Camera settings (#3029)

* Add files via upload

* Add files via upload

* Add files via upload

* Add files via upload

* Add files via upload

* Add files via upload

* Add files via upload

* Add files via upload
This commit is contained in:
michael
2024-04-11 21:12:40 +02:00
committed by GitHub
parent 8481cc4b26
commit 88b531ae8b
55 changed files with 8096 additions and 5539 deletions

File diff suppressed because it is too large Load Diff

View File

@@ -15,66 +15,100 @@
#include "CImageBasis.h"
#include "../../include/defines.h"
class CCamera {
protected:
int ActualQuality;
framesize_t ActualResolution;
int brightness, contrast, saturation, autoExposureLevel;
bool isFixedExposure;
int waitbeforepicture_org;
int led_intensity = 4095;
typedef enum
{
OV2640_MODE_UXGA,
OV2640_MODE_SVGA,
OV2640_MODE_CIF
} ov2640_sensor_mode_t;
void ledc_init(void);
bool CameraInitSuccessful = false;
bool demoMode = false;
typedef struct
{
framesize_t ImageFrameSize = FRAMESIZE_VGA; // 0 - 10
gainceiling_t ImageGainceiling; // Image gain (GAINCEILING_x2, x4, x8, x16, x32, x64 or x128)
bool loadNextDemoImage(camera_fb_t *fb);
long GetFileSize(std::string filename);
int ImageQuality; // 0 - 63
int ImageBrightness; // (-2 to 2) - set brightness
int ImageContrast; //-2 - 2
int ImageSaturation; //-2 - 2
int ImageSharpness; //-2 - 2
bool ImageAutoSharpness;
int ImageSpecialEffect; // 0 - 6
int ImageWbMode; // 0 to 4 - if awb_gain enabled (0 - Auto, 1 - Sunny, 2 - Cloudy, 3 - Office, 4 - Home)
int ImageAwb; // white balance enable (0 or 1)
int ImageAwbGain; // Auto White Balance enable (0 or 1)
int ImageAec; // auto exposure off (1 or 0)
int ImageAec2; // automatic exposure sensor (0 or 1)
int ImageAeLevel; // auto exposure levels (-2 to 2)
int ImageAecValue; // set exposure manually (0-1200)
int ImageAgc; // auto gain off (1 or 0)
int ImageAgcGain; // set gain manually (0 - 30)
int ImageBpc; // black pixel correction
int ImageWpc; // white pixel correction
int ImageRawGma; // (1 or 0)
int ImageLenc; // lens correction (1 or 0)
int ImageHmirror; // (0 or 1) flip horizontally
int ImageVflip; // Invert image (0 or 1)
int ImageDcw; // downsize enable (1 or 0)
void SetCamWindow(sensor_t *s, int resolution, int xOffset, int yOffset, int xLength, int yLength);
void SetImageWidthHeightFromResolution(framesize_t resol);
int ImageWidth;
int ImageHeight;
public:
int image_height, image_width;
bool imageZoomEnabled = false;
int imageZoomMode = 0;
int imageZoomOffsetX = 0;
int imageZoomOffsetY = 0;
bool imageNegative = false;
bool imageAec2 = false;
bool imageAutoSharpness = false;
int imageSharpnessLevel = 0;
#ifdef GRAYSCALE_AS_DEFAULT
bool imageGrayscale = true;
#else
bool imageGrayscale = false;
#endif
CCamera();
esp_err_t InitCam();
int ImageLedIntensity;
void LightOnOff(bool status);
void LEDOnOff(bool status);
esp_err_t CaptureToHTTP(httpd_req_t *req, int delay = 0);
esp_err_t CaptureToStream(httpd_req_t *req, bool FlashlightOn);
void SetQualitySize(int qual, framesize_t resol, bool zoomEnabled, int zoomMode, int zoomOffsetX, int zoomOffsetY);
bool SetBrightnessContrastSaturation(int _brightness, int _contrast, int _saturation, int _autoExposureLevel, bool _grayscale, bool _negative, bool _aec2, int _sharpnessLevel);
void SetZoom(bool zoomEnabled, int zoomMode, int zoomOffsetX, int zoomOffsetY);
void GetCameraParameter(httpd_req_t *req, int &qual, framesize_t &resol, bool &zoomEnabled, int &zoomMode, int &zoomOffsetX, int &zoomOffsetY);
void SetLEDIntensity(float _intrel);
bool testCamera(void);
void EnableAutoExposure(int flash_duration);
bool getCameraInitSuccessful();
void useDemoMode(void);
bool ImageZoomEnabled;
int ImageZoomMode;
int ImageZoomOffsetX;
int ImageZoomOffsetY;
int ImageZoomSize;
framesize_t TextToFramesize(const char * text);
int WaitBeforePicture;
bool isImageSize;
esp_err_t CaptureToFile(std::string nm, int delay = 0);
esp_err_t CaptureToBasisImage(CImageBasis *_Image, int delay = 0);
bool CameraInitSuccessful;
bool changedCameraSettings;
bool DemoMode;
bool SaveAllFiles;
} camera_controll_config_temp_t;
extern camera_controll_config_temp_t CCstatus;
class CCamera
{
protected:
void ledc_init(void);
bool loadNextDemoImage(camera_fb_t *fb);
long GetFileSize(std::string filename);
void SetCamWindow(sensor_t *s, int resolution, int xOffset, int yOffset, int xTotal, int yTotal, int xOutput, int yOutput);
void SetImageWidthHeightFromResolution(framesize_t resol);
public:
CCamera(void);
esp_err_t InitCam(void);
void LightOnOff(bool status);
void LEDOnOff(bool status);
esp_err_t setSensorDatenFromCCstatus(void);
esp_err_t getSensorDatenToCCstatus(void);
esp_err_t CaptureToHTTP(httpd_req_t *req, int delay = 0);
esp_err_t CaptureToStream(httpd_req_t *req, bool FlashlightOn);
void SetQualityZoomSize(int qual, framesize_t resol, bool zoomEnabled, int zoomOffsetX, int zoomOffsetY, int imageSize);
void SetZoomSize(bool zoomEnabled, int zoomOffsetX, int zoomOffsetY, int imageSize);
void SetCamSharpness(bool _autoSharpnessEnabled, int _sharpnessLevel);
void SetLEDIntensity(float _intrel);
bool testCamera(void);
bool getCameraInitSuccessful(void);
void useDemoMode(void);
framesize_t TextToFramesize(const char *text);
esp_err_t CaptureToFile(std::string nm, int delay = 0);
esp_err_t CaptureToBasisImage(CImageBasis *_Image, int delay = 0);
};
extern CCamera Camera;
#endif

View File

@@ -3,71 +3,78 @@
#include "ov2640_sharpness.h"
#define OV2640_MAXLEVEL_SHARPNESS 6
const static uint8_t OV2640_SHARPNESS_AUTO[]=
{
0xFF, 0x00, 0xff,
0x92, 0x01, 0xff,
//reg, val, mask
0xFF, 0x00, 0xFF,
0x92, 0x01, 0xFF,
0x93, 0x20, 0x20,
0x00, 0x00, 0x00
};
const static uint8_t OV2640_SHARPNESS_MANUAL[]=
{
0xFF, 0x00, 0xff,
0x92, 0x01, 0xff,
//reg, val, mask
0xFF, 0x00, 0xFF,
0x92, 0x01, 0xFF,
0x93, 0x00, 0x20,
0x00, 0x00, 0x00
};
const static uint8_t OV2640_SHARPNESS_LEVEL0[]=
{
0xFF, 0x00, 0xff,
0x92, 0x01, 0xff,
0x93, 0xc0, 0x1f,
//reg, val, mask
0xFF, 0x00, 0xFF,
0x92, 0x01, 0xFF,
0x93, 0xC0, 0x1F,
0x00, 0x00, 0x00
};
const static uint8_t OV2640_SHARPNESS_LEVEL1[]=
{
0xFF, 0x00, 0xff,
0x92, 0x01, 0xff,
0x93, 0xc1, 0x1f,
//reg, val, mask
0xFF, 0x00, 0xFF,
0x92, 0x01, 0xFF,
0x93, 0xC1, 0x1F,
0x00, 0x00, 0x00
};
const static uint8_t OV2640_SHARPNESS_LEVEL2[]=
{
0xFF, 0x00, 0xff,
0x92, 0x01, 0xff,
0x93, 0xc2, 0x1f,
//reg, val, mask
0xFF, 0x00, 0xFF,
0x92, 0x01, 0xFF,
0x93, 0xC2, 0x1F,
0x00, 0x00, 0x00
};
const static uint8_t OV2640_SHARPNESS_LEVEL3[]=
{
0xFF, 0x00, 0xff,
0x92, 0x01, 0xff,
0x93, 0xc4, 0x1f,
//reg, val, mask
0xFF, 0x00, 0xFF,
0x92, 0x01, 0xFF,
0x93, 0xC4, 0x1F,
0x00, 0x00, 0x00
};
const static uint8_t OV2640_SHARPNESS_LEVEL4[]=
{
0xFF, 0x00, 0xff,
0x92, 0x01, 0xff,
0x93, 0xc8, 0x1f,
//reg, val, mask
0xFF, 0x00, 0xFF,
0x92, 0x01, 0xFF,
0x93, 0xC8, 0x1F,
0x00, 0x00, 0x00
};
const static uint8_t OV2640_SHARPNESS_LEVEL5[]=
{
0xFF, 0x00, 0xff,
0x92, 0x01, 0xff,
0x93, 0xd0, 0x1f,
//reg, val, mask
0xFF, 0x00, 0xFF,
0x92, 0x01, 0xFF,
0x93, 0xD0, 0x1F,
0x00, 0x00, 0x00
};
const static uint8_t OV2640_SHARPNESS_LEVEL6[]=
{
0xFF, 0x00, 0xff,
0x92, 0x01, 0xff,
0x93, 0xdf, 0x1f,
//reg, val, mask
0xFF, 0x00, 0xFF,
0x92, 0x01, 0xFF,
0x93, 0xDF, 0x1F,
0x00, 0x00, 0x00
};
@@ -82,6 +89,9 @@ const static uint8_t *OV2640_SETTING_SHARPNESS[]=
OV2640_SHARPNESS_LEVEL6 // +3 sharpness
};
#define OV2640_MAXLEVEL_SHARPNESS 6
static int table_mask_write(sensor_t *sensor, const uint8_t* ptab)
{
uint8_t address;
@@ -91,34 +101,52 @@ static int table_mask_write(sensor_t *sensor, const uint8_t* ptab)
const uint8_t *pdata = ptab;
if (pdata == NULL)
{
return -1;
}
while (1)
{
address = *pdata++;
value = *pdata++;
mask = *pdata++;
if ((address == 0) && (value == 0) && (mask == 0))
{
break;
}
sensor->set_reg(sensor, address, mask, value);
}
return 0;
}
int ov2640_enable_auto_sharpness(sensor_t *sensor)
{
table_mask_write(sensor, OV2640_SHARPNESS_AUTO);
return 0;
}
int ov2640_set_sharpness(sensor_t *sensor, int sharpness)
{
if ((sharpness < -3) || (sharpness > OV2640_MAXLEVEL_SHARPNESS - 3))
return -1;
int sharpness_temp = 0;
if (sharpness < -3)
{
sharpness_temp = -3;
}
if (sharpness > OV2640_MAXLEVEL_SHARPNESS - 3)
{
sharpness_temp = OV2640_MAXLEVEL_SHARPNESS - 3;
}
table_mask_write(sensor, OV2640_SHARPNESS_MANUAL);
table_mask_write(sensor, OV2640_SETTING_SHARPNESS[sharpness + 3]);
table_mask_write(sensor, OV2640_SETTING_SHARPNESS[sharpness_temp + 3]);
return 0;
}

View File

@@ -5,6 +5,7 @@
#include "esp_camera.h"
#include "ClassControllCamera.h"
#include "MainFlowControl.h"
#include "ClassLogFile.h"
#include "esp_log.h"
@@ -13,191 +14,183 @@
static const char *TAG = "server_cam";
void PowerResetCamera()
{
ESP_LOGD(TAG, "Resetting camera by power down line");
gpio_config_t conf;
conf.intr_type = GPIO_INTR_DISABLE;
conf.pin_bit_mask = 1LL << GPIO_NUM_32;
conf.mode = GPIO_MODE_OUTPUT;
conf.pull_down_en = GPIO_PULLDOWN_DISABLE;
conf.pull_up_en = GPIO_PULLUP_DISABLE;
gpio_config(&conf);
void PowerResetCamera(){
ESP_LOGD(TAG, "Resetting camera by power down line");
gpio_config_t conf;
conf.intr_type = GPIO_INTR_DISABLE;
conf.pin_bit_mask = 1LL << GPIO_NUM_32;
conf.mode = GPIO_MODE_OUTPUT;
conf.pull_down_en = GPIO_PULLDOWN_DISABLE;
conf.pull_up_en = GPIO_PULLUP_DISABLE;
gpio_config(&conf);
// carefull, logic is inverted compared to reset pin
gpio_set_level(GPIO_NUM_32, 1);
vTaskDelay(1000 / portTICK_PERIOD_MS);
gpio_set_level(GPIO_NUM_32, 0);
vTaskDelay(1000 / portTICK_PERIOD_MS);
// carefull, logic is inverted compared to reset pin
gpio_set_level(GPIO_NUM_32, 1);
vTaskDelay(1000 / portTICK_PERIOD_MS);
gpio_set_level(GPIO_NUM_32, 0);
vTaskDelay(1000 / portTICK_PERIOD_MS);
}
esp_err_t handler_lightOn(httpd_req_t *req)
{
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("handler_lightOn - Start");
ESP_LOGD(TAG, "handler_lightOn uri: %s", req->uri);
#endif
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("handler_lightOn - Start");
ESP_LOGD(TAG, "handler_lightOn uri: %s", req->uri);
#endif
if (Camera.getCameraInitSuccessful())
if (Camera.getCameraInitSuccessful())
{
Camera.LightOnOff(true);
const char* resp_str = (const char*) req->user_ctx;
const char *resp_str = (const char *)req->user_ctx;
httpd_resp_send(req, resp_str, strlen(resp_str));
}
else
else
{
httpd_resp_send_err(req, HTTPD_403_FORBIDDEN, "Camera not initialized: REST API /lighton not available!");
return ESP_ERR_NOT_FOUND;
}
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("handler_lightOn - Done");
#endif
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("handler_lightOn - Done");
#endif
return ESP_OK;
}
esp_err_t handler_lightOff(httpd_req_t *req)
{
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("handler_lightOff - Start");
ESP_LOGD(TAG, "handler_lightOff uri: %s", req->uri);
#endif
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("handler_lightOff - Start");
ESP_LOGD(TAG, "handler_lightOff uri: %s", req->uri);
#endif
if (Camera.getCameraInitSuccessful())
if (Camera.getCameraInitSuccessful())
{
Camera.LightOnOff(false);
const char* resp_str = (const char*) req->user_ctx;
httpd_resp_send(req, resp_str, strlen(resp_str));
const char *resp_str = (const char *)req->user_ctx;
httpd_resp_send(req, resp_str, strlen(resp_str));
}
else
else
{
httpd_resp_send_err(req, HTTPD_403_FORBIDDEN, "Camera not initialized: REST API /lightoff not available!");
return ESP_ERR_NOT_FOUND;
}
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("handler_lightOff - Done");
#endif
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("handler_lightOff - Done");
#endif
return ESP_OK;
}
esp_err_t handler_capture(httpd_req_t *req)
{
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("handler_capture - Start");
#endif
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("handler_capture - Start");
#endif
if (Camera.getCameraInitSuccessful())
if (Camera.getCameraInitSuccessful())
{
int quality;
framesize_t res;
bool zoomEnabled;
int zoomMode;
int zoomOffsetX;
int zoomOffsetY;
#ifdef DEBUG_DETAIL_ON
ESP_LOGD(TAG, "Size: %d, Quality: %d", res, quality);
#endif
Camera.GetCameraParameter(req, quality, res, zoomEnabled, zoomMode, zoomOffsetX, zoomOffsetY);
#ifdef DEBUG_DETAIL_ON
ESP_LOGD(TAG, "Size: %d, Quality: %d", res, quality);
#endif
Camera.SetQualitySize(quality, res, zoomEnabled, zoomMode, zoomOffsetX, zoomOffsetY);
// wenn die Kameraeinstellungen durch Erstellen eines neuen Referenzbildes verändert wurden, müssen sie neu gesetzt werden
if (CFstatus.changedCameraSettings)
{
Camera.setSensorDatenFromCCstatus(); // CCstatus >>> Kamera
Camera.SetQualityZoomSize(CCstatus.ImageQuality, CCstatus.ImageFrameSize, CCstatus.ImageZoomEnabled, CCstatus.ImageZoomOffsetX, CCstatus.ImageZoomOffsetY, CCstatus.ImageZoomSize);
CFstatus.changedCameraSettings = false;
}
esp_err_t result;
result = Camera.CaptureToHTTP(req);
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("handler_capture - Done");
#endif
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("handler_capture - Done");
#endif
return result;
}
else
else
{
httpd_resp_send_err(req, HTTPD_403_FORBIDDEN, "Camera not initialized: REST API /capture not available!");
return ESP_ERR_NOT_FOUND;
}
}
esp_err_t handler_capture_with_light(httpd_req_t *req)
{
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("handler_capture_with_light - Start");
#endif
if (Camera.getCameraInitSuccessful())
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("handler_capture_with_light - Start");
#endif
if (Camera.getCameraInitSuccessful())
{
char _query[100];
char _delay[10];
int quality;
framesize_t res;
bool zoomEnabled;
int zoomMode;
int zoomOffsetX;
int zoomOffsetY;
int delay = 2500;
if (httpd_req_get_url_query_str(req, _query, 100) == ESP_OK)
{
ESP_LOGD(TAG, "Query: %s", _query);
if (httpd_query_key_value(_query, "delay", _delay, 10) == ESP_OK)
{
#ifdef DEBUG_DETAIL_ON
ESP_LOGD(TAG, "Delay: %s", _delay);
#endif
#ifdef DEBUG_DETAIL_ON
ESP_LOGD(TAG, "Delay: %s", _delay);
#endif
delay = atoi(_delay);
if (delay < 0)
{
delay = 0;
}
}
}
Camera.GetCameraParameter(req, quality, res, zoomEnabled, zoomMode, zoomOffsetX, zoomOffsetY);
#ifdef DEBUG_DETAIL_ON
ESP_LOGD(TAG, "Size: %d, Quality: %d", res, quality);
#endif
#ifdef DEBUG_DETAIL_ON
ESP_LOGD(TAG, "Size: %d, Quality: %d", res, quality);
#endif
// wenn die Kameraeinstellungen durch Erstellen eines neuen Referenzbildes verändert wurden, müssen sie neu gesetzt werden
if (CFstatus.changedCameraSettings)
{
Camera.setSensorDatenFromCCstatus(); // CCstatus >>> Kamera
Camera.SetQualityZoomSize(CCstatus.ImageQuality, CCstatus.ImageFrameSize, CCstatus.ImageZoomEnabled, CCstatus.ImageZoomOffsetX, CCstatus.ImageZoomOffsetY, CCstatus.ImageZoomSize);
CFstatus.changedCameraSettings = false;
}
Camera.SetQualitySize(quality, res, zoomEnabled, zoomMode, zoomOffsetX, zoomOffsetY);
Camera.LightOnOff(true);
const TickType_t xDelay = delay / portTICK_PERIOD_MS;
vTaskDelay( xDelay );
vTaskDelay(xDelay);
esp_err_t result;
result = Camera.CaptureToHTTP(req);
result = Camera.CaptureToHTTP(req);
Camera.LightOnOff(false);
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("handler_capture_with_light - Done");
#endif
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("handler_capture_with_light - Done");
#endif
return result;
}
else
else
{
httpd_resp_send_err(req, HTTPD_403_FORBIDDEN, "Camera not initialized: REST API /capture_with_flashlight not available!");
return ESP_ERR_NOT_FOUND;
}
}
esp_err_t handler_capture_save_to_file(httpd_req_t *req)
{
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("handler_capture_save_to_file - Start");
#endif
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("handler_capture_save_to_file - Start");
#endif
if (Camera.getCameraInitSuccessful())
if (Camera.getCameraInitSuccessful())
{
char _query[100];
char _delay[10];
@@ -205,98 +198,102 @@ esp_err_t handler_capture_save_to_file(httpd_req_t *req)
char filename[100];
std::string fn = "/sdcard/";
int quality;
framesize_t res;
bool zoomEnabled;
int zoomMode;
int zoomOffsetX;
int zoomOffsetY;
if (httpd_req_get_url_query_str(req, _query, 100) == ESP_OK)
{
ESP_LOGD(TAG, "Query: %s", _query);
if (httpd_query_key_value(_query, "filename", filename, 100) == ESP_OK)
{
fn.append(filename);
#ifdef DEBUG_DETAIL_ON
ESP_LOGD(TAG, "Filename: %s", fn.c_str());
#endif
#ifdef DEBUG_DETAIL_ON
ESP_LOGD(TAG, "Filename: %s", fn.c_str());
#endif
}
else
{
fn.append("noname.jpg");
}
if (httpd_query_key_value(_query, "delay", _delay, 10) == ESP_OK)
{
#ifdef DEBUG_DETAIL_ON
ESP_LOGD(TAG, "Delay: %s", _delay);
#endif
#ifdef DEBUG_DETAIL_ON
ESP_LOGD(TAG, "Delay: %s", _delay);
#endif
delay = atoi(_delay);
if (delay < 0)
{
delay = 0;
}
}
}
else
{
fn.append("noname.jpg");
}
Camera.GetCameraParameter(req, quality, res, zoomEnabled, zoomMode, zoomOffsetX, zoomOffsetY);
#ifdef DEBUG_DETAIL_ON
ESP_LOGD(TAG, "Size: %d, Quality: %d", res, quality);
#endif
Camera.SetQualitySize(quality, res, zoomEnabled, zoomMode, zoomOffsetX, zoomOffsetY);
#ifdef DEBUG_DETAIL_ON
ESP_LOGD(TAG, "Size: %d, Quality: %d", res, quality);
#endif
// wenn die Kameraeinstellungen durch Erstellen eines neuen Referenzbildes verändert wurden, müssen sie neu gesetzt werden
if (CFstatus.changedCameraSettings)
{
Camera.setSensorDatenFromCCstatus(); // CCstatus >>> Kamera
Camera.SetQualityZoomSize(CCstatus.ImageQuality, CCstatus.ImageFrameSize, CCstatus.ImageZoomEnabled, CCstatus.ImageZoomOffsetX, CCstatus.ImageZoomOffsetY, CCstatus.ImageZoomSize);
CFstatus.changedCameraSettings = false;
}
esp_err_t result;
result = Camera.CaptureToFile(fn, delay);
result = Camera.CaptureToFile(fn, delay);
const char* resp_str = (const char*) fn.c_str();
const char *resp_str = (const char *)fn.c_str();
httpd_resp_send(req, resp_str, strlen(resp_str));
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("handler_capture_save_to_file - Done");
#endif
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("handler_capture_save_to_file - Done");
#endif
return result;
}
else
else
{
httpd_resp_send_err(req, HTTPD_403_FORBIDDEN, "Camera not initialized: REST API /save not available!");
return ESP_ERR_NOT_FOUND;
}
}
void register_server_camera_uri(httpd_handle_t server)
{
#ifdef DEBUG_DETAIL_ON
#ifdef DEBUG_DETAIL_ON
ESP_LOGI(TAG, "server_part_camera - Registering URI handlers");
#endif
httpd_uri_t camuri = { };
camuri.method = HTTP_GET;
httpd_uri_t camuri = {};
camuri.method = HTTP_GET;
camuri.uri = "/lighton";
camuri.handler = handler_lightOn;
camuri.user_ctx = (void*) "Light On";
camuri.uri = "/lighton";
camuri.handler = handler_lightOn;
camuri.user_ctx = (void *)"Light On";
httpd_register_uri_handler(server, &camuri);
camuri.uri = "/lightoff";
camuri.handler = handler_lightOff;
camuri.user_ctx = (void*) "Light Off";
httpd_register_uri_handler(server, &camuri);
camuri.uri = "/lightoff";
camuri.handler = handler_lightOff;
camuri.user_ctx = (void *)"Light Off";
httpd_register_uri_handler(server, &camuri);
camuri.uri = "/capture";
camuri.handler = handler_capture;
camuri.user_ctx = NULL;
httpd_register_uri_handler(server, &camuri);
camuri.uri = "/capture";
camuri.handler = handler_capture;
camuri.user_ctx = NULL;
httpd_register_uri_handler(server, &camuri);
camuri.uri = "/capture_with_flashlight";
camuri.handler = handler_capture_with_light;
camuri.user_ctx = NULL;
httpd_register_uri_handler(server, &camuri);
camuri.uri = "/capture_with_flashlight";
camuri.handler = handler_capture_with_light;
camuri.user_ctx = NULL;
httpd_register_uri_handler(server, &camuri);
camuri.uri = "/save";
camuri.handler = handler_capture_save_to_file;
camuri.user_ctx = NULL;
httpd_register_uri_handler(server, &camuri);
camuri.uri = "/save";
camuri.handler = handler_capture_save_to_file;
camuri.user_ctx = NULL;
httpd_register_uri_handler(server, &camuri);
}

View File

@@ -10,7 +10,6 @@
//#include "ClassControllCamera.h"
void register_server_camera_uri(httpd_handle_t server);
void PowerResetCamera();
#endif

View File

@@ -1,393 +1,402 @@
#include "ClassFlowAlignment.h"
#include "ClassFlowTakeImage.h"
#include "ClassFlow.h"
#include "MainFlowControl.h"
#include "CRotateImage.h"
#include "esp_log.h"
#include "ClassLogFile.h"
#include "psram.h"
#include "../../include/defines.h"
static const char *TAG = "ALIGN";
// #define DEBUG_DETAIL_ON
void ClassFlowAlignment::SetInitialParameter(void)
{
initialrotate = 0;
anz_ref = 0;
initialmirror = false;
use_antialiasing = false;
initialflip = false;
SaveAllFiles = false;
namerawimage = "/sdcard/img_tmp/raw.jpg";
FileStoreRefAlignment = "/sdcard/config/align.txt";
ListFlowControll = NULL;
AlignAndCutImage = NULL;
ImageBasis = NULL;
ImageTMP = NULL;
#ifdef ALGROI_LOAD_FROM_MEM_AS_JPG
AlgROI = (ImageData*)malloc_psram_heap(std::string(TAG) + "->AlgROI", sizeof(ImageData), MALLOC_CAP_8BIT | MALLOC_CAP_SPIRAM);
#endif
previousElement = NULL;
disabled = false;
SAD_criteria = 0.05;
}
ClassFlowAlignment::ClassFlowAlignment(std::vector<ClassFlow*>* lfc)
{
SetInitialParameter();
ListFlowControll = lfc;
for (int i = 0; i < ListFlowControll->size(); ++i)
{
if (((*ListFlowControll)[i])->name().compare("ClassFlowTakeImage") == 0)
{
ImageBasis = ((ClassFlowTakeImage*) (*ListFlowControll)[i])->rawImage;
}
}
if (!ImageBasis) // the function take pictures does not exist --> must be created first ONLY FOR TEST PURPOSES
{
ESP_LOGD(TAG, "CImageBasis had to be created");
ImageBasis = new CImageBasis("ImageBasis", namerawimage);
}
}
bool ClassFlowAlignment::ReadParameter(FILE* pfile, string& aktparamgraph)
{
std::vector<string> splitted;
int suchex = 40;
int suchey = 40;
int alg_algo = 0; //default=0; 1 =HIGHACCURACY; 2= FAST; 3= OFF //add disable aligment algo |01.2023
aktparamgraph = trim(aktparamgraph);
if (aktparamgraph.size() == 0)
if (!this->GetNextParagraph(pfile, aktparamgraph))
return false;
if (aktparamgraph.compare("[Alignment]") != 0) //Paragraph does not fit Alignment
return false;
while (this->getNextLine(pfile, &aktparamgraph) && !this->isNewParagraph(aktparamgraph))
{
splitted = ZerlegeZeile(aktparamgraph);
if ((toUpper(splitted[0]) == "FLIPIMAGESIZE") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
initialflip = true;
}
if ((toUpper(splitted[0]) == "INITIALMIRROR") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
initialmirror = true;
}
if (((toUpper(splitted[0]) == "initialrotate") || (toUpper(splitted[0]) == "INITIALROTATE")) && (splitted.size() > 1))
{
this->initialrotate = std::stod(splitted[1]);
}
if ((toUpper(splitted[0]) == "SEARCHFIELDX") && (splitted.size() > 1))
{
suchex = std::stod(splitted[1]);
}
if ((toUpper(splitted[0]) == "SEARCHFIELDY") && (splitted.size() > 1))
{
suchey = std::stod(splitted[1]);
}
if ((toUpper(splitted[0]) == "ANTIALIASING") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
use_antialiasing = true;
}
if ((splitted.size() == 3) && (anz_ref < 2))
{
References[anz_ref].image_file = FormatFileName("/sdcard" + splitted[0]);
References[anz_ref].target_x = std::stod(splitted[1]);
References[anz_ref].target_y = std::stod(splitted[2]);
anz_ref++;
}
if ((toUpper(splitted[0]) == "SAVEALLFILES") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
SaveAllFiles = true;
}
if ((toUpper(splitted[0]) == "ALIGNMENTALGO") && (splitted.size() > 1))
{
#ifdef DEBUG_DETAIL_ON
std::string zw2 = "Alignment mode selected: " + splitted[1];
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, zw2);
#endif
if (toUpper(splitted[1]) == "HIGHACCURACY")
alg_algo = 1;
if (toUpper(splitted[1]) == "FAST")
alg_algo = 2;
if (toUpper(splitted[1]) == "OFF") //no align algo if set to 3 = off => no draw ref //add disable aligment algo |01.2023
alg_algo = 3;
}
}
for (int i = 0; i < anz_ref; ++i)
{
References[i].search_x = suchex;
References[i].search_y = suchey;
References[i].fastalg_SAD_criteria = SAD_criteria;
References[i].alignment_algo = alg_algo;
#ifdef DEBUG_DETAIL_ON
std::string zw2 = "Alignment mode written: " + std::to_string(alg_algo);
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, zw2);
#endif
}
//no align algo if set to 3 = off => no draw ref //add disable aligment algo |01.2023
if(References[0].alignment_algo != 3){
LoadReferenceAlignmentValues();
}
return true;
}
string ClassFlowAlignment::getHTMLSingleStep(string host)
{
string result;
result = "<p>Rotated Image: </p> <p><img src=\"" + host + "/img_tmp/rot.jpg\"></p>\n";
result = result + "<p>Found Alignment: </p> <p><img src=\"" + host + "/img_tmp/rot_roi.jpg\"></p>\n";
result = result + "<p>Aligned Image: </p> <p><img src=\"" + host + "/img_tmp/alg.jpg\"></p>\n";
return result;
}
bool ClassFlowAlignment::doFlow(string time)
{
#ifdef ALGROI_LOAD_FROM_MEM_AS_JPG
if (!AlgROI) // AlgROI needs to be allocated before ImageTMP to avoid heap fragmentation
{
AlgROI = (ImageData*)heap_caps_realloc(AlgROI, sizeof(ImageData), MALLOC_CAP_8BIT | MALLOC_CAP_SPIRAM);
if (!AlgROI)
{
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "Can't allocate AlgROI");
LogFile.WriteHeapInfo("ClassFlowAlignment-doFlow");
}
}
if (AlgROI)
{
ImageBasis->writeToMemoryAsJPG((ImageData*)AlgROI, 90);
}
#endif
if (!ImageTMP)
{
ImageTMP = new CImageBasis("tmpImage", ImageBasis); // Make sure the name does not get change, it is relevant for the PSRAM allocation!
if (!ImageTMP)
{
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "Can't allocate tmpImage -> Exec this round aborted!");
LogFile.WriteHeapInfo("ClassFlowAlignment-doFlow");
return false;
}
}
delete AlignAndCutImage;
AlignAndCutImage = new CAlignAndCutImage("AlignAndCutImage", ImageBasis, ImageTMP);
if (!AlignAndCutImage)
{
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "Can't allocate AlignAndCutImage -> Exec this round aborted!");
LogFile.WriteHeapInfo("ClassFlowAlignment-doFlow");
return false;
}
CRotateImage rt("rawImage", AlignAndCutImage, ImageTMP, initialflip);
if (initialflip)
{
int _zw = ImageBasis->height;
ImageBasis->height = ImageBasis->width;
ImageBasis->width = _zw;
_zw = ImageTMP->width;
ImageTMP->width = ImageTMP->height;
ImageTMP->height = _zw;
}
if (initialmirror)
{
ESP_LOGD(TAG, "do mirror");
rt.Mirror();
if (SaveAllFiles)
AlignAndCutImage->SaveToFile(FormatFileName("/sdcard/img_tmp/mirror.jpg"));
}
if ((initialrotate != 0) || initialflip)
{
if (use_antialiasing)
rt.RotateAntiAliasing(initialrotate);
else
rt.Rotate(initialrotate);
if (SaveAllFiles)
AlignAndCutImage->SaveToFile(FormatFileName("/sdcard/img_tmp/rot.jpg"));
}
//no align algo if set to 3 = off //add disable aligment algo |01.2023
if(References[0].alignment_algo != 3){
if (!AlignAndCutImage->Align(&References[0], &References[1]))
{
SaveReferenceAlignmentValues();
}
}// no align
#ifdef ALGROI_LOAD_FROM_MEM_AS_JPG
if (AlgROI) {
//no align algo if set to 3 = off => no draw ref //add disable aligment algo |01.2023
if(References[0].alignment_algo != 3){
DrawRef(ImageTMP);
}
flowctrl.DigitalDrawROI(ImageTMP);
flowctrl.AnalogDrawROI(ImageTMP);
ImageTMP->writeToMemoryAsJPG((ImageData*)AlgROI, 90);
}
#endif
if (SaveAllFiles)
{
AlignAndCutImage->SaveToFile(FormatFileName("/sdcard/img_tmp/alg.jpg"));
ImageTMP->SaveToFile(FormatFileName("/sdcard/img_tmp/alg_roi.jpg"));
}
// must be deleted to have memory space for loading tflite
delete ImageTMP;
ImageTMP = NULL;
//no align algo if set to 3 = off => no draw ref //add disable aligment algo |01.2023
if(References[0].alignment_algo != 3){
LoadReferenceAlignmentValues();
}
return true;
}
void ClassFlowAlignment::SaveReferenceAlignmentValues()
{
FILE* pFile;
std::string zwtime, zwvalue;
pFile = fopen(FileStoreRefAlignment.c_str(), "w");
if (strlen(zwtime.c_str()) == 0)
{
time_t rawtime;
struct tm* timeinfo;
char buffer[80];
time(&rawtime);
timeinfo = localtime(&rawtime);
strftime(buffer, 80, "%Y-%m-%dT%H:%M:%S", timeinfo);
zwtime = std::string(buffer);
}
fputs(zwtime.c_str(), pFile);
fputs("\n", pFile);
zwvalue = std::to_string(References[0].fastalg_x) + "\t" + std::to_string(References[0].fastalg_y);
zwvalue = zwvalue + "\t" +std::to_string(References[0].fastalg_SAD)+ "\t" +std::to_string(References[0].fastalg_min);
zwvalue = zwvalue + "\t" +std::to_string(References[0].fastalg_max)+ "\t" +std::to_string(References[0].fastalg_avg);
fputs(zwvalue.c_str(), pFile);
fputs("\n", pFile);
zwvalue = std::to_string(References[1].fastalg_x) + "\t" + std::to_string(References[1].fastalg_y);
zwvalue = zwvalue + "\t" +std::to_string(References[1].fastalg_SAD)+ "\t" +std::to_string(References[1].fastalg_min);
zwvalue = zwvalue + "\t" +std::to_string(References[1].fastalg_max)+ "\t" +std::to_string(References[1].fastalg_avg);
fputs(zwvalue.c_str(), pFile);
fputs("\n", pFile);
fclose(pFile);
}
bool ClassFlowAlignment::LoadReferenceAlignmentValues(void)
{
FILE* pFile;
char zw[1024];
string zwvalue;
std::vector<string> splitted;
pFile = fopen(FileStoreRefAlignment.c_str(), "r");
if (pFile == NULL)
return false;
fgets(zw, 1024, pFile);
ESP_LOGD(TAG, "%s", zw);
fgets(zw, 1024, pFile);
splitted = ZerlegeZeile(std::string(zw), " \t");
if (splitted.size() < 6)
{
fclose(pFile);
return false;
}
References[0].fastalg_x = stoi(splitted[0]);
References[0].fastalg_y = stoi(splitted[1]);
References[0].fastalg_SAD = stof(splitted[2]);
References[0].fastalg_min = stoi(splitted[3]);
References[0].fastalg_max = stoi(splitted[4]);
References[0].fastalg_avg = stof(splitted[5]);
fgets(zw, 1024, pFile);
splitted = ZerlegeZeile(std::string(zw));
if (splitted.size() < 6)
{
fclose(pFile);
return false;
}
References[1].fastalg_x = stoi(splitted[0]);
References[1].fastalg_y = stoi(splitted[1]);
References[1].fastalg_SAD = stof(splitted[2]);
References[1].fastalg_min = stoi(splitted[3]);
References[1].fastalg_max = stoi(splitted[4]);
References[1].fastalg_avg = stof(splitted[5]);
fclose(pFile);
/*#ifdef DEBUG_DETAIL_ON
std::string _zw = "\tLoadReferences[0]\tx,y:\t" + std::to_string(References[0].fastalg_x) + "\t" + std::to_string(References[0].fastalg_x);
_zw = _zw + "\tSAD, min, max, avg:\t" + std::to_string(References[0].fastalg_SAD) + "\t" + std::to_string(References[0].fastalg_min);
_zw = _zw + "\t" + std::to_string(References[0].fastalg_max) + "\t" + std::to_string(References[0].fastalg_avg);
LogFile.WriteToDedicatedFile("/sdcard/alignment.txt", _zw);
_zw = "\tLoadReferences[1]\tx,y:\t" + std::to_string(References[1].fastalg_x) + "\t" + std::to_string(References[1].fastalg_x);
_zw = _zw + "\tSAD, min, max, avg:\t" + std::to_string(References[1].fastalg_SAD) + "\t" + std::to_string(References[1].fastalg_min);
_zw = _zw + "\t" + std::to_string(References[1].fastalg_max) + "\t" + std::to_string(References[1].fastalg_avg);
LogFile.WriteToDedicatedFile("/sdcard/alignment.txt", _zw);
#endif*/
return true;
}
void ClassFlowAlignment::DrawRef(CImageBasis *_zw)
{
if (_zw->ImageOkay())
{
_zw->drawRect(References[0].target_x, References[0].target_y, References[0].width, References[0].height, 255, 0, 0, 2);
_zw->drawRect(References[1].target_x, References[1].target_y, References[1].width, References[1].height, 255, 0, 0, 2);
}
}
#include "ClassFlowAlignment.h"
#include "ClassFlowTakeImage.h"
#include "ClassFlow.h"
#include "MainFlowControl.h"
#include "CRotateImage.h"
#include "esp_log.h"
#include "ClassLogFile.h"
#include "psram.h"
#include "../../include/defines.h"
static const char *TAG = "ALIGN";
// #define DEBUG_DETAIL_ON
void ClassFlowAlignment::SetInitialParameter(void)
{
initialrotate = 0;
anz_ref = 0;
use_antialiasing = false;
initialflip = false;
SaveAllFiles = false;
namerawimage = "/sdcard/img_tmp/raw.jpg";
FileStoreRefAlignment = "/sdcard/config/align.txt";
ListFlowControll = NULL;
AlignAndCutImage = NULL;
ImageBasis = NULL;
ImageTMP = NULL;
#ifdef ALGROI_LOAD_FROM_MEM_AS_JPG
AlgROI = (ImageData *)malloc_psram_heap(std::string(TAG) + "->AlgROI", sizeof(ImageData), MALLOC_CAP_8BIT | MALLOC_CAP_SPIRAM);
#endif
previousElement = NULL;
disabled = false;
SAD_criteria = 0.05;
}
ClassFlowAlignment::ClassFlowAlignment(std::vector<ClassFlow *> *lfc)
{
SetInitialParameter();
ListFlowControll = lfc;
for (int i = 0; i < ListFlowControll->size(); ++i)
{
if (((*ListFlowControll)[i])->name().compare("ClassFlowTakeImage") == 0)
{
ImageBasis = ((ClassFlowTakeImage *)(*ListFlowControll)[i])->rawImage;
}
}
if (!ImageBasis) // the function take pictures does not exist --> must be created first ONLY FOR TEST PURPOSES
{
ESP_LOGD(TAG, "CImageBasis had to be created");
ImageBasis = new CImageBasis("ImageBasis", namerawimage);
}
}
bool ClassFlowAlignment::ReadParameter(FILE *pfile, string &aktparamgraph)
{
std::vector<string> splitted;
int suchex = 40;
int suchey = 40;
int alg_algo = 0; // default=0; 1 =HIGHACCURACY; 2= FAST; 3= OFF //add disable aligment algo |01.2023
aktparamgraph = trim(aktparamgraph);
if (aktparamgraph.size() == 0)
{
if (!this->GetNextParagraph(pfile, aktparamgraph))
{
return false;
}
}
if (aktparamgraph.compare("[Alignment]") != 0)
{
// Paragraph does not fit Alignment
return false;
}
while (this->getNextLine(pfile, &aktparamgraph) && !this->isNewParagraph(aktparamgraph))
{
splitted = ZerlegeZeile(aktparamgraph);
if ((toUpper(splitted[0]) == "FLIPIMAGESIZE") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
{
initialflip = true;
}
}
else if (((toUpper(splitted[0]) == "initialrotate") || (toUpper(splitted[0]) == "INITIALROTATE")) && (splitted.size() > 1))
{
this->initialrotate = std::stod(splitted[1]);
}
else if ((toUpper(splitted[0]) == "SEARCHFIELDX") && (splitted.size() > 1))
{
suchex = std::stod(splitted[1]);
}
else if ((toUpper(splitted[0]) == "SEARCHFIELDY") && (splitted.size() > 1))
{
suchey = std::stod(splitted[1]);
}
else if ((toUpper(splitted[0]) == "ANTIALIASING") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
{
use_antialiasing = true;
}
}
else if ((splitted.size() == 3) && (anz_ref < 2))
{
References[anz_ref].image_file = FormatFileName("/sdcard" + splitted[0]);
References[anz_ref].target_x = std::stod(splitted[1]);
References[anz_ref].target_y = std::stod(splitted[2]);
anz_ref++;
}
else if ((toUpper(splitted[0]) == "SAVEALLFILES") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
{
SaveAllFiles = true;
}
}
else if ((toUpper(splitted[0]) == "ALIGNMENTALGO") && (splitted.size() > 1))
{
#ifdef DEBUG_DETAIL_ON
std::string zw2 = "Alignment mode selected: " + splitted[1];
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, zw2);
#endif
if (toUpper(splitted[1]) == "HIGHACCURACY")
{
alg_algo = 1;
}
if (toUpper(splitted[1]) == "FAST")
{
alg_algo = 2;
}
if (toUpper(splitted[1]) == "OFF")
{
// no align algo if set to 3 = off => no draw ref //add disable aligment algo |01.2023
alg_algo = 3;
}
}
}
for (int i = 0; i < anz_ref; ++i)
{
References[i].search_x = suchex;
References[i].search_y = suchey;
References[i].fastalg_SAD_criteria = SAD_criteria;
References[i].alignment_algo = alg_algo;
#ifdef DEBUG_DETAIL_ON
std::string zw2 = "Alignment mode written: " + std::to_string(alg_algo);
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, zw2);
#endif
}
// no align algo if set to 3 = off => no draw ref //add disable aligment algo |01.2023
if (References[0].alignment_algo != 3)
{
LoadReferenceAlignmentValues();
}
return true;
}
string ClassFlowAlignment::getHTMLSingleStep(string host)
{
string result;
result = "<p>Rotated Image: </p> <p><img src=\"" + host + "/img_tmp/rot.jpg\"></p>\n";
result = result + "<p>Found Alignment: </p> <p><img src=\"" + host + "/img_tmp/rot_roi.jpg\"></p>\n";
result = result + "<p>Aligned Image: </p> <p><img src=\"" + host + "/img_tmp/alg.jpg\"></p>\n";
return result;
}
bool ClassFlowAlignment::doFlow(string time)
{
#ifdef ALGROI_LOAD_FROM_MEM_AS_JPG
if (!AlgROI) // AlgROI needs to be allocated before ImageTMP to avoid heap fragmentation
{
AlgROI = (ImageData *)heap_caps_realloc(AlgROI, sizeof(ImageData), MALLOC_CAP_8BIT | MALLOC_CAP_SPIRAM);
if (!AlgROI)
{
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "Can't allocate AlgROI");
LogFile.WriteHeapInfo("ClassFlowAlignment-doFlow");
}
}
if (AlgROI)
{
ImageBasis->writeToMemoryAsJPG((ImageData *)AlgROI, 90);
}
#endif
if (!ImageTMP)
{
ImageTMP = new CImageBasis("tmpImage", ImageBasis); // Make sure the name does not get change, it is relevant for the PSRAM allocation!
if (!ImageTMP)
{
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "Can't allocate tmpImage -> Exec this round aborted!");
LogFile.WriteHeapInfo("ClassFlowAlignment-doFlow");
return false;
}
}
delete AlignAndCutImage;
AlignAndCutImage = new CAlignAndCutImage("AlignAndCutImage", ImageBasis, ImageTMP);
if (!AlignAndCutImage)
{
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "Can't allocate AlignAndCutImage -> Exec this round aborted!");
LogFile.WriteHeapInfo("ClassFlowAlignment-doFlow");
return false;
}
CRotateImage rt("rawImage", AlignAndCutImage, ImageTMP, initialflip);
if (initialflip)
{
int _zw = ImageBasis->height;
ImageBasis->height = ImageBasis->width;
ImageBasis->width = _zw;
_zw = ImageTMP->width;
ImageTMP->width = ImageTMP->height;
ImageTMP->height = _zw;
}
if ((initialrotate != 0) || initialflip)
{
if (use_antialiasing)
{
rt.RotateAntiAliasing(initialrotate);
}
else
{
rt.Rotate(initialrotate);
}
if (SaveAllFiles)
{
AlignAndCutImage->SaveToFile(FormatFileName("/sdcard/img_tmp/rot.jpg"));
}
}
// no align algo if set to 3 = off //add disable aligment algo |01.2023
if (References[0].alignment_algo != 3)
{
if (!AlignAndCutImage->Align(&References[0], &References[1]))
{
SaveReferenceAlignmentValues();
}
} // no align
#ifdef ALGROI_LOAD_FROM_MEM_AS_JPG
if (AlgROI)
{
// no align algo if set to 3 = off => no draw ref //add disable aligment algo |01.2023
if (References[0].alignment_algo != 3)
{
DrawRef(ImageTMP);
}
flowctrl.DigitalDrawROI(ImageTMP);
flowctrl.AnalogDrawROI(ImageTMP);
ImageTMP->writeToMemoryAsJPG((ImageData *)AlgROI, 90);
}
#endif
if (SaveAllFiles)
{
AlignAndCutImage->SaveToFile(FormatFileName("/sdcard/img_tmp/alg.jpg"));
ImageTMP->SaveToFile(FormatFileName("/sdcard/img_tmp/alg_roi.jpg"));
}
// must be deleted to have memory space for loading tflite
delete ImageTMP;
ImageTMP = NULL;
// no align algo if set to 3 = off => no draw ref //add disable aligment algo |01.2023
if (References[0].alignment_algo != 3)
{
LoadReferenceAlignmentValues();
}
return true;
}
void ClassFlowAlignment::SaveReferenceAlignmentValues()
{
FILE *pFile;
std::string zwtime, zwvalue;
pFile = fopen(FileStoreRefAlignment.c_str(), "w");
if (strlen(zwtime.c_str()) == 0)
{
time_t rawtime;
struct tm *timeinfo;
char buffer[80];
time(&rawtime);
timeinfo = localtime(&rawtime);
strftime(buffer, 80, "%Y-%m-%dT%H:%M:%S", timeinfo);
zwtime = std::string(buffer);
}
fputs(zwtime.c_str(), pFile);
fputs("\n", pFile);
zwvalue = std::to_string(References[0].fastalg_x) + "\t" + std::to_string(References[0].fastalg_y);
zwvalue = zwvalue + "\t" + std::to_string(References[0].fastalg_SAD) + "\t" + std::to_string(References[0].fastalg_min);
zwvalue = zwvalue + "\t" + std::to_string(References[0].fastalg_max) + "\t" + std::to_string(References[0].fastalg_avg);
fputs(zwvalue.c_str(), pFile);
fputs("\n", pFile);
zwvalue = std::to_string(References[1].fastalg_x) + "\t" + std::to_string(References[1].fastalg_y);
zwvalue = zwvalue + "\t" + std::to_string(References[1].fastalg_SAD) + "\t" + std::to_string(References[1].fastalg_min);
zwvalue = zwvalue + "\t" + std::to_string(References[1].fastalg_max) + "\t" + std::to_string(References[1].fastalg_avg);
fputs(zwvalue.c_str(), pFile);
fputs("\n", pFile);
fclose(pFile);
}
bool ClassFlowAlignment::LoadReferenceAlignmentValues(void)
{
FILE *pFile;
char zw[1024];
string zwvalue;
std::vector<string> splitted;
pFile = fopen(FileStoreRefAlignment.c_str(), "r");
if (pFile == NULL)
return false;
fgets(zw, 1024, pFile);
ESP_LOGD(TAG, "%s", zw);
fgets(zw, 1024, pFile);
splitted = ZerlegeZeile(std::string(zw), " \t");
if (splitted.size() < 6)
{
fclose(pFile);
return false;
}
References[0].fastalg_x = stoi(splitted[0]);
References[0].fastalg_y = stoi(splitted[1]);
References[0].fastalg_SAD = stof(splitted[2]);
References[0].fastalg_min = stoi(splitted[3]);
References[0].fastalg_max = stoi(splitted[4]);
References[0].fastalg_avg = stof(splitted[5]);
fgets(zw, 1024, pFile);
splitted = ZerlegeZeile(std::string(zw));
if (splitted.size() < 6)
{
fclose(pFile);
return false;
}
References[1].fastalg_x = stoi(splitted[0]);
References[1].fastalg_y = stoi(splitted[1]);
References[1].fastalg_SAD = stof(splitted[2]);
References[1].fastalg_min = stoi(splitted[3]);
References[1].fastalg_max = stoi(splitted[4]);
References[1].fastalg_avg = stof(splitted[5]);
fclose(pFile);
/*#ifdef DEBUG_DETAIL_ON
std::string _zw = "\tLoadReferences[0]\tx,y:\t" + std::to_string(References[0].fastalg_x) + "\t" + std::to_string(References[0].fastalg_x);
_zw = _zw + "\tSAD, min, max, avg:\t" + std::to_string(References[0].fastalg_SAD) + "\t" + std::to_string(References[0].fastalg_min);
_zw = _zw + "\t" + std::to_string(References[0].fastalg_max) + "\t" + std::to_string(References[0].fastalg_avg);
LogFile.WriteToDedicatedFile("/sdcard/alignment.txt", _zw);
_zw = "\tLoadReferences[1]\tx,y:\t" + std::to_string(References[1].fastalg_x) + "\t" + std::to_string(References[1].fastalg_x);
_zw = _zw + "\tSAD, min, max, avg:\t" + std::to_string(References[1].fastalg_SAD) + "\t" + std::to_string(References[1].fastalg_min);
_zw = _zw + "\t" + std::to_string(References[1].fastalg_max) + "\t" + std::to_string(References[1].fastalg_avg);
LogFile.WriteToDedicatedFile("/sdcard/alignment.txt", _zw);
#endif*/
return true;
}
void ClassFlowAlignment::DrawRef(CImageBasis *_zw)
{
if (_zw->ImageOkay())
{
_zw->drawRect(References[0].target_x, References[0].target_y, References[0].width, References[0].height, 255, 0, 0, 2);
_zw->drawRect(References[1].target_x, References[1].target_y, References[1].width, References[1].height, 255, 0, 0, 2);
}
}

View File

@@ -1,54 +1,51 @@
#pragma once
#ifndef CLASSFLOWALIGNMENT_H
#define CLASSFLOWALIGNMENT_H
#include "ClassFlow.h"
#include "Helper.h"
#include "CAlignAndCutImage.h"
#include "CFindTemplate.h"
#include <string>
using namespace std;
class ClassFlowAlignment :
public ClassFlow
{
protected:
float initialrotate;
bool initialmirror;
bool initialflip;
bool use_antialiasing;
RefInfo References[2];
int anz_ref;
string namerawimage;
bool SaveAllFiles;
CAlignAndCutImage *AlignAndCutImage;
std::string FileStoreRefAlignment;
float SAD_criteria;
void SetInitialParameter(void);
bool LoadReferenceAlignmentValues(void);
void SaveReferenceAlignmentValues();
public:
CImageBasis *ImageBasis, *ImageTMP;
#ifdef ALGROI_LOAD_FROM_MEM_AS_JPG
ImageData *AlgROI;
#endif
ClassFlowAlignment(std::vector<ClassFlow*>* lfc);
CAlignAndCutImage* GetAlignAndCutImage(){return AlignAndCutImage;};
void DrawRef(CImageBasis *_zw);
bool ReadParameter(FILE* pfile, string& aktparamgraph);
bool doFlow(string time);
string getHTMLSingleStep(string host);
string name(){return "ClassFlowAlignment";};
};
#endif //CLASSFLOWALIGNMENT_H
#pragma once
#ifndef CLASSFLOWALIGNMENT_H
#define CLASSFLOWALIGNMENT_H
#include "ClassFlow.h"
#include "Helper.h"
#include "CAlignAndCutImage.h"
#include "CFindTemplate.h"
#include <string>
using namespace std;
class ClassFlowAlignment : public ClassFlow
{
protected:
float initialrotate;
bool initialflip;
bool use_antialiasing;
RefInfo References[2];
int anz_ref;
string namerawimage;
bool SaveAllFiles;
CAlignAndCutImage *AlignAndCutImage;
std::string FileStoreRefAlignment;
float SAD_criteria;
void SetInitialParameter(void);
bool LoadReferenceAlignmentValues(void);
void SaveReferenceAlignmentValues();
public:
CImageBasis *ImageBasis, *ImageTMP;
#ifdef ALGROI_LOAD_FROM_MEM_AS_JPG
ImageData *AlgROI;
#endif
ClassFlowAlignment(std::vector<ClassFlow *> *lfc);
CAlignAndCutImage *GetAlignAndCutImage() { return AlignAndCutImage; };
void DrawRef(CImageBasis *_zw);
bool ReadParameter(FILE *pfile, string &aktparamgraph);
bool doFlow(string time);
string getHTMLSingleStep(string host);
string name() { return "ClassFlowAlignment"; };
};
#endif // CLASSFLOWALIGNMENT_H

View File

@@ -1,9 +1,15 @@
#include <iostream>
#include <string>
#include <vector>
#include <regex>
#include "ClassFlowTakeImage.h"
#include "Helper.h"
#include "ClassLogFile.h"
#include "CImageBasis.h"
#include "ClassControllCamera.h"
#include "MainFlowControl.h"
#include "esp_wifi.h"
#include "esp_log.h"
@@ -12,14 +18,14 @@
#include <time.h>
// #define DEBUG_DETAIL_ON
// #define DEBUG_DETAIL_ON
// #define WIFITURNOFF
static const char* TAG = "TAKEIMAGE";
static const char *TAG = "TAKEIMAGE";
esp_err_t ClassFlowTakeImage::camera_capture(){
string nm = namerawimage;
esp_err_t ClassFlowTakeImage::camera_capture(void)
{
string nm = namerawimage;
Camera.CaptureToFile(nm);
time(&TimeImageTaken);
localtime(&TimeImageTaken);
@@ -30,205 +36,480 @@ esp_err_t ClassFlowTakeImage::camera_capture(){
void ClassFlowTakeImage::takePictureWithFlash(int flash_duration)
{
// in case the image is flipped, it must be reset here //
rawImage->width = image_width;
rawImage->height = image_height;
/////////////////////////////////////////////////////////////////////////////////////
rawImage->width = CCstatus.ImageWidth;
rawImage->height = CCstatus.ImageHeight;
ESP_LOGD(TAG, "flash_duration: %d", flash_duration);
Camera.CaptureToBasisImage(rawImage, flash_duration);
time(&TimeImageTaken);
localtime(&TimeImageTaken);
if (SaveAllFiles) rawImage->SaveToFile(namerawimage);
if (CCstatus.SaveAllFiles)
{
rawImage->SaveToFile(namerawimage);
}
}
void ClassFlowTakeImage::SetInitialParameter(void)
{
waitbeforepicture = 5;
isImageSize = false;
ImageQuality = -1;
TimeImageTaken = 0;
ImageQuality = 5;
rawImage = NULL;
ImageSize = FRAMESIZE_VGA;
ZoomEnabled = false;
ZoomMode = 0;
zoomOffsetX = 0;
zoomOffsetY = 0;
ImageNegative = false;
ImageAec2 = false;
#ifdef GRAYSCALE_AS_DEFAULT
ImageGrayscale = true;
#else
ImageGrayscale = false;
#endif
SaveAllFiles = false;
disabled = false;
FixedExposure = false;
namerawimage = "/sdcard/img_tmp/raw.jpg";
}
}
// auslesen der Kameraeinstellungen aus der config.ini
// wird beim Start aufgerufen
bool ClassFlowTakeImage::ReadParameter(FILE *pfile, string &aktparamgraph)
{
Camera.getSensorDatenToCCstatus(); // Kamera >>> CCstatus
ClassFlowTakeImage::ClassFlowTakeImage(std::vector<ClassFlow*>* lfc) : ClassFlowImage(lfc, TAG)
std::vector<string> splitted;
aktparamgraph = trim(aktparamgraph);
if (aktparamgraph.size() == 0)
{
if (!this->GetNextParagraph(pfile, aktparamgraph))
{
return false;
}
}
if (aktparamgraph.compare("[TakeImage]") != 0)
{
// Paragraph does not fit TakeImage
return false;
}
while (this->getNextLine(pfile, &aktparamgraph) && !this->isNewParagraph(aktparamgraph))
{
splitted = ZerlegeZeile(aktparamgraph);
if ((toUpper(splitted[0]) == "RAWIMAGESLOCATION") && (splitted.size() > 1))
{
imagesLocation = "/sdcard" + splitted[1];
isLogImage = true;
}
else if ((toUpper(splitted[0]) == "RAWIMAGESRETENTION") && (splitted.size() > 1))
{
this->imagesRetention = std::stod(splitted[1]);
}
else if ((toUpper(splitted[0]) == "SAVEALLFILES") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
{
CCstatus.SaveAllFiles = 1;
}
else
{
CCstatus.SaveAllFiles = 0;
}
}
else if ((toUpper(splitted[0]) == "WAITBEFORETAKINGPICTURE") && (splitted.size() > 1))
{
int _WaitBeforePicture = std::stoi(splitted[1]);
if (_WaitBeforePicture != 0)
{
CCstatus.WaitBeforePicture = _WaitBeforePicture;
}
else
{
CCstatus.WaitBeforePicture = 2;
}
}
else if ((toUpper(splitted[0]) == "CAMGAINCEILING") && (splitted.size() > 1))
{
std::string _ImageGainceiling = toUpper(splitted[1]);
if (_ImageGainceiling == "X4")
{
CCstatus.ImageGainceiling = GAINCEILING_4X;
}
else if (_ImageGainceiling == "X8")
{
CCstatus.ImageGainceiling = GAINCEILING_8X;
}
else if (_ImageGainceiling == "X16")
{
CCstatus.ImageGainceiling = GAINCEILING_16X;
}
else if (_ImageGainceiling == "X32")
{
CCstatus.ImageGainceiling = GAINCEILING_32X;
}
else if (_ImageGainceiling == "X64")
{
CCstatus.ImageGainceiling = GAINCEILING_64X;
}
else if (_ImageGainceiling == "X128")
{
CCstatus.ImageGainceiling = GAINCEILING_128X;
}
else
{
CCstatus.ImageGainceiling = GAINCEILING_2X;
}
}
else if ((toUpper(splitted[0]) == "CAMQUALITY") && (splitted.size() > 1))
{
int _ImageQuality = std::stoi(splitted[1]);
if ((_ImageQuality >= 0) && (_ImageQuality <= 63))
{
CCstatus.ImageQuality = _ImageQuality;
}
}
else if ((toUpper(splitted[0]) == "CAMBRIGHTNESS") && (splitted.size() > 1))
{
int _ImageBrightness = std::stoi(splitted[1]);
if ((_ImageBrightness >= -2) && (_ImageBrightness <= 2))
{
CCstatus.ImageBrightness = _ImageBrightness;
}
}
else if ((toUpper(splitted[0]) == "CAMCONTRAST") && (splitted.size() > 1))
{
int _ImageContrast = std::stoi(splitted[1]);
if ((_ImageContrast >= -2) && (_ImageContrast <= 2))
{
CCstatus.ImageContrast = _ImageContrast;
}
}
else if ((toUpper(splitted[0]) == "CAMSATURATION") && (splitted.size() > 1))
{
int _ImageSaturation = std::stoi(splitted[1]);
if ((_ImageSaturation >= -2) && (_ImageSaturation <= 2))
{
CCstatus.ImageSaturation = _ImageSaturation;
}
}
else if ((toUpper(splitted[0]) == "CAMSHARPNESS") && (splitted.size() > 1))
{
int _ImageSharpness = std::stoi(splitted[1]);
if ((_ImageSharpness >= -2) && (_ImageSharpness <= 2))
{
CCstatus.ImageSharpness = _ImageSharpness;
}
}
else if ((toUpper(splitted[0]) == "CAMAUTOSHARPNESS") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
{
CCstatus.ImageAutoSharpness = 1;
}
else
{
CCstatus.ImageAutoSharpness = 0;
}
}
else if ((toUpper(splitted[0]) == "CAMSPECIALEFFECT") && (splitted.size() > 1))
{
std::string _ImageSpecialEffect = toUpper(splitted[1]);
if (_ImageSpecialEffect == "NEGATIVE")
{
CCstatus.ImageSpecialEffect = 1;
}
else if (_ImageSpecialEffect == "GRAYSCALE")
{
CCstatus.ImageSpecialEffect = 2;
}
else if (_ImageSpecialEffect == "RED")
{
CCstatus.ImageSpecialEffect = 3;
}
else if (_ImageSpecialEffect == "GREEN")
{
CCstatus.ImageSpecialEffect = 4;
}
else if (_ImageSpecialEffect == "BLUE")
{
CCstatus.ImageSpecialEffect = 5;
}
else if (_ImageSpecialEffect == "RETRO")
{
CCstatus.ImageSpecialEffect = 6;
}
else
{
CCstatus.ImageSpecialEffect = 0;
}
}
else if ((toUpper(splitted[0]) == "CAMWBMODE") && (splitted.size() > 1))
{
std::string _ImageWbMode = toUpper(splitted[1]);
if (_ImageWbMode == "SUNNY")
{
CCstatus.ImageWbMode = 1;
}
else if (_ImageWbMode == "CLOUDY")
{
CCstatus.ImageWbMode = 2;
}
else if (_ImageWbMode == "OFFICE")
{
CCstatus.ImageWbMode = 3;
}
else if (_ImageWbMode == "HOME")
{
CCstatus.ImageWbMode = 4;
}
else
{
CCstatus.ImageWbMode = 0;
}
}
else if ((toUpper(splitted[0]) == "CAMAWB") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
{
CCstatus.ImageAwb = 1;
}
else
{
CCstatus.ImageAwb = 0;
}
}
else if ((toUpper(splitted[0]) == "CAMAWBGAIN") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
{
CCstatus.ImageAwbGain = 1;
}
else
{
CCstatus.ImageAwbGain = 0;
}
}
else if ((toUpper(splitted[0]) == "CAMAEC") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
{
CCstatus.ImageAec = 1;
}
else
{
CCstatus.ImageAec = 0;
}
}
else if ((toUpper(splitted[0]) == "CAMAEC2") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
{
CCstatus.ImageAec2 = 1;
}
else
{
CCstatus.ImageAec2 = 0;
}
}
else if ((toUpper(splitted[0]) == "CAMAELEVEL") && (splitted.size() > 1))
{
int _ImageAeLevel = std::stoi(splitted[1]);
if ((_ImageAeLevel >= -2) && (_ImageAeLevel <= 2))
{
CCstatus.ImageAeLevel = _ImageAeLevel;
}
}
else if ((toUpper(splitted[0]) == "CAMAECVALUE") && (splitted.size() > 1))
{
int _ImageAecValue = std::stoi(splitted[1]);
if ((_ImageAecValue >= 0) && (_ImageAecValue <= 1200))
{
CCstatus.ImageAecValue = _ImageAecValue;
}
}
else if ((toUpper(splitted[0]) == "CAMAGC") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
{
CCstatus.ImageAgc = 1;
}
else
{
CCstatus.ImageAgc = 0;
}
}
else if ((toUpper(splitted[0]) == "CAMAGCGAIN") && (splitted.size() > 1))
{
int _ImageAgcGain = std::stoi(splitted[1]);
if ((_ImageAgcGain >= 0) && (_ImageAgcGain <= 30))
{
CCstatus.ImageAgcGain = _ImageAgcGain;
}
}
else if ((toUpper(splitted[0]) == "CAMBPC") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
{
CCstatus.ImageBpc = 1;
}
else
{
CCstatus.ImageBpc = 0;
}
}
else if ((toUpper(splitted[0]) == "CAMWPC") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
{
CCstatus.ImageWpc = 1;
}
else
{
CCstatus.ImageWpc = 0;
}
}
else if ((toUpper(splitted[0]) == "CAMRAWGMA") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
{
CCstatus.ImageRawGma = 1;
}
else
{
CCstatus.ImageRawGma = 0;
}
}
else if ((toUpper(splitted[0]) == "CAMLENC") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
{
CCstatus.ImageLenc = 1;
}
else
{
CCstatus.ImageLenc = 0;
}
}
else if ((toUpper(splitted[0]) == "CAMHMIRROR") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
{
CCstatus.ImageHmirror = 1;
}
else
{
CCstatus.ImageHmirror = 0;
}
}
else if ((toUpper(splitted[0]) == "CAMVFLIP") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
{
CCstatus.ImageVflip = 1;
}
else
{
CCstatus.ImageVflip = 0;
}
}
else if ((toUpper(splitted[0]) == "CAMDCW") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
{
CCstatus.ImageDcw = 1;
}
else
{
CCstatus.ImageDcw = 0;
}
}
else if ((toUpper(splitted[0]) == "CAMZOOM") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
{
CCstatus.ImageZoomEnabled = 1;
}
else
{
CCstatus.ImageZoomEnabled = 0;
}
}
else if ((toUpper(splitted[0]) == "CAMZOOMOFFSETX") && (splitted.size() > 1))
{
CCstatus.ImageZoomOffsetX = std::stoi(splitted[1]);
}
else if ((toUpper(splitted[0]) == "CAMZOOMOFFSETY") && (splitted.size() > 1))
{
CCstatus.ImageZoomOffsetY = std::stoi(splitted[1]);
}
else if ((toUpper(splitted[0]) == "CAMZOOMSIZE") && (splitted.size() > 1))
{
int _ImageZoomSize = std::stoi(splitted[1]);
if (_ImageZoomSize >= 0)
{
CCstatus.ImageZoomSize = _ImageZoomSize;
}
}
else if ((toUpper(splitted[0]) == "LEDINTENSITY") && (splitted.size() > 1))
{
float ledintensity = std::stof(splitted[1]);
Camera.SetLEDIntensity(ledintensity);
}
else if ((toUpper(splitted[0]) == "DEMO") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
{
CCstatus.DemoMode = true;
Camera.useDemoMode();
}
else
{
CCstatus.DemoMode = false;
}
}
}
Camera.setSensorDatenFromCCstatus(); // CCstatus >>> Kamera
Camera.SetQualityZoomSize(CCstatus.ImageQuality, CCstatus.ImageFrameSize, CCstatus.ImageZoomEnabled, CCstatus.ImageZoomOffsetX, CCstatus.ImageZoomOffsetY, CCstatus.ImageZoomSize);
rawImage = new CImageBasis("rawImage");
rawImage->CreateEmptyImage(CCstatus.ImageWidth, CCstatus.ImageHeight, 3);
return true;
}
ClassFlowTakeImage::ClassFlowTakeImage(std::vector<ClassFlow *> *lfc) : ClassFlowImage(lfc, TAG)
{
imagesLocation = "/log/source";
imagesRetention = 5;
SetInitialParameter();
}
bool ClassFlowTakeImage::ReadParameter(FILE* pfile, string& aktparamgraph)
{
std::vector<string> splitted;
aktparamgraph = trim(aktparamgraph);
int _brightness = 0;
int _contrast = 0;
int _saturation = 0;
int _sharpness = 0;
int _autoExposureLevel = 0;
if (aktparamgraph.size() == 0)
if (!this->GetNextParagraph(pfile, aktparamgraph))
return false;
if (aktparamgraph.compare("[TakeImage]") != 0) // Paragraph does not fit TakeImage
return false;
while (this->getNextLine(pfile, &aktparamgraph) && !this->isNewParagraph(aktparamgraph))
{
splitted = ZerlegeZeile(aktparamgraph);
if ((toUpper(splitted[0]) == "RAWIMAGESLOCATION") && (splitted.size() > 1))
{
imagesLocation = "/sdcard" + splitted[1];
isLogImage = true;
}
if ((toUpper(splitted[0]) == "IMAGEQUALITY") && (splitted.size() > 1))
ImageQuality = std::stod(splitted[1]);
if ((toUpper(splitted[0]) == "ZOOM") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
ZoomEnabled = true;
else if (toUpper(splitted[1]) == "FALSE")
ZoomEnabled = false;
}
if ((toUpper(splitted[0]) == "ZOOMMODE") && (splitted.size() > 1))
ZoomMode = std::stod(splitted[1]);
if ((toUpper(splitted[0]) == "ZOOMOFFSETX") && (splitted.size() > 1))
zoomOffsetX = std::stod(splitted[1]);
if ((toUpper(splitted[0]) == "ZOOMOFFSETY") && (splitted.size() > 1))
zoomOffsetY = std::stod(splitted[1]);
if ((toUpper(splitted[0]) == "GRAYSCALE") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
ImageGrayscale = true;
else if (toUpper(splitted[1]) == "FALSE")
ImageGrayscale = false;
}
if ((toUpper(splitted[0]) == "NEGATIVE") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
ImageNegative = true;
else if (toUpper(splitted[1]) == "FALSE")
ImageNegative = false;
}
if ((toUpper(splitted[0]) == "AEC2") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
ImageAec2 = true;
else if (toUpper(splitted[1]) == "FALSE")
ImageAec2 = false;
}
if ((toUpper(splitted[0]) == "AUTOEXPOSURELEVEL") && (splitted.size() > 1))
_autoExposureLevel = std::stod(splitted[1]);
if ((toUpper(splitted[0]) == "IMAGESIZE") && (splitted.size() > 1))
{
ImageSize = Camera.TextToFramesize(splitted[1].c_str());
isImageSize = true;
}
if ((toUpper(splitted[0]) == "SAVEALLFILES") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
SaveAllFiles = true;
}
if ((toUpper(splitted[0]) == "WAITBEFORETAKINGPICTURE") && (splitted.size() > 1))
{
waitbeforepicture = stoi(splitted[1]);
}
if ((toUpper(splitted[0]) == "RAWIMAGESRETENTION") && (splitted.size() > 1))
{
this->imagesRetention = std::stoi(splitted[1]);
}
if ((toUpper(splitted[0]) == "BRIGHTNESS") && (splitted.size() > 1))
{
_brightness = stoi(splitted[1]);
}
if ((toUpper(splitted[0]) == "CONTRAST") && (splitted.size() > 1))
{
_contrast = stoi(splitted[1]);
}
if ((toUpper(splitted[0]) == "SATURATION") && (splitted.size() > 1))
{
_saturation = stoi(splitted[1]);
}
if ((toUpper(splitted[0]) == "SHARPNESS") && (splitted.size() > 1))
{
_sharpness = stoi(splitted[1]);
}
if ((toUpper(splitted[0]) == "FIXEDEXPOSURE") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
FixedExposure = true;
}
if ((toUpper(splitted[0]) == "LEDINTENSITY") && (splitted.size() > 1))
{
float ledintensity = stof(splitted[1]);
ledintensity = min((float) 100, ledintensity);
ledintensity = max((float) 0, ledintensity);
Camera.SetLEDIntensity(ledintensity);
}
if ((toUpper(splitted[0]) == "DEMO") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
Camera.useDemoMode();
}
}
Camera.SetBrightnessContrastSaturation(_brightness, _contrast, _saturation, _autoExposureLevel, ImageGrayscale, ImageNegative, ImageAec2, _sharpness);
Camera.SetQualitySize(ImageQuality, ImageSize, ZoomEnabled, ZoomMode, zoomOffsetX, zoomOffsetY);
image_width = Camera.image_width;
image_height = Camera.image_height;
rawImage = new CImageBasis("rawImage");
rawImage->CreateEmptyImage(image_width, image_height, 3);
waitbeforepicture_store = waitbeforepicture;
if (FixedExposure && (waitbeforepicture > 0))
{
// ESP_LOGD(TAG, "Fixed Exposure enabled!");
int flash_duration = (int) (waitbeforepicture * 1000);
Camera.EnableAutoExposure(flash_duration);
waitbeforepicture = 0.2;
// flash_duration = (int) (waitbeforepicture * 1000);
// takePictureWithFlash(flash_duration);
// rawImage->SaveToFile("/sdcard/init2.jpg");
}
return true;
}
string ClassFlowTakeImage::getHTMLSingleStep(string host)
{
string result;
@@ -236,74 +517,78 @@ string ClassFlowTakeImage::getHTMLSingleStep(string host)
return result;
}
// wird bei jeder Auswertrunde aufgerufen
bool ClassFlowTakeImage::doFlow(string zwtime)
{
psram_init_shared_memory_for_take_image_step();
string logPath = CreateLogFolder(zwtime);
int flash_duration = (int) (waitbeforepicture * 1000);
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("ClassFlowTakeImage::doFlow - Before takePictureWithFlash");
#endif
int flash_duration = (int)(CCstatus.WaitBeforePicture * 1000);
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("ClassFlowTakeImage::doFlow - Before takePictureWithFlash");
#endif
#ifdef WIFITURNOFF
esp_wifi_stop(); // to save power usage and
#endif
#ifdef WIFITURNOFF
esp_wifi_stop(); // to save power usage and
#endif
// wenn die Kameraeinstellungen durch Erstellen eines neuen Referenzbildes verändert wurden, müssen sie neu gesetzt werden
if (CFstatus.changedCameraSettings)
{
Camera.setSensorDatenFromCCstatus(); // CCstatus >>> Kamera
Camera.SetQualityZoomSize(CCstatus.ImageQuality, CCstatus.ImageFrameSize, CCstatus.ImageZoomEnabled, CCstatus.ImageZoomOffsetX, CCstatus.ImageZoomOffsetY, CCstatus.ImageZoomSize);
CFstatus.changedCameraSettings = false;
}
takePictureWithFlash(flash_duration);
#ifdef WIFITURNOFF
esp_wifi_start();
#endif
#ifdef WIFITURNOFF
esp_wifi_start();
#endif
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("ClassFlowTakeImage::doFlow - After takePictureWithFlash");
#endif
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("ClassFlowTakeImage::doFlow - After takePictureWithFlash");
#endif
LogImage(logPath, "raw", NULL, NULL, zwtime, rawImage);
RemoveOldLogs();
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("ClassFlowTakeImage::doFlow - After RemoveOldLogs");
#endif
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("ClassFlowTakeImage::doFlow - After RemoveOldLogs");
#endif
psram_deinit_shared_memory_for_take_image_step();
return true;
}
esp_err_t ClassFlowTakeImage::SendRawJPG(httpd_req_t *req)
{
int flash_duration = (int) (waitbeforepicture * 1000);
int flash_duration = (int)(CCstatus.WaitBeforePicture * 1000);
time(&TimeImageTaken);
localtime(&TimeImageTaken);
return Camera.CaptureToHTTP(req, flash_duration);
}
ImageData* ClassFlowTakeImage::SendRawImage()
ImageData *ClassFlowTakeImage::SendRawImage(void)
{
CImageBasis *zw = new CImageBasis("SendRawImage", rawImage);
ImageData *id;
int flash_duration = (int) (waitbeforepicture * 1000);
int flash_duration = (int)(CCstatus.WaitBeforePicture * 1000);
Camera.CaptureToBasisImage(zw, flash_duration);
time(&TimeImageTaken);
localtime(&TimeImageTaken);
id = zw->writeToMemoryAsJPG();
id = zw->writeToMemoryAsJPG();
delete zw;
return id;
return id;
}
time_t ClassFlowTakeImage::getTimeImageTaken()
time_t ClassFlowTakeImage::getTimeImageTaken(void)
{
return TimeImageTaken;
}
@@ -312,4 +597,3 @@ ClassFlowTakeImage::~ClassFlowTakeImage(void)
{
delete rawImage;
}

View File

@@ -9,54 +9,32 @@
#include <string>
class ClassFlowTakeImage :
public ClassFlowImage
class ClassFlowTakeImage : public ClassFlowImage
{
protected:
float waitbeforepicture;
float waitbeforepicture_store;
framesize_t ImageSize;
bool isImageSize;
bool ZoomEnabled = false;
int ZoomMode = 0;
int zoomOffsetX = 0;
int zoomOffsetY = 0;
bool ImageGrayscale;
bool ImageNegative;
bool ImageAec2;
int ImageQuality;
time_t TimeImageTaken;
string namerawimage;
int image_height, image_width;
bool SaveAllFiles;
bool FixedExposure;
void CopyFile(string input, string output);
esp_err_t camera_capture();
esp_err_t camera_capture(void);
void takePictureWithFlash(int flash_duration);
void SetInitialParameter(void);
void SetInitialParameter(void);
public:
CImageBasis *rawImage;
ClassFlowTakeImage(std::vector<ClassFlow*>* lfc);
ClassFlowTakeImage(std::vector<ClassFlow *> *lfc);
bool ReadParameter(FILE* pfile, string& aktparamgraph);
bool ReadParameter(FILE *pfile, string &aktparamgraph);
bool doFlow(string time);
string getHTMLSingleStep(string host);
time_t getTimeImageTaken();
string name(){return "ClassFlowTakeImage";};
time_t getTimeImageTaken(void);
string name() { return "ClassFlowTakeImage"; };
ImageData* SendRawImage();
ImageData *SendRawImage(void);
esp_err_t SendRawJPG(httpd_req_t *req);
~ClassFlowTakeImage(void);
};
#endif //CLASSFFLOWTAKEIMAGE_H
#endif // CLASSFFLOWTAKEIMAGE_H

File diff suppressed because it is too large Load Diff

View File

@@ -10,25 +10,78 @@
#include "CImageBasis.h"
#include "ClassFlowControll.h"
typedef struct
{
framesize_t ImageFrameSize = FRAMESIZE_VGA; // 0 - 10
gainceiling_t ImageGainceiling; // Image gain (GAINCEILING_x2, x4, x8, x16, x32, x64 or x128)
int ImageQuality; // 0 - 63
int ImageBrightness; // (-2 to 2) - set brightness
int ImageContrast; //-2 - 2
int ImageSaturation; //-2 - 2
int ImageSharpness; //-2 - 2
bool ImageAutoSharpness;
int ImageSpecialEffect; // 0 - 6
int ImageWbMode; // 0 to 4 - if awb_gain enabled (0 - Auto, 1 - Sunny, 2 - Cloudy, 3 - Office, 4 - Home)
int ImageAwb; // white balance enable (0 or 1)
int ImageAwbGain; // Auto White Balance enable (0 or 1)
int ImageAec; // auto exposure off (1 or 0)
int ImageAec2; // automatic exposure sensor (0 or 1)
int ImageAeLevel; // auto exposure levels (-2 to 2)
int ImageAecValue; // set exposure manually (0-1200)
int ImageAgc; // auto gain off (1 or 0)
int ImageAgcGain; // set gain manually (0 - 30)
int ImageBpc; // black pixel correction
int ImageWpc; // white pixel correction
int ImageRawGma; // (1 or 0)
int ImageLenc; // lens correction (1 or 0)
int ImageHmirror; // (0 or 1) flip horizontally
int ImageVflip; // Invert image (0 or 1)
int ImageDcw; // downsize enable (1 or 0)
int ImageWidth;
int ImageHeight;
int ImageLedIntensity;
bool ImageZoomEnabled;
int ImageZoomMode;
int ImageZoomOffsetX;
int ImageZoomOffsetY;
int ImageZoomSize;
int WaitBeforePicture;
bool isImageSize;
bool CameraInitSuccessful;
bool changedCameraSettings;
bool DemoMode;
bool SaveAllFiles;
} camera_flow_config_temp_t;
extern camera_flow_config_temp_t CFstatus;
extern ClassFlowControll flowctrl;
esp_err_t setCCstatusToCFstatus(void); // CCstatus >>> CFstatus
esp_err_t setCFstatusToCCstatus(void); // CFstatus >>> CCstatus
esp_err_t setCFstatusToCam(void); // CFstatus >>> Kamera
void register_server_main_flow_task_uri(httpd_handle_t server);
void CheckIsPlannedReboot();
bool getIsPlannedReboot();
void CheckIsPlannedReboot(void);
bool getIsPlannedReboot(void);
void InitializeFlowTask();
void DeleteMainFlowTask();
bool isSetupModusActive();
void InitializeFlowTask(void);
void DeleteMainFlowTask(void);
bool isSetupModusActive(void);
int getCountFlowRounds();
int getCountFlowRounds(void);
#ifdef ENABLE_MQTT
esp_err_t MQTTCtrlFlowStart(std::string _topic);
#endif //ENABLE_MQTT
#endif // ENABLE_MQTT
esp_err_t GetRawJPG(httpd_req_t *req);
esp_err_t GetJPG(std::string _filename, httpd_req_t *req);
#endif //MAINFLOWCONTROL_H
#endif // MAINFLOWCONTROL_H

File diff suppressed because it is too large Load Diff

View File

@@ -1,353 +1,309 @@
#include <string>
#include "CRotateImage.h"
#include "psram.h"
static const char *TAG = "C ROTATE IMG";
CRotateImage::CRotateImage(std::string _name, CImageBasis *_org, CImageBasis *_temp, bool _flip) : CImageBasis(_name)
{
rgb_image = _org->rgb_image;
channels = _org->channels;
width = _org->width;
height = _org->height;
bpp = _org->bpp;
externalImage = true;
ImageTMP = _temp;
ImageOrg = _org;
islocked = false;
doflip = _flip;
}
void CRotateImage::Mirror(){
int memsize = width * height * channels;
uint8_t* odata;
if (ImageTMP)
{
odata = ImageTMP->RGBImageLock();
}
else
{
odata = (unsigned char*)malloc_psram_heap(std::string(TAG) + "->odata", memsize, MALLOC_CAP_SPIRAM);
}
int x_source, y_source;
stbi_uc* p_target;
stbi_uc* p_source;
RGBImageLock();
for (int x = 0; x < width; ++x)
for (int y = 0; y < height; ++y)
{
p_target = odata + (channels * (y * width + x));
x_source = width - x;
y_source = y;
p_source = rgb_image + (channels * (y_source * width + x_source));
for (int _channels = 0; _channels < channels; ++_channels)
p_target[_channels] = p_source[_channels];
}
// memcpy(rgb_image, odata, memsize);
memCopy(odata, rgb_image, memsize);
if (!ImageTMP)
free_psram_heap(std::string(TAG) + "->odata", odata);
if (ImageTMP)
ImageTMP->RGBImageRelease();
RGBImageRelease();
}
void CRotateImage::Rotate(float _angle, int _centerx, int _centery)
{
int org_width, org_height;
float m[2][3];
float x_center = _centerx;
float y_center = _centery;
_angle = _angle / 180 * M_PI;
if (doflip)
{
org_width = width;
org_height = height;
height = org_width;
width = org_height;
x_center = x_center - (org_width/2) + (org_height/2);
y_center = y_center + (org_width/2) - (org_height/2);
if (ImageOrg)
{
ImageOrg->height = height;
ImageOrg->width = width;
}
}
else
{
org_width = width;
org_height = height;
}
m[0][0] = cos(_angle);
m[0][1] = sin(_angle);
m[0][2] = (1 - m[0][0]) * x_center - m[0][1] * y_center;
m[1][0] = -m[0][1];
m[1][1] = m[0][0];
m[1][2] = m[0][1] * x_center + (1 - m[0][0]) * y_center;
if (doflip)
{
m[0][2] = m[0][2] + (org_width/2) - (org_height/2);
m[1][2] = m[1][2] - (org_width/2) + (org_height/2);
}
int memsize = width * height * channels;
uint8_t* odata;
if (ImageTMP)
{
odata = ImageTMP->RGBImageLock();
}
else
{
odata = (unsigned char*)malloc_psram_heap(std::string(TAG) + "->odata", memsize, MALLOC_CAP_SPIRAM);
}
int x_source, y_source;
stbi_uc* p_target;
stbi_uc* p_source;
RGBImageLock();
for (int x = 0; x < width; ++x)
for (int y = 0; y < height; ++y)
{
p_target = odata + (channels * (y * width + x));
x_source = int(m[0][0] * x + m[0][1] * y);
y_source = int(m[1][0] * x + m[1][1] * y);
x_source += int(m[0][2]);
y_source += int(m[1][2]);
if ((x_source >= 0) && (x_source < org_width) && (y_source >= 0) && (y_source < org_height))
{
p_source = rgb_image + (channels * (y_source * org_width + x_source));
for (int _channels = 0; _channels < channels; ++_channels)
p_target[_channels] = p_source[_channels];
}
else
{
for (int _channels = 0; _channels < channels; ++_channels)
p_target[_channels] = 255;
}
}
// memcpy(rgb_image, odata, memsize);
memCopy(odata, rgb_image, memsize);
if (!ImageTMP)
{
free_psram_heap(std::string(TAG) + "->odata", odata);
}
if (ImageTMP)
ImageTMP->RGBImageRelease();
RGBImageRelease();
}
void CRotateImage::RotateAntiAliasing(float _angle, int _centerx, int _centery)
{
int org_width, org_height;
float m[2][3];
float x_center = _centerx;
float y_center = _centery;
_angle = _angle / 180 * M_PI;
if (doflip)
{
org_width = width;
org_height = height;
height = org_width;
width = org_height;
x_center = x_center - (org_width/2) + (org_height/2);
y_center = y_center + (org_width/2) - (org_height/2);
if (ImageOrg)
{
ImageOrg->height = height;
ImageOrg->width = width;
}
}
else
{
org_width = width;
org_height = height;
}
m[0][0] = cos(_angle);
m[0][1] = sin(_angle);
m[0][2] = (1 - m[0][0]) * x_center - m[0][1] * y_center;
m[1][0] = -m[0][1];
m[1][1] = m[0][0];
m[1][2] = m[0][1] * x_center + (1 - m[0][0]) * y_center;
if (doflip)
{
m[0][2] = m[0][2] + (org_width/2) - (org_height/2);
m[1][2] = m[1][2] - (org_width/2) + (org_height/2);
}
int memsize = width * height * channels;
uint8_t* odata;
if (ImageTMP)
{
odata = ImageTMP->RGBImageLock();
}
else
{
odata = (unsigned char*)malloc_psram_heap(std::string(TAG) + "->odata", memsize, MALLOC_CAP_SPIRAM);
}
int x_source_1, y_source_1, x_source_2, y_source_2;
float x_source, y_source;
float quad_ul, quad_ur, quad_ol, quad_or;
stbi_uc* p_target;
stbi_uc *p_source_ul, *p_source_ur, *p_source_ol, *p_source_or;
RGBImageLock();
for (int x = 0; x < width; ++x)
for (int y = 0; y < height; ++y)
{
p_target = odata + (channels * (y * width + x));
x_source = (m[0][0] * x + m[0][1] * y);
y_source = (m[1][0] * x + m[1][1] * y);
x_source += (m[0][2]);
y_source += (m[1][2]);
x_source_1 = (int)x_source;
x_source_2 = x_source_1 + 1;
y_source_1 = (int)y_source;
y_source_2 = y_source_1 + 1;
quad_ul = (x_source_2 - x_source) * (y_source_2 - y_source);
quad_ur = (1- (x_source_2 - x_source)) * (y_source_2 - y_source);
quad_or = (x_source_2 - x_source) * (1-(y_source_2 - y_source));
quad_ol = (1- (x_source_2 - x_source)) * (1-(y_source_2 - y_source));
if ((x_source_1 >= 0) && (x_source_2 < org_width) && (y_source_1 >= 0) && (y_source_2 < org_height))
{
p_source_ul = rgb_image + (channels * (y_source_1 * org_width + x_source_1));
p_source_ur = rgb_image + (channels * (y_source_1 * org_width + x_source_2));
p_source_or = rgb_image + (channels * (y_source_2 * org_width + x_source_1));
p_source_ol = rgb_image + (channels * (y_source_2 * org_width + x_source_2));
for (int _channels = 0; _channels < channels; ++_channels)
{
p_target[_channels] = (int)((float)p_source_ul[_channels] * quad_ul
+ (float)p_source_ur[_channels] * quad_ur
+ (float)p_source_or[_channels] * quad_or
+ (float)p_source_ol[_channels] * quad_ol);
}
}
else
{
for (int _channels = 0; _channels < channels; ++_channels)
p_target[_channels] = 255;
}
}
// memcpy(rgb_image, odata, memsize);
memCopy(odata, rgb_image, memsize);
if (!ImageTMP)
{
free_psram_heap(std::string(TAG) + "->odata", odata);
}
if (ImageTMP)
ImageTMP->RGBImageRelease();
RGBImageRelease();
}
void CRotateImage::Rotate(float _angle)
{
// ESP_LOGD(TAG, "width %d, height %d", width, height);
Rotate(_angle, width / 2, height / 2);
}
void CRotateImage::RotateAntiAliasing(float _angle)
{
// ESP_LOGD(TAG, "width %d, height %d", width, height);
RotateAntiAliasing(_angle, width / 2, height / 2);
}
void CRotateImage::Translate(int _dx, int _dy)
{
int memsize = width * height * channels;
uint8_t* odata;
if (ImageTMP)
{
odata = ImageTMP->RGBImageLock();
}
else
{
odata = (unsigned char*)malloc_psram_heap(std::string(TAG) + "->odata", memsize, MALLOC_CAP_SPIRAM);
}
int x_source, y_source;
stbi_uc* p_target;
stbi_uc* p_source;
RGBImageLock();
for (int x = 0; x < width; ++x)
for (int y = 0; y < height; ++y)
{
p_target = odata + (channels * (y * width + x));
x_source = x - _dx;
y_source = y - _dy;
if ((x_source >= 0) && (x_source < width) && (y_source >= 0) && (y_source < height))
{
p_source = rgb_image + (channels * (y_source * width + x_source));
for (int _channels = 0; _channels < channels; ++_channels)
p_target[_channels] = p_source[_channels];
}
else
{
for (int _channels = 0; _channels < channels; ++_channels)
p_target[_channels] = 255;
}
}
// memcpy(rgb_image, odata, memsize);
memCopy(odata, rgb_image, memsize);
if (!ImageTMP)
{
free_psram_heap(std::string(TAG) + "->odata", odata);
}
if (ImageTMP)
{
ImageTMP->RGBImageRelease();
}
RGBImageRelease();
}
#include <string>
#include "CRotateImage.h"
#include "psram.h"
static const char *TAG = "C ROTATE IMG";
CRotateImage::CRotateImage(std::string _name, CImageBasis *_org, CImageBasis *_temp, bool _flip) : CImageBasis(_name)
{
rgb_image = _org->rgb_image;
channels = _org->channels;
width = _org->width;
height = _org->height;
bpp = _org->bpp;
externalImage = true;
ImageTMP = _temp;
ImageOrg = _org;
islocked = false;
doflip = _flip;
}
void CRotateImage::Rotate(float _angle, int _centerx, int _centery)
{
int org_width, org_height;
float m[2][3];
float x_center = _centerx;
float y_center = _centery;
_angle = _angle / 180 * M_PI;
if (doflip)
{
org_width = width;
org_height = height;
height = org_width;
width = org_height;
x_center = x_center - (org_width/2) + (org_height/2);
y_center = y_center + (org_width/2) - (org_height/2);
if (ImageOrg)
{
ImageOrg->height = height;
ImageOrg->width = width;
}
}
else
{
org_width = width;
org_height = height;
}
m[0][0] = cos(_angle);
m[0][1] = sin(_angle);
m[0][2] = (1 - m[0][0]) * x_center - m[0][1] * y_center;
m[1][0] = -m[0][1];
m[1][1] = m[0][0];
m[1][2] = m[0][1] * x_center + (1 - m[0][0]) * y_center;
if (doflip)
{
m[0][2] = m[0][2] + (org_width/2) - (org_height/2);
m[1][2] = m[1][2] - (org_width/2) + (org_height/2);
}
int memsize = width * height * channels;
uint8_t* odata;
if (ImageTMP)
{
odata = ImageTMP->RGBImageLock();
}
else
{
odata = (unsigned char*)malloc_psram_heap(std::string(TAG) + "->odata", memsize, MALLOC_CAP_SPIRAM);
}
int x_source, y_source;
stbi_uc* p_target;
stbi_uc* p_source;
RGBImageLock();
for (int x = 0; x < width; ++x)
for (int y = 0; y < height; ++y)
{
p_target = odata + (channels * (y * width + x));
x_source = int(m[0][0] * x + m[0][1] * y);
y_source = int(m[1][0] * x + m[1][1] * y);
x_source += int(m[0][2]);
y_source += int(m[1][2]);
if ((x_source >= 0) && (x_source < org_width) && (y_source >= 0) && (y_source < org_height))
{
p_source = rgb_image + (channels * (y_source * org_width + x_source));
for (int _channels = 0; _channels < channels; ++_channels)
p_target[_channels] = p_source[_channels];
}
else
{
for (int _channels = 0; _channels < channels; ++_channels)
p_target[_channels] = 255;
}
}
// memcpy(rgb_image, odata, memsize);
memCopy(odata, rgb_image, memsize);
if (!ImageTMP)
{
free_psram_heap(std::string(TAG) + "->odata", odata);
}
if (ImageTMP)
ImageTMP->RGBImageRelease();
RGBImageRelease();
}
void CRotateImage::RotateAntiAliasing(float _angle, int _centerx, int _centery)
{
int org_width, org_height;
float m[2][3];
float x_center = _centerx;
float y_center = _centery;
_angle = _angle / 180 * M_PI;
if (doflip)
{
org_width = width;
org_height = height;
height = org_width;
width = org_height;
x_center = x_center - (org_width/2) + (org_height/2);
y_center = y_center + (org_width/2) - (org_height/2);
if (ImageOrg)
{
ImageOrg->height = height;
ImageOrg->width = width;
}
}
else
{
org_width = width;
org_height = height;
}
m[0][0] = cos(_angle);
m[0][1] = sin(_angle);
m[0][2] = (1 - m[0][0]) * x_center - m[0][1] * y_center;
m[1][0] = -m[0][1];
m[1][1] = m[0][0];
m[1][2] = m[0][1] * x_center + (1 - m[0][0]) * y_center;
if (doflip)
{
m[0][2] = m[0][2] + (org_width/2) - (org_height/2);
m[1][2] = m[1][2] - (org_width/2) + (org_height/2);
}
int memsize = width * height * channels;
uint8_t* odata;
if (ImageTMP)
{
odata = ImageTMP->RGBImageLock();
}
else
{
odata = (unsigned char*)malloc_psram_heap(std::string(TAG) + "->odata", memsize, MALLOC_CAP_SPIRAM);
}
int x_source_1, y_source_1, x_source_2, y_source_2;
float x_source, y_source;
float quad_ul, quad_ur, quad_ol, quad_or;
stbi_uc* p_target;
stbi_uc *p_source_ul, *p_source_ur, *p_source_ol, *p_source_or;
RGBImageLock();
for (int x = 0; x < width; ++x)
for (int y = 0; y < height; ++y)
{
p_target = odata + (channels * (y * width + x));
x_source = (m[0][0] * x + m[0][1] * y);
y_source = (m[1][0] * x + m[1][1] * y);
x_source += (m[0][2]);
y_source += (m[1][2]);
x_source_1 = (int)x_source;
x_source_2 = x_source_1 + 1;
y_source_1 = (int)y_source;
y_source_2 = y_source_1 + 1;
quad_ul = (x_source_2 - x_source) * (y_source_2 - y_source);
quad_ur = (1- (x_source_2 - x_source)) * (y_source_2 - y_source);
quad_or = (x_source_2 - x_source) * (1-(y_source_2 - y_source));
quad_ol = (1- (x_source_2 - x_source)) * (1-(y_source_2 - y_source));
if ((x_source_1 >= 0) && (x_source_2 < org_width) && (y_source_1 >= 0) && (y_source_2 < org_height))
{
p_source_ul = rgb_image + (channels * (y_source_1 * org_width + x_source_1));
p_source_ur = rgb_image + (channels * (y_source_1 * org_width + x_source_2));
p_source_or = rgb_image + (channels * (y_source_2 * org_width + x_source_1));
p_source_ol = rgb_image + (channels * (y_source_2 * org_width + x_source_2));
for (int _channels = 0; _channels < channels; ++_channels)
{
p_target[_channels] = (int)((float)p_source_ul[_channels] * quad_ul
+ (float)p_source_ur[_channels] * quad_ur
+ (float)p_source_or[_channels] * quad_or
+ (float)p_source_ol[_channels] * quad_ol);
}
}
else
{
for (int _channels = 0; _channels < channels; ++_channels)
p_target[_channels] = 255;
}
}
// memcpy(rgb_image, odata, memsize);
memCopy(odata, rgb_image, memsize);
if (!ImageTMP)
{
free_psram_heap(std::string(TAG) + "->odata", odata);
}
if (ImageTMP)
ImageTMP->RGBImageRelease();
RGBImageRelease();
}
void CRotateImage::Rotate(float _angle)
{
// ESP_LOGD(TAG, "width %d, height %d", width, height);
Rotate(_angle, width / 2, height / 2);
}
void CRotateImage::RotateAntiAliasing(float _angle)
{
// ESP_LOGD(TAG, "width %d, height %d", width, height);
RotateAntiAliasing(_angle, width / 2, height / 2);
}
void CRotateImage::Translate(int _dx, int _dy)
{
int memsize = width * height * channels;
uint8_t* odata;
if (ImageTMP)
{
odata = ImageTMP->RGBImageLock();
}
else
{
odata = (unsigned char*)malloc_psram_heap(std::string(TAG) + "->odata", memsize, MALLOC_CAP_SPIRAM);
}
int x_source, y_source;
stbi_uc* p_target;
stbi_uc* p_source;
RGBImageLock();
for (int x = 0; x < width; ++x)
for (int y = 0; y < height; ++y)
{
p_target = odata + (channels * (y * width + x));
x_source = x - _dx;
y_source = y - _dy;
if ((x_source >= 0) && (x_source < width) && (y_source >= 0) && (y_source < height))
{
p_source = rgb_image + (channels * (y_source * width + x_source));
for (int _channels = 0; _channels < channels; ++_channels)
p_target[_channels] = p_source[_channels];
}
else
{
for (int _channels = 0; _channels < channels; ++_channels)
p_target[_channels] = 255;
}
}
// memcpy(rgb_image, odata, memsize);
memCopy(odata, rgb_image, memsize);
if (!ImageTMP)
{
free_psram_heap(std::string(TAG) + "->odata", odata);
}
if (ImageTMP)
{
ImageTMP->RGBImageRelease();
}
RGBImageRelease();
}

View File

@@ -1,29 +1,28 @@
#pragma once
#ifndef CROTATEIMAGE_H
#define CROTATEIMAGE_H
#include "CImageBasis.h"
class CRotateImage: public CImageBasis
{
public:
CImageBasis *ImageTMP, *ImageOrg;
bool doflip;
CRotateImage(std::string name, std::string _image, bool _flip = false) : CImageBasis(name, _image) {ImageTMP = NULL; ImageOrg = NULL; doflip = _flip;};
CRotateImage(std::string name, uint8_t* _rgb_image, int _channels, int _width, int _height, int _bpp, bool _flip = false) : CImageBasis(name, _rgb_image, _channels, _width, _height, _bpp) {ImageTMP = NULL; ImageOrg = NULL; doflip = _flip;};
CRotateImage(std::string name, CImageBasis *_org, CImageBasis *_temp, bool _flip = false);
void Rotate(float _angle);
void RotateAntiAliasing(float _angle);
void Rotate(float _angle, int _centerx, int _centery);
void RotateAntiAliasing(float _angle, int _centerx, int _centery);
void Translate(int _dx, int _dy);
void Mirror();
};
#pragma once
#ifndef CROTATEIMAGE_H
#define CROTATEIMAGE_H
#include "CImageBasis.h"
class CRotateImage: public CImageBasis
{
public:
CImageBasis *ImageTMP, *ImageOrg;
bool doflip;
CRotateImage(std::string name, std::string _image, bool _flip = false) : CImageBasis(name, _image) {ImageTMP = NULL; ImageOrg = NULL; doflip = _flip;};
CRotateImage(std::string name, uint8_t* _rgb_image, int _channels, int _width, int _height, int _bpp, bool _flip = false) : CImageBasis(name, _rgb_image, _channels, _width, _height, _bpp) {ImageTMP = NULL; ImageOrg = NULL; doflip = _flip;};
CRotateImage(std::string name, CImageBasis *_org, CImageBasis *_temp, bool _flip = false);
void Rotate(float _angle);
void RotateAntiAliasing(float _angle);
void Rotate(float _angle, int _centerx, int _centery);
void RotateAntiAliasing(float _angle, int _centerx, int _centery);
void Translate(int _dx, int _dy);
};
#endif //CROTATEIMAGE_H