Update tflite

This commit is contained in:
jomjol
2020-11-08 03:27:52 +01:00
parent 05a0f6fa62
commit 84cea8e3d6
169 changed files with 16367 additions and 11456 deletions

View File

@@ -55,9 +55,12 @@ inline void GetActivationMinMax(FusedActivationFunctionType ac,
}
}
inline float ActivationFunctionWithMinMax(float x, float output_activation_min,
float output_activation_max) {
return std::min(std::max(x, output_activation_min), output_activation_max);
template <typename T>
inline T ActivationFunctionWithMinMax(T x, T output_activation_min,
T output_activation_max) {
using std::max;
using std::min;
return min(max(x, output_activation_min), output_activation_max);
}
// Legacy function, left for compatibility only.
@@ -135,23 +138,24 @@ inline void BiasAndClamp(float clamp_min, float clamp_max, int bias_size,
#endif
}
inline int32 MultiplyByQuantizedMultiplierSmallerThanOneExp(
int32 x, int32 quantized_multiplier, int left_shift) {
inline int32_t MultiplyByQuantizedMultiplierSmallerThanOneExp(
int32_t x, int32_t quantized_multiplier, int left_shift) {
using gemmlowp::RoundingDivideByPOT;
using gemmlowp::SaturatingRoundingDoublingHighMul;
return RoundingDivideByPOT(
SaturatingRoundingDoublingHighMul(x, quantized_multiplier), -left_shift);
}
inline int32 MultiplyByQuantizedMultiplierGreaterThanOne(
int32 x, int32 quantized_multiplier, int left_shift) {
inline int32_t MultiplyByQuantizedMultiplierGreaterThanOne(
int32_t x, int32_t quantized_multiplier, int left_shift) {
using gemmlowp::SaturatingRoundingDoublingHighMul;
return SaturatingRoundingDoublingHighMul(x * (1 << left_shift),
quantized_multiplier);
}
inline int32 MultiplyByQuantizedMultiplier(int32 x, int32 quantized_multiplier,
int shift) {
inline int32_t MultiplyByQuantizedMultiplier(int32_t x,
int32_t quantized_multiplier,
int shift) {
using gemmlowp::RoundingDivideByPOT;
using gemmlowp::SaturatingRoundingDoublingHighMul;
int left_shift = shift > 0 ? shift : 0;
@@ -161,16 +165,16 @@ inline int32 MultiplyByQuantizedMultiplier(int32 x, int32 quantized_multiplier,
right_shift);
}
inline int32 MultiplyByQuantizedMultiplier(int64_t x,
int32 quantized_multiplier,
int shift) {
inline int32_t MultiplyByQuantizedMultiplier(int64_t x,
int32_t quantized_multiplier,
int shift) {
// Inputs:
// - quantized_multiplier has fixed point at bit 31
// - shift is -31 to +7 (negative for right shift)
//
// Assumptions: The following input ranges are assumed
// - quantize_scale>=0 (the usual range is (1<<30) to (1>>31)-1)
// - scaling is chosen so final scaled result fits in int32
// - scaling is chosen so final scaled result fits in int32_t
// - input x is in the range -(1<<47) <= x < (1<<47)
assert(quantized_multiplier >= 0);
assert(shift >= -31 && shift < 8);
@@ -215,9 +219,9 @@ inline int CountLeadingSignBits(T integer_input) {
using U = typename std::make_unsigned<T>::type;
return integer_input >= 0
? CountLeadingZeros(static_cast<U>(integer_input)) - 1
: integer_input != std::numeric_limits<T>::min()
? CountLeadingZeros(2 * static_cast<U>(-integer_input) - 1)
: 0;
: integer_input != std::numeric_limits<T>::min()
? CountLeadingZeros(2 * static_cast<U>(-integer_input) - 1)
: 0;
#endif
}
@@ -237,8 +241,12 @@ inline Integer FloorLog2(Integer n) {
// generate INT16 LUT for function(), e.g., table exp(x) and 1/(1+x) used in
// softmax
inline void gen_lut(const std::function<double(double)>& func, double min,
double max, int16_t* table, const int num) {
// func - the function to build the LUT for (e.g exp(x))
// min,max - table limits
// table - pointer to buffer
// num - number of elements in the LUT
inline void gen_lut(double (*func)(double), double min, double max,
int16_t* table, const int num) {
// size of table should equal to num + 1
// last element only for slope calculation
double step = (max - min) / (num - 1);
@@ -259,7 +267,35 @@ inline void gen_lut(const std::function<double(double)>& func, double min,
std::min(std::max(TfLiteRound(func(max) * 32768.0), -32768.0), 32767.0);
}
// int16 func table lookup, e.g., lookup exp() and 1/(1+x) used in softmax
// generate INT16 LUT for function(), e.g., table exp(x) and 1/(1+x) used in
// softmax
// func - the function to build the LUT for (e.g exp(x))
// min,max - table limits
// table - pointer to buffer
// num - number of elements in the LUT
inline void gen_lut(float (*func)(float), float min, float max, int16_t* table,
const int num) {
// size of table should equal to num + 1
// last element only for slope calculation
float step = (max - min) / (num - 1);
float half_step = step / 2.0f;
for (int i = 0; i < num - 1; i++) {
float sample_val = TfLiteRound(func(min + i * step) * 32768.0f);
float midpoint_interp_val =
TfLiteRound((func(min + (i + 1) * step) * 32768.0f +
TfLiteRound(func(min + i * step) * 32768.0f)) /
2.0f);
float midpoint_val =
TfLiteRound(func(min + i * step + half_step) * 32768.0f);
float midpoint_err = midpoint_interp_val - midpoint_val;
float bias = TfLiteRound(midpoint_err / 2.0f);
table[i] = std::min(std::max(sample_val - bias, -32768.0f), 32767.0f);
}
table[num - 1] = std::min(
std::max(TfLiteRound(func(max) * 32768.0f), -32768.0f), 32767.0f);
}
// int16_t func table lookup, e.g., lookup exp() and 1/(1+x) used in softmax
inline int16_t generic_int16_table_lookup(int16_t value, const int16_t* lut) {
// 512 base value, lut[513] only for calculate slope
uint16_t index = static_cast<uint16_t>(256 + (value >> 7));
@@ -410,6 +446,23 @@ SaturatingRoundingMultiplyByPOTParam(
SaturatingRoundingMultiplyByPOTParam(a.raw(), exponent));
}
// Convert int32_t multiplier to int16_t with rounding.
inline void DownScaleInt32ToInt16Multiplier(int32_t multiplier_int32_t,
int16_t* multiplier_int16_t) {
TFLITE_DCHECK_GE(multiplier_int32_t, 0);
static constexpr int32_t kRoundingOffset = 1 << 15;
if (multiplier_int32_t >=
std::numeric_limits<int32_t>::max() - kRoundingOffset) {
*multiplier_int16_t = std::numeric_limits<int16_t>::max();
return;
}
const int32_t result = (multiplier_int32_t + kRoundingOffset) >> 16;
TFLITE_DCHECK_LE(result << 16, multiplier_int32_t + kRoundingOffset);
TFLITE_DCHECK_GT(result << 16, multiplier_int32_t - kRoundingOffset);
*multiplier_int16_t = result;
TFLITE_DCHECK_EQ(*multiplier_int16_t, result);
}
// Minimum output bits to accommodate log of maximum input range. It actually
// does not matter if one considers, say, [-64,64] or [-64,64).
//
@@ -418,15 +471,13 @@ SaturatingRoundingMultiplyByPOTParam(
// ceil(log(abs( log(2.^(0:127))+1 ))/log(2)); ...
// ceil(log(abs( log(2.^(0:127))+1 ))/log(2))]
constexpr int min_log_x_output_bits(int input_bits) {
return input_bits > 90
? 7
: input_bits > 44
? 6
: input_bits > 21
? 5
: input_bits > 10
? 4
: input_bits > 4 ? 3 : input_bits > 1 ? 2 : 1;
return input_bits > 90 ? 7
: input_bits > 44 ? 6
: input_bits > 21 ? 5
: input_bits > 10 ? 4
: input_bits > 4 ? 3
: input_bits > 1 ? 2
: 1;
}
// Although currently the name of this function says that it cannot handle
@@ -434,17 +485,17 @@ constexpr int min_log_x_output_bits(int input_bits) {
// x_max is the largest representable input. In other words, the output range
// is symmetric.
template <int OutputIntegerBits, int InputIntegerBits>
inline gemmlowp::FixedPoint<int32, OutputIntegerBits>
inline gemmlowp::FixedPoint<int32_t, OutputIntegerBits>
log_x_for_x_greater_than_or_equal_to_1_impl(
gemmlowp::FixedPoint<int32, InputIntegerBits> input_val) {
// assert(__builtin_clz(0u) >= std::numeric_limits<uint32>::digits - 1);
// assert(__builtin_clz(0u) <= std::numeric_limits<uint32>::digits);
using FixedPoint0 = gemmlowp::FixedPoint<int32, 0>;
gemmlowp::FixedPoint<int32_t, InputIntegerBits> input_val) {
// assert(__builtin_clz(0u) >= std::numeric_limits<uint32_t>::digits - 1);
// assert(__builtin_clz(0u) <= std::numeric_limits<uint32_t>::digits);
using FixedPoint0 = gemmlowp::FixedPoint<int32_t, 0>;
// The reason for accumulating the result with an extra bit of headroom is
// that z_pow_2_adj * log_2 might be saturated, and adding num_scaled *
// recip_denom will otherwise introduce an error.
static constexpr int kAccumIntegerBits = OutputIntegerBits + 1;
using FixedPointAccum = gemmlowp::FixedPoint<int32, kAccumIntegerBits>;
using FixedPointAccum = gemmlowp::FixedPoint<int32_t, kAccumIntegerBits>;
const FixedPoint0 log_2 = GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(
FixedPoint0, 1488522236, std::log(2.0));
@@ -472,10 +523,10 @@ log_x_for_x_greater_than_or_equal_to_1_impl(
// required shift "ourselves" instead of using, say, Rescale.
FixedPoint0 z_a = FixedPoint0::FromRaw(input_val.raw());
// z_a_pow_2 = input_integer_bits - z_a_headroom;
int z_a_headroom_plus_1 = CountLeadingZeros(static_cast<uint32>(z_a.raw()));
int z_a_headroom_plus_1 = CountLeadingZeros(static_cast<uint32_t>(z_a.raw()));
FixedPoint0 r_a_tmp =
SaturatingRoundingMultiplyByPOTParam(z_a, (z_a_headroom_plus_1 - 1));
const int32 r_a_raw =
const int32_t r_a_raw =
SaturatingRoundingMultiplyByPOTParam((r_a_tmp * sqrt_half).raw(), 1);
// z_pow_2_adj = max(z_pow_2_a - 0.75, z_pow_2_b - 0.25);
// z_pow_2_adj = max(InputIntegerBits - z_a_headroom_plus_1 + 0.25,
@@ -487,8 +538,8 @@ log_x_for_x_greater_than_or_equal_to_1_impl(
// z_b is treated like z_a, but premultiplying by sqrt(0.5).
FixedPoint0 z_b = z_a * sqrt_half;
int z_b_headroom = CountLeadingZeros(static_cast<uint32>(z_b.raw())) - 1;
const int32 r_b_raw =
int z_b_headroom = CountLeadingZeros(static_cast<uint32_t>(z_b.raw())) - 1;
const int32_t r_b_raw =
SaturatingRoundingMultiplyByPOTParam(z_a.raw(), z_b_headroom);
const FixedPointAccum z_b_pow_2_adj = SaturatingSub(
FixedPointAccum::FromRaw(SaturatingRoundingMultiplyByPOTParam(
@@ -516,9 +567,9 @@ log_x_for_x_greater_than_or_equal_to_1_impl(
}
template <int OutputIntegerBits, int InputIntegerBits>
inline gemmlowp::FixedPoint<int32, OutputIntegerBits>
inline gemmlowp::FixedPoint<int32_t, OutputIntegerBits>
log_x_for_x_greater_than_or_equal_to_1(
gemmlowp::FixedPoint<int32, InputIntegerBits> input_val) {
gemmlowp::FixedPoint<int32_t, InputIntegerBits> input_val) {
static_assert(
OutputIntegerBits >= min_log_x_output_bits(InputIntegerBits),
"Output integer bits must be sufficient to accommodate logs of inputs.");
@@ -527,25 +578,25 @@ log_x_for_x_greater_than_or_equal_to_1(
input_val);
}
inline int32 GetReciprocal(int32 x, int x_integer_digits,
int* num_bits_over_unit) {
int headroom_plus_one = CountLeadingZeros(static_cast<uint32>(x));
inline int32_t GetReciprocal(int32_t x, int x_integer_digits,
int* num_bits_over_unit) {
int headroom_plus_one = CountLeadingZeros(static_cast<uint32_t>(x));
// This is the number of bits to the left of the binary point above 1.0.
// Consider x=1.25. In that case shifted_scale=0.8 and
// no later adjustment will be needed.
*num_bits_over_unit = x_integer_digits - headroom_plus_one;
const int32 shifted_sum_minus_one =
static_cast<int32>((static_cast<uint32>(x) << headroom_plus_one) -
(static_cast<uint32>(1) << 31));
const int32_t shifted_sum_minus_one =
static_cast<int32_t>((static_cast<uint32_t>(x) << headroom_plus_one) -
(static_cast<uint32_t>(1) << 31));
gemmlowp::FixedPoint<int32, 0> shifted_scale =
gemmlowp::FixedPoint<int32_t, 0> shifted_scale =
gemmlowp::one_over_one_plus_x_for_x_in_0_1(
gemmlowp::FixedPoint<int32, 0>::FromRaw(shifted_sum_minus_one));
gemmlowp::FixedPoint<int32_t, 0>::FromRaw(shifted_sum_minus_one));
return shifted_scale.raw();
}
inline void GetInvSqrtQuantizedMultiplierExp(int32 input, int reverse_shift,
int32* output_inv_sqrt,
inline void GetInvSqrtQuantizedMultiplierExp(int32_t input, int reverse_shift,
int32_t* output_inv_sqrt,
int* output_shift) {
TFLITE_DCHECK_GE(input, 0);
if (input <= 1) {
@@ -565,7 +616,7 @@ inline void GetInvSqrtQuantizedMultiplierExp(int32 input, int reverse_shift,
++*output_shift;
}
const unsigned max_left_shift_bits =
CountLeadingZeros(static_cast<uint32>(input)) - 1;
CountLeadingZeros(static_cast<uint32_t>(input)) - 1;
const unsigned max_left_shift_bit_pairs = max_left_shift_bits / 2;
const unsigned left_shift_bit_pairs = max_left_shift_bit_pairs - 1;
*output_shift -= left_shift_bit_pairs;
@@ -577,8 +628,8 @@ inline void GetInvSqrtQuantizedMultiplierExp(int32 input, int reverse_shift,
using gemmlowp::SaturatingRoundingMultiplyByPOT;
// Using 3 integer bits gives us enough room for the internal arithmetic in
// this Newton-Raphson iteration.
using F3 = FixedPoint<int32, 3>;
using F0 = FixedPoint<int32, 0>;
using F3 = FixedPoint<int32_t, 3>;
using F0 = FixedPoint<int32_t, 0>;
const F3 fixedpoint_input = F3::FromRaw(input >> 1);
const F3 fixedpoint_half_input =
SaturatingRoundingMultiplyByPOT<-1>(fixedpoint_input);
@@ -645,6 +696,13 @@ inline int SubscriptToIndex(const NdArrayDesc<5>& desc, int indexes[5]) {
indexes[4] * desc.strides[4];
}
inline int SubscriptToIndex(const NdArrayDesc<8>& desc, int indexes[8]) {
return indexes[0] * desc.strides[0] + indexes[1] * desc.strides[1] +
indexes[2] * desc.strides[2] + indexes[3] * desc.strides[3] +
indexes[4] * desc.strides[4] + indexes[5] * desc.strides[5] +
indexes[6] * desc.strides[6] + indexes[7] * desc.strides[7];
}
// Given the dimensions of the operands for an element-wise binary broadcast,
// adjusts them so that they can be directly iterated over with simple loops.
// Returns the adjusted dims as instances of NdArrayDesc in 'desc0_out' and

