Update tflite

This commit is contained in:
jomjol
2020-11-08 03:27:52 +01:00
parent 05a0f6fa62
commit 84cea8e3d6
169 changed files with 16367 additions and 11456 deletions

View File

@@ -21,6 +21,8 @@ limitations under the License.
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/kernels/internal/cppmath.h"
#include "tensorflow/lite/kernels/internal/max.h"
#include "tensorflow/lite/kernels/internal/min.h"
namespace tflite {
namespace ops {
@@ -32,11 +34,11 @@ inline float ActivationValFloat(TfLiteFusedActivation act, float a) {
case kTfLiteActNone:
return a;
case kTfLiteActRelu:
return std::max(0.0f, a);
case kTfLiteActRelu1:
return std::max(-1.0f, std::min(a, 1.0f));
return TfLiteMax(0.0f, a);
case kTfLiteActReluN1To1:
return TfLiteMax(-1.0f, TfLiteMin(a, 1.0f));
case kTfLiteActRelu6:
return std::max(0.0f, std::min(a, 6.0f));
return TfLiteMax(0.0f, TfLiteMin(a, 6.0f));
case kTfLiteActTanh:
return std::tanh(a);
case kTfLiteActSignBit:

View File

@@ -18,30 +18,82 @@ limitations under the License.
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/quantization_util.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/internal/types.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/kernels/op_macros.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
#include "tensorflow/lite/micro/micro_utils.h"
namespace tflite {
namespace ops {
namespace micro {
namespace activations {
namespace {
struct ReluOpData {
ReluParams params;
};
struct Relu6OpData {
int8_t six_int8;
int8_t zero_int8;
uint8_t six_uint8;
uint8_t zero_uint8;
};
} // namespace
constexpr int kInputTensor = 0;
constexpr int kOutputTensor = 0;
template <typename Q>
inline void ReluQuantized(int32_t lower, const RuntimeShape& input_shape,
const Q* input_data, const RuntimeShape& output_shape,
Q* output_data) {
template <typename T>
inline void ReluQuantized(const ReluOpData& data,
const RuntimeShape& input_shape,
const RuntimeShape& output_shape, const T* input_data,
T* output_data) {
const int flat_size = MatchingFlatSize(input_shape, output_shape);
for (int i = 0; i < flat_size; ++i) {
const Q val = input_data[i];
const Q clamped = val < lower ? lower : val;
output_data[i] = clamped;
const int32_t val = static_cast<int32_t>(input_data[i]);
int32_t clamped =
data.params.output_offset +
MultiplyByQuantizedMultiplier(val - data.params.input_offset,
data.params.output_multiplier,
data.params.output_shift);
clamped = std::max(data.params.quantized_activation_min, clamped);
clamped = std::min(data.params.quantized_activation_max, clamped);
output_data[i] = static_cast<T>(clamped);
}
}
template <typename T>
inline void CalculateReluOpData(const TfLiteTensor* input, TfLiteTensor* output,
ReluOpData* data) {
float act_min = 0.0;
float act_max = std::numeric_limits<float>::infinity();
double real_multiplier =
static_cast<double>(input->params.scale / output->params.scale);
const RuntimeShape input_shape = GetTensorShape(input);
const RuntimeShape output_shape = GetTensorShape(output);
QuantizeMultiplier(real_multiplier, &data->params.output_multiplier,
&data->params.output_shift);
data->params.quantized_activation_min = std::max(
static_cast<int32_t>(std::numeric_limits<T>::min()),
output->params.zero_point +
static_cast<int32_t>(roundf(act_min / output->params.scale)));
data->params.quantized_activation_max =
act_max == std::numeric_limits<float>::infinity()
? static_cast<int32_t>(std::numeric_limits<T>::max())
: std::min(static_cast<int32_t>(std::numeric_limits<T>::max()),
output->params.zero_point +
static_cast<int32_t>(
roundf(act_max / output->params.scale)));
data->params.input_offset = input->params.zero_point;
data->params.output_offset = output->params.zero_point;
}
inline void ReluFloat(const RuntimeShape& input_shape, const float* input_data,
const RuntimeShape& output_shape, float* output_data) {
const int flat_size = MatchingFlatSize(input_shape, output_shape);
@@ -77,33 +129,59 @@ inline void Relu6Quantized(Q lower, Q upper, const RuntimeShape& input_shape,
}
}
void* ReluInit(TfLiteContext* context, const char* buffer, size_t length) {
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
return context->AllocatePersistentBuffer(context, sizeof(ReluOpData));
}
TfLiteStatus ReluPrepare(TfLiteContext* context, TfLiteNode* node) {
TFLITE_DCHECK(node->user_data != nullptr);
ReluOpData* data = static_cast<ReluOpData*>(node->user_data);
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TF_LITE_ENSURE(context, input != nullptr);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TF_LITE_ENSURE(context, output != nullptr);
if (input->type == kTfLiteInt8) {
CalculateReluOpData<int8_t>(input, output, data);
} else if (input->type == kTfLiteUInt8) {
CalculateReluOpData<uint8_t>(input, output, data);
}
return kTfLiteOk;
}
TfLiteStatus ReluEval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TFLITE_DCHECK(node->user_data != nullptr);
const ReluOpData& data = *(static_cast<const ReluOpData*>(node->user_data));
const TfLiteEvalTensor* input =
tflite::micro::GetEvalInput(context, node, kInputTensor);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
switch (input->type) {
case kTfLiteFloat32: {
ReluFloat(GetTensorShape(input), GetTensorData<float>(input),
GetTensorShape(output), GetTensorData<float>(output));
ReluFloat(tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<float>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output));
return kTfLiteOk;
}
case kTfLiteInt8: {
ReluQuantized<int8_t>(input->params.zero_point, GetTensorShape(input),
GetTensorData<int8_t>(input),
GetTensorShape(output),
GetTensorData<int8_t>(output));
ReluQuantized<int8_t>(data, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int8_t>(input),
tflite::micro::GetTensorData<int8_t>(output));
return kTfLiteOk;
}
case kTfLiteUInt8: {
ReluQuantized<uint8_t>(input->params.zero_point, GetTensorShape(input),
GetTensorData<uint8_t>(input),
GetTensorShape(output),
GetTensorData<uint8_t>(output));
ReluQuantized<uint8_t>(data, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<uint8_t>(input),
tflite::micro::GetTensorData<uint8_t>(output));
return kTfLiteOk;
}
default: {
@@ -114,37 +192,63 @@ TfLiteStatus ReluEval(TfLiteContext* context, TfLiteNode* node) {
}
}
void* Relu6Init(TfLiteContext* context, const char* buffer, size_t length) {
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
return context->AllocatePersistentBuffer(context, sizeof(Relu6OpData));
}
TfLiteStatus Relu6Prepare(TfLiteContext* context, TfLiteNode* node) {
TFLITE_DCHECK(node->user_data != nullptr);
Relu6OpData* data = static_cast<Relu6OpData*>(node->user_data);
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TF_LITE_ENSURE(context, input != nullptr);
if (input->type == kTfLiteInt8) {
data->six_int8 = FloatToQuantizedType<int8_t>(6.0f, input->params.scale,
input->params.zero_point);
data->zero_int8 = input->params.zero_point;
} else if (input->type == kTfLiteUInt8) {
data->six_uint8 = FloatToQuantizedType<uint8_t>(6.0f, input->params.scale,
input->params.zero_point);
data->zero_uint8 = input->params.zero_point;
}
return kTfLiteOk;
}
TfLiteStatus Relu6Eval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TFLITE_DCHECK(node->user_data != nullptr);
const Relu6OpData& data = *(static_cast<const Relu6OpData*>(node->user_data));
const TfLiteEvalTensor* input =
tflite::micro::GetEvalInput(context, node, kInputTensor);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
switch (input->type) {
case kTfLiteFloat32: {
Relu6Float(GetTensorShape(input), GetTensorData<float>(input),
GetTensorShape(output), GetTensorData<float>(output));
Relu6Float(tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<float>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output));
return kTfLiteOk;
}
case kTfLiteInt8: {
const int8_t six = FloatToAsymmetricQuantizedInt8(
6.0f, input->params.scale, input->params.zero_point);
const int8_t zero = input->params.zero_point;
Relu6Quantized<int8_t>(
zero, six, GetTensorShape(input), GetTensorData<int8_t>(input),
GetTensorShape(output), GetTensorData<int8_t>(output));
Relu6Quantized<int8_t>(data.zero_int8, data.six_int8,
tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<int8_t>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int8_t>(output));
return kTfLiteOk;
}
case kTfLiteUInt8: {
const uint8_t six = FloatToAsymmetricQuantizedUInt8(
6.0f, input->params.scale, input->params.zero_point);
const uint8_t zero = input->params.zero_point;
Relu6Quantized<uint8_t>(
zero, six, GetTensorShape(input), GetTensorData<uint8_t>(input),
GetTensorShape(output), GetTensorData<uint8_t>(output));
Relu6Quantized<uint8_t>(data.zero_uint8, data.six_uint8,
tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<uint8_t>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<uint8_t>(output));
return kTfLiteOk;
}
default: {
@@ -157,28 +261,26 @@ TfLiteStatus Relu6Eval(TfLiteContext* context, TfLiteNode* node) {
} // namespace activations
TfLiteRegistration* Register_RELU() {
static TfLiteRegistration r = {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/activations::ReluPrepare,
/*invoke=*/activations::ReluEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_RELU() {
return {/*init=*/activations::ReluInit,
/*free=*/nullptr,
/*prepare=*/activations::ReluPrepare,
/*invoke=*/activations::ReluEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
TfLiteRegistration* Register_RELU6() {
static TfLiteRegistration r = {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/activations::Relu6Prepare,
/*invoke=*/activations::Relu6Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_RELU6() {
return {/*init=*/activations::Relu6Init,
/*free=*/nullptr,
/*prepare=*/activations::Relu6Prepare,
/*invoke=*/activations::Relu6Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
} // namespace micro

View File

@@ -23,6 +23,8 @@ limitations under the License.
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/kernels/op_macros.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
#include "tensorflow/lite/micro/memory_helpers.h"
namespace tflite {
namespace ops {
@@ -40,18 +42,22 @@ struct OpData {
// and the special 16-bit -> 16bit quantized path
int input1_shift;
int input2_shift;
int32 output_activation_min;
int32 output_activation_max;
int32_t output_activation_min;
int32_t output_activation_max;
// These fields are used only in the general 8-bit -> 8bit quantized path
int32 input1_multiplier;
int32 input2_multiplier;
int32 output_multiplier;
int32_t input1_multiplier;
int32_t input2_multiplier;
int32_t output_multiplier;
int output_shift;
int left_shift;
int32 input1_offset;
int32 input2_offset;
int32 output_offset;
int32_t input1_offset;
int32_t input2_offset;
int32_t output_offset;
// Used only for float evals:
float output_activation_min_f32;
float output_activation_max_f32;
};
TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteAddParams* params,
@@ -89,37 +95,44 @@ TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteAddParams* params,
TF_LITE_ENSURE_STATUS(CalculateActivationRangeQuantized(
context, params->activation, output, &data->output_activation_min,
&data->output_activation_max));
} else if (output->type == kTfLiteFloat32) {
CalculateActivationRange(params->activation,
&data->output_activation_min_f32,
&data->output_activation_max_f32);
}
return kTfLiteOk;
}
void EvalAdd(TfLiteContext* context, TfLiteNode* node, TfLiteAddParams* params,
const OpData* data, const TfLiteTensor* input1,
const TfLiteTensor* input2, TfLiteTensor* output) {
float output_activation_min, output_activation_max;
CalculateActivationRange(params->activation, &output_activation_min,
&output_activation_max);
const OpData* data, const TfLiteEvalTensor* input1,
const TfLiteEvalTensor* input2, TfLiteEvalTensor* output) {
tflite::ArithmeticParams op_params;
SetActivationParams(output_activation_min, output_activation_max, &op_params);
#define TF_LITE_ADD(opname) \
reference_ops::opname(op_params, GetTensorShape(input1), \
GetTensorData<float>(input1), GetTensorShape(input2), \
GetTensorData<float>(input2), GetTensorShape(output), \
GetTensorData<float>(output))
SetActivationParams(data->output_activation_min_f32,
data->output_activation_max_f32, &op_params);
if (data->requires_broadcast) {
TF_LITE_ADD(BroadcastAdd4DSlow);
reference_ops::BroadcastAdd4DSlow(
op_params, tflite::micro::GetTensorShape(input1),
tflite::micro::GetTensorData<float>(input1),
tflite::micro::GetTensorShape(input2),
tflite::micro::GetTensorData<float>(input2),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output));
} else {
TF_LITE_ADD(Add);
reference_ops::Add(op_params, tflite::micro::GetTensorShape(input1),
tflite::micro::GetTensorData<float>(input1),
tflite::micro::GetTensorShape(input2),
tflite::micro::GetTensorData<float>(input2),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output));
}
#undef TF_LITE_ADD
}
TfLiteStatus EvalAddQuantized(TfLiteContext* context, TfLiteNode* node,
TfLiteAddParams* params, const OpData* data,
const TfLiteTensor* input1,
const TfLiteTensor* input2,
TfLiteTensor* output) {
const TfLiteEvalTensor* input1,
const TfLiteEvalTensor* input2,
TfLiteEvalTensor* output) {
if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) {
tflite::ArithmeticParams op_params;
op_params.left_shift = data->left_shift;
@@ -135,46 +148,91 @@ TfLiteStatus EvalAddQuantized(TfLiteContext* context, TfLiteNode* node,
SetActivationParams(data->output_activation_min,
data->output_activation_max, &op_params);
bool need_broadcast = reference_ops::ProcessBroadcastShapes(
GetTensorShape(input1), GetTensorShape(input2), &op_params);
#define TF_LITE_ADD(type, opname, dtype) \
type::opname(op_params, GetTensorShape(input1), \
GetTensorData<dtype>(input1), GetTensorShape(input2), \
GetTensorData<dtype>(input2), GetTensorShape(output), \
GetTensorData<dtype>(output));
tflite::micro::GetTensorShape(input1),
tflite::micro::GetTensorShape(input2), &op_params);
if (output->type == kTfLiteInt8) {
if (need_broadcast) {
TF_LITE_ADD(reference_integer_ops, BroadcastAdd4DSlow, int8_t);
reference_integer_ops::BroadcastAdd4DSlow(
op_params, tflite::micro::GetTensorShape(input1),
tflite::micro::GetTensorData<int8_t>(input1),
tflite::micro::GetTensorShape(input2),
tflite::micro::GetTensorData<int8_t>(input2),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int8_t>(output));
} else {
TF_LITE_ADD(reference_integer_ops, Add, int8_t);
reference_integer_ops::Add(
op_params, tflite::micro::GetTensorShape(input1),
tflite::micro::GetTensorData<int8_t>(input1),
tflite::micro::GetTensorShape(input2),
tflite::micro::GetTensorData<int8_t>(input2),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int8_t>(output));
}
} else {
if (need_broadcast) {
TF_LITE_ADD(reference_ops, BroadcastAdd4DSlow, uint8_t);
reference_ops::BroadcastAdd4DSlow(
op_params, tflite::micro::GetTensorShape(input1),
tflite::micro::GetTensorData<uint8_t>(input1),
tflite::micro::GetTensorShape(input2),
tflite::micro::GetTensorData<uint8_t>(input2),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<uint8_t>(output));
} else {
TF_LITE_ADD(reference_ops, Add, uint8_t);
reference_ops::Add(op_params, tflite::micro::GetTensorShape(input1),
tflite::micro::GetTensorData<uint8_t>(input1),
tflite::micro::GetTensorShape(input2),
tflite::micro::GetTensorData<uint8_t>(input2),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<uint8_t>(output));
}
}
#undef TF_LITE_ADD
}
return kTfLiteOk;
}
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
return context->AllocatePersistentBuffer(context, sizeof(OpData));
}
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TFLITE_DCHECK(node->user_data != nullptr);
TFLITE_DCHECK(node->builtin_data != nullptr);
const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
TF_LITE_ENSURE(context, input1 != nullptr);
const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2);
TF_LITE_ENSURE(context, input2 != nullptr);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TF_LITE_ENSURE(context, output != nullptr);
OpData* data = static_cast<OpData*>(node->user_data);
auto* params = reinterpret_cast<TfLiteAddParams*>(node->builtin_data);
TF_LITE_ENSURE_STATUS(
CalculateOpData(context, params, input1, input2, output, data));
return kTfLiteOk;
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
auto* params = reinterpret_cast<TfLiteAddParams*>(node->builtin_data);
const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TFLITE_DCHECK(node->user_data != nullptr);
const OpData* data = static_cast<const OpData*>(node->user_data);
OpData data;
TF_LITE_ENSURE_STATUS(
CalculateOpData(context, params, input1, input2, output, &data));
const TfLiteEvalTensor* input1 =
tflite::micro::GetEvalInput(context, node, kInputTensor1);
const TfLiteEvalTensor* input2 =
tflite::micro::GetEvalInput(context, node, kInputTensor2);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
if (output->type == kTfLiteFloat32) {
EvalAdd(context, node, params, &data, input1, input2, output);
EvalAdd(context, node, params, data, input1, input2, output);
} else if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) {
TF_LITE_ENSURE_OK(context, EvalAddQuantized(context, node, params, &data,
TF_LITE_ENSURE_OK(context, EvalAddQuantized(context, node, params, data,
input1, input2, output));
} else {
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
@@ -187,16 +245,15 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
} // namespace add
TfLiteRegistration* Register_ADD() {
static TfLiteRegistration r = {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/nullptr,
/*invoke=*/add::Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_ADD() {
return {/*init=*/add::Init,
/*free=*/nullptr,
/*prepare=*/add::Prepare,
/*invoke=*/add::Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
} // namespace micro

View File

@@ -1,83 +0,0 @@
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/micro/kernels/all_ops_resolver.h"
#include "tensorflow/lite/micro/kernels/micro_ops.h"
namespace tflite {
namespace ops {
namespace micro {
// Register each supported op with:
// AddBuiltin(<operator ID>, <registration>, [min version], [max version])
AllOpsResolver::AllOpsResolver() {
AddBuiltin(BuiltinOperator_FULLY_CONNECTED, Register_FULLY_CONNECTED(), 1, 4);
AddBuiltin(BuiltinOperator_MAX_POOL_2D, Register_MAX_POOL_2D(), 1, 2);
AddBuiltin(BuiltinOperator_SOFTMAX, Register_SOFTMAX(), 1, 2);
AddBuiltin(BuiltinOperator_LOGISTIC, Register_LOGISTIC(), 1, 2);
AddBuiltin(BuiltinOperator_SVDF, Register_SVDF(), 1, 3);
AddBuiltin(BuiltinOperator_CONV_2D, Register_CONV_2D(), 1, 3);
AddBuiltin(BuiltinOperator_CONCATENATION, Register_CONCATENATION(), 1, 3);
AddBuiltin(BuiltinOperator_DEPTHWISE_CONV_2D, Register_DEPTHWISE_CONV_2D(), 1,
3);
AddBuiltin(BuiltinOperator_AVERAGE_POOL_2D, Register_AVERAGE_POOL_2D(), 1, 2);
AddBuiltin(BuiltinOperator_ABS, Register_ABS());
AddBuiltin(BuiltinOperator_SIN, Register_SIN());
AddBuiltin(BuiltinOperator_COS, Register_COS());
AddBuiltin(BuiltinOperator_LOG, Register_LOG());
AddBuiltin(BuiltinOperator_SQRT, Register_SQRT());
AddBuiltin(BuiltinOperator_RSQRT, Register_RSQRT());
AddBuiltin(BuiltinOperator_SQUARE, Register_SQUARE());
AddBuiltin(BuiltinOperator_PRELU, Register_PRELU());
AddBuiltin(BuiltinOperator_FLOOR, Register_FLOOR());
AddBuiltin(BuiltinOperator_MAXIMUM, Register_MAXIMUM());
AddBuiltin(BuiltinOperator_MINIMUM, Register_MINIMUM());
AddBuiltin(BuiltinOperator_ARG_MAX, Register_ARG_MAX());
AddBuiltin(BuiltinOperator_ARG_MIN, Register_ARG_MIN());
AddBuiltin(BuiltinOperator_LOGICAL_OR, Register_LOGICAL_OR());
AddBuiltin(BuiltinOperator_LOGICAL_AND, Register_LOGICAL_AND());
AddBuiltin(BuiltinOperator_LOGICAL_NOT, Register_LOGICAL_NOT());
AddBuiltin(BuiltinOperator_RESHAPE, Register_RESHAPE());
AddBuiltin(BuiltinOperator_EQUAL, Register_EQUAL(), 1, 2);
AddBuiltin(BuiltinOperator_NOT_EQUAL, Register_NOT_EQUAL(), 1, 2);
AddBuiltin(BuiltinOperator_GREATER, Register_GREATER(), 1, 2);
AddBuiltin(BuiltinOperator_GREATER_EQUAL, Register_GREATER_EQUAL(), 1, 2);
AddBuiltin(BuiltinOperator_LESS, Register_LESS(), 1, 2);
AddBuiltin(BuiltinOperator_LESS_EQUAL, Register_LESS_EQUAL(), 1, 2);
AddBuiltin(BuiltinOperator_CEIL, Register_CEIL());
AddBuiltin(BuiltinOperator_ROUND, Register_ROUND());
AddBuiltin(BuiltinOperator_STRIDED_SLICE, Register_STRIDED_SLICE());
AddBuiltin(BuiltinOperator_PACK, Register_PACK(), 1, 2);
AddBuiltin(BuiltinOperator_PAD, Register_PAD(), 1, 2);
AddBuiltin(BuiltinOperator_PADV2, Register_PADV2(), 1, 2);
AddBuiltin(BuiltinOperator_SPLIT, Register_SPLIT(), 1, 3);
AddBuiltin(BuiltinOperator_UNPACK, Register_UNPACK(), 1, 2);
AddBuiltin(BuiltinOperator_NEG, Register_NEG());
AddBuiltin(BuiltinOperator_ADD, Register_ADD(), 1, 2);
AddBuiltin(BuiltinOperator_MUL, Register_MUL(), 1, 3);
AddBuiltin(BuiltinOperator_SUB, Register_SUB(), 1, 2);
AddBuiltin(BuiltinOperator_QUANTIZE, Register_QUANTIZE());
AddBuiltin(BuiltinOperator_DEQUANTIZE, Register_DEQUANTIZE(), 1, 2);
AddBuiltin(BuiltinOperator_RELU, Register_RELU());
AddBuiltin(BuiltinOperator_RELU6, Register_RELU6());
AddBuiltin(BuiltinOperator_MEAN, Register_MEAN());
AddBuiltin(BuiltinOperator_RESIZE_NEAREST_NEIGHBOR,
Register_RESIZE_NEAREST_NEIGHBOR(),
/* min_version = */ 1,
/* max_version = */ 2);
AddBuiltin(BuiltinOperator_L2_NORMALIZATION, Register_L2_NORMALIZATION());
}
} // namespace micro
} // namespace ops
} // namespace tflite

View File

@@ -19,6 +19,7 @@ limitations under the License.
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
#include "tensorflow/lite/micro/kernels/micro_utils.h"
namespace tflite {
@@ -45,14 +46,20 @@ inline void ArgMinMaxHelper(const RuntimeShape& input1_shape,
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node, bool is_arg_max) {
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
const TfLiteTensor* axis = GetInput(context, node, kAxis);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
const TfLiteEvalTensor* input =
tflite::micro::GetEvalInput(context, node, kInputTensor);
const TfLiteEvalTensor* axis =
tflite::micro::GetEvalInput(context, node, kAxis);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
#define TF_LITE_ARG_MIN_MAX(data_type, axis_type, output_type) \
ArgMinMaxHelper(GetTensorShape(input), GetTensorData<data_type>(input), \
GetTensorData<axis_type>(axis), GetTensorShape(output), \
GetTensorData<output_type>(output), is_arg_max)
#define TF_LITE_ARG_MIN_MAX(data_type, axis_type, output_type) \
ArgMinMaxHelper(tflite::micro::GetTensorShape(input), \
tflite::micro::GetTensorData<data_type>(input), \
tflite::micro::GetTensorData<axis_type>(axis), \
tflite::micro::GetTensorShape(output), \
tflite::micro::GetTensorData<output_type>(output), \
is_arg_max)
if (axis->type == kTfLiteInt32) {
if (output->type == kTfLiteInt32) {
switch (input->type) {
@@ -67,18 +74,19 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node, bool is_arg_max) {
break;
default:
TF_LITE_KERNEL_LOG(context,
"Only float32, uint8 and int8 are "
"Only float32, uint8_t and int8_t are "
"supported currently, got %s.",
TfLiteTypeGetName(input->type));
return kTfLiteError;
}
} else {
TF_LITE_KERNEL_LOG(context, "Only int32 are supported currently, got %s.",
TF_LITE_KERNEL_LOG(context,
"Only int32_t are supported currently, got %s.",
TfLiteTypeGetName(output->type));
return kTfLiteError;
}
} else {
TF_LITE_KERNEL_LOG(context, "Only int32 are supported currently, got %s.",
TF_LITE_KERNEL_LOG(context, "Only int32_t are supported currently, got %s.",
TfLiteTypeGetName(axis->type));
return kTfLiteError;
}
@@ -98,28 +106,26 @@ TfLiteStatus ArgMaxEval(TfLiteContext* context, TfLiteNode* node) {
} // namespace arg_min_max
TfLiteRegistration* Register_ARG_MAX() {
static TfLiteRegistration r = {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/nullptr,
/*invoke=*/arg_min_max::ArgMaxEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_ARG_MAX() {
return {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/nullptr,
/*invoke=*/arg_min_max::ArgMaxEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
TfLiteRegistration* Register_ARG_MIN() {
static TfLiteRegistration r = {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/nullptr,
/*invoke=*/arg_min_max::ArgMinEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_ARG_MIN() {
return {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/nullptr,
/*invoke=*/arg_min_max::ArgMinEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
} // namespace micro

View File

@@ -18,6 +18,7 @@ limitations under the License.
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
namespace tflite {
namespace ops {
@@ -29,11 +30,13 @@ constexpr int kOutputTensor = 0;
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TF_LITE_ENSURE(context, input != nullptr);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TF_LITE_ENSURE(context, output != nullptr);
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
TF_LITE_ENSURE_EQ(context, input->type, kTfLiteFloat32);
TF_LITE_ENSURE_EQ(context, output->type, input->type);
TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteFloat32);
TF_LITE_ENSURE_TYPES_EQ(context, output->type, input->type);
TF_LITE_ENSURE_EQ(context, output->bytes, input->bytes);
TF_LITE_ENSURE_EQ(context, output->dims->size, input->dims->size);
for (int i = 0; i < output->dims->size; ++i) {
@@ -43,26 +46,29 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
const TfLiteEvalTensor* input =
tflite::micro::GetEvalInput(context, node, kInputTensor);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
reference_ops::Ceil(GetTensorShape(input), GetTensorData<float>(input),
GetTensorShape(output), GetTensorData<float>(output));
reference_ops::Ceil(tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<float>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output));
return kTfLiteOk;
}
} // namespace ceil
TfLiteRegistration* Register_CEIL() {
static TfLiteRegistration r = {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/ceil::Prepare,
/*invoke=*/ceil::Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_CEIL() {
return {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/ceil::Prepare,
/*invoke=*/ceil::Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
} // namespace micro

View File

@@ -17,11 +17,10 @@ limitations under the License.
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/compatibility.h"
#include "tensorflow/lite/kernels/internal/quantization_util.h"
#include "tensorflow/lite/kernels/internal/reference/integer_ops/add.h"
#include "tensorflow/lite/kernels/internal/reference/process_broadcast_shapes.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/kernels/op_macros.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
/*
* The circular buffer custom operator is used to implement strided streaming
@@ -78,7 +77,9 @@ void Free(TfLiteContext* context, void* buffer) { op_data_counter = 0; }
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TF_LITE_ENSURE(context, input != nullptr);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TF_LITE_ENSURE(context, output != nullptr);
TF_LITE_ENSURE(context, input != nullptr);
TF_LITE_ENSURE(context, output != nullptr);
@@ -89,10 +90,10 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE_EQ(context, 1, input->dims->data[2]);
TF_LITE_ENSURE_EQ(context, output->dims->data[3], input->dims->data[3]);
TF_LITE_ENSURE_EQ(context, input->type, output->type);
TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
// The circular buffer custom operator currently only supports int8.
TF_LITE_ENSURE_EQ(context, input->type, kTfLiteInt8);
// The circular buffer custom operator currently only supports int8_t.
TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteInt8);
// TODO(b/132070898): Use statically slotted OpData structures until a
// scratch memory API is ready.
@@ -121,8 +122,10 @@ void EvalInt8(const int8_t* input, int num_slots, int depth, int8_t* output) {
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
const TfLiteEvalTensor* input =
tflite::micro::GetEvalInput(context, node, kInputTensor);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
OpData* data = reinterpret_cast<OpData*>(node->user_data);
@@ -130,8 +133,8 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
int depth = output->dims->data[3];
if (input->type == kTfLiteInt8) {
EvalInt8(GetTensorData<int8_t>(input), num_slots, depth,
GetTensorData<int8_t>(output));
EvalInt8(tflite::micro::GetTensorData<int8_t>(input), num_slots, depth,
tflite::micro::GetTensorData<int8_t>(output));
} else {
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
TfLiteTypeGetName(input->type), input->type);

