suchex = std::stod(splitted[1]);
}
}
else if ((toUpper(splitted[0]) == "SEARCHFIELDY") && (splitted.size() > 1)) {
if (isStringNumeric(splitted[1])) {
suchey = std::stod(splitted[1]);
}
}
else if ((toUpper(splitted[0]) == "ANTIALIASING") && (splitted.size() > 1)) {
use_antialiasing = alphanumericToBoolean(splitted[1]);
}
else if ((splitted.size() == 3) && (anz_ref < 2)) {
if ((isStringNumeric(splitted[1])) && (isStringNumeric(splitted[2])))
{
References[anz_ref].image_file = FormatFileName("/sdcard" + splitted[0]);
References[anz_ref].target_x = std::stod(splitted[1]);
References[anz_ref].target_y = std::stod(splitted[2]);
anz_ref++;
}
else
{
References[anz_ref].image_file = FormatFileName("/sdcard" + splitted[0]);
References[anz_ref].target_x = 10;
References[anz_ref].target_y = 10;
anz_ref++;
}
}
else if ((toUpper(splitted[0]) == "SAVEALLFILES") && (splitted.size() > 1)) {
SaveAllFiles = alphanumericToBoolean(splitted[1]);
}
else if ((toUpper(splitted[0]) == "ALIGNMENTALGO") && (splitted.size() > 1)) {
#ifdef DEBUG_DETAIL_ON
std::string zw2 = "Alignment mode selected: " + splitted[1];
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, zw2);
#endif
if (toUpper(splitted[1]) == "HIGHACCURACY") {
alg_algo = 1;
}
if (toUpper(splitted[1]) == "FAST") {
alg_algo = 2;
}
if (toUpper(splitted[1]) == "OFF") {
// no align algo if set to 3 = off => no draw ref //add disable aligment algo |01.2023
alg_algo = 3;
}
}
}
for (int i = 0; i < anz_ref; ++i) {
References[i].search_x = suchex;
References[i].search_y = suchey;
References[i].fastalg_SAD_criteria = SAD_criteria;
References[i].alignment_algo = alg_algo;
#ifdef DEBUG_DETAIL_ON
std::string zw2 = "Alignment mode written: " + std::to_string(alg_algo);
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, zw2);
#endif
}
// no align algo if set to 3 = off => no draw ref //add disable aligment algo |01.2023
if (References[0].alignment_algo != 3) {
return LoadReferenceAlignmentValues();
}
return true;
}
string ClassFlowAlignment::getHTMLSingleStep(string host)
{
string result;
result = "<p>Rotated Image: </p> <p><img src=\"" + host + "/img_tmp/rot.jpg\"></p>\n";
result = result + "<p>Found Alignment: </p> <p><img src=\"" + host + "/img_tmp/rot_roi.jpg\"></p>\n";
result = result + "<p>Aligned Image: </p> <p><img src=\"" + host + "/img_tmp/alg.jpg\"></p>\n";
return result;
}
bool ClassFlowAlignment::doFlow(string time)
{
#ifdef ALGROI_LOAD_FROM_MEM_AS_JPG
// AlgROI needs to be allocated before ImageTMP to avoid heap fragmentation
if (!AlgROI) {
AlgROI = (ImageData *)heap_caps_realloc(AlgROI, sizeof(ImageData), MALLOC_CAP_8BIT | MALLOC_CAP_SPIRAM);
if (!AlgROI) {
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "Can't allocate AlgROI");
LogFile.WriteHeapInfo("ClassFlowAlignment-doFlow");
}
}
if (AlgROI) {
ImageBasis->writeToMemoryAsJPG((ImageData *)AlgROI, 90);
}
#endif
if (!ImageTMP) {
ImageTMP = new CImageBasis("tmpImage", ImageBasis); // Make sure the name does not get change, it is relevant for the PSRAM allocation!
if (!ImageTMP) {
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "Can't allocate tmpImage -> Exec this round aborted!");
LogFile.WriteHeapInfo("ClassFlowAlignment-doFlow");
return false;
}
}
delete AlignAndCutImage;
AlignAndCutImage = new CAlignAndCutImage("AlignAndCutImage", ImageBasis, ImageTMP);
if (!AlignAndCutImage) {
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "Can't allocate AlignAndCutImage -> Exec this round aborted!");
LogFile.WriteHeapInfo("ClassFlowAlignment-doFlow");
return false;
}
CRotateImage rt("rawImage", AlignAndCutImage, ImageTMP, initialflip);
if (initialflip) {
int _zw = ImageBasis->height;
ImageBasis->height = ImageBasis->width;
ImageBasis->width = _zw;
_zw = ImageTMP->width;
ImageTMP->width = ImageTMP->height;
ImageTMP->height = _zw;
}
if ((initialrotate != 0) || initialflip) {
if (use_antialiasing) {
rt.RotateAntiAliasing(initialrotate);
}
else {
rt.Rotate(initialrotate);
}
if (SaveAllFiles) {
AlignAndCutImage->SaveToFile(FormatFileName("/sdcard/img_tmp/rot.jpg"));
}
}
// no align algo if set to 3 = off //add disable aligment algo |01.2023
if (References[0].alignment_algo != 3) {
if (!AlignAndCutImage->Align(&References[0], &References[1])) {
SaveReferenceAlignmentValues();
}
} // no align
#ifdef ALGROI_LOAD_FROM_MEM_AS_JPG
if (AlgROI) {
// no align algo if set to 3 = off => no draw ref //add disable aligment algo |01.2023
if (References[0].alignment_algo != 3) {
DrawRef(ImageTMP);
}
flowctrl.DigitDrawROI(ImageTMP);
flowctrl.AnalogDrawROI(ImageTMP);
ImageTMP->writeToMemoryAsJPG((ImageData *)AlgROI, 90);
}
#endif
if (SaveAllFiles) {
AlignAndCutImage->SaveToFile(FormatFileName("/sdcard/img_tmp/alg.jpg"));
ImageTMP->SaveToFile(FormatFileName("/sdcard/img_tmp/alg_roi.jpg"));
}
// must be deleted to have memory space for loading tflite
delete ImageTMP;
ImageTMP = NULL;
// no align algo if set to 3 = off => no draw ref //add disable aligment algo |01.2023
if (References[0].alignment_algo != 3) {
return LoadReferenceAlignmentValues();
}
return true;
}
void ClassFlowAlignment::SaveReferenceAlignmentValues()
{
FILE *pFile;
std::string zwtime, zwvalue;
pFile = fopen(FileStoreRefAlignment.c_str(), "w");
if (strlen(zwtime.c_str()) == 0) {
time_t rawtime;
struct tm *timeinfo;
char buffer[80];
time(&rawtime);
timeinfo = localtime(&rawtime);
strftime(buffer, 80, "%Y-%m-%dT%H:%M:%S", timeinfo);
zwtime = std::string(buffer);
}
fputs(zwtime.c_str(), pFile);
fputs("\n", pFile);
zwvalue = std::to_string(References[0].fastalg_x) + "\t" + std::to_string(References[0].fastalg_y);
zwvalue = zwvalue + "\t" + std::to_string(References[0].fastalg_SAD) + "\t" + std::to_string(References[0].fastalg_min);
zwvalue = zwvalue + "\t" + std::to_string(References[0].fastalg_max) + "\t" + std::to_string(References[0].fastalg_avg);
fputs(zwvalue.c_str(), pFile);
fputs("\n", pFile);
zwvalue = std::to_string(References[1].fastalg_x) + "\t" + std::to_string(References[1].fastalg_y);
zwvalue = zwvalue + "\t" + std::to_string(References[1].fastalg_SAD) + "\t" + std::to_string(References[1].fastalg_min);
zwvalue = zwvalue + "\t" + std::to_string(References[1].fastalg_max) + "\t" + std::to_string(References[1].fastalg_avg);
fputs(zwvalue.c_str(), pFile);
fputs("\n", pFile);
fclose(pFile);
}
bool ClassFlowAlignment::LoadReferenceAlignmentValues(void)
{
FILE *pFile;
char zw[1024];
string zwvalue;
std::vector<string> splitted;
pFile = fopen(FileStoreRefAlignment.c_str(), "r");
if (pFile == NULL) {
return false;
}
fgets(zw, 1024, pFile);
ESP_LOGD(TAG, "%s", zw);
fgets(zw, 1024, pFile);
splitted = ZerlegeZeile(std::string(zw), " \t");
if (splitted.size() < 6) {
fclose(pFile);
return false;
}
References[0].fastalg_x = stoi(splitted[0]);
References[0].fastalg_y = stoi(splitted[1]);
References[0].fastalg_SAD = stof(splitted[2]);
References[0].fastalg_min = stoi(splitted[3]);
References[0].fastalg_max = stoi(splitted[4]);
References[0].fastalg_avg = stof(splitted[5]);
fgets(zw, 1024, pFile);
splitted = ZerlegeZeile(std::string(zw));
if (splitted.size() < 6) {
fclose(pFile);
return false;
}
References[1].fastalg_x = stoi(splitted[0]);
References[1].fastalg_y = stoi(splitted[1]);
References[1].fastalg_SAD = stof(splitted[2]);
References[1].fastalg_min = stoi(splitted[3]);
References[1].fastalg_max = stoi(splitted[4]);
References[1].fastalg_avg = stof(splitted[5]);
fclose(pFile);
/*#ifdef DEBUG_DETAIL_ON
std::string _zw = "\tLoadReferences[0]\tx,y:\t" + std::to_string(References[0].fastalg_x) + "\t" + std::to_string(References[0].fastalg_x);
_zw = _zw + "\tSAD, min, max, avg:\t" + std::to_string(References[0].fastalg_SAD) + "\t" + std::to_string(References[0].fastalg_min);
_zw = _zw + "\t" + std::to_string(References[0].fastalg_max) + "\t" + std::to_string(References[0].fastalg_avg);
LogFile.WriteToDedicatedFile("/sdcard/alignment.txt", _zw);
_zw = "\tLoadReferences[1]\tx,y:\t" + std::to_string(References[1].fastalg_x) + "\t" + std::to_string(References[1].fastalg_x);
_zw = _zw + "\tSAD, min, max, avg:\t" + std::to_string(References[1].fastalg_SAD) + "\t" + std::to_string(References[1].fastalg_min);
_zw = _zw + "\t" + std::to_string(References[1].fastalg_max) + "\t" + std::to_string(References[1].fastalg_avg);
LogFile.WriteToDedicatedFile("/sdcard/alignment.txt", _zw);
#endif*/
return true;
}
void ClassFlowAlignment::DrawRef(CImageBasis *_zw)
{
if (_zw->ImageOkay()) {
_zw->drawRect(References[0].target_x, References[0].target_y, References[0].width, References[0].height, 255, 0, 0, 2);
_zw->drawRect(References[1].target_x, References[1].target_y, References[1].width, References[1].height, 255, 0, 0, 2);
}
}

View File

@@ -1,54 +1,51 @@
#pragma once
#ifndef CLASSFLOWALIGNMENT_H
#define CLASSFLOWALIGNMENT_H
#include "ClassFlow.h"
#include "Helper.h"
#include "CAlignAndCutImage.h"
#include "CFindTemplate.h"
#include <string>
using namespace std;
class ClassFlowAlignment :
public ClassFlow
{
protected:
float initialrotate;
bool initialmirror;
bool initialflip;
bool use_antialiasing;
RefInfo References[2];
int anz_ref;
string namerawimage;
bool SaveAllFiles;
CAlignAndCutImage *AlignAndCutImage;
std::string FileStoreRefAlignment;
float SAD_criteria;
void SetInitialParameter(void);
bool LoadReferenceAlignmentValues(void);
void SaveReferenceAlignmentValues();
public:
CImageBasis *ImageBasis, *ImageTMP;
#ifdef ALGROI_LOAD_FROM_MEM_AS_JPG
ImageData *AlgROI;
#endif
ClassFlowAlignment(std::vector<ClassFlow*>* lfc);
CAlignAndCutImage* GetAlignAndCutImage(){return AlignAndCutImage;};
void DrawRef(CImageBasis *_zw);
bool ReadParameter(FILE* pfile, string& aktparamgraph);
bool doFlow(string time);
string getHTMLSingleStep(string host);
string name(){return "ClassFlowAlignment";};
};
#endif //CLASSFLOWALIGNMENT_H
#pragma once
#ifndef CLASSFLOWALIGNMENT_H
#define CLASSFLOWALIGNMENT_H
#include "ClassFlow.h"
#include "Helper.h"
#include "CAlignAndCutImage.h"
#include "CFindTemplate.h"
#include <string>
using namespace std;
class ClassFlowAlignment : public ClassFlow
{
protected:
float initialrotate;
bool initialflip;
bool use_antialiasing;
RefInfo References[2];
int anz_ref;
string namerawimage;
bool SaveAllFiles;
CAlignAndCutImage *AlignAndCutImage;
std::string FileStoreRefAlignment;
float SAD_criteria;
void SetInitialParameter(void);
bool LoadReferenceAlignmentValues(void);
void SaveReferenceAlignmentValues();
public:
CImageBasis *ImageBasis, *ImageTMP;
#ifdef ALGROI_LOAD_FROM_MEM_AS_JPG
ImageData *AlgROI;
#endif
ClassFlowAlignment(std::vector<ClassFlow *> *lfc);
CAlignAndCutImage *GetAlignAndCutImage() { return AlignAndCutImage; };
void DrawRef(CImageBasis *_zw);
bool ReadParameter(FILE *pfile, string &aktparamgraph);
bool doFlow(string time);
string getHTMLSingleStep(string host);
string name() { return "ClassFlowAlignment"; };
};
#endif // CLASSFLOWALIGNMENT_H