View File

@@ -76,13 +76,15 @@ limitations under the License.
#define TFLITE_CHECK_LT(x, y) ((x) < (y)) ? (void)0 : TFLITE_ABORT
#endif
// TODO(ahentz): Clean up.
#ifndef TF_LITE_STATIC_MEMORY
// TODO(b/162019032): Consider removing these type-aliases.
using int8 = std::int8_t;
using uint8 = std::uint8_t;
using int16 = std::int16_t;
using uint16 = std::uint16_t;
using int32 = std::int32_t;
using uint32 = std::uint32_t;
#endif // !defined(TF_LITE_STATIC_MEMORY)
// TFLITE_DEPRECATED()
//

View File

@@ -19,8 +19,9 @@ limitations under the License.
namespace tflite {
#if defined(TF_LITE_USE_GLOBAL_CMATH_FUNCTIONS) || \
(defined(__ANDROID__) && !defined(__NDK_MAJOR__)) || defined(ARDUINO)
#if defined(TF_LITE_USE_GLOBAL_CMATH_FUNCTIONS) || \
(defined(__ANDROID__) && !defined(__NDK_MAJOR__)) || defined(ARDUINO) || \
defined(__ZEPHYR__)
#define TF_LITE_GLOBAL_STD_PREFIX
#else
#define TF_LITE_GLOBAL_STD_PREFIX std

View File

@@ -0,0 +1,35 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_MAX_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_MAX_H_
#include <cmath>
namespace tflite {
#if defined(TF_LITE_USE_GLOBAL_MAX) || defined(__ZEPHYR__)
inline float TfLiteMax(const float& x, const float& y) {
return std::max(x, y);
}
#else
template <class T>
inline T TfLiteMax(const T& x, const T& y) {
return std::fmax(x, y);
}
#endif
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_MAX_H_

View File

@@ -0,0 +1,35 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_MIN_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_MIN_H_
#include <cmath>
namespace tflite {
#if defined(TF_LITE_USE_GLOBAL_MIN) || defined(__ZEPHYR__)
inline float TfLiteMin(const float& x, const float& y) {
return std::min(x, y);
}
#else
template <class T>
inline T TfLiteMin(const T& x, const T& y) {
return std::fmin(x, y);
}
#endif
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_MIN_H_

View File

@@ -12,8 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_TENSOR_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_TENSOR_H_
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_PORTABLE_TENSOR_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_PORTABLE_TENSOR_H_
#include <complex>
#include <vector>
@@ -21,7 +21,6 @@ limitations under the License.
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/internal/types.h"
#include "tensorflow/lite/string_util.h"
namespace tflite {
@@ -76,12 +75,12 @@ class VectorOfTensors {
// A list of quantized tensors in a format that can be used by kernels like
// split and concatenation.
class VectorOfQuantizedTensors : public VectorOfTensors<uint8> {
class VectorOfQuantizedTensors : public VectorOfTensors<uint8_t> {
public:
// Build with the tensors in 'tensor_list'.
VectorOfQuantizedTensors(const TfLiteContext& context,
const TfLiteIntArray& tensor_list)
: VectorOfTensors<uint8>(context, tensor_list) {
: VectorOfTensors<uint8_t>(context, tensor_list) {
for (int i = 0; i < tensor_list.size; ++i) {
TfLiteTensor* t = &context.tensors[tensor_list.data[i]];
zero_point_.push_back(t->params.zero_point);
@@ -90,10 +89,10 @@ class VectorOfQuantizedTensors : public VectorOfTensors<uint8> {
}
const float* scale() const { return scale_.data(); }
const int32* zero_point() const { return zero_point_.data(); }
const int32_t* zero_point() const { return zero_point_.data(); }
private:
std::vector<int32> zero_point_;
std::vector<int32_t> zero_point_;
std::vector<float> scale_;
};
@@ -119,26 +118,6 @@ class SequentialTensorWriter {
T* output_ptr_;
};
template <>
class SequentialTensorWriter<string> {
public:
SequentialTensorWriter(const TfLiteTensor* input, TfLiteTensor* output)
: input_(input), output_(output) {}
~SequentialTensorWriter() { buffer_.WriteToTensor(output_, nullptr); }
void Write(int position) { this->WriteN(position, 1); }
void WriteN(int position, int len) {
for (int i = 0; i < len; i++) {
buffer_.AddString(GetString(input_, position + i));
}
}
private:
const TfLiteTensor* input_;
TfLiteTensor* output_;
DynamicBuffer buffer_;
};
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_TENSOR_H_
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_PORTABLE_TENSOR_H_

View File

@@ -342,13 +342,13 @@ void NudgeQuantizationRange(const float min, const float max,
const float quant_max_float = static_cast<float>(quant_max);
*nudged_scale = (max - min) / (quant_max_float - quant_min_float);
const float zero_point_from_min = quant_min_float - min / *nudged_scale;
uint16 nudged_zero_point;
uint16_t nudged_zero_point;
if (zero_point_from_min < quant_min_float) {
nudged_zero_point = static_cast<uint16>(quant_min);
nudged_zero_point = static_cast<uint16_t>(quant_min);
} else if (zero_point_from_min > quant_max_float) {
nudged_zero_point = static_cast<uint16>(quant_max);
nudged_zero_point = static_cast<uint16_t>(quant_max);
} else {
nudged_zero_point = static_cast<uint16>(TfLiteRound(zero_point_from_min));
nudged_zero_point = static_cast<uint16_t>(TfLiteRound(zero_point_from_min));
}
*nudged_min = (quant_min_float - nudged_zero_point) * (*nudged_scale);
*nudged_max = (quant_max_float - nudged_zero_point) * (*nudged_scale);