View File

@@ -18,6 +18,7 @@ limitations under the License.
#include "tensorflow/lite/kernels/internal/quantization_util.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
namespace tflite {
namespace ops {
@@ -25,103 +26,109 @@ namespace micro {
namespace comparisons {
namespace {
struct OpData {
ComparisonParams params;
};
constexpr int kInputTensor1 = 0;
constexpr int kInputTensor2 = 1;
constexpr int kOutputTensor = 0;
// TODO(ruic): optimize macros below to using template functions.
#define TF_LITE_QUANTIZE_COMPARISON(opname) \
template <typename input_dtype> \
void EvalQuantized##opname(TfLiteContext* context, TfLiteNode* node, \
const TfLiteTensor* input1, \
const TfLiteTensor* input2, TfLiteTensor* output, \
bool requires_broadcast) { \
if (input1->type == kTfLiteUInt8 || input1->type == kTfLiteInt8) { \
auto input1_offset = -input1->params.zero_point; \
auto input2_offset = -input2->params.zero_point; \
const int left_shift = 8; \
\
int32 input1_multiplier; \
int input1_shift; \
QuantizeMultiplierSmallerThanOneExp( \
static_cast<double>(input1->params.scale), &input1_multiplier, \
&input1_shift); \
int32 input2_multiplier; \
int input2_shift; \
QuantizeMultiplierSmallerThanOneExp( \
static_cast<double>(input2->params.scale), &input2_multiplier, \
&input2_shift); \
\
ComparisonParams op_params; \
op_params.left_shift = left_shift; \
op_params.input1_offset = input1_offset; \
op_params.input1_multiplier = input1_multiplier; \
op_params.input1_shift = input1_shift; \
op_params.input2_offset = input2_offset; \
op_params.input2_multiplier = input2_multiplier; \
op_params.input2_shift = input2_shift; \
if (requires_broadcast) { \
reference_ops::Broadcast4DSlow##opname##WithScaling( \
op_params, GetTensorShape(input1), \
GetTensorData<input_dtype>(input1), GetTensorShape(input2), \
GetTensorData<input_dtype>(input2), GetTensorShape(output), \
GetTensorData<bool>(output)); \
} else { \
reference_ops::opname##WithScaling( \
op_params, GetTensorShape(input1), \
GetTensorData<input_dtype>(input1), GetTensorShape(input2), \
GetTensorData<input_dtype>(input2), GetTensorShape(output), \
GetTensorData<bool>(output)); \
} \
} \
}
TF_LITE_QUANTIZE_COMPARISON(Equal);
TF_LITE_QUANTIZE_COMPARISON(NotEqual);
TF_LITE_QUANTIZE_COMPARISON(Greater);
TF_LITE_QUANTIZE_COMPARISON(GreaterEqual);
TF_LITE_QUANTIZE_COMPARISON(Less);
TF_LITE_QUANTIZE_COMPARISON(LessEqual);
#undef TF_LITE_QUANTIZE_COMPARISON
#define TF_LITE_COMPARISON(type, opname, requires_broadcast) \
{ \
ComparisonParams op_params; \
requires_broadcast \
? reference_ops::Broadcast4DSlow##opname##NoScaling( \
op_params, GetTensorShape(input1), GetTensorData<type>(input1), \
GetTensorShape(input2), GetTensorData<type>(input2), \
GetTensorShape(output), GetTensorData<bool>(output)) \
: reference_ops::opname##NoScaling( \
op_params, GetTensorShape(input1), GetTensorData<type>(input1), \
GetTensorShape(input2), GetTensorData<type>(input2), \
GetTensorShape(output), GetTensorData<bool>(output)); \
}
TfLiteStatus EqualEval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
bool requires_broadcast = !HaveSameShapes(input1, input2);
TFLITE_DCHECK(node->user_data != nullptr);
const OpData* data = static_cast<const OpData*>(node->user_data);
const TfLiteEvalTensor* input1 =
tflite::micro::GetEvalInput(context, node, kInputTensor1);
const TfLiteEvalTensor* input2 =
tflite::micro::GetEvalInput(context, node, kInputTensor2);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
RuntimeShape input1_shape = tflite::micro::GetTensorShape(input1);
RuntimeShape input2_shape = tflite::micro::GetTensorShape(input2);
RuntimeShape output_shape = tflite::micro::GetTensorShape(output);
bool* output_data = tflite::micro::GetTensorData<bool>(output);
bool requires_broadcast = !tflite::micro::HaveSameShapes(input1, input2);
switch (input1->type) {
case kTfLiteBool:
TF_LITE_COMPARISON(bool, Equal, requires_broadcast);
requires_broadcast
? reference_ops::Broadcast4DSlowEqualNoScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<bool>(input1), input2_shape,
tflite::micro::GetTensorData<bool>(input2), output_shape,
output_data)
: reference_ops::EqualNoScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<bool>(input1), input2_shape,
tflite::micro::GetTensorData<bool>(input2), output_shape,
output_data);
break;
case kTfLiteFloat32:
TF_LITE_COMPARISON(float, Equal, requires_broadcast);
requires_broadcast
? reference_ops::Broadcast4DSlowEqualNoScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<float>(input1), input2_shape,
tflite::micro::GetTensorData<float>(input2), output_shape,
output_data)
: reference_ops::EqualNoScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<float>(input1), input2_shape,
tflite::micro::GetTensorData<float>(input2), output_shape,
output_data);
break;
case kTfLiteInt32:
TF_LITE_COMPARISON(int32_t, Equal, requires_broadcast);
requires_broadcast
? reference_ops::Broadcast4DSlowEqualNoScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<int32_t>(input1), input2_shape,
tflite::micro::GetTensorData<int32_t>(input2), output_shape,
output_data)
: reference_ops::EqualNoScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<int32_t>(input1), input2_shape,
tflite::micro::GetTensorData<int32_t>(input2), output_shape,
output_data);
break;
case kTfLiteInt64:
TF_LITE_COMPARISON(int64_t, Equal, requires_broadcast);
requires_broadcast
? reference_ops::Broadcast4DSlowEqualNoScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<int64_t>(input1), input2_shape,
tflite::micro::GetTensorData<int64_t>(input2), output_shape,
output_data)
: reference_ops::EqualNoScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<int64_t>(input1), input2_shape,
tflite::micro::GetTensorData<int64_t>(input2), output_shape,
output_data);
break;
case kTfLiteUInt8:
EvalQuantizedEqual<uint8_t>(context, node, input1, input2, output,
requires_broadcast);
requires_broadcast
? reference_ops::Broadcast4DSlowEqualWithScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<uint8_t>(input1), input2_shape,
tflite::micro::GetTensorData<uint8_t>(input2), output_shape,
output_data)
: reference_ops::EqualWithScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<uint8_t>(input1), input2_shape,
tflite::micro::GetTensorData<uint8_t>(input2), output_shape,
output_data);
break;
case kTfLiteInt8:
EvalQuantizedEqual<int8_t>(context, node, input1, input2, output,
requires_broadcast);
requires_broadcast
? reference_ops::Broadcast4DSlowEqualWithScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<int8_t>(input1), input2_shape,
tflite::micro::GetTensorData<int8_t>(input2), output_shape,
output_data)
: reference_ops::EqualWithScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<int8_t>(input1), input2_shape,
tflite::micro::GetTensorData<int8_t>(input2), output_shape,
output_data);
break;
default:
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
@@ -133,30 +140,100 @@ TfLiteStatus EqualEval(TfLiteContext* context, TfLiteNode* node) {
// TODO(renjieliu): Refactor the logic to avoid duplications.
TfLiteStatus NotEqualEval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
bool requires_broadcast = !HaveSameShapes(input1, input2);
TFLITE_DCHECK(node->user_data != nullptr);
const OpData* data = static_cast<const OpData*>(node->user_data);
const TfLiteEvalTensor* input1 =
tflite::micro::GetEvalInput(context, node, kInputTensor1);
const TfLiteEvalTensor* input2 =
tflite::micro::GetEvalInput(context, node, kInputTensor2);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
RuntimeShape input1_shape = tflite::micro::GetTensorShape(input1);
RuntimeShape input2_shape = tflite::micro::GetTensorShape(input2);
RuntimeShape output_shape = tflite::micro::GetTensorShape(output);
bool* output_data = tflite::micro::GetTensorData<bool>(output);
bool requires_broadcast = !tflite::micro::HaveSameShapes(input1, input2);
switch (input1->type) {
case kTfLiteBool:
TF_LITE_COMPARISON(bool, NotEqual, requires_broadcast);
requires_broadcast
? reference_ops::Broadcast4DSlowNotEqualNoScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<bool>(input1), input2_shape,
tflite::micro::GetTensorData<bool>(input2), output_shape,
output_data)
: reference_ops::NotEqualNoScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<bool>(input1), input2_shape,
tflite::micro::GetTensorData<bool>(input2), output_shape,
output_data);
break;
case kTfLiteFloat32:
TF_LITE_COMPARISON(float, NotEqual, requires_broadcast);
requires_broadcast
? reference_ops::Broadcast4DSlowNotEqualNoScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<float>(input1), input2_shape,
tflite::micro::GetTensorData<float>(input2), output_shape,
output_data)
: reference_ops::NotEqualNoScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<float>(input1), input2_shape,
tflite::micro::GetTensorData<float>(input2), output_shape,
output_data);
break;
case kTfLiteInt32:
TF_LITE_COMPARISON(int32_t, NotEqual, requires_broadcast);
requires_broadcast
? reference_ops::Broadcast4DSlowNotEqualNoScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<int32_t>(input1), input2_shape,
tflite::micro::GetTensorData<int32_t>(input2), output_shape,
output_data)
: reference_ops::NotEqualNoScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<int32_t>(input1), input2_shape,
tflite::micro::GetTensorData<int32_t>(input2), output_shape,
output_data);
break;
case kTfLiteInt64:
TF_LITE_COMPARISON(int64_t, NotEqual, requires_broadcast);
requires_broadcast
? reference_ops::Broadcast4DSlowNotEqualNoScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<int64_t>(input1), input2_shape,
tflite::micro::GetTensorData<int64_t>(input2), output_shape,
output_data)
: reference_ops::NotEqualNoScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<int64_t>(input1), input2_shape,
tflite::micro::GetTensorData<int64_t>(input2), output_shape,
output_data);
break;
case kTfLiteUInt8:
EvalQuantizedNotEqual<uint8_t>(context, node, input1, input2, output,
requires_broadcast);
requires_broadcast
? reference_ops::Broadcast4DSlowNotEqualWithScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<uint8_t>(input1), input2_shape,
tflite::micro::GetTensorData<uint8_t>(input2), output_shape,
output_data)
: reference_ops::NotEqualWithScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<uint8_t>(input1), input2_shape,
tflite::micro::GetTensorData<uint8_t>(input2), output_shape,
output_data);
break;
case kTfLiteInt8:
EvalQuantizedNotEqual<int8_t>(context, node, input1, input2, output,
requires_broadcast);
requires_broadcast
? reference_ops::Broadcast4DSlowNotEqualWithScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<int8_t>(input1), input2_shape,
tflite::micro::GetTensorData<int8_t>(input2), output_shape,
output_data)
: reference_ops::NotEqualWithScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<int8_t>(input1), input2_shape,
tflite::micro::GetTensorData<int8_t>(input2), output_shape,
output_data);
break;
default:
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
@@ -167,27 +244,87 @@ TfLiteStatus NotEqualEval(TfLiteContext* context, TfLiteNode* node) {
}
TfLiteStatus GreaterEval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
bool requires_broadcast = !HaveSameShapes(input1, input2);
TFLITE_DCHECK(node->user_data != nullptr);
const OpData* data = static_cast<const OpData*>(node->user_data);
const TfLiteEvalTensor* input1 =
tflite::micro::GetEvalInput(context, node, kInputTensor1);
const TfLiteEvalTensor* input2 =
tflite::micro::GetEvalInput(context, node, kInputTensor2);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
RuntimeShape input1_shape = tflite::micro::GetTensorShape(input1);
RuntimeShape input2_shape = tflite::micro::GetTensorShape(input2);
RuntimeShape output_shape = tflite::micro::GetTensorShape(output);
bool* output_data = tflite::micro::GetTensorData<bool>(output);
bool requires_broadcast = !tflite::micro::HaveSameShapes(input1, input2);
switch (input1->type) {
case kTfLiteFloat32:
TF_LITE_COMPARISON(float, Greater, requires_broadcast);
requires_broadcast
? reference_ops::Broadcast4DSlowGreaterNoScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<float>(input1), input2_shape,
tflite::micro::GetTensorData<float>(input2), output_shape,
output_data)
: reference_ops::GreaterNoScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<float>(input1), input2_shape,
tflite::micro::GetTensorData<float>(input2), output_shape,
output_data);
break;
case kTfLiteInt32:
TF_LITE_COMPARISON(int32_t, Greater, requires_broadcast);
requires_broadcast
? reference_ops::Broadcast4DSlowGreaterNoScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<int32_t>(input1), input2_shape,
tflite::micro::GetTensorData<int32_t>(input2), output_shape,
output_data)
: reference_ops::GreaterNoScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<int32_t>(input1), input2_shape,
tflite::micro::GetTensorData<int32_t>(input2), output_shape,
output_data);
break;
case kTfLiteInt64:
TF_LITE_COMPARISON(int64_t, Greater, requires_broadcast);
requires_broadcast
? reference_ops::Broadcast4DSlowGreaterNoScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<int64_t>(input1), input2_shape,
tflite::micro::GetTensorData<int64_t>(input2), output_shape,
output_data)
: reference_ops::GreaterNoScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<int64_t>(input1), input2_shape,
tflite::micro::GetTensorData<int64_t>(input2), output_shape,
output_data);
break;
case kTfLiteUInt8:
EvalQuantizedGreater<uint8_t>(context, node, input1, input2, output,
requires_broadcast);
requires_broadcast
? reference_ops::Broadcast4DSlowGreaterWithScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<uint8_t>(input1), input2_shape,
tflite::micro::GetTensorData<uint8_t>(input2), output_shape,
output_data)
: reference_ops::GreaterWithScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<uint8_t>(input1), input2_shape,
tflite::micro::GetTensorData<uint8_t>(input2), output_shape,
output_data);
break;
case kTfLiteInt8:
EvalQuantizedGreater<int8_t>(context, node, input1, input2, output,
requires_broadcast);
requires_broadcast
? reference_ops::Broadcast4DSlowGreaterWithScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<int8_t>(input1), input2_shape,
tflite::micro::GetTensorData<int8_t>(input2), output_shape,
output_data)
: reference_ops::GreaterWithScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<int8_t>(input1), input2_shape,
tflite::micro::GetTensorData<int8_t>(input2), output_shape,
output_data);
break;
default:
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
@@ -198,27 +335,87 @@ TfLiteStatus GreaterEval(TfLiteContext* context, TfLiteNode* node) {
}
TfLiteStatus GreaterEqualEval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
bool requires_broadcast = !HaveSameShapes(input1, input2);
TFLITE_DCHECK(node->user_data != nullptr);
const OpData* data = static_cast<const OpData*>(node->user_data);
const TfLiteEvalTensor* input1 =
tflite::micro::GetEvalInput(context, node, kInputTensor1);
const TfLiteEvalTensor* input2 =
tflite::micro::GetEvalInput(context, node, kInputTensor2);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
RuntimeShape input1_shape = tflite::micro::GetTensorShape(input1);
RuntimeShape input2_shape = tflite::micro::GetTensorShape(input2);
RuntimeShape output_shape = tflite::micro::GetTensorShape(output);
bool* output_data = tflite::micro::GetTensorData<bool>(output);
bool requires_broadcast = !tflite::micro::HaveSameShapes(input1, input2);
switch (input1->type) {
case kTfLiteFloat32:
TF_LITE_COMPARISON(float, GreaterEqual, requires_broadcast);
requires_broadcast
? reference_ops::Broadcast4DSlowGreaterEqualNoScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<float>(input1), input2_shape,
tflite::micro::GetTensorData<float>(input2), output_shape,
output_data)
: reference_ops::GreaterEqualNoScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<float>(input1), input2_shape,
tflite::micro::GetTensorData<float>(input2), output_shape,
output_data);
break;
case kTfLiteInt32:
TF_LITE_COMPARISON(int32_t, GreaterEqual, requires_broadcast);
requires_broadcast
? reference_ops::Broadcast4DSlowGreaterEqualNoScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<int32_t>(input1), input2_shape,
tflite::micro::GetTensorData<int32_t>(input2), output_shape,
output_data)
: reference_ops::GreaterEqualNoScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<int32_t>(input1), input2_shape,
tflite::micro::GetTensorData<int32_t>(input2), output_shape,
output_data);
break;
case kTfLiteInt64:
TF_LITE_COMPARISON(int64_t, GreaterEqual, requires_broadcast);
requires_broadcast
? reference_ops::Broadcast4DSlowGreaterEqualNoScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<int64_t>(input1), input2_shape,
tflite::micro::GetTensorData<int64_t>(input2), output_shape,
output_data)
: reference_ops::GreaterEqualNoScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<int64_t>(input1), input2_shape,
tflite::micro::GetTensorData<int64_t>(input2), output_shape,
output_data);
break;
case kTfLiteUInt8:
EvalQuantizedGreaterEqual<uint8_t>(context, node, input1, input2, output,
requires_broadcast);
requires_broadcast
? reference_ops::Broadcast4DSlowGreaterEqualWithScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<uint8_t>(input1), input2_shape,
tflite::micro::GetTensorData<uint8_t>(input2), output_shape,
output_data)
: reference_ops::GreaterEqualWithScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<uint8_t>(input1), input2_shape,
tflite::micro::GetTensorData<uint8_t>(input2), output_shape,
output_data);
break;
case kTfLiteInt8:
EvalQuantizedGreaterEqual<int8_t>(context, node, input1, input2, output,
requires_broadcast);
requires_broadcast
? reference_ops::Broadcast4DSlowGreaterEqualWithScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<int8_t>(input1), input2_shape,
tflite::micro::GetTensorData<int8_t>(input2), output_shape,
output_data)
: reference_ops::GreaterEqualWithScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<int8_t>(input1), input2_shape,
tflite::micro::GetTensorData<int8_t>(input2), output_shape,
output_data);
break;
default:
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
@@ -229,27 +426,87 @@ TfLiteStatus GreaterEqualEval(TfLiteContext* context, TfLiteNode* node) {
}
TfLiteStatus LessEval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
bool requires_broadcast = !HaveSameShapes(input1, input2);
TFLITE_DCHECK(node->user_data != nullptr);
const OpData* data = static_cast<const OpData*>(node->user_data);
const TfLiteEvalTensor* input1 =
tflite::micro::GetEvalInput(context, node, kInputTensor1);
const TfLiteEvalTensor* input2 =
tflite::micro::GetEvalInput(context, node, kInputTensor2);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
RuntimeShape input1_shape = tflite::micro::GetTensorShape(input1);
RuntimeShape input2_shape = tflite::micro::GetTensorShape(input2);
RuntimeShape output_shape = tflite::micro::GetTensorShape(output);
bool* output_data = tflite::micro::GetTensorData<bool>(output);
bool requires_broadcast = !tflite::micro::HaveSameShapes(input1, input2);
switch (input1->type) {
case kTfLiteFloat32:
TF_LITE_COMPARISON(float, Less, requires_broadcast);
requires_broadcast
? reference_ops::Broadcast4DSlowLessNoScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<float>(input1), input2_shape,
tflite::micro::GetTensorData<float>(input2), output_shape,
output_data)
: reference_ops::LessNoScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<float>(input1), input2_shape,
tflite::micro::GetTensorData<float>(input2), output_shape,
output_data);
break;
case kTfLiteInt32:
TF_LITE_COMPARISON(int32_t, Less, requires_broadcast);
requires_broadcast
? reference_ops::Broadcast4DSlowLessNoScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<int32_t>(input1), input2_shape,
tflite::micro::GetTensorData<int32_t>(input2), output_shape,
output_data)
: reference_ops::LessNoScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<int32_t>(input1), input2_shape,
tflite::micro::GetTensorData<int32_t>(input2), output_shape,
output_data);
break;
case kTfLiteInt64:
TF_LITE_COMPARISON(int64_t, Less, requires_broadcast);
requires_broadcast
? reference_ops::Broadcast4DSlowLessNoScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<int64_t>(input1), input2_shape,
tflite::micro::GetTensorData<int64_t>(input2), output_shape,
output_data)
: reference_ops::LessNoScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<int64_t>(input1), input2_shape,
tflite::micro::GetTensorData<int64_t>(input2), output_shape,
output_data);
break;
case kTfLiteUInt8:
EvalQuantizedLess<uint8_t>(context, node, input1, input2, output,
requires_broadcast);
requires_broadcast
? reference_ops::Broadcast4DSlowLessWithScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<uint8_t>(input1), input2_shape,
tflite::micro::GetTensorData<uint8_t>(input2), output_shape,
output_data)
: reference_ops::LessWithScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<uint8_t>(input1), input2_shape,
tflite::micro::GetTensorData<uint8_t>(input2), output_shape,
output_data);
break;
case kTfLiteInt8:
EvalQuantizedLess<int8_t>(context, node, input1, input2, output,
requires_broadcast);
requires_broadcast
? reference_ops::Broadcast4DSlowLessWithScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<int8_t>(input1), input2_shape,
tflite::micro::GetTensorData<int8_t>(input2), output_shape,
output_data)
: reference_ops::LessWithScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<int8_t>(input1), input2_shape,
tflite::micro::GetTensorData<int8_t>(input2), output_shape,
output_data);
break;
default:
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
@@ -260,27 +517,87 @@ TfLiteStatus LessEval(TfLiteContext* context, TfLiteNode* node) {
}
TfLiteStatus LessEqualEval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
bool requires_broadcast = !HaveSameShapes(input1, input2);
TFLITE_DCHECK(node->user_data != nullptr);
const OpData* data = static_cast<const OpData*>(node->user_data);
const TfLiteEvalTensor* input1 =
tflite::micro::GetEvalInput(context, node, kInputTensor1);
const TfLiteEvalTensor* input2 =
tflite::micro::GetEvalInput(context, node, kInputTensor2);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
RuntimeShape input1_shape = tflite::micro::GetTensorShape(input1);
RuntimeShape input2_shape = tflite::micro::GetTensorShape(input2);
RuntimeShape output_shape = tflite::micro::GetTensorShape(output);
bool* output_data = tflite::micro::GetTensorData<bool>(output);
bool requires_broadcast = !tflite::micro::HaveSameShapes(input1, input2);
switch (input1->type) {
case kTfLiteFloat32:
TF_LITE_COMPARISON(float, LessEqual, requires_broadcast);
requires_broadcast
? reference_ops::Broadcast4DSlowLessEqualNoScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<float>(input1), input2_shape,
tflite::micro::GetTensorData<float>(input2), output_shape,
output_data)
: reference_ops::LessEqualNoScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<float>(input1), input2_shape,
tflite::micro::GetTensorData<float>(input2), output_shape,
output_data);
break;
case kTfLiteInt32:
TF_LITE_COMPARISON(int32_t, LessEqual, requires_broadcast);
requires_broadcast
? reference_ops::Broadcast4DSlowLessEqualNoScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<int32_t>(input1), input2_shape,
tflite::micro::GetTensorData<int32_t>(input2), output_shape,
output_data)
: reference_ops::LessEqualNoScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<int32_t>(input1), input2_shape,
tflite::micro::GetTensorData<int32_t>(input2), output_shape,
output_data);
break;
case kTfLiteInt64:
TF_LITE_COMPARISON(int64_t, LessEqual, requires_broadcast);
requires_broadcast
? reference_ops::Broadcast4DSlowLessEqualNoScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<int64_t>(input1), input2_shape,
tflite::micro::GetTensorData<int64_t>(input2), output_shape,
output_data)
: reference_ops::LessEqualNoScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<int64_t>(input1), input2_shape,
tflite::micro::GetTensorData<int64_t>(input2), output_shape,
output_data);
break;
case kTfLiteUInt8:
EvalQuantizedLessEqual<uint8_t>(context, node, input1, input2, output,
requires_broadcast);
requires_broadcast
? reference_ops::Broadcast4DSlowLessEqualWithScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<uint8_t>(input1), input2_shape,
tflite::micro::GetTensorData<uint8_t>(input2), output_shape,
output_data)
: reference_ops::LessEqualWithScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<uint8_t>(input1), input2_shape,
tflite::micro::GetTensorData<uint8_t>(input2), output_shape,
output_data);
break;
case kTfLiteInt8:
EvalQuantizedLessEqual<int8_t>(context, node, input1, input2, output,
requires_broadcast);
requires_broadcast
? reference_ops::Broadcast4DSlowLessEqualWithScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<int8_t>(input1), input2_shape,
tflite::micro::GetTensorData<int8_t>(input2), output_shape,
output_data)
: reference_ops::LessEqualWithScaling(
data->params, input1_shape,
tflite::micro::GetTensorData<int8_t>(input1), input2_shape,
tflite::micro::GetTensorData<int8_t>(input2), output_shape,
output_data);
break;
default:
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
@@ -291,78 +608,115 @@ TfLiteStatus LessEqualEval(TfLiteContext* context, TfLiteNode* node) {
}
} // namespace
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
return context->AllocatePersistentBuffer(context, sizeof(OpData));
}
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TFLITE_DCHECK(node->user_data != nullptr);
OpData* data = static_cast<OpData*>(node->user_data);
const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
TF_LITE_ENSURE(context, input1 != nullptr);
const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2);
TF_LITE_ENSURE(context, input2 != nullptr);
if (input1->type == kTfLiteUInt8 || input1->type == kTfLiteInt8) {
auto input1_offset = -input1->params.zero_point;
auto input2_offset = -input2->params.zero_point;
const int kLeftShift = 8;
int32_t input1_multiplier;
int input1_shift;
QuantizeMultiplierSmallerThanOneExp(
static_cast<double>(input1->params.scale), &input1_multiplier,
&input1_shift);
int32_t input2_multiplier;
int input2_shift;
QuantizeMultiplierSmallerThanOneExp(
static_cast<double>(input2->params.scale), &input2_multiplier,
&input2_shift);
data->params.left_shift = kLeftShift;
data->params.input1_offset = input1_offset;
data->params.input1_multiplier = input1_multiplier;
data->params.input1_shift = input1_shift;
data->params.input2_offset = input2_offset;
data->params.input2_multiplier = input2_multiplier;
data->params.input2_shift = input2_shift;
}
return kTfLiteOk;
}
} // namespace comparisons
TfLiteRegistration* Register_EQUAL() {
static TfLiteRegistration r = {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/nullptr,
/*invoke=*/comparisons::EqualEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_EQUAL() {
return {/*init=*/comparisons::Init,
/*free=*/nullptr,
/*prepare=*/comparisons::Prepare,
/*invoke=*/comparisons::EqualEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
TfLiteRegistration* Register_NOT_EQUAL() {
static TfLiteRegistration r = {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/nullptr,
/*invoke=*/comparisons::NotEqualEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_NOT_EQUAL() {
return {/*init=*/comparisons::Init,
/*free=*/nullptr,
/*prepare=*/comparisons::Prepare,
/*invoke=*/comparisons::NotEqualEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
TfLiteRegistration* Register_GREATER() {
static TfLiteRegistration r = {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/nullptr,
/*invoke=*/comparisons::GreaterEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_GREATER() {
return {/*init=*/comparisons::Init,
/*free=*/nullptr,
/*prepare=*/comparisons::Prepare,
/*invoke=*/comparisons::GreaterEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
TfLiteRegistration* Register_GREATER_EQUAL() {
static TfLiteRegistration r = {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/nullptr,
/*invoke=*/comparisons::GreaterEqualEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_GREATER_EQUAL() {
return {/*init=*/comparisons::Init,
/*free=*/nullptr,
/*prepare=*/comparisons::Prepare,
/*invoke=*/comparisons::GreaterEqualEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
TfLiteRegistration* Register_LESS() {
static TfLiteRegistration r = {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/nullptr,
/*invoke=*/comparisons::LessEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_LESS() {
return {/*init=*/comparisons::Init,
/*free=*/nullptr,
/*prepare=*/comparisons::Prepare,
/*invoke=*/comparisons::LessEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
TfLiteRegistration* Register_LESS_EQUAL() {
static TfLiteRegistration r = {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/nullptr,
/*invoke=*/comparisons::LessEqualEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_LESS_EQUAL() {
return {/*init=*/comparisons::Init,
/*free=*/nullptr,
/*prepare=*/comparisons::Prepare,
/*invoke=*/comparisons::LessEqualEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
} // namespace micro

View File

@@ -18,10 +18,11 @@ limitations under the License.
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/tensor.h"
#include "tensorflow/lite/kernels/internal/portable_tensor.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/internal/types.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
namespace tflite {
namespace ops {
@@ -31,14 +32,116 @@ namespace concatenation {
constexpr int kMaxInputNum = 10; // Maximum number of input tensors
constexpr int kOutputTensor = 0;
struct OpData {
ConcatenationParams params;
};
// Handles negative axis index, coerces to positive index value.
inline int CalculatePositiveAxis(int axis, const TfLiteTensor* output_tensor) {
if (axis >= 0) {
return axis;
} else {
return NumDimensions(output_tensor) + axis;
}
}
// The following functions are helpers to get tensor data in the format that the
// reference op implementation expects. They provide the same functionality as
// class VectorOfTensors and class VectorOfQuantizedTensors in TFLite.
// Gets shapes from a list of tensors.
inline void GetAllInputTensorShapes(const TfLiteContext* context,
const TfLiteNode* node,
RuntimeShape all_shapes[kMaxInputNum]) {
TFLITE_DCHECK(context != nullptr);
TFLITE_DCHECK(node != nullptr);
for (int i = 0; i < node->inputs->size; ++i) {
const TfLiteEvalTensor* t = tflite::micro::GetEvalInput(context, node, i);
RuntimeShape shape = tflite::micro::GetTensorShape(t);
all_shapes[i].ReplaceWith(shape.DimensionsCount(), shape.DimsData());
}
}
// Get shape pointers from a list of shapes.
inline void GetShapesPointers(const RuntimeShape* shapes, size_t num,
const RuntimeShape* pointers[]) {
for (size_t i = 0; i < num; ++i) {
pointers[i] = &shapes[i];
}
}
// Gets data pointers from a list of tensors.
template <typename T>
inline void GetAllInputTensorData(const TfLiteContext* context,
const TfLiteNode* node,
T* all_data[kMaxInputNum]) {
TFLITE_DCHECK(context != nullptr);
TFLITE_DCHECK(node != nullptr);
for (int i = 0; i < node->inputs->size; ++i) {
const TfLiteEvalTensor* t = tflite::micro::GetEvalInput(context, node, i);
all_data[i] = tflite::micro::GetTensorData<T>(t);
}
}
template <typename data_type>
void EvalUnquantized(TfLiteContext* context, TfLiteNode* node) {
// Collect the shapes and data pointer of input tensors
RuntimeShape inputs_shape[kMaxInputNum];
const RuntimeShape* inputs_shape_ptr[kMaxInputNum];
const data_type* inputs_data[kMaxInputNum];
GetAllInputTensorShapes(context, node, inputs_shape);
GetShapesPointers(inputs_shape, node->inputs->size, inputs_shape_ptr);
GetAllInputTensorData(context, node, inputs_data);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
TFLITE_DCHECK(node->user_data != nullptr);
const OpData* data = static_cast<const OpData*>(node->user_data);
reference_ops::Concatenation(data->params, inputs_shape_ptr, inputs_data,
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<data_type>(output));
}
void EvalQuantizedUInt8(TfLiteContext* context, TfLiteNode* node) {
// Collect the shapes and data pointer of input tensors
RuntimeShape inputs_shape[kMaxInputNum];
const RuntimeShape* inputs_shape_ptr[kMaxInputNum];
const uint8_t* inputs_data[kMaxInputNum];
GetAllInputTensorShapes(context, node, inputs_shape);
GetShapesPointers(inputs_shape, node->inputs->size, inputs_shape_ptr);
GetAllInputTensorData(context, node, inputs_data);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
TFLITE_DCHECK(node->user_data != nullptr);
const OpData* data = static_cast<const OpData*>(node->user_data);
reference_ops::ConcatenationWithScaling(
data->params, inputs_shape_ptr, inputs_data,
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<uint8_t>(output));
}
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
return context->AllocatePersistentBuffer(context, sizeof(OpData));
}
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
// This function only checks the types. Additional shape validations are
// performed in the reference implementation called during Eval().
const TfLiteConcatenationParams* params =
reinterpret_cast<TfLiteConcatenationParams*>(node->builtin_data);
TfLiteType input_type = GetInput(context, node, 0)->type;
TfLiteType output_type = GetOutput(context, node, kOutputTensor)->type;
const TfLiteTensor* input_tensor = GetInput(context, node, 0);
TF_LITE_ENSURE(context, input_tensor != nullptr);
TfLiteType input_type = input_tensor->type;
const TfLiteTensor* output_tensor = GetOutput(context, node, kOutputTensor);
TF_LITE_ENSURE(context, output_tensor != nullptr);
TfLiteType output_type = output_tensor->type;
// Check activation and input type
TF_LITE_ENSURE_EQ(context, params->activation, kTfLiteActNone);
@@ -57,133 +160,76 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
// Shapes with dimensions >4 are not yet supported with static allocation.
for (int i = 0; i < num_inputs; ++i) {
const TfLiteTensor* input = GetInput(context, node, i);
TF_LITE_ENSURE(context, input != nullptr);
int num_dimensions = NumDimensions(input);
if (num_dimensions > 4) {
TF_LITE_KERNEL_LOG(
context,
"Op Concatenation does not currently support num dimensions >4 "
"Tensor '%s' has %d dimensions.",
input->name, num_dimensions);
"Tensor has %d dimensions.",
num_dimensions);
return kTfLiteError;
}
}
// Calculate OpData.
TFLITE_DCHECK(node->user_data != nullptr);
OpData* data = static_cast<OpData*>(node->user_data);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TF_LITE_ENSURE(context, output != nullptr);
switch (output_type) { // Already know in/outtypes are same.
case kTfLiteFloat32:
case kTfLiteInt32:
case kTfLiteInt64: {
data->params.axis = CalculatePositiveAxis(params->axis, output);
data->params.inputs_count = node->inputs->size;
break;
}
case kTfLiteUInt8:
case kTfLiteInt8: {
data->params.axis = CalculatePositiveAxis(params->axis, output);
data->params.inputs_count = node->inputs->size;
float* input_scales =
reinterpret_cast<float*>(context->AllocatePersistentBuffer(
context, node->inputs->size * sizeof(float)));
int32_t* input_zero_points =
reinterpret_cast<int32_t*>(context->AllocatePersistentBuffer(
context, node->inputs->size * sizeof(int32_t)));
// Allocate persistent scale and zeropoint buffers.
// Store input scale and zero point values in OpParams:
for (int i = 0; i < node->inputs->size; ++i) {
const TfLiteTensor* t = GetInput(context, node, i);
TF_LITE_ENSURE(context, t != nullptr);
input_scales[i] = t->params.scale;
input_zero_points[i] = t->params.zero_point;
}
data->params.input_scale = input_scales;
data->params.input_zeropoint = input_zero_points;
data->params.output_zeropoint = output->params.zero_point;
data->params.output_scale = output->params.scale;
break;
}
default:
TF_LITE_KERNEL_LOG(
context, "Op Concatenation does not currently support Type '%s'.",
TfLiteTypeGetName(output_type));
return kTfLiteError;
}
return kTfLiteOk;
}
// Handles negative axis index, coerces to positive index value.
inline int CalculatePositiveAxis(int axis, const TfLiteTensor* output_tensor) {
if (axis >= 0) {
return axis;
} else {
return NumDimensions(output_tensor) + axis;
}
}
// The following functions are helpers to get tensor data in the format that the
// reference op implementation expects. They provide the same functionality as
// class VectorOfTensors and class VectorOfQuantizedTensors in TFLite.
// Gets shapes from a list of tensors.
inline void GetAllTensorShapes(const TfLiteContext& context,
const TfLiteIntArray& tensor_list,
RuntimeShape all_shapes[kMaxInputNum]) {
for (int i = 0; i < tensor_list.size; ++i) {
const TfLiteTensor* t = &context.tensors[tensor_list.data[i]];
RuntimeShape shape = GetTensorShape(t);
all_shapes[i].ReplaceWith(shape.DimensionsCount(), shape.DimsData());
}
}
// Get shape pointers from a list of shapes.
inline void GetShapesPointers(const RuntimeShape* shapes, size_t num,
const RuntimeShape* pointers[]) {
for (size_t i = 0; i < num; ++i) {
pointers[i] = &shapes[i];
}
}
// Gets data pointers from a list of tensors.
template <typename T>
inline void GetAllTensorData(const TfLiteContext& context,
const TfLiteIntArray& tensor_list,
T* all_data[kMaxInputNum]) {
for (int i = 0; i < tensor_list.size; ++i) {
const TfLiteTensor* t = &context.tensors[tensor_list.data[i]];
all_data[i] = GetTensorData<T>(t);
}
}
// Gets scale and zero point from a list of tensors
inline void GetAllQuantizationParam(const TfLiteContext& context,
const TfLiteIntArray& tensor_list,
float scales[kMaxInputNum],
int32 zero_points[kMaxInputNum]) {
for (int i = 0; i < tensor_list.size; ++i) {
const TfLiteTensor* t = &context.tensors[tensor_list.data[i]];
scales[i] = t->params.scale;
zero_points[i] = t->params.zero_point;
}
}
template <typename data_type>
void EvalUnquantized(TfLiteContext* context, TfLiteNode* node) {
// Collect the shapes and data pointer of input tensors
RuntimeShape inputs_shape[kMaxInputNum];
const RuntimeShape* inputs_shape_ptr[kMaxInputNum];
const data_type* inputs_data[kMaxInputNum];
GetAllTensorShapes(*context, *node->inputs, inputs_shape);
GetShapesPointers(inputs_shape, node->inputs->size, inputs_shape_ptr);
GetAllTensorData(*context, *node->inputs, inputs_data);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
const TfLiteConcatenationParams* params =
reinterpret_cast<TfLiteConcatenationParams*>(node->builtin_data);
ConcatenationParams op_params;
op_params.axis = CalculatePositiveAxis(params->axis, output);
op_params.inputs_count = NumInputs(node);
reference_ops::Concatenation(op_params, inputs_shape_ptr, inputs_data,
GetTensorShape(output),
GetTensorData<data_type>(output));
}
void EvalQuantizedUInt8(TfLiteContext* context, TfLiteNode* node) {
// Collect the shapes and data pointer of input tensors
RuntimeShape inputs_shape[kMaxInputNum];
const RuntimeShape* inputs_shape_ptr[kMaxInputNum];
const uint8_t* inputs_data[kMaxInputNum];
float inputs_scale[kMaxInputNum];
int32 inputs_zero_point[kMaxInputNum];
GetAllTensorShapes(*context, *node->inputs, inputs_shape);
GetShapesPointers(inputs_shape, node->inputs->size, inputs_shape_ptr);
GetAllTensorData(*context, *node->inputs, inputs_data);
GetAllQuantizationParam(*context, *node->inputs, inputs_scale,
inputs_zero_point);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
const TfLiteConcatenationParams* params =
reinterpret_cast<TfLiteConcatenationParams*>(node->builtin_data);
ConcatenationParams op_params;
op_params.axis = CalculatePositiveAxis(params->axis, output);
op_params.inputs_count = NumInputs(node);
op_params.input_zeropoint = inputs_zero_point;
op_params.input_scale = inputs_scale;
op_params.output_zeropoint = output->params.zero_point;
op_params.output_scale = output->params.scale;
reference_ops::ConcatenationWithScaling(op_params, inputs_shape_ptr,
inputs_data, GetTensorShape(output),
GetTensorData<uint8>(output));
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
TfLiteType output_type = GetOutput(context, node, kOutputTensor)->type;
const TfLiteTensor* output_tensor = GetOutput(context, node, kOutputTensor);
TF_LITE_ENSURE(context, output_tensor != nullptr);
TfLiteType output_type = output_tensor->type;
switch (output_type) { // Already know in/outtypes are same.
case kTfLiteFloat32:
@@ -214,16 +260,15 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
} // namespace concatenation
TfLiteRegistration* Register_CONCATENATION() {
static TfLiteRegistration r = {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/concatenation::Prepare,
/*invoke=*/concatenation::Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_CONCATENATION() {
return {/*init=*/concatenation::Init,
/*free=*/nullptr,
/*prepare=*/concatenation::Prepare,
/*invoke=*/concatenation::Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
} // namespace micro