View File

@@ -19,7 +19,6 @@ static const char* TAG = "CNN";
static heap_trace_record_t trace_record[NUM_RECORDS]; // This buffer must be in internal RAM
#endif
ClassFlowCNNGeneral::ClassFlowCNNGeneral(ClassFlowAlignment *_flowalign, t_CNNType _cnntype) : ClassFlowImage(NULL, TAG) {
string cnnmodelfile = "";
modelxsize = 1;
@@ -36,8 +35,7 @@ ClassFlowCNNGeneral::ClassFlowCNNGeneral(ClassFlowAlignment *_flowalign, t_CNNTy
imagesRetention = 5;
}
string ClassFlowCNNGeneral::getReadout(int _analog = 0, bool _extendedResolution, int prev, float _before_narrow_Analog, float analogDigitalTransitionStart) {
string ClassFlowCNNGeneral::getReadout(int _analog = 0, bool _extendedResolution, int prev, float _before_narrow_Analog, float AnalogToDigitTransitionStart) {
string result = "";
if (GENERAL[_analog]->ROI.size() == 0) {
@@ -65,7 +63,7 @@ string ClassFlowCNNGeneral::getReadout(int _analog = 0, bool _extendedResolution
return result;
}
if (CNNType == Digital) {
if (CNNType == Digit) {
for (int i = 0; i < GENERAL[_analog]->ROI.size(); ++i) {
if (GENERAL[_analog]->ROI[i]->result_klasse >= 10) {
result = result + "N";
@@ -77,7 +75,7 @@ string ClassFlowCNNGeneral::getReadout(int _analog = 0, bool _extendedResolution
return result;
}
if ((CNNType == DoubleHyprid10) || (CNNType == Digital100)) {
if ((CNNType == DoubleHyprid10) || (CNNType == Digit100)) {
float number = GENERAL[_analog]->ROI[GENERAL[_analog]->ROI.size() - 1]->result_float;
// NaN?
if (number >= 0) {
@@ -92,7 +90,7 @@ string ClassFlowCNNGeneral::getReadout(int _analog = 0, bool _extendedResolution
}
else {
if (_before_narrow_Analog >= 0) {
prev = PointerEvalHybridNew(GENERAL[_analog]->ROI[GENERAL[_analog]->ROI.size() - 1]->result_float, _before_narrow_Analog, prev, true, analogDigitalTransitionStart);
prev = PointerEvalHybridNew(GENERAL[_analog]->ROI[GENERAL[_analog]->ROI.size() - 1]->result_float, _before_narrow_Analog, prev, true, AnalogToDigitTransitionStart);
}
else {
prev = PointerEvalHybridNew(GENERAL[_analog]->ROI[GENERAL[_analog]->ROI.size() - 1]->result_float, prev, prev);
@@ -103,7 +101,7 @@ string ClassFlowCNNGeneral::getReadout(int _analog = 0, bool _extendedResolution
}
else {
result = "N";
if (_extendedResolution && (CNNType != Digital)) {
if (_extendedResolution && (CNNType != Digit)) {
result = "NN";
}
}
@@ -137,13 +135,13 @@ string ClassFlowCNNGeneral::getReadout(int _analog = 0, bool _extendedResolution
* 0.1 => 0 (eval_predecessors)
* The 0 makes a 9.9 to 0 (eval_predecessors)
* The 0 makes a 9.8 to 0
* @param Analog_Predecessors false/true if the last ROI is an analog or digital ROI (default=false)
* @param Analog_Predecessors false/true if the last ROI is an analog or digit ROI (default=false)
* runs in special handling because analog is much less precise
* @param digitalAnalogTransitionStart start of the transitionlogic begins on number_of_predecessor (default=9.2)
* @param digitAnalogTransitionStart start of the transitionlogic begins on number_of_predecessor (default=9.2)
*
* @return int the determined number of the current ROI
*/
int ClassFlowCNNGeneral::PointerEvalHybridNew(float number, float number_of_predecessors, int eval_predecessors, bool Analog_Predecessors, float digitalAnalogTransitionStart) {
int ClassFlowCNNGeneral::PointerEvalHybridNew(float number, float number_of_predecessors, int eval_predecessors, bool Analog_Predecessors, float digitAnalogTransitionStart) {
int result;
int result_after_decimal_point = ((int) floor(number * 10)) % 10;
int result_before_decimal_point = ((int) floor(number) + 10) % 10;
@@ -155,21 +153,21 @@ int ClassFlowCNNGeneral::PointerEvalHybridNew(float number, float number_of_pred
result = (int) ((int) trunc(round((number+10 % 10)*100)) ) / 100;
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "PointerEvalHybridNew - No predecessor - Result = " + std::to_string(result) +
" number: " + std::to_string(number) + " number_of_predecessors = " + std::to_string(number_of_predecessors)+ " eval_predecessors = " + std::to_string(eval_predecessors) + " Digital_Uncertainty = " + std::to_string(Digital_Uncertainty));
" number: " + std::to_string(number) + " number_of_predecessors = " + std::to_string(number_of_predecessors)+ " eval_predecessors = " + std::to_string(eval_predecessors) + " Digit_Uncertainty = " + std::to_string(Digit_Uncertainty));
return result;
}
if (Analog_Predecessors) {
result = PointerEvalAnalogToDigitNew(number, number_of_predecessors, eval_predecessors, digitalAnalogTransitionStart);
result = PointerEvalAnalogToDigitNew(number, number_of_predecessors, eval_predecessors, digitAnalogTransitionStart);
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "PointerEvalHybridNew - Analog predecessor, evaluation over PointerEvalAnalogNew = " + std::to_string(result) +
" number: " + std::to_string(number) + " number_of_predecessors = " + std::to_string(number_of_predecessors)+ " eval_predecessors = " + std::to_string(eval_predecessors) + " Digital_Uncertainty = " + std::to_string(Digital_Uncertainty));
" number: " + std::to_string(number) + " number_of_predecessors = " + std::to_string(number_of_predecessors)+ " eval_predecessors = " + std::to_string(eval_predecessors) + " Digit_Uncertainty = " + std::to_string(Digit_Uncertainty));
return result;
}
if ((number_of_predecessors >= Digital_Transition_Area_Predecessor ) && (number_of_predecessors <= (10.0 - Digital_Transition_Area_Predecessor))) {
// no digit change, because predecessor is far enough away (0+/-DigitalTransitionRangePredecessor) --> number is rounded
if ((number_of_predecessors >= Digit_Transition_Area_Predecessor ) && (number_of_predecessors <= (10.0 - Digit_Transition_Area_Predecessor))) {
// no digit change, because predecessor is far enough away (0+/-DigitTransitionRangePredecessor) --> number is rounded
// Band around the digit --> Round off, as digit reaches inaccuracy in the frame
if ((result_after_decimal_point <= DigitalBand) || (result_after_decimal_point >= (10-DigitalBand))) {
if ((result_after_decimal_point <= DigitBand) || (result_after_decimal_point >= (10-DigitBand))) {
result = ((int) round(number) + 10) % 10;
}
else {
@@ -177,7 +175,7 @@ int ClassFlowCNNGeneral::PointerEvalHybridNew(float number, float number_of_pred
}
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "PointerEvalHybridNew - NO analogue predecessor, no change of digits, as pre-decimal point far enough away = " + std::to_string(result) +
" number: " + std::to_string(number) + " number_of_predecessors = " + std::to_string(number_of_predecessors)+ " eval_predecessors = " + std::to_string(eval_predecessors) + " Digital_Uncertainty = " + std::to_string(Digital_Uncertainty));
" number: " + std::to_string(number) + " number_of_predecessors = " + std::to_string(number_of_predecessors)+ " eval_predecessors = " + std::to_string(eval_predecessors) + " Digit_Uncertainty = " + std::to_string(Digit_Uncertainty));
return result;
}
@@ -194,17 +192,16 @@ int ClassFlowCNNGeneral::PointerEvalHybridNew(float number, float number_of_pred
result = result_before_decimal_point % 10;
}
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "PointerEvalHybridNew - NO analogue predecessor, zero crossing has taken placen = " + std::to_string(result) +
" number: " + std::to_string(number) + " number_of_predecessors = " + std::to_string(number_of_predecessors)+ " eval_predecessors = " + std::to_string(eval_predecessors) + " Digital_Uncertainty = " + std::to_string(Digital_Uncertainty));
" number: " + std::to_string(number) + " number_of_predecessors = " + std::to_string(number_of_predecessors)+ " eval_predecessors = " + std::to_string(eval_predecessors) + " Digit_Uncertainty = " + std::to_string(Digit_Uncertainty));
return result;
}
// remains only >= 9.x --> no zero crossing yet --> 2.8 --> 2,
// and from 9.7(DigitalTransitionRangeLead) 3.1 --> 2
// and from 9.7(DigitTransitionRangeLead) 3.1 --> 2
// everything >=x.4 can be considered as current number in transition. With 9.x predecessor the current
// number can still be x.6 - x.7.
// Preceding (else - branch) does not already happen from 9.
if (Digital_Transition_Area_Forward>=number_of_predecessors || result_after_decimal_point >= 4) {
if (Digit_Transition_Area_Forward>=number_of_predecessors || result_after_decimal_point >= 4) {
// The current digit, like the previous digit, does not yet have a zero crossing.
result = result_before_decimal_point % 10;
}
@@ -215,40 +212,39 @@ int ClassFlowCNNGeneral::PointerEvalHybridNew(float number, float number_of_pred
}
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "PointerEvalHybridNew - O analogue predecessor, >= 9.5 --> no zero crossing yet = " + std::to_string(result) +
" number: " + std::to_string(number) + " number_of_predecessors = " + std::to_string(number_of_predecessors)+ " eval_predecessors = " + std::to_string(eval_predecessors) + " Digital_Uncertainty = " + std::to_string(Digital_Uncertainty) + " result_after_decimal_point = " + std::to_string(result_after_decimal_point));
" number: " + std::to_string(number) + " number_of_predecessors = " + std::to_string(number_of_predecessors)+ " eval_predecessors = " + std::to_string(eval_predecessors) + " Digit_Uncertainty = " + std::to_string(Digit_Uncertainty) + " result_after_decimal_point = " + std::to_string(result_after_decimal_point));
return result;
}
int ClassFlowCNNGeneral::PointerEvalAnalogToDigitNew(float number, float numeral_preceder, int eval_predecessors, float analogDigitalTransitionStart) {
int ClassFlowCNNGeneral::PointerEvalAnalogToDigitNew(float number, float numeral_preceder, int eval_predecessors, float AnalogToDigitTransitionStart) {
int result;
int result_after_decimal_point = ((int) floor(number * 10)) % 10;
int result_before_decimal_point = ((int) floor(number) + 10) % 10;
bool roundedUp = false;
// Within the digital inequalities
if ((result_after_decimal_point >= (10-Digital_Uncertainty * 10)) // Band around the digit --> Round off, as digit reaches inaccuracy in the frame
// Within the digit inequalities
if ((result_after_decimal_point >= (10-Digit_Uncertainty * 10)) // Band around the digit --> Round off, as digit reaches inaccuracy in the frame
|| (eval_predecessors <= 4 && result_after_decimal_point>=6)) { // or digit runs after (analogue =0..4, digit >=6)
result = (int) (round(number) + 10) % 10;
roundedUp = true;
// before/ after decimal point, because we adjust the number based on the uncertainty.
result_after_decimal_point = ((int) floor(result * 10)) % 10;
result_before_decimal_point = ((int) floor(result) + 10) % 10;
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "PointerEvalAnalogToDigitNew - Digital Uncertainty - Result = " + std::to_string(result) +
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "PointerEvalAnalogToDigitNew - Digit Uncertainty - Result = " + std::to_string(result) +
" number: " + std::to_string(number) + " numeral_preceder: " + std::to_string(numeral_preceder) +
" erg before comma: " + std::to_string(result_before_decimal_point) +
" erg after comma: " + std::to_string(result_after_decimal_point));
}
else {
result = (int) ((int) trunc(number) + 10) % 10;
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "PointerEvalAnalogToDigitNew - NO digital Uncertainty - Result = " + std::to_string(result) +
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "PointerEvalAnalogToDigitNew - NO digit Uncertainty - Result = " + std::to_string(result) +
" number: " + std::to_string(number) + " numeral_preceder = " + std::to_string(numeral_preceder));
}
// No zero crossing has taken place.
// Only eval_predecessors used because numeral_preceder could be wrong here.
// numeral_preceder<=0.1 & eval_predecessors=9 corresponds to analogue was reset because of previous analogue that are not yet at 0.
if ((eval_predecessors>=6 && (numeral_preceder>analogDigitalTransitionStart || numeral_preceder<=0.2) && roundedUp)) {
if ((eval_predecessors>=6 && (numeral_preceder>AnalogToDigitTransitionStart || numeral_preceder<=0.2) && roundedUp)) {
result = ((result_before_decimal_point+10) - 1) % 10;
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "PointerEvalAnalogToDigitNew - Nulldurchgang noch nicht stattgefunden = " + std::to_string(result) +
" number: " + std::to_string(number) +
@@ -259,7 +255,6 @@ int ClassFlowCNNGeneral::PointerEvalAnalogToDigitNew(float number, float numeral
return result;
}
int ClassFlowCNNGeneral::PointerEvalAnalogNew(float number, int numeral_preceder) {
float number_min, number_max;
int result;
@@ -296,7 +291,6 @@ int ClassFlowCNNGeneral::PointerEvalAnalogNew(float number, int numeral_preceder
return result;
}
bool ClassFlowCNNGeneral::ReadParameter(FILE* pfile, string& aktparamgraph) {
std::vector<string> splitted;
@@ -322,7 +316,6 @@ bool ClassFlowCNNGeneral::ReadParameter(FILE* pfile, string& aktparamgraph) {
return true;
}
while (this->getNextLine(pfile, &aktparamgraph) && !this->isNewParagraph(aktparamgraph)) {
splitted = ZerlegeZeile(aktparamgraph);
if ((toUpper(splitted[0]) == "ROIIMAGESLOCATION") && (splitted.size() > 1)) {
@@ -336,7 +329,9 @@ bool ClassFlowCNNGeneral::ReadParameter(FILE* pfile, string& aktparamgraph) {
}
if ((toUpper(splitted[0]) == "ROIIMAGESRETENTION") && (splitted.size() > 1)) {
this->imagesRetention = std::stoi(splitted[1]);
if (isStringNumeric(splitted[1])) {
this->imagesRetention = std::stoi(splitted[1]);
}
}
if ((toUpper(splitted[0]) == "MODEL") && (splitted.size() > 1)) {
@@ -344,7 +339,9 @@ bool ClassFlowCNNGeneral::ReadParameter(FILE* pfile, string& aktparamgraph) {
}
if ((toUpper(splitted[0]) == "CNNGOODTHRESHOLD") && (splitted.size() > 1)) {
CNNGoodThreshold = std::stof(splitted[1]);
if (isStringNumeric(splitted[1])) {
CNNGoodThreshold = std::stof(splitted[1]);
}
}
if (splitted.size() >= 5) {
@@ -366,9 +363,7 @@ bool ClassFlowCNNGeneral::ReadParameter(FILE* pfile, string& aktparamgraph) {
}
if ((toUpper(splitted[0]) == "SAVEALLFILES") && (splitted.size() > 1)) {
if (toUpper(splitted[1]) == "TRUE") {
SaveAllFiles = true;
}
SaveAllFiles = alphanumericToBoolean(splitted[1]);
}
}
@@ -378,7 +373,6 @@ bool ClassFlowCNNGeneral::ReadParameter(FILE* pfile, string& aktparamgraph) {
return false;
}
for (int _ana = 0; _ana < GENERAL.size(); ++_ana) {
for (int i = 0; i < GENERAL[_ana]->ROI.size(); ++i) {
GENERAL[_ana]->ROI[i]->image = new CImageBasis("ROI " + GENERAL[_ana]->ROI[i]->name,
@@ -391,7 +385,6 @@ bool ClassFlowCNNGeneral::ReadParameter(FILE* pfile, string& aktparamgraph) {
return true;
}
general* ClassFlowCNNGeneral::FindGENERAL(string _name_number) {
for (int i = 0; i < GENERAL.size(); ++i) {
if (GENERAL[i]->name == _name_number) {
@@ -402,7 +395,6 @@ general* ClassFlowCNNGeneral::FindGENERAL(string _name_number) {
return NULL;
}
general* ClassFlowCNNGeneral::GetGENERAL(string _name, bool _create = true) {
string _analog, _roi;
int _pospunkt = _name.find_first_of(".");
@@ -445,7 +437,6 @@ general* ClassFlowCNNGeneral::GetGENERAL(string _name, bool _create = true) {
return _ret;
}
string ClassFlowCNNGeneral::getHTMLSingleStep(string host) {
string result, zw;
std::vector<HTMLInfo*> htmlinfo;
@@ -469,7 +460,6 @@ string ClassFlowCNNGeneral::getHTMLSingleStep(string host) {
return result;
}
bool ClassFlowCNNGeneral::doFlow(string time) {
#ifdef HEAP_TRACING_CLASS_FLOW_CNN_GENERAL_DO_ALING_AND_CUT
//register a buffer to record the memory trace
@@ -500,7 +490,6 @@ bool ClassFlowCNNGeneral::doFlow(string time) {
return true;
}
bool ClassFlowCNNGeneral::doAlignAndCut(string time) {
if (disabled) {
return true;
@@ -537,7 +526,6 @@ bool ClassFlowCNNGeneral::doAlignAndCut(string time) {
return true;
}
void ClassFlowCNNGeneral::DrawROI(CImageBasis *_zw) {
if (_zw->ImageOkay()) {
if (CNNType == Analogue || CNNType == Analogue100) {
@@ -564,7 +552,6 @@ void ClassFlowCNNGeneral::DrawROI(CImageBasis *_zw) {
}
}
bool ClassFlowCNNGeneral::getNetworkParameter() {
if (disabled) {
return true;
@@ -606,17 +593,17 @@ bool ClassFlowCNNGeneral::getNetworkParameter() {
ESP_LOGD(TAG, "TFlite-Type set to DoubleHyprid10");
break;
case 11:
CNNType = Digital;
ESP_LOGD(TAG, "TFlite-Type set to Digital");
CNNType = Digit;
ESP_LOGD(TAG, "TFlite-Type set to Digit");
break;
/* case 20:
CNNType = DigitalHyprid10;
ESP_LOGD(TAG, "TFlite-Type set to DigitalHyprid10");
CNNType = DigitHyprid10;
ESP_LOGD(TAG, "TFlite-Type set to DigitHyprid10");
break;
*/
// case 22:
// CNNType = DigitalHyprid;
// ESP_LOGD(TAG, "TFlite-Type set to DigitalHyprid");
// CNNType = DigitHyprid;
// ESP_LOGD(TAG, "TFlite-Type set to DigitHyprid");
// break;
case 100:
if (modelxsize==32 && modelysize == 32) {
@@ -624,8 +611,8 @@ bool ClassFlowCNNGeneral::getNetworkParameter() {
ESP_LOGD(TAG, "TFlite-Type set to Analogue100");
}
else {
CNNType = Digital100;
ESP_LOGD(TAG, "TFlite-Type set to Digital");
CNNType = Digit100;
ESP_LOGD(TAG, "TFlite-Type set to Digit");
}
break;
default:
@@ -637,7 +624,6 @@ bool ClassFlowCNNGeneral::getNetworkParameter() {
return true;
}
bool ClassFlowCNNGeneral::doNeuralNetwork(string time) {
if (disabled) {
return true;
@@ -700,8 +686,8 @@ bool ClassFlowCNNGeneral::doNeuralNetwork(string time) {
}
} break;
case Digital:
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "CNN Type: Digital");
case Digit:
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "CNN Type: Digit");
{
GENERAL[n]->ROI[roi]->result_klasse = 0;
GENERAL[n]->ROI[roi]->result_klasse = tflite->GetClassFromImageBasis(GENERAL[n]->ROI[roi]->image);
@@ -792,10 +778,10 @@ bool ClassFlowCNNGeneral::doNeuralNetwork(string time) {
}
}
} break;
case Digital100:
case Digit100:
case Analogue100:
{
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "CNN Type: Digital100 or Analogue100");
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "CNN Type: Digit100 or Analogue100");
int _num;
float _result_save_file;
@@ -842,16 +828,14 @@ bool ClassFlowCNNGeneral::doNeuralNetwork(string time) {
return true;
}
bool ClassFlowCNNGeneral::isExtendedResolution(int _number) {
if (CNNType == Digital) {
if (CNNType == Digit) {
return false;
}
return true;
}
std::vector<HTMLInfo*> ClassFlowCNNGeneral::GetHTMLInfo() {
std::vector<HTMLInfo*> result;
@@ -877,7 +861,7 @@ std::vector<HTMLInfo*> ClassFlowCNNGeneral::GetHTMLInfo() {
zw->filename_org = GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name + ".jpg";
}
if (CNNType == Digital) {
if (CNNType == Digit) {
zw->val = GENERAL[_ana]->ROI[i]->result_klasse;
}
else {
@@ -894,12 +878,10 @@ std::vector<HTMLInfo*> ClassFlowCNNGeneral::GetHTMLInfo() {
return result;
}
int ClassFlowCNNGeneral::getNumberGENERAL() {
return GENERAL.size();
}
string ClassFlowCNNGeneral::getNameGENERAL(int _analog) {
if (_analog < GENERAL.size()) {
return GENERAL[_analog]->name;
@@ -908,7 +890,6 @@ string ClassFlowCNNGeneral::getNameGENERAL(int _analog) {
return "GENERAL DOES NOT EXIST";
}
general* ClassFlowCNNGeneral::GetGENERAL(int _analog) {
if (_analog < GENERAL.size()) {
return GENERAL[_analog];
@@ -917,7 +898,6 @@ general* ClassFlowCNNGeneral::GetGENERAL(int _analog) {
return NULL;
}
void ClassFlowCNNGeneral::UpdateNameNumbers(std::vector<std::string> *_name_numbers) {
for (int _dig = 0; _dig < GENERAL.size(); _dig++) {
std::string _name = GENERAL[_dig]->name;
@@ -934,7 +914,6 @@ void ClassFlowCNNGeneral::UpdateNameNumbers(std::vector<std::string> *_name_numb
}
}
string ClassFlowCNNGeneral::getReadoutRawString(int _analog)
{
string rt = "";
@@ -948,7 +927,7 @@ string ClassFlowCNNGeneral::getReadoutRawString(int _analog)
rt = rt + "," + RundeOutput(GENERAL[_analog]->ROI[i]->result_float, 1);
}
if (CNNType == Digital) {
if (CNNType == Digit) {
if (GENERAL[_analog]->ROI[i]->result_klasse >= 10) {
rt = rt + ",N";
}
@@ -957,10 +936,9 @@ string ClassFlowCNNGeneral::getReadoutRawString(int _analog)
}
}
if ((CNNType == DoubleHyprid10) || (CNNType == Digital100)) {
if ((CNNType == DoubleHyprid10) || (CNNType == Digit100)) {
rt = rt + "," + RundeOutput(GENERAL[_analog]->ROI[i]->result_float, 1);
}
}
return rt;
}

View File

@@ -11,10 +11,10 @@ enum t_CNNType {
AutoDetect,
Analogue,
Analogue100,
Digital,
DigitalHyprid10,
Digit,
DigitHyprid10,
DoubleHyprid10,
Digital100,
Digit100,
None
};
@@ -26,15 +26,6 @@ protected:
std::vector<general*> GENERAL;
float CNNGoodThreshold;
//moved to define.h
//float Analog_error = 3.0;
//float AnalogToDigtalFehler = 0.8;
//float Digital_Uncertainty = 0.2;
//int DigitalBand = 3;
//float Digital_Transition_Range_Predecessor = 2;
//float Digital_Transition_Area_Predecessor = 0.7; // 9.3 - 0.7
//float Digital_Transition_Area_Forward = 9.7; // Pre-run zero crossing only happens from approx. 9.7 onwards
string cnnmodelfile;
int modelxsize, modelysize, modelchannel;
bool isLogImageSelect;
@@ -44,8 +35,8 @@ protected:
bool SaveAllFiles;
int PointerEvalAnalogNew(float zahl, int numeral_preceder);
int PointerEvalAnalogToDigitNew(float zahl, float numeral_preceder, int eval_predecessors, float analogDigitalTransitionStart);
int PointerEvalHybridNew(float zahl, float number_of_predecessors, int eval_predecessors, bool Analog_Predecessors = false, float analogDigitalTransitionStart=9.2);
int PointerEvalAnalogToDigitNew(float zahl, float numeral_preceder, int eval_predecessors, float AnalogToDigitTransitionStart);
int PointerEvalHybridNew(float zahl, float number_of_predecessors, int eval_predecessors, bool Analog_Predecessors = false, float AnalogToDigitTransitionStart=9.2);
@@ -61,7 +52,7 @@ public:
bool doFlow(string time);
string getHTMLSingleStep(string host);
string getReadout(int _analog, bool _extendedResolution = false, int prev = -1, float _before_narrow_Analog = -1, float analogDigitalTransitionStart=9.2);
string getReadout(int _analog, bool _extendedResolution = false, int prev = -1, float _before_narrow_Analog = -1, float AnalogToDigitTransitionStart=9.2);
string getReadoutRawString(int _analog);