View File

@@ -51,34 +51,39 @@ inline void Add(const ArithmeticParams& params,
// Element-wise add that can often be used for inner loop of broadcast add as
// well as the non-broadcast add.
// This function is used for 8-bit as well as for 16-bit, but the accumulator
// is 32-bit for both cases. The overflow does not happen due to the
// choice of the shift (20 or 15, accordingly - see add.cc for more comments).
template <typename T>
inline void AddElementwise(int size, const ArithmeticParams& params,
const uint8* input1_data, const uint8* input2_data,
uint8* output_data) {
TFLITE_DCHECK_GT(params.input1_offset, -256);
TFLITE_DCHECK_GT(params.input2_offset, -256);
TFLITE_DCHECK_LT(params.input1_offset, 256);
TFLITE_DCHECK_LT(params.input2_offset, 256);
const T* input1_data, const T* input2_data,
T* output_data) {
TFLITE_DCHECK_GT(params.input1_offset, -std::numeric_limits<T>::max());
TFLITE_DCHECK_GT(params.input2_offset, -std::numeric_limits<T>::max());
TFLITE_DCHECK_LT(params.input1_offset, std::numeric_limits<T>::max());
TFLITE_DCHECK_LT(params.input2_offset, std::numeric_limits<T>::max());
for (int i = 0; i < size; ++i) {
const int32 input1_val = params.input1_offset + input1_data[i];
const int32 input2_val = params.input2_offset + input2_data[i];
const int32 shifted_input1_val = input1_val * (1 << params.left_shift);
const int32 shifted_input2_val = input2_val * (1 << params.left_shift);
const int32 scaled_input1_val =
const int32_t input1_val = params.input1_offset + input1_data[i];
const int32_t input2_val = params.input2_offset + input2_data[i];
const int32_t shifted_input1_val = input1_val * (1 << params.left_shift);
const int32_t shifted_input2_val = input2_val * (1 << params.left_shift);
const int32_t scaled_input1_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input1_val, params.input1_multiplier, params.input1_shift);
const int32 scaled_input2_val =
const int32_t scaled_input2_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input2_val, params.input2_multiplier, params.input2_shift);
const int32 raw_sum = scaled_input1_val + scaled_input2_val;
const int32 raw_output =
const int32_t raw_sum = scaled_input1_val + scaled_input2_val;
const int32_t raw_output =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
raw_sum, params.output_multiplier, params.output_shift) +
params.output_offset;
const int32 clamped_output =
const int32_t clamped_output =
std::min(params.quantized_activation_max,
std::max(params.quantized_activation_min, raw_output));
output_data[i] = static_cast<uint8>(clamped_output);
output_data[i] = static_cast<T>(clamped_output);
}
}
@@ -86,40 +91,40 @@ inline void AddElementwise(int size, const ArithmeticParams& params,
// broadcast add, so that, for example, scalar-broadcast with batch will still
// be fast.
inline void AddScalarBroadcast(int size, const ArithmeticParams& params,
uint8 input1_data, const uint8* input2_data,
uint8* output_data) {
uint8_t input1_data, const uint8_t* input2_data,
uint8_t* output_data) {
TFLITE_DCHECK_GT(params.input1_offset, -256);
TFLITE_DCHECK_GT(params.input2_offset, -256);
TFLITE_DCHECK_LT(params.input1_offset, 256);
TFLITE_DCHECK_LT(params.input2_offset, 256);
const int32 input1_val = params.input1_offset + input1_data;
const int32 shifted_input1_val = input1_val * (1 << params.left_shift);
const int32 scaled_input1_val =
const int32_t input1_val = params.input1_offset + input1_data;
const int32_t shifted_input1_val = input1_val * (1 << params.left_shift);
const int32_t scaled_input1_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input1_val, params.input1_multiplier, params.input1_shift);
for (int i = 0; i < size; ++i) {
const int32 input2_val = params.input2_offset + input2_data[i];
const int32 shifted_input2_val = input2_val * (1 << params.left_shift);
const int32 scaled_input2_val =
const int32_t input2_val = params.input2_offset + input2_data[i];
const int32_t shifted_input2_val = input2_val * (1 << params.left_shift);
const int32_t scaled_input2_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input2_val, params.input2_multiplier, params.input2_shift);
const int32 raw_sum = scaled_input1_val + scaled_input2_val;
const int32 raw_output =
const int32_t raw_sum = scaled_input1_val + scaled_input2_val;
const int32_t raw_output =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
raw_sum, params.output_multiplier, params.output_shift) +
params.output_offset;
const int32 clamped_output =
const int32_t clamped_output =
std::min(params.quantized_activation_max,
std::max(params.quantized_activation_min, raw_output));
output_data[i] = static_cast<uint8>(clamped_output);
output_data[i] = static_cast<uint8_t>(clamped_output);
}
}
inline void Add(const ArithmeticParams& params,
const RuntimeShape& input1_shape, const uint8* input1_data,
const RuntimeShape& input2_shape, const uint8* input2_data,
const RuntimeShape& output_shape, uint8* output_data) {
const RuntimeShape& input1_shape, const uint8_t* input1_data,
const RuntimeShape& input2_shape, const uint8_t* input2_data,
const RuntimeShape& output_shape, uint8_t* output_data) {
TFLITE_DCHECK_LE(params.quantized_activation_min,
params.quantized_activation_max);
const int flat_size =
@@ -132,24 +137,53 @@ inline void Add(const ArithmeticParams& params,
AddElementwise(flat_size, params, input1_data, input2_data, output_data);
}
inline void AddGeneralParamScale(const ArithmeticParams& params,
const RuntimeShape& input1_shape,
const int16_t* input1_data,
const RuntimeShape& input2_shape,
const int16_t* input2_data,
const RuntimeShape& output_shape,
int16_t* output_data) {
TFLITE_DCHECK_LE(params.quantized_activation_min,
params.quantized_activation_max);
const int flat_size =
MatchingElementsSize(input1_shape, input2_shape, output_shape);
int max_value = std::numeric_limits<int16_t>::max();
TFLITE_DCHECK_GT(params.input1_offset, -max_value);
TFLITE_DCHECK_GT(params.input2_offset, -max_value);
TFLITE_DCHECK_LT(params.input1_offset, max_value);
TFLITE_DCHECK_LT(params.input2_offset, max_value);
AddElementwise(flat_size, params, input1_data, input2_data, output_data);
}
inline void Add(const ArithmeticParams& params,
const RuntimeShape& input1_shape, const int16* input1_data,
const RuntimeShape& input2_shape, const int16* input2_data,
const RuntimeShape& output_shape, int16* output_data) {
const RuntimeShape& input1_shape, const int16_t* input1_data,
const RuntimeShape& input2_shape, const int16_t* input2_data,
const RuntimeShape& output_shape, int16_t* output_data,
bool pot_scale = true) {
if (!pot_scale) {
AddGeneralParamScale(params, input1_shape, input1_data, input2_shape,
input2_data, output_shape, output_data);
return;
}
TFLITE_DCHECK_LE(params.quantized_activation_min,
params.quantized_activation_max);
const int input1_shift = params.input1_shift;
const int flat_size =
MatchingElementsSize(input1_shape, input2_shape, output_shape);
const int16 output_activation_min = params.quantized_activation_min;
const int16 output_activation_max = params.quantized_activation_max;
const int16_t output_activation_min = params.quantized_activation_min;
const int16_t output_activation_max = params.quantized_activation_max;
TFLITE_DCHECK(input1_shift == 0 || params.input2_shift == 0);
TFLITE_DCHECK_LE(input1_shift, 0);
TFLITE_DCHECK_LE(params.input2_shift, 0);
const int16* not_shift_input = input1_shift == 0 ? input1_data : input2_data;
const int16* shift_input = input1_shift == 0 ? input2_data : input1_data;
const int16_t* not_shift_input =
input1_shift == 0 ? input1_data : input2_data;
const int16_t* shift_input = input1_shift == 0 ? input2_data : input1_data;
const int input_right_shift =
input1_shift == 0 ? -params.input2_shift : -input1_shift;
@@ -161,8 +195,8 @@ inline void Add(const ArithmeticParams& params,
F0 scaled_input = F0::FromRaw(
gemmlowp::RoundingDivideByPOT(shift_input[i], input_right_shift));
F0 result = gemmlowp::SaturatingAdd(scaled_input, input_ready_scaled);
const int16 raw_output = result.raw();
const int16 clamped_output = std::min(
const int16_t raw_output = result.raw();
const int16_t clamped_output = std::min(
output_activation_max, std::max(output_activation_min, raw_output));
output_data[i] = clamped_output;
}
@@ -218,11 +252,11 @@ inline void BroadcastAdd4DSlow(const ArithmeticParams& params,
inline void BroadcastAdd4DSlow(const ArithmeticParams& params,
const RuntimeShape& input1_shape,
const int32* input1_data,
const int32_t* input1_data,
const RuntimeShape& input2_shape,
const int32* input2_data,
const int32_t* input2_data,
const RuntimeShape& output_shape,
int32* output_data) {
int32_t* output_data) {
NdArrayDesc<4> desc1;
NdArrayDesc<4> desc2;
NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
@@ -257,13 +291,14 @@ inline void BroadcastAdd4DSlow(const ArithmeticParams& params,
}
}
inline void BroadcastAdd4DSlow(const ArithmeticParams& params,
const RuntimeShape& input1_shape,
const uint8* input1_data,
const RuntimeShape& input2_shape,
const uint8* input2_data,
const RuntimeShape& output_shape,
uint8* output_data) {
// This function is used for 8-bit as well as for 16-bit, but the accumulator
// is 32-bit for both cases. The overflow does not happen due to the
// choice of the shift (20 or 15, accordingly - see add.cc for more comments).
template <typename T>
inline void BroadcastAdd4DSlow(
const ArithmeticParams& params, const RuntimeShape& input1_shape,
const T* input1_data, const RuntimeShape& input2_shape,
const T* input2_data, const RuntimeShape& output_shape, T* output_data) {
NdArrayDesc<4> desc1;
NdArrayDesc<4> desc2;
NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
@@ -286,34 +321,34 @@ inline void BroadcastAdd4DSlow(const ArithmeticParams& params,
for (int y = 0; y < extended_output_shape.Dims(1); ++y) {
for (int x = 0; x < extended_output_shape.Dims(2); ++x) {
for (int c = 0; c < extended_output_shape.Dims(3); ++c) {
const int32 input1_val =
const int32_t input1_val =
params.input1_offset +
input1_data[SubscriptToIndex(desc1, b, y, x, c)];
const int32 input2_val =
const int32_t input2_val =
params.input2_offset +
input2_data[SubscriptToIndex(desc2, b, y, x, c)];
const int32 shifted_input1_val =
const int32_t shifted_input1_val =
input1_val * (1 << params.left_shift);
const int32 shifted_input2_val =
const int32_t shifted_input2_val =
input2_val * (1 << params.left_shift);
const int32 scaled_input1_val =
const int32_t scaled_input1_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input1_val, params.input1_multiplier,
params.input1_shift);
const int32 scaled_input2_val =
const int32_t scaled_input2_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input2_val, params.input2_multiplier,
params.input2_shift);
const int32 raw_sum = scaled_input1_val + scaled_input2_val;
const int32 raw_output =
const int32_t raw_sum = scaled_input1_val + scaled_input2_val;
const int32_t raw_output =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
raw_sum, params.output_multiplier, params.output_shift) +
params.output_offset;
const int32 clamped_output =
const int32_t clamped_output =
std::min(params.quantized_activation_max,
std::max(params.quantized_activation_min, raw_output));
output_data[Offset(extended_output_shape, b, y, x, c)] =
static_cast<uint8>(clamped_output);
static_cast<T>(clamped_output);
}
}
}
@@ -322,11 +357,11 @@ inline void BroadcastAdd4DSlow(const ArithmeticParams& params,
inline void BroadcastAddFivefold(const ArithmeticParams& unswitched_params,
const RuntimeShape& unswitched_input1_shape,
const uint8* unswitched_input1_data,
const uint8_t* unswitched_input1_data,
const RuntimeShape& unswitched_input2_shape,
const uint8* unswitched_input2_data,
const uint8_t* unswitched_input2_data,
const RuntimeShape& output_shape,
uint8* output_data) {
uint8_t* output_data) {
ArithmeticParams switched_params = unswitched_params;
switched_params.input1_offset = unswitched_params.input2_offset;
switched_params.input1_multiplier = unswitched_params.input2_multiplier;
@@ -341,18 +376,18 @@ inline void BroadcastAddFivefold(const ArithmeticParams& unswitched_params,
const ArithmeticParams& params =
use_unswitched ? unswitched_params : switched_params;
const uint8* input1_data =
const uint8_t* input1_data =
use_unswitched ? unswitched_input1_data : unswitched_input2_data;
const uint8* input2_data =
const uint8_t* input2_data =
use_unswitched ? unswitched_input2_data : unswitched_input1_data;
// Fivefold nested loops. The second input resets its position for each
// iteration of the second loop. The first input resets its position at the
// beginning of the fourth loop. The innermost loop is an elementwise add of
// sections of the arrays.
uint8* output_data_ptr = output_data;
const uint8* input1_data_ptr = input1_data;
const uint8* input2_data_reset = input2_data;
uint8_t* output_data_ptr = output_data;
const uint8_t* input1_data_ptr = input1_data;
const uint8_t* input2_data_reset = input2_data;
// In the fivefold pattern, y0, y2 and y4 are not broadcast, and so shared
// between input shapes. y3 for input 1 is always broadcast, and so the
// dimension there is 1, whereas optionally y1 might be broadcast for input 2.
@@ -368,7 +403,7 @@ inline void BroadcastAddFivefold(const ArithmeticParams& unswitched_params,
// General fivefold pattern, with y4 > 1 so there is a non-broadcast inner
// dimension.
for (int i0 = 0; i0 < y0; ++i0) {
const uint8* input2_data_ptr;
const uint8_t* input2_data_ptr;
for (int i1 = 0; i1 < y1; ++i1) {
input2_data_ptr = input2_data_reset;
for (int i2 = 0; i2 < y2; ++i2) {
@@ -397,7 +432,7 @@ inline void BroadcastAddFivefold(const ArithmeticParams& unswitched_params,
// for y4 == 1 and the loop over y3 is contained within the
// AddScalarBroadcast function.
for (int i0 = 0; i0 < y0; ++i0) {
const uint8* input2_data_ptr;
const uint8_t* input2_data_ptr;
for (int i1 = 0; i1 < y1; ++i1) {
input2_data_ptr = input2_data_reset;
for (int i2 = 0; i2 < y2; ++i2) {