View File

@@ -1,279 +0,0 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/kernels/internal/reference/conv.h"
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/quantization_util.h"
#include "tensorflow/lite/kernels/internal/reference/integer_ops/conv.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/kernels/padding.h"
namespace tflite {
namespace ops {
namespace micro {
namespace conv {
constexpr int kInputTensor = 0;
constexpr int kFilterTensor = 1;
constexpr int kBiasTensor = 2;
constexpr int kOutputTensor = 0;
// Angepasst jomjol 05.06.20
//constexpr int kMaxChannels = 1024;
constexpr int kMaxChannels = 4096;
// Conv is quantized along dimension 0:
// https://www.tensorflow.org/lite/performance/quantization_spec
constexpr int kConvQuantizedDimension = 0;
// This file has 2 implementation of Conv.
struct OpData {
TfLitePaddingValues padding;
// The scaling factor from input to output (aka the 'real multiplier') can
// be represented as a fixed point multiplier plus a left shift.
int32_t output_multiplier;
int output_shift;
// Per channel output multiplier and shift.
// TODO(b/141139247): Allocate these dynamically when possible.
int32_t per_channel_output_multiplier[kMaxChannels];
int32_t per_channel_output_shift[kMaxChannels];
// The range of the fused activation layer. For example for kNone and
// uint8_t these would be 0 and 255.
int32_t output_activation_min;
int32_t output_activation_max;
};
inline PaddingType RuntimePaddingType(TfLitePadding padding) {
switch (padding) {
case TfLitePadding::kTfLitePaddingSame:
return PaddingType::kSame;
case TfLitePadding::kTfLitePaddingValid:
return PaddingType::kValid;
case TfLitePadding::kTfLitePaddingUnknown:
default:
return PaddingType::kNone;
}
}
TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node,
TfLiteConvParams* params, int width, int height,
int filter_width, int filter_height, int out_width,
int out_height, const TfLiteType data_type,
OpData* data) {
bool has_bias = node->inputs->size == 3;
// Check number of inputs/outputs
TF_LITE_ENSURE(context, has_bias || node->inputs->size == 2);
TF_LITE_ENSURE_EQ(context, node->outputs->size, 1);
// Matching GetWindowedOutputSize in TensorFlow.
auto padding = params->padding;
data->padding = ComputePaddingHeightWidth(
params->stride_height, params->stride_width,
params->dilation_height_factor, params->dilation_width_factor, height,
width, filter_height, filter_width, padding, &out_height, &out_width);
// Note that quantized inference requires that all tensors have their
// parameters set. This is usually done during quantized training.
if (data_type != kTfLiteFloat32) {
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
const TfLiteTensor* filter = GetInput(context, node, kFilterTensor);
const TfLiteTensor* bias =
GetOptionalInputTensor(context, node, kBiasTensor);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
int output_channels = filter->dims->data[kConvQuantizedDimension];
TF_LITE_ENSURE_STATUS(tflite::PopulateConvolutionQuantizationParams(
context, input, filter, bias, output, params->activation,
&data->output_multiplier, &data->output_shift,
&data->output_activation_min, &data->output_activation_max,
data->per_channel_output_multiplier,
reinterpret_cast<int*>(data->per_channel_output_shift),
output_channels));
}
return kTfLiteOk;
}
void EvalQuantized(TfLiteContext* context, TfLiteNode* node,
TfLiteConvParams* params, OpData* data,
const TfLiteTensor* input, const TfLiteTensor* filter,
const TfLiteTensor* bias, TfLiteTensor* im2col,
TfLiteTensor* hwcn_weights, TfLiteTensor* output) {
const int32_t input_offset = -input->params.zero_point;
const int32_t filter_offset = -filter->params.zero_point;
const int32_t output_offset = output->params.zero_point;
ConvParams op_params;
op_params.padding_type = RuntimePaddingType(params->padding);
op_params.padding_values.width = data->padding.width;
op_params.padding_values.height = data->padding.height;
op_params.stride_width = params->stride_width;
op_params.stride_height = params->stride_height;
op_params.dilation_width_factor = params->dilation_width_factor;
op_params.dilation_height_factor = params->dilation_height_factor;
op_params.input_offset = input_offset;
op_params.weights_offset = filter_offset;
op_params.output_offset = output_offset;
op_params.output_multiplier = data->output_multiplier;
op_params.output_shift = -data->output_shift;
op_params.quantized_activation_min = data->output_activation_min;
op_params.quantized_activation_max = data->output_activation_max;
reference_ops::Conv(op_params, GetTensorShape(input),
GetTensorData<uint8_t>(input), GetTensorShape(filter),
GetTensorData<uint8_t>(filter), GetTensorShape(bias),
GetTensorData<int32_t>(bias), GetTensorShape(output),
GetTensorData<uint8_t>(output), GetTensorShape(im2col),
GetTensorData<uint8_t>(im2col), nullptr);
}
void EvalQuantizedPerChannel(TfLiteContext* context, TfLiteNode* node,
TfLiteConvParams* params, OpData* data,
const TfLiteTensor* input,
const TfLiteTensor* filter,
const TfLiteTensor* bias, TfLiteTensor* output,
TfLiteTensor* im2col) {
ConvParams op_params;
op_params.input_offset = -input->params.zero_point;
op_params.output_offset = output->params.zero_point;
op_params.stride_height = params->stride_height;
op_params.stride_width = params->stride_width;
op_params.dilation_height_factor = params->dilation_height_factor;
op_params.dilation_width_factor = params->dilation_width_factor;
op_params.padding_values.height = data->padding.height;
op_params.padding_values.width = data->padding.width;
op_params.quantized_activation_min = data->output_activation_min;
op_params.quantized_activation_max = data->output_activation_max;
reference_integer_ops::ConvPerChannel(
op_params, data->per_channel_output_multiplier,
data->per_channel_output_shift, GetTensorShape(input),
GetTensorData<int8>(input), GetTensorShape(filter),
GetTensorData<int8>(filter), GetTensorShape(bias),
GetTensorData<int32>(bias), GetTensorShape(output),
GetTensorData<int8>(output));
}
void EvalFloat(TfLiteContext* context, TfLiteNode* node,
TfLiteConvParams* params, OpData* data,
const TfLiteTensor* input, const TfLiteTensor* filter,
const TfLiteTensor* bias, TfLiteTensor* im2col,
TfLiteTensor* hwcn_weights, TfLiteTensor* output) {
float output_activation_min, output_activation_max;
CalculateActivationRange(params->activation, &output_activation_min,
&output_activation_max);
ConvParams op_params;
op_params.padding_type = RuntimePaddingType(params->padding);
op_params.padding_values.width = data->padding.width;
op_params.padding_values.height = data->padding.height;
op_params.stride_width = params->stride_width;
op_params.stride_height = params->stride_height;
op_params.dilation_width_factor = params->dilation_width_factor;
op_params.dilation_height_factor = params->dilation_height_factor;
op_params.float_activation_min = output_activation_min;
op_params.float_activation_max = output_activation_max;
reference_ops::Conv(op_params, GetTensorShape(input),
GetTensorData<float>(input), GetTensorShape(filter),
GetTensorData<float>(filter), GetTensorShape(bias),
GetTensorData<float>(bias), GetTensorShape(output),
GetTensorData<float>(output), GetTensorShape(im2col),
GetTensorData<float>(im2col));
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
auto* params = reinterpret_cast<TfLiteConvParams*>(node->builtin_data);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
const TfLiteTensor* filter = GetInput(context, node, kFilterTensor);
const TfLiteTensor* bias = GetOptionalInputTensor(context, node, kBiasTensor);
int input_width = input->dims->data[2];
int input_height = input->dims->data[1];
int filter_width = filter->dims->data[2];
int filter_height = filter->dims->data[1];
int output_width = output->dims->data[2];
int output_height = output->dims->data[1];
OpData data;
// All per-channel quantized tensors need valid zero point and scale arrays.
if (input->type == kTfLiteInt8) {
TF_LITE_ENSURE_EQ(context, filter->quantization.type,
kTfLiteAffineQuantization);
const auto* affine_quantization =
reinterpret_cast<TfLiteAffineQuantization*>(
filter->quantization.params);
TF_LITE_ENSURE(context, affine_quantization);
TF_LITE_ENSURE(context, affine_quantization->scale);
TF_LITE_ENSURE(context, affine_quantization->zero_point);
TF_LITE_ENSURE(context,
affine_quantization->scale->size == 1 ||
affine_quantization->scale->size ==
filter->dims->data[kConvQuantizedDimension]);
TF_LITE_ENSURE_EQ(context, affine_quantization->scale->size,
affine_quantization->zero_point->size);
}
TF_LITE_ENSURE_STATUS(CalculateOpData(
context, node, params, input_width, input_height, filter_width,
filter_height, output_width, output_height, input->type, &data));
switch (input->type) { // Already know in/out types are same.
case kTfLiteFloat32:
EvalFloat(context, node, params, &data, input, filter, bias, nullptr,
nullptr, output);
break;
case kTfLiteInt8:
EvalQuantizedPerChannel(context, node, params, &data, input, filter, bias,
output, nullptr);
break;
case kTfLiteUInt8:
EvalQuantized(context, node, params, &data, input, filter, bias, nullptr,
nullptr, output);
break;
default:
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
TfLiteTypeGetName(input->type), input->type);
return kTfLiteError;
}
return kTfLiteOk;
}
} // namespace conv
TfLiteRegistration* Register_CONV_2D() {
static TfLiteRegistration r = {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/nullptr,
/*invoke=*/conv::Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
}
} // namespace micro
} // namespace ops
} // namespace tflite

View File

@@ -23,19 +23,15 @@ limitations under the License.
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/kernels/padding.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
namespace tflite {
namespace ops {
namespace micro {
namespace conv {
namespace {
constexpr int kInputTensor = 0;
constexpr int kFilterTensor = 1;
constexpr int kBiasTensor = 2;
constexpr int kOutputTensor = 0;
// Angepasst jomjol 05.06.20
//constexpr int kMaxChannels = 1024;
constexpr int kMaxChannels = 32384;
// Conv is quantized along dimension 0:
// https://www.tensorflow.org/lite/performance/quantization_spec
@@ -45,15 +41,20 @@ constexpr int kConvQuantizedDimension = 0;
struct OpData {
TfLitePaddingValues padding;
// Cached tensor zero point values for quantized operations.
int32_t input_zero_point;
int32_t filter_zero_point;
int32_t output_zero_point;
// The scaling factor from input to output (aka the 'real multiplier') can
// be represented as a fixed point multiplier plus a left shift.
int32_t output_multiplier;
int output_shift;
// Per channel output multiplier and shift.
// TODO(b/141139247): Allocate these dynamically when possible.
int32_t per_channel_output_multiplier[kMaxChannels];
int32_t per_channel_output_shift[kMaxChannels];
int32_t* per_channel_output_multiplier;
int32_t* per_channel_output_shift;
// The range of the fused activation layer. For example for kNone and
// uint8_t these would be 0 and 255.
@@ -74,10 +75,10 @@ inline PaddingType RuntimePaddingType(TfLitePadding padding) {
}
TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node,
TfLiteConvParams* params, int width, int height,
int filter_width, int filter_height, int out_width,
int out_height, const TfLiteType data_type,
OpData* data) {
const TfLiteConvParams* params, int width,
int height, int filter_width, int filter_height,
int out_width, int out_height,
const TfLiteType data_type, OpData* data) {
bool has_bias = node->inputs->size == 3;
// Check number of inputs/outputs
TF_LITE_ENSURE(context, has_bias || node->inputs->size == 2);
@@ -94,10 +95,13 @@ TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node,
// parameters set. This is usually done during quantized training.
if (data_type != kTfLiteFloat32) {
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TF_LITE_ENSURE(context, input != nullptr);
const TfLiteTensor* filter = GetInput(context, node, kFilterTensor);
TF_LITE_ENSURE(context, filter != nullptr);
const TfLiteTensor* bias =
GetOptionalInputTensor(context, node, kBiasTensor);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TF_LITE_ENSURE(context, output != nullptr);
int output_channels = filter->dims->data[kConvQuantizedDimension];
TF_LITE_ENSURE_STATUS(tflite::PopulateConvolutionQuantizationParams(
@@ -111,100 +115,24 @@ TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node,
return kTfLiteOk;
}
void EvalQuantized(TfLiteContext* context, TfLiteNode* node,
TfLiteConvParams* params, OpData* data,
const TfLiteTensor* input, const TfLiteTensor* filter,
const TfLiteTensor* bias, TfLiteTensor* im2col,
TfLiteTensor* hwcn_weights, TfLiteTensor* output) {
const int32_t input_offset = -input->params.zero_point;
const int32_t filter_offset = -filter->params.zero_point;
const int32_t output_offset = output->params.zero_point;
ConvParams op_params;
op_params.padding_type = RuntimePaddingType(params->padding);
op_params.padding_values.width = data->padding.width;
op_params.padding_values.height = data->padding.height;
op_params.stride_width = params->stride_width;
op_params.stride_height = params->stride_height;
op_params.dilation_width_factor = params->dilation_width_factor;
op_params.dilation_height_factor = params->dilation_height_factor;
op_params.input_offset = input_offset;
op_params.weights_offset = filter_offset;
op_params.output_offset = output_offset;
op_params.output_multiplier = data->output_multiplier;
op_params.output_shift = -data->output_shift;
op_params.quantized_activation_min = data->output_activation_min;
op_params.quantized_activation_max = data->output_activation_max;
reference_ops::Conv(op_params, GetTensorShape(input),
GetTensorData<uint8_t>(input), GetTensorShape(filter),
GetTensorData<uint8_t>(filter), GetTensorShape(bias),
GetTensorData<int32_t>(bias), GetTensorShape(output),
GetTensorData<uint8_t>(output), GetTensorShape(im2col),
GetTensorData<uint8_t>(im2col), nullptr);
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
return context->AllocatePersistentBuffer(context, sizeof(OpData));
}
void EvalQuantizedPerChannel(TfLiteContext* context, TfLiteNode* node,
TfLiteConvParams* params, OpData* data,
const TfLiteTensor* input,
const TfLiteTensor* filter,
const TfLiteTensor* bias, TfLiteTensor* output,
TfLiteTensor* im2col) {
ConvParams op_params;
op_params.input_offset = -input->params.zero_point;
op_params.output_offset = output->params.zero_point;
op_params.stride_height = params->stride_height;
op_params.stride_width = params->stride_width;
op_params.dilation_height_factor = params->dilation_height_factor;
op_params.dilation_width_factor = params->dilation_width_factor;
op_params.padding_values.height = data->padding.height;
op_params.padding_values.width = data->padding.width;
op_params.quantized_activation_min = data->output_activation_min;
op_params.quantized_activation_max = data->output_activation_max;
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TFLITE_DCHECK(node->user_data != nullptr);
TFLITE_DCHECK(node->builtin_data != nullptr);
reference_integer_ops::ConvPerChannel(
op_params, data->per_channel_output_multiplier,
data->per_channel_output_shift, GetTensorShape(input),
GetTensorData<int8>(input), GetTensorShape(filter),
GetTensorData<int8>(filter), GetTensorShape(bias),
GetTensorData<int32>(bias), GetTensorShape(output),
GetTensorData<int8>(output));
}
void EvalFloat(TfLiteContext* context, TfLiteNode* node,
TfLiteConvParams* params, OpData* data,
const TfLiteTensor* input, const TfLiteTensor* filter,
const TfLiteTensor* bias, TfLiteTensor* im2col,
TfLiteTensor* hwcn_weights, TfLiteTensor* output) {
float output_activation_min, output_activation_max;
CalculateActivationRange(params->activation, &output_activation_min,
&output_activation_max);
ConvParams op_params;
op_params.padding_type = RuntimePaddingType(params->padding);
op_params.padding_values.width = data->padding.width;
op_params.padding_values.height = data->padding.height;
op_params.stride_width = params->stride_width;
op_params.stride_height = params->stride_height;
op_params.dilation_width_factor = params->dilation_width_factor;
op_params.dilation_height_factor = params->dilation_height_factor;
op_params.float_activation_min = output_activation_min;
op_params.float_activation_max = output_activation_max;
reference_ops::Conv(op_params, GetTensorShape(input),
GetTensorData<float>(input), GetTensorShape(filter),
GetTensorData<float>(filter), GetTensorShape(bias),
GetTensorData<float>(bias), GetTensorShape(output),
GetTensorData<float>(output), GetTensorShape(im2col),
GetTensorData<float>(im2col));
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
auto* params = reinterpret_cast<TfLiteConvParams*>(node->builtin_data);
OpData* data = static_cast<OpData*>(node->user_data);
const auto params = static_cast<const TfLiteConvParams*>(node->builtin_data);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TF_LITE_ENSURE(context, output != nullptr);
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TF_LITE_ENSURE(context, input != nullptr);
const TfLiteTensor* filter = GetInput(context, node, kFilterTensor);
const TfLiteTensor* bias = GetOptionalInputTensor(context, node, kBiasTensor);
TF_LITE_ENSURE(context, filter != nullptr);
int input_width = input->dims->data[2];
int input_height = input->dims->data[1];
@@ -212,9 +140,15 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
int filter_height = filter->dims->data[1];
int output_width = output->dims->data[2];
int output_height = output->dims->data[1];
struct tflite::ops::micro::conv::OpData *data = (struct tflite::ops::micro::conv::OpData*) malloc(sizeof(struct tflite::ops::micro::conv::OpData));
// Dynimically allocate per-channel quantization parameters.
const int num_channels = filter->dims->data[kConvQuantizedDimension];
data->per_channel_output_multiplier =
static_cast<int32_t*>(context->AllocatePersistentBuffer(
context, num_channels * sizeof(int32_t)));
data->per_channel_output_shift =
static_cast<int32_t*>(context->AllocatePersistentBuffer(
context, num_channels * sizeof(int32_t)));
// All per-channel quantized tensors need valid zero point and scale arrays.
if (input->type == kTfLiteInt8) {
@@ -222,8 +156,7 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
kTfLiteAffineQuantization);
const auto* affine_quantization =
reinterpret_cast<TfLiteAffineQuantization*>(
filter->quantization.params);
static_cast<TfLiteAffineQuantization*>(filter->quantization.params);
TF_LITE_ENSURE(context, affine_quantization);
TF_LITE_ENSURE(context, affine_quantization->scale);
TF_LITE_ENSURE(context, affine_quantization->zero_point);
@@ -240,6 +173,136 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
context, node, params, input_width, input_height, filter_width,
filter_height, output_width, output_height, input->type, data));
data->input_zero_point = input->params.zero_point;
data->filter_zero_point = filter->params.zero_point;
data->output_zero_point = output->params.zero_point;
return kTfLiteOk;
} // namespace conv
void EvalQuantized(TfLiteContext* context, TfLiteNode* node,
TfLiteConvParams* params, const OpData& data,
const TfLiteEvalTensor* input,
const TfLiteEvalTensor* filter, const TfLiteEvalTensor* bias,
TfLiteEvalTensor* im2col, TfLiteEvalTensor* hwcn_weights,
TfLiteEvalTensor* output) {
const int32_t input_offset = -data.input_zero_point;
const int32_t filter_offset = -data.filter_zero_point;
const int32_t output_offset = data.output_zero_point;
// TODO(b/154032858): Investigate removing extra copies.
ConvParams op_params;
op_params.padding_type = RuntimePaddingType(params->padding);
op_params.padding_values.width = data.padding.width;
op_params.padding_values.height = data.padding.height;
op_params.stride_width = params->stride_width;
op_params.stride_height = params->stride_height;
op_params.dilation_width_factor = params->dilation_width_factor;
op_params.dilation_height_factor = params->dilation_height_factor;
op_params.input_offset = input_offset;
op_params.weights_offset = filter_offset;
op_params.output_offset = output_offset;
op_params.output_multiplier = data.output_multiplier;
op_params.output_shift = -data.output_shift;
op_params.quantized_activation_min = data.output_activation_min;
op_params.quantized_activation_max = data.output_activation_max;
reference_ops::Conv(op_params, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<uint8_t>(input),
tflite::micro::GetTensorShape(filter),
tflite::micro::GetTensorData<uint8_t>(filter),
tflite::micro::GetTensorShape(bias),
tflite::micro::GetTensorData<int32_t>(bias),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<uint8_t>(output),
tflite::micro::GetTensorShape(im2col),
tflite::micro::GetTensorData<uint8_t>(im2col), nullptr);
}
void EvalQuantizedPerChannel(TfLiteContext* context, TfLiteNode* node,
TfLiteConvParams* params, const OpData& data,
const TfLiteEvalTensor* input,
const TfLiteEvalTensor* filter,
const TfLiteEvalTensor* bias,
TfLiteEvalTensor* output,
TfLiteEvalTensor* im2col) {
// TODO(b/154032858): Investigate removing extra copies.
ConvParams op_params;
op_params.input_offset = -data.input_zero_point;
op_params.output_offset = data.output_zero_point;
op_params.stride_height = params->stride_height;
op_params.stride_width = params->stride_width;
op_params.dilation_height_factor = params->dilation_height_factor;
op_params.dilation_width_factor = params->dilation_width_factor;
op_params.padding_values.height = data.padding.height;
op_params.padding_values.width = data.padding.width;
op_params.quantized_activation_min = data.output_activation_min;
op_params.quantized_activation_max = data.output_activation_max;
reference_integer_ops::ConvPerChannel(
op_params, data.per_channel_output_multiplier,
data.per_channel_output_shift, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<int8_t>(input),
tflite::micro::GetTensorShape(filter),
tflite::micro::GetTensorData<int8_t>(filter),
tflite::micro::GetTensorShape(bias),
tflite::micro::GetTensorData<int32_t>(bias),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int8_t>(output));
}
void EvalFloat(TfLiteContext* context, TfLiteNode* node,
TfLiteConvParams* params, const OpData& data,
const TfLiteEvalTensor* input, const TfLiteEvalTensor* filter,
const TfLiteEvalTensor* bias, TfLiteEvalTensor* im2col,
TfLiteEvalTensor* hwcn_weights, TfLiteEvalTensor* output) {
float output_activation_min, output_activation_max;
CalculateActivationRange(params->activation, &output_activation_min,
&output_activation_max);
// TODO(b/154032858): Investigate removing extra copies.
ConvParams op_params;
op_params.padding_type = RuntimePaddingType(params->padding);
op_params.padding_values.width = data.padding.width;
op_params.padding_values.height = data.padding.height;
op_params.stride_width = params->stride_width;
op_params.stride_height = params->stride_height;
op_params.dilation_width_factor = params->dilation_width_factor;
op_params.dilation_height_factor = params->dilation_height_factor;
op_params.float_activation_min = output_activation_min;
op_params.float_activation_max = output_activation_max;
reference_ops::Conv(op_params, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<float>(input),
tflite::micro::GetTensorShape(filter),
tflite::micro::GetTensorData<float>(filter),
tflite::micro::GetTensorShape(bias),
tflite::micro::GetTensorData<float>(bias),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output),
tflite::micro::GetTensorShape(im2col),
tflite::micro::GetTensorData<float>(im2col));
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
auto* params = reinterpret_cast<TfLiteConvParams*>(node->builtin_data);
const TfLiteEvalTensor* input =
tflite::micro::GetEvalInput(context, node, kInputTensor);
const TfLiteEvalTensor* filter =
tflite::micro::GetEvalInput(context, node, kFilterTensor);
const TfLiteEvalTensor* bias =
(NumInputs(node) == 3)
? tflite::micro::GetEvalInput(context, node, kBiasTensor)
: nullptr;
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
TFLITE_DCHECK(node->user_data != nullptr);
const OpData& data = *(static_cast<const OpData*>(node->user_data));
TF_LITE_ENSURE_EQ(context, input->type, output->type);
TF_LITE_ENSURE_MSG(context, input->type == filter->type,
"Hybrid models are not supported on TFLite Micro.");
switch (input->type) { // Already know in/out types are same.
case kTfLiteFloat32:
EvalFloat(context, node, params, data, input, filter, bias, nullptr,
@@ -256,27 +319,22 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
default:
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
TfLiteTypeGetName(input->type), input->type);
free(data);
return kTfLiteError;
}
free(data);
return kTfLiteOk;
}
} // namespace conv
} // namespace
TfLiteRegistration* Register_CONV_2D() {
static TfLiteRegistration r = {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/nullptr,
/*invoke=*/conv::Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_CONV_2D() {
return {/*init=*/Init,
/*free=*/nullptr,
/*prepare=*/Prepare,
/*invoke=*/Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
} // namespace micro
} // namespace ops
} // namespace tflite

View File

@@ -24,18 +24,15 @@ limitations under the License.
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/kernels/padding.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
namespace tflite {
namespace ops {
namespace micro {
namespace depthwise_conv {
namespace {
constexpr int kInputTensor = 0;
constexpr int kFilterTensor = 1;
constexpr int kBiasTensor = 2;
constexpr int kOutputTensor = 0;
constexpr int kMaxChannels = 1024;
// Depthwise conv is quantized along dimension 3:
// https://www.tensorflow.org/lite/performance/quantization_spec
@@ -43,16 +40,20 @@ constexpr int kDepthwiseConvQuantizedDimension = 3;
struct OpData {
TfLitePaddingValues padding;
// Cached tensor zero point values for quantized operations.
int32_t input_zero_point;
int32_t filter_zero_point;
int32_t output_zero_point;
// The scaling factor from input to output (aka the 'real multiplier') can
// be represented as a fixed point multiplier plus a left shift.
int32_t output_multiplier;
int output_shift;
// Per channel output multiplier and shift.
// TODO(b/141139247): Allocate these dynamically when possible.
int32_t per_channel_output_multiplier[kMaxChannels];
int32_t per_channel_output_shift[kMaxChannels];
int32_t* per_channel_output_multiplier;
int32_t* per_channel_output_shift;
// The range of the fused activation layer. For example for kNone and
// uint8_t these would be 0 and 255.
int32_t output_activation_min;
@@ -78,125 +79,44 @@ TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node,
// parameters set. This is usually done during quantized training.
if (data_type != kTfLiteFloat32) {
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TF_LITE_ENSURE(context, input != nullptr);
const TfLiteTensor* filter = GetInput(context, node, kFilterTensor);
TF_LITE_ENSURE(context, filter != nullptr);
const TfLiteTensor* bias =
GetOptionalInputTensor(context, node, kBiasTensor);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TF_LITE_ENSURE(context, output != nullptr);
int num_channels = filter->dims->data[kDepthwiseConvQuantizedDimension];
TF_LITE_ENSURE_STATUS(tflite::PopulateConvolutionQuantizationParams(
return tflite::PopulateConvolutionQuantizationParams(
context, input, filter, bias, output, params->activation,
&data->output_multiplier, &data->output_shift,
&data->output_activation_min, &data->output_activation_max,
data->per_channel_output_multiplier,
reinterpret_cast<int*>(data->per_channel_output_shift), num_channels));
reinterpret_cast<int*>(data->per_channel_output_shift), num_channels);
}
return kTfLiteOk;
}
} // namespace
void EvalFloat(TfLiteContext* context, TfLiteNode* node,
TfLiteDepthwiseConvParams* params, OpData* data,
const TfLiteTensor* input, const TfLiteTensor* filter,
const TfLiteTensor* bias, TfLiteTensor* output) {
float output_activation_min, output_activation_max;
CalculateActivationRange(params->activation, &output_activation_min,
&output_activation_max);
tflite::DepthwiseParams op_params;
// Padding type is ignored, but still set.
op_params.padding_type = PaddingType::kSame;
op_params.padding_values.width = data->padding.width;
op_params.padding_values.height = data->padding.height;
op_params.stride_width = params->stride_width;
op_params.stride_height = params->stride_height;
op_params.dilation_width_factor = params->dilation_width_factor;
op_params.dilation_height_factor = params->dilation_height_factor;
op_params.depth_multiplier = params->depth_multiplier;
op_params.float_activation_min = output_activation_min;
op_params.float_activation_max = output_activation_max;
tflite::reference_ops::DepthwiseConv(
op_params, GetTensorShape(input), GetTensorData<float>(input),
GetTensorShape(filter), GetTensorData<float>(filter),
GetTensorShape(bias), GetTensorData<float>(bias), GetTensorShape(output),
GetTensorData<float>(output));
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
return context->AllocatePersistentBuffer(context, sizeof(OpData));
}
void EvalQuantizedPerChannel(TfLiteContext* context, TfLiteNode* node,
TfLiteDepthwiseConvParams* params, OpData* data,
const TfLiteTensor* input,
const TfLiteTensor* filter,
const TfLiteTensor* bias, TfLiteTensor* output) {
DepthwiseParams op_params;
op_params.padding_type = PaddingType::kSame;
op_params.padding_values.width = data->padding.width;
op_params.padding_values.height = data->padding.height;
op_params.stride_width = params->stride_width;
op_params.stride_height = params->stride_height;
op_params.dilation_width_factor = params->dilation_width_factor;
op_params.dilation_height_factor = params->dilation_height_factor;
op_params.depth_multiplier = params->depth_multiplier;
op_params.input_offset = -input->params.zero_point;
op_params.weights_offset = 0;
op_params.output_offset = output->params.zero_point;
// TODO(b/130439627): Use calculated value for clamping.
op_params.quantized_activation_min = std::numeric_limits<int8_t>::min();
op_params.quantized_activation_max = std::numeric_limits<int8_t>::max();
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TFLITE_DCHECK(node->user_data != nullptr);
TFLITE_DCHECK(node->builtin_data != nullptr);
reference_integer_ops::DepthwiseConvPerChannel(
op_params, data->per_channel_output_multiplier,
data->per_channel_output_shift, GetTensorShape(input),
GetTensorData<int8>(input), GetTensorShape(filter),
GetTensorData<int8>(filter), GetTensorShape(bias),
GetTensorData<int32>(bias), GetTensorShape(output),
GetTensorData<int8>(output));
}
void EvalQuantized(TfLiteContext* context, TfLiteNode* node,
TfLiteDepthwiseConvParams* params, OpData* data,
const TfLiteTensor* input, const TfLiteTensor* filter,
const TfLiteTensor* bias, TfLiteTensor* output) {
const int32_t input_offset = -input->params.zero_point;
const int32_t filter_offset = -filter->params.zero_point;
const int32_t output_offset = output->params.zero_point;
tflite::DepthwiseParams op_params;
// Padding type is ignored, but still set.
op_params.padding_type = PaddingType::kSame;
op_params.padding_values.width = data->padding.width;
op_params.padding_values.height = data->padding.height;
op_params.stride_width = params->stride_width;
op_params.stride_height = params->stride_height;
op_params.dilation_width_factor = params->dilation_width_factor;
op_params.dilation_height_factor = params->dilation_height_factor;
op_params.depth_multiplier = params->depth_multiplier;
op_params.quantized_activation_min = data->output_activation_min;
op_params.quantized_activation_max = data->output_activation_max;
op_params.input_offset = input_offset;
op_params.weights_offset = filter_offset;
op_params.output_offset = output_offset;
op_params.output_multiplier = data->output_multiplier;
// Legacy ops used mixed left and right shifts. Now all are +ve-means-left.
op_params.output_shift = -data->output_shift;
tflite::reference_ops::DepthwiseConv(
op_params, GetTensorShape(input), GetTensorData<uint8_t>(input),
GetTensorShape(filter), GetTensorData<uint8_t>(filter),
GetTensorShape(bias), GetTensorData<int32_t>(bias),
GetTensorShape(output), GetTensorData<uint8_t>(output));
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
auto* params =
reinterpret_cast<TfLiteDepthwiseConvParams*>(node->builtin_data);
OpData* data = static_cast<OpData*>(node->user_data);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TF_LITE_ENSURE(context, output != nullptr);
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TF_LITE_ENSURE(context, input != nullptr);
const TfLiteTensor* filter = GetInput(context, node, kFilterTensor);
const TfLiteTensor* bias =
(NumInputs(node) == 3) ? GetInput(context, node, kBiasTensor) : nullptr;
TF_LITE_ENSURE(context, filter != nullptr);
const TfLiteType data_type = input->type;
int width = SizeOfDimension(input, 2);
@@ -204,7 +124,16 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
int filter_width = SizeOfDimension(filter, 2);
int filter_height = SizeOfDimension(filter, 1);
OpData data;
// Per channel quantization is only needed for int8_t inference. For other
// quantized types, only a single scale and zero point is needed.
const int num_channels = filter->dims->data[kDepthwiseConvQuantizedDimension];
// Dynimically allocate per-channel quantization parameters.
data->per_channel_output_multiplier =
reinterpret_cast<int32_t*>(context->AllocatePersistentBuffer(
context, num_channels * sizeof(int32_t)));
data->per_channel_output_shift =
reinterpret_cast<int32_t*>(context->AllocatePersistentBuffer(
context, num_channels * sizeof(int32_t)));
// All per-channel quantized tensors need valid zero point and scale arrays.
if (input->type == kTfLiteInt8) {
@@ -227,20 +156,151 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE_STATUS(CalculateOpData(context, node, params, width, height,
filter_width, filter_height, data_type,
&data));
data));
data->input_zero_point = input->params.zero_point;
data->filter_zero_point = filter->params.zero_point;
data->output_zero_point = output->params.zero_point;
return kTfLiteOk;
}
void EvalFloat(TfLiteContext* context, TfLiteNode* node,
TfLiteDepthwiseConvParams* params, const OpData& data,
const TfLiteEvalTensor* input, const TfLiteEvalTensor* filter,
const TfLiteEvalTensor* bias, TfLiteEvalTensor* output) {
float output_activation_min, output_activation_max;
CalculateActivationRange(params->activation, &output_activation_min,
&output_activation_max);
tflite::DepthwiseParams op_params;
// Padding type is ignored, but still set.
op_params.padding_type = PaddingType::kSame;
op_params.padding_values.width = data.padding.width;
op_params.padding_values.height = data.padding.height;
op_params.stride_width = params->stride_width;
op_params.stride_height = params->stride_height;
op_params.dilation_width_factor = params->dilation_width_factor;
op_params.dilation_height_factor = params->dilation_height_factor;
op_params.depth_multiplier = params->depth_multiplier;
op_params.float_activation_min = output_activation_min;
op_params.float_activation_max = output_activation_max;
tflite::reference_ops::DepthwiseConv(
op_params, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<float>(input),
tflite::micro::GetTensorShape(filter),
tflite::micro::GetTensorData<float>(filter),
tflite::micro::GetTensorShape(bias),
tflite::micro::GetTensorData<float>(bias),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output));
}
void EvalQuantizedPerChannel(TfLiteContext* context, TfLiteNode* node,
TfLiteDepthwiseConvParams* params,
const OpData& data, const TfLiteEvalTensor* input,
const TfLiteEvalTensor* filter,
const TfLiteEvalTensor* bias,
TfLiteEvalTensor* output) {
DepthwiseParams op_params;
op_params.padding_type = PaddingType::kSame;
op_params.padding_values.width = data.padding.width;
op_params.padding_values.height = data.padding.height;
op_params.stride_width = params->stride_width;
op_params.stride_height = params->stride_height;
op_params.dilation_width_factor = params->dilation_width_factor;
op_params.dilation_height_factor = params->dilation_height_factor;
op_params.depth_multiplier = params->depth_multiplier;
op_params.input_offset = -data.input_zero_point;
op_params.weights_offset = 0;
op_params.output_offset = data.output_zero_point;
// TODO(b/130439627): Use calculated value for clamping.
op_params.quantized_activation_min = std::numeric_limits<int8_t>::min();
op_params.quantized_activation_max = std::numeric_limits<int8_t>::max();
reference_integer_ops::DepthwiseConvPerChannel(
op_params, data.per_channel_output_multiplier,
data.per_channel_output_shift, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<int8_t>(input),
tflite::micro::GetTensorShape(filter),
tflite::micro::GetTensorData<int8_t>(filter),
tflite::micro::GetTensorShape(bias),
tflite::micro::GetTensorData<int32_t>(bias),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int8_t>(output));
}
void EvalQuantized(TfLiteContext* context, TfLiteNode* node,
TfLiteDepthwiseConvParams* params, const OpData& data,
const TfLiteEvalTensor* input,
const TfLiteEvalTensor* filter, const TfLiteEvalTensor* bias,
TfLiteEvalTensor* output) {
const int32_t input_offset = -data.input_zero_point;
const int32_t filter_offset = -data.filter_zero_point;
const int32_t output_offset = data.output_zero_point;
tflite::DepthwiseParams op_params;
// Padding type is ignored, but still set.
op_params.padding_type = PaddingType::kSame;
op_params.padding_values.width = data.padding.width;
op_params.padding_values.height = data.padding.height;
op_params.stride_width = params->stride_width;
op_params.stride_height = params->stride_height;
op_params.dilation_width_factor = params->dilation_width_factor;
op_params.dilation_height_factor = params->dilation_height_factor;
op_params.depth_multiplier = params->depth_multiplier;
op_params.quantized_activation_min = data.output_activation_min;
op_params.quantized_activation_max = data.output_activation_max;
op_params.input_offset = input_offset;
op_params.weights_offset = filter_offset;
op_params.output_offset = output_offset;
op_params.output_multiplier = data.output_multiplier;
// Legacy ops used mixed left and right shifts. Now all are +ve-means-left.
op_params.output_shift = -data.output_shift;
tflite::reference_ops::DepthwiseConv(
op_params, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<uint8_t>(input),
tflite::micro::GetTensorShape(filter),
tflite::micro::GetTensorData<uint8_t>(filter),
tflite::micro::GetTensorShape(bias),
tflite::micro::GetTensorData<int32_t>(bias),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<uint8_t>(output));
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
TFLITE_DCHECK(node->user_data != nullptr);
TFLITE_DCHECK(node->builtin_data != nullptr);
auto* params =
reinterpret_cast<TfLiteDepthwiseConvParams*>(node->builtin_data);
const OpData& data = *(static_cast<const OpData*>(node->user_data));
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
const TfLiteEvalTensor* input =
tflite::micro::GetEvalInput(context, node, kInputTensor);
const TfLiteEvalTensor* filter =
tflite::micro::GetEvalInput(context, node, kFilterTensor);
const TfLiteEvalTensor* bias =
(NumInputs(node) == 3)
? tflite::micro::GetEvalInput(context, node, kBiasTensor)
: nullptr;
// TODO(aselle): Consider whether float conv and quantized conv should be
// separate ops to avoid dispatch overhead here.
switch (input->type) { // Already know in/out types are same.
case kTfLiteFloat32:
EvalFloat(context, node, params, &data, input, filter, bias, output);
EvalFloat(context, node, params, data, input, filter, bias, output);
break;
case kTfLiteInt8:
EvalQuantizedPerChannel(context, node, params, &data, input, filter, bias,
EvalQuantizedPerChannel(context, node, params, data, input, filter, bias,
output);
break;
case kTfLiteUInt8:
EvalQuantized(context, node, params, &data, input, filter, bias, output);
EvalQuantized(context, node, params, data, input, filter, bias, output);
break;
default:
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
@@ -250,20 +310,17 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
return kTfLiteOk;
}
} // namespace depthwise_conv
} // namespace
TfLiteRegistration* Register_DEPTHWISE_CONV_2D() {
static TfLiteRegistration r = {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/nullptr,
/*invoke=*/depthwise_conv::Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_DEPTHWISE_CONV_2D() {
return {/*init=*/Init,
/*free=*/nullptr,
/*prepare=*/Prepare,
/*invoke=*/Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
} // namespace micro
} // namespace ops
} // namespace tflite