View File

@@ -32,7 +32,6 @@ static const char* TAG = "FLOWCTRL";
//#define DEBUG_DETAIL_ON
std::string ClassFlowControll::doSingleStep(std::string _stepname, std::string _host){
std::string _classname = "";
std::string result = "";
@@ -65,11 +64,19 @@ std::string ClassFlowControll::doSingleStep(std::string _stepname, std::string _
_classname = "ClassFlowInfluxDBv2";
}
#endif //ENABLE_INFLUXDB
#ifdef ENABLE_WEBHOOK
if ((_stepname.compare("[Webhook]") == 0) || (_stepname.compare(";[Webhook]") == 0)){
_classname = "ClassFlowWebhook";
}
#endif //ENABLE_WEBHOOK
for (int i = 0; i < FlowControll.size(); ++i)
if (FlowControll[i]->name().compare(_classname) == 0){
if (!(FlowControll[i]->name().compare("ClassFlowTakeImage") == 0)) // if it is a TakeImage, the image does not need to be included, this happens automatically with the html query.
if (!(FlowControll[i]->name().compare("ClassFlowTakeImage") == 0)) {
// if it is a TakeImage, the image does not need to be included, this happens automatically with the html query.
FlowControll[i]->doFlow("");
}
result = FlowControll[i]->getHTMLSingleStep(_host);
}
@@ -78,37 +85,51 @@ std::string ClassFlowControll::doSingleStep(std::string _stepname, std::string _
return result;
}
std::string ClassFlowControll::TranslateAktstatus(std::string _input)
{
if (_input.compare("ClassFlowTakeImage") == 0)
if (_input.compare("ClassFlowTakeImage") == 0) {
return ("Take Image");
if (_input.compare("ClassFlowAlignment") == 0)
}
if (_input.compare("ClassFlowAlignment") == 0) {
return ("Aligning");
if (_input.compare("ClassFlowCNNGeneral") == 0)
return ("Digitalization of ROIs");
}
if (_input.compare("ClassFlowCNNGeneral") == 0) {
return ("Digitization of ROIs");
}
#ifdef ENABLE_MQTT
if (_input.compare("ClassFlowMQTT") == 0)
if (_input.compare("ClassFlowMQTT") == 0) {
return ("Sending MQTT");
}
#endif //ENABLE_MQTT
#ifdef ENABLE_INFLUXDB
if (_input.compare("ClassFlowInfluxDB") == 0)
if (_input.compare("ClassFlowInfluxDB") == 0) {
return ("Sending InfluxDB");
if (_input.compare("ClassFlowInfluxDBv2") == 0)
}
if (_input.compare("ClassFlowInfluxDBv2") == 0) {
return ("Sending InfluxDBv2");
}
#endif //ENABLE_INFLUXDB
if (_input.compare("ClassFlowPostProcessing") == 0)
#ifdef ENABLE_WEBHOOK
if (_input.compare("ClassFlowWebhook") == 0) {
return ("Sending Webhook");
}
#endif //ENABLE_WEBHOOK
if (_input.compare("ClassFlowPostProcessing") == 0) {
return ("Post-Processing");
}
return "Unkown Status";
}
std::vector<HTMLInfo*> ClassFlowControll::GetAllDigital()
std::vector<HTMLInfo*> ClassFlowControll::GetAllDigit()
{
if (flowdigit)
{
ESP_LOGD(TAG, "ClassFlowControll::GetAllDigital - flowdigit != NULL");
if (flowdigit) {
ESP_LOGD(TAG, "ClassFlowControll::GetAllDigit - flowdigit != NULL");
return flowdigit->GetHTMLInfo();
}
@@ -116,65 +137,63 @@ std::vector<HTMLInfo*> ClassFlowControll::GetAllDigital()
return empty;
}
std::vector<HTMLInfo*> ClassFlowControll::GetAllAnalog()
{
if (flowanalog)
if (flowanalog) {
return flowanalog->GetHTMLInfo();
}
std::vector<HTMLInfo*> empty;
return empty;
}
t_CNNType ClassFlowControll::GetTypeDigital()
t_CNNType ClassFlowControll::GetTypeDigit()
{
if (flowdigit)
if (flowdigit) {
return flowdigit->getCNNType();
}
return t_CNNType::None;
}
t_CNNType ClassFlowControll::GetTypeAnalog()
{
if (flowanalog)
if (flowanalog) {
return flowanalog->getCNNType();
}
return t_CNNType::None;
}
#ifdef ALGROI_LOAD_FROM_MEM_AS_JPG
void ClassFlowControll::DigitalDrawROI(CImageBasis *_zw)
void ClassFlowControll::DigitDrawROI(CImageBasis *_zw)
{
if (flowdigit)
if (flowdigit) {
flowdigit->DrawROI(_zw);
}
}
void ClassFlowControll::AnalogDrawROI(CImageBasis *_zw)
{
if (flowanalog)
if (flowanalog) {
flowanalog->DrawROI(_zw);
}
}
#endif
#ifdef ENABLE_MQTT
bool ClassFlowControll::StartMQTTService()
{
/* Start the MQTT service */
for (int i = 0; i < FlowControll.size(); ++i) {
if (FlowControll[i]->name().compare("ClassFlowMQTT") == 0) {
return ((ClassFlowMQTT*) (FlowControll[i]))->Start(AutoInterval);
}
}
for (int i = 0; i < FlowControll.size(); ++i) {
if (FlowControll[i]->name().compare("ClassFlowMQTT") == 0) {
return ((ClassFlowMQTT*) (FlowControll[i]))->Start(AutoInterval);
}
}
return false;
}
#endif //ENABLE_MQTT
void ClassFlowControll::SetInitialParameter(void)
{
AutoStart = false;
@@ -189,7 +208,6 @@ void ClassFlowControll::SetInitialParameter(void)
aktstatusWithTime = aktstatus;
}
bool ClassFlowControll::getIsAutoStart(void)
{
return AutoStart;
@@ -201,69 +219,81 @@ void ClassFlowControll::setAutoStartInterval(long &_interval)
_interval = AutoInterval * 60 * 1000; // AutoInterval: minutes -> ms
}
ClassFlow* ClassFlowControll::CreateClassFlow(std::string _type)
{
ClassFlow* cfc = NULL;
_type = trim(_type);
if (toUpper(_type).compare("[TAKEIMAGE]") == 0)
{
if (toUpper(_type).compare("[TAKEIMAGE]") == 0) {
cfc = new ClassFlowTakeImage(&FlowControll);
flowtakeimage = (ClassFlowTakeImage*) cfc;
}
if (toUpper(_type).compare("[ALIGNMENT]") == 0)
{
if (toUpper(_type).compare("[ALIGNMENT]") == 0) {
cfc = new ClassFlowAlignment(&FlowControll);
flowalignment = (ClassFlowAlignment*) cfc;
}
if (toUpper(_type).compare("[ANALOG]") == 0)
{
if (toUpper(_type).compare("[ANALOG]") == 0) {
cfc = new ClassFlowCNNGeneral(flowalignment);
flowanalog = (ClassFlowCNNGeneral*) cfc;
}
if (toUpper(_type).compare(0, 7, "[DIGITS") == 0)
{
if (toUpper(_type).compare(0, 7, "[DIGITS") == 0) {
cfc = new ClassFlowCNNGeneral(flowalignment);
flowdigit = (ClassFlowCNNGeneral*) cfc;
}
#ifdef ENABLE_MQTT
if (toUpper(_type).compare("[MQTT]") == 0)
if (toUpper(_type).compare("[MQTT]") == 0) {
cfc = new ClassFlowMQTT(&FlowControll);
}
#endif //ENABLE_MQTT
#ifdef ENABLE_INFLUXDB
if (toUpper(_type).compare("[INFLUXDB]") == 0)
if (toUpper(_type).compare("[INFLUXDB]") == 0) {
cfc = new ClassFlowInfluxDB(&FlowControll);
if (toUpper(_type).compare("[INFLUXDBV2]") == 0)
cfc = new ClassFlowInfluxDBv2(&FlowControll);
#endif //ENABLE_INFLUXDB
}
if (toUpper(_type).compare("[POSTPROCESSING]") == 0)
{
if (toUpper(_type).compare("[INFLUXDBV2]") == 0) {
cfc = new ClassFlowInfluxDBv2(&FlowControll);
}
#endif //ENABLE_INFLUXDB
#ifdef ENABLE_WEBHOOK
if (toUpper(_type).compare("[WEBHOOK]") == 0)
cfc = new ClassFlowWebhook(&FlowControll);
#endif //ENABLE_WEBHOOK
if (toUpper(_type).compare("[POSTPROCESSING]") == 0) {
cfc = new ClassFlowPostProcessing(&FlowControll, flowanalog, flowdigit);
flowpostprocessing = (ClassFlowPostProcessing*) cfc;
}
if (cfc) // Attached only if it is not [AutoTimer], because this is for FlowControll
if (cfc) {
// Attached only if it is not [AutoTimer], because this is for FlowControll
FlowControll.push_back(cfc);
}
if (toUpper(_type).compare("[AUTOTIMER]") == 0)
cfc = this;
if (toUpper(_type).compare("[AUTOTIMER]") == 0) {
cfc = this;
}
if (toUpper(_type).compare("[DATALOGGING]") == 0)
cfc = this;
if (toUpper(_type).compare("[DATALOGGING]") == 0) {
cfc = this;
}
if (toUpper(_type).compare("[DEBUG]") == 0)
cfc = this;
if (toUpper(_type).compare("[DEBUG]") == 0) {
cfc = this;
}
if (toUpper(_type).compare("[SYSTEM]") == 0)
cfc = this;
if (toUpper(_type).compare("[SYSTEM]") == 0) {
cfc = this;
}
return cfc;
}
void ClassFlowControll::InitFlow(std::string config)
{
aktstatus = "Initialization";
@@ -284,62 +314,55 @@ void ClassFlowControll::InitFlow(std::string config)
line = "";
char zw[1024];
if (pFile != NULL)
{
if (pFile != NULL) {
fgets(zw, 1024, pFile);
ESP_LOGD(TAG, "%s", zw);
line = std::string(zw);
}
while ((line.size() > 0) && !(feof(pFile)))
{
while ((line.size() > 0) && !(feof(pFile))) {
cfc = CreateClassFlow(line);
// printf("Name: %s\n", cfc->name().c_str());
if (cfc)
{
ESP_LOGD(TAG, "Start ReadParameter (%s)", line.c_str());
// printf("Name: %s\n", cfc->name().c_str());
if (cfc) {
ESP_LOGE(TAG, "Start ReadParameter (%s)", line.c_str());
cfc->ReadParameter(pFile, line);
}
else
{
else {
line = "";
if (fgets(zw, 1024, pFile) && !feof(pFile))
{
ESP_LOGD(TAG, "Read: %s", zw);
line = std::string(zw);
}
if (fgets(zw, 1024, pFile) && !feof(pFile)) {
ESP_LOGD(TAG, "Read: %s", zw);
line = std::string(zw);
}
}
}
fclose(pFile);
}
std::string* ClassFlowControll::getActStatusWithTime()
{
return &aktstatusWithTime;
}
std::string* ClassFlowControll::getActStatus()
{
return &aktstatus;
}
void ClassFlowControll::setActStatus(std::string _aktstatus)
{
aktstatus = _aktstatus;
aktstatusWithTime = aktstatus;
}
void ClassFlowControll::doFlowTakeImageOnly(string time)
{
std::string zw_time;
for (int i = 0; i < FlowControll.size(); ++i)
{
for (int i = 0; i < FlowControll.size(); ++i) {
if (FlowControll[i]->name() == "ClassFlowTakeImage") {
zw_time = getCurrentTimeString("%H:%M:%S");
aktstatus = TranslateAktstatus(FlowControll[i]->name());
@@ -353,7 +376,6 @@ void ClassFlowControll::doFlowTakeImageOnly(string time)
}
}
bool ClassFlowControll::doFlow(string time)
{
bool result = true;
@@ -373,8 +395,7 @@ bool ClassFlowControll::doFlow(string time)
//checkNtpStatus(0);
for (int i = 0; i < FlowControll.size(); ++i)
{
for (int i = 0; i < FlowControll.size(); ++i) {
zw_time = getCurrentTimeString("%H:%M:%S");
aktstatus = TranslateAktstatus(FlowControll[i]->name());
aktstatusWithTime = aktstatus + " (" + zw_time + ")";
@@ -391,7 +412,7 @@ bool ClassFlowControll::doFlow(string time)
if (!FlowControll[i]->doFlow(time)){
repeat++;
LogFile.WriteToFile(ESP_LOG_WARN, TAG, "Fehler im vorheriger Schritt - wird zum " + to_string(repeat) + ". Mal wiederholt");
if (i) i -= 1; // vPrevious step must be repeated (probably take pictures)
if (i) { i -= 1; } // vPrevious step must be repeated (probably take pictures)
result = false;
if (repeat > 5) {
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "Wiederholung 5x nicht erfolgreich --> reboot");
@@ -399,8 +420,7 @@ bool ClassFlowControll::doFlow(string time)
//Step was repeated 5x --> reboot
}
}
else
{
else {
result = true;
}
@@ -424,27 +444,29 @@ bool ClassFlowControll::doFlow(string time)
string ClassFlowControll::getReadoutAll(int _type)
{
std::string out = "";
if (flowpostprocessing)
{
if (flowpostprocessing) {
std::vector<NumberPost*> *numbers = flowpostprocessing->GetNumbers();
for (int i = 0; i < (*numbers).size(); ++i)
{
for (int i = 0; i < (*numbers).size(); ++i) {
out = out + (*numbers)[i]->name + "\t";
switch (_type) {
case READOUT_TYPE_VALUE:
out = out + (*numbers)[i]->ReturnValue;
break;
case READOUT_TYPE_PREVALUE:
if (flowpostprocessing->PreValueUse)
{
if ((*numbers)[i]->PreValueOkay)
if (flowpostprocessing->PreValueUse) {
if ((*numbers)[i]->PreValueOkay) {
out = out + (*numbers)[i]->ReturnPreValue;
else
out = out + "PreValue too old";
}
else {
out = out + "PreValue too old";
}
}
else
else {
out = out + "PreValue deactivated";
}
break;
case READOUT_TYPE_RAWVALUE:
out = out + (*numbers)[i]->ReturnRawValue;
@@ -453,8 +475,10 @@ string ClassFlowControll::getReadoutAll(int _type)
out = out + (*numbers)[i]->ErrorMessageText;
break;
}
if (i < (*numbers).size()-1)
if (i < (*numbers).size()-1) {
out = out + "\r\n";
}
}
// ESP_LOGD(TAG, "OUT: %s", out.c_str());
}
@@ -462,43 +486,24 @@ string ClassFlowControll::getReadoutAll(int _type)
return out;
}
string ClassFlowControll::getReadout(bool _rawvalue = false, bool _noerror = false, int _number = 0)
{
if (flowpostprocessing)
if (flowpostprocessing) {
return flowpostprocessing->getReadoutParam(_rawvalue, _noerror, _number);
string zw = "";
string result = "";
for (int i = 0; i < FlowControll.size(); ++i)
{
zw = FlowControll[i]->getReadout();
if (zw.length() > 0)
{
if (result.length() == 0)
result = zw;
else
result = result + "\t" + zw;
}
}
return result;
return std::string("");
}
string ClassFlowControll::GetPrevalue(std::string _number)
{
if (flowpostprocessing)
{
if (flowpostprocessing) {
return flowpostprocessing->GetPreValue(_number);
}
return std::string("");
}
bool ClassFlowControll::UpdatePrevalue(std::string _newvalue, std::string _numbers, bool _extern)
{
double newvalueAsDouble;
@@ -519,10 +524,12 @@ bool ClassFlowControll::UpdatePrevalue(std::string _newvalue, std::string _numbe
}
if (flowpostprocessing) {
if (flowpostprocessing->SetPreValue(newvalueAsDouble, _numbers, _extern))
if (flowpostprocessing->SetPreValue(newvalueAsDouble, _numbers, _extern)) {
return true;
else
}
else {
return false;
}
}
else {
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "UpdatePrevalue: ERROR - Class Post-Processing not initialized");
@@ -530,93 +537,85 @@ bool ClassFlowControll::UpdatePrevalue(std::string _newvalue, std::string _numbe
}
}
bool ClassFlowControll::ReadParameter(FILE* pfile, string& aktparamgraph)
{
std::vector<string> splitted;
aktparamgraph = trim(aktparamgraph);
if (aktparamgraph.size() == 0)
if (!this->GetNextParagraph(pfile, aktparamgraph))
if (aktparamgraph.size() == 0) {
if (!this->GetNextParagraph(pfile, aktparamgraph)) {
return false;
}
}
if ((toUpper(aktparamgraph).compare("[AUTOTIMER]") != 0) && (toUpper(aktparamgraph).compare("[DEBUG]") != 0) &&
(toUpper(aktparamgraph).compare("[SYSTEM]") != 0 && (toUpper(aktparamgraph).compare("[DATALOGGING]") != 0))) // Paragraph passt nicht zu Debug oder DataLogging
(toUpper(aktparamgraph).compare("[SYSTEM]") != 0 && (toUpper(aktparamgraph).compare("[DATALOGGING]") != 0))) {
// Paragraph passt nicht zu Debug oder DataLogging
return false;
}
while (this->getNextLine(pfile, &aktparamgraph) && !this->isNewParagraph(aktparamgraph))
{
while (this->getNextLine(pfile, &aktparamgraph) && !this->isNewParagraph(aktparamgraph)) {
splitted = ZerlegeZeile(aktparamgraph, " =");
if ((toUpper(splitted[0]) == "AUTOSTART") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
if ((toUpper(splitted[0]) == "AUTOSTART") && (splitted.size() > 1)) {
AutoStart = alphanumericToBoolean(splitted[1]);
}
if ((toUpper(splitted[0]) == "INTERVAL") && (splitted.size() > 1)) {
if (isStringNumeric(splitted[1]))
{
AutoStart = true;
AutoInterval = std::stof(splitted[1]);
}
}
if ((toUpper(splitted[0]) == "INTERVAL") && (splitted.size() > 1))
{
AutoInterval = std::stof(splitted[1]);
if ((toUpper(splitted[0]) == "DATALOGACTIVE") && (splitted.size() > 1)) {
LogFile.SetDataLogToSD(alphanumericToBoolean(splitted[1]));
}
if ((toUpper(splitted[0]) == "DATALOGACTIVE") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
if ((toUpper(splitted[0]) == "DATAFILESRETENTION") && (splitted.size() > 1)) {
if (isStringNumeric(splitted[1]))
{
LogFile.SetDataLogToSD(true);
}
else {
LogFile.SetDataLogToSD(false);
LogFile.SetDataLogRetention(std::stoi(splitted[1]));
}
}
if ((toUpper(splitted[0]) == "DATAFILESRETENTION") && (splitted.size() > 1))
{
LogFile.SetDataLogRetention(std::stoi(splitted[1]));
}
if ((toUpper(splitted[0]) == "LOGLEVEL") && (splitted.size() > 1))
{
if ((toUpper(splitted[0]) == "LOGLEVEL") && (splitted.size() > 1)) {
/* matches esp_log_level_t */
if ((toUpper(splitted[1]) == "TRUE") || (toUpper(splitted[1]) == "2"))
{
if ((toUpper(splitted[1]) == "TRUE") || (toUpper(splitted[1]) == "2")) {
LogFile.setLogLevel(ESP_LOG_WARN);
}
else if ((toUpper(splitted[1]) == "FALSE") || (toUpper(splitted[1]) == "0") || (toUpper(splitted[1]) == "1"))
{
else if ((toUpper(splitted[1]) == "FALSE") || (toUpper(splitted[1]) == "0") || (toUpper(splitted[1]) == "1")) {
LogFile.setLogLevel(ESP_LOG_ERROR);
}
else if (toUpper(splitted[1]) == "3")
{
else if (toUpper(splitted[1]) == "3") {
LogFile.setLogLevel(ESP_LOG_INFO);
}
else if (toUpper(splitted[1]) == "4")
{
else if (toUpper(splitted[1]) == "4") {
LogFile.setLogLevel(ESP_LOG_DEBUG);
}
/* If system reboot was not triggered by user and reboot was caused by execption -> keep log level to DEBUG */
if (!getIsPlannedReboot() && (esp_reset_reason() == ESP_RST_PANIC))
if (!getIsPlannedReboot() && (esp_reset_reason() == ESP_RST_PANIC)) {
LogFile.setLogLevel(ESP_LOG_DEBUG);
}
}
if ((toUpper(splitted[0]) == "LOGFILESRETENTION") && (splitted.size() > 1))
{
LogFile.SetLogFileRetention(std::stoi(splitted[1]));
if ((toUpper(splitted[0]) == "LOGFILESRETENTION") && (splitted.size() > 1)) {
if (isStringNumeric(splitted[1]))
{
LogFile.SetLogFileRetention(std::stoi(splitted[1]));
}
}
/* TimeServer and TimeZone got already read from the config, see setupTime () */
#if (defined WLAN_USE_ROAMING_BY_SCANNING || (defined WLAN_USE_MESH_ROAMING && defined WLAN_USE_MESH_ROAMING_ACTIVATE_CLIENT_TRIGGERED_QUERIES))
if ((toUpper(splitted[0]) == "RSSITHRESHOLD") && (splitted.size() > 1))
{
if ((toUpper(splitted[0]) == "RSSITHRESHOLD") && (splitted.size() > 1)) {
int RSSIThresholdTMP = atoi(splitted[1].c_str());
RSSIThresholdTMP = min(0, max(-100, RSSIThresholdTMP)); // Verify input limits (-100 - 0)
if (ChangeRSSIThreshold(WLAN_CONFIG_FILE, RSSIThresholdTMP))
{
if (ChangeRSSIThreshold(WLAN_CONFIG_FILE, RSSIThresholdTMP)) {
// reboot necessary so that the new wlan.ini is also used !!!
fclose(pfile);
LogFile.WriteToFile(ESP_LOG_WARN, TAG, "Rebooting to activate new RSSITHRESHOLD ...");
@@ -625,10 +624,8 @@ bool ClassFlowControll::ReadParameter(FILE* pfile, string& aktparamgraph)
}
#endif
if ((toUpper(splitted[0]) == "HOSTNAME") && (splitted.size() > 1))
{
if (ChangeHostName(WLAN_CONFIG_FILE, splitted[1]))
{
if ((toUpper(splitted[0]) == "HOSTNAME") && (splitted.size() > 1)) {
if (ChangeHostName(WLAN_CONFIG_FILE, splitted[1])) {
// reboot necessary so that the new wlan.ini is also used !!!
fclose(pfile);
LogFile.WriteToFile(ESP_LOG_WARN, TAG, "Rebooting to activate new HOSTNAME...");
@@ -636,23 +633,19 @@ bool ClassFlowControll::ReadParameter(FILE* pfile, string& aktparamgraph)
}
}
if ((toUpper(splitted[0]) == "SETUPMODE") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
{
SetupModeActive = true;
}
if ((toUpper(splitted[0]) == "SETUPMODE") && (splitted.size() > 1)) {
SetupModeActive = alphanumericToBoolean(splitted[1]);
}
}
return true;
}
int ClassFlowControll::CleanTempFolder() {
const char* folderPath = "/sdcard/img_tmp";
ESP_LOGD(TAG, "Clean up temporary folder to avoid damage of sdcard sectors: %s", folderPath);
DIR *dir = opendir(folderPath);
if (!dir) {
ESP_LOGE(TAG, "Failed to stat dir: %s", folderPath);
return -1;
@@ -660,31 +653,33 @@ int ClassFlowControll::CleanTempFolder() {
struct dirent *entry;
int deleted = 0;
while ((entry = readdir(dir)) != NULL) {
std::string path = string(folderPath) + "/" + entry->d_name;
if (entry->d_type == DT_REG) {
if (unlink(path.c_str()) == 0) {
deleted ++;
} else {
ESP_LOGE(TAG, "can't delete file: %s", path.c_str());
}
} else if (entry->d_type == DT_DIR) {
deleted += removeFolder(path.c_str(), TAG);
}
if (entry->d_type == DT_REG) {
if (unlink(path.c_str()) == 0) {
deleted ++;
}
else {
ESP_LOGE(TAG, "can't delete file: %s", path.c_str());
}
}
else if (entry->d_type == DT_DIR) {
deleted += removeFolder(path.c_str(), TAG);
}
}
closedir(dir);
ESP_LOGD(TAG, "%d files deleted", deleted);
return 0;
}
esp_err_t ClassFlowControll::SendRawJPG(httpd_req_t *req)
{
return flowtakeimage != NULL ? flowtakeimage->SendRawJPG(req) : ESP_FAIL;
}
esp_err_t ClassFlowControll::GetJPGStream(std::string _fn, httpd_req_t *req)
{
ESP_LOGD(TAG, "ClassFlowControll::GetJPGStream %s", _fn.c_str());
@@ -846,8 +841,8 @@ esp_err_t ClassFlowControll::GetJPGStream(std::string _fn, httpd_req_t *req)
else {
std::vector<HTMLInfo*> htmlinfo;
htmlinfo = GetAllDigital();
ESP_LOGD(TAG, "After getClassFlowControll::GetAllDigital");
htmlinfo = GetAllDigit();
ESP_LOGD(TAG, "After getClassFlowControll::GetAllDigit");
for (int i = 0; i < htmlinfo.size(); ++i)
{
@@ -916,14 +911,20 @@ esp_err_t ClassFlowControll::GetJPGStream(std::string _fn, httpd_req_t *req)
return result;
}
string ClassFlowControll::getNumbersName()
{
return flowpostprocessing->getNumbersName();
}
string ClassFlowControll::getJSON()
{
return flowpostprocessing->GetJSON();
}
/**
* @returns a vector of all current sequences
**/
const std::vector<NumberPost*> &ClassFlowControll::getNumbers()
{
return *flowpostprocessing->GetNumbers();
}