View File

@@ -18,7 +18,6 @@ limitations under the License.
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/types.h"
#include "tensorflow/lite/string_util.h"
namespace tflite {
@@ -51,18 +50,6 @@ inline bool LessEqualFn(T lhs, T rhs) {
return lhs <= rhs;
}
inline bool StringRefEqualFn(const StringRef& lhs, const StringRef& rhs) {
if (lhs.len != rhs.len) return false;
for (int i = 0; i < lhs.len; ++i) {
if (lhs.str[i] != rhs.str[i]) return false;
}
return true;
}
inline bool StringRefNotEqualFn(const StringRef& lhs, const StringRef& rhs) {
return !StringRefEqualFn(lhs, rhs);
}
template <typename T>
using ComparisonFn = bool (*)(T, T);
@@ -78,22 +65,6 @@ inline void ComparisonImpl(
}
}
template <bool (*F)(const StringRef&, const StringRef&)>
inline void ComparisonStringImpl(const RuntimeShape& input1_shape,
const TfLiteTensor* input1,
const RuntimeShape& input2_shape,
const TfLiteTensor* input2,
const RuntimeShape& output_shape,
bool* output_data) {
const int64_t flatsize =
MatchingFlatSize(input1_shape, input2_shape, output_shape);
for (int64_t i = 0; i < flatsize; ++i) {
const auto lhs = GetString(input1, i);
const auto rhs = GetString(input2, i);
output_data[i] = F(lhs, rhs);
}
}
template <ComparisonFn<float> F>
inline void Comparison(const ComparisonParams& op_params,
const RuntimeShape& input1_shape,
@@ -105,30 +76,30 @@ inline void Comparison(const ComparisonParams& op_params,
input2_data, output_shape, output_data);
}
template <typename T, ComparisonFn<int32> F>
template <typename T, ComparisonFn<int32_t> F>
inline void ComparisonWithScaling(
const ComparisonParams& op_params, const RuntimeShape& input1_shape,
const T* input1_data, const RuntimeShape& input2_shape,
const T* input2_data, const RuntimeShape& output_shape, bool* output_data) {
int left_shift = op_params.left_shift;
int32 input1_offset = op_params.input1_offset;
int32 input1_multiplier = op_params.input1_multiplier;
int32_t input1_offset = op_params.input1_offset;
int32_t input1_multiplier = op_params.input1_multiplier;
int input1_shift = op_params.input1_shift;
int32 input2_offset = op_params.input2_offset;
int32 input2_multiplier = op_params.input2_multiplier;
int32_t input2_offset = op_params.input2_offset;
int32_t input2_multiplier = op_params.input2_multiplier;
int input2_shift = op_params.input2_shift;
const int64_t flatsize =
MatchingFlatSize(input1_shape, input2_shape, output_shape);
for (int64_t i = 0; i < flatsize; ++i) {
const int32 input1_val = input1_offset + input1_data[i];
const int32 input2_val = input2_offset + input2_data[i];
const int32 shifted_input1_val = input1_val * (1 << left_shift);
const int32 shifted_input2_val = input2_val * (1 << left_shift);
const int32 scaled_input1_val =
const int32_t input1_val = input1_offset + input1_data[i];
const int32_t input2_val = input2_offset + input2_data[i];
const int32_t shifted_input1_val = input1_val * (1 << left_shift);
const int32_t shifted_input2_val = input2_val * (1 << left_shift);
const int32_t scaled_input1_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input1_val, input1_multiplier, input1_shift);
const int32 scaled_input2_val =
const int32_t scaled_input2_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input2_val, input2_multiplier, input2_shift);
output_data[i] = F(scaled_input1_val, scaled_input2_val);
@@ -180,31 +151,6 @@ inline void BroadcastComparison4DSlowImpl(
}
}
template <bool (*F)(const StringRef&, const StringRef&)>
inline void BroadcastComparison4DSlowStringImpl(
const RuntimeShape& unextended_input1_shape, const TfLiteTensor* input1,
const RuntimeShape& unextended_input2_shape, const TfLiteTensor* input2,
const RuntimeShape& unextended_output_shape, bool* output_data) {
const BroadcastComparison4DSlowCommon dims =
BroadcastComparison4DSlowPreprocess(unextended_input1_shape,
unextended_input2_shape,
unextended_output_shape);
for (int b = 0; b < dims.output_shape.Dims(0); ++b) {
for (int y = 0; y < dims.output_shape.Dims(1); ++y) {
for (int x = 0; x < dims.output_shape.Dims(2); ++x) {
for (int c = 0; c < dims.output_shape.Dims(3); ++c) {
const auto lhs =
GetString(input1, SubscriptToIndex(dims.desc1, b, y, x, c));
const auto rhs =
GetString(input2, SubscriptToIndex(dims.desc2, b, y, x, c));
output_data[Offset(dims.output_shape, b, y, x, c)] = F(lhs, rhs);
}
}
}
}
}
template <ComparisonFn<float> F>
inline void BroadcastComparison4DSlow(const ComparisonParams& op_params,
const RuntimeShape& input1_shape,
@@ -218,7 +164,7 @@ inline void BroadcastComparison4DSlow(const ComparisonParams& op_params,
output_shape, output_data);
}
template <typename T, ComparisonFn<int32> F>
template <typename T, ComparisonFn<int32_t> F>
inline void BroadcastComparison4DSlowWithScaling(
const ComparisonParams& op_params,
const RuntimeShape& unextended_input1_shape, const T* input1_data,
@@ -230,29 +176,29 @@ inline void BroadcastComparison4DSlowWithScaling(
unextended_output_shape);
int left_shift = op_params.left_shift;
int32 input1_offset = op_params.input1_offset;
int32 input1_multiplier = op_params.input1_multiplier;
int32_t input1_offset = op_params.input1_offset;
int32_t input1_multiplier = op_params.input1_multiplier;
int input1_shift = op_params.input1_shift;
int32 input2_offset = op_params.input2_offset;
int32 input2_multiplier = op_params.input2_multiplier;
int32_t input2_offset = op_params.input2_offset;
int32_t input2_multiplier = op_params.input2_multiplier;
int input2_shift = op_params.input2_shift;
for (int b = 0; b < dims.output_shape.Dims(0); ++b) {
for (int y = 0; y < dims.output_shape.Dims(1); ++y) {
for (int x = 0; x < dims.output_shape.Dims(2); ++x) {
for (int c = 0; c < dims.output_shape.Dims(3); ++c) {
const int32 input1_val =
const int32_t input1_val =
input1_offset +
input1_data[SubscriptToIndex(dims.desc1, b, y, x, c)];
const int32 input2_val =
const int32_t input2_val =
input2_offset +
input2_data[SubscriptToIndex(dims.desc2, b, y, x, c)];
const int32 shifted_input1_val = input1_val * (1 << left_shift);
const int32 shifted_input2_val = input2_val * (1 << left_shift);
const int32 scaled_input1_val =
const int32_t shifted_input1_val = input1_val * (1 << left_shift);
const int32_t shifted_input2_val = input2_val * (1 << left_shift);
const int32_t scaled_input1_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input1_val, input1_multiplier, input1_shift);
const int32 scaled_input2_val =
const int32_t scaled_input2_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input2_val, input2_multiplier, input2_shift);
output_data[Offset(dims.output_shape, b, y, x, c)] =

View File

@@ -74,14 +74,14 @@ inline void Concatenation(const ConcatenationParams& params,
// when optimizng this routine further.
inline void ConcatenationWithScaling(const ConcatenationParams& params,
const RuntimeShape* const* input_shapes,
const uint8* const* input_data,
const uint8_t* const* input_data,
const RuntimeShape& output_shape,
uint8* output_data) {
uint8_t* output_data) {
int axis = params.axis;
const int32* input_zeropoint = params.input_zeropoint;
const int32_t* input_zeropoint = params.input_zeropoint;
const float* input_scale = params.input_scale;
int inputs_count = params.inputs_count;
const int32 output_zeropoint = params.output_zeropoint;
const int32_t output_zeropoint = params.output_zeropoint;
const float output_scale = params.output_scale;
const int concat_dimensions = output_shape.DimensionsCount();
@@ -110,11 +110,11 @@ inline void ConcatenationWithScaling(const ConcatenationParams& params,
}
const float inverse_output_scale = 1.f / output_scale;
uint8* output_ptr = output_data;
uint8_t* output_ptr = output_data;
for (int k = 0; k < outer_size; k++) {
for (int i = 0; i < inputs_count; ++i) {
const int copy_size = input_shapes[i]->Dims(axis) * base_inner_size;
const uint8* input_ptr = input_data[i] + k * copy_size;
const uint8_t* input_ptr = input_data[i] + k * copy_size;
if (input_zeropoint[i] == output_zeropoint &&
input_scale[i] == output_scale) {
memcpy(output_ptr, input_ptr, copy_size);

View File

@@ -59,28 +59,31 @@ inline void Conv(const ConvParams& params, const RuntimeShape& input_shape,
const int output_width = output_shape.Dims(2);
for (int batch = 0; batch < batches; ++batch) {
for (int out_y = 0; out_y < output_height; ++out_y) {
const int in_y_origin = (out_y * stride_height) - pad_height;
for (int out_x = 0; out_x < output_width; ++out_x) {
const int in_x_origin = (out_x * stride_width) - pad_width;
for (int out_channel = 0; out_channel < output_depth; ++out_channel) {
const int in_x_origin = (out_x * stride_width) - pad_width;
const int in_y_origin = (out_y * stride_height) - pad_height;
float total = 0.f;
for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
const int in_y = in_y_origin + dilation_height_factor * filter_y;
for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
const int in_x = in_x_origin + dilation_width_factor * filter_x;
// Zero padding by omitting the areas outside the image.
const bool is_point_inside_image =
(in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
(in_y < input_height);
if (!is_point_inside_image) {
continue;
}
for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
const int in_x = in_x_origin + dilation_width_factor * filter_x;
const int in_y =
in_y_origin + dilation_height_factor * filter_y;
// If the location is outside the bounds of the input image,
// use zero as a default value.
if ((in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
(in_y < input_height)) {
float input_value = input_data[Offset(
input_shape, batch, in_y, in_x, in_channel)];
float filter_value =
filter_data[Offset(filter_shape, out_channel, filter_y,
filter_x, in_channel)];
total += (input_value * filter_value);
}
float input_value = input_data[Offset(input_shape, batch, in_y,
in_x, in_channel)];
float filter_value = filter_data[Offset(
filter_shape, out_channel, filter_y, filter_x, in_channel)];
total += (input_value * filter_value);
}
}
}
@@ -99,11 +102,11 @@ inline void Conv(const ConvParams& params, const RuntimeShape& input_shape,
}
inline void Conv(const ConvParams& params, const RuntimeShape& input_shape,
const uint8* input_data, const RuntimeShape& filter_shape,
const uint8* filter_data, const RuntimeShape& bias_shape,
const int32* bias_data, const RuntimeShape& output_shape,
uint8* output_data, const RuntimeShape& im2col_shape,
uint8* im2col_data, void* cpu_backend_context) {
const uint8_t* input_data, const RuntimeShape& filter_shape,
const uint8_t* filter_data, const RuntimeShape& bias_shape,
const int32_t* bias_data, const RuntimeShape& output_shape,
uint8_t* output_data, const RuntimeShape& im2col_shape,
uint8_t* im2col_data, void* cpu_backend_context) {
(void)cpu_backend_context; // only used in optimized code.
(void)im2col_data; // only used in optimized code.
(void)im2col_shape; // only used in optimized code.
@@ -113,13 +116,13 @@ inline void Conv(const ConvParams& params, const RuntimeShape& input_shape,
const int dilation_height_factor = params.dilation_height_factor;
const int pad_width = params.padding_values.width;
const int pad_height = params.padding_values.height;
const int32 input_offset = params.input_offset;
const int32 filter_offset = params.weights_offset;
const int32 output_offset = params.output_offset;
const int32 output_multiplier = params.output_multiplier;
const int32_t input_offset = params.input_offset;
const int32_t filter_offset = params.weights_offset;
const int32_t output_offset = params.output_offset;
const int32_t output_multiplier = params.output_multiplier;
const int output_shift = params.output_shift;
const int32 output_activation_min = params.quantized_activation_min;
const int32 output_activation_max = params.quantized_activation_max;
const int32_t output_activation_min = params.quantized_activation_min;
const int32_t output_activation_max = params.quantized_activation_max;
TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
@@ -139,29 +142,32 @@ inline void Conv(const ConvParams& params, const RuntimeShape& input_shape,
const int output_width = output_shape.Dims(2);
for (int batch = 0; batch < batches; ++batch) {
for (int out_y = 0; out_y < output_height; ++out_y) {
const int in_y_origin = (out_y * stride_height) - pad_height;
for (int out_x = 0; out_x < output_width; ++out_x) {
const int in_x_origin = (out_x * stride_width) - pad_width;
for (int out_channel = 0; out_channel < output_depth; ++out_channel) {
const int in_x_origin = (out_x * stride_width) - pad_width;
const int in_y_origin = (out_y * stride_height) - pad_height;
int32 acc = 0;
int32_t acc = 0;
for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
const int in_y = in_y_origin + dilation_height_factor * filter_y;
for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
const int in_x = in_x_origin + dilation_width_factor * filter_x;
// Zero padding by omitting the areas outside the image.
const bool is_point_inside_image =
(in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
(in_y < input_height);
if (!is_point_inside_image) {
continue;
}
for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
const int in_x = in_x_origin + dilation_width_factor * filter_x;
const int in_y =
in_y_origin + dilation_height_factor * filter_y;
// If the location is outside the bounds of the input image,
// use zero as a default value.
if ((in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
(in_y < input_height)) {
int32 input_val = input_data[Offset(input_shape, batch, in_y,
int32_t input_val = input_data[Offset(input_shape, batch, in_y,
in_x, in_channel)];
int32 filter_val =
filter_data[Offset(filter_shape, out_channel, filter_y,
filter_x, in_channel)];
acc +=
(filter_val + filter_offset) * (input_val + input_offset);
}
int32_t filter_val = filter_data[Offset(
filter_shape, out_channel, filter_y, filter_x, in_channel)];
acc +=
(filter_val + filter_offset) * (input_val + input_offset);
}
}
}
@@ -174,7 +180,7 @@ inline void Conv(const ConvParams& params, const RuntimeShape& input_shape,
acc = std::max(acc, output_activation_min);
acc = std::min(acc, output_activation_max);
output_data[Offset(output_shape, batch, out_y, out_x, out_channel)] =
static_cast<uint8>(acc);
static_cast<uint8_t>(acc);
}
}
}
@@ -220,7 +226,7 @@ inline void HybridConvPerChannel(
for (int out_channel = 0; out_channel < output_depth; ++out_channel) {
const int in_x_origin = (out_x * stride_width) - pad_width;
const int in_y_origin = (out_y * stride_height) - pad_height;
int32 acc = 0;
int32_t acc = 0;
for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
@@ -231,9 +237,9 @@ inline void HybridConvPerChannel(
// use zero as a default value.
if ((in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
(in_y < input_height)) {
int32 input_val = input_data[Offset(input_shape, batch, in_y,
in_x, in_channel)];
int32 filter_val =
int32_t input_val = input_data[Offset(
input_shape, batch, in_y, in_x, in_channel)];
int32_t filter_val =
filter_data[Offset(filter_shape, out_channel, filter_y,
filter_x, in_channel)];
acc += filter_val * (input_val - input_offset[batch]);
@@ -258,5 +264,4 @@ inline void HybridConvPerChannel(
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_CONV_H_

View File

@@ -62,21 +62,21 @@ namespace reference_ops {
namespace depthwise_conv {
template <DepthwiseConvOutputRounding output_rounding>
inline int32 DepthwiseConvRound(int32 x, int32 quantized_multiplier,
int shift) {
inline int32_t DepthwiseConvRound(int32_t x, int32_t quantized_multiplier,
int shift) {
TFLITE_DCHECK_NE(output_rounding, DepthwiseConvOutputRounding::kNone);
return MultiplyByQuantizedMultiplier(x, quantized_multiplier, shift);
}
template <>
inline int32 DepthwiseConvRound<DepthwiseConvOutputRounding::kAwayFromZero>(
int32 x, int32 quantized_multiplier, int shift) {
inline int32_t DepthwiseConvRound<DepthwiseConvOutputRounding::kAwayFromZero>(
int32_t x, int32_t quantized_multiplier, int shift) {
return MultiplyByQuantizedMultiplier(x, quantized_multiplier, shift);
}
template <>
inline int32 DepthwiseConvRound<DepthwiseConvOutputRounding::kUpward>(
int32 x, int32 quantized_multiplier, int shift) {
inline int32_t DepthwiseConvRound<DepthwiseConvOutputRounding::kUpward>(
int32_t x, int32_t quantized_multiplier, int shift) {
using gemmlowp::SaturatingRoundingDoublingHighMul;
const int left_shift = shift > 0 ? shift : 0;
const int right_shift = shift > 0 ? 0 : -shift;
@@ -89,13 +89,12 @@ inline int32 DepthwiseConvRound<DepthwiseConvOutputRounding::kUpward>(
template <DepthwiseConvOutputRounding output_rounding>
struct DepthwiseConvBasicKernel {
static inline void Run(const DepthwiseParams& params,
const RuntimeShape& input_shape,
const uint8* input_data,
const RuntimeShape& filter_shape,
const uint8* filter_data,
const RuntimeShape& bias_shape, const int32* bias_data,
const RuntimeShape& output_shape, uint8* output_data) {
static inline void Run(
const DepthwiseParams& params, const RuntimeShape& input_shape,
const uint8_t* input_data, const RuntimeShape& filter_shape,
const uint8_t* filter_data, const RuntimeShape& bias_shape,
const int32_t* bias_data, const RuntimeShape& output_shape,
uint8_t* output_data) {
const int stride_width = params.stride_width;
const int stride_height = params.stride_height;
const int dilation_width_factor = params.dilation_width_factor;
@@ -103,12 +102,12 @@ struct DepthwiseConvBasicKernel {
const int pad_width = params.padding_values.width;
const int pad_height = params.padding_values.height;
const int depth_multiplier = params.depth_multiplier;
const int32 output_activation_min = params.quantized_activation_min;
const int32 output_activation_max = params.quantized_activation_max;
const int32 input_offset = params.input_offset;
const int32 filter_offset = params.weights_offset;
const int32 output_offset = params.output_offset;
const int32 output_multiplier = params.output_multiplier;
const int32_t output_activation_min = params.quantized_activation_min;
const int32_t output_activation_max = params.quantized_activation_max;
const int32_t input_offset = params.input_offset;
const int32_t filter_offset = params.weights_offset;
const int32_t output_offset = params.output_offset;
const int32_t output_multiplier = params.output_multiplier;
const int output_shift = params.output_shift;
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4);
@@ -135,7 +134,7 @@ struct DepthwiseConvBasicKernel {
const int oc = m + ic * depth_multiplier;
const int in_x_origin = (out_x * stride_width) - pad_width;
const int in_y_origin = (out_y * stride_height) - pad_height;
int32 acc = 0;
int32_t acc = 0;
for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
const int in_x =
@@ -146,9 +145,9 @@ struct DepthwiseConvBasicKernel {
// use zero as a default value.
if ((in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
(in_y < input_height)) {
int32 input_val =
int32_t input_val =
input_data[Offset(input_shape, b, in_y, in_x, ic)];
int32 filter_val = filter_data[Offset(
int32_t filter_val = filter_data[Offset(
filter_shape, 0, filter_y, filter_x, oc)];
acc += (filter_val + filter_offset) *
(input_val + input_offset);
@@ -164,7 +163,7 @@ struct DepthwiseConvBasicKernel {
acc = std::max(acc, output_activation_min);
acc = std::min(acc, output_activation_max);
output_data[Offset(output_shape, b, out_y, out_x, oc)] =
static_cast<uint8>(acc);
static_cast<uint8_t>(acc);
}
}
}
@@ -176,10 +175,10 @@ struct DepthwiseConvBasicKernel {
// MultiplyByQuantizedMultiplier or DepthwiseConvRound function.
static inline void RunPerChannel(
const DepthwiseParams& params, const RuntimeShape& input_shape,
const int8* input_data, const RuntimeShape& filter_shape,
const int8* filter_data, const RuntimeShape& bias_shape,
const int32* bias_data, const RuntimeShape& output_shape,
int8* output_data) {
const int8_t* input_data, const RuntimeShape& filter_shape,
const int8_t* filter_data, const RuntimeShape& bias_shape,
const int32_t* bias_data, const RuntimeShape& output_shape,
int8_t* output_data) {
// Get parameters.
// TODO(b/141565753): Re-introduce ScopedProfilingLabel on Micro.
const int stride_width = params.stride_width;
@@ -189,12 +188,12 @@ struct DepthwiseConvBasicKernel {
const int pad_width = params.padding_values.width;
const int pad_height = params.padding_values.height;
const int depth_multiplier = params.depth_multiplier;
const int32 input_offset = params.input_offset;
const int32 output_offset = params.output_offset;
const int32 output_activation_min = params.quantized_activation_min;
const int32 output_activation_max = params.quantized_activation_max;
const int32* output_multiplier = params.output_multiplier_per_channel;
const int32* output_shift = params.output_shift_per_channel;
const int32_t input_offset = params.input_offset;
const int32_t output_offset = params.output_offset;
const int32_t output_activation_min = params.quantized_activation_min;
const int32_t output_activation_max = params.quantized_activation_max;
const int32_t* output_multiplier = params.output_multiplier_per_channel;
const int32_t* output_shift = params.output_shift_per_channel;
// Check dimensions of the tensors.
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
@@ -222,7 +221,7 @@ struct DepthwiseConvBasicKernel {
const int output_channel = m + in_channel * depth_multiplier;
const int in_x_origin = (out_x * stride_width) - pad_width;
const int in_y_origin = (out_y * stride_height) - pad_height;
int32 acc = 0;
int32_t acc = 0;
for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
const int in_x =
@@ -234,17 +233,18 @@ struct DepthwiseConvBasicKernel {
(in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
(in_y < input_height);
if (is_point_inside_image) {
int32 input_val = input_data[Offset(
int32_t input_val = input_data[Offset(
input_shape, batch, in_y, in_x, in_channel)];
int32 filter_val = filter_data[Offset(
int32_t filter_val = filter_data[Offset(
filter_shape, 0, filter_y, filter_x, output_channel)];
// Accumulate with 32 bits accumulator.
// In the nudging process during model quantization, we
// force real value of 0.0 be represented by a quantized
// value. This guarantees that the input_offset is a int8,
// even though it is represented using int32. int32 += int8
// * (int8 - int8) so the highest value we can get from each
// accumulation is [-127, 127] * ([-128, 127] -
// value. This guarantees that the input_offset is a int8_t,
// even though it is represented using int32_t. int32_t +=
// int8_t
// * (int8_t - int8_t) so the highest value we can get from
// each accumulation is [-127, 127] * ([-128, 127] -
// [-128, 127]), which is [-32512, 32512]. log2(32512)
// = 14.98, which means we can accumulate at least 2^16
// multiplications without overflow. The accumulator is
@@ -279,10 +279,10 @@ struct DepthwiseConvBasicKernel {
inline void DepthwiseConv(
const DepthwiseParams& params, const RuntimeShape& input_shape,
const uint8* input_data, const RuntimeShape& filter_shape,
const uint8* filter_data, const RuntimeShape& bias_shape,
const int32* bias_data, const RuntimeShape& output_shape,
uint8* output_data) {
const uint8_t* input_data, const RuntimeShape& filter_shape,
const uint8_t* filter_data, const RuntimeShape& bias_shape,
const int32_t* bias_data, const RuntimeShape& output_shape,
uint8_t* output_data) {
return depthwise_conv::DepthwiseConvBasicKernel<
DepthwiseConvOutputRounding::kAwayFromZero>::Run(params, input_shape,
input_data, filter_shape,

View File

@@ -32,12 +32,12 @@ inline void Dequantize(const tflite::DequantizationParams& op_params,
const RuntimeShape& input_shape,
const InputT* input_data,
const RuntimeShape& output_shape, OutputT* output_data) {
int32 zero_point = op_params.zero_point;
int32_t zero_point = op_params.zero_point;
const double scale = op_params.scale;
const int flat_size = MatchingFlatSize(input_shape, output_shape);
for (int i = 0; i < flat_size; i++) {
const int32 val = input_data[i];
const int32_t val = input_data[i];
const OutputT result = static_cast<OutputT>(scale * (val - zero_point));
output_data[i] = result;
}
@@ -52,11 +52,11 @@ inline void PerChannelDequantize(
// Ensure flat size is same.
MatchingFlatSize(input_shape, output_shape);
const int32* zero_point = op_params.zero_point;
const int32_t* zero_point = op_params.zero_point;
const float* scale = op_params.scale;
const int32 quantized_dimension = op_params.quantized_dimension;
const int32 num_dims = input_shape.DimensionsCount();
const int32* dims_data = input_shape.DimsData();
const int32_t quantized_dimension = op_params.quantized_dimension;
const int32_t num_dims = input_shape.DimensionsCount();
const int32_t* dims_data = input_shape.DimsData();
std::vector<int> current_dim(num_dims, 0);
do {
@@ -64,7 +64,7 @@ inline void PerChannelDequantize(
ReducedOutputOffset(num_dims, reinterpret_cast<const int*>(dims_data),
current_dim.data(), 0, nullptr);
const int channel = current_dim[quantized_dimension];
const int32 val = input_data[offset];
const int32_t val = input_data[offset];
const float result =
static_cast<float>(scale[channel] * (val - zero_point[channel]));
output_data[offset] = result;

View File

@@ -61,17 +61,17 @@ inline void FullyConnected(
inline void FullyConnected(
const FullyConnectedParams& params, const RuntimeShape& input_shape,
const uint8* input_data, const RuntimeShape& filter_shape,
const uint8* filter_data, const RuntimeShape& bias_shape,
const int32* bias_data, const RuntimeShape& output_shape,
uint8* output_data) {
const int32 input_offset = params.input_offset;
const int32 filter_offset = params.weights_offset;
const int32 output_offset = params.output_offset;
const int32 output_multiplier = params.output_multiplier;
const uint8_t* input_data, const RuntimeShape& filter_shape,
const uint8_t* filter_data, const RuntimeShape& bias_shape,
const int32_t* bias_data, const RuntimeShape& output_shape,
uint8_t* output_data) {
const int32_t input_offset = params.input_offset;
const int32_t filter_offset = params.weights_offset;
const int32_t output_offset = params.output_offset;
const int32_t output_multiplier = params.output_multiplier;
const int output_shift = params.output_shift;
const int32 output_activation_min = params.quantized_activation_min;
const int32 output_activation_max = params.quantized_activation_max;
const int32_t output_activation_min = params.quantized_activation_min;
const int32_t output_activation_max = params.quantized_activation_max;
TFLITE_DCHECK_GE(filter_shape.DimensionsCount(), 2);
TFLITE_DCHECK_GE(output_shape.DimensionsCount(), 1);
@@ -89,10 +89,10 @@ inline void FullyConnected(
const int accum_depth = filter_shape.Dims(filter_dim_count - 1);
for (int b = 0; b < batches; ++b) {
for (int out_c = 0; out_c < output_depth; ++out_c) {
int32 acc = 0;
int32_t acc = 0;
for (int d = 0; d < accum_depth; ++d) {
int32 input_val = input_data[b * accum_depth + d];
int32 filter_val = filter_data[out_c * accum_depth + d];
int32_t input_val = input_data[b * accum_depth + d];
int32_t filter_val = filter_data[out_c * accum_depth + d];
acc += (filter_val + filter_offset) * (input_val + input_offset);
}
if (bias_data) {
@@ -102,24 +102,24 @@ inline void FullyConnected(
acc += output_offset;
acc = std::max(acc, output_activation_min);
acc = std::min(acc, output_activation_max);
output_data[out_c + output_depth * b] = static_cast<uint8>(acc);
output_data[out_c + output_depth * b] = static_cast<uint8_t>(acc);
}
}
}
inline void FullyConnected(
const FullyConnectedParams& params, const RuntimeShape& input_shape,
const uint8* input_data, const RuntimeShape& filter_shape,
const uint8* filter_data, const RuntimeShape& bias_shape,
const int32* bias_data, const RuntimeShape& output_shape,
int16* output_data) {
const int32 input_offset = params.input_offset;
const int32 filter_offset = params.weights_offset;
const int32 output_offset = params.output_offset;
const int32 output_multiplier = params.output_multiplier;
const uint8_t* input_data, const RuntimeShape& filter_shape,
const uint8_t* filter_data, const RuntimeShape& bias_shape,
const int32_t* bias_data, const RuntimeShape& output_shape,
int16_t* output_data) {
const int32_t input_offset = params.input_offset;
const int32_t filter_offset = params.weights_offset;
const int32_t output_offset = params.output_offset;
const int32_t output_multiplier = params.output_multiplier;
const int output_shift = params.output_shift;
const int32 output_activation_min = params.quantized_activation_min;
const int32 output_activation_max = params.quantized_activation_max;
const int32_t output_activation_min = params.quantized_activation_min;
const int32_t output_activation_max = params.quantized_activation_max;
TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
TFLITE_DCHECK_EQ(output_offset, 0);
@@ -138,20 +138,21 @@ inline void FullyConnected(
for (int out_c = 0; out_c < output_depth; ++out_c) {
// Internal accumulation.
// Initialize accumulator with the bias-value.
int32 accum = bias_data[out_c];
int32_t accum = bias_data[out_c];
// Accumulation loop.
for (int d = 0; d < accum_depth; ++d) {
int16 input_val = input_data[b * accum_depth + d] + input_offset;
int16 filter_val = filter_data[out_c * accum_depth + d] + filter_offset;
int16_t input_val = input_data[b * accum_depth + d] + input_offset;
int16_t filter_val =
filter_data[out_c * accum_depth + d] + filter_offset;
accum += filter_val * input_val;
}
// Down-scale the final int32 accumulator to the scale used by our
// Down-scale the final int32_t accumulator to the scale used by our
// (16-bit, typically 3 integer bits) fixed-point format. The quantized
// multiplier and shift here have been pre-computed offline
// (e.g. by toco).
accum =
MultiplyByQuantizedMultiplier(accum, output_multiplier, output_shift);
// Saturate, cast to int16, and store to output array.
// Saturate, cast to int16_t, and store to output array.
accum = std::max(accum, output_activation_min - output_offset);
accum = std::min(accum, output_activation_max - output_offset);
accum += output_offset;
@@ -162,14 +163,14 @@ inline void FullyConnected(
inline void ShuffledFullyConnected(
const FullyConnectedParams& params, const RuntimeShape& input_shape,
const uint8* input_data, const RuntimeShape& weights_shape,
const uint8* shuffled_weights_data, const RuntimeShape& bias_shape,
const int32* bias_data, const RuntimeShape& output_shape,
int16* output_data, uint8* shuffled_input_workspace_data) {
const int32 output_multiplier = params.output_multiplier;
const uint8_t* input_data, const RuntimeShape& weights_shape,
const uint8_t* shuffled_weights_data, const RuntimeShape& bias_shape,
const int32_t* bias_data, const RuntimeShape& output_shape,
int16_t* output_data, uint8_t* shuffled_input_workspace_data) {
const int32_t output_multiplier = params.output_multiplier;
const int output_shift = params.output_shift;
const int32 output_activation_min = params.quantized_activation_min;
const int32 output_activation_max = params.quantized_activation_max;
const int32_t output_activation_min = params.quantized_activation_min;
const int32_t output_activation_max = params.quantized_activation_max;
TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
TFLITE_DCHECK_GE(input_shape.DimensionsCount(), 1);
@@ -190,7 +191,7 @@ inline void ShuffledFullyConnected(
TFLITE_DCHECK((output_depth % 4) == 0);
// Shuffling and xoring of input activations into the workspace buffer
uint8* shuffled_input_workspace_ptr = shuffled_input_workspace_data;
uint8_t* shuffled_input_workspace_ptr = shuffled_input_workspace_data;
if (batches == 1) {
for (int i = 0; i < accum_depth; i++) {
shuffled_input_workspace_data[i] = input_data[i] ^ 0x80;
@@ -198,13 +199,13 @@ inline void ShuffledFullyConnected(
} else if (batches == 4) {
for (int c = 0; c < accum_depth; c += 16) {
for (int b = 0; b < 4; b++) {
const uint8* src_data_ptr = input_data + b * accum_depth + c;
const uint8_t* src_data_ptr = input_data + b * accum_depth + c;
for (int j = 0; j < 16; j++) {
uint8 src_val = *src_data_ptr++;
uint8_t src_val = *src_data_ptr++;
// Flip the sign bit, so that the kernel will only need to
// reinterpret these uint8 values as int8, getting for free the
// reinterpret these uint8_t values as int8_t, getting for free the
// subtraction of the zero_point value 128.
uint8 dst_val = src_val ^ 0x80;
uint8_t dst_val = src_val ^ 0x80;
*shuffled_input_workspace_ptr++ = dst_val;
}
}
@@ -216,62 +217,62 @@ inline void ShuffledFullyConnected(
// Actual computation
if (batches == 1) {
int16* output_ptr = output_data;
int16_t* output_ptr = output_data;
// Shuffled weights have had their sign bit (0x80) pre-flipped (xor'd)
// so that just reinterpreting them as int8 values is equivalent to
// so that just reinterpreting them as int8_t values is equivalent to
// subtracting 128 from them, thus implementing for free the subtraction of
// the zero_point value 128.
const int8* shuffled_weights_ptr =
reinterpret_cast<const int8*>(shuffled_weights_data);
const int8_t* shuffled_weights_ptr =
reinterpret_cast<const int8_t*>(shuffled_weights_data);
// Likewise, we preshuffled and pre-xored the input data above.
const int8* shuffled_input_data =
reinterpret_cast<const int8*>(shuffled_input_workspace_data);
const int8_t* shuffled_input_data =
reinterpret_cast<const int8_t*>(shuffled_input_workspace_data);
for (int c = 0; c < output_depth; c += 4) {
// Internal accumulation.
// Initialize accumulator with the bias-value.
int32 accum[4] = {0};
int32_t accum[4] = {0};
// Accumulation loop.
for (int d = 0; d < accum_depth; d += 16) {
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 16; j++) {
int8 input_val = shuffled_input_data[d + j];
int8 weights_val = *shuffled_weights_ptr++;
int8_t input_val = shuffled_input_data[d + j];
int8_t weights_val = *shuffled_weights_ptr++;
accum[i] += weights_val * input_val;
}
}
}
for (int i = 0; i < 4; i++) {
// Add bias value
int32 acc = accum[i] + bias_data[c + i];
// Down-scale the final int32 accumulator to the scale used by our
int32_t acc = accum[i] + bias_data[c + i];
// Down-scale the final int32_t accumulator to the scale used by our
// (16-bit, typically 3 integer bits) fixed-point format. The quantized
// multiplier and shift here have been pre-computed offline
// (e.g. by toco).
acc =
MultiplyByQuantizedMultiplier(acc, output_multiplier, output_shift);
// Saturate, cast to int16, and store to output array.
// Saturate, cast to int16_t, and store to output array.
acc = std::max(acc, output_activation_min);
acc = std::min(acc, output_activation_max);
output_ptr[c + i] = acc;
}
}
} else if (batches == 4) {
int16* output_ptr = output_data;
int16_t* output_ptr = output_data;
// Shuffled weights have had their sign bit (0x80) pre-flipped (xor'd)
// so that just reinterpreting them as int8 values is equivalent to
// so that just reinterpreting them as int8_t values is equivalent to
// subtracting 128 from them, thus implementing for free the subtraction of
// the zero_point value 128.
const int8* shuffled_weights_ptr =
reinterpret_cast<const int8*>(shuffled_weights_data);
const int8_t* shuffled_weights_ptr =
reinterpret_cast<const int8_t*>(shuffled_weights_data);
// Likewise, we preshuffled and pre-xored the input data above.
const int8* shuffled_input_data =
reinterpret_cast<const int8*>(shuffled_input_workspace_data);
const int8_t* shuffled_input_data =
reinterpret_cast<const int8_t*>(shuffled_input_workspace_data);
for (int c = 0; c < output_depth; c += 4) {
const int8* shuffled_input_ptr = shuffled_input_data;
const int8_t* shuffled_input_ptr = shuffled_input_data;
// Accumulation loop.
// Internal accumulation.
// Initialize accumulator with the bias-value.
int32 accum[4][4];
int32_t accum[4][4];
for (int i = 0; i < 4; i++) {
for (int b = 0; b < 4; b++) {
accum[i][b] = 0;
@@ -281,8 +282,8 @@ inline void ShuffledFullyConnected(
for (int i = 0; i < 4; i++) {
for (int b = 0; b < 4; b++) {
for (int j = 0; j < 16; j++) {
int8 input_val = shuffled_input_ptr[16 * b + j];
int8 weights_val = shuffled_weights_ptr[16 * i + j];
int8_t input_val = shuffled_input_ptr[16 * b + j];
int8_t weights_val = shuffled_weights_ptr[16 * i + j];
accum[i][b] += weights_val * input_val;
}
}
@@ -293,14 +294,14 @@ inline void ShuffledFullyConnected(
for (int i = 0; i < 4; i++) {
for (int b = 0; b < 4; b++) {
// Add bias value
int32 acc = accum[i][b] + bias_data[c + i];
// Down-scale the final int32 accumulator to the scale used by our
int32_t acc = accum[i][b] + bias_data[c + i];
// Down-scale the final int32_t accumulator to the scale used by our
// (16-bit, typically 3 integer bits) fixed-point format. The
// quantized multiplier and shift here have been pre-computed offline
// (e.g. by toco).
acc = MultiplyByQuantizedMultiplier(acc, output_multiplier,
output_shift);
// Saturate, cast to int16, and store to output array.
// Saturate, cast to int16_t, and store to output array.
acc = std::max(acc, output_activation_min);
acc = std::min(acc, output_activation_max);
output_ptr[b * output_depth + c + i] = acc;

View File

@@ -0,0 +1,166 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ACTIVATIONS_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ACTIVATIONS_H_
#include "ruy/profiler/instrumentation.h" // from @ruy
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
namespace reference_ops {
inline int16_t SaturatingLeftShift(int16_t value, int amount) {
int32_t result = static_cast<int32_t>(value) * (1 << amount);
result = std::min<int32_t>(result, std::numeric_limits<int16_t>::max());
result = std::max<int32_t>(result, std::numeric_limits<int16_t>::min());
return result;
}
// Similar to ARM instruction SQDMULH.
// Similar to gemmlowp::SaturatingRoundingDoublingHighMul except
// rounding to zero instead of to nearest (SQRDMULH).
inline std::int16_t SaturatingDoublingHighMul(std::int16_t a, std::int16_t b) {
bool overflow = a == b && a == std::numeric_limits<std::int16_t>::min();
std::int32_t a_32(a);
std::int32_t b_32(b);
std::int32_t ab_32 = a_32 * b_32;
std::int16_t ab_x2_high16 = static_cast<std::int16_t>((ab_32) / (1 << 15));
return overflow ? std::numeric_limits<std::int16_t>::max() : ab_x2_high16;
}
template <typename T>
inline void HardSwish(const RuntimeShape& input_shape, const T* input_data,
const RuntimeShape& output_shape, T* output_data) {
ruy::profiler::ScopeLabel label("ReferenceHardSwish/Float");
auto matching_size = MatchingFlatSize(input_shape, output_shape);
const T* in_end = input_data + matching_size;
for (; input_data < in_end; input_data++, output_data++) {
const float in = *input_data;
*output_data =
in * std::min(static_cast<T>(6), std::max(static_cast<T>(0), in + 3)) /
6;
}
}
template <typename T>
inline void HardSwish(const HardSwishParams& params,
const RuntimeShape& input_shape, const T* input_data,
const RuntimeShape& output_shape, T* output_data) {
ruy::profiler::ScopeLabel label("ReferenceHardSwish/Quantized");
const int flat_size = MatchingFlatSize(input_shape, output_shape);
for (int i = 0; i < flat_size; i++) {
const int16_t input_value = input_data[i] - params.input_zero_point;
// Left-shift as much as we can without overflow/saturation to put
// significant bits in the high bits of our 16-bit fixedpoint values, so
// that fixed-point approximate computations below are as accurate as
// possible.
const int16_t input_value_on_hires_input_scale = input_value * (1 << 7);
// Compute the input value on essentially the output scale, just not
// right-shifted yet. This is the value that we'll use in the (x >= +3)
// case, and that in the general case we'll multiply against the "relu-ish"
// fixed-point multiplier in [0, 1].
const int16_t input_value_on_preshift_output_scale =
gemmlowp::SaturatingRoundingDoublingHighMul(
input_value_on_hires_input_scale,
params.output_multiplier_fixedpoint_int16);
// Now compute the "relu-ish multiplier". In the (-3 <= x <= +3) case, that
// is just an affine rescaling of x from [-3, 3] to [0, 1]. In the general
// case, it is just that plus saturation at the boundaries of [-3, 3].
// First, we rescale from [-3, 3] to [-1, 1], saturating.
// That is done by rescaling the input value with a fixed-point multiplier
// (reluish_multiplier_fixedpoint) and bit-shift such that we represent
// that input value on the scale where the real value 3.0f is represented
// by the quantized value 32768. (+32768 is actually not representable as
// int16_t, so this saturates at +32767, and that is seen empirically to be
// a negligible contribution to numerical error/bias).
//
// This code is careful to correctly implement any magnitude of multiplier,
// involving either a right shift or a left shift, with correct saturation
// behavior in the left-shift case. This forces this code to be more
// complicated, but is necessary for real applications: a partially
// trained quantized MobileNet v3-small model that motivated this code
// exhibits some large [min, max] range boundaries, of the order of
// magnitude of 10 or 100 depending on layers.
//
// The next few lines are basically just an ordinary
// MultiplyByQuantizedMultiplier, except that we are more careful here
// about the fine details of saturation when left-shifting, because here
// overflow in left-shift is a common case, not an anomaly as
// MultiplyByQuantizedMultiplier assumes.
int16_t reluish_value = input_value_on_hires_input_scale;
// Shift left, saturating, as much as we can while ensuring that this
// saturation will not contribute to the result. That is, left shift amount
// reduced by 1.
if (params.reluish_multiplier_exponent > 0) {
reluish_value = SaturatingLeftShift(
reluish_value, params.reluish_multiplier_exponent - 1);
}
// Apply the fixed-point multiplier, dividing the value by a divisor
// ranging in [1, 2].
reluish_value = gemmlowp::SaturatingRoundingDoublingHighMul(
reluish_value, params.reluish_multiplier_fixedpoint_int16);
// Apply the last bit of left-shift. Thus, in the left-shifting case, if
// any saturation affects the result, it is happening here --- any
// saturation having occurred above is overwritten here, not affecting the
// result.
if (params.reluish_multiplier_exponent > 0) {
reluish_value = SaturatingLeftShift(reluish_value, 1);
}
// Shift right, in the right-shifting case.
if (params.reluish_multiplier_exponent < 0) {
reluish_value = gemmlowp::RoundingDivideByPOT(
reluish_value, -params.reluish_multiplier_exponent);
}
// At this point we have rescaled the value into a 16bit fixedpoint
// reluish_value in [-1, 1].
// We now convert that to a 16bit fixedpoint value in [0, 1].
reluish_value = (reluish_value + (1 << 15)) >> 1;
// Use of SaturatingDoublingHighMul here is important to cancel the biases
// from the above SaturatingRoundingDoublingHighMul.
//
// On a partially trained MobileNet-v3-small,
//
// | bias on | ImageNet
// | quantized | Top-1
// Operation used here | values | accuracy (50k)
// --------------------------------------+------------+-----------
// SaturatingDoublingHighMul | -0.0024 | 58.920
// SaturatingRoundingDoublingHighMul | -0.0067 | 58.064
//
// In activations_test, this is covered by this testcase:
// QuantizedActivationsOpTest.HardSwishBias
//
const int16_t preshift_output_value = SaturatingDoublingHighMul(
reluish_value, input_value_on_preshift_output_scale);
// We were so far operating on the pre-shift output scale. Now we finally
// apply that output shift, arriving at the final output scale.
int16_t output_value = gemmlowp::RoundingDivideByPOT(
preshift_output_value, -params.output_multiplier_exponent);
output_value += params.output_zero_point;
output_value =
std::min<int16_t>(output_value, std::numeric_limits<T>::max());
output_value =
std::max<int16_t>(output_value, std::numeric_limits<T>::min());
output_data[i] = output_value;
}
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_CONV_H_

View File

@@ -23,34 +23,41 @@ limitations under the License.
namespace tflite {
namespace reference_integer_ops {
inline void CheckArithmeticParams(const ArithmeticParams& params) {
TFLITE_DCHECK_LE(params.quantized_activation_min,
params.quantized_activation_max);
// Input offset is negative input zero point. Activation tensors are
// asymmetric quantized so they span the full int8 range.
TFLITE_DCHECK_GE(-params.input1_offset, std::numeric_limits<int8_t>::min());
TFLITE_DCHECK_GE(-params.input2_offset, std::numeric_limits<int8_t>::min());
TFLITE_DCHECK_LE(-params.input1_offset, std::numeric_limits<int8_t>::max());
TFLITE_DCHECK_LE(-params.input2_offset, std::numeric_limits<int8_t>::max());
}
// Element-wise add that can often be used for inner loop of broadcast add as
// well as the non-broadcast add.
inline void AddElementwise(int size, const ArithmeticParams& params,
const int8_t* input1_data, const int8_t* input2_data,
int8_t* output_data) {
const int32_t int8_max_value = std::numeric_limits<int8_t>::max();
TFLITE_DCHECK_GE(params.input1_offset, -1 * int8_max_value);
TFLITE_DCHECK_GE(params.input2_offset, -1 * int8_max_value);
TFLITE_DCHECK_LE(params.input1_offset, int8_max_value);
TFLITE_DCHECK_LE(params.input2_offset, int8_max_value);
CheckArithmeticParams(params);
for (int i = 0; i < size; ++i) {
const int32 input1_val = params.input1_offset + input1_data[i];
const int32 input2_val = params.input2_offset + input2_data[i];
const int32 shifted_input1_val = input1_val * (1 << params.left_shift);
const int32 shifted_input2_val = input2_val * (1 << params.left_shift);
const int32 scaled_input1_val =
const int32_t input1_val = params.input1_offset + input1_data[i];
const int32_t input2_val = params.input2_offset + input2_data[i];
const int32_t shifted_input1_val = input1_val * (1 << params.left_shift);
const int32_t shifted_input2_val = input2_val * (1 << params.left_shift);
const int32_t scaled_input1_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input1_val, params.input1_multiplier, params.input1_shift);
const int32 scaled_input2_val =
const int32_t scaled_input2_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input2_val, params.input2_multiplier, params.input2_shift);
const int32 raw_sum = scaled_input1_val + scaled_input2_val;
const int32 raw_output =
const int32_t raw_sum = scaled_input1_val + scaled_input2_val;
const int32_t raw_output =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
raw_sum, params.output_multiplier, params.output_shift) +
params.output_offset;
const int32 clamped_output =
const int32_t clamped_output =
std::min(params.quantized_activation_max,
std::max(params.quantized_activation_min, raw_output));
output_data[i] = static_cast<int8_t>(clamped_output);
@@ -61,16 +68,11 @@ inline void Add(const ArithmeticParams& params,
const RuntimeShape& input1_shape, const int8_t* input1_data,
const RuntimeShape& input2_shape, const int8_t* input2_data,
const RuntimeShape& output_shape, int8_t* output_data) {
TFLITE_DCHECK_LE(params.quantized_activation_min,
params.quantized_activation_max);
CheckArithmeticParams(params);
const int flat_size =
MatchingElementsSize(input1_shape, input2_shape, output_shape);
const int32_t int8_max_value = std::numeric_limits<int8_t>::max();
TFLITE_DCHECK_GE(params.input1_offset, -1 * int8_max_value);
TFLITE_DCHECK_GE(params.input2_offset, -1 * int8_max_value);
TFLITE_DCHECK_LE(params.input1_offset, int8_max_value);
TFLITE_DCHECK_LE(params.input2_offset, int8_max_value);
AddElementwise(flat_size, params, input1_data, input2_data, output_data);
}

View File

@@ -22,27 +22,27 @@ namespace reference_integer_ops {
// Fixed-point per-channel-quantization convolution reference kernel.
inline void ConvPerChannel(
const ConvParams& params, const int32* output_multiplier,
const int32* output_shift, const RuntimeShape& input_shape,
const int8* input_data, const RuntimeShape& filter_shape,
const int8* filter_data, const RuntimeShape& bias_shape,
const int32* bias_data, const RuntimeShape& output_shape,
int8* output_data) {
const ConvParams& params, const int32_t* output_multiplier,
const int32_t* output_shift, const RuntimeShape& input_shape,
const int8_t* input_data, const RuntimeShape& filter_shape,
const int8_t* filter_data, const RuntimeShape& bias_shape,
const int32_t* bias_data, const RuntimeShape& output_shape,
int8_t* output_data) {
// Get parameters.
const int32 input_offset = params.input_offset; // r = s(q - Z)
const int32_t input_offset = params.input_offset; // r = s(q - Z)
const int stride_width = params.stride_width;
const int stride_height = params.stride_height;
const int dilation_width_factor = params.dilation_width_factor;
const int dilation_height_factor = params.dilation_height_factor;
const int pad_width = params.padding_values.width;
const int pad_height = params.padding_values.height;
const int32 output_offset = params.output_offset;
const int32_t output_offset = params.output_offset;
// Set min and max value of the output.
const int32 output_activation_min = params.quantized_activation_min;
const int32 output_activation_max = params.quantized_activation_max;
const int32_t output_activation_min = params.quantized_activation_min;
const int32_t output_activation_max = params.quantized_activation_max;
// Sanity check.
// Consistency check.
TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4);
@@ -63,45 +63,47 @@ inline void ConvPerChannel(
const int output_width = output_shape.Dims(2);
for (int batch = 0; batch < batches; ++batch) {
for (int out_y = 0; out_y < output_height; ++out_y) {
const int in_y_origin = (out_y * stride_height) - pad_height;
for (int out_x = 0; out_x < output_width; ++out_x) {
const int in_x_origin = (out_x * stride_width) - pad_width;
for (int out_channel = 0; out_channel < output_depth; ++out_channel) {
const int in_x_origin = (out_x * stride_width) - pad_width;
const int in_y_origin = (out_y * stride_height) - pad_height;
int32 acc = 0;
int32_t acc = 0;
for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
const int in_y = in_y_origin + dilation_height_factor * filter_y;
for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
const int in_x = in_x_origin + dilation_width_factor * filter_x;
// Zero padding by omitting the areas outside the image.
const bool is_point_inside_image =
(in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
(in_y < input_height);
if (!is_point_inside_image) {
continue;
}
for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
const int in_x = in_x_origin + dilation_width_factor * filter_x;
const int in_y =
in_y_origin + dilation_height_factor * filter_y;
// Zero padding by omitting the areas outside the image.
const bool is_point_inside_image =
(in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
(in_y < input_height);
if (is_point_inside_image) {
int32 input_val = input_data[Offset(input_shape, batch, in_y,
int32_t input_val = input_data[Offset(input_shape, batch, in_y,
in_x, in_channel)];
int32 filter_val =
filter_data[Offset(filter_shape, out_channel, filter_y,
filter_x, in_channel)];
// Accumulate with 32 bits accumulator.
// In the nudging process during model quantization, we force
// real value of 0.0 be represented by a quantized value. This
// guarantees that the input_offset is a int8, even though it
// is represented using int32.
// int32 += int8 * (int8 - int8) so the highest value we can
// get from each accumulation is [-127, 127] * ([-128, 127] -
// [-128, 127]), which is [-32512, 32512]. log2(32512)
// = 14.98, which means we can accumulate at least 2^16
// multiplications without overflow. The accumulator is
// applied to a filter so the accumulation logic will hold as
// long as the filter size (filter_y * filter_x * in_channel)
// does not exceed 2^16, which is the case in all the models
// we have seen so far.
// TODO(jianlijianli): Add a check to make sure the
// accumulator depth is smaller than 2^16.
acc += filter_val * (input_val + input_offset);
}
int32_t filter_val = filter_data[Offset(
filter_shape, out_channel, filter_y, filter_x, in_channel)];
// Accumulate with 32 bits accumulator.
// In the nudging process during model quantization, we force
// real value of 0.0 be represented by a quantized value. This
// guarantees that the input_offset is a int8_t, even though
// it is represented using int32_t. int32_t += int8_t *
// (int8_t - int8_t) so the highest value we can get from each
// accumulation is [-127, 127] * ([-128, 127] -
// [-128, 127]), which is [-32512, 32512]. log2(32512)
// = 14.98, which means we can accumulate at least 2^16
// multiplications without overflow. The accumulator is
// applied to a filter so the accumulation logic will hold as
// long as the filter size (filter_y * filter_x * in_channel)
// does not exceed 2^16, which is the case in all the models
// we have seen so far.
// TODO(jianlijianli): Add a check to make sure the
// accumulator depth is smaller than 2^16.
acc += filter_val * (input_val + input_offset);
}
}
}
@@ -125,12 +127,12 @@ inline void ConvPerChannel(
// Fixed-point per-channel-quantization convolution reference kernel.
// 16-bit data and 8-bit filter
inline void ConvPerChannel(
const ConvParams& params, const int32* output_multiplier,
const int32* output_shift, const RuntimeShape& input_shape,
const int16* input_data, const RuntimeShape& filter_shape,
const int8* filter_data, const RuntimeShape& bias_shape,
const ConvParams& params, const int32_t* output_multiplier,
const int32_t* output_shift, const RuntimeShape& input_shape,
const int16_t* input_data, const RuntimeShape& filter_shape,
const int8_t* filter_data, const RuntimeShape& bias_shape,
const std::int64_t* bias_data, const RuntimeShape& output_shape,
int16* output_data) {
int16_t* output_data) {
// Get parameters.
const int stride_width = params.stride_width;
const int stride_height = params.stride_height;
@@ -140,10 +142,10 @@ inline void ConvPerChannel(
const int pad_height = params.padding_values.height;
// Set min and max value of the output.
const int32 output_activation_min = params.quantized_activation_min;
const int32 output_activation_max = params.quantized_activation_max;
const int32_t output_activation_min = params.quantized_activation_min;
const int32_t output_activation_max = params.quantized_activation_max;
// Sanity check.
// Consistency check.
TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4);
@@ -164,35 +166,37 @@ inline void ConvPerChannel(
const int output_width = output_shape.Dims(2);
for (int batch = 0; batch < batches; ++batch) {
for (int out_y = 0; out_y < output_height; ++out_y) {
const int in_y_origin = (out_y * stride_height) - pad_height;
for (int out_x = 0; out_x < output_width; ++out_x) {
const int in_x_origin = (out_x * stride_width) - pad_width;
for (int out_channel = 0; out_channel < output_depth; ++out_channel) {
const int in_x_origin = (out_x * stride_width) - pad_width;
const int in_y_origin = (out_y * stride_height) - pad_height;
std::int64_t acc = 0;
for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
const int in_y = in_y_origin + dilation_height_factor * filter_y;
for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
const int in_x = in_x_origin + dilation_width_factor * filter_x;
// Zero padding by omitting the areas outside the image.
const bool is_point_inside_image =
(in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
(in_y < input_height);
if (!is_point_inside_image) {
continue;
}
for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
const int in_x = in_x_origin + dilation_width_factor * filter_x;
const int in_y =
in_y_origin + dilation_height_factor * filter_y;
// Zero padding by omitting the areas outside the image.
const bool is_point_inside_image =
(in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
(in_y < input_height);
if (is_point_inside_image) {
int32 input_val = input_data[Offset(input_shape, batch, in_y,
int32_t input_val = input_data[Offset(