View File

@@ -22,19 +22,39 @@ limitations under the License.
#include "tensorflow/lite/kernels/internal/reference/requantize.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
namespace tflite {
namespace ops {
namespace micro {
namespace dequantize {
struct OpData {
tflite::DequantizationParams quantization_params;
// The scaling factor from input to output (aka the 'real multiplier') can
// be represented as a fixed point multiplier plus a left shift.
int32_t output_multiplier;
int output_shift;
int32_t output_zero_point;
};
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
return context->AllocatePersistentBuffer(context, sizeof(OpData));
}
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TFLITE_DCHECK(node->user_data != nullptr);
OpData* data = static_cast<OpData*>(node->user_data);
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
// TODO(b/140515557): Add cached dequant to improve hybrid model performance.
const TfLiteTensor* input = GetInput(context, node, 0);
TF_LITE_ENSURE(context, input != nullptr);
TfLiteTensor* output = GetOutput(context, node, 0);
TF_LITE_ENSURE(context, output != nullptr);
TF_LITE_ENSURE(context, input->type == kTfLiteUInt8 ||
input->type == kTfLiteInt8 ||
@@ -42,32 +62,49 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE(
context, output->type == kTfLiteFloat32 || output->type == kTfLiteInt32);
if (output->type == kTfLiteInt32) {
const double effective_output_scale =
static_cast<double>(input->params.scale) /
static_cast<double>(output->params.scale);
QuantizeMultiplier(effective_output_scale, &data->output_multiplier,
&data->output_shift);
}
data->quantization_params.zero_point = input->params.zero_point;
data->quantization_params.scale = static_cast<double>(input->params.scale);
data->output_zero_point = output->params.zero_point;
return kTfLiteOk;
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input = GetInput(context, node, 0);
TfLiteTensor* output = GetOutput(context, node, 0);
TFLITE_DCHECK(node->user_data != nullptr);
OpData* data = static_cast<OpData*>(node->user_data);
const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0);
TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0);
if (output->type == kTfLiteFloat32) {
tflite::DequantizationParams op_params;
op_params.zero_point = input->params.zero_point;
op_params.scale = static_cast<double>(input->params.scale);
switch (input->type) {
case kTfLiteUInt8:
reference_ops::Dequantize(
op_params, GetTensorShape(input), GetTensorData<uint8_t>(input),
GetTensorShape(output), GetTensorData<float>(output));
reference_ops::Dequantize(data->quantization_params,
tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<uint8_t>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output));
break;
case kTfLiteInt8:
reference_ops::Dequantize(
op_params, GetTensorShape(input), GetTensorData<int8_t>(input),
GetTensorShape(output), GetTensorData<float>(output));
reference_ops::Dequantize(data->quantization_params,
tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<int8_t>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output));
break;
case kTfLiteInt16:
reference_ops::Dequantize(
op_params, GetTensorShape(input), GetTensorData<int16_t>(input),
GetTensorShape(output), GetTensorData<float>(output));
reference_ops::Dequantize(data->quantization_params,
tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<int16_t>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output));
break;
default:
TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
@@ -76,28 +113,23 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
return kTfLiteError;
}
} else if (output->type == kTfLiteInt32) {
int32_t output_multiplier;
int output_shift;
const double effective_output_scale =
static_cast<double>(input->params.scale) /
static_cast<double>(output->params.scale);
QuantizeMultiplier(effective_output_scale, &output_multiplier,
&output_shift);
int flat_size =
MatchingFlatSize(GetTensorShape(input), GetTensorShape(output));
int flat_size = MatchingFlatSize(tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorShape(output));
switch (input->type) {
case kTfLiteInt16: {
reference_ops::Requantize(
GetTensorData<int16_t>(input), flat_size, output_multiplier,
output_shift, input->params.zero_point, output->params.zero_point,
GetTensorData<int32_t>(output));
tflite::micro::GetTensorData<int16_t>(input), flat_size,
data->output_multiplier, data->output_shift,
data->quantization_params.zero_point, data->output_zero_point,
tflite::micro::GetTensorData<int32_t>(output));
break;
}
case kTfLiteInt8: {
reference_ops::Requantize(
GetTensorData<int8_t>(input), flat_size, output_multiplier,
output_shift, input->params.zero_point, output->params.zero_point,
GetTensorData<int32_t>(output));
tflite::micro::GetTensorData<int8_t>(input), flat_size,
data->output_multiplier, data->output_shift,
data->quantization_params.zero_point, data->output_zero_point,
tflite::micro::GetTensorData<int32_t>(output));
break;
}
default:
@@ -118,16 +150,15 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
} // namespace dequantize
TfLiteRegistration* Register_DEQUANTIZE() {
static TfLiteRegistration r = {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/dequantize::Prepare,
/*invoke=*/dequantize::Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_DEQUANTIZE() {
return {/*init=*/dequantize::Init,
/*free=*/nullptr,
/*prepare=*/dequantize::Prepare,
/*invoke=*/dequantize::Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
} // namespace micro

View File

@@ -18,6 +18,8 @@ limitations under the License.
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
#include "tensorflow/lite/micro/micro_utils.h"
namespace tflite {
namespace ops {
@@ -39,8 +41,10 @@ TfLiteStatus GenericPrepare(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
const TfLiteTensor* input = GetInput(context, node, 0);
TF_LITE_ENSURE(context, input != nullptr);
TfLiteTensor* output = GetOutput(context, node, 0);
TF_LITE_ENSURE_EQ(context, input->type, output->type);
TF_LITE_ENSURE(context, output != nullptr);
TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
if (!IsSupportedType(input->type)) {
TF_LITE_KERNEL_LOG(context, "Input data type %s (%d) is not supported.",
TfLiteTypeGetName(input->type), input->type);
@@ -52,13 +56,13 @@ TfLiteStatus GenericPrepare(TfLiteContext* context, TfLiteNode* node) {
template <typename T>
inline TfLiteStatus EvalImpl(TfLiteContext* context, TfLiteNode* node,
T func(T), TfLiteType expected_type) {
const TfLiteTensor* input = GetInput(context, node, 0);
TfLiteTensor* output = GetOutput(context, node, 0);
TF_LITE_ENSURE_EQ(context, input->type, expected_type);
const int64_t num_elements = NumElements(input);
const T* in_data = GetTensorData<T>(input);
T* out_data = GetTensorData<T>(output);
for (int64_t i = 0; i < num_elements; ++i) {
const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0);
TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0);
TF_LITE_ENSURE_TYPES_EQ(context, input->type, expected_type);
const size_t num_elements = ElementCount(*input->dims);
const T* in_data = tflite::micro::GetTensorData<T>(input);
T* out_data = tflite::micro::GetTensorData<T>(output);
for (size_t i = 0; i < num_elements; ++i) {
out_data[i] = func(in_data[i]);
}
return kTfLiteOk;
@@ -109,116 +113,100 @@ TfLiteStatus LogicalNotEval(TfLiteContext* context, TfLiteNode* node) {
} // namespace
} // namespace elementwise
TfLiteRegistration* Register_ABS() {
static TfLiteRegistration r = {
/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/
elementwise::GenericPrepare<elementwise::IsNumericSupportedType>,
/*invoke=*/elementwise::AbsEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_ABS() {
return {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/
elementwise::GenericPrepare<elementwise::IsNumericSupportedType>,
/*invoke=*/elementwise::AbsEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
TfLiteRegistration* Register_SIN() {
static TfLiteRegistration r = {
/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/
elementwise::GenericPrepare<elementwise::IsNumericSupportedType>,
/*invoke=*/elementwise::SinEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_SIN() {
return {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/
elementwise::GenericPrepare<elementwise::IsNumericSupportedType>,
/*invoke=*/elementwise::SinEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
TfLiteRegistration* Register_COS() {
static TfLiteRegistration r = {
/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/
elementwise::GenericPrepare<elementwise::IsNumericSupportedType>,
/*invoke=*/elementwise::CosEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_COS() {
return {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/
elementwise::GenericPrepare<elementwise::IsNumericSupportedType>,
/*invoke=*/elementwise::CosEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
TfLiteRegistration* Register_LOG() {
static TfLiteRegistration r = {
/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/
elementwise::GenericPrepare<elementwise::IsNumericSupportedType>,
/*invoke=*/elementwise::LogEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_LOG() {
return {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/
elementwise::GenericPrepare<elementwise::IsNumericSupportedType>,
/*invoke=*/elementwise::LogEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
TfLiteRegistration* Register_SQRT() {
static TfLiteRegistration r = {
/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/
elementwise::GenericPrepare<elementwise::IsNumericSupportedType>,
/*invoke=*/elementwise::SqrtEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_SQRT() {
return {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/
elementwise::GenericPrepare<elementwise::IsNumericSupportedType>,
/*invoke=*/elementwise::SqrtEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
TfLiteRegistration* Register_RSQRT() {
static TfLiteRegistration r = {
/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/
elementwise::GenericPrepare<elementwise::IsNumericSupportedType>,
/*invoke=*/elementwise::RsqrtEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_RSQRT() {
return {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/
elementwise::GenericPrepare<elementwise::IsNumericSupportedType>,
/*invoke=*/elementwise::RsqrtEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
TfLiteRegistration* Register_SQUARE() {
static TfLiteRegistration r = {
/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/
elementwise::GenericPrepare<elementwise::IsNumericSupportedType>,
/*invoke=*/elementwise::SquareEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_SQUARE() {
return {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/
elementwise::GenericPrepare<elementwise::IsNumericSupportedType>,
/*invoke=*/elementwise::SquareEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
TfLiteRegistration* Register_LOGICAL_NOT() {
static TfLiteRegistration r = {
/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/
elementwise::GenericPrepare<elementwise::IsLogicalSupportedType>,
/*invoke=*/elementwise::LogicalNotEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_LOGICAL_NOT() {
return {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/
elementwise::GenericPrepare<elementwise::IsLogicalSupportedType>,
/*invoke=*/elementwise::LogicalNotEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
} // namespace micro

View File

@@ -1,34 +1,32 @@
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_MICRO_KERNELS_ALL_OPS_RESOLVER_H_
#define TENSORFLOW_LITE_MICRO_KERNELS_ALL_OPS_RESOLVER_H_
#include "tensorflow/lite/micro/compatibility.h"
#include "tensorflow/lite/micro/micro_mutable_op_resolver.h"
//
// This is a stub file for non-Ethos platforms
//
#include "tensorflow/lite/c/common.h"
namespace tflite {
namespace ops {
namespace micro {
namespace custom {
TfLiteRegistration* Register_ETHOSU() { return nullptr; }
class AllOpsResolver : public MicroMutableOpResolver {
public:
AllOpsResolver();
private:
TF_LITE_REMOVE_VIRTUAL_DELETE
};
const char* GetString_ETHOSU() { return ""; }
} // namespace custom
} // namespace micro
} // namespace ops
} // namespace tflite
#endif // TENSORFLOW_LITE_MICRO_KERNELS_ALL_OPS_RESOLVER_H_

View File

@@ -17,7 +17,7 @@ limitations under the License.
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
namespace tflite {
namespace ops {
@@ -28,25 +28,28 @@ constexpr int kInputTensor = 0;
constexpr int kOutputTensor = 0;
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TF_LITE_ENSURE_EQ(context, input->type, kTfLiteFloat32);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
reference_ops::Floor(GetTensorShape(input), GetTensorData<float>(input),
GetTensorShape(output), GetTensorData<float>(output));
const TfLiteEvalTensor* input =
tflite::micro::GetEvalInput(context, node, kInputTensor);
TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteFloat32);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
reference_ops::Floor(tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<float>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output));
return kTfLiteOk;
}
} // namespace floor
TfLiteRegistration* Register_FLOOR() {
static TfLiteRegistration r = {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/nullptr,
/*invoke=*/floor::Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_FLOOR() {
return {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/nullptr,
/*invoke=*/floor::Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
} // namespace micro

View File

@@ -1,4 +1,4 @@
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
@@ -13,20 +13,19 @@ See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/kernels/internal/reference/fully_connected.h"
#include "tensorflow/lite/micro/kernels/fully_connected.h"
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/quantization_util.h"
#include "tensorflow/lite/kernels/internal/reference/fully_connected.h"
#include "tensorflow/lite/kernels/internal/reference/integer_ops/fully_connected.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
namespace tflite {
namespace ops {
namespace micro {
namespace fully_connected {
namespace {
struct OpData {
@@ -40,6 +39,10 @@ struct OpData {
int32_t output_activation_max;
// The index of the temporary tensor where the quantized inputs are cached.
int input_quantized_index;
// Cached zero point values of tensors.
int32_t input_zero_point;
int32_t filter_zero_point;
int32_t output_zero_point;
};
constexpr int kInputTensor = 0;
@@ -64,20 +67,17 @@ TfLiteStatus CalculateOpData(TfLiteContext* context,
TF_LITE_ENSURE_STATUS(CalculateActivationRangeQuantized(
context, activation, output, &data->output_activation_min,
&data->output_activation_max));
data->input_zero_point = input->params.zero_point;
data->filter_zero_point = filter->params.zero_point;
data->output_zero_point = output->params.zero_point;
}
return status;
}
} // namespace
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
void* data = nullptr;
if (context->AllocatePersistentBuffer(context, sizeof(OpData), &data) ==
kTfLiteError) {
return nullptr;
}
return data;
return context->AllocatePersistentBuffer(context, sizeof(OpData));
}
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
@@ -89,11 +89,14 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
static_cast<const TfLiteFullyConnectedParams*>(node->builtin_data);
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TF_LITE_ENSURE(context, input != nullptr);
const TfLiteTensor* filter = GetInput(context, node, kWeightsTensor);
TF_LITE_ENSURE(context, filter != nullptr);
const TfLiteTensor* bias = GetOptionalInputTensor(context, node, kBiasTensor);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TF_LITE_ENSURE(context, output != nullptr);
TF_LITE_ENSURE_EQ(context, input->type, output->type);
TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
TF_LITE_ENSURE_MSG(context, input->type == filter->type,
"Hybrid models are not supported on TFLite Micro.");
@@ -102,13 +105,15 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
}
TfLiteStatus EvalQuantizedInt8(TfLiteContext* context, TfLiteNode* node,
const OpData& data, const TfLiteTensor* input,
const TfLiteTensor* filter,
const TfLiteTensor* bias, TfLiteTensor* output) {
const OpData& data,
const TfLiteEvalTensor* input,
const TfLiteEvalTensor* filter,
const TfLiteEvalTensor* bias,
TfLiteEvalTensor* output) {
tflite::FullyConnectedParams op_params;
op_params.input_offset = -input->params.zero_point;
op_params.weights_offset = -filter->params.zero_point;
op_params.output_offset = output->params.zero_point;
op_params.input_offset = -data.input_zero_point;
op_params.weights_offset = -data.filter_zero_point;
op_params.output_offset = data.output_zero_point;
op_params.output_multiplier = data.output_multiplier;
// TODO(b/138810107): Figure out whether output shift should be inverted
op_params.output_shift = -data.output_shift;
@@ -116,20 +121,25 @@ TfLiteStatus EvalQuantizedInt8(TfLiteContext* context, TfLiteNode* node,
op_params.quantized_activation_max = data.output_activation_max;
reference_integer_ops::FullyConnected(
op_params, GetTensorShape(input), GetTensorData<int8_t>(input),
GetTensorShape(filter), GetTensorData<int8_t>(filter),
GetTensorShape(bias), GetTensorData<int32_t>(bias),
GetTensorShape(output), GetTensorData<int8_t>(output));
op_params, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<int8_t>(input),
tflite::micro::GetTensorShape(filter),
tflite::micro::GetTensorData<int8_t>(filter),
tflite::micro::GetTensorShape(bias),
tflite::micro::GetTensorData<int32_t>(bias),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int8_t>(output));
return kTfLiteOk;
}
TfLiteStatus EvalQuantized(TfLiteContext* context, TfLiteNode* node,
const OpData& data, const TfLiteTensor* input,
const TfLiteTensor* filter, const TfLiteTensor* bias,
TfLiteTensor* output) {
const int32_t input_offset = -input->params.zero_point;
const int32_t filter_offset = -filter->params.zero_point;
const int32_t output_offset = output->params.zero_point;
const OpData& data, const TfLiteEvalTensor* input,
const TfLiteEvalTensor* filter,
const TfLiteEvalTensor* bias,
TfLiteEvalTensor* output) {
const int32_t input_offset = -data.input_zero_point;
const int32_t filter_offset = -data.filter_zero_point;
const int32_t output_offset = data.output_zero_point;
tflite::FullyConnectedParams op_params;
op_params.input_offset = input_offset;
@@ -141,12 +151,16 @@ TfLiteStatus EvalQuantized(TfLiteContext* context, TfLiteNode* node,
op_params.quantized_activation_min = data.output_activation_min;
op_params.quantized_activation_max = data.output_activation_max;
#define TF_LITE_FULLY_CONNECTED(output_data_type) \
reference_ops::FullyConnected( \
op_params, GetTensorShape(input), GetTensorData<uint8_t>(input), \
GetTensorShape(filter), GetTensorData<uint8_t>(filter), \
GetTensorShape(bias), GetTensorData<int32_t>(bias), \
GetTensorShape(output), GetTensorData<output_data_type>(output))
#define TF_LITE_FULLY_CONNECTED(output_data_type) \
reference_ops::FullyConnected( \
op_params, tflite::micro::GetTensorShape(input), \
tflite::micro::GetTensorData<uint8_t>(input), \
tflite::micro::GetTensorShape(filter), \
tflite::micro::GetTensorData<uint8_t>(filter), \
tflite::micro::GetTensorShape(bias), \
tflite::micro::GetTensorData<int32_t>(bias), \
tflite::micro::GetTensorShape(output), \
tflite::micro::GetTensorData<output_data_type>(output))
switch (output->type) {
case kTfLiteUInt8:
TF_LITE_FULLY_CONNECTED(uint8_t);
@@ -165,8 +179,9 @@ TfLiteStatus EvalQuantized(TfLiteContext* context, TfLiteNode* node,
TfLiteStatus EvalFloat(TfLiteContext* context, TfLiteNode* node,
TfLiteFusedActivation activation,
const TfLiteTensor* input, const TfLiteTensor* filter,
const TfLiteTensor* bias, TfLiteTensor* output) {
const TfLiteEvalTensor* input,
const TfLiteEvalTensor* filter,
const TfLiteEvalTensor* bias, TfLiteEvalTensor* output) {
float output_activation_min, output_activation_max;
CalculateActivationRange(activation, &output_activation_min,
&output_activation_max);
@@ -174,10 +189,14 @@ TfLiteStatus EvalFloat(TfLiteContext* context, TfLiteNode* node,
op_params.float_activation_min = output_activation_min;
op_params.float_activation_max = output_activation_max;
tflite::reference_ops::FullyConnected(
op_params, GetTensorShape(input), GetTensorData<float>(input),
GetTensorShape(filter), GetTensorData<float>(filter),
GetTensorShape(bias), GetTensorData<float>(bias), GetTensorShape(output),
GetTensorData<float>(output));
op_params, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<float>(input),
tflite::micro::GetTensorShape(filter),
tflite::micro::GetTensorData<float>(filter),
tflite::micro::GetTensorShape(bias),
tflite::micro::GetTensorData<float>(bias),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output));
return kTfLiteOk;
}
@@ -186,10 +205,14 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
const auto* params =
static_cast<const TfLiteFullyConnectedParams*>(node->builtin_data);
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
const TfLiteTensor* filter = GetInput(context, node, kWeightsTensor);
const TfLiteTensor* bias = GetOptionalInputTensor(context, node, kBiasTensor);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
const TfLiteEvalTensor* input =
tflite::micro::GetEvalInput(context, node, kInputTensor);
const TfLiteEvalTensor* filter =
tflite::micro::GetEvalInput(context, node, kWeightsTensor);
const TfLiteEvalTensor* bias =
tflite::micro::GetEvalInput(context, node, kBiasTensor);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
TFLITE_DCHECK(node->user_data != nullptr);
const OpData& data = *(static_cast<const OpData*>(node->user_data));
@@ -214,20 +237,17 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
return kTfLiteOk;
}
} // namespace fully_connected
} // namespace
TfLiteRegistration* Register_FULLY_CONNECTED() {
static TfLiteRegistration r = {/*init=*/fully_connected::Init,
/*free=*/nullptr,
/*prepare=*/fully_connected::Prepare,
/*invoke=*/fully_connected::Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_FULLY_CONNECTED() {
return {/*init=*/Init,
/*free=*/nullptr,
/*prepare=*/Prepare,
/*invoke=*/Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
} // namespace micro
} // namespace ops
} // namespace tflite

View File

@@ -0,0 +1,50 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_MICRO_KERNELS_FULLY_CONNECTED_H_
#define TENSORFLOW_LITE_MICRO_KERNELS_FULLY_CONNECTED_H_
#include "tensorflow/lite/c/common.h"
namespace tflite {
// This is the most generic TfLiteRegistration. The actual supported types may
// still be target dependent. The only requirement is that every implementation
// (reference or optimized) must define this function.
TfLiteRegistration Register_FULLY_CONNECTED();
#if defined(CMSIS_NN) || defined(ARDUINO)
// The Arduino is a special case where we use the CMSIS kernels, but because of
// the current approach to building for Arduino, we do not support -DCMSIS_NN as
// part of the build. As a result, we use defined(ARDUINO) as proxy for the
// CMSIS kernels for this one special case.
// Returns a TfLiteRegistration struct for cmsis-nn kernel variant that only
// supports int8.
TfLiteRegistration Register_FULLY_CONNECTED_INT8();
#else
// Note that while this block gets used for both reference and optimized kernels
// that do not have any specialized implementations, the only goal here is to
// define fallback implementation that allow reference kernels to still be used
// from applications that call a more specific kernel variant.
inline TfLiteRegistration Register_FULLY_CONNECTED_INT8() {
return Register_FULLY_CONNECTED();
}
#endif
} // namespace tflite
#endif // TENSORFLOW_LITE_MICRO_KERNELS_FULLY_CONNECTED_H_

View File

@@ -0,0 +1,142 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/kernels/internal/reference/hard_swish.h"
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/quantization_util.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/internal/types.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/kernels/op_macros.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
#include "tensorflow/lite/micro/micro_utils.h"
namespace tflite {
namespace ops {
namespace micro {
namespace hard_swish {
constexpr int kInputTensor = 0;
constexpr int kOutputTensor = 0;
void* HardSwishInit(TfLiteContext* context, const char* buffer, size_t length) {
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
return context->AllocatePersistentBuffer(context, sizeof(HardSwishParams));
}
TfLiteStatus HardSwishPrepare(TfLiteContext* context, TfLiteNode* node) {
TFLITE_DCHECK(node->user_data != nullptr);
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TF_LITE_ENSURE(context, input != nullptr);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TF_LITE_ENSURE(context, output != nullptr);
if (input->type == kTfLiteUInt8 || input->type == kTfLiteInt8) {
HardSwishParams* params = static_cast<HardSwishParams*>(node->user_data);
params->input_zero_point = input->params.zero_point;
params->output_zero_point = output->params.zero_point;
const float input_scale = input->params.scale;
const float hires_input_scale = (1.0f / 128.0f) * input_scale;
const float reluish_scale = 3.0f / 32768.0f;
const float output_scale = output->params.scale;
const double output_multiplier =
static_cast<double>(hires_input_scale / output_scale);
int32_t output_multiplier_fixedpoint_int32;
QuantizeMultiplier(output_multiplier, &output_multiplier_fixedpoint_int32,
&params->output_multiplier_exponent);
DownScaleInt32ToInt16Multiplier(
output_multiplier_fixedpoint_int32,
&params->output_multiplier_fixedpoint_int16);
TF_LITE_ENSURE(context, params->output_multiplier_exponent <= 0);
const double reluish_multiplier =
static_cast<double>(hires_input_scale / reluish_scale);
int32_t reluish_multiplier_fixedpoint_int32;
QuantizeMultiplier(reluish_multiplier, &reluish_multiplier_fixedpoint_int32,
&params->reluish_multiplier_exponent);
DownScaleInt32ToInt16Multiplier(
reluish_multiplier_fixedpoint_int32,
&params->reluish_multiplier_fixedpoint_int16);
}
return kTfLiteOk;
}
TfLiteStatus HardSwishEval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteEvalTensor* input =
tflite::micro::GetEvalInput(context, node, kInputTensor);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
HardSwishParams* params = static_cast<HardSwishParams*>(node->user_data);
switch (input->type) {
case kTfLiteFloat32: {
tflite::reference_ops::HardSwish<float>(
tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<float>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output));
} break;
case kTfLiteUInt8: {
tflite::reference_ops::HardSwish<uint8_t>(
*params, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<uint8_t>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<uint8_t>(output));
} break;
case kTfLiteInt8: {
tflite::reference_ops::HardSwish<int8_t>(
*params, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<int8_t>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int8_t>(output));
} break;
default: {
TF_LITE_KERNEL_LOG(
context,
"Only float32/int8_t/uint8_t are supported currently, got %s",
TfLiteTypeGetName(input->type));
return kTfLiteError;
}
}
return kTfLiteOk;
}
} // namespace hard_swish
TfLiteRegistration Register_HARD_SWISH() {
return {/*init=*/hard_swish::HardSwishInit,
/*free=*/nullptr,
/*prepare=*/hard_swish::HardSwishPrepare,
/*invoke=*/hard_swish::HardSwishEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
} // namespace micro
} // namespace ops
} // namespace tflite

View File

@@ -0,0 +1,165 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/micro/kernels/kernel_runner.h"
namespace tflite {
namespace micro {
namespace {
constexpr size_t kBufferAlignment = 16;
} // namespace
// TODO(b/161841696): Consider moving away from global arena buffers:
constexpr int KernelRunner::kNumScratchBuffers_;
constexpr int KernelRunner::kKernelRunnerBufferSize_;
uint8_t KernelRunner::kKernelRunnerBuffer_[];
KernelRunner::KernelRunner(const TfLiteRegistration& registration,
TfLiteTensor* tensors, int tensors_size,
TfLiteIntArray* inputs, TfLiteIntArray* outputs,
void* builtin_data, ErrorReporter* error_reporter)
: allocator_(SimpleMemoryAllocator::Create(
error_reporter, kKernelRunnerBuffer_, kKernelRunnerBufferSize_)),
registration_(registration),
tensors_(tensors),
error_reporter_(error_reporter) {
// Prepare TfLiteContext:
context_.impl_ = static_cast<void*>(this);
context_.ReportError = ReportOpError;
context_.recommended_num_threads = 1;
context_.GetTensor = GetTensor;
context_.GetEvalTensor = GetEvalTensor;
context_.AllocatePersistentBuffer = AllocatePersistentBuffer;
context_.RequestScratchBufferInArena = RequestScratchBufferInArena;
context_.GetScratchBuffer = GetScratchBuffer;
// Prepare TfLiteNode:
node_.inputs = inputs;
node_.outputs = outputs;
node_.builtin_data = builtin_data;
}
TfLiteStatus KernelRunner::InitAndPrepare(const char* init_data) {
if (registration_.init) {
node_.user_data = registration_.init(&context_, init_data, /*length=*/0);
}
if (registration_.prepare) {
TF_LITE_ENSURE_STATUS(registration_.prepare(&context_, &node_));
}
return kTfLiteOk;
}
TfLiteStatus KernelRunner::Invoke() {
if (registration_.invoke == nullptr) {
TF_LITE_REPORT_ERROR(error_reporter_,
"TfLiteRegistration missing invoke function pointer!");
return kTfLiteError;
}
return registration_.invoke(&context_, &node_);
}
TfLiteTensor* KernelRunner::GetTensor(const struct TfLiteContext* context,
int tensor_index) {
TFLITE_DCHECK(context != nullptr);
KernelRunner* runner = reinterpret_cast<KernelRunner*>(context->impl_);
TFLITE_DCHECK(runner != nullptr);
return &runner->tensors_[tensor_index];
}
TfLiteEvalTensor* KernelRunner::GetEvalTensor(
const struct TfLiteContext* context, int tensor_index) {
TFLITE_DCHECK(context != nullptr);
KernelRunner* runner = reinterpret_cast<KernelRunner*>(context->impl_);
TFLITE_DCHECK(runner != nullptr);
TfLiteEvalTensor* eval_tensor =
reinterpret_cast<TfLiteEvalTensor*>(runner->allocator_->AllocateTemp(
sizeof(TfLiteEvalTensor), alignof(TfLiteEvalTensor)));
TFLITE_DCHECK(eval_tensor != nullptr);
// In unit tests, the TfLiteTensor pointer contains the source of truth for
// buffers and values:
eval_tensor->data = runner->tensors_[tensor_index].data;
eval_tensor->dims = runner->tensors_[tensor_index].dims;
eval_tensor->type = runner->tensors_[tensor_index].type;
return eval_tensor;
}
void* KernelRunner::AllocatePersistentBuffer(TfLiteContext* context,
size_t bytes) {
TFLITE_DCHECK(context != nullptr);
KernelRunner* runner = reinterpret_cast<KernelRunner*>(context->impl_);
TFLITE_DCHECK(runner != nullptr);
return runner->allocator_->AllocateFromTail(bytes, kBufferAlignment);
}
TfLiteStatus KernelRunner::RequestScratchBufferInArena(TfLiteContext* context,
size_t bytes,
int* buffer_index) {
TFLITE_DCHECK(context != nullptr);
TFLITE_DCHECK(buffer_index != nullptr);
KernelRunner* runner = reinterpret_cast<KernelRunner*>(context->impl_);
TFLITE_DCHECK(runner != nullptr);
if (runner->scratch_buffer_count_ == kNumScratchBuffers_) {
TF_LITE_REPORT_ERROR(
runner->error_reporter_,
"Exceeded the maximum number of scratch tensors allowed (%d).",
kNumScratchBuffers_);
return kTfLiteError;
}
// For tests, we allocate scratch buffers from the tail and keep them around
// for the lifetime of model. This means that the arena size in the tests will
// be more than what we would have if the scratch buffers could share memory.
runner->scratch_buffers_[runner->scratch_buffer_count_] =
runner->allocator_->AllocateFromTail(bytes, kBufferAlignment);
TFLITE_DCHECK(runner->scratch_buffers_[runner->scratch_buffer_count_] !=
nullptr);
*buffer_index = runner->scratch_buffer_count_++;
return kTfLiteOk;
}
void* KernelRunner::GetScratchBuffer(TfLiteContext* context, int buffer_index) {
TFLITE_DCHECK(context != nullptr);
KernelRunner* runner = reinterpret_cast<KernelRunner*>(context->impl_);
TFLITE_DCHECK(runner != nullptr);
TFLITE_DCHECK(runner->scratch_buffer_count_ <= kNumScratchBuffers_);
if (buffer_index >= runner->scratch_buffer_count_) {
return nullptr;
}
return runner->scratch_buffers_[buffer_index];
}
void KernelRunner::ReportOpError(struct TfLiteContext* context,
const char* format, ...) {
TFLITE_DCHECK(context != nullptr);
KernelRunner* runner = reinterpret_cast<KernelRunner*>(context->impl_);
TFLITE_DCHECK(runner != nullptr);
va_list args;
va_start(args, format);
TF_LITE_REPORT_ERROR(runner->error_reporter_, format, args);
va_end(args);
}
} // namespace micro
} // namespace tflite

View File

@@ -0,0 +1,83 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_MICRO_KERNELS_KERNEL_RUNNER_H_
#define TENSORFLOW_LITE_MICRO_KERNELS_KERNEL_RUNNER_H_
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/compatibility.h"
#include "tensorflow/lite/micro/simple_memory_allocator.h"
namespace tflite {
namespace micro {
// Helper class to perform a simulated kernel (i.e. TfLiteRegistration) lifecyle
// (init, prepare, invoke). All internal allocations are handled by this class.
// Simply pass in the registration, list of required tensors, inputs array,
// outputs array, and any pre-builtin data. Calling Invoke() will automatically
// walk the kernl and outputs will be ready on the the TfLiteTensor output
// provided during construction.
class KernelRunner {
public:
KernelRunner(const TfLiteRegistration& registration, TfLiteTensor* tensors,
int tensors_size, TfLiteIntArray* inputs,
TfLiteIntArray* outputs, void* builtin_data,
ErrorReporter* error_reporter);
// Calls init and prepare on the kernel (i.e. TfLiteRegistration) struct. Any
// exceptions will be reported through the error_reporter and returned as a
// status code here.
TfLiteStatus InitAndPrepare(const char* init_data = nullptr);
// Calls init, prepare, and invoke on a given TfLiteRegistration pointer.
// After successful invoke, results will be available in the output tensor as
// passed into the constructor of this class.
TfLiteStatus Invoke();
protected:
static TfLiteTensor* GetTensor(const struct TfLiteContext* context,
int tensor_index);
static TfLiteEvalTensor* GetEvalTensor(const struct TfLiteContext* context,
int tensor_index);
static void* AllocatePersistentBuffer(TfLiteContext* context, size_t bytes);
static TfLiteStatus RequestScratchBufferInArena(TfLiteContext* context,
size_t bytes,
int* buffer_index);
static void* GetScratchBuffer(TfLiteContext* context, int buffer_index);
static void ReportOpError(struct TfLiteContext* context, const char* format,
...);
private:
static constexpr int kNumScratchBuffers_ = 5;
static constexpr int kKernelRunnerBufferSize_ = 10000;
static uint8_t kKernelRunnerBuffer_[kKernelRunnerBufferSize_];
SimpleMemoryAllocator* allocator_ = nullptr;
const TfLiteRegistration& registration_;
TfLiteTensor* tensors_ = nullptr;
ErrorReporter* error_reporter_ = nullptr;
TfLiteContext context_ = {};
TfLiteNode node_ = {};
int scratch_buffer_count_ = 0;
uint8_t* scratch_buffers_[kNumScratchBuffers_];
};
} // namespace micro
} // namespace tflite
#endif // TENSORFLOW_LITE_MICRO_KERNELS_KERNEL_RUNNER_H_

View File

@@ -0,0 +1,41 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/micro/kernels/kernel_util.h"
#include "tensorflow/lite/c/common.h"
namespace tflite {
namespace micro {
bool HaveSameShapes(const TfLiteEvalTensor* input1,
const TfLiteEvalTensor* input2) {
TFLITE_DCHECK(input1 != nullptr);
TFLITE_DCHECK(input2 != nullptr);
return TfLiteIntArrayEqual(input1->dims, input2->dims);
}
const RuntimeShape GetTensorShape(const TfLiteEvalTensor* tensor) {
if (tensor == nullptr || tensor->dims == nullptr) {
return RuntimeShape();
}
TfLiteIntArray* dims = tensor->dims;
const int dims_size = dims->size;
const int32_t* dims_data = reinterpret_cast<const int32_t*>(dims->data);
return RuntimeShape(dims_size, dims_data);
}
} // namespace micro
} // namespace tflite

View File

@@ -0,0 +1,75 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_MICRO_KERNELS_KERNEL_UTIL_H_
#define TENSORFLOW_LITE_MICRO_KERNELS_KERNEL_UTIL_H_
#include <cstdint>
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/compatibility.h"
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
namespace micro {
// Returns a mutable tensor for a given input index. is_variable must be checked
// during prepare when the full TfLiteTensor is available.
inline TfLiteEvalTensor* GetMutableEvalInput(const TfLiteContext* context,
const TfLiteNode* node,
int index) {
TFLITE_DCHECK(context != nullptr);
TFLITE_DCHECK(node != nullptr);
return context->GetEvalTensor(context, node->inputs->data[index]);
}
// Returns the TfLiteEvalTensor struct for a given input index in a node.
inline const TfLiteEvalTensor* GetEvalInput(const TfLiteContext* context,
const TfLiteNode* node, int index) {
return GetMutableEvalInput(context, node, index);
}
// Returns the TfLiteEvalTensor struct for a given output index in a node.
inline TfLiteEvalTensor* GetEvalOutput(const TfLiteContext* context,
const TfLiteNode* node, int index) {
TFLITE_DCHECK(context != nullptr);
TFLITE_DCHECK(node != nullptr);
return context->GetEvalTensor(context, node->outputs->data[index]);
}
// Returns data for a TfLiteEvalTensor struct.
template <typename T>
T* GetTensorData(TfLiteEvalTensor* tensor) {
return tensor != nullptr ? reinterpret_cast<T*>(tensor->data.raw) : nullptr;
}
// Returns const data for a TfLiteEvalTensor struct.
template <typename T>
const T* GetTensorData(const TfLiteEvalTensor* tensor) {
TFLITE_DCHECK(tensor != nullptr);
return reinterpret_cast<const T*>(tensor->data.raw);
}
// Returns the shape of a TfLiteEvalTensor struct.
const RuntimeShape GetTensorShape(const TfLiteEvalTensor* tensor);
// Return true if the given tensors have the same shape.
bool HaveSameShapes(const TfLiteEvalTensor* input1,
const TfLiteEvalTensor* input2);
} // namespace micro
} // namespace tflite
#endif // TENSORFLOW_LITE_MICRO_KERNELS_KERNEL_UTIL_H_

View File

@@ -14,16 +14,19 @@ limitations under the License.
==============================================================================*/
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/portable_tensor.h"
#include "tensorflow/lite/kernels/internal/reference/integer_ops/l2normalization.h"
#include "tensorflow/lite/kernels/internal/reference/l2normalization.h"
#include "tensorflow/lite/kernels/internal/tensor.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
namespace tflite {
namespace ops {
namespace micro {
namespace l2norm {
namespace {
// This file has two implementation of L2Norm.
enum KernelType {
kReference,
@@ -33,44 +36,59 @@ enum KernelType {
constexpr int kInputTensor = 0;
constexpr int kOutputTensor = 0;
} // namespace
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
#if defined(DEBUG)
TFLITE_DCHECK(node->user_data != nullptr);
TFLITE_DCHECK(node->builtin_data != nullptr);
auto* params = reinterpret_cast<TfLiteL2NormParams*>(node->builtin_data);
L2NormalizationParams* data =
static_cast<L2NormalizationParams*>(node->user_data);
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TF_LITE_ENSURE(context, input != nullptr);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TF_LITE_ENSURE(context, output != nullptr);
TF_LITE_ENSURE(context, NumDimensions(input) <= 4);
TF_LITE_ENSURE(context, output->type == kTfLiteFloat32 ||
output->type == kTfLiteUInt8 ||
output->type == kTfLiteInt8);
TF_LITE_ENSURE_EQ(context, input->type, output->type);
TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) {
TF_LITE_ENSURE_EQ(context, output->params.scale, (1. / 128.));
if (output->type == kTfLiteUInt8) {
TF_LITE_ENSURE_EQ(context, output->params.zero_point, 128);
}
if (output->type == kTfLiteInt8) {
TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0);
}
data->input_zero_point = input->params.zero_point;
} else if (output->type == kTfLiteFloat32) {
data->input_zero_point = 0;
}
// TODO(ahentz): For some reason our implementations don't support
// activations.
TF_LITE_ENSURE_EQ(context, params->activation, kTfLiteActNone);
#endif
return kTfLiteOk;
}
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
return context->AllocatePersistentBuffer(context,
sizeof(L2NormalizationParams));
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TFLITE_DCHECK(node->user_data != nullptr);
const L2NormalizationParams& data =
*(static_cast<const L2NormalizationParams*>(node->user_data));
const TfLiteEvalTensor* input =
tflite::micro::GetEvalInput(context, node, kInputTensor);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
// TODO(b/143912164): instead of hardcode the epsilon here, we should read it
// from tensorflow, i.e., adding a params.
@@ -87,39 +105,32 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
// So we don't even need to do handle the epsilon for quantized kernel case.
const float epsilon = 1e-6f;
if (output->type == kTfLiteFloat32) {
#define TF_LITE_L2NORM(type) \
tflite::L2NormalizationParams op_params; \
op_params.input_zero_point = 0; \
type::L2Normalization(op_params, GetTensorShape(input), \
GetTensorData<float>(input), GetTensorShape(output), \
GetTensorData<float>(output), epsilon)
TF_LITE_L2NORM(reference_ops);
#undef TF_LITE_L2NORM
reference_ops::L2Normalization(data, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<float>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output),
epsilon);
} else if (output->type == kTfLiteUInt8) {
#define TF_LITE_L2NORM(type) \
tflite::L2NormalizationParams op_params; \
op_params.input_zero_point = input->params.zero_point; \
type::L2Normalization(op_params, GetTensorShape(input), \
GetTensorData<uint8>(input), GetTensorShape(output), \
GetTensorData<uint8>(output))
TF_LITE_L2NORM(reference_ops);
#undef TF_LITE_L2NORM
reference_ops::L2Normalization(
data, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<uint8_t>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<uint8_t>(output));
} else if (output->type == kTfLiteInt8) {
const auto input_shape = GetTensorShape(input);
const auto output_shape = GetTensorShape(output);
const auto input_shape = tflite::micro::GetTensorShape(input);
const auto output_shape = tflite::micro::GetTensorShape(output);
const int trailing_dim = input_shape.DimensionsCount() - 1;
const int depth =
MatchingDim(input_shape, trailing_dim, output_shape, trailing_dim);
const int outer_size =
MatchingFlatSizeSkipDim(input_shape, trailing_dim, output_shape);
reference_integer_ops::L2Normalization(input->params.zero_point, outer_size,
depth, GetTensorData<int8>(input),
GetTensorData<int8>(output));
reference_integer_ops::L2Normalization(
data.input_zero_point, outer_size, depth,
tflite::micro::GetTensorData<int8_t>(input),
tflite::micro::GetTensorData<int8_t>(output));
} else {
TF_LITE_KERNEL_LOG(context, "Output type is %d, requires float.",
output->type);
TF_LITE_KERNEL_LOG(context, "Output type is %s, requires float.",
TfLiteTypeGetName(output->type));
return kTfLiteError;
}
@@ -128,22 +139,18 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
} // namespace l2norm
TfLiteRegistration* Register_L2NORM_REF() {
static TfLiteRegistration r = {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/l2norm::Prepare,
/*invoke=*/l2norm::Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_L2NORM_REF() {
return {/*init=*/l2norm::Init,
/*free=*/nullptr,
/*prepare=*/l2norm::Prepare,
/*invoke=*/l2norm::Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
TfLiteRegistration* Register_L2_NORMALIZATION() {
return Register_L2NORM_REF();
}
TfLiteRegistration Register_L2_NORMALIZATION() { return Register_L2NORM_REF(); }
} // namespace micro
} // namespace ops

View File

@@ -15,8 +15,8 @@ limitations under the License.
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/reference/binary_function.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/kernels/op_macros.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
namespace tflite {
namespace ops {
@@ -31,20 +31,29 @@ constexpr int kOutputTensor = 0;
TfLiteStatus LogicalImpl(TfLiteContext* context, TfLiteNode* node,
bool (*func)(bool, bool)) {
const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
const TfLiteEvalTensor* input1 =
tflite::micro::GetEvalInput(context, node, kInputTensor1);
const TfLiteEvalTensor* input2 =
tflite::micro::GetEvalInput(context, node, kInputTensor2);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
if (HaveSameShapes(input1, input2)) {
if (tflite::micro::HaveSameShapes(input1, input2)) {
reference_ops::BinaryFunction<bool, bool, bool>(
GetTensorShape(input1), GetTensorData<bool>(input1),
GetTensorShape(input2), GetTensorData<bool>(input2),
GetTensorShape(output), GetTensorData<bool>(output), func);
tflite::micro::GetTensorShape(input1),
tflite::micro::GetTensorData<bool>(input1),
tflite::micro::GetTensorShape(input2),
tflite::micro::GetTensorData<bool>(input2),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<bool>(output), func);
} else {
reference_ops::BroadcastBinaryFunction4DSlow<bool, bool, bool>(
GetTensorShape(input1), GetTensorData<bool>(input1),
GetTensorShape(input2), GetTensorData<bool>(input2),
GetTensorShape(output), GetTensorData<bool>(output), func);
tflite::micro::GetTensorShape(input1),
tflite::micro::GetTensorData<bool>(input1),
tflite::micro::GetTensorShape(input2),
tflite::micro::GetTensorData<bool>(input2),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<bool>(output), func);
}
return kTfLiteOk;
@@ -65,32 +74,30 @@ TfLiteStatus LogicalAndEval(TfLiteContext* context, TfLiteNode* node) {
} // namespace
} // namespace logical
TfLiteRegistration* Register_LOGICAL_OR() {
TfLiteRegistration Register_LOGICAL_OR() {
// Init, Free, Prepare, Eval are satisfying the Interface required by
// TfLiteRegistration.
static TfLiteRegistration r = {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/nullptr,
/*invoke=*/logical::LogicalOrEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
return {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/nullptr,
/*invoke=*/logical::LogicalOrEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
TfLiteRegistration* Register_LOGICAL_AND() {
TfLiteRegistration Register_LOGICAL_AND() {
// Init, Free, Prepare, Eval are satisfying the Interface required by
// TfLiteRegistration.
static TfLiteRegistration r = {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/nullptr,
/*invoke=*/logical::LogicalAndEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
return {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/nullptr,
/*invoke=*/logical::LogicalAndEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
} // namespace micro

View File

@@ -23,6 +23,7 @@ limitations under the License.
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/kernels/op_macros.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
namespace tflite {
namespace ops {
@@ -42,9 +43,11 @@ struct OpData {
TfLiteStatus CalculateArithmeticOpData(TfLiteContext* context, TfLiteNode* node,
OpData* data) {
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TF_LITE_ENSURE(context, input != nullptr);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TF_LITE_ENSURE(context, output != nullptr);
TF_LITE_ENSURE_EQ(context, input->type, output->type);
TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
if (input->type == kTfLiteInt8) {
TF_LITE_ENSURE_EQ(context, output->params.zero_point,
std::numeric_limits<int8_t>::min());
@@ -54,6 +57,8 @@ TfLiteStatus CalculateArithmeticOpData(TfLiteContext* context, TfLiteNode* node,
static_cast<double>(input->params.scale) *
static_cast<double>(1 << (31 - kInputIntegerBits));
data->input_zero_point = input->params.zero_point;
const double q = std::frexp(input_real_multiplier, &data->input_left_shift);
data->input_multiplier = static_cast<int32_t>(TfLiteRound(q * (1ll << 31)));
@@ -64,18 +69,34 @@ TfLiteStatus CalculateArithmeticOpData(TfLiteContext* context, TfLiteNode* node,
}
} // namespace
void* LogisticInit(TfLiteContext* context, const char* buffer, size_t length) {
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
return context->AllocatePersistentBuffer(context, sizeof(OpData));
}
TfLiteStatus LogisticPrepare(TfLiteContext* context, TfLiteNode* node) {
TFLITE_DCHECK(node->user_data != nullptr);
OpData* data = static_cast<OpData*>(node->user_data);
return CalculateArithmeticOpData(context, node, data);
}
TfLiteStatus LogisticEval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
OpData data;
CalculateArithmeticOpData(context, node, &data);
const TfLiteEvalTensor* input =
tflite::micro::GetEvalInput(context, node, kInputTensor);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
TFLITE_DCHECK(node->user_data != nullptr);
OpData* data = static_cast<OpData*>(node->user_data);
if (input->type == kTfLiteFloat32) {
switch (output->type) {
case kTfLiteFloat32: {
reference_ops::Logistic(
GetTensorShape(input), GetTensorData<float>(input),
GetTensorShape(output), GetTensorData<float>(output));
reference_ops::Logistic(tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<float>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output));
return kTfLiteOk;
}
default:
@@ -88,10 +109,11 @@ TfLiteStatus LogisticEval(TfLiteContext* context, TfLiteNode* node) {
switch (output->type) {
case kTfLiteInt8: {
reference_integer_ops::Logistic(
input->params.zero_point, data.input_range_radius,
data.input_multiplier, data.input_left_shift,
NumElements(input->dims), GetTensorData<int8_t>(input),
GetTensorData<int8_t>(output));
data->input_zero_point, data->input_range_radius,
data->input_multiplier, data->input_left_shift,
NumElements(input->dims),
tflite::micro::GetTensorData<int8_t>(input),
tflite::micro::GetTensorData<int8_t>(output));
return kTfLiteOk;
}
default:
@@ -113,16 +135,15 @@ TfLiteStatus LogisticEval(TfLiteContext* context, TfLiteNode* node) {
} // namespace activations
TfLiteRegistration* Register_LOGISTIC() {
static TfLiteRegistration r = {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/nullptr,
/*invoke=*/activations::LogisticEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_LOGISTIC() {
return {/*init=*/activations::LogisticInit,
/*free=*/nullptr,
/*prepare=*/activations::LogisticPrepare,
/*invoke=*/activations::LogisticEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
} // namespace micro
} // namespace ops

View File

@@ -22,6 +22,7 @@ limitations under the License.
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/kernels/op_macros.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
namespace tflite {
namespace ops {
@@ -40,13 +41,13 @@ constexpr int kOutputTensor = 0;
struct OpContext {
OpContext(TfLiteContext* context, TfLiteNode* node) {
input1 = GetInput(context, node, kInputTensor1);
input2 = GetInput(context, node, kInputTensor2);
output = GetOutput(context, node, kOutputTensor);
input1 = tflite::micro::GetEvalInput(context, node, kInputTensor1);
input2 = tflite::micro::GetEvalInput(context, node, kInputTensor2);
output = tflite::micro::GetEvalOutput(context, node, kOutputTensor);
}
const TfLiteTensor* input1;
const TfLiteTensor* input2;
TfLiteTensor* output;
const TfLiteEvalTensor* input1;
const TfLiteEvalTensor* input2;
TfLiteEvalTensor* output;
};
struct MaximumOp {
@@ -69,12 +70,12 @@ template <typename data_type, typename op_type>
void TFLiteOperation(TfLiteContext* context, TfLiteNode* node,
const OpContext& op_context) {
reference_ops::MaximumMinimumBroadcastSlow(
GetTensorShape(op_context.input1),
GetTensorData<data_type>(op_context.input1),
GetTensorShape(op_context.input2),
GetTensorData<data_type>(op_context.input2),
GetTensorShape(op_context.output),
GetTensorData<data_type>(op_context.output),
tflite::micro::GetTensorShape(op_context.input1),
tflite::micro::GetTensorData<data_type>(op_context.input1),
tflite::micro::GetTensorShape(op_context.input2),
tflite::micro::GetTensorData<data_type>(op_context.input2),
tflite::micro::GetTensorShape(op_context.output),
tflite::micro::GetTensorData<data_type>(op_context.output),
op_type::template op<data_type>);
}
@@ -116,34 +117,30 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
} // namespace maximum_minimum
TfLiteRegistration* Register_MAXIMUM() {
static TfLiteRegistration r = {
/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/nullptr,
/*invoke=*/
maximum_minimum::Eval<maximum_minimum::kReference,
maximum_minimum::MaximumOp>,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_MAXIMUM() {
return {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/nullptr,
/*invoke=*/
maximum_minimum::Eval<maximum_minimum::kReference,
maximum_minimum::MaximumOp>,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
TfLiteRegistration* Register_MINIMUM() {
static TfLiteRegistration r = {
/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/nullptr,
/*invoke=*/
maximum_minimum::Eval<maximum_minimum::kReference,
maximum_minimum::MinimumOp>,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_MINIMUM() {
return {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/nullptr,
/*invoke=*/
maximum_minimum::Eval<maximum_minimum::kReference,
maximum_minimum::MinimumOp>,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
} // namespace micro

View File

@@ -17,10 +17,6 @@ limitations under the License.
#include "tensorflow/lite/c/common.h"
namespace tflite {
namespace ops {
namespace micro {
// Forward declaration of all micro op kernel registration methods. These
// registrations are included with the standard `BuiltinOpResolver`.
//
@@ -29,58 +25,73 @@ namespace micro {
// their model requires, using a custom `(Micro)MutableOpResolver`. Selective
// registration in turn allows the linker to strip unused kernels.
TfLiteRegistration* Register_ABS();
TfLiteRegistration* Register_ADD();
TfLiteRegistration* Register_ARG_MAX();
TfLiteRegistration* Register_ARG_MIN();
TfLiteRegistration* Register_AVERAGE_POOL_2D();
TfLiteRegistration* Register_CEIL();
namespace tflite {
// TFLM is incrementally moving towards a flat tflite namespace
// (https://abseil.io/tips/130). Any new ops (or cleanup of existing ops should
// have their Register function declarations in the tflite namespace.
TfLiteRegistration Register_CONV_2D();
TfLiteRegistration Register_DEPTHWISE_CONV_2D();
TfLiteRegistration Register_QUANTIZE();
TfLiteRegistration Register_SHAPE();
TfLiteRegistration Register_SOFTMAX();
TfLiteRegistration Register_SVDF();
namespace ops {
namespace micro {
TfLiteRegistration Register_ABS();
TfLiteRegistration Register_ADD();
TfLiteRegistration Register_ARG_MAX();
TfLiteRegistration Register_ARG_MIN();
TfLiteRegistration Register_AVERAGE_POOL_2D();
TfLiteRegistration Register_CEIL();
// TODO(b/160234179): Change custom OPs to also return by value.
TfLiteRegistration* Register_CIRCULAR_BUFFER();
TfLiteRegistration* Register_CONV_2D();
TfLiteRegistration* Register_CONCATENATION();
TfLiteRegistration* Register_COS();
TfLiteRegistration* Register_DEPTHWISE_CONV_2D();
TfLiteRegistration* Register_DEQUANTIZE();
TfLiteRegistration* Register_EQUAL();
TfLiteRegistration* Register_FLOOR();
TfLiteRegistration* Register_FULLY_CONNECTED();
TfLiteRegistration* Register_GREATER();
TfLiteRegistration* Register_GREATER_EQUAL();
TfLiteRegistration* Register_LESS();
TfLiteRegistration* Register_LESS_EQUAL();
TfLiteRegistration* Register_LOG();
TfLiteRegistration* Register_LOGICAL_AND();
TfLiteRegistration* Register_LOGICAL_NOT();
TfLiteRegistration* Register_LOGICAL_OR();
TfLiteRegistration* Register_LOGISTIC();
TfLiteRegistration* Register_MAXIMUM();
TfLiteRegistration* Register_MAX_POOL_2D();
TfLiteRegistration* Register_MEAN();
TfLiteRegistration* Register_MINIMUM();
TfLiteRegistration* Register_MUL();
TfLiteRegistration* Register_NEG();
TfLiteRegistration* Register_NOT_EQUAL();
TfLiteRegistration* Register_PACK();
TfLiteRegistration* Register_PAD();
TfLiteRegistration* Register_PADV2();
TfLiteRegistration* Register_PRELU();
TfLiteRegistration* Register_QUANTIZE();
TfLiteRegistration* Register_RELU();
TfLiteRegistration* Register_RELU6();
TfLiteRegistration* Register_RESHAPE();
TfLiteRegistration* Register_RESIZE_NEAREST_NEIGHBOR();
TfLiteRegistration* Register_ROUND();
TfLiteRegistration* Register_RSQRT();
TfLiteRegistration* Register_SIN();
TfLiteRegistration* Register_SOFTMAX();
TfLiteRegistration* Register_SPLIT();
TfLiteRegistration* Register_SQRT();
TfLiteRegistration* Register_SQUARE();
TfLiteRegistration* Register_STRIDED_SLICE();
TfLiteRegistration* Register_SUB();
TfLiteRegistration* Register_SVDF();
TfLiteRegistration* Register_UNPACK();
TfLiteRegistration* Register_L2_NORMALIZATION();
TfLiteRegistration Register_CONCATENATION();
TfLiteRegistration Register_COS();
TfLiteRegistration Register_DEQUANTIZE();
TfLiteRegistration Register_EQUAL();
TfLiteRegistration Register_FLOOR();
TfLiteRegistration Register_GREATER();
TfLiteRegistration Register_GREATER_EQUAL();
TfLiteRegistration Register_HARD_SWISH();
TfLiteRegistration Register_LESS();
TfLiteRegistration Register_LESS_EQUAL();
TfLiteRegistration Register_LOG();
TfLiteRegistration Register_LOGICAL_AND();
TfLiteRegistration Register_LOGICAL_NOT();
TfLiteRegistration Register_LOGICAL_OR();
TfLiteRegistration Register_LOGISTIC();
TfLiteRegistration Register_MAXIMUM();
TfLiteRegistration Register_MAX_POOL_2D();
TfLiteRegistration Register_MEAN();
TfLiteRegistration Register_MINIMUM();
TfLiteRegistration Register_MUL();
TfLiteRegistration Register_NEG();
TfLiteRegistration Register_NOT_EQUAL();
TfLiteRegistration Register_PACK();
TfLiteRegistration Register_PAD();
TfLiteRegistration Register_PADV2();
TfLiteRegistration Register_PRELU();
TfLiteRegistration Register_REDUCE_MAX();
TfLiteRegistration Register_RELU();
TfLiteRegistration Register_RELU6();
TfLiteRegistration Register_RESHAPE();
TfLiteRegistration Register_RESIZE_NEAREST_NEIGHBOR();
TfLiteRegistration Register_ROUND();
TfLiteRegistration Register_RSQRT();
TfLiteRegistration Register_SIN();
TfLiteRegistration Register_SPLIT();
TfLiteRegistration Register_SPLIT_V();
TfLiteRegistration Register_SQRT();
TfLiteRegistration Register_SQUARE();
TfLiteRegistration Register_STRIDED_SLICE();
TfLiteRegistration Register_SUB();
TfLiteRegistration Register_UNPACK();
TfLiteRegistration Register_L2_NORMALIZATION();
TfLiteRegistration Register_TANH();
} // namespace micro
} // namespace ops

View File

@@ -21,132 +21,194 @@ limitations under the License.
#include "tensorflow/lite/kernels/internal/reference/process_broadcast_shapes.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
#include "tensorflow/lite/micro/memory_helpers.h"
namespace tflite {
namespace ops {
namespace micro {
namespace mul {
namespace {
constexpr int kInput1Tensor = 0;
constexpr int kInput2Tensor = 1;
constexpr int kOutputTensor = 0;
struct OpData {
int32_t input1_zero_point;
int32_t input2_zero_point;
int32_t output_activation_min;
int32_t output_activation_max;
int32_t output_zero_point;
int32_t output_multiplier;
int output_shift;
float output_activation_min_f32;
float output_activation_max_f32;
};
TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node,
TfLiteMulParams* params, OpData* data) {
const TfLiteTensor* input1 = GetInput(context, node, kInput1Tensor);
TF_LITE_ENSURE(context, input1 != nullptr);
const TfLiteTensor* input2 = GetInput(context, node, kInput2Tensor);
TF_LITE_ENSURE(context, input2 != nullptr);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TF_LITE_ENSURE(context, output != nullptr);
TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
TF_LITE_ENSURE_EQ(context, input1->type, input2->type);
TF_LITE_ENSURE_STATUS(CalculateActivationRangeQuantized(
context, params->activation, output, &data->output_activation_min,
&data->output_activation_max));
TF_LITE_ENSURE_TYPES_EQ(context, input1->type, input2->type);
if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) {
TF_LITE_ENSURE_STATUS(CalculateActivationRangeQuantized(
context, params->activation, output, &data->output_activation_min,
&data->output_activation_max));
double real_multiplier = static_cast<double>(input1->params.scale) *
static_cast<double>(input2->params.scale) /
static_cast<double>(output->params.scale);
QuantizeMultiplier(real_multiplier, &data->output_multiplier,
&data->output_shift);
data->input1_zero_point = input1->params.zero_point;
data->input2_zero_point = input2->params.zero_point;
data->output_zero_point = output->params.zero_point;
} else {
CalculateActivationRange(params->activation,
&data->output_activation_min_f32,
&data->output_activation_max_f32);
}
return kTfLiteOk;
}
void EvalQuantized(TfLiteContext* context, TfLiteNode* node,
TfLiteMulParams* params, OpData* data,
const TfLiteTensor* input1, const TfLiteTensor* input2,
TfLiteTensor* output) {
if (output->type == kTfLiteInt8 || output->type == kTfLiteUInt8) {
tflite::ArithmeticParams op_params;
SetActivationParams(data->output_activation_min,
data->output_activation_max, &op_params);
op_params.input1_offset = -input1->params.zero_point;
op_params.input2_offset = -input2->params.zero_point;
op_params.output_offset = output->params.zero_point;
op_params.output_multiplier = data->output_multiplier;
op_params.output_shift = data->output_shift;
bool need_broadcast = reference_ops::ProcessBroadcastShapes(
GetTensorShape(input1), GetTensorShape(input2), &op_params);
} // namespace
#define TF_LITE_MUL(type, opname, dtype) \
type::opname(op_params, GetTensorShape(input1), \
GetTensorData<dtype>(input1), GetTensorShape(input2), \
GetTensorData<dtype>(input2), GetTensorShape(output), \
GetTensorData<dtype>(output));
void EvalQuantized(TfLiteContext* context, TfLiteNode* node, const OpData* data,
const TfLiteEvalTensor* input1,
const TfLiteEvalTensor* input2, TfLiteEvalTensor* output) {
tflite::ArithmeticParams op_params = {};
op_params.quantized_activation_min = data->output_activation_min;
op_params.quantized_activation_max = data->output_activation_max;
op_params.float_activation_max = data->output_activation_max_f32;
op_params.input1_offset = -data->input1_zero_point;
op_params.input2_offset = -data->input2_zero_point;
op_params.output_offset = data->output_zero_point;
op_params.output_multiplier = data->output_multiplier;
op_params.output_shift = data->output_shift;
if (output->type == kTfLiteInt8) {
if (need_broadcast) {
TF_LITE_MUL(reference_integer_ops, BroadcastMul4DSlow, int8_t);
} else {
TF_LITE_MUL(reference_integer_ops, Mul, int8_t);
}
} else if (output->type == kTfLiteUInt8) {
if (need_broadcast) {
TF_LITE_MUL(reference_ops, BroadcastMul4DSlow, uint8_t);
} else {
TF_LITE_MUL(reference_ops, Mul, uint8_t);
}
bool need_broadcast = reference_ops::ProcessBroadcastShapes(
tflite::micro::GetTensorShape(input1),
tflite::micro::GetTensorShape(input2), &op_params);
if (output->type == kTfLiteInt8) {
if (need_broadcast) {
reference_integer_ops::BroadcastMul4DSlow(
op_params, tflite::micro::GetTensorShape(input1),
tflite::micro::GetTensorData<int8_t>(input1),
tflite::micro::GetTensorShape(input2),
tflite::micro::GetTensorData<int8_t>(input2),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int8_t>(output));
} else {
reference_integer_ops::Mul(op_params,
tflite::micro::GetTensorShape(input1),
tflite::micro::GetTensorData<int8_t>(input1),
tflite::micro::GetTensorShape(input2),
tflite::micro::GetTensorData<int8_t>(input2),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int8_t>(output));
}
} else if (output->type == kTfLiteUInt8) {
if (need_broadcast) {
reference_integer_ops::BroadcastMul4DSlow(
op_params, tflite::micro::GetTensorShape(input1),
tflite::micro::GetTensorData<uint8_t>(input1),
tflite::micro::GetTensorShape(input2),
tflite::micro::GetTensorData<uint8_t>(input2),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<uint8_t>(output));
} else {
reference_integer_ops::Mul(op_params,
tflite::micro::GetTensorShape(input1),
tflite::micro::GetTensorData<uint8_t>(input1),
tflite::micro::GetTensorShape(input2),
tflite::micro::GetTensorData<uint8_t>(input2),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<uint8_t>(output));
}
#undef TF_LITE_MUL
}
}
void EvalFloat(TfLiteContext* context, TfLiteNode* node,
TfLiteMulParams* params, OpData* data,
const TfLiteTensor* input1, const TfLiteTensor* input2,
TfLiteTensor* output) {
float output_activation_min, output_activation_max;
CalculateActivationRange(params->activation, &output_activation_min,
&output_activation_max);
tflite::ArithmeticParams op_params;
SetActivationParams(output_activation_min, output_activation_max, &op_params);
TfLiteMulParams* params, const OpData* data,
const TfLiteEvalTensor* input1, const TfLiteEvalTensor* input2,
TfLiteEvalTensor* output) {
tflite::ArithmeticParams op_params = {};
op_params.float_activation_min = data->output_activation_min_f32;
op_params.float_activation_max = data->output_activation_max_f32;
bool need_broadcast = reference_ops::ProcessBroadcastShapes(
GetTensorShape(input1), GetTensorShape(input2), &op_params);
#define TF_LITE_MUL(opname) \
reference_ops::opname(op_params, GetTensorShape(input1), \
GetTensorData<float>(input1), GetTensorShape(input2), \
GetTensorData<float>(input2), GetTensorShape(output), \
GetTensorData<float>(output));
tflite::micro::GetTensorShape(input1),
tflite::micro::GetTensorShape(input2), &op_params);
if (need_broadcast) {
TF_LITE_MUL(BroadcastMul4DSlow);
reference_ops::BroadcastMul4DSlow(
op_params, tflite::micro::GetTensorShape(input1),
tflite::micro::GetTensorData<float>(input1),
tflite::micro::GetTensorShape(input2),
tflite::micro::GetTensorData<float>(input2),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output));
} else {
TF_LITE_MUL(Mul);
reference_ops::Mul(op_params, tflite::micro::GetTensorShape(input1),
tflite::micro::GetTensorData<float>(input1),
tflite::micro::GetTensorShape(input2),
tflite::micro::GetTensorData<float>(input2),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output));
}
#undef TF_LITE_MUL
}
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
return context->AllocatePersistentBuffer(context, sizeof(OpData));
}
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TFLITE_DCHECK(node->builtin_data != nullptr);
auto* params = reinterpret_cast<TfLiteMulParams*>(node->builtin_data);
TFLITE_DCHECK(node->user_data != nullptr);
OpData* data = static_cast<OpData*>(node->user_data);
return CalculateOpData(context, node, params, data);
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
TFLITE_DCHECK(node->builtin_data != nullptr);
auto* params = reinterpret_cast<TfLiteMulParams*>(node->builtin_data);
OpData data;
const TfLiteTensor* input1 = GetInput(context, node, kInput1Tensor);
const TfLiteTensor* input2 = GetInput(context, node, kInput2Tensor);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TFLITE_DCHECK(node->user_data != nullptr);
const OpData* data = static_cast<const OpData*>(node->user_data);
CalculateOpData(context, node, params, &data);
const TfLiteEvalTensor* input1 =
tflite::micro::GetEvalInput(context, node, kInput1Tensor);
const TfLiteEvalTensor* input2 =
tflite::micro::GetEvalInput(context, node, kInput2Tensor);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
switch (input1->type) {
case kTfLiteUInt8:
case kTfLiteInt8:
EvalQuantized(context, node, params, &data, input1, input2, output);
EvalQuantized(context, node, data, input1, input2, output);
break;
case kTfLiteFloat32:
EvalFloat(context, node, params, &data, input1, input2, output);
EvalFloat(context, node, params, data, input1, input2, output);
break;
default:
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
@@ -158,16 +220,15 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
}
} // namespace mul
TfLiteRegistration* Register_MUL() {
static TfLiteRegistration r = {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/nullptr,
/*invoke=*/mul::Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_MUL() {
return {/*init=*/mul::Init,
/*free=*/nullptr,
/*prepare=*/mul::Prepare,
/*invoke=*/mul::Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
} // namespace micro

View File

@@ -17,7 +17,7 @@ limitations under the License.
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
namespace tflite {
namespace ops {
@@ -28,14 +28,17 @@ constexpr int kInputTensor = 0;
constexpr int kOutputTensor = 0;
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
const TfLiteEvalTensor* input =
tflite::micro::GetEvalInput(context, node, kInputTensor);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
switch (input->type) {
// TODO(wangtz): handle for kTfLiteInt8
case kTfLiteFloat32:
reference_ops::Negate(GetTensorShape(input), GetTensorData<float>(input),
GetTensorShape(output),
GetTensorData<float>(output));
reference_ops::Negate(tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<float>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output));
break;
default:
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
@@ -47,16 +50,15 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
} // namespace neg
TfLiteRegistration* Register_NEG() {
static TfLiteRegistration r = {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/nullptr,
/*invoke=*/neg::Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_NEG() {
return {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/nullptr,
/*invoke=*/neg::Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
} // namespace micro

View File

@@ -16,7 +16,7 @@ limitations under the License.
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
namespace tflite {
namespace ops {
@@ -28,9 +28,11 @@ constexpr int kOutputTensor = 0;
template <typename T>
TfLiteStatus PackImpl(TfLiteContext* context, TfLiteNode* node,
TfLiteTensor* output, int values_count, int axis) {
TfLiteEvalTensor* output, int values_count, int axis) {
const TfLiteEvalTensor* input0 =
tflite::micro::GetEvalInput(context, node, 0);
const int dimensions = output->dims->size;
const TfLiteTensor* input0 = GetInput(context, node, 0);
const TfLiteIntArray* input_dims = input0->dims;
const TfLiteIntArray* output_dims = output->dims;
@@ -52,11 +54,11 @@ TfLiteStatus PackImpl(TfLiteContext* context, TfLiteNode* node,
}
TFLITE_DCHECK_EQ(input_size, copy_size * outer_size);
T* output_data = GetTensorData<T>(output);
T* output_data = tflite::micro::GetTensorData<T>(output);
for (int i = 0; i < values_count; ++i) {
const TfLiteTensor* t = GetInput(context, node, i);
const T* input_data = GetTensorData<T>(t);
const TfLiteEvalTensor* t = tflite::micro::GetEvalInput(context, node, i);
const T* input_data = tflite::micro::GetTensorData<T>(t);
for (int k = 0; k < outer_size; ++k) {
const T* input_ptr = input_data + copy_size * k;
int loc = k * values_count * copy_size + i * copy_size;
@@ -72,7 +74,8 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
const TfLitePackParams* data =
reinterpret_cast<TfLitePackParams*>(node->builtin_data);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
switch (output->type) {
case kTfLiteFloat32: {
@@ -108,16 +111,15 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
} // namespace
} // namespace pack
TfLiteRegistration* Register_PACK() {
static TfLiteRegistration r = {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/nullptr,
/*invoke=*/pack::Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_PACK() {
return {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/nullptr,
/*invoke=*/pack::Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
} // namespace micro

View File

@@ -16,189 +16,208 @@ limitations under the License.
#include <string.h>
#include "tensorflow/lite/kernels/internal/types.h"
#ifdef MEMORY_SANITIZER
#include <sanitizer/msan_interface.h>
#else
#define __msan_check_mem_is_initialized(ptr, size)
#endif
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/tensor.h"
#include "tensorflow/lite/kernels/internal/portable_tensor.h"
#include "tensorflow/lite/kernels/internal/types.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/kernels/op_macros.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
namespace tflite {
namespace ops {
namespace micro {
namespace pad {
namespace {
struct PadContext {
PadContext(TfLiteContext* context, TfLiteNode* node) {
input = GetInput(context, node, 0);
paddings = GetInput(context, node, 1);
constant_values = nullptr;
if (NumInputs(node) == 3) {
constant_values = GetOptionalInputTensor(context, node, 2);
} else {
constant_values = nullptr;
}
output = GetOutput(context, node, 0);
dims = NumDimensions(input);
resizing_category = ResizingCategory::kGenericResize;
const int paddings_total = GetTensorShape(paddings).FlatSize();
const int32* paddings_data = GetTensorData<int32>(paddings);
// Paddings will be a n,2 array, and we need to detect 4D arrays with the
// pattern { {0,0}, {a, b}, {c, d}, {0,0} }.
if (IsConstantTensor(paddings) && paddings_total == 8 &&
(paddings_data[0] == 0 && paddings_data[1] == 0) &&
(paddings_data[6] == 0 && paddings_data[7] == 0)) {
resizing_category = ResizingCategory::kImageStyle;
}
}
const TfLiteTensor* constant_values;
const TfLiteTensor* input;
const TfLiteTensor* paddings;
TfLiteTensor* output;
int dims;
ResizingCategory resizing_category;
struct OpData {
PadParams params;
int32_t output_zero_point;
};
} // namespace
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
return context->AllocatePersistentBuffer(context, sizeof(OpData));
}
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TFLITE_DCHECK(node->user_data != nullptr);
OpData* data = static_cast<OpData*>(node->user_data);
TF_LITE_ENSURE(context, NumInputs(node) == 2 || NumInputs(node) == 3);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
PadContext op_context(context, node);
TF_LITE_ENSURE_EQ(context, op_context.input->type, op_context.output->type);
if (op_context.constant_values != nullptr) {
TF_LITE_ENSURE_EQ(context, op_context.input->type,
op_context.constant_values->type);
const TfLiteTensor* input = GetInput(context, node, /*index=*/0);
TF_LITE_ENSURE(context, input != nullptr);
const TfLiteTensor* paddings = GetInput(context, node, /*index=*/1);
TF_LITE_ENSURE(context, paddings != nullptr);
const TfLiteTensor* constant_values =
NumInputs(node) == 3 ? GetInput(context, node, /*index=*/2) : nullptr;
TfLiteTensor* output = GetOutput(context, node, /*index=*/0);
TF_LITE_ENSURE(context, output != nullptr);
TF_LITE_ENSURE_EQ(context, input->type, output->type);
// Current implementations rely on the inputs being <= 4D.
TF_LITE_ENSURE(context, NumDimensions(input) <=
reference_ops::PadKernelMaxDimensionCount());
if (constant_values != nullptr) {
TF_LITE_ENSURE_EQ(context, input->type, constant_values->type);
// Ensure that constant_values is a scalar.
TF_LITE_ENSURE_EQ(context, NumElements(constant_values), 1);
}
// There must be a pair of paddings for each output dimension.
TF_LITE_ENSURE_EQ(context, GetTensorShape(op_context.paddings).FlatSize(),
op_context.output->dims->size * 2);
TF_LITE_ENSURE_EQ(context, GetTensorShape(paddings).FlatSize(),
output->dims->size * 2);
// On Micro, outputs must be properly sized by the converter.
const int32* paddings_data = GetTensorData<int32>(op_context.paddings);
for (int i = 0; i < op_context.output->dims->size; i++) {
int output_dim = op_context.output->dims->data[i];
int expected_dim = op_context.input->dims->data[i] + paddings_data[i * 2] +
paddings_data[i * 2 + 1];
// NOTE: This data is only available because the paddings buffer is stored in
// the flatbuffer:
TF_LITE_ENSURE(context, IsConstantTensor(paddings));
const int32_t* paddings_data = GetTensorData<int32_t>(paddings);
for (int i = 0; i < output->dims->size; i++) {
int output_dim = output->dims->data[i];
int expected_dim =
input->dims->data[i] + paddings_data[i * 2] + paddings_data[i * 2 + 1];
TF_LITE_ENSURE_EQ(context, output_dim, expected_dim);
}
// Current implementations rely on the inputs being <= 4D.
TF_LITE_ENSURE(
context, op_context.dims <= reference_ops::PadKernelMaxDimensionCount());
TF_LITE_ENSURE(context, IsConstantTensor(op_context.paddings));
// Calculate OpData:
data->params.resizing_category = ResizingCategory::kGenericResize;
const int paddings_total = GetTensorShape(paddings).FlatSize();
if (paddings_total == 8 && (paddings_data[0] == 0 && paddings_data[1] == 0) &&
(paddings_data[6] == 0 && paddings_data[7] == 0)) {
data->params.resizing_category = ResizingCategory::kImageStyle;
}
const int num_input_dimensions = NumDimensions(input);
data->params.left_padding_count = num_input_dimensions;
data->params.right_padding_count = num_input_dimensions;
for (int idx = num_input_dimensions - 1; idx >= 0; --idx) {
data->params.left_padding[idx] = paddings_data[idx * 2];
data->params.right_padding[idx] = paddings_data[idx * 2 + 1];
}
if (input->type == kTfLiteInt8 || input->type == kTfLiteUInt8) {
if (constant_values == nullptr) {
// Quantized Pad requires that 0 is represented in the quantized
// range.
if (input->type == kTfLiteUInt8) {
TF_LITE_ENSURE(context, output->params.zero_point >=
std::numeric_limits<uint8_t>::min());
TF_LITE_ENSURE(context, output->params.zero_point <=
std::numeric_limits<uint8_t>::max());
} else {
TF_LITE_ENSURE(context, output->params.zero_point >=
std::numeric_limits<int8_t>::min());
TF_LITE_ENSURE(context, output->params.zero_point <=
std::numeric_limits<int8_t>::max());
}
} else {
// Quantized Pad requires that 'constant_values' is represented in the
// same quantized range as the input and output tensors.
TF_LITE_ENSURE_EQ(context, output->params.zero_point,
constant_values->params.zero_point);
TF_LITE_ENSURE_EQ(context, static_cast<double>(output->params.scale),
static_cast<double>(constant_values->params.scale));
}
data->output_zero_point = output->params.zero_point;
}
return kTfLiteOk;
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
PadContext op_context(context, node);
TFLITE_DCHECK(node->user_data != nullptr);
const OpData* data = static_cast<const OpData*>(node->user_data);
if (op_context.constant_values != nullptr) {
// Ensure that constant_values is a scalar.
TF_LITE_ENSURE_EQ(context, NumElements(op_context.constant_values), 1);
}
const TfLiteEvalTensor* input =
tflite::micro::GetEvalInput(context, node, /*index=*/0);
const TfLiteEvalTensor* constant_values =
NumInputs(node) == 3
? tflite::micro::GetEvalInput(context, node, /*index=*/2)
: nullptr;
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, /*index=*/0);
// Create before and after padding arrays that are accepted by the kernel.
const int32* paddings_data = GetTensorData<int32>(op_context.paddings);
tflite::PadParams op_params;
memset(&op_params, 0, sizeof(PadParams));
op_params.left_padding_count = op_context.dims;
op_params.right_padding_count = op_context.dims;
for (int idx = op_context.dims - 1; idx >= 0; --idx) {
op_params.left_padding[idx] = paddings_data[idx * 2];
op_params.right_padding[idx] = paddings_data[idx * 2 + 1];
}
#define TF_LITE_PAD(type, op_name, scalar, pad_value) \
const scalar pad_value_copy = pad_value; \
\
type::op_name(op_params, GetTensorShape(op_context.input), \
GetTensorData<scalar>(op_context.input), &pad_value_copy, \
GetTensorShape(op_context.output), \
GetTensorData<scalar>(op_context.output))
switch (op_context.input->type) {
switch (input->type) {
case kTfLiteFloat32: {
float pad_value = op_context.constant_values == nullptr
? 0.f
: *GetTensorData<float>(op_context.constant_values);
if (op_context.resizing_category == ResizingCategory::kImageStyle) {
TF_LITE_PAD(reference_ops, PadImageStyle, float, pad_value);
float pad_value =
constant_values == nullptr
? 0.f
: *tflite::micro::GetTensorData<float>(constant_values);
if (data->params.resizing_category == ResizingCategory::kImageStyle) {
reference_ops::PadImageStyle(
data->params, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<float>(input), &pad_value,
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output));
} else {
TF_LITE_PAD(reference_ops, Pad, float, pad_value);
reference_ops::Pad(data->params, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<float>(input),
&pad_value, tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output));
}
} break;
case kTfLiteUInt8: {
uint8_t pad_value;
if (op_context.constant_values == nullptr) {
// Quantized Pad requires that 0 is represented in the quantized
// range.
TF_LITE_ENSURE(context, op_context.output->params.zero_point >=
std::numeric_limits<uint8_t>::min());
TF_LITE_ENSURE(context, op_context.output->params.zero_point <=
std::numeric_limits<uint8_t>::max());
pad_value = static_cast<uint8_t>(op_context.output->params.zero_point);
if (constant_values == nullptr) {
pad_value = static_cast<uint8_t>(data->output_zero_point);
} else {
// Quantized Pad requires that 'constant_values' is represented in the
// same quantized range as the input and output tensors.
TF_LITE_ENSURE_EQ(context, op_context.output->params.zero_point,
op_context.constant_values->params.zero_point);
TF_LITE_ENSURE_EQ(
context, static_cast<double>(op_context.output->params.scale),
static_cast<double>(op_context.constant_values->params.scale));
pad_value = *GetTensorData<uint8_t>(op_context.constant_values);
pad_value = *tflite::micro::GetTensorData<uint8_t>(constant_values);
}
if (op_context.resizing_category == ResizingCategory::kImageStyle) {
TF_LITE_PAD(reference_ops, PadImageStyle, uint8_t, pad_value);
if (data->params.resizing_category == ResizingCategory::kImageStyle) {
reference_ops::PadImageStyle(
data->params, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<uint8_t>(input), &pad_value,
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<uint8_t>(output));
} else {
TF_LITE_PAD(reference_ops, Pad, uint8_t, pad_value);
reference_ops::Pad(data->params, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<uint8_t>(input),
&pad_value, tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<uint8_t>(output));
}
} break;
case kTfLiteInt8: {
int8_t pad_value;
if (op_context.constant_values == nullptr) {
// Quantized Pad requires that 0 is represented in the quantized
// range.
TF_LITE_ENSURE(context, op_context.output->params.zero_point >=
std::numeric_limits<int8_t>::min());
TF_LITE_ENSURE(context, op_context.output->params.zero_point <=
std::numeric_limits<int8_t>::max());
pad_value = static_cast<int8_t>(op_context.output->params.zero_point);
if (constant_values == nullptr) {
pad_value = static_cast<uint8_t>(data->output_zero_point);
} else {
// Quantized Pad requires that 'constant_values' is represented in the
// same quantized range as the input and output tensors.
TF_LITE_ENSURE_EQ(context, op_context.output->params.zero_point,
op_context.constant_values->params.zero_point);
TF_LITE_ENSURE(context, op_context.output->params.scale ==
op_context.constant_values->params.scale);
pad_value = *GetTensorData<int8_t>(op_context.constant_values);
pad_value = *tflite::micro::GetTensorData<int8_t>(constant_values);
}
if (op_context.resizing_category == ResizingCategory::kImageStyle) {
TF_LITE_PAD(reference_ops, PadImageStyle, int8_t, pad_value);
if (data->params.resizing_category == ResizingCategory::kImageStyle) {
reference_ops::PadImageStyle(
data->params, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<int8_t>(input), &pad_value,
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int8_t>(output));
} else {
TF_LITE_PAD(reference_ops, Pad, int8_t, pad_value);
reference_ops::Pad(data->params, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<int8_t>(input),
&pad_value, tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int8_t>(output));
}
} break;
case kTfLiteInt32: {
int32_t pad_value =
op_context.constant_values == nullptr
constant_values == nullptr
? 0
: *GetTensorData<int32_t>(op_context.constant_values);
TF_LITE_PAD(reference_ops, Pad, int32_t, pad_value);
: *tflite::micro::GetTensorData<int32_t>(constant_values);
reference_ops::Pad(data->params, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<int32_t>(input),
&pad_value, tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int32_t>(output));
} break;
default:
TF_LITE_KERNEL_LOG(context, "Type %s not currently supported by Pad.",
TfLiteTypeGetName(op_context.input->type));
TfLiteTypeGetName(input->type));
return kTfLiteError;
}
#undef TF_LITE_PAD
@@ -207,29 +226,27 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
} // namespace pad
TfLiteRegistration* Register_PAD() {
static TfLiteRegistration r = {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/pad::Prepare,
/*invoke=*/pad::Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_PAD() {
return {/*init=*/pad::Init,
/*free=*/nullptr,
/*prepare=*/pad::Prepare,
/*invoke=*/pad::Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
// Also register Pad as PadV2.
TfLiteRegistration* Register_PADV2() {
static TfLiteRegistration r = {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/pad::Prepare,
/*invoke=*/pad::Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_PADV2() {
return {/*init=*/pad::Init,
/*free=*/nullptr,
/*prepare=*/pad::Prepare,
/*invoke=*/pad::Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
} // namespace micro

View File

@@ -19,6 +19,7 @@ limitations under the License.
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/kernels/padding.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
namespace tflite {
namespace ops {
@@ -32,6 +33,10 @@ constexpr int kOutputTensor = 0;
struct OpData {
TfLitePaddingValues padding;
int32_t activation_min;
int32_t activation_max;
float activation_min_f32;
float activation_max_f32;
};
TfLiteStatus CalculateOpData(const TfLiteContext* context,
@@ -55,11 +60,7 @@ TfLiteStatus CalculateOpData(const TfLiteContext* context,
void AverageEvalFloat(const TfLiteContext* context, const TfLiteNode* node,
const TfLitePoolParams* params, const OpData* data,
const TfLiteTensor* input, TfLiteTensor* output) {
float activation_min, activation_max;
CalculateActivationRange(params->activation, &activation_min,
&activation_max);
const TfLiteEvalTensor* input, TfLiteEvalTensor* output) {
PoolParams op_params;
op_params.stride_height = params->stride_height;
op_params.stride_width = params->stride_width;
@@ -67,20 +68,19 @@ void AverageEvalFloat(const TfLiteContext* context, const TfLiteNode* node,
op_params.filter_width = params->filter_width;
op_params.padding_values.height = data->padding.height;
op_params.padding_values.width = data->padding.width;
op_params.float_activation_min = activation_min;
op_params.float_activation_max = activation_max;
reference_ops::AveragePool(
op_params, GetTensorShape(input), GetTensorData<float>(input),
GetTensorShape(output), GetTensorData<float>(output));
op_params.float_activation_min = data->activation_min_f32;
op_params.float_activation_max = data->activation_max_f32;
reference_ops::AveragePool(op_params, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<float>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output));
}
void AverageEvalQuantized(TfLiteContext* context, const TfLiteNode* node,
const TfLitePoolParams* params, const OpData* data,
const TfLiteTensor* input, TfLiteTensor* output) {
const TfLiteEvalTensor* input,
TfLiteEvalTensor* output) {
TFLITE_DCHECK(input->type == kTfLiteUInt8 || input->type == kTfLiteInt8);
int32_t activation_min, activation_max;
(void)CalculateActivationRangeQuantized(context, params->activation, output,
&activation_min, &activation_max);
PoolParams op_params;
op_params.stride_height = params->stride_height;
@@ -89,27 +89,26 @@ void AverageEvalQuantized(TfLiteContext* context, const TfLiteNode* node,
op_params.filter_width = params->filter_width;
op_params.padding_values.height = data->padding.height;
op_params.padding_values.width = data->padding.width;
op_params.quantized_activation_min = activation_min;
op_params.quantized_activation_max = activation_max;
op_params.quantized_activation_min = data->activation_min;
op_params.quantized_activation_max = data->activation_max;
if (input->type == kTfLiteUInt8) {
reference_ops::AveragePool(
op_params, GetTensorShape(input), GetTensorData<uint8_t>(input),
GetTensorShape(output), GetTensorData<uint8_t>(output));
reference_ops::AveragePool(op_params, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<uint8_t>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<uint8_t>(output));
} else {
reference_integer_ops::AveragePool(
op_params, GetTensorShape(input), GetTensorData<int8_t>(input),
GetTensorShape(output), GetTensorData<int8_t>(output));
op_params, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<int8_t>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int8_t>(output));
}
}
void MaxEvalFloat(TfLiteContext* context, TfLiteNode* node,
TfLitePoolParams* params, OpData* data,
const TfLiteTensor* input, TfLiteTensor* output) {
float activation_min, activation_max;
CalculateActivationRange(params->activation, &activation_min,
&activation_max);
TfLitePoolParams* params, const OpData* data,
const TfLiteEvalTensor* input, TfLiteEvalTensor* output) {
tflite::PoolParams op_params;
op_params.stride_height = params->stride_height;
op_params.stride_width = params->stride_width;
@@ -117,22 +116,17 @@ void MaxEvalFloat(TfLiteContext* context, TfLiteNode* node,
op_params.filter_width = params->filter_width;
op_params.padding_values.height = data->padding.height;
op_params.padding_values.width = data->padding.width;
op_params.float_activation_min = activation_min;
op_params.float_activation_max = activation_max;
reference_ops::MaxPool(op_params, GetTensorShape(input),
GetTensorData<float>(input), GetTensorShape(output),
GetTensorData<float>(output));
op_params.float_activation_min = data->activation_min_f32;
op_params.float_activation_max = data->activation_max_f32;
reference_ops::MaxPool(op_params, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<float>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output));
}
void MaxEvalQuantized(TfLiteContext* context, TfLiteNode* node,
TfLitePoolParams* params, OpData* data,
const TfLiteTensor* input, TfLiteTensor* output) {
TFLITE_DCHECK(input->type == kTfLiteUInt8 || input->type == kTfLiteInt8);
int32_t activation_min, activation_max;
(void)CalculateActivationRangeQuantized(context, params->activation, output,
&activation_min, &activation_max);
TfLitePoolParams* params, const OpData* data,
const TfLiteEvalTensor* input, TfLiteEvalTensor* output) {
tflite::PoolParams op_params;
op_params.stride_height = params->stride_height;
op_params.stride_width = params->stride_width;
@@ -140,39 +134,44 @@ void MaxEvalQuantized(TfLiteContext* context, TfLiteNode* node,
op_params.filter_width = params->filter_width;
op_params.padding_values.height = data->padding.height;
op_params.padding_values.width = data->padding.width;
op_params.quantized_activation_min = activation_min;
op_params.quantized_activation_max = activation_max;
op_params.quantized_activation_min = data->activation_min;
op_params.quantized_activation_max = data->activation_max;
if (input->type == kTfLiteUInt8) {
reference_ops::MaxPool(
op_params, GetTensorShape(input), GetTensorData<uint8_t>(input),
GetTensorShape(output), GetTensorData<uint8_t>(output));
reference_ops::MaxPool(op_params, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<uint8_t>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<uint8_t>(output));
} else {
reference_integer_ops::MaxPool(
op_params, GetTensorShape(input), GetTensorData<int8_t>(input),
GetTensorShape(output), GetTensorData<int8_t>(output));
op_params, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<int8_t>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int8_t>(output));
}
}
} // namespace
TfLiteStatus AverageEval(TfLiteContext* context, TfLiteNode* node) {
TFLITE_DCHECK(node->builtin_data != nullptr);
auto* params = reinterpret_cast<TfLitePoolParams*>(node->builtin_data);
OpData data;
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TFLITE_DCHECK(node->user_data != nullptr);
const OpData* data = static_cast<const OpData*>(node->user_data);
TF_LITE_ENSURE_STATUS(CalculateOpData(context, params, input, output, &data));
const TfLiteEvalTensor* input =
tflite::micro::GetEvalInput(context, node, kInputTensor);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
// Inputs and outputs share the same type, guaranteed by the converter.
switch (input->type) {
case kTfLiteFloat32:
AverageEvalFloat(context, node, params, &data, input, output);
AverageEvalFloat(context, node, params, data, input, output);
break;
case kTfLiteUInt8:
case kTfLiteInt8:
AverageEvalQuantized(context, node, params, &data, input, output);
AverageEvalQuantized(context, node, params, data, input, output);
break;
default:
TF_LITE_KERNEL_LOG(context, "Input type %s is not currently supported",
@@ -183,21 +182,24 @@ TfLiteStatus AverageEval(TfLiteContext* context, TfLiteNode* node) {
}
TfLiteStatus MaxEval(TfLiteContext* context, TfLiteNode* node) {
TFLITE_DCHECK(node->builtin_data != nullptr);
auto* params = reinterpret_cast<TfLitePoolParams*>(node->builtin_data);
OpData data;
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TFLITE_DCHECK(node->user_data != nullptr);
const OpData* data = static_cast<const OpData*>(node->user_data);
TF_LITE_ENSURE_STATUS(CalculateOpData(context, params, input, output, &data));
const TfLiteEvalTensor* input =
tflite::micro::GetEvalInput(context, node, kInputTensor);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
switch (input->type) {
case kTfLiteFloat32:
MaxEvalFloat(context, node, params, &data, input, output);
MaxEvalFloat(context, node, params, data, input, output);
break;
case kTfLiteUInt8:
case kTfLiteInt8:
MaxEvalQuantized(context, node, params, &data, input, output);
MaxEvalQuantized(context, node, params, data, input, output);
break;
default:
TF_LITE_KERNEL_LOG(context, "Type %s not currently supported.",
@@ -207,30 +209,59 @@ TfLiteStatus MaxEval(TfLiteContext* context, TfLiteNode* node) {
return kTfLiteOk;
}
} // namespace pooling
TfLiteRegistration* Register_AVERAGE_POOL_2D() {
static TfLiteRegistration r = {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/nullptr,
/*invoke=*/pooling::AverageEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
return context->AllocatePersistentBuffer(context, sizeof(OpData));
}
TfLiteRegistration* Register_MAX_POOL_2D() {
static TfLiteRegistration r = {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/nullptr,
/*invoke=*/pooling::MaxEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TFLITE_DCHECK(node->builtin_data != nullptr);
auto* params = reinterpret_cast<TfLitePoolParams*>(node->builtin_data);
TFLITE_DCHECK(node->user_data != nullptr);
OpData* data = static_cast<OpData*>(node->user_data);
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TF_LITE_ENSURE(context, input != nullptr);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TF_LITE_ENSURE(context, output != nullptr);
TF_LITE_ENSURE_STATUS(CalculateOpData(context, params, input, output, data));
if (input->type == kTfLiteFloat32) {
CalculateActivationRange(params->activation, &data->activation_min_f32,
&data->activation_max_f32);
} else if (input->type == kTfLiteInt8 || input->type == kTfLiteUInt8) {
CalculateActivationRangeQuantized(context, params->activation, output,
&data->activation_min,
&data->activation_max);
}
return kTfLiteOk;
}
} // namespace pooling
TfLiteRegistration Register_AVERAGE_POOL_2D() {
return {/*init=*/pooling::Init,
/*free=*/nullptr,
/*prepare=*/pooling::Prepare,
/*invoke=*/pooling::AverageEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
TfLiteRegistration Register_MAX_POOL_2D() {
return {/*init=*/pooling::Init,
/*free=*/nullptr,
/*prepare=*/pooling::Prepare,
/*invoke=*/pooling::MaxEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
} // namespace micro

View File

@@ -15,20 +15,45 @@ limitations under the License.
#include "tensorflow/lite/kernels/internal/reference/prelu.h"
#include <cstdint>
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/quantization_util.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
namespace tflite {
namespace ops {
namespace micro {
namespace activations {
namespace {
TfLiteStatus CalculatePreluParams(const TfLiteTensor* input,
const TfLiteTensor* alpha,
TfLiteTensor* output, PreluParams* params) {
if (output->type == kTfLiteInt8 || output->type == kTfLiteUInt8 ||
output->type == kTfLiteInt16) {
double real_multiplier_1 = static_cast<double>(input->params.scale) /
static_cast<double>(output->params.scale);
double real_multiplier_2 = static_cast<double>(input->params.scale) *
static_cast<double>(alpha->params.scale) /
static_cast<double>(output->params.scale);
QuantizeMultiplier(real_multiplier_1, &params->output_multiplier_1,
&params->output_shift_1);
QuantizeMultiplier(real_multiplier_2, &params->output_multiplier_2,
&params->output_shift_2);
params->input_offset = -input->params.zero_point;
params->alpha_offset = -alpha->params.zero_point;
params->output_offset = output->params.zero_point;
}
TfLiteStatus PreluPrepare(TfLiteContext* context, TfLiteNode* node) {
return kTfLiteOk;
}
} // namespace
inline void BroadcastPrelu4DSlowFloat(
const RuntimeShape& unextended_input1_shape, const float* input1_data,
const RuntimeShape& unextended_input2_shape, const float* input2_data,
@@ -60,43 +85,67 @@ inline void BroadcastPrelu4DSlowFloat(
}
}
TfLiteStatus PreluEval(TfLiteContext* context, TfLiteNode* node) {
void* PreluInit(TfLiteContext* context, const char* buffer, size_t length) {
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
return context->AllocatePersistentBuffer(context, sizeof(PreluParams));
}
TfLiteStatus PreluPrepare(TfLiteContext* context, TfLiteNode* node) {
TFLITE_DCHECK(node->user_data != nullptr);
PreluParams* params = static_cast<PreluParams*>(node->user_data);
const TfLiteTensor* input = GetInput(context, node, 0);
TF_LITE_ENSURE(context, input != nullptr);
const TfLiteTensor* alpha = GetInput(context, node, 1);
TF_LITE_ENSURE(context, alpha != nullptr);
TfLiteTensor* output = GetOutput(context, node, 0);
int32_t output_multiplier = 0;
int output_shift = 0;
if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt16) {
double real_multiplier = static_cast<double>(input->params.scale) *
static_cast<double>(alpha->params.scale) /
static_cast<double>(output->params.scale);
QuantizeMultiplierSmallerThanOneExp(real_multiplier, &output_multiplier,
&output_shift);
}
TF_LITE_ENSURE(context, output != nullptr);
return CalculatePreluParams(input, alpha, output, params);
}
TfLiteStatus PreluEval(TfLiteContext* context, TfLiteNode* node) {
TFLITE_DCHECK(node->user_data != nullptr);
const PreluParams& params =
*(static_cast<const PreluParams*>(node->user_data));
const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0);
const TfLiteEvalTensor* alpha = tflite::micro::GetEvalInput(context, node, 1);
TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0);
switch (input->type) {
case kTfLiteFloat32: {
BroadcastPrelu4DSlowFloat(
GetTensorShape(input), GetTensorData<float>(input),
GetTensorShape(alpha), GetTensorData<float>(alpha),
GetTensorShape(output), GetTensorData<float>(output));
BroadcastPrelu4DSlowFloat(tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<float>(input),
tflite::micro::GetTensorShape(alpha),
tflite::micro::GetTensorData<float>(alpha),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output));
return kTfLiteOk;
} break;
case kTfLiteUInt8: {
PreluParams op_params;
op_params.input_offset = -input->params.zero_point;
op_params.alpha_offset = -alpha->params.zero_point;
op_params.output_offset = output->params.zero_point;
op_params.output_multiplier = output_multiplier;
op_params.output_shift = output_shift;
reference_ops::BroadcastPrelu4DSlow(
op_params, GetTensorShape(input), GetTensorData<uint8_t>(input),
GetTensorShape(alpha), GetTensorData<uint8_t>(alpha),
GetTensorShape(output), GetTensorData<uint8_t>(output));
params, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<uint8_t>(input),
tflite::micro::GetTensorShape(alpha),
tflite::micro::GetTensorData<uint8_t>(alpha),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<uint8_t>(output));
return kTfLiteOk;
} break;
case kTfLiteInt8: {
reference_ops::BroadcastPrelu4DSlow(
params, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<int8_t>(input),
tflite::micro::GetTensorShape(alpha),
tflite::micro::GetTensorData<int8_t>(alpha),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int8_t>(output));
return kTfLiteOk;
} break;
default:
TF_LITE_KERNEL_LOG(
context, "Only float32 and uint8 are supported currently, got %d.",
context, "Only float32 and uint8_t are supported currently, got %d.",
TfLiteTypeGetName(input->type));
return kTfLiteError;
}
@@ -104,16 +153,15 @@ TfLiteStatus PreluEval(TfLiteContext* context, TfLiteNode* node) {
} // namespace activations
TfLiteRegistration* Register_PRELU() {
static TfLiteRegistration r = {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/activations::PreluPrepare,
/*invoke=*/activations::PreluEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_PRELU() {
return {/*init=*/activations::PreluInit,
/*free=*/nullptr,
/*prepare=*/activations::PreluPrepare,
/*invoke=*/activations::PreluEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
} // namespace micro

View File

@@ -19,19 +19,38 @@ limitations under the License.
#include "tensorflow/lite/kernels/internal/reference/requantize.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
#include "tensorflow/lite/micro/micro_utils.h"
namespace tflite {
namespace ops {
namespace micro {
namespace quantize {
namespace {
struct OpData {
tflite::QuantizationParams quantization_params;
// The scaling factor from input to output (aka the 'real multiplier') can
// be represented as a fixed point multiplier plus a left shift.
int32_t output_multiplier;
int output_shift;
int32_t input_zero_point;
};
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
return context->AllocatePersistentBuffer(context, sizeof(OpData));
}
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TFLITE_DCHECK(node->user_data != nullptr);
OpData* data = static_cast<OpData*>(node->user_data);
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
const TfLiteTensor* input = GetInput(context, node, 0);
TF_LITE_ENSURE(context, input != nullptr);
TfLiteTensor* output = GetOutput(context, node, 0);
TF_LITE_ENSURE(context, output != nullptr);
// TODO(b/128934713): Add support for fixed-point per-channel quantization.
// Currently this only support affine per-layer quantization.
@@ -43,34 +62,61 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE(context, affine_quantization->scale);
TF_LITE_ENSURE(context, affine_quantization->scale->size == 1);
TF_LITE_ENSURE(context,
input->type == kTfLiteFloat32 || input->type == kTfLiteInt16);
TF_LITE_ENSURE(context,
output->type == kTfLiteUInt8 || output->type == kTfLiteInt8);
TF_LITE_ENSURE(context, input->type == kTfLiteFloat32 ||
input->type == kTfLiteInt16 ||
input->type == kTfLiteInt8);
TF_LITE_ENSURE(context, output->type == kTfLiteUInt8 ||
output->type == kTfLiteInt8 ||
output->type == kTfLiteInt16 ||
output->type == kTfLiteInt32);
if (((input->type == kTfLiteInt16 || input->type == kTfLiteInt8) &&
output->type == kTfLiteInt8) ||
(input->type == kTfLiteInt16 && output->type == kTfLiteInt16)) {
double effective_scale = static_cast<double>(input->params.scale) /
static_cast<double>(output->params.scale);
QuantizeMultiplier(effective_scale, &data->output_multiplier,
&data->output_shift);
}
data->quantization_params.zero_point = output->params.zero_point;
data->quantization_params.scale = static_cast<double>(output->params.scale);
data->input_zero_point = input->params.zero_point;
return kTfLiteOk;
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input = GetInput(context, node, 0);
TfLiteTensor* output = GetOutput(context, node, 0);
TFLITE_DCHECK(node->user_data != nullptr);
OpData* data = static_cast<OpData*>(node->user_data);
tflite::QuantizationParams op_params;
op_params.zero_point = output->params.zero_point;
op_params.scale = static_cast<double>(output->params.scale);
const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0);
TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0);
if (input->type == kTfLiteFloat32) {
switch (output->type) {
case kTfLiteInt8:
reference_ops::AffineQuantize(
op_params, GetTensorShape(input), GetTensorData<float>(input),
GetTensorShape(output), GetTensorData<int8_t>(output));
data->quantization_params, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<float>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int8_t>(output));
break;
case kTfLiteUInt8:
reference_ops::AffineQuantize(
op_params, GetTensorShape(input), GetTensorData<float>(input),
GetTensorShape(output), GetTensorData<uint8_t>(output));
data->quantization_params, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<float>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<uint8_t>(output));
break;
case kTfLiteInt16:
reference_ops::AffineQuantize(
data->quantization_params, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<float>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int16_t>(output));
return kTfLiteOk;
default:
TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
TfLiteTypeGetName(input->type),
@@ -79,17 +125,45 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
}
} else if (input->type == kTfLiteInt16) {
size_t size = ElementCount(*input->dims);
int32_t output_multiplier;
int output_shift;
double effective_scale =
static_cast<double>(input->params.scale / output->params.scale);
switch (output->type) {
case kTfLiteInt8:
QuantizeMultiplier(effective_scale, &output_multiplier, &output_shift);
reference_ops::Requantize(tflite::micro::GetTensorData<int16_t>(input),
size, data->output_multiplier,
data->output_shift, data->input_zero_point,
data->quantization_params.zero_point,
tflite::micro::GetTensorData<int8_t>(output));
break;
case kTfLiteInt16:
reference_ops::Requantize(
GetTensorData<int16_t>(input), size, output_multiplier,
output_shift, input->params.zero_point, output->params.zero_point,
GetTensorData<int8_t>(output));
tflite::micro::GetTensorData<int16_t>(input), size,
data->output_multiplier, data->output_shift, data->input_zero_point,
data->quantization_params.zero_point,
tflite::micro::GetTensorData<int16_t>(output));
return kTfLiteOk;
case kTfLiteInt32:
reference_ops::Requantize(
tflite::micro::GetTensorData<int16_t>(input), size,
data->output_multiplier, data->output_shift, data->input_zero_point,
data->quantization_params.zero_point,
tflite::micro::GetTensorData<int32_t>(output));
return kTfLiteOk;
default:
TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
TfLiteTypeGetName(input->type),
TfLiteTypeGetName(output->type));
return kTfLiteError;
}
} else if (input->type == kTfLiteInt8) {
// Int8 to Int8 requantization, required if the input and output tensors
// have different scales and/or zero points.
size_t size = ElementCount(*input->dims);
switch (output->type) {
case kTfLiteInt8:
reference_ops::Requantize(tflite::micro::GetTensorData<int8_t>(input),
size, data->output_multiplier,
data->output_shift, data->input_zero_point,
data->quantization_params.zero_point,
tflite::micro::GetTensorData<int8_t>(output));
break;
default:
TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
@@ -107,23 +181,17 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
return kTfLiteOk;
}
} // namespace quantize
} // namespace
// This Op (QUANTIZE) quantizes the input and produces quantized output.
// AffineQuantize takes scale and zero point and quantizes the float value to
// quantized output, in int8 or uint8 format.
TfLiteRegistration* Register_QUANTIZE() {
static TfLiteRegistration r = {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/quantize::Prepare,
/*invoke=*/quantize::Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_QUANTIZE() {
return {/*init=*/Init,
/*free=*/nullptr,
/*prepare=*/Prepare,
/*invoke=*/Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
} // namespace micro
} // namespace ops
} // namespace tflite

View File

@@ -18,9 +18,12 @@ limitations under the License.
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/quantization_util.h"
#include "tensorflow/lite/kernels/internal/reference/integer_ops/mean.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/internal/types.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
#include "tensorflow/lite/micro/micro_utils.h"
namespace tflite {
namespace ops {
@@ -30,10 +33,27 @@ namespace reduce {
constexpr int kMaxNumberOfAxis = 4;
constexpr int kMaxNumberOfReducedAxis = 2;
struct OpData {
int32_t multiplier;
int shift;
int temp_buffer_idx;
int resolved_axis_idx;
int input_zp;
float input_scale;
int output_zp;
float output_scale;
int num_output_elements;
};
void* InitReduce(TfLiteContext* context, const char* buffer, size_t length) {
return context->AllocatePersistentBuffer(context, sizeof(OpData));
}
TfLiteStatus PrepareSimple(TfLiteContext* context, TfLiteNode* node) {
// Inputs Tensor (dtype depends on quantization):
// [0] = Input
// [1] = Axis
const TfLiteTensor* input = GetInput(context, node, 0);
// Outputs Tensor (dtype depends on quantization):
// [0] = Output
@@ -44,13 +64,63 @@ TfLiteStatus PrepareSimple(TfLiteContext* context, TfLiteNode* node) {
// Validate axis type
const TfLiteTensor* axis = GetInput(context, node, 1);
TF_LITE_ENSURE(context, axis != nullptr);
TF_LITE_ENSURE_TYPES_EQ(context, axis->type, kTfLiteInt32);
if (input->type == kTfLiteInt8) {
OpData* data = static_cast<OpData*>(node->user_data);
const TfLiteTensor* output = GetOutput(context, node, 0);
const double real_multiplier = static_cast<double>(input->params.scale) /
static_cast<double>(output->params.scale);
QuantizeMultiplier(real_multiplier, &data->multiplier, &data->shift);
}
return kTfLiteOk;
}
TfLiteStatus PrepareMax(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE_OK(context, PrepareSimple(context, node));
OpData* op_data = static_cast<OpData*>(node->user_data);
const TfLiteTensor* input = GetInput(context, node, 0);
const TfLiteTensor* output = GetOutput(context, node, 0);
const TfLiteTensor* axis = GetInput(context, node, 1);
op_data->input_scale = input->params.scale;
op_data->output_scale = output->params.scale;
op_data->num_output_elements = NumElements(output);
context->RequestScratchBufferInArena(context, sizeof(int) * input->dims->size,
&op_data->temp_buffer_idx);
context->RequestScratchBufferInArena(
context, sizeof(int) * static_cast<int>(ElementCount(*axis->dims)),
&op_data->resolved_axis_idx);
return kTfLiteOk;
}
TfLiteStatus PrepareMeanOrSum(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input = GetInput(context, node, 0);
OpData* op_data = reinterpret_cast<OpData*>(node->user_data);
const TfLiteTensor* output = GetOutput(context, node, 0);
if (input->type == kTfLiteInt8) {
const double real_multiplier = static_cast<double>(input->params.scale) /
static_cast<double>(output->params.scale);
QuantizeMultiplier(real_multiplier, &op_data->multiplier, &op_data->shift);
}
int output_size = NumElements(output);
if (input->type == kTfLiteInt8 || input->type == kTfLiteUInt8) {
context->RequestScratchBufferInArena(context, output_size * sizeof(int32_t),
&op_data->temp_buffer_idx);
op_data->input_zp = input->params.zero_point;
op_data->input_scale = input->params.scale;
op_data->output_zp = output->params.zero_point;
op_data->output_scale = output->params.scale;
}
TF_LITE_ENSURE_OK(context, PrepareSimple(context, node));
// TODO(b/144955155): Support uint8(b/144955155) and int8(b/144955018)
// TODO(b/144955155): Support uint8_t(b/144955155) and int8_t(b/144955018)
return kTfLiteOk;
}
@@ -58,7 +128,7 @@ void ResolveAxis(const int* axis_data, int axis_count,
tflite::MeanParams* op_params) {
int i = 0;
for (; i < axis_count; ++i) {
op_params->axis[i] = static_cast<int16>(axis_data[i]);
op_params->axis[i] = static_cast<int16_t>(axis_data[i]);
}
for (; i < 4; ++i) {
op_params->axis[i] = 1;
@@ -67,69 +137,206 @@ void ResolveAxis(const int* axis_data, int axis_count,
}
TfLiteStatus EvalMean(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input = GetInput(context, node, 0);
const TfLiteTensor* axis = GetInput(context, node, 1);
TfLiteTensor* output = GetOutput(context, node, 0);
const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0);
const TfLiteEvalTensor* axis = tflite::micro::GetEvalInput(context, node, 1);
TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0);
TfLiteReducerParams* params =
reinterpret_cast<TfLiteReducerParams*>(node->builtin_data);
OpData* op_data = reinterpret_cast<OpData*>(node->user_data);
int num_axis = static_cast<int>(NumElements(axis));
int num_axis = static_cast<int>(ElementCount(*axis->dims));
int temp_index[kMaxNumberOfAxis];
int resolved_axis[kMaxNumberOfReducedAxis];
tflite::MeanParams op_params;
ResolveAxis(tflite::micro::GetTensorData<int>(axis), num_axis, &op_params);
// Special case mean implementation exists for 4D mean across axes 1 and 2.
bool special_case_4d_axes_1_and_2 =
input->dims->size == 4 && op_params.axis_count == 2 &&
((op_params.axis[0] == 1 && op_params.axis[1] == 2) ||
(op_params.axis[0] == 2 && op_params.axis[1] == 1));
switch (input->type) {
case kTfLiteFloat32: {
tflite::MeanParams op_params;
ResolveAxis(GetTensorData<int>(axis), num_axis, &op_params);
// TODO(b/146571391): Support only 4D Input and 2D Axis for Mean until
// scratch tensor allocation has been implemented in (b/132070898)
bool is_valid_inputs =
(NumDimensions(input) == 4 && op_params.axis_count == 2 &&
((op_params.axis[0] == 1 && op_params.axis[1] == 2) ||
(op_params.axis[0] == 2 && op_params.axis[1] == 1)));
TF_LITE_ENSURE_MSG(
context, is_valid_inputs == true,
"Number of Input "
"dimensions != 4 OR the Axis is not either [1, 2] or [2, 1]");
// TODO(b/139102329): Handle the below special case in the combined
// reference method.
// Defer to specialized implementation for 4D Mean across axes 1 & 2.
if (params->keep_dims) {
reference_ops::Mean(op_params, GetTensorShape(input),
GetTensorData<float>(input), GetTensorShape(output),
GetTensorData<float>(output));
if (params->keep_dims && special_case_4d_axes_1_and_2) {
reference_ops::Mean(op_params, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<float>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output));
} else {
TF_LITE_ENSURE(
context,
reference_ops::Mean(GetTensorData<float>(input), input->dims->data,
input->dims->size, GetTensorData<float>(output),
reference_ops::Mean(
tflite::micro::GetTensorData<float>(input), input->dims->data,
input->dims->size, tflite::micro::GetTensorData<float>(output),
output->dims->data, output->dims->size,
tflite::micro::GetTensorData<int>(axis), num_axis,
params->keep_dims, temp_index, resolved_axis,
tflite::micro::GetTensorData<float>(output)));
}
} break;
case kTfLiteInt8: {
// Defer to specialized implementation for 4D Mean across axes 1 & 2.
if (params->keep_dims && special_case_4d_axes_1_and_2) {
reference_integer_ops::Mean(
op_params, op_data->multiplier, op_data->shift,
tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<int8_t>(input), op_data->input_zp,
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int8_t>(output), op_data->output_zp);
} else if (op_data->input_zp == op_data->output_zp &&
op_data->input_scale == op_data->output_scale) {
int32_t* temp_buffer = static_cast<int32_t*>(
context->GetScratchBuffer(context, op_data->temp_buffer_idx));
TF_LITE_ENSURE(
context,
reference_ops::Mean(
tflite::micro::GetTensorData<int8_t>(input), input->dims->data,
input->dims->size, tflite::micro::GetTensorData<int8_t>(output),
output->dims->data, output->dims->size,
tflite::micro::GetTensorData<int>(axis), num_axis,
params->keep_dims, temp_index, resolved_axis, temp_buffer));
} else {
int32_t* temp_buffer = static_cast<int32_t*>(
context->GetScratchBuffer(context, op_data->temp_buffer_idx));
TF_LITE_ENSURE(
context,
reference_ops::QuantizedMeanOrSum(
tflite::micro::GetTensorData<int8_t>(input), op_data->input_zp,
op_data->input_scale, input->dims->data, input->dims->size,
tflite::micro::GetTensorData<int8_t>(output),
op_data->output_zp, op_data->output_scale, output->dims->data,
output->dims->size, tflite::micro::GetTensorData<int>(axis),
num_axis, params->keep_dims, temp_index, resolved_axis,
temp_buffer, false));
}
} break;
case kTfLiteUInt8: {
// Defer to specialized implementation for 4D Mean across axes 1 & 2.
if (params->keep_dims && special_case_4d_axes_1_and_2) {
reference_ops::Mean(op_params, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<uint8_t>(input),
op_data->input_zp, op_data->input_scale,
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<uint8_t>(output),
op_data->output_zp, op_data->output_scale);
} else if (op_data->input_zp == op_data->output_zp &&
op_data->input_scale == op_data->output_scale) {
uint32_t* temp_buffer = static_cast<uint32_t*>(
context->GetScratchBuffer(context, op_data->temp_buffer_idx));
TF_LITE_ENSURE(
context,
reference_ops::Mean(tflite::micro::GetTensorData<uint8_t>(input),
input->dims->data, input->dims->size,
tflite::micro::GetTensorData<uint8_t>(output),
output->dims->data, output->dims->size,
GetTensorData<int>(axis), num_axis,
params->keep_dims, temp_index, resolved_axis,
GetTensorData<float>(output)));
tflite::micro::GetTensorData<int>(axis),
num_axis, params->keep_dims, temp_index,
resolved_axis, temp_buffer));
} else {
uint32_t* temp_buffer = static_cast<uint32_t*>(
context->GetScratchBuffer(context, op_data->temp_buffer_idx));
TF_LITE_ENSURE(
context,
reference_ops::QuantizedMeanOrSum(
tflite::micro::GetTensorData<uint8_t>(input), op_data->input_zp,
op_data->input_scale, input->dims->data, input->dims->size,
tflite::micro::GetTensorData<uint8_t>(output),
op_data->output_zp, op_data->output_scale, output->dims->data,
output->dims->size, tflite::micro::GetTensorData<int>(axis),
num_axis, params->keep_dims, temp_index, resolved_axis,
temp_buffer, false));
}
} break;
default:
// TODO(b/144955155): Support uint8(b/144955155) and int8(b/144955018)
TF_LITE_ENSURE_MSG(context, false,
"Currently, only float32 input type "
"Currently, only float32, int8 or uint8 input type "
"is supported.");
}
return kTfLiteOk;
}
TfLiteStatus EvalMax(TfLiteContext* context, TfLiteNode* node) {
const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0);
const TfLiteEvalTensor* axis = tflite::micro::GetEvalInput(context, node, 1);
TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0);
TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
TfLiteReducerParams* params =
static_cast<TfLiteReducerParams*>(node->builtin_data);
OpData* op_data = static_cast<OpData*>(node->user_data);
// Interpret an axis tensor with null dimensions as a scalar
int num_axis = static_cast<int>(ElementCount(*axis->dims));
int* temp_buffer = static_cast<int*>(
context->GetScratchBuffer(context, op_data->temp_buffer_idx));
int* resolved_axis = static_cast<int*>(
context->GetScratchBuffer(context, op_data->resolved_axis_idx));
switch (input->type) {
case kTfLiteFloat32:
TF_LITE_ENSURE(
context,
reference_ops::ReduceGeneric<float>(
tflite::micro::GetTensorData<float>(input), input->dims->data,
input->dims->size, tflite::micro::GetTensorData<float>(output),
output->dims->data, output->dims->size,
tflite::micro::GetTensorData<int>(axis), num_axis,
params->keep_dims, temp_buffer, resolved_axis,
std::numeric_limits<float>::lowest(),
[](const float current, const float in) -> float {
return (in > current) ? in : current;
}));
break;
case kTfLiteInt8:
TF_LITE_ENSURE_EQ(context, static_cast<double>(op_data->input_scale),
static_cast<double>(op_data->output_scale));
TF_LITE_ENSURE_EQ(context, op_data->input_zp, op_data->output_zp);
TF_LITE_ENSURE(
context,
reference_ops::ReduceGeneric<int8_t>(
tflite::micro::GetTensorData<int8_t>(input), input->dims->data,
input->dims->size, tflite::micro::GetTensorData<int8_t>(output),
output->dims->data, output->dims->size,
tflite::micro::GetTensorData<int>(axis), num_axis,
params->keep_dims, temp_buffer, resolved_axis,
std::numeric_limits<int8_t>::lowest(),
[](const int8_t current, const int8_t in) -> int8_t {
return (in > current) ? in : current;
}));
break;
default:
TF_LITE_KERNEL_LOG(context,
"Only float32 and int8 types are supported.\n");
return kTfLiteError;
}
return kTfLiteOk;
}
} // namespace reduce
TfLiteRegistration* Register_MEAN() {
static TfLiteRegistration r = {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/reduce::PrepareMeanOrSum,
/*invoke=*/reduce::EvalMean,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_MEAN() {
return {/*init=*/reduce::InitReduce,
/*free=*/nullptr,
/*prepare=*/reduce::PrepareMeanOrSum,
/*invoke=*/reduce::EvalMean,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
TfLiteRegistration Register_REDUCE_MAX() {
return {/*init=*/reduce::InitReduce,
/*free=*/nullptr,
/*prepare=*/reduce::PrepareMax,
/*invoke=*/reduce::EvalMax,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
} // namespace micro
} // namespace ops
} // namespace tflite

View File

@@ -18,6 +18,9 @@ limitations under the License.
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/kernels/op_macros.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
#include "tensorflow/lite/micro/memory_helpers.h"
#include "tensorflow/lite/micro/micro_utils.h"
namespace tflite {
namespace ops {
@@ -29,7 +32,9 @@ constexpr int kOutputTensor = 0;
TfLiteStatus ReshapeOutput(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TF_LITE_ENSURE(context, input != nullptr);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TF_LITE_ENSURE(context, output != nullptr);
// Tensorflow's Reshape allows one of the shape components to have the
// special -1 value, meaning it will be calculated automatically based on the
// input. Here we calculate what that dimension should be so that the number
@@ -61,7 +66,7 @@ TfLiteStatus ReshapeOutput(TfLiteContext* context, TfLiteNode* node) {
num_output_elements *= output_shape->data[stretch_dim];
}
TF_LITE_ENSURE_EQ(context, input->type, output->type);
TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
TF_LITE_ENSURE_EQ(context, num_input_elements, num_output_elements);
return kTfLiteOk;
}
@@ -74,13 +79,21 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
const TfLiteEvalTensor* input =
tflite::micro::GetEvalInput(context, node, kInputTensor);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
// TODO(b/162522304): storing input bytes in OpData increases some models
// significantly, possibly due to alignment issues.
size_t input_bytes;
TF_LITE_ENSURE_STATUS(TfLiteTypeSizeOf(input->type, &input_bytes));
input_bytes *= ElementCount(*input->dims);
// Do nothing for in-place reshape.
if (input->data.raw != output->data.raw) {
// Otherwise perform reshape with copy.
for (size_t i = 0; i < input->bytes; ++i) {
for (size_t i = 0; i < input_bytes; ++i) {
output->data.raw[i] = input->data.raw[i];
}
}
@@ -89,16 +102,15 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
} // namespace reshape
TfLiteRegistration* Register_RESHAPE() {
static TfLiteRegistration r = {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/reshape::Prepare,
/*invoke=*/reshape::Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_RESHAPE() {
return {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/reshape::Prepare,
/*invoke=*/reshape::Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
} // namespace micro

View File

@@ -20,6 +20,7 @@ limitations under the License.
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/kernels/op_macros.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
namespace tflite {
namespace ops {
@@ -31,7 +32,6 @@ constexpr int kSizeTensor = 1;
constexpr int kOutputTensor = 0;
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
#if defined(DEBUG)
TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
@@ -49,11 +49,9 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
output->type = input->type;
if (!IsConstantTensor(size)) {
TF_LITE_KERNEL_LOG(context,
"Dynamic tensors are unsupported in tfmicro.");
TF_LITE_KERNEL_LOG(context, "Dynamic tensors are unsupported in tfmicro.");
return kTfLiteError;
}
#endif
return kTfLiteOk;
}
@@ -61,9 +59,12 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
auto* params =
reinterpret_cast<TfLiteResizeNearestNeighborParams*>(node->builtin_data);
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
const TfLiteTensor* size = GetInput(context, node, kSizeTensor);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
const TfLiteEvalTensor* input =
tflite::micro::GetEvalInput(context, node, kInputTensor);
const TfLiteEvalTensor* size =
tflite::micro::GetEvalInput(context, node, kSizeTensor);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
tflite::ResizeNearestNeighborParams op_params;
op_params.align_corners = params->align_corners;
@@ -71,22 +72,31 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
if (output->type == kTfLiteFloat32) {
reference_ops::ResizeNearestNeighbor(
op_params, GetTensorShape(input), GetTensorData<int32>(input),
GetTensorShape(size), GetTensorData<int32>(size),
GetTensorShape(output), GetTensorData<int32>(output));
op_params, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<int32_t>(input),
tflite::micro::GetTensorShape(size),
tflite::micro::GetTensorData<int32_t>(size),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int32_t>(output));
} else if (output->type == kTfLiteUInt8) {
reference_ops::ResizeNearestNeighbor(
op_params, GetTensorShape(input), GetTensorData<uint8_t>(input),
GetTensorShape(size), GetTensorData<int32>(size),
GetTensorShape(output), GetTensorData<uint8_t>(output));
op_params, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<uint8_t>(input),
tflite::micro::GetTensorShape(size),
tflite::micro::GetTensorData<int32_t>(size),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<uint8_t>(output));
} else if (output->type == kTfLiteInt8) {
reference_ops::ResizeNearestNeighbor(
op_params, GetTensorShape(input), GetTensorData<int8_t>(input),
GetTensorShape(size), GetTensorData<int32>(size),
GetTensorShape(output), GetTensorData<int8_t>(output));
op_params, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<int8_t>(input),
tflite::micro::GetTensorShape(size),
tflite::micro::GetTensorData<int32_t>(size),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int8_t>(output));
} else {
TF_LITE_KERNEL_LOG(context,
"Output type is %d, requires float, uint8 or int8.",
"Output type is %d, requires float, uint8_t or int8_t.",
output->type);
return kTfLiteError;
}
@@ -95,16 +105,15 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
}
} // namespace resize_nearest_neighbor
TfLiteRegistration* Register_RESIZE_NEAREST_NEIGHBOR() {
static TfLiteRegistration r = {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/resize_nearest_neighbor::Prepare,
/*invoke=*/resize_nearest_neighbor::Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_RESIZE_NEAREST_NEIGHBOR() {
return {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/resize_nearest_neighbor::Prepare,
/*invoke=*/resize_nearest_neighbor::Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
} // namespace micro

View File

@@ -18,6 +18,7 @@ limitations under the License.
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
namespace tflite {
namespace ops {
@@ -29,11 +30,13 @@ constexpr int kOutputTensor = 0;
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TF_LITE_ENSURE(context, input != nullptr);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TF_LITE_ENSURE(context, output != nullptr);
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
TF_LITE_ENSURE_EQ(context, input->type, kTfLiteFloat32);
TF_LITE_ENSURE_EQ(context, output->type, input->type);
TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteFloat32);
TF_LITE_ENSURE_TYPES_EQ(context, output->type, input->type);
TF_LITE_ENSURE_EQ(context, output->bytes, input->bytes);
TF_LITE_ENSURE_EQ(context, output->dims->size, input->dims->size);
for (int i = 0; i < output->dims->size; ++i) {
@@ -43,26 +46,29 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
const TfLiteEvalTensor* input =
tflite::micro::GetEvalInput(context, node, kInputTensor);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
reference_ops::Round(GetTensorShape(input), GetTensorData<float>(input),
GetTensorShape(output), GetTensorData<float>(output));
reference_ops::Round(tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<float>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output));
return kTfLiteOk;
}
} // namespace round
TfLiteRegistration* Register_ROUND() {
static TfLiteRegistration r = {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/round::Prepare,
/*invoke=*/round::Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_ROUND() {
return {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/round::Prepare,
/*invoke=*/round::Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
} // namespace micro

View File

@@ -0,0 +1,73 @@
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/kernels/op_macros.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
#include "tensorflow/lite/micro/memory_helpers.h"
#include "tensorflow/lite/micro/micro_utils.h"
namespace tflite {
namespace {
constexpr int kInputTensor = 0;
constexpr int kOutputTensor = 0;
void ExtractShape(const TfLiteEvalTensor* input, int32_t* output_data) {
for (int i = 0; i < input->dims->size; ++i) {
output_data[i] = input->dims->data[i];
}
}
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
return kTfLiteOk;
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteEvalTensor* input =
tflite::micro::GetEvalInput(context, node, kInputTensor);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
if (output->type != kTfLiteInt32) {
TF_LITE_KERNEL_LOG(context, "Output type %s (%d) not supported.",
TfLiteTypeGetName(output->type), output->type);
return kTfLiteError;
} else {
ExtractShape(input, tflite::micro::GetTensorData<int32_t>(output));
}
return kTfLiteOk;
}
} // namespace
TfLiteRegistration Register_SHAPE() {
return {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/Prepare,
/*invoke=*/Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
} // namespace tflite

View File

@@ -22,29 +22,35 @@ limitations under the License.
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/kernels/op_macros.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
namespace tflite {
namespace ops {
namespace micro {
namespace activations {
namespace {
// Softmax parameter data that persists in user_data
static constexpr int kInt16LUTArraySize = 513;
TfLiteStatus CalculateSoftmaxParams(TfLiteContext* context,
const TfLiteTensor* input,
TfLiteTensor* output,
const TfLiteSoftmaxParams* params,
SoftmaxParams* op_data) {
if (input->type == kTfLiteUInt8 || input->type == kTfLiteInt8) {
if (input->type == kTfLiteUInt8 || input->type == kTfLiteInt8 ||
input->type == kTfLiteInt16) {
if (input->type == kTfLiteUInt8) {
TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteUInt8);
TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0);
} else {
} else if (input->type == kTfLiteInt16) {
TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0);
TF_LITE_ENSURE_NEAR(context, output->params.scale, 1.f / 32768,
(0.001f * 1.f / 32768));
} else { // input->type == kTfLiteInt8
TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteInt8);
if (output->type == kTfLiteInt16) {
TF_LITE_ENSURE_EQ(context, output->params.zero_point, -32768);
// NOTE: Current int16 softmax output does not require symmetric scaling
// - so no need to verify scale here.
} else {
TF_LITE_ENSURE_NEAR(context, output->params.scale, 1.f / 65536,
(0.001f * 1.f / 65536));
} else { // output->type == kTfLiteint8
TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteInt8);
TF_LITE_ENSURE_EQ(context, output->params.zero_point, -128);
TF_LITE_ENSURE(context, output->params.scale == 1.f / 256);
@@ -53,15 +59,28 @@ TfLiteStatus CalculateSoftmaxParams(TfLiteContext* context,
static const int kScaledDiffIntegerBits = 5;
int input_left_shift;
tflite::PreprocessSoftmaxScaling(
static_cast<double>(params->beta),
static_cast<double>(input->params.scale), kScaledDiffIntegerBits,
&op_data->input_multiplier, &input_left_shift);
op_data->input_left_shift = input_left_shift;
op_data->diff_min =
-1.0 * tflite::CalculateInputRadius(kScaledDiffIntegerBits,
op_data->input_left_shift);
// Calculate input_multiplier and input_left_shift
if (input->type == kTfLiteInt16) {
int input_left_shift;
double input_scale_beta_rescale =
static_cast<double>(input->params.scale) *
static_cast<double>(params->beta) /
(10.0 / 65535.0); // scale the input_diff such that [-65535, 0]
// correspond to [-10.0, 0.0]
QuantizeMultiplier(input_scale_beta_rescale, &op_data->input_multiplier,
&input_left_shift);
op_data->input_left_shift = input_left_shift;
} else {
int input_left_shift;
tflite::PreprocessSoftmaxScaling(
static_cast<double>(params->beta),
static_cast<double>(input->params.scale), kScaledDiffIntegerBits,
&op_data->input_multiplier, &input_left_shift);
op_data->input_left_shift = input_left_shift;
op_data->diff_min =
-1.0 * tflite::CalculateInputRadius(kScaledDiffIntegerBits,
op_data->input_left_shift);
}
} else {
TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteFloat32);
TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteFloat32);
@@ -70,53 +89,106 @@ TfLiteStatus CalculateSoftmaxParams(TfLiteContext* context,
return kTfLiteOk;
}
} // namespace
// Takes a tensor and performs softmax along the last dimension.
void SoftmaxFloat(const TfLiteEvalTensor* input, TfLiteEvalTensor* output,
const SoftmaxParams& op_data) {
tflite::reference_ops::Softmax(op_data, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<float>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output));
}
void SoftmaxQuantized(const TfLiteEvalTensor* input, TfLiteEvalTensor* output,
const SoftmaxParams& op_data) {
if (input->type == kTfLiteUInt8) {
tflite::reference_ops::Softmax(
op_data, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<uint8_t>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<uint8_t>(output));
} else if (input->type == kTfLiteInt8) {
if (output->type == kTfLiteInt16) {
tflite::reference_ops::Softmax(
op_data, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<int8_t>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int16_t>(output));
} else {
tflite::reference_ops::Softmax(
op_data, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<int8_t>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int8_t>(output));
}
} else {
tflite::reference_ops::SoftmaxInt16(
op_data, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<int16_t>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int16_t>(output));
}
}
void* SoftmaxInit(TfLiteContext* context, const char* buffer, size_t length) {
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
return context->AllocatePersistentBuffer(context, sizeof(SoftmaxParams));
}
TfLiteStatus SoftmaxPrepare(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
const TfLiteTensor* input = GetInput(context, node, 0);
TF_LITE_ENSURE(context, input != nullptr);
TF_LITE_ENSURE(context, NumDimensions(input) >= 1);
TfLiteTensor* output = GetOutput(context, node, 0);
TF_LITE_ENSURE(context, output != nullptr);
return kTfLiteOk;
}
// Takes a tensor and performs softmax along the last dimension.
void SoftmaxFloat(const TfLiteTensor* input, TfLiteTensor* output,
const SoftmaxParams& op_data) {
tflite::reference_ops::Softmax(
op_data, GetTensorShape(input), GetTensorData<float>(input),
GetTensorShape(output), GetTensorData<float>(output));
}
void SoftmaxQuantized(const TfLiteTensor* input, TfLiteTensor* output,
const SoftmaxParams& op_data) {
if (input->type == kTfLiteUInt8) {
tflite::reference_ops::Softmax(
op_data, GetTensorShape(input), GetTensorData<uint8_t>(input),
GetTensorShape(output), GetTensorData<uint8_t>(output));
} else {
if (output->type == kTfLiteInt16) {
tflite::reference_ops::Softmax(
op_data, GetTensorShape(input), GetTensorData<int8_t>(input),
GetTensorShape(output), GetTensorData<int16_t>(output));
} else {
tflite::reference_ops::Softmax(
op_data, GetTensorShape(input), GetTensorData<int8_t>(input),
GetTensorShape(output), GetTensorData<int8_t>(output));
}
TF_LITE_ENSURE(context, node->user_data != nullptr);
SoftmaxParams* op_data = static_cast<SoftmaxParams*>(node->user_data);
// Only allocate LUTs for KTfLiteInt16 data type
if (input->type == kTfLiteInt16) {
void* raw_exp_lut = context->AllocatePersistentBuffer(
context, sizeof(int16_t) * kInt16LUTArraySize);
TF_LITE_ENSURE(context, raw_exp_lut != nullptr);
op_data->exp_lut = reinterpret_cast<int16_t*>(raw_exp_lut);
void* one_over_one_plus_x_lut = context->AllocatePersistentBuffer(
context, sizeof(int16_t) * kInt16LUTArraySize);
TF_LITE_ENSURE(context, one_over_one_plus_x_lut != nullptr);
op_data->one_over_one_plus_x_lut =
reinterpret_cast<int16_t*>(one_over_one_plus_x_lut);
}
if (output->type == kTfLiteInt16) {
TF_LITE_ENSURE(context, input->type == kTfLiteInt8 ||
input->type == kTfLiteUInt8 ||
input->type == kTfLiteInt16);
} else {
TF_LITE_ENSURE_EQ(context, input->type, output->type);
}
// Populate LUT if required
if (input->type == kTfLiteInt16) {
TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0);
// exp LUT only used on negative values
// we consider exp(-10.0) is insignificant to accumulation
gen_lut([](float value) { return std::exp(value); }, -10.0f, 0.0f,
op_data->exp_lut, kInt16LUTArraySize);
gen_lut([](float value) { return 1.0f / (1.0f + value); }, 0.0f, 1.0f,
op_data->one_over_one_plus_x_lut, kInt16LUTArraySize);
op_data->zero_point = output->params.zero_point;
op_data->scale = output->params.scale;
}
auto* params = static_cast<TfLiteSoftmaxParams*>(node->builtin_data);
return CalculateSoftmaxParams(context, input, output, params, op_data);
}
TfLiteStatus SoftmaxEval(TfLiteContext* context, TfLiteNode* node) {
auto* params = static_cast<TfLiteSoftmaxParams*>(node->builtin_data);
const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0);
TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0);
const TfLiteTensor* input = GetInput(context, node, 0);
TfLiteTensor* output = GetOutput(context, node, 0);
SoftmaxParams op_data;
TF_LITE_ENSURE_STATUS(
CalculateSoftmaxParams(context, input, output, params, &op_data));
TFLITE_DCHECK(node->user_data != nullptr);
SoftmaxParams op_data = *static_cast<SoftmaxParams*>(node->user_data);
switch (input->type) {
case kTfLiteFloat32: {
@@ -124,7 +196,8 @@ TfLiteStatus SoftmaxEval(TfLiteContext* context, TfLiteNode* node) {
return kTfLiteOk;
}
case kTfLiteInt8:
case kTfLiteUInt8: {
case kTfLiteUInt8:
case kTfLiteInt16: {
SoftmaxQuantized(input, output, op_data);
return kTfLiteOk;
}
@@ -134,20 +207,17 @@ TfLiteStatus SoftmaxEval(TfLiteContext* context, TfLiteNode* node) {
return kTfLiteError;
}
}
} // namespace activations
} // namespace
TfLiteRegistration* Register_SOFTMAX() {
static TfLiteRegistration r = {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/activations::SoftmaxPrepare,
/*invoke=*/activations::SoftmaxEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_SOFTMAX() {
return {/*init=*/SoftmaxInit,
/*free=*/nullptr,
/*prepare=*/SoftmaxPrepare,
/*invoke=*/SoftmaxEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
} // namespace micro
} // namespace ops
} // namespace tflite

View File

@@ -17,6 +17,7 @@ limitations under the License.
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
namespace tflite {
namespace ops {
@@ -25,10 +26,11 @@ namespace split {
template <typename T>
TfLiteStatus SplitImpl(TfLiteContext* context, TfLiteNode* node,
const TfLiteTensor* input, int axis_value) {
const TfLiteEvalTensor* input, int axis_value) {
const int output_count = NumOutputs(node);
const TfLiteIntArray* input_dims = input->dims;
const TfLiteTensor* output0 = GetOutput(context, node, 0);
const TfLiteEvalTensor* output0 =
tflite::micro::GetEvalOutput(context, node, 0);
const TfLiteIntArray* output_dims = output0->dims;
const int split_dimensions = input_dims->size;
@@ -50,11 +52,11 @@ TfLiteStatus SplitImpl(TfLiteContext* context, TfLiteNode* node,
base_inner_size *= input_dims->data[i];
}
const T* input_ptr = GetTensorData<T>(input);
const T* input_ptr = tflite::micro::GetTensorData<T>(input);
for (int k = 0; k < outer_size; ++k) {
for (int i = 0; i < output_count; ++i) {
TfLiteTensor* t = GetOutput(context, node, i);
T* output_data = GetTensorData<T>(t);
TfLiteEvalTensor* t = tflite::micro::GetEvalOutput(context, node, i);
T* output_data = tflite::micro::GetTensorData<T>(t);
const int copy_size = output_dims->data[axis] * base_inner_size;
T* output_ptr = output_data + k * copy_size;
for (int j = 0; j < copy_size; ++j) output_ptr[j] = input_ptr[j];
@@ -65,23 +67,29 @@ TfLiteStatus SplitImpl(TfLiteContext* context, TfLiteNode* node,
return kTfLiteOk;
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* axis = GetInput(context, node, 0);
const TfLiteTensor* input = GetInput(context, node, 1);
TF_LITE_ENSURE(context, axis != nullptr);
// Dynamic output tensors are needed if axis tensor is not constant.
// But Micro doesn't support dynamic memory allocation, so we only support
// constant axis tensor for now.
TF_LITE_ENSURE_MSG(context, IsConstantTensor(axis),
"Non constant axis tensor not supported");
return kTfLiteOk;
}
int axis_value = GetTensorData<int32_t>(axis)[0];
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteEvalTensor* axis = tflite::micro::GetEvalInput(context, node, 0);
const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 1);
int axis_value = tflite::micro::GetTensorData<int32_t>(axis)[0];
if (axis_value < 0) {
axis_value += NumDimensions(input);
axis_value += input->dims->size;
}
TF_LITE_ENSURE(context, axis_value >= 0);
TF_LITE_ENSURE(context, axis_value < NumDimensions(input));
TF_LITE_ENSURE(context, axis_value < input->dims->size);
switch (input->type) {
case kTfLiteFloat32: {
@@ -111,16 +119,15 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
} // namespace split
TfLiteRegistration* Register_SPLIT() {
static TfLiteRegistration r = {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/nullptr,
/*invoke=*/split::Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_SPLIT() {
return {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/split::Prepare,
/*invoke=*/split::Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
} // namespace micro

View File

@@ -0,0 +1,135 @@
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/kernels/op_macros.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
namespace tflite {
namespace ops {
namespace micro {
namespace split_v {
template <typename T>
TfLiteStatus SplitImpl(TfLiteContext* context, TfLiteNode* node,
const TfLiteEvalTensor* input, int axis_value) {
const TfLiteIntArray* input_dims = input->dims;
const TfLiteEvalTensor* output0 =
tflite::micro::GetEvalOutput(context, node, 0);
const int split_dimensions = input_dims->size;
TFLITE_DCHECK_LT(axis_value, split_dimensions);
TFLITE_DCHECK_EQ(output0->dims->size, split_dimensions);
int64_t split_size = 0;
const int output_count = NumOutputs(node);
for (int i = 0; i < output_count; i++) {
split_size +=
tflite::micro::GetEvalOutput(context, node, i)->dims->data[axis_value];
}
TFLITE_DCHECK_EQ(split_size, input_dims->data[axis_value]);
int64_t outer_size = 1;
for (int i = 0; i < axis_value; ++i) {
outer_size *= input_dims->data[i];
}
int64_t base_inner_size = 1;
for (int i = axis_value + 1; i < split_dimensions; ++i) {
base_inner_size *= input_dims->data[i];
}
const T* input_ptr = tflite::micro::GetTensorData<T>(input);
for (int k = 0; k < outer_size; ++k) {
for (int i = 0; i < output_count; ++i) {
TfLiteEvalTensor* output_tensor =
tflite::micro::GetEvalOutput(context, node, i);
T* output_data = tflite::micro::GetTensorData<T>(output_tensor);
const int copy_size =
output_tensor->dims->data[axis_value] * base_inner_size;
T* output_ptr = output_data + k * copy_size;
for (int j = 0; j < copy_size; ++j) output_ptr[j] = input_ptr[j];
input_ptr += copy_size;
}
}
return kTfLiteOk;
}
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE_EQ(context, NumInputs(node), 3);
// Dynamic output tensors are needed if axis tensor is not constant.
// But Micro doesn't support dynamic memory allocation, so we only support
// constant axis tensor for now.
const TfLiteTensor* axis = GetInput(context, node, 2);
TF_LITE_ENSURE_MSG(context, IsConstantTensor(axis),
"Non constant axis tensor not supported");
return kTfLiteOk;
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0);
const TfLiteEvalTensor* axis = tflite::micro::GetEvalInput(context, node, 2);
int axis_value = tflite::micro::GetTensorData<int32_t>(axis)[0];
if (axis_value < 0) {
axis_value += input->dims->size;
}
TF_LITE_ENSURE(context, axis_value >= 0);
TF_LITE_ENSURE(context, axis_value < input->dims->size);
switch (input->type) {
case kTfLiteFloat32: {
return SplitImpl<float>(context, node, input, axis_value);
}
case kTfLiteInt8: {
return SplitImpl<int8_t>(context, node, input, axis_value);
}
case kTfLiteInt16: {
return SplitImpl<int16_t>(context, node, input, axis_value);
}
case kTfLiteInt32: {
return SplitImpl<int32_t>(context, node, input, axis_value);
}
default:
TF_LITE_KERNEL_LOG(context, "Type %s currently not supported.",
TfLiteTypeGetName(input->type));
return kTfLiteError;
}
return kTfLiteOk;
}
} // namespace split_v
TfLiteRegistration Register_SPLIT_V() {
return {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/split_v::Prepare,
/*invoke=*/split_v::Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
} // namespace micro
} // namespace ops
} // namespace tflite

View File

@@ -15,23 +15,20 @@ limitations under the License.
#include "tensorflow/lite/kernels/internal/reference/strided_slice.h"
#include <cmath>
#include <cstring>
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/kernels/op_macros.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
namespace tflite {
namespace ops {
namespace micro {
namespace strided_slice {
enum KernelType {
kReference,
// TODO(soroosh): add kGenericOptimized
};
constexpr int kInputTensor = 0;
constexpr int kBeginTensor = 1;
constexpr int kEndTensor = 2;
@@ -120,64 +117,74 @@ TfLiteStatus CheckOutputSize(TfLiteContext* context,
return kTfLiteOk;
}
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
return context->AllocatePersistentBuffer(context, sizeof(StridedSliceParams));
}
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TFLITE_DCHECK(node->user_data != nullptr);
StridedSliceParams* op_params =
static_cast<StridedSliceParams*>(node->user_data);
TF_LITE_ENSURE_EQ(context, NumInputs(node), 4);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
StridedSliceContext op_context(context, node);
TF_LITE_ENSURE_MSG(context, op_context.dims <= kMaxDim,
"input dim should not exceed 4");
auto params = BuildStridedSliceParams(&op_context);
memcpy(op_params, &params, sizeof(StridedSliceParams));
return CheckOutputSize(context, &op_context);
}
template <KernelType kernel_type>
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
StridedSliceContext op_context(context, node);
auto op_params = BuildStridedSliceParams(&op_context);
TFLITE_DCHECK(node->user_data != nullptr);
const StridedSliceParams& op_params =
*(static_cast<const StridedSliceParams*>(node->user_data));
#define TF_LITE_STRIDED_SLICE(kernel_type, data_type) \
kernel_type::StridedSlice(op_params, GetTensorShape(op_context.input), \
GetTensorData<data_type>(op_context.input), \
GetTensorShape(op_context.output), \
GetTensorData<data_type>(op_context.output))
switch (op_context.input->type) {
const TfLiteEvalTensor* input =
tflite::micro::GetEvalInput(context, node, kInputTensor);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
switch (output->type) {
case kTfLiteFloat32:
if (kernel_type == kReference) {
TF_LITE_STRIDED_SLICE(reference_ops, float);
}
reference_ops::StridedSlice(op_params,
tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<float>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output));
break;
case kTfLiteUInt8:
if (kernel_type == kReference) {
TF_LITE_STRIDED_SLICE(reference_ops, uint8_t);
}
reference_ops::StridedSlice(
op_params, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<uint8_t>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<uint8_t>(output));
break;
case kTfLiteInt8:
if (kernel_type == kReference) {
TF_LITE_STRIDED_SLICE(reference_ops, int8_t);
}
reference_ops::StridedSlice(op_params,
tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<int8_t>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int8_t>(output));
break;
default:
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
TfLiteTypeGetName(op_context.input->type),
op_context.input->type);
TfLiteTypeGetName(input->type), input->type);
return kTfLiteError;
}
#undef TF_LITE_STRIDED_SLICE
return kTfLiteOk;
}
} // namespace strided_slice
TfLiteRegistration* Register_STRIDED_SLICE() {
static TfLiteRegistration r = {
/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/strided_slice::Prepare,
/*invoke=*/strided_slice::Eval<strided_slice::kReference>,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_STRIDED_SLICE() {
return {/*init=*/strided_slice::Init,
/*free=*/nullptr,
/*prepare=*/strided_slice::Prepare,
/*invoke=*/strided_slice::Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
} // namespace micro

View File

@@ -21,8 +21,10 @@ limitations under the License.
#include "tensorflow/lite/kernels/internal/quantization_util.h"
#include "tensorflow/lite/kernels/internal/reference/process_broadcast_shapes.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/internal/types.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/kernels/op_macros.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
namespace tflite {
namespace ops {
@@ -40,18 +42,18 @@ struct OpData {
// and the special 16-bit -> 16bit quantized path
int input1_shift;
int input2_shift;
int32 output_activation_min;
int32 output_activation_max;
int32_t output_activation_min;
int32_t output_activation_max;
// These fields are used only in the general 8-bit -> 8bit quantized path
int32 input1_multiplier;
int32 input2_multiplier;
int32 output_multiplier;
int32_t input1_multiplier;
int32_t input2_multiplier;
int32_t output_multiplier;
int output_shift;
int left_shift;
int32 input1_offset;
int32 input2_offset;
int32 output_offset;
int32_t input1_offset;
int32_t input2_offset;
int32_t output_offset;
};
TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteSubParams* params,
@@ -93,31 +95,62 @@ TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteSubParams* params,
return kTfLiteOk;
}
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
return context->AllocatePersistentBuffer(context, sizeof(OpData));
}
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TFLITE_DCHECK(node->user_data != nullptr);
TFLITE_DCHECK(node->builtin_data != nullptr);
OpData* data = static_cast<OpData*>(node->user_data);
auto* params = reinterpret_cast<TfLiteSubParams*>(node->builtin_data);
const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
TF_LITE_ENSURE(context, input1 != nullptr);
const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2);
TF_LITE_ENSURE(context, input2 != nullptr);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TF_LITE_ENSURE(context, output != nullptr);
TF_LITE_ENSURE_STATUS(
CalculateOpData(context, params, input1, input2, output, data));
return kTfLiteOk;
}
void EvalSub(TfLiteContext* context, TfLiteNode* node, TfLiteSubParams* params,
const OpData* data, const TfLiteTensor* input1,
const TfLiteTensor* input2, TfLiteTensor* output) {
const OpData* data, const TfLiteEvalTensor* input1,
const TfLiteEvalTensor* input2, TfLiteEvalTensor* output) {
float output_activation_min, output_activation_max;
CalculateActivationRange(params->activation, &output_activation_min,
&output_activation_max);
tflite::ArithmeticParams op_params;
SetActivationParams(output_activation_min, output_activation_max, &op_params);
#define TF_LITE_SUB(opname) \
opname(op_params, GetTensorShape(input1), GetTensorData<float>(input1), \
GetTensorShape(input2), GetTensorData<float>(input2), \
GetTensorShape(output), GetTensorData<float>(output))
if (data->requires_broadcast) {
TF_LITE_SUB(tflite::reference_ops::BroadcastSubSlow);
tflite::reference_ops::BroadcastSubSlow(
op_params, tflite::micro::GetTensorShape(input1),
tflite::micro::GetTensorData<float>(input1),
tflite::micro::GetTensorShape(input2),
tflite::micro::GetTensorData<float>(input2),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output));
} else {
TF_LITE_SUB(tflite::reference_ops::SubWithActivation);
tflite::reference_ops::SubWithActivation(
op_params, tflite::micro::GetTensorShape(input1),
tflite::micro::GetTensorData<float>(input1),
tflite::micro::GetTensorShape(input2),
tflite::micro::GetTensorData<float>(input2),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output));
}
#undef TF_LITE_SUB
}
TfLiteStatus EvalSubQuantized(TfLiteContext* context, TfLiteNode* node,
TfLiteSubParams* params, const OpData* data,
const TfLiteTensor* input1,
const TfLiteTensor* input2,
TfLiteTensor* output) {
const TfLiteEvalTensor* input1,
const TfLiteEvalTensor* input2,
TfLiteEvalTensor* output) {
if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) {
tflite::ArithmeticParams op_params;
op_params.left_shift = data->left_shift;
@@ -133,25 +166,46 @@ TfLiteStatus EvalSubQuantized(TfLiteContext* context, TfLiteNode* node,
SetActivationParams(data->output_activation_min,
data->output_activation_max, &op_params);
bool need_broadcast = reference_ops::ProcessBroadcastShapes(
GetTensorShape(input1), GetTensorShape(input2), &op_params);
#define TF_LITE_SUB(opname, dtype) \
opname(op_params, GetTensorShape(input1), GetTensorData<dtype>(input1), \
GetTensorShape(input2), GetTensorData<dtype>(input2), \
GetTensorShape(output), GetTensorData<dtype>(output));
tflite::micro::GetTensorShape(input1),
tflite::micro::GetTensorShape(input2), &op_params);
if (output->type == kTfLiteInt8) {
if (need_broadcast) {
TF_LITE_SUB(tflite::reference_ops::BroadcastSubSlow, int8_t);
tflite::reference_ops::BroadcastSubSlow(
op_params, tflite::micro::GetTensorShape(input1),
tflite::micro::GetTensorData<int8_t>(input1),
tflite::micro::GetTensorShape(input2),
tflite::micro::GetTensorData<int8_t>(input2),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int8_t>(output));
} else {
TF_LITE_SUB(tflite::reference_ops::Sub, int8_t);
tflite::reference_ops::Sub(
op_params, tflite::micro::GetTensorShape(input1),
tflite::micro::GetTensorData<int8_t>(input1),
tflite::micro::GetTensorShape(input2),
tflite::micro::GetTensorData<int8_t>(input2),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int8_t>(output));
}
} else {
if (need_broadcast) {
TF_LITE_SUB(tflite::reference_ops::BroadcastSubSlow, uint8_t);
tflite::reference_ops::BroadcastSubSlow(
op_params, tflite::micro::GetTensorShape(input1),
tflite::micro::GetTensorData<uint8_t>(input1),
tflite::micro::GetTensorShape(input2),
tflite::micro::GetTensorData<uint8_t>(input2),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<uint8_t>(output));
} else {
TF_LITE_SUB(tflite::reference_ops::Sub, uint8_t);
tflite::reference_ops::Sub(
op_params, tflite::micro::GetTensorShape(input1),
tflite::micro::GetTensorData<uint8_t>(input1),
tflite::micro::GetTensorShape(input2),
tflite::micro::GetTensorData<uint8_t>(input2),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<uint8_t>(output));
}
}
#undef TF_LITE_SUB
}
return kTfLiteOk;
@@ -160,13 +214,15 @@ TfLiteStatus EvalSubQuantized(TfLiteContext* context, TfLiteNode* node,
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
auto* params = reinterpret_cast<TfLiteSubParams*>(node->builtin_data);
const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
const TfLiteEvalTensor* input1 =
tflite::micro::GetEvalInput(context, node, kInputTensor1);
const TfLiteEvalTensor* input2 =
tflite::micro::GetEvalInput(context, node, kInputTensor2);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
OpData data;
TF_LITE_ENSURE_STATUS(
CalculateOpData(context, params, input1, input2, output, &data));
TFLITE_DCHECK(node->user_data != nullptr);
const OpData& data = *(static_cast<const OpData*>(node->user_data));
if (output->type == kTfLiteFloat32) {
EvalSub(context, node, params, &data, input1, input2, output);
@@ -184,16 +240,15 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
} // namespace sub
TfLiteRegistration* Register_SUB() {
static TfLiteRegistration r = {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/nullptr,
/*invoke=*/sub::Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_SUB() {
return {/*init=*/sub::Init,
/*free=*/nullptr,
/*prepare=*/sub::Prepare,
/*invoke=*/sub::Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
} // namespace micro

View File

@@ -23,25 +23,38 @@ limitations under the License.
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/kernels/op_macros.h"
#include "tensorflow/lite/micro/kernels/activation_utils.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
#include "tensorflow/lite/micro/micro_utils.h"
namespace tflite {
namespace ops {
namespace micro {
namespace svdf {
namespace {
struct OpData {
int32 effective_scale_1_a;
int32 effective_scale_2_a;
int32_t effective_scale_1_a;
int32_t effective_scale_2_a;
// b versions of each scale are kept at int since the numbers are just the
// shift value - typically between [-32, 32].
int effective_scale_1_b;
int effective_scale_2_b;
int scratch_tensor_index;
int scratch_output_tensor_index;
// Cached tensor zero point values for quantized operations.
int input_zero_point;
int output_zero_point;
};
// Input tensors.
constexpr int kInputTensor = 0;
constexpr int kWeightsFeatureTensor = 1;
constexpr int kWeightsTimeTensor = 2;
constexpr int kBiasTensor = 3;
// This is a variable tensor, and will be modified by this op.
constexpr int kInputActivationStateTensor = 4;
// Output tensor.
constexpr int kOutputTensor = 0;
/**
* This version of SVDF is specific to TFLite Micro. It contains the following
* differences between the TFLite version:
@@ -107,18 +120,19 @@ static inline void ApplyTimeWeightsBiasAndActivation(
for (int b = 0; b < batch_size; ++b) {
float* output_ptr_batch = output_ptr + b * num_units;
for (int i = 0; i < num_units; ++i) {
*output_ptr_batch = ActivationValFloat(activation, *output_ptr_batch);
*output_ptr_batch =
tflite::ops::micro::ActivationValFloat(activation, *output_ptr_batch);
++output_ptr_batch;
}
}
}
inline void EvalFloatSVDF(
TfLiteContext* context, TfLiteNode* node, const TfLiteTensor* input,
const TfLiteTensor* weights_feature, const TfLiteTensor* weights_time,
const TfLiteTensor* bias, const TfLiteSVDFParams* params,
int scratch_tensor_index, TfLiteTensor* activation_state,
TfLiteTensor* output) {
TfLiteContext* context, TfLiteNode* node, const TfLiteEvalTensor* input,
const TfLiteEvalTensor* weights_feature,
const TfLiteEvalTensor* weights_time, const TfLiteEvalTensor* bias,
const TfLiteSVDFParams* params, int scratch_tensor_index,
TfLiteEvalTensor* activation_state, TfLiteEvalTensor* output) {
const int rank = params->rank;
const int batch_size = input->dims->data[0];
const int input_size = input->dims->data[1];
@@ -126,12 +140,14 @@ inline void EvalFloatSVDF(
const int num_units = num_filters / rank;
const int memory_size = weights_time->dims->data[1];
const float* weights_feature_ptr = GetTensorData<float>(weights_feature);
const float* weights_time_ptr = GetTensorData<float>(weights_time);
const float* bias_ptr = GetTensorData<float>(bias);
const float* input_ptr = GetTensorData<float>(input);
const float* weights_feature_ptr =
tflite::micro::GetTensorData<float>(weights_feature);
const float* weights_time_ptr =
tflite::micro::GetTensorData<float>(weights_time);
const float* bias_ptr = tflite::micro::GetTensorData<float>(bias);
const float* input_ptr = tflite::micro::GetTensorData<float>(input);
float* state_ptr = GetTensorData<float>(activation_state);
float* state_ptr = tflite::micro::GetTensorData<float>(activation_state);
TFLITE_DCHECK(context != nullptr);
TFLITE_DCHECK(context->GetScratchBuffer != nullptr);
@@ -139,7 +155,7 @@ inline void EvalFloatSVDF(
float* scratch_ptr = static_cast<float*>(
context->GetScratchBuffer(context, scratch_tensor_index));
float* output_ptr = GetTensorData<float>(output);
float* output_ptr = tflite::micro::GetTensorData<float>(output);
// Left shift the activation_state.
{
@@ -185,14 +201,13 @@ inline void EvalFloatSVDF(
}
void EvalIntegerSVDF(TfLiteContext* context, TfLiteNode* node,
const TfLiteTensor* input_tensor,
const TfLiteTensor* weights_feature_tensor,
const TfLiteTensor* weights_time_tensor,
const TfLiteTensor* bias_tensor,
const TfLiteEvalTensor* input_tensor,
const TfLiteEvalTensor* weights_feature_tensor,
const TfLiteEvalTensor* weights_time_tensor,
const TfLiteEvalTensor* bias_tensor,
const TfLiteSVDFParams* params,
TfLiteTensor* activation_state_tensor,
TfLiteTensor* output_tensor, const OpData& data,
int32_t input_zp, int32_t output_zp) {
TfLiteEvalTensor* activation_state_tensor,
TfLiteEvalTensor* output_tensor, const OpData& data) {
const int n_rank = params->rank;
const int n_batch = input_tensor->dims->data[0];
const int n_input = input_tensor->dims->data[1];
@@ -209,7 +224,8 @@ void EvalIntegerSVDF(TfLiteContext* context, TfLiteNode* node,
context->GetScratchBuffer(context, data.scratch_output_tensor_index));
// Shift states.
int16_t* const state_ptr = GetTensorData<int16_t>(activation_state_tensor);
int16_t* const state_ptr =
tflite::micro::GetTensorData<int16_t>(activation_state_tensor);
// Left shift the activation_state.
{
@@ -225,10 +241,11 @@ void EvalIntegerSVDF(TfLiteContext* context, TfLiteNode* node,
// Feature matmul.
{
int16_t* state = GetTensorData<int16_t>(activation_state_tensor);
const int8_t* input = GetTensorData<int8_t>(input_tensor);
int16_t* state =
tflite::micro::GetTensorData<int16_t>(activation_state_tensor);
const int8_t* input = tflite::micro::GetTensorData<int8_t>(input_tensor);
const int8_t* weight_feature =
GetTensorData<int8_t>(weights_feature_tensor);
tflite::micro::GetTensorData<int8_t>(weights_feature_tensor);
const int32_t output_max = std::numeric_limits<int16_t>::max();
const int32_t output_min = std::numeric_limits<int16_t>::min();
int16_t* result_in_batch = state + (n_memory - 1);
@@ -238,7 +255,8 @@ void EvalIntegerSVDF(TfLiteContext* context, TfLiteNode* node,
int32_t dot_prod = 0;
const int8_t* vector_in_batch = input + b * n_input;
for (int c = 0; c < n_input; c++) {
dot_prod += *matrix_ptr++ * (*vector_in_batch++ - input_zp);
dot_prod +=
*matrix_ptr++ * (*vector_in_batch++ - data.input_zero_point);
}
dot_prod = MultiplyByQuantizedMultiplier(
dot_prod, data.effective_scale_1_a, data.effective_scale_1_b);
@@ -261,9 +279,10 @@ void EvalIntegerSVDF(TfLiteContext* context, TfLiteNode* node,
int32_t* scratch_ptr_batch = scratch_tensor + b * n_filter;
// Perform batched vector dot product:
const int16_t* vector1_ptr = GetTensorData<int16_t>(weights_time_tensor);
const int16_t* vector1_ptr =
tflite::micro::GetTensorData<int16_t>(weights_time_tensor);
const int16_t* vector2_ptr =
GetTensorData<int16_t>(activation_state_tensor) +
tflite::micro::GetTensorData<int16_t>(activation_state_tensor) +
b * n_memory * n_filter;
for (int i = 0; i < n_filter; i++) {
@@ -281,7 +300,8 @@ void EvalIntegerSVDF(TfLiteContext* context, TfLiteNode* node,
// Add bias.
if (bias_tensor) {
// Vector batch assign:
const int32_t* bias_data = GetTensorData<int32_t>(bias_tensor);
const int32_t* bias_data =
tflite::micro::GetTensorData<int32_t>(bias_tensor);
for (int i = 0; i < n_batch; ++i) {
int32_t* output_ptr = scratch_output_tensor + i * n_unit;
const int32_t* bias_ptr = bias_data;
@@ -316,34 +336,17 @@ void EvalIntegerSVDF(TfLiteContext* context, TfLiteNode* node,
int32_t x1 = scratch_output_tensor[i];
int32_t x2 = MultiplyByQuantizedMultiplier(x1, data.effective_scale_2_a,
data.effective_scale_2_b);
int32_t x3 = x2 + output_zp;
int32_t x3 = x2 + data.output_zero_point;
int32_t x4 = std::min(std::max(output_min, x3), output_max);
GetTensorData<int8_t>(output_tensor)[i] = static_cast<int8_t>(x4);
tflite::micro::GetTensorData<int8_t>(output_tensor)[i] =
static_cast<int8_t>(x4);
}
}
}
} // namespace
// Input tensors.
constexpr int kInputTensor = 0;
constexpr int kWeightsFeatureTensor = 1;
constexpr int kWeightsTimeTensor = 2;
constexpr int kBiasTensor = 3;
// This is a variable tensor, and will be modified by this op.
constexpr int kInputActivationStateTensor = 4;
// Output tensor.
constexpr int kOutputTensor = 0;
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
void* data = nullptr;
if (context->AllocatePersistentBuffer(context, sizeof(OpData), &data) ==
kTfLiteError) {
return nullptr;
}
return data;
return context->AllocatePersistentBuffer(context, sizeof(OpData));
}
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
@@ -359,13 +362,17 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
// [4] = Activation State (variable),
// {2, batch_size, memory_size * num_filters}
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TF_LITE_ENSURE(context, input != nullptr);
const TfLiteTensor* weights_feature =
GetInput(context, node, kWeightsFeatureTensor);
TF_LITE_ENSURE(context, weights_feature != nullptr);
const TfLiteTensor* weights_time =
GetInput(context, node, kWeightsTimeTensor);
TF_LITE_ENSURE(context, weights_time != nullptr);
const TfLiteTensor* bias = GetOptionalInputTensor(context, node, kBiasTensor);
const TfLiteTensor* activation_state =
GetInput(context, node, kInputActivationStateTensor);
TF_LITE_ENSURE(context, activation_state != nullptr);
// Define input constants based on input tensor definition above:
const int rank = params->rank;
@@ -382,9 +389,10 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE_EQ(context, NumDimensions(input), 2);
// Validate Tensor Output:
// [0] = float/int8, {2, batch_size, num_units}
// [0] = float/int8_t, {2, batch_size, num_units}
TF_LITE_ENSURE_EQ(context, node->outputs->size, 1);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TF_LITE_ENSURE(context, output != nullptr);
TF_LITE_ENSURE_EQ(context, NumDimensions(output), 2);
TF_LITE_ENSURE_EQ(context, output->dims->data[0], batch_size);
TF_LITE_ENSURE_EQ(context, output->dims->data[1], num_units);
@@ -408,9 +416,14 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE_EQ(context, activation_state->dims->data[0], batch_size);
TF_LITE_ENSURE_EQ(context, activation_state->dims->data[1],
memory_size * num_filters);
// Since is_variable is not part of TFLiteEvalTensor, check is_variable here.
TF_LITE_ENSURE_EQ(context, activation_state->is_variable, true);
TF_LITE_ENSURE_EQ(context, node->inputs->size, 5);
TFLITE_DCHECK(node->user_data != nullptr);
OpData* data = static_cast<OpData*>(node->user_data);
if (input->type == kTfLiteInt8) {
TF_LITE_ENSURE_EQ(context, weights_feature->type, kTfLiteInt8);
TF_LITE_ENSURE_EQ(context, weights_time->type, kTfLiteInt16);
@@ -419,35 +432,30 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE_EQ(context, bias->type, kTfLiteInt32);
}
TF_LITE_ENSURE_EQ(context, output->type, kTfLiteInt8);
TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteInt8);
const auto* input_params =
reinterpret_cast<TfLiteAffineQuantization*>(input->quantization.params);
const auto* weights_feature_params =
static_cast<const TfLiteAffineQuantization*>(
weights_feature->quantization.params);
const auto* state_params = static_cast<const TfLiteAffineQuantization*>(
activation_state->quantization.params);
const auto* weight_time_params =
static_cast<const TfLiteAffineQuantization*>(
weights_time->quantization.params);
const auto* output_params = static_cast<const TfLiteAffineQuantization*>(
output->quantization.params);
const double effective_scale_1 = static_cast<double>(
input_params->scale->data[0] * weights_feature_params->scale->data[0] /
state_params->scale->data[0]);
const double effective_scale_2 = static_cast<double>(
state_params->scale->data[0] * weight_time_params->scale->data[0] /
output_params->scale->data[0]);
input->params.scale * weights_feature->params.scale /
activation_state->params.scale);
const double effective_scale_2 =
static_cast<double>(activation_state->params.scale *
weights_time->params.scale / output->params.scale);
TFLITE_DCHECK(node->user_data != nullptr);
OpData* data = static_cast<OpData*>(node->user_data);
// TODO(b/162018098): Use TF_LITE_ENSURE_NEAR when it is ready.
TF_LITE_ENSURE(
context,
std::abs(static_cast<double>(bias->params.scale) -
static_cast<double>(activation_state->params.scale *
weights_time->params.scale)) < 1e-5);
QuantizeMultiplier(effective_scale_1, &(data->effective_scale_1_a),
&(data->effective_scale_1_b));
QuantizeMultiplier(effective_scale_2, &(data->effective_scale_2_a),
&(data->effective_scale_2_b));
data->input_zero_point = input->params.zero_point;
data->output_zero_point = output->params.zero_point;
TFLITE_DCHECK(context->RequestScratchBufferInArena != nullptr);
const TfLiteStatus scratch_status = context->RequestScratchBufferInArena(
@@ -467,10 +475,7 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
if (bias != nullptr) {
TF_LITE_ENSURE_EQ(context, bias->type, kTfLiteFloat32);
}
TF_LITE_ENSURE_EQ(context, output->type, kTfLiteFloat32);
TFLITE_DCHECK(node->user_data != nullptr);
OpData* data = static_cast<OpData*>(node->user_data);
TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteFloat32);
TFLITE_DCHECK(context->RequestScratchBufferInArena != nullptr);
const TfLiteStatus scratch_status = context->RequestScratchBufferInArena(
@@ -484,20 +489,24 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
auto* params = reinterpret_cast<TfLiteSVDFParams*>(node->builtin_data);
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
const TfLiteTensor* weights_feature =
GetInput(context, node, kWeightsFeatureTensor);
const TfLiteTensor* weights_time =
GetInput(context, node, kWeightsTimeTensor);
const TfLiteTensor* bias = GetOptionalInputTensor(context, node, kBiasTensor);
TfLiteTensor* activation_state =
GetVariableInput(context, node, kInputActivationStateTensor);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TFLITE_DCHECK(node->user_data != nullptr);
const OpData& data = *(static_cast<const OpData*>(node->user_data));
const TfLiteEvalTensor* input =
tflite::micro::GetEvalInput(context, node, kInputTensor);
const TfLiteEvalTensor* weights_feature =
tflite::micro::GetEvalInput(context, node, kWeightsFeatureTensor);
const TfLiteEvalTensor* weights_time =
tflite::micro::GetEvalInput(context, node, kWeightsTimeTensor);
const TfLiteEvalTensor* bias =
(NumInputs(node) == 5)
? tflite::micro::GetEvalInput(context, node, kBiasTensor)
: nullptr;
TfLiteEvalTensor* activation_state = tflite::micro::GetMutableEvalInput(
context, node, kInputActivationStateTensor);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
switch (weights_feature->type) {
case kTfLiteFloat32: {
EvalFloatSVDF(context, node, input, weights_feature, weights_time, bias,
@@ -508,11 +517,8 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
}
case kTfLiteInt8: {
TF_LITE_ENSURE_EQ(context, params->activation, kTfLiteActRelu);
EvalIntegerSVDF(context, node, input, weights_feature, weights_time, bias,
params, activation_state, output, data,
input->params.zero_point, output->params.zero_point);
params, activation_state, output, data);
return kTfLiteOk;
break;
}
@@ -525,20 +531,17 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
return kTfLiteOk;
}
} // namespace svdf
} // namespace
TfLiteRegistration* Register_SVDF() {
static TfLiteRegistration r = {/*init=*/svdf::Init,
/*free=*/nullptr,
/*prepare=*/svdf::Prepare,
/*invoke=*/svdf::Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_SVDF() {
return {/*init=*/Init,
/*free=*/nullptr,
/*prepare=*/Prepare,
/*invoke=*/Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
} // namespace micro
} // namespace ops
} // namespace tflite

View File

@@ -0,0 +1,158 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/kernels/internal/reference/integer_ops/tanh.h"
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/quantization_util.h"
#include "tensorflow/lite/kernels/internal/reference/tanh.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/kernels/op_macros.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
#include "tensorflow/lite/micro/micro_utils.h"
namespace tflite {
namespace ops {
namespace micro {
namespace activations {
namespace {
constexpr int kInputTensor = 0;
constexpr int kOutputTensor = 0;
struct OpData {
int32_t input_zero_point;
int32_t input_range_radius;
int32_t input_multiplier;
int input_left_shift;
};
void* TanhInit(TfLiteContext* context, const char* buffer, size_t length) {
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
return context->AllocatePersistentBuffer(context, sizeof(OpData));
}
TfLiteStatus CalculateArithmeticOpData(TfLiteContext* context, TfLiteNode* node,
OpData* data) {
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TF_LITE_ENSURE(context, input != nullptr);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TF_LITE_ENSURE(context, output != nullptr);
TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
if (input->type == kTfLiteUInt8 || input->type == kTfLiteInt8) {
static constexpr int kInputIntegerBits = 4;
const double input_real_multiplier =
static_cast<double>(input->params.scale) *
static_cast<double>(1 << (31 - kInputIntegerBits));
const double q = std::frexp(input_real_multiplier, &data->input_left_shift);
data->input_multiplier = static_cast<int32_t>(TfLiteRound(q * (1ll << 31)));
data->input_range_radius =
CalculateInputRadius(kInputIntegerBits, data->input_left_shift, 31);
}
return kTfLiteOk;
}
TfLiteStatus TanhPrepare(TfLiteContext* context, TfLiteNode* node) {
TFLITE_DCHECK(node->user_data != nullptr);
OpData* data = static_cast<OpData*>(node->user_data);
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TF_LITE_ENSURE(context, input != nullptr);
data->input_zero_point = input->params.zero_point;
return CalculateArithmeticOpData(context, node, data);
}
} // namespace
TfLiteStatus TanhEval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteEvalTensor* input =
tflite::micro::GetEvalInput(context, node, kInputTensor);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
TFLITE_DCHECK(node->user_data != nullptr);
const OpData& data = *(static_cast<const OpData*>(node->user_data));
switch (input->type) {
case kTfLiteFloat32: {
reference_ops::Tanh(tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<float>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output));
return kTfLiteOk;
} break;
case kTfLiteInt16: {
TanhParams params;
params.input_left_shift = data.input_left_shift;
reference_ops::Tanh(params, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<int16_t>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int16_t>(output));
return kTfLiteOk;
} break;
case kTfLiteUInt8: {
TanhParams params;
params.input_zero_point = data.input_zero_point;
params.input_range_radius = data.input_range_radius;
params.input_multiplier = data.input_multiplier;
params.input_left_shift = data.input_left_shift;
reference_ops::Tanh(params, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<uint8_t>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<uint8_t>(output));
return kTfLiteOk;
} break;
case kTfLiteInt8: {
reference_integer_ops::Tanh(
data.input_zero_point, data.input_range_radius, data.input_multiplier,
data.input_left_shift, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<int8_t>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int8_t>(output));
return kTfLiteOk;
} break;
default:
TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
TfLiteTypeGetName(input->type),
TfLiteTypeGetName(output->type));
return kTfLiteError;
}
}
} // namespace activations
TfLiteRegistration Register_TANH() {
return {/*init=*/activations::TanhInit,
/*free=*/nullptr,
/*prepare=*/activations::TanhPrepare,
/*invoke=*/activations::TanhEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
} // namespace micro
} // namespace ops
} // namespace tflite

View File

@@ -17,6 +17,7 @@ limitations under the License.
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
namespace tflite {
namespace ops {
@@ -28,14 +29,16 @@ constexpr int kInputTensor = 0;
template <typename T>
TfLiteStatus UnpackImpl(TfLiteContext* context, TfLiteNode* node,
const TfLiteTensor* input, int output_count, int axis) {
const TfLiteTensor* output0 = GetOutput(context, node, 0);
const TfLiteEvalTensor* input, int output_count,
int axis) {
const TfLiteEvalTensor* output0 =
tflite::micro::GetEvalOutput(context, node, 0);
const TfLiteIntArray* input_dims = input->dims;
const TfLiteIntArray* output_dims = output0->dims;
const int dimensions = input_dims->size;
if (axis < 0) {
axis += NumDimensions(input);
axis += input->dims->size;
}
TFLITE_DCHECK_LT(axis, dimensions);
@@ -54,11 +57,11 @@ TfLiteStatus UnpackImpl(TfLiteContext* context, TfLiteNode* node,
}
TFLITE_DCHECK_EQ(output_size, copy_size * outer_size);
const T* input_data = GetTensorData<T>(input);
const T* input_data = tflite::micro::GetTensorData<T>(input);
for (int i = 0; i < output_count; ++i) {
TfLiteTensor* t = GetOutput(context, node, i);
T* output_data = GetTensorData<T>(t);
TfLiteEvalTensor* t = tflite::micro::GetEvalOutput(context, node, i);
T* output_data = tflite::micro::GetTensorData<T>(t);
for (int k = 0; k < outer_size; ++k) {
T* output_ptr = output_data + copy_size * k;
int loc = k * output_count * copy_size + i * copy_size;
@@ -74,7 +77,8 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
TfLiteUnpackParams* data =
reinterpret_cast<TfLiteUnpackParams*>(node->builtin_data);
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
const TfLiteEvalTensor* input =
tflite::micro::GetEvalInput(context, node, kInputTensor);
switch (input->type) {
case kTfLiteFloat32: {
@@ -101,16 +105,15 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
} // namespace
} // namespace unpack
TfLiteRegistration* Register_UNPACK() {
static TfLiteRegistration r = {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/nullptr,
/*invoke=*/unpack::Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
TfLiteRegistration Register_UNPACK() {
return {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/nullptr,
/*invoke=*/unpack::Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
} // namespace micro