View File

@@ -17,6 +17,9 @@
#include "ClassFlowInfluxDB.h"
#include "ClassFlowInfluxDBv2.h"
#endif //ENABLE_INFLUXDB
#ifdef ENABLE_WEBHOOK
#include "ClassFlowWebhook.h"
#endif //ENABLE_WEBHOOK
#include "ClassFlowCNNGeneral.h"
class ClassFlowControll :
@@ -52,12 +55,13 @@ public:
string GetPrevalue(std::string _number = "");
bool ReadParameter(FILE* pfile, string& aktparamgraph);
string getJSON();
const std::vector<NumberPost*> &getNumbers();
string getNumbersName();
string TranslateAktstatus(std::string _input);
#ifdef ALGROI_LOAD_FROM_MEM_AS_JPG
void DigitalDrawROI(CImageBasis *_zw);
void DigitDrawROI(CImageBasis *_zw);
void AnalogDrawROI(CImageBasis *_zw);
#endif
@@ -73,10 +77,10 @@ public:
std::string* getActStatus();
void setActStatus(std::string _aktstatus);
std::vector<HTMLInfo*> GetAllDigital();
std::vector<HTMLInfo*> GetAllDigit();
std::vector<HTMLInfo*> GetAllAnalog();
t_CNNType GetTypeDigital();
t_CNNType GetTypeDigit();
t_CNNType GetTypeAnalog();
#ifdef ENABLE_MQTT

View File

@@ -5,6 +5,10 @@
#include "ClassFlowImage.h"
/**
* Properties of one ROI
* FIXME: naming of members could use some refactoring to comply with common C++ coding style guidelines
*/
struct roi {
int posx, posy, deltax, deltay;
float result_float;
@@ -14,56 +18,66 @@ struct roi {
CImageBasis *image, *image_org;
};
/**
* FIXME: Why is this additional layer needed?
*/
struct general {
string name;
std::vector<roi*> ROI;
};
enum t_RateType {
AbsoluteChange,
RateChange
AbsoluteChange, // ignores the time difference; only the value difference is used comparison with NumberPost.maxRate
RateChange // time difference is considered and a normalized rate is used for comparison with NumberPost.maxRate
};
/**
* Holds all properties and settings of a sequence. A sequence is a set of digit and/or analog ROIs that are combined to
* provide one meter reading (value).
* FIXME: can be renamed to `Sequence`
*/
struct NumberPost {
float MaxRateValue;
bool useMaxRateValue;
t_RateType RateType;
bool ErrorMessage;
bool PreValueOkay;
bool AllowNegativeRates;
bool checkDigitIncreaseConsistency;
time_t lastvalue;
time_t timeStampTimeUTC;
string timeStamp;
double FlowRateAct; // m3 / min
double PreValue; // last value that was read out well
double Value; // last value read out, incl. corrections
string ReturnRateValue; // return value rate
string ReturnChangeAbsolute; // return value rate
string ReturnRawValue; // Raw value (with N & leading 0)
string ReturnValue; // corrected return value, if necessary with error message
string ReturnPreValue; // corrected return value without error message
string ErrorMessageText; // Error message for consistency check
int AnzahlAnalog;
int AnzahlDigital;
int DecimalShift;
int DecimalShiftInitial;
float AnalogDigitalTransitionStart; // When is the digit > x.1, i.e. when does it start to tilt?
int Nachkomma;
float MaxRateValue; // maxRate; upper bound for the difference between two consecutive readings; affected by maxRateType;
bool useMaxRateValue; // consistencyChecksEnabled; enables consistency checks; uses maxRate and maxRateType
t_RateType MaxRateType; // maxRateType; affects how the value of maxRate is used for comparing the current and previous value
bool ErrorMessage; // FIXME: not used; can be removed
int ChangeRateThreshold; // threshold parameter for negative rate detection
bool PreValueOkay; // previousValueValid; indicates that the reading of the previous round has no errors
bool AllowNegativeRates; // allowNegativeRate; defines if the consistency checks allow negative rates between consecutive meter readings.
bool checkDigitIncreaseConsistency; // extendedConsistencyCheck; performs an additional consistency check to avoid wrong readings
time_t timeStampLastValue; // Timestamp for the last read value; is used for the log
time_t timeStampLastPreValue; // Timestamp for the last PreValue set; is used for useMaxRateValue
time_t timeStampTimeUTC; // FIXME: not used; can be removed.
string timeStamp; // localTimeStr; timestamp of last valid reading formatted as local time
double FlowRateAct; // currentRate; ΔValue/min; since usage is not limited to water meters, the physical unit is not known.
double PreValue; // lastValidValue; most recent value that could be read w/o any errors
double Value; // value; most recent readout; may include corrections
string ReturnRateValue; // currentRateStr; current normalized rate; ΔValue/min
string ReturnChangeAbsolute; // currentChangeStr; absolute difference between current and previous measurement
string ReturnRawValue; // rawValueStr; Raw value (with N & leading 0)
string ReturnValue; // valueStr; corrected return value, if necessary with error message
string ReturnPreValue; // lastValidValueStr; corrected return value without error message
string ErrorMessageText; // errorMessage; Error message for consistency checks
int AnzahlAnalog; // numAnalogRoi; number of analog ROIs used in this sequence
int AnzahlDigit; // numDigitRoi; number of digit ROIs used in this sequence
int DecimalShift; // decimalShift; each increment shifts the decimal separator by one digit; value=value*10^decimalShift; pos. value shifts to the right
int DecimalShiftInitial; // decimalShiftInitial; same as decimalShift but is a const to reset decimalShift after calculations
float AnalogToDigitTransitionStart; // AnalogToDigitTransitionStartValue; FIXME: need a better description; When is the digit > x.1, i.e. when does it start to tilt?
int Nachkomma; // decimalPlaces; usually defined by the number of analog ROIs; affected by DecimalShift
string FieldV1; // Fieldname in InfluxDBv1
string MeasurementV1; // Measurement in InfluxDBv1
string FieldV1; // influxdbFieldName_v1; Name of the Field in InfluxDBv1
string MeasurementV1; // influxdbMeasurementName_v1; Name of the Measurement in InfluxDBv1
string FieldV2; // Fieldname in InfluxDBv2
string MeasurementV2; // Measurement in InfluxDBv2
string FieldV2; // influxdbFieldName_v2; Name of the Field in InfluxDBv2
string MeasurementV2; // influxdbMeasurementName_v2; Name of the Measurement in InfluxDBv2
bool isExtendedResolution;
bool isExtendedResolution; // extendResolution; Adds the decimal place of the least significant analog ROI to the value
general *digit_roi;
general *analog_roi;
general *digit_roi; // digitRoi; set of digit ROIs for the sequence
general *analog_roi; // analogRoi; set of analog ROIs for the sequence
string name;
string name; // name; Designation for the sequence
};
#endif

View File

@@ -286,7 +286,7 @@ bool ClassFlowMQTT::doFlow(string zwtime)
if (resultchangabs.length() > 0) {
success |= MQTTPublish(namenumber + "changeabsolut", resultchangabs, qos, SetRetainFlag); // Legacy API
success |= MQTTPublish(namenumber + "rate_per_digitalization_round", resultchangabs, qos, SetRetainFlag);
success |= MQTTPublish(namenumber + "rate_per_Digitization_round", resultchangabs, qos, SetRetainFlag);
}
if (resultraw.length() > 0)

View File

@@ -21,11 +21,9 @@ protected:
bool ErrorMessage;
bool IgnoreLeadingNaN; // SPECIAL CASE for User Gustl ???
ClassFlowCNNGeneral* flowAnalog;
ClassFlowCNNGeneral* flowDigit;
string FilePreValue;
ClassFlowTakeImage *flowTakeImage;
@@ -41,21 +39,18 @@ protected:
void handleMaxRateValue(string _decsep, string _value);
void handleDecimalExtendedResolution(string _decsep, string _value);
void handleMaxRateType(string _decsep, string _value);
void handleAnalogDigitalTransitionStart(string _decsep, string _value);
void handleAnalogToDigitTransitionStart(string _decsep, string _value);
void handleAllowNegativeRate(string _decsep, string _value);
void handleChangeRateThreshold(string _decsep, string _value);
std::string GetStringReadouts(general);
void WriteDataLog(int _index);
public:
bool PreValueUse;
std::vector<NumberPost*> NUMBERS;
ClassFlowPostProcessing(std::vector<ClassFlow*>* lfc, ClassFlowCNNGeneral *_analog, ClassFlowCNNGeneral *_digit);
virtual ~ClassFlowPostProcessing(){};
bool ReadParameter(FILE* pfile, string& aktparamgraph);

View File

@@ -1,9 +1,15 @@
#include <iostream>
#include <string>
#include <vector>
#include <regex>
#include "ClassFlowTakeImage.h"
#include "Helper.h"
#include "ClassLogFile.h"
#include "CImageBasis.h"
#include "ClassControllCamera.h"
#include "MainFlowControl.h"
#include "esp_wifi.h"
#include "esp_log.h"
@@ -12,14 +18,14 @@
#include <time.h>
// #define DEBUG_DETAIL_ON
// #define DEBUG_DETAIL_ON
// #define WIFITURNOFF
static const char* TAG = "TAKEIMAGE";
static const char *TAG = "TAKEIMAGE";
esp_err_t ClassFlowTakeImage::camera_capture(){
string nm = namerawimage;
esp_err_t ClassFlowTakeImage::camera_capture(void)
{
string nm = namerawimage;
Camera.CaptureToFile(nm);
time(&TimeImageTaken);
localtime(&TimeImageTaken);
@@ -30,205 +36,500 @@ esp_err_t ClassFlowTakeImage::camera_capture(){
void ClassFlowTakeImage::takePictureWithFlash(int flash_duration)
{
// in case the image is flipped, it must be reset here //
rawImage->width = image_width;
rawImage->height = image_height;
/////////////////////////////////////////////////////////////////////////////////////
rawImage->width = CCstatus.ImageWidth;
rawImage->height = CCstatus.ImageHeight;
ESP_LOGD(TAG, "flash_duration: %d", flash_duration);
Camera.CaptureToBasisImage(rawImage, flash_duration);
time(&TimeImageTaken);
localtime(&TimeImageTaken);
if (SaveAllFiles) rawImage->SaveToFile(namerawimage);
if (CCstatus.SaveAllFiles)
{
rawImage->SaveToFile(namerawimage);
}
}
void ClassFlowTakeImage::SetInitialParameter(void)
{
waitbeforepicture = 5;
isImageSize = false;
ImageQuality = -1;
TimeImageTaken = 0;
ImageQuality = 5;
rawImage = NULL;
ImageSize = FRAMESIZE_VGA;
ZoomEnabled = false;
ZoomMode = 0;
zoomOffsetX = 0;
zoomOffsetY = 0;
ImageNegative = false;
ImageAec2 = false;
#ifdef GRAYSCALE_AS_DEFAULT
ImageGrayscale = true;
#else
ImageGrayscale = false;
#endif
SaveAllFiles = false;
disabled = false;
FixedExposure = false;
namerawimage = "/sdcard/img_tmp/raw.jpg";
}
}
// auslesen der Kameraeinstellungen aus der config.ini
// wird beim Start aufgerufen
bool ClassFlowTakeImage::ReadParameter(FILE *pfile, string &aktparamgraph)
{
Camera.getSensorDatenToCCstatus(); // Kamera >>> CCstatus
ClassFlowTakeImage::ClassFlowTakeImage(std::vector<ClassFlow*>* lfc) : ClassFlowImage(lfc, TAG)
std::vector<string> splitted;
aktparamgraph = trim(aktparamgraph);
if (aktparamgraph.size() == 0)
{
if (!this->GetNextParagraph(pfile, aktparamgraph))
{
return false;
}
}
if (aktparamgraph.compare("[TakeImage]") != 0)
{
// Paragraph does not fit TakeImage
return false;
}
while (this->getNextLine(pfile, &aktparamgraph) && !this->isNewParagraph(aktparamgraph))
{
splitted = ZerlegeZeile(aktparamgraph);
if ((toUpper(splitted[0]) == "RAWIMAGESLOCATION") && (splitted.size() > 1))
{
imagesLocation = "/sdcard" + splitted[1];
isLogImage = true;
}
else if ((toUpper(splitted[0]) == "RAWIMAGESRETENTION") && (splitted.size() > 1))
{
if (isStringNumeric(splitted[1]))
{
this->imagesRetention = std::stod(splitted[1]);
}
}
else if ((toUpper(splitted[0]) == "SAVEALLFILES") && (splitted.size() > 1))
{
CCstatus.SaveAllFiles = alphanumericToBoolean(splitted[1]);
}
else if ((toUpper(splitted[0]) == "WAITBEFORETAKINGPICTURE") && (splitted.size() > 1))
{
if (isStringNumeric(splitted[1]))
{
int _WaitBeforePicture = std::stoi(splitted[1]);
if (_WaitBeforePicture != 0)
{
CCstatus.WaitBeforePicture = _WaitBeforePicture;
}
else
{
CCstatus.WaitBeforePicture = 2;
}
}
}
else if ((toUpper(splitted[0]) == "CAMGAINCEILING") && (splitted.size() > 1))
{
std::string _ImageGainceiling = toUpper(splitted[1]);
if (isStringNumeric(_ImageGainceiling))
{
int _ImageGainceiling_ = std::stoi(_ImageGainceiling);
switch (_ImageGainceiling_)
{
case 1:
CFstatus.ImageGainceiling = GAINCEILING_4X;
break;
case 2:
CFstatus.ImageGainceiling = GAINCEILING_8X;
break;
case 3:
CFstatus.ImageGainceiling = GAINCEILING_16X;
break;
case 4:
CFstatus.ImageGainceiling = GAINCEILING_32X;
break;
case 5:
CFstatus.ImageGainceiling = GAINCEILING_64X;
break;
case 6:
CFstatus.ImageGainceiling = GAINCEILING_128X;
break;
default:
CFstatus.ImageGainceiling = GAINCEILING_2X;
}
}
else
{
if (_ImageGainceiling == "X4")
{
CCstatus.ImageGainceiling = GAINCEILING_4X;
}
else if (_ImageGainceiling == "X8")
{
CCstatus.ImageGainceiling = GAINCEILING_8X;
}
else if (_ImageGainceiling == "X16")
{
CCstatus.ImageGainceiling = GAINCEILING_16X;
}
else if (_ImageGainceiling == "X32")
{
CCstatus.ImageGainceiling = GAINCEILING_32X;
}
else if (_ImageGainceiling == "X64")
{
CCstatus.ImageGainceiling = GAINCEILING_64X;
}
else if (_ImageGainceiling == "X128")
{
CCstatus.ImageGainceiling = GAINCEILING_128X;
}
else
{
CCstatus.ImageGainceiling = GAINCEILING_2X;
}
}
}
else if ((toUpper(splitted[0]) == "CAMQUALITY") && (splitted.size() > 1))
{
if (isStringNumeric(splitted[1]))
{
int _ImageQuality = std::stoi(splitted[1]);
CCstatus.ImageQuality = clipInt(_ImageQuality, 63, 6);
}
}
else if ((toUpper(splitted[0]) == "CAMBRIGHTNESS") && (splitted.size() > 1))
{
if (isStringNumeric(splitted[1]))
{
int _ImageBrightness = std::stoi(splitted[1]);
CCstatus.ImageBrightness = clipInt(_ImageBrightness, 2, -2);
}
}
else if ((toUpper(splitted[0]) == "CAMCONTRAST") && (splitted.size() > 1))
{
if (isStringNumeric(splitted[1]))
{
int _ImageContrast = std::stoi(splitted[1]);
CCstatus.ImageContrast = clipInt(_ImageContrast, 2, -2);
}
}
else if ((toUpper(splitted[0]) == "CAMSATURATION") && (splitted.size() > 1))
{
if (isStringNumeric(splitted[1]))
{
int _ImageSaturation = std::stoi(splitted[1]);
CCstatus.ImageSaturation = clipInt(_ImageSaturation, 2, -2);
}
}
else if ((toUpper(splitted[0]) == "CAMSHARPNESS") && (splitted.size() > 1))
{
if (isStringNumeric(splitted[1]))
{
int _ImageSharpness = std::stoi(splitted[1]);
if (CCstatus.CamSensor_id == OV2640_PID)
{
CCstatus.ImageSharpness = clipInt(_ImageSharpness, 2, -2);
}
else
{
CCstatus.ImageSharpness = clipInt(_ImageSharpness, 3, -3);
}
}
}
else if ((toUpper(splitted[0]) == "CAMAUTOSHARPNESS") && (splitted.size() > 1))
{
CCstatus.ImageAutoSharpness = alphanumericToBoolean(splitted[1]);
}
else if ((toUpper(splitted[0]) == "CAMSPECIALEFFECT") && (splitted.size() > 1))
{
std::string _ImageSpecialEffect = toUpper(splitted[1]);
if (isStringNumeric(_ImageSpecialEffect))
{
int _ImageSpecialEffect_ = std::stoi(_ImageSpecialEffect);
CFstatus.ImageSpecialEffect = clipInt(_ImageSpecialEffect_, 6, 0);
}
else
{
if (_ImageSpecialEffect == "NEGATIVE")
{
CCstatus.ImageSpecialEffect = 1;
}
else if (_ImageSpecialEffect == "GRAYSCALE")
{
CCstatus.ImageSpecialEffect = 2;
}
else if (_ImageSpecialEffect == "RED")
{
CCstatus.ImageSpecialEffect = 3;
}
else if (_ImageSpecialEffect == "GREEN")
{
CCstatus.ImageSpecialEffect = 4;
}
else if (_ImageSpecialEffect == "BLUE")
{
CCstatus.ImageSpecialEffect = 5;
}
else if (_ImageSpecialEffect == "RETRO")
{
CCstatus.ImageSpecialEffect = 6;
}
else
{
CCstatus.ImageSpecialEffect = 0;
}
}
}
else if ((toUpper(splitted[0]) == "CAMWBMODE") && (splitted.size() > 1))
{
std::string _ImageWbMode = toUpper(splitted[1]);
if (isStringNumeric(_ImageWbMode))
{
int _ImageWbMode_ = std::stoi(_ImageWbMode);
CFstatus.ImageWbMode = clipInt(_ImageWbMode_, 4, 0);
}
else
{
if (_ImageWbMode == "SUNNY")
{
CCstatus.ImageWbMode = 1;
}
else if (_ImageWbMode == "CLOUDY")
{
CCstatus.ImageWbMode = 2;
}
else if (_ImageWbMode == "OFFICE")
{
CCstatus.ImageWbMode = 3;
}
else if (_ImageWbMode == "HOME")
{
CCstatus.ImageWbMode = 4;
}
else
{
CCstatus.ImageWbMode = 0;
}
}
}
else if ((toUpper(splitted[0]) == "CAMAWB") && (splitted.size() > 1))
{
CCstatus.ImageAwb = alphanumericToBoolean(splitted[1]);
}
else if ((toUpper(splitted[0]) == "CAMAWBGAIN") && (splitted.size() > 1))
{
CCstatus.ImageAwbGain = alphanumericToBoolean(splitted[1]);
}
else if ((toUpper(splitted[0]) == "CAMAEC") && (splitted.size() > 1))
{
CCstatus.ImageAec = alphanumericToBoolean(splitted[1]);
}
else if ((toUpper(splitted[0]) == "CAMAEC2") && (splitted.size() > 1))
{
CCstatus.ImageAec2 = alphanumericToBoolean(splitted[1]);
}
else if ((toUpper(splitted[0]) == "CAMAELEVEL") && (splitted.size() > 1))
{
if (isStringNumeric(splitted[1]))
{
int _ImageAeLevel = std::stoi(splitted[1]);
if (CCstatus.CamSensor_id == OV2640_PID)
{
CCstatus.ImageAeLevel = clipInt(_ImageAeLevel, 2, -2);
}
else
{
CCstatus.ImageAeLevel = clipInt(_ImageAeLevel, 5, -5);
}
}
}
else if ((toUpper(splitted[0]) == "CAMAECVALUE") && (splitted.size() > 1))
{
if (isStringNumeric(splitted[1]))
{
int _ImageAecValue = std::stoi(splitted[1]);
CCstatus.ImageAecValue = clipInt(_ImageAecValue, 1200, 0);
}
}
else if ((toUpper(splitted[0]) == "CAMAGC") && (splitted.size() > 1))
{
CCstatus.ImageAgc = alphanumericToBoolean(splitted[1]);
}
else if ((toUpper(splitted[0]) == "CAMAGCGAIN") && (splitted.size() > 1))
{
if (isStringNumeric(splitted[1]))
{
int _ImageAgcGain = std::stoi(splitted[1]);
CCstatus.ImageAgcGain = clipInt(_ImageAgcGain, 30, 0);
}
}
else if ((toUpper(splitted[0]) == "CAMBPC") && (splitted.size() > 1))
{
CCstatus.ImageBpc = alphanumericToBoolean(splitted[1]);
}
else if ((toUpper(splitted[0]) == "CAMWPC") && (splitted.size() > 1))
{
CCstatus.ImageWpc = alphanumericToBoolean(splitted[1]);
}
else if ((toUpper(splitted[0]) == "CAMRAWGMA") && (splitted.size() > 1))
{
CCstatus.ImageRawGma = alphanumericToBoolean(splitted[1]);
}
else if ((toUpper(splitted[0]) == "CAMLENC") && (splitted.size() > 1))
{
CCstatus.ImageLenc = alphanumericToBoolean(splitted[1]);
}
else if ((toUpper(splitted[0]) == "CAMHMIRROR") && (splitted.size() > 1))
{
CCstatus.ImageHmirror = alphanumericToBoolean(splitted[1]);
}
else if ((toUpper(splitted[0]) == "CAMVFLIP") && (splitted.size() > 1))
{
CCstatus.ImageVflip = alphanumericToBoolean(splitted[1]);
}
else if ((toUpper(splitted[0]) == "CAMDCW") && (splitted.size() > 1))
{
CCstatus.ImageDcw = alphanumericToBoolean(splitted[1]);
}
else if ((toUpper(splitted[0]) == "CAMDENOISE") && (splitted.size() > 1))
{
if (isStringNumeric(splitted[1]))
{
int _ImageDenoiseLevel = std::stoi(splitted[1]);
if (CCstatus.CamSensor_id == OV2640_PID)
{
CCstatus.ImageDenoiseLevel = 0;
}
else
{
CCstatus.ImageDenoiseLevel = clipInt(_ImageDenoiseLevel, 8, 0);
}
}
}
else if ((toUpper(splitted[0]) == "CAMZOOM") && (splitted.size() > 1))
{
CCstatus.ImageZoomEnabled = alphanumericToBoolean(splitted[1]);
}
else if ((toUpper(splitted[0]) == "CAMZOOMOFFSETX") && (splitted.size() > 1))
{
if (isStringNumeric(splitted[1]))
{
int _ImageZoomOffsetX = std::stoi(splitted[1]);
if (CCstatus.CamSensor_id == OV2640_PID)
{
CCstatus.ImageZoomOffsetX = clipInt(_ImageZoomOffsetX, 480, -480);
}
else if (CCstatus.CamSensor_id == OV3660_PID)
{
CCstatus.ImageZoomOffsetX = clipInt(_ImageZoomOffsetX, 704, -704);
}
else if (CCstatus.CamSensor_id == OV5640_PID)
{
CCstatus.ImageZoomOffsetX = clipInt(_ImageZoomOffsetX, 960, -960);
}
}
}
else if ((toUpper(splitted[0]) == "CAMZOOMOFFSETY") && (splitted.size() > 1))
{
if (isStringNumeric(splitted[1]))
{
int _ImageZoomOffsetY = std::stoi(splitted[1]);
if (CCstatus.CamSensor_id == OV2640_PID)
{
CCstatus.ImageZoomOffsetY = clipInt(_ImageZoomOffsetY, 360, -360);
}
else if (CCstatus.CamSensor_id == OV3660_PID)
{
CCstatus.ImageZoomOffsetY = clipInt(_ImageZoomOffsetY, 528, -528);
}
else if (CCstatus.CamSensor_id == OV5640_PID)
{
CCstatus.ImageZoomOffsetY = clipInt(_ImageZoomOffsetY, 720, -720);
}
}
}
else if ((toUpper(splitted[0]) == "CAMZOOMSIZE") && (splitted.size() > 1))
{
if (isStringNumeric(splitted[1]))
{
int _ImageZoomSize = std::stoi(splitted[1]);
if (CCstatus.CamSensor_id == OV2640_PID)
{
CCstatus.ImageZoomSize = clipInt(_ImageZoomSize, 29, 0);
}
else if (CCstatus.CamSensor_id == OV3660_PID)
{
CCstatus.ImageZoomSize = clipInt(_ImageZoomSize, 43, 0);
}
else if (CCstatus.CamSensor_id == OV5640_PID)
{
CCstatus.ImageZoomSize = clipInt(_ImageZoomSize, 59, 0);
}
}
}
else if ((toUpper(splitted[0]) == "LEDINTENSITY") && (splitted.size() > 1))
{
if (isStringNumeric(splitted[1]))
{
float ledintensity = std::stof(splitted[1]);
Camera.SetLEDIntensity(ledintensity);
}
}
else if ((toUpper(splitted[0]) == "DEMO") && (splitted.size() > 1))
{
CCstatus.DemoMode = alphanumericToBoolean(splitted[1]);
if (CCstatus.DemoMode == true)
{
Camera.useDemoMode();
}
}
}
Camera.setSensorDatenFromCCstatus(); // CCstatus >>> Kamera
Camera.SetQualityZoomSize(CCstatus.ImageQuality, CCstatus.ImageFrameSize, CCstatus.ImageZoomEnabled, CCstatus.ImageZoomOffsetX, CCstatus.ImageZoomOffsetY, CCstatus.ImageZoomSize, CCstatus.ImageVflip);
rawImage = new CImageBasis("rawImage");
rawImage->CreateEmptyImage(CCstatus.ImageWidth, CCstatus.ImageHeight, 3);
return true;
}
ClassFlowTakeImage::ClassFlowTakeImage(std::vector<ClassFlow *> *lfc) : ClassFlowImage(lfc, TAG)
{
imagesLocation = "/log/source";
imagesRetention = 5;
SetInitialParameter();
}
bool ClassFlowTakeImage::ReadParameter(FILE* pfile, string& aktparamgraph)
{
std::vector<string> splitted;
aktparamgraph = trim(aktparamgraph);
int _brightness = 0;
int _contrast = 0;
int _saturation = 0;
int _sharpness = 0;
int _autoExposureLevel = 0;
if (aktparamgraph.size() == 0)
if (!this->GetNextParagraph(pfile, aktparamgraph))
return false;
if (aktparamgraph.compare("[TakeImage]") != 0) // Paragraph does not fit TakeImage
return false;
while (this->getNextLine(pfile, &aktparamgraph) && !this->isNewParagraph(aktparamgraph))
{
splitted = ZerlegeZeile(aktparamgraph);
if ((toUpper(splitted[0]) == "RAWIMAGESLOCATION") && (splitted.size() > 1))
{
imagesLocation = "/sdcard" + splitted[1];
isLogImage = true;
}
if ((toUpper(splitted[0]) == "IMAGEQUALITY") && (splitted.size() > 1))
ImageQuality = std::stod(splitted[1]);
if ((toUpper(splitted[0]) == "ZOOM") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
ZoomEnabled = true;
else if (toUpper(splitted[1]) == "FALSE")
ZoomEnabled = false;
}
if ((toUpper(splitted[0]) == "ZOOMMODE") && (splitted.size() > 1))
ZoomMode = std::stod(splitted[1]);
if ((toUpper(splitted[0]) == "ZOOMOFFSETX") && (splitted.size() > 1))
zoomOffsetX = std::stod(splitted[1]);
if ((toUpper(splitted[0]) == "ZOOMOFFSETY") && (splitted.size() > 1))
zoomOffsetY = std::stod(splitted[1]);
if ((toUpper(splitted[0]) == "GRAYSCALE") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
ImageGrayscale = true;
else if (toUpper(splitted[1]) == "FALSE")
ImageGrayscale = false;
}
if ((toUpper(splitted[0]) == "NEGATIVE") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
ImageNegative = true;
else if (toUpper(splitted[1]) == "FALSE")
ImageNegative = false;
}
if ((toUpper(splitted[0]) == "AEC2") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
ImageAec2 = true;
else if (toUpper(splitted[1]) == "FALSE")
ImageAec2 = false;
}
if ((toUpper(splitted[0]) == "AUTOEXPOSURELEVEL") && (splitted.size() > 1))
_autoExposureLevel = std::stod(splitted[1]);
if ((toUpper(splitted[0]) == "IMAGESIZE") && (splitted.size() > 1))
{
ImageSize = Camera.TextToFramesize(splitted[1].c_str());
isImageSize = true;
}
if ((toUpper(splitted[0]) == "SAVEALLFILES") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
SaveAllFiles = true;
}
if ((toUpper(splitted[0]) == "WAITBEFORETAKINGPICTURE") && (splitted.size() > 1))
{
waitbeforepicture = stoi(splitted[1]);
}
if ((toUpper(splitted[0]) == "RAWIMAGESRETENTION") && (splitted.size() > 1))
{
this->imagesRetention = std::stoi(splitted[1]);
}
if ((toUpper(splitted[0]) == "BRIGHTNESS") && (splitted.size() > 1))
{
_brightness = stoi(splitted[1]);
}
if ((toUpper(splitted[0]) == "CONTRAST") && (splitted.size() > 1))
{
_contrast = stoi(splitted[1]);
}
if ((toUpper(splitted[0]) == "SATURATION") && (splitted.size() > 1))
{
_saturation = stoi(splitted[1]);
}
if ((toUpper(splitted[0]) == "SHARPNESS") && (splitted.size() > 1))
{
_sharpness = stoi(splitted[1]);
}
if ((toUpper(splitted[0]) == "FIXEDEXPOSURE") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
FixedExposure = true;
}
if ((toUpper(splitted[0]) == "LEDINTENSITY") && (splitted.size() > 1))
{
float ledintensity = stof(splitted[1]);
ledintensity = min((float) 100, ledintensity);
ledintensity = max((float) 0, ledintensity);
Camera.SetLEDIntensity(ledintensity);
}
if ((toUpper(splitted[0]) == "DEMO") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
Camera.useDemoMode();
}
}
Camera.SetBrightnessContrastSaturation(_brightness, _contrast, _saturation, _autoExposureLevel, ImageGrayscale, ImageNegative, ImageAec2, _sharpness);
Camera.SetQualitySize(ImageQuality, ImageSize, ZoomEnabled, ZoomMode, zoomOffsetX, zoomOffsetY);
image_width = Camera.image_width;
image_height = Camera.image_height;
rawImage = new CImageBasis("rawImage");
rawImage->CreateEmptyImage(image_width, image_height, 3);
waitbeforepicture_store = waitbeforepicture;
if (FixedExposure && (waitbeforepicture > 0))
{
// ESP_LOGD(TAG, "Fixed Exposure enabled!");
int flash_duration = (int) (waitbeforepicture * 1000);
Camera.EnableAutoExposure(flash_duration);
waitbeforepicture = 0.2;
// flash_duration = (int) (waitbeforepicture * 1000);
// takePictureWithFlash(flash_duration);
// rawImage->SaveToFile("/sdcard/init2.jpg");
}
return true;
}
string ClassFlowTakeImage::getHTMLSingleStep(string host)
{
string result;
@@ -236,74 +537,78 @@ string ClassFlowTakeImage::getHTMLSingleStep(string host)
return result;
}
// wird bei jeder Auswertrunde aufgerufen
bool ClassFlowTakeImage::doFlow(string zwtime)
{
psram_init_shared_memory_for_take_image_step();
string logPath = CreateLogFolder(zwtime);
int flash_duration = (int) (waitbeforepicture * 1000);
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("ClassFlowTakeImage::doFlow - Before takePictureWithFlash");
#endif
int flash_duration = (int)(CCstatus.WaitBeforePicture * 1000);
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("ClassFlowTakeImage::doFlow - Before takePictureWithFlash");
#endif
#ifdef WIFITURNOFF
esp_wifi_stop(); // to save power usage and
#endif
#ifdef WIFITURNOFF
esp_wifi_stop(); // to save power usage and
#endif
// wenn die Kameraeinstellungen durch Erstellen eines neuen Referenzbildes verändert wurden, müssen sie neu gesetzt werden
if (CFstatus.changedCameraSettings)
{
Camera.setSensorDatenFromCCstatus(); // CCstatus >>> Kamera
Camera.SetQualityZoomSize(CCstatus.ImageQuality, CCstatus.ImageFrameSize, CCstatus.ImageZoomEnabled, CCstatus.ImageZoomOffsetX, CCstatus.ImageZoomOffsetY, CCstatus.ImageZoomSize, CCstatus.ImageVflip);
CFstatus.changedCameraSettings = false;
}
takePictureWithFlash(flash_duration);
#ifdef WIFITURNOFF
esp_wifi_start();
#endif
#ifdef WIFITURNOFF
esp_wifi_start();
#endif
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("ClassFlowTakeImage::doFlow - After takePictureWithFlash");
#endif
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("ClassFlowTakeImage::doFlow - After takePictureWithFlash");
#endif
LogImage(logPath, "raw", NULL, NULL, zwtime, rawImage);
RemoveOldLogs();
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("ClassFlowTakeImage::doFlow - After RemoveOldLogs");
#endif
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("ClassFlowTakeImage::doFlow - After RemoveOldLogs");
#endif
psram_deinit_shared_memory_for_take_image_step();
return true;
}
esp_err_t ClassFlowTakeImage::SendRawJPG(httpd_req_t *req)
{
int flash_duration = (int) (waitbeforepicture * 1000);
int flash_duration = (int)(CCstatus.WaitBeforePicture * 1000);
time(&TimeImageTaken);
localtime(&TimeImageTaken);
return Camera.CaptureToHTTP(req, flash_duration);
}
ImageData* ClassFlowTakeImage::SendRawImage()
ImageData *ClassFlowTakeImage::SendRawImage(void)
{
CImageBasis *zw = new CImageBasis("SendRawImage", rawImage);
ImageData *id;
int flash_duration = (int) (waitbeforepicture * 1000);
int flash_duration = (int)(CCstatus.WaitBeforePicture * 1000);
Camera.CaptureToBasisImage(zw, flash_duration);
time(&TimeImageTaken);
localtime(&TimeImageTaken);
id = zw->writeToMemoryAsJPG();
id = zw->writeToMemoryAsJPG();
delete zw;
return id;
return id;
}
time_t ClassFlowTakeImage::getTimeImageTaken()
time_t ClassFlowTakeImage::getTimeImageTaken(void)
{
return TimeImageTaken;
}
@@ -312,4 +617,3 @@ ClassFlowTakeImage::~ClassFlowTakeImage(void)
{
delete rawImage;
}

View File

@@ -9,54 +9,32 @@
#include <string>
class ClassFlowTakeImage :
public ClassFlowImage
class ClassFlowTakeImage : public ClassFlowImage
{
protected:
float waitbeforepicture;
float waitbeforepicture_store;
framesize_t ImageSize;
bool isImageSize;
bool ZoomEnabled = false;
int ZoomMode = 0;
int zoomOffsetX = 0;
int zoomOffsetY = 0;
bool ImageGrayscale;
bool ImageNegative;
bool ImageAec2;
int ImageQuality;
time_t TimeImageTaken;
string namerawimage;
int image_height, image_width;
bool SaveAllFiles;
bool FixedExposure;
void CopyFile(string input, string output);
esp_err_t camera_capture();
esp_err_t camera_capture(void);
void takePictureWithFlash(int flash_duration);
void SetInitialParameter(void);
void SetInitialParameter(void);
public:
CImageBasis *rawImage;
ClassFlowTakeImage(std::vector<ClassFlow*>* lfc);
ClassFlowTakeImage(std::vector<ClassFlow *> *lfc);
bool ReadParameter(FILE* pfile, string& aktparamgraph);
bool ReadParameter(FILE *pfile, string &aktparamgraph);
bool doFlow(string time);
string getHTMLSingleStep(string host);
time_t getTimeImageTaken();
string name(){return "ClassFlowTakeImage";};
time_t getTimeImageTaken(void);
string name() { return "ClassFlowTakeImage"; };
ImageData* SendRawImage();
ImageData *SendRawImage(void);
esp_err_t SendRawJPG(httpd_req_t *req);
~ClassFlowTakeImage(void);
};
#endif //CLASSFFLOWTAKEIMAGE_H
#endif // CLASSFFLOWTAKEIMAGE_H

View File

@@ -0,0 +1,171 @@
#ifdef ENABLE_WEBHOOK
#include <sstream>
#include "ClassFlowWebhook.h"
#include "Helper.h"
#include "connect_wlan.h"
#include "time_sntp.h"
#include "interface_webhook.h"
#include "ClassFlowPostProcessing.h"
#include "ClassFlowAlignment.h"
#include "esp_log.h"
#include "../../include/defines.h"
#include "ClassLogFile.h"
#include <time.h>
static const char* TAG = "WEBHOOK";
void ClassFlowWebhook::SetInitialParameter(void)
{
uri = "";
flowpostprocessing = NULL;
flowAlignment = NULL;
previousElement = NULL;
ListFlowControll = NULL;
disabled = false;
WebhookEnable = false;
WebhookUploadImg = 0;
}
ClassFlowWebhook::ClassFlowWebhook()
{
SetInitialParameter();
}
ClassFlowWebhook::ClassFlowWebhook(std::vector<ClassFlow*>* lfc)
{
SetInitialParameter();
ListFlowControll = lfc;
for (int i = 0; i < ListFlowControll->size(); ++i)
{
if (((*ListFlowControll)[i])->name().compare("ClassFlowPostProcessing") == 0)
{
flowpostprocessing = (ClassFlowPostProcessing*) (*ListFlowControll)[i];
}
if (((*ListFlowControll)[i])->name().compare("ClassFlowAlignment") == 0)
{
flowAlignment = (ClassFlowAlignment*) (*ListFlowControll)[i];
}
}
}
ClassFlowWebhook::ClassFlowWebhook(std::vector<ClassFlow*>* lfc, ClassFlow *_prev)
{
SetInitialParameter();
previousElement = _prev;
ListFlowControll = lfc;
for (int i = 0; i < ListFlowControll->size(); ++i)
{
if (((*ListFlowControll)[i])->name().compare("ClassFlowPostProcessing") == 0)
{
flowpostprocessing = (ClassFlowPostProcessing*) (*ListFlowControll)[i];
}
if (((*ListFlowControll)[i])->name().compare("ClassFlowAlignment") == 0)
{
flowAlignment = (ClassFlowAlignment*) (*ListFlowControll)[i];
}
}
}
bool ClassFlowWebhook::ReadParameter(FILE* pfile, string& aktparamgraph)
{
std::vector<string> splitted;
aktparamgraph = trim(aktparamgraph);
printf("akt param: %s\n", aktparamgraph.c_str());
if (aktparamgraph.size() == 0)
if (!this->GetNextParagraph(pfile, aktparamgraph))
return false;
if (toUpper(aktparamgraph).compare("[WEBHOOK]") != 0)
return false;
while (this->getNextLine(pfile, &aktparamgraph) && !this->isNewParagraph(aktparamgraph))
{
ESP_LOGD(TAG, "while loop reading line: %s", aktparamgraph.c_str());
splitted = ZerlegeZeile(aktparamgraph);
std::string _param = GetParameterName(splitted[0]);
if ((toUpper(_param) == "URI") && (splitted.size() > 1))
{
this->uri = splitted[1];
}
if (((toUpper(_param) == "APIKEY")) && (splitted.size() > 1))
{
this->apikey = splitted[1];
}
if (((toUpper(_param) == "UPLOADIMG")) && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "1")
{
this->WebhookUploadImg = 1;
} else if (toUpper(splitted[1]) == "2")
{
this->WebhookUploadImg = 2;
}
}
}
WebhookInit(uri,apikey);
WebhookEnable = true;
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "Webhook Enabled for Uri " + uri);
printf("uri: %s\n", uri.c_str());
return true;
}
void ClassFlowWebhook::handleMeasurement(string _decsep, string _value)
{
string _digit, _decpos;
int _pospunkt = _decsep.find_first_of(".");
// ESP_LOGD(TAG, "Name: %s, Pospunkt: %d", _decsep.c_str(), _pospunkt);
if (_pospunkt > -1)
_digit = _decsep.substr(0, _pospunkt);
else
_digit = "default";
for (int j = 0; j < flowpostprocessing->NUMBERS.size(); ++j)
{
if (_digit == "default") // Set to default first (if nothing else is set)
{
flowpostprocessing->NUMBERS[j]->MeasurementV2 = _value;
}
if (flowpostprocessing->NUMBERS[j]->name == _digit)
{
flowpostprocessing->NUMBERS[j]->MeasurementV2 = _value;
}
}
}
bool ClassFlowWebhook::doFlow(string zwtime)
{
if (!WebhookEnable)
return true;
if (flowpostprocessing)
{
printf("vor sende WebHook");
bool numbersWithError = WebhookPublish(flowpostprocessing->GetNumbers());
#ifdef ALGROI_LOAD_FROM_MEM_AS_JPG
if ((WebhookUploadImg == 1 || (WebhookUploadImg != 0 && numbersWithError)) && flowAlignment && flowAlignment->AlgROI) {
WebhookUploadPic(flowAlignment->AlgROI);
}
#endif
}
return true;
}
#endif //ENABLE_WEBHOOK

View File

@@ -0,0 +1,43 @@
#ifdef ENABLE_WEBHOOK
#pragma once
#ifndef CLASSFWEBHOOK_H
#define CLASSFWEBHOOK_H
#include "ClassFlow.h"
#include "ClassFlowPostProcessing.h"
#include "ClassFlowAlignment.h"
#include <string>
class ClassFlowWebhook :
public ClassFlow
{
protected:
std::string uri, apikey;
ClassFlowPostProcessing* flowpostprocessing;
ClassFlowAlignment* flowAlignment;
bool WebhookEnable;
int WebhookUploadImg;
void SetInitialParameter(void);
void handleFieldname(string _decsep, string _value);
void handleMeasurement(string _decsep, string _value);
public:
ClassFlowWebhook();
ClassFlowWebhook(std::vector<ClassFlow*>* lfc);
ClassFlowWebhook(std::vector<ClassFlow*>* lfc, ClassFlow *_prev);
bool ReadParameter(FILE* pfile, string& aktparamgraph);
bool doFlow(string time);
string name(){return "ClassFlowWebhook";};
};
#endif //CLASSFWEBHOOK_H
#endif //ENABLE_WEBHOOK

File diff suppressed because it is too large Load Diff

View File

@@ -9,26 +9,83 @@
#include <esp_http_server.h>
#include "CImageBasis.h"
#include "ClassFlowControll.h"
#include "openmetrics.h"
typedef struct
{
uint16_t CamSensor_id;
framesize_t ImageFrameSize = FRAMESIZE_VGA; // 0 - 10
gainceiling_t ImageGainceiling; // Image gain (GAINCEILING_x2, x4, x8, x16, x32, x64 or x128)
int ImageQuality; // 0 - 63
int ImageBrightness; // (-2 to 2) - set brightness
int ImageContrast; //-2 - 2
int ImageSaturation; //-2 - 2
int ImageSharpness; //-2 - 2
bool ImageAutoSharpness;
int ImageSpecialEffect; // 0 - 6
int ImageWbMode; // 0 to 4 - if awb_gain enabled (0 - Auto, 1 - Sunny, 2 - Cloudy, 3 - Office, 4 - Home)
int ImageAwb; // white balance enable (0 or 1)
int ImageAwbGain; // Auto White Balance enable (0 or 1)
int ImageAec; // auto exposure off (1 or 0)
int ImageAec2; // automatic exposure sensor (0 or 1)
int ImageAeLevel; // auto exposure levels (-2 to 2)
int ImageAecValue; // set exposure manually (0-1200)
int ImageAgc; // auto gain off (1 or 0)
int ImageAgcGain; // set gain manually (0 - 30)
int ImageBpc; // black pixel correction
int ImageWpc; // white pixel correction
int ImageRawGma; // (1 or 0)
int ImageLenc; // lens correction (1 or 0)
int ImageHmirror; // (0 or 1) flip horizontally
int ImageVflip; // Invert image (0 or 1)
int ImageDcw; // downsize enable (1 or 0)
int ImageDenoiseLevel; // The OV2640 does not support it, OV3660 and OV5640 (0 to 8)
int ImageWidth;
int ImageHeight;
int ImageLedIntensity;
bool ImageZoomEnabled;
int ImageZoomOffsetX;
int ImageZoomOffsetY;
int ImageZoomSize;
int WaitBeforePicture;
bool isImageSize;
bool CameraInitSuccessful;
bool changedCameraSettings;
bool DemoMode;
bool SaveAllFiles;
} camera_flow_config_temp_t;
extern camera_flow_config_temp_t CFstatus;
extern ClassFlowControll flowctrl;
esp_err_t setCCstatusToCFstatus(void); // CCstatus >>> CFstatus
esp_err_t setCFstatusToCCstatus(void); // CFstatus >>> CCstatus
esp_err_t setCFstatusToCam(void); // CFstatus >>> Kamera
void register_server_main_flow_task_uri(httpd_handle_t server);
void CheckIsPlannedReboot();
bool getIsPlannedReboot();
void CheckIsPlannedReboot(void);
bool getIsPlannedReboot(void);
void InitializeFlowTask();
void DeleteMainFlowTask();
bool isSetupModusActive();
void InitializeFlowTask(void);
void DeleteMainFlowTask(void);
bool isSetupModusActive(void);
int getCountFlowRounds();
int getCountFlowRounds(void);
#ifdef ENABLE_MQTT
esp_err_t MQTTCtrlFlowStart(std::string _topic);
#endif //ENABLE_MQTT
#endif // ENABLE_MQTT
esp_err_t GetRawJPG(httpd_req_t *req);
esp_err_t GetJPG(std::string _filename, httpd_req_t *req);
#endif //MAINFLOWCONTROL_H
#endif // MAINFLOWCONTROL_H

File diff suppressed because it is too large Load Diff

View File

@@ -21,7 +21,6 @@ bool RenameFile(string from, string to);
bool MakeDir(std::string _what);
bool FileExists(string filename);
string RundeOutput(double _in, int _anzNachkomma);
size_t findDelimiterPos(string input, string delimiter);
@@ -33,7 +32,6 @@ string getFileType(string filename);
string getFileFullFileName(string filename);
string getDirectory(string filename);
int mkdir_r(const char *dir, const mode_t mode);
int removeFolder(const char* folderPath, const char* logTag);
@@ -68,7 +66,6 @@ string getSDCardSectorSize();
string getMac(void);
/* Error bit fields
One bit per error
Make sure it matches https://jomjol.github.io/AI-on-the-edge-device-docs/Error-Codes */
@@ -98,8 +95,18 @@ const char* get404(void);
std::string UrlDecode(const std::string& value);
void replaceAll(std::string& s, const std::string& toReplace, const std::string& replaceWith);
bool replaceString(std::string& s, std::string const& toReplace, std::string const& replaceWith);
bool replaceString(std::string& s, std::string const& toReplace, std::string const& replaceWith, bool logIt);
bool isInString(std::string& s, std::string const& toFind);
bool isStringNumeric(std::string &input);
bool isStringAlphabetic(std::string &input);
bool isStringAlphanumeric(std::string &input);
bool alphanumericToBoolean(std::string &input);
int clipInt(int input, int high, int low);
bool numericStrToBool(std::string input);
bool stringToBoolean(std::string input);
#endif //HELPER_H

View File

@@ -120,15 +120,15 @@ void psram_free_shared_temp_image_memory(void) {
/*******************************************************************
* Memory used in Digitalization Steps
* Memory used in Digitization Steps
* During this step we only use the shared part of the PSRAM for the
* Tensor Arena and one of the Models.
* The shared memory is large enough for the largest model and the
* Tensor Arena. Therefore we do not need to monitor the usage.
*******************************************************************/
void *psram_get_shared_tensor_arena_memory(void) {
if ((sharedMemoryInUseFor == "") || (sharedMemoryInUseFor == "Digitalization_Model")) {
sharedMemoryInUseFor = "Digitalization_Tensor";
if ((sharedMemoryInUseFor == "") || (sharedMemoryInUseFor == "Digitization_Model")) {
sharedMemoryInUseFor = "Digitization_Tensor";
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "Allocating Tensor Arena (" + std::to_string(TENSOR_ARENA_SIZE) + " bytes, use shared memory in PSRAM)...");
return shared_region; // Use 1th part of the shared memory for Tensor
}
@@ -140,8 +140,8 @@ void *psram_get_shared_tensor_arena_memory(void) {
void *psram_get_shared_model_memory(void) {
if ((sharedMemoryInUseFor == "") || (sharedMemoryInUseFor == "Digitalization_Tensor")) {
sharedMemoryInUseFor = "Digitalization_Model";
if ((sharedMemoryInUseFor == "") || (sharedMemoryInUseFor == "Digitization_Tensor")) {
sharedMemoryInUseFor = "Digitization_Model";
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "Allocating Model memory (" + std::to_string(MAX_MODEL_SIZE) + " bytes, use shared memory in PSRAM)...");
return (uint8_t *)shared_region + TENSOR_ARENA_SIZE; // Use 2nd part of the shared memory (after Tensor Arena) for the model
}

View File

@@ -20,7 +20,7 @@ void psram_free_shared_stbi_memory(void *p);
void *psram_reserve_shared_tmp_image_memory(void);
void psram_free_shared_temp_image_memory(void);
/* Memory used in Digitalization Steps */
/* Memory used in Digitization Steps */
void *psram_get_shared_tensor_arena_memory(void);
void *psram_get_shared_model_memory(void);
void psram_free_shared_tensor_arena_and_model_memory(void);

View File

@@ -35,15 +35,15 @@ static const char* TAG = "sdcard_init";
} \
} while(0)
typedef struct vfs_fat_sd_ctx_t {
typedef struct mh_vfs_fat_sd_ctx_t {
BYTE pdrv; //Drive number that is mounted
esp_vfs_fat_mount_config_t mount_config; //Mount configuration
FATFS *fs; //FAT structure pointer that is registered
sdmmc_card_t *card; //Card info
char *base_path; //Path where partition is registered
} vfs_fat_sd_ctx_t;
} mh_vfs_fat_sd_ctx_t;
static vfs_fat_sd_ctx_t *s_ctx[FF_VOLUMES] = {};
static mh_vfs_fat_sd_ctx_t *s_ctx[FF_VOLUMES] = {};
/**
* This `s_saved_ctx_id` is only used by `esp_vfs_fat_sdmmc_unmount`, which is deprecated.
@@ -185,14 +185,9 @@ BYTE ff_diskio_get_pdrv_card_mh(const sdmmc_card_t* card)
return 0xff;
}
static bool s_get_context_id_by_card_mh(const sdmmc_card_t *card, uint32_t *out_id)
{
vfs_fat_sd_ctx_t *p_ctx = NULL;
mh_vfs_fat_sd_ctx_t *p_ctx = NULL;
for (int i = 0; i < FF_VOLUMES; i++) {
p_ctx = s_ctx[i];
if (p_ctx) {
@@ -378,7 +373,7 @@ static esp_err_t init_sdmmc_host_mh(int slot, const void *slot_config, int *out_
esp_err_t esp_vfs_fat_sdmmc_mount_mh(const char* base_path, const sdmmc_host_t* host_config, const void* slot_config, const esp_vfs_fat_mount_config_t* mount_config, sdmmc_card_t** out_card)
{
esp_err_t err;
vfs_fat_sd_ctx_t *ctx = NULL;
mh_vfs_fat_sd_ctx_t *ctx = NULL;
uint32_t ctx_id = FF_VOLUMES;
FATFS *fs = NULL;
int card_handle = -1; //uninitialized
@@ -419,7 +414,7 @@ esp_err_t esp_vfs_fat_sdmmc_mount_mh(const char* base_path, const sdmmc_host_t*
s_saved_ctx_id = 0;
}
ctx = calloc(sizeof(vfs_fat_sd_ctx_t), 1);
ctx = calloc(sizeof(mh_vfs_fat_sd_ctx_t), 1);
if (!ctx) {
CHECK_EXECUTE_RESULT(ESP_ERR_NO_MEM, "no mem");
@@ -462,7 +457,7 @@ esp_err_t esp_vfs_fat_sdspi_mount_mh(const char* base_path, const sdmmc_host_t*
{
const sdmmc_host_t* host_config = host_config_input;
esp_err_t err;
vfs_fat_sd_ctx_t *ctx = NULL;
mh_vfs_fat_sd_ctx_t *ctx = NULL;
uint32_t ctx_id = FF_VOLUMES;
FATFS *fs = NULL;
int card_handle = -1; //uninitialized
@@ -514,7 +509,7 @@ esp_err_t esp_vfs_fat_sdspi_mount_mh(const char* base_path, const sdmmc_host_t*
s_saved_ctx_id = 0;
}
ctx = calloc(sizeof(vfs_fat_sd_ctx_t), 1);
ctx = calloc(sizeof(mh_vfs_fat_sd_ctx_t), 1);
if (!ctx) {
CHECK_EXECUTE_RESULT(ESP_ERR_NO_MEM, "no mem");

View File

@@ -1,353 +1,309 @@
#include <string>
#include "CRotateImage.h"
#include "psram.h"
static const char *TAG = "C ROTATE IMG";
CRotateImage::CRotateImage(std::string _name, CImageBasis *_org, CImageBasis *_temp, bool _flip) : CImageBasis(_name)
{
rgb_image = _org->rgb_image;
channels = _org->channels;
width = _org->width;
height = _org->height;
bpp = _org->bpp;
externalImage = true;
ImageTMP = _temp;
ImageOrg = _org;
islocked = false;
doflip = _flip;
}
void CRotateImage::Mirror(){
int memsize = width * height * channels;
uint8_t* odata;
if (ImageTMP)
{
odata = ImageTMP->RGBImageLock();
}
else
{
odata = (unsigned char*)malloc_psram_heap(std::string(TAG) + "->odata", memsize, MALLOC_CAP_SPIRAM);
}
int x_source, y_source;
stbi_uc* p_target;
stbi_uc* p_source;
RGBImageLock();
for (int x = 0; x < width; ++x)
for (int y = 0; y < height; ++y)
{
p_target = odata + (channels * (y * width + x));
x_source = width - x;
y_source = y;
p_source = rgb_image + (channels * (y_source * width + x_source));
for (int _channels = 0; _channels < channels; ++_channels)
p_target[_channels] = p_source[_channels];
}
// memcpy(rgb_image, odata, memsize);
memCopy(odata, rgb_image, memsize);
if (!ImageTMP)
free_psram_heap(std::string(TAG) + "->odata", odata);
if (ImageTMP)
ImageTMP->RGBImageRelease();
RGBImageRelease();
}
void CRotateImage::Rotate(float _angle, int _centerx, int _centery)
{
int org_width, org_height;
float m[2][3];
float x_center = _centerx;
float y_center = _centery;
_angle = _angle / 180 * M_PI;
if (doflip)
{
org_width = width;
org_height = height;
height = org_width;
width = org_height;
x_center = x_center - (org_width/2) + (org_height/2);
y_center = y_center + (org_width/2) - (org_height/2);
if (ImageOrg)
{
ImageOrg->height = height;
ImageOrg->width = width;
}
}
else
{
org_width = width;
org_height = height;
}
m[0][0] = cos(_angle);
m[0][1] = sin(_angle);
m[0][2] = (1 - m[0][0]) * x_center - m[0][1] * y_center;
m[1][0] = -m[0][1];
m[1][1] = m[0][0];
m[1][2] = m[0][1] * x_center + (1 - m[0][0]) * y_center;
if (doflip)
{
m[0][2] = m[0][2] + (org_width/2) - (org_height/2);
m[1][2] = m[1][2] - (org_width/2) + (org_height/2);
}
int memsize = width * height * channels;
uint8_t* odata;
if (ImageTMP)
{
odata = ImageTMP->RGBImageLock();
}
else
{
odata = (unsigned char*)malloc_psram_heap(std::string(TAG) + "->odata", memsize, MALLOC_CAP_SPIRAM);
}
int x_source, y_source;
stbi_uc* p_target;
stbi_uc* p_source;
RGBImageLock();
for (int x = 0; x < width; ++x)
for (int y = 0; y < height; ++y)
{
p_target = odata + (channels * (y * width + x));
x_source = int(m[0][0] * x + m[0][1] * y);
y_source = int(m[1][0] * x + m[1][1] * y);
x_source += int(m[0][2]);
y_source += int(m[1][2]);
if ((x_source >= 0) && (x_source < org_width) && (y_source >= 0) && (y_source < org_height))
{
p_source = rgb_image + (channels * (y_source * org_width + x_source));
for (int _channels = 0; _channels < channels; ++_channels)
p_target[_channels] = p_source[_channels];
}
else
{
for (int _channels = 0; _channels < channels; ++_channels)
p_target[_channels] = 255;
}
}
// memcpy(rgb_image, odata, memsize);
memCopy(odata, rgb_image, memsize);
if (!ImageTMP)
{
free_psram_heap(std::string(TAG) + "->odata", odata);
}
if (ImageTMP)
ImageTMP->RGBImageRelease();
RGBImageRelease();
}
void CRotateImage::RotateAntiAliasing(float _angle, int _centerx, int _centery)
{
int org_width, org_height;
float m[2][3];
float x_center = _centerx;
float y_center = _centery;
_angle = _angle / 180 * M_PI;
if (doflip)
{
org_width = width;
org_height = height;
height = org_width;
width = org_height;
x_center = x_center - (org_width/2) + (org_height/2);
y_center = y_center + (org_width/2) - (org_height/2);
if (ImageOrg)
{
ImageOrg->height = height;
ImageOrg->width = width;
}
}
else
{
org_width = width;
org_height = height;
}
m[0][0] = cos(_angle);
m[0][1] = sin(_angle);
m[0][2] = (1 - m[0][0]) * x_center - m[0][1] * y_center;
m[1][0] = -m[0][1];
m[1][1] = m[0][0];
m[1][2] = m[0][1] * x_center + (1 - m[0][0]) * y_center;
if (doflip)
{
m[0][2] = m[0][2] + (org_width/2) - (org_height/2);
m[1][2] = m[1][2] - (org_width/2) + (org_height/2);
}
int memsize = width * height * channels;
uint8_t* odata;
if (ImageTMP)
{
odata = ImageTMP->RGBImageLock();
}
else
{
odata = (unsigned char*)malloc_psram_heap(std::string(TAG) + "->odata", memsize, MALLOC_CAP_SPIRAM);
}
int x_source_1, y_source_1, x_source_2, y_source_2;
float x_source, y_source;
float quad_ul, quad_ur, quad_ol, quad_or;
stbi_uc* p_target;
stbi_uc *p_source_ul, *p_source_ur, *p_source_ol, *p_source_or;
RGBImageLock();
for (int x = 0; x < width; ++x)
for (int y = 0; y < height; ++y)
{
p_target = odata + (channels * (y * width + x));
x_source = (m[0][0] * x + m[0][1] * y);
y_source = (m[1][0] * x + m[1][1] * y);
x_source += (m[0][2]);
y_source += (m[1][2]);
x_source_1 = (int)x_source;
x_source_2 = x_source_1 + 1;
y_source_1 = (int)y_source;
y_source_2 = y_source_1 + 1;
quad_ul = (x_source_2 - x_source) * (y_source_2 - y_source);
quad_ur = (1- (x_source_2 - x_source)) * (y_source_2 - y_source);
quad_or = (x_source_2 - x_source) * (1-(y_source_2 - y_source));
quad_ol = (1- (x_source_2 - x_source)) * (1-(y_source_2 - y_source));
if ((x_source_1 >= 0) && (x_source_2 < org_width) && (y_source_1 >= 0) && (y_source_2 < org_height))
{
p_source_ul = rgb_image + (channels * (y_source_1 * org_width + x_source_1));
p_source_ur = rgb_image + (channels * (y_source_1 * org_width + x_source_2));
p_source_or = rgb_image + (channels * (y_source_2 * org_width + x_source_1));
p_source_ol = rgb_image + (channels * (y_source_2 * org_width + x_source_2));
for (int _channels = 0; _channels < channels; ++_channels)
{
p_target[_channels] = (int)((float)p_source_ul[_channels] * quad_ul
+ (float)p_source_ur[_channels] * quad_ur
+ (float)p_source_or[_channels] * quad_or
+ (float)p_source_ol[_channels] * quad_ol);
}
}
else
{
for (int _channels = 0; _channels < channels; ++_channels)
p_target[_channels] = 255;
}
}
// memcpy(rgb_image, odata, memsize);
memCopy(odata, rgb_image, memsize);
if (!ImageTMP)
{
free_psram_heap(std::string(TAG) + "->odata", odata);
}
if (ImageTMP)
ImageTMP->RGBImageRelease();
RGBImageRelease();
}
void CRotateImage::Rotate(float _angle)
{
// ESP_LOGD(TAG, "width %d, height %d", width, height);
Rotate(_angle, width / 2, height / 2);
}
void CRotateImage::RotateAntiAliasing(float _angle)
{
// ESP_LOGD(TAG, "width %d, height %d", width, height);
RotateAntiAliasing(_angle, width / 2, height / 2);
}
void CRotateImage::Translate(int _dx, int _dy)
{
int memsize = width * height * channels;
uint8_t* odata;
if (ImageTMP)
{
odata = ImageTMP->RGBImageLock();
}
else
{
odata = (unsigned char*)malloc_psram_heap(std::string(TAG) + "->odata", memsize, MALLOC_CAP_SPIRAM);
}
int x_source, y_source;
stbi_uc* p_target;
stbi_uc* p_source;
RGBImageLock();
for (int x = 0; x < width; ++x)
for (int y = 0; y < height; ++y)
{
p_target = odata + (channels * (y * width + x));
x_source = x - _dx;
y_source = y - _dy;
if ((x_source >= 0) && (x_source < width) && (y_source >= 0) && (y_source < height))
{
p_source = rgb_image + (channels * (y_source * width + x_source));
for (int _channels = 0; _channels < channels; ++_channels)
p_target[_channels] = p_source[_channels];
}
else
{
for (int _channels = 0; _channels < channels; ++_channels)
p_target[_channels] = 255;
}
}
// memcpy(rgb_image, odata, memsize);
memCopy(odata, rgb_image, memsize);
if (!ImageTMP)
{
free_psram_heap(std::string(TAG) + "->odata", odata);
}
if (ImageTMP)
{
ImageTMP->RGBImageRelease();
}
RGBImageRelease();
}
#include <string>
#include "CRotateImage.h"
#include "psram.h"
static const char *TAG = "C ROTATE IMG";
CRotateImage::CRotateImage(std::string _name, CImageBasis *_org, CImageBasis *_temp, bool _flip) : CImageBasis(_name)
{
rgb_image = _org->rgb_image;
channels = _org->channels;
width = _org->width;
height = _org->height;
bpp = _org->bpp;
externalImage = true;
ImageTMP = _temp;
ImageOrg = _org;
islocked = false;
doflip = _flip;
}
void CRotateImage::Rotate(float _angle, int _centerx, int _centery)
{
int org_width, org_height;
float m[2][3];
float x_center = _centerx;
float y_center = _centery;
_angle = _angle / 180 * M_PI;
if (doflip)
{
org_width = width;
org_height = height;
height = org_width;
width = org_height;
x_center = x_center - (org_width/2) + (org_height/2);
y_center = y_center + (org_width/2) - (org_height/2);
if (ImageOrg)
{
ImageOrg->height = height;
ImageOrg->width = width;
}
}
else
{
org_width = width;
org_height = height;
}
m[0][0] = cos(_angle);
m[0][1] = sin(_angle);
m[0][2] = (1 - m[0][0]) * x_center - m[0][1] * y_center;
m[1][0] = -m[0][1];
m[1][1] = m[0][0];
m[1][2] = m[0][1] * x_center + (1 - m[0][0]) * y_center;
if (doflip)
{
m[0][2] = m[0][2] + (org_width/2) - (org_height/2);
m[1][2] = m[1][2] - (org_width/2) + (org_height/2);
}
int memsize = width * height * channels;
uint8_t* odata;
if (ImageTMP)
{
odata = ImageTMP->RGBImageLock();
}
else
{
odata = (unsigned char*)malloc_psram_heap(std::string(TAG) + "->odata", memsize, MALLOC_CAP_SPIRAM);
}
int x_source, y_source;
stbi_uc* p_target;
stbi_uc* p_source;
RGBImageLock();
for (int x = 0; x < width; ++x)
for (int y = 0; y < height; ++y)
{
p_target = odata + (channels * (y * width + x));
x_source = int(m[0][0] * x + m[0][1] * y);
y_source = int(m[1][0] * x + m[1][1] * y);
x_source += int(m[0][2]);
y_source += int(m[1][2]);
if ((x_source >= 0) && (x_source < org_width) && (y_source >= 0) && (y_source < org_height))
{
p_source = rgb_image + (channels * (y_source * org_width + x_source));
for (int _channels = 0; _channels < channels; ++_channels)
p_target[_channels] = p_source[_channels];
}
else
{
for (int _channels = 0; _channels < channels; ++_channels)
p_target[_channels] = 255;
}
}
// memcpy(rgb_image, odata, memsize);
memCopy(odata, rgb_image, memsize);
if (!ImageTMP)
{
free_psram_heap(std::string(TAG) + "->odata", odata);
}
if (ImageTMP)
ImageTMP->RGBImageRelease();
RGBImageRelease();
}
void CRotateImage::RotateAntiAliasing(float _angle, int _centerx, int _centery)
{
int org_width, org_height;
float m[2][3];
float x_center = _centerx;
float y_center = _centery;
_angle = _angle / 180 * M_PI;
if (doflip)
{
org_width = width;
org_height = height;
height = org_width;
width = org_height;
x_center = x_center - (org_width/2) + (org_height/2);
y_center = y_center + (org_width/2) - (org_height/2);
if (ImageOrg)
{
ImageOrg->height = height;
ImageOrg->width = width;
}
}
else
{
org_width = width;
org_height = height;
}
m[0][0] = cos(_angle);
m[0][1] = sin(_angle);
m[0][2] = (1 - m[0][0]) * x_center - m[0][1] * y_center;
m[1][0] = -m[0][1];
m[1][1] = m[0][0];
m[1][2] = m[0][1] * x_center + (1 - m[0][0]) * y_center;
if (doflip)
{
m[0][2] = m[0][2] + (org_width/2) - (org_height/2);
m[1][2] = m[1][2] - (org_width/2) + (org_height/2);
}
int memsize = width * height * channels;
uint8_t* odata;
if (ImageTMP)
{
odata = ImageTMP->RGBImageLock();
}
else
{
odata = (unsigned char*)malloc_psram_heap(std::string(TAG) + "->odata", memsize, MALLOC_CAP_SPIRAM);
}
int x_source_1, y_source_1, x_source_2, y_source_2;
float x_source, y_source;
float quad_ul, quad_ur, quad_ol, quad_or;
stbi_uc* p_target;
stbi_uc *p_source_ul, *p_source_ur, *p_source_ol, *p_source_or;
RGBImageLock();
for (int x = 0; x < width; ++x)
for (int y = 0; y < height; ++y)
{
p_target = odata + (channels * (y * width + x));
x_source = (m[0][0] * x + m[0][1] * y);
y_source = (m[1][0] * x + m[1][1] * y);
x_source += (m[0][2]);
y_source += (m[1][2]);
x_source_1 = (int)x_source;
x_source_2 = x_source_1 + 1;
y_source_1 = (int)y_source;
y_source_2 = y_source_1 + 1;
quad_ul = (x_source_2 - x_source) * (y_source_2 - y_source);
quad_ur = (1- (x_source_2 - x_source)) * (y_source_2 - y_source);
quad_or = (x_source_2 - x_source) * (1-(y_source_2 - y_source));
quad_ol = (1- (x_source_2 - x_source)) * (1-(y_source_2 - y_source));
if ((x_source_1 >= 0) && (x_source_2 < org_width) && (y_source_1 >= 0) && (y_source_2 < org_height))
{
p_source_ul = rgb_image + (channels * (y_source_1 * org_width + x_source_1));
p_source_ur = rgb_image + (channels * (y_source_1 * org_width + x_source_2));
p_source_or = rgb_image + (channels * (y_source_2 * org_width + x_source_1));
p_source_ol = rgb_image + (channels * (y_source_2 * org_width + x_source_2));
for (int _channels = 0; _channels < channels; ++_channels)
{
p_target[_channels] = (int)((float)p_source_ul[_channels] * quad_ul
+ (float)p_source_ur[_channels] * quad_ur
+ (float)p_source_or[_channels] * quad_or
+ (float)p_source_ol[_channels] * quad_ol);
}
}
else
{
for (int _channels = 0; _channels < channels; ++_channels)
p_target[_channels] = 255;
}
}
// memcpy(rgb_image, odata, memsize);
memCopy(odata, rgb_image, memsize);
if (!ImageTMP)
{
free_psram_heap(std::string(TAG) + "->odata", odata);
}
if (ImageTMP)
ImageTMP->RGBImageRelease();
RGBImageRelease();
}
void CRotateImage::Rotate(float _angle)
{
// ESP_LOGD(TAG, "width %d, height %d", width, height);
Rotate(_angle, width / 2, height / 2);
}
void CRotateImage::RotateAntiAliasing(float _angle)
{
// ESP_LOGD(TAG, "width %d, height %d", width, height);
RotateAntiAliasing(_angle, width / 2, height / 2);
}
void CRotateImage::Translate(int _dx, int _dy)
{
int memsize = width * height * channels;
uint8_t* odata;
if (ImageTMP)
{
odata = ImageTMP->RGBImageLock();
}
else
{
odata = (unsigned char*)malloc_psram_heap(std::string(TAG) + "->odata", memsize, MALLOC_CAP_SPIRAM);
}
int x_source, y_source;
stbi_uc* p_target;
stbi_uc* p_source;
RGBImageLock();
for (int x = 0; x < width; ++x)
for (int y = 0; y < height; ++y)
{
p_target = odata + (channels * (y * width + x));
x_source = x - _dx;
y_source = y - _dy;
if ((x_source >= 0) && (x_source < width) && (y_source >= 0) && (y_source < height))
{
p_source = rgb_image + (channels * (y_source * width + x_source));
for (int _channels = 0; _channels < channels; ++_channels)
p_target[_channels] = p_source[_channels];
}
else
{
for (int _channels = 0; _channels < channels; ++_channels)
p_target[_channels] = 255;
}
}
// memcpy(rgb_image, odata, memsize);
memCopy(odata, rgb_image, memsize);
if (!ImageTMP)
{
free_psram_heap(std::string(TAG) + "->odata", odata);
}
if (ImageTMP)
{
ImageTMP->RGBImageRelease();
}
RGBImageRelease();
}

View File

@@ -1,29 +1,28 @@
#pragma once
#ifndef CROTATEIMAGE_H
#define CROTATEIMAGE_H
#include "CImageBasis.h"
class CRotateImage: public CImageBasis
{
public:
CImageBasis *ImageTMP, *ImageOrg;
bool doflip;
CRotateImage(std::string name, std::string _image, bool _flip = false) : CImageBasis(name, _image) {ImageTMP = NULL; ImageOrg = NULL; doflip = _flip;};
CRotateImage(std::string name, uint8_t* _rgb_image, int _channels, int _width, int _height, int _bpp, bool _flip = false) : CImageBasis(name, _rgb_image, _channels, _width, _height, _bpp) {ImageTMP = NULL; ImageOrg = NULL; doflip = _flip;};
CRotateImage(std::string name, CImageBasis *_org, CImageBasis *_temp, bool _flip = false);
void Rotate(float _angle);
void RotateAntiAliasing(float _angle);
void Rotate(float _angle, int _centerx, int _centery);
void RotateAntiAliasing(float _angle, int _centerx, int _centery);
void Translate(int _dx, int _dy);
void Mirror();
};
#pragma once
#ifndef CROTATEIMAGE_H
#define CROTATEIMAGE_H
#include "CImageBasis.h"
class CRotateImage: public CImageBasis
{
public:
CImageBasis *ImageTMP, *ImageOrg;
bool doflip;
CRotateImage(std::string name, std::string _image, bool _flip = false) : CImageBasis(name, _image) {ImageTMP = NULL; ImageOrg = NULL; doflip = _flip;};
CRotateImage(std::string name, uint8_t* _rgb_image, int _channels, int _width, int _height, int _bpp, bool _flip = false) : CImageBasis(name, _rgb_image, _channels, _width, _height, _bpp) {ImageTMP = NULL; ImageOrg = NULL; doflip = _flip;};
CRotateImage(std::string name, CImageBasis *_org, CImageBasis *_temp, bool _flip = false);
void Rotate(float _angle);
void RotateAntiAliasing(float _angle);
void Rotate(float _angle, int _centerx, int _centery);
void RotateAntiAliasing(float _angle, int _centerx, int _centery);
void Translate(int _dx, int _dy);
};
#endif //CROTATEIMAGE_H

View File

@@ -32,7 +32,7 @@ void ClassLogFile::WriteHeapInfo(std::string _id)
}
void ClassLogFile::WriteToData(std::string _timestamp, std::string _name, std::string _ReturnRawValue, std::string _ReturnValue, std::string _ReturnPreValue, std::string _ReturnRateValue, std::string _ReturnChangeAbsolute, std::string _ErrorMessageText, std::string _digital, std::string _analog)
void ClassLogFile::WriteToData(std::string _timestamp, std::string _name, std::string _ReturnRawValue, std::string _ReturnValue, std::string _ReturnPreValue, std::string _ReturnRateValue, std::string _ReturnChangeAbsolute, std::string _ErrorMessageText, std::string _digit, std::string _analog)
{
ESP_LOGD(TAG, "Start WriteToData");
time_t rawtime;
@@ -67,7 +67,7 @@ void ClassLogFile::WriteToData(std::string _timestamp, std::string _name, std::s
fputs(_ReturnChangeAbsolute.c_str(), pFile);
fputs(",", pFile);
fputs(_ErrorMessageText.c_str(), pFile);
fputs(_digital.c_str(), pFile);
fputs(_digit.c_str(), pFile);
fputs(_analog.c_str(), pFile);
fputs("\n", pFile);

View File

@@ -39,8 +39,8 @@ public:
void RemoveOldLogFile();
void RemoveOldDataLog();
// void WriteToData(std::string _ReturnRawValue, std::string _ReturnValue, std::string _ReturnPreValue, std::string _ErrorMessageText, std::string _digital, std::string _analog);
void WriteToData(std::string _timestamp, std::string _name, std::string _ReturnRawValue, std::string _ReturnValue, std::string _ReturnPreValue, std::string _ReturnRateValue, std::string _ReturnChangeAbsolute, std::string _ErrorMessageText, std::string _digital, std::string _analog);
// void WriteToData(std::string _ReturnRawValue, std::string _ReturnValue, std::string _ReturnPreValue, std::string _ErrorMessageText, std::string _digit, std::string _analog);
void WriteToData(std::string _timestamp, std::string _name, std::string _ReturnRawValue, std::string _ReturnValue, std::string _ReturnPreValue, std::string _ReturnRateValue, std::string _ReturnChangeAbsolute, std::string _ErrorMessageText, std::string _digit, std::string _analog);
std::string GetCurrentFileName();

View File

@@ -49,6 +49,15 @@ void mqttServer_setMeterType(std::string _meterType, std::string _valueUnit, std
rateUnit = _rateUnit;
}
/**
* Takes any multi-level MQTT-topic and returns the last topic level as nodeId
* see https://www.hivemq.com/blog/mqtt-essentials-part-5-mqtt-topics-best-practices/ for details about MQTT topics
*/
std::string createNodeId(std::string &topic) {
auto splitPos = topic.find_last_of('/');
return (splitPos == std::string::npos) ? topic : topic.substr(splitPos + 1);
}
bool sendHomeAssistantDiscoveryTopic(std::string group, std::string field,
std::string name, std::string icon, std::string unit, std::string deviceClass, std::string stateClass, std::string entityCategory,
int qos) {
@@ -69,11 +78,18 @@ bool sendHomeAssistantDiscoveryTopic(std::string group, std::string field,
name = group + " " + name;
}
/**
* homeassistant needs the MQTT discovery topic according to the following structure:
* <discovery_prefix>/<component>/[<node_id>/]<object_id>/config
* if the main topic is embedded in a nested structure, we just use the last part as node_id
* This means a maintopic "home/test/watermeter" is transformed to the discovery topic "homeassistant/sensor/watermeter/..."
*/
std::string node_id = createNodeId(maintopic);
if (field == "problem") { // Special binary sensor which is based on error topic
topicFull = "homeassistant/binary_sensor/" + maintopic + "/" + configTopic + "/config";
topicFull = "homeassistant/binary_sensor/" + node_id + "/" + configTopic + "/config";
}
else {
topicFull = "homeassistant/sensor/" + maintopic + "/" + configTopic + "/config";
topicFull = "homeassistant/sensor/" + node_id + "/" + configTopic + "/config";
}
/* See https://www.home-assistant.io/docs/mqtt/discovery/ */
@@ -172,10 +188,10 @@ bool MQTThomeassistantDiscovery(int qos) {
allSendsSuccessed |= sendHomeAssistantDiscoveryTopic(group, "value", "Value", "gauge", valueUnit, meterType, "total_increasing", "", qos);
allSendsSuccessed |= sendHomeAssistantDiscoveryTopic(group, "raw", "Raw Value", "raw", "", "", "", "diagnostic", qos);
allSendsSuccessed |= sendHomeAssistantDiscoveryTopic(group, "error", "Error", "alert-circle-outline", "", "", "", "diagnostic", qos);
/* Not announcing "rate" as it is better to use rate_per_time_unit resp. rate_per_digitalization_round */
/* Not announcing "rate" as it is better to use rate_per_time_unit resp. rate_per_Digitization_round */
// allSendsSuccessed |= sendHomeAssistantDiscoveryTopic(group, "rate", "Rate (Unit/Minute)", "swap-vertical", "", "", "", ""); // Legacy, always Unit per Minute
allSendsSuccessed |= sendHomeAssistantDiscoveryTopic(group, "rate_per_time_unit", "Rate (" + rateUnit + ")", "swap-vertical", rateUnit, "", "measurement", "", qos);
allSendsSuccessed |= sendHomeAssistantDiscoveryTopic(group, "rate_per_digitalization_round", "Change since last digitalization round", "arrow-expand-vertical", valueUnit, "", "measurement", "", qos); // correctly the Unit is Unit/Interval!
allSendsSuccessed |= sendHomeAssistantDiscoveryTopic(group, "rate_per_Digitization_round", "Change since last Digitization round", "arrow-expand-vertical", valueUnit, "", "measurement", "", qos); // correctly the Unit is Unit/Interval!
allSendsSuccessed |= sendHomeAssistantDiscoveryTopic(group, "timestamp", "Timestamp", "clock-time-eight-outline", "", "timestamp", "", "diagnostic", qos);
allSendsSuccessed |= sendHomeAssistantDiscoveryTopic(group, "json", "JSON", "code-json", "", "", "", "diagnostic", qos);
allSendsSuccessed |= sendHomeAssistantDiscoveryTopic(group, "problem", "Problem", "alert-outline", "", "problem", "", "", qos); // Special binary sensor which is based on error topic

View File

@@ -22,6 +22,7 @@ std::string getTimeUnit(void);
void GotConnected(std::string maintopic, bool SetRetainFlag);
esp_err_t sendDiscovery_and_static_Topics(void);
std::string createNodeId(std::string &topic);
#endif //SERVERMQTT_H
#endif //ENABLE_MQTT

View File

@@ -206,6 +206,7 @@ bool CTfLiteClass::MakeAllocate()
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "CTfLiteClass::MakeAllocate");
this->interpreter = new tflite::MicroInterpreter(this->model, resolver, this->tensor_arena, this->kTensorArenaSize);
LogFile.WriteToFile(ESP_LOG_INFO, TAG, "Trying to load the model. If it crashes here, it ist most likely due to a corrupted model!");
if (this->interpreter)
{

View File

@@ -0,0 +1,7 @@
FILE(GLOB_RECURSE app_sources ${CMAKE_CURRENT_SOURCE_DIR}/*.*)
idf_component_register(SRCS ${app_sources}
INCLUDE_DIRS "."
REQUIRES esp_http_client jomjol_logfile jomjol_flowcontroll json)

View File

@@ -0,0 +1,170 @@
#ifdef ENABLE_WEBHOOK
#include "interface_webhook.h"
#include "esp_log.h"
#include <time.h>
#include "ClassLogFile.h"
#include "esp_http_client.h"
#include "time_sntp.h"
#include "../../include/defines.h"
#include <cJSON.h>
#include <ClassFlowDefineTypes.h>
static const char *TAG = "WEBHOOK";
std::string _webhookURI;
std::string _webhookApiKey;
long _lastTimestamp;
static esp_err_t http_event_handler(esp_http_client_event_t *evt);
void WebhookInit(std::string _uri, std::string _apiKey)
{
_webhookURI = _uri;
_webhookApiKey = _apiKey;
_lastTimestamp = 0L;
}
bool WebhookPublish(std::vector<NumberPost*>* numbers)
{
bool numbersWithError = false;
cJSON *jsonArray = cJSON_CreateArray();
for (int i = 0; i < (*numbers).size(); ++i)
{
string timezw = "";
char buffer[80];
time_t &lastPreValue = (*numbers)[i]->timeStampLastPreValue;
struct tm* timeinfo = localtime(&lastPreValue);
_lastTimestamp = static_cast<long>(lastPreValue);
strftime(buffer, 80, PREVALUE_TIME_FORMAT_OUTPUT, timeinfo);
timezw = std::string(buffer);
cJSON *json = cJSON_CreateObject();
cJSON_AddStringToObject(json, "timestamp", timezw.c_str());
cJSON_AddStringToObject(json, "timestampLong", std::to_string(_lastTimestamp).c_str());
cJSON_AddStringToObject(json, "name", (*numbers)[i]->name.c_str());
cJSON_AddStringToObject(json, "rawValue", (*numbers)[i]->ReturnRawValue.c_str());
cJSON_AddStringToObject(json, "value", (*numbers)[i]->ReturnValue.c_str());
cJSON_AddStringToObject(json, "preValue", (*numbers)[i]->ReturnPreValue.c_str());
cJSON_AddStringToObject(json, "rate", (*numbers)[i]->ReturnRateValue.c_str());
cJSON_AddStringToObject(json, "changeAbsolute", (*numbers)[i]->ReturnChangeAbsolute.c_str());
cJSON_AddStringToObject(json, "error", (*numbers)[i]->ErrorMessageText.c_str());
cJSON_AddItemToArray(jsonArray, json);
if ((*numbers)[i]->ErrorMessage) {
numbersWithError = true;
}
}
char *jsonString = cJSON_PrintUnformatted(jsonArray);
LogFile.WriteToFile(ESP_LOG_INFO, TAG, "sending webhook");
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "sending JSON: " + std::string(jsonString));
char response_buffer[MAX_HTTP_OUTPUT_BUFFER] = {0};
esp_http_client_config_t http_config = {
.url = _webhookURI.c_str(),
.user_agent = "ESP32 Meter reader",
.method = HTTP_METHOD_POST,
.event_handler = http_event_handler,
.buffer_size = MAX_HTTP_OUTPUT_BUFFER,
.user_data = response_buffer
};
esp_http_client_handle_t http_client = esp_http_client_init(&http_config);
esp_http_client_set_header(http_client, "Content-Type", "application/json");
esp_http_client_set_header(http_client, "APIKEY", _webhookApiKey.c_str());
ESP_ERROR_CHECK(esp_http_client_set_post_field(http_client, jsonString, strlen(jsonString)));
esp_err_t err = ESP_ERROR_CHECK_WITHOUT_ABORT(esp_http_client_perform(http_client));
if(err == ESP_OK) {
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "HTTP request was performed");
int status_code = esp_http_client_get_status_code(http_client);
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "HTTP status code: " + std::to_string(status_code));
} else {
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "HTTP request failed");
}
esp_http_client_cleanup(http_client);
cJSON_Delete(jsonArray);
free(jsonString);
return numbersWithError;
}
void WebhookUploadPic(ImageData *Img) {
LogFile.WriteToFile(ESP_LOG_INFO, TAG, "Starting WebhookUploadPic");
std::string fullURI = _webhookURI + "?timestamp=" + std::to_string(_lastTimestamp);
char response_buffer[MAX_HTTP_OUTPUT_BUFFER] = {0};
esp_http_client_config_t http_config = {
.url = fullURI.c_str(),
.user_agent = "ESP32 Meter reader",
.method = HTTP_METHOD_PUT,
.event_handler = http_event_handler,
.buffer_size = MAX_HTTP_OUTPUT_BUFFER,
.user_data = response_buffer
};
esp_http_client_handle_t http_client = esp_http_client_init(&http_config);
esp_http_client_set_header(http_client, "Content-Type", "image/jpeg");
esp_http_client_set_header(http_client, "APIKEY", _webhookApiKey.c_str());
esp_err_t err = ESP_ERROR_CHECK_WITHOUT_ABORT(esp_http_client_set_post_field(http_client, (const char *)Img->data, Img->size));
err = ESP_ERROR_CHECK_WITHOUT_ABORT(esp_http_client_perform(http_client));
if (err == ESP_OK) {
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "HTTP PUT request was performed successfully");
int status_code = esp_http_client_get_status_code(http_client);
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "HTTP status code: " + std::to_string(status_code));
} else {
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "HTTP PUT request failed");
}
esp_http_client_cleanup(http_client);
LogFile.WriteToFile(ESP_LOG_INFO, TAG, "WebhookUploadPic finished");
}
static esp_err_t http_event_handler(esp_http_client_event_t *evt)
{
switch(evt->event_id)
{
case HTTP_EVENT_ERROR:
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "HTTP Client Error encountered");
break;
case HTTP_EVENT_ON_CONNECTED:
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "HTTP Client connected");
ESP_LOGI(TAG, "HTTP Client Connected");
break;
case HTTP_EVENT_HEADERS_SENT:
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "HTTP Client sent all request headers");
break;
case HTTP_EVENT_ON_HEADER:
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "Header: key=" + std::string(evt->header_key) + ", value=" + std::string(evt->header_value));
break;
case HTTP_EVENT_ON_DATA:
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "HTTP Client data recevied: len=" + std::to_string(evt->data_len));
break;
case HTTP_EVENT_ON_FINISH:
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "HTTP Client finished");
break;
case HTTP_EVENT_DISCONNECTED:
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "HTTP Client Disconnected");
break;
case HTTP_EVENT_REDIRECT:
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "HTTP Redirect");
break;
}
return ESP_OK;
}
#endif //ENABLE_WEBHOOK

View File

@@ -0,0 +1,17 @@
#ifdef ENABLE_WEBHOOK
#pragma once
#ifndef INTERFACE_WEBHOOK_H
#define INTERFACE_WEBHOOK_H
#include <string>
#include <map>
#include <functional>
#include <ClassFlowDefineTypes.h>
void WebhookInit(std::string _webhookURI, std::string _apiKey);
bool WebhookPublish(std::vector<NumberPost*>* numbers);
void WebhookUploadPic(ImageData *Img);
#endif //INTERFACE_WEBHOOK_H
#endif //ENABLE_WEBHOOK

View File

@@ -480,7 +480,8 @@ static void event_handler(void* arg, esp_event_base_t event_base, int32_t event_
if (WIFIReconnectCnt >= 10) {
WIFIReconnectCnt = 0;
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "Disconnected, multiple reconnect attempts failed (" +
std::to_string(disconn->reason) + "), still retrying...");
std::to_string(disconn->reason) + "), retrying after 5s");
vTaskDelay(5000 / portTICK_PERIOD_MS); // Delay between the reconnections
}
}
else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_CONNECTED)

View File

@@ -0,0 +1,7 @@
FILE(GLOB_RECURSE app_sources ${CMAKE_CURRENT_SOURCE_DIR}/*.*)
idf_component_register(SRCS ${app_sources}
INCLUDE_DIRS "."
REQUIRES jomjol_image_proc)

View File

@@ -0,0 +1,43 @@
#include "openmetrics.h"
/**
* create a singe metric from the given input
**/
std::string createMetric(const std::string &metricName, const std::string &help, const std::string &type, const std::string &value)
{
return "# HELP " + metricName + " " + help + "\n" +
"# TYPE " + metricName + " " + type + "\n" +
metricName + " " + value + "\n";
}
/**
* Generate the MetricFamily from all available sequences
* @returns the string containing the text wire format of the MetricFamily
**/
std::string createSequenceMetrics(std::string prefix, const std::vector<NumberPost *> &numbers)
{
std::string res;
for (const auto &number : numbers)
{
// only valid data is reported (https://github.com/OpenObservability/OpenMetrics/blob/main/specification/OpenMetrics.md#missing-data)
if (number->ReturnValue.length() > 0)
{
auto label = number->name;
// except newline, double quote, and backslash (https://github.com/OpenObservability/OpenMetrics/blob/main/specification/OpenMetrics.md#abnf)
// to keep it simple, these characters are just removed from the label
replaceAll(label, "\\", "");
replaceAll(label, "\"", "");
replaceAll(label, "\n", "");
res += prefix + "_flow_value{sequence=\"" + label + "\"} " + number->ReturnValue + "\n";
}
}
// prepend metadata if a valid metric was created
if (res.length() > 0)
{
res = "# HELP " + prefix + "_flow_value current value of meter readout\n# TYPE " + prefix + "_flow_value gauge\n" + res;
}
return res;
}

View File

@@ -0,0 +1,15 @@
#pragma once
#ifndef OPENMETRICS_H
#define OPENMETRICS_H
#include <string>
#include <fstream>
#include <vector>
#include "ClassFlowDefineTypes.h"
std::string createMetric(const std::string &metricName, const std::string &help, const std::string &type, const std::string &value);
std::string createSequenceMetrics(std::string prefix, const std::vector<NumberPost *> &numbers);
#endif // OPENMETRICS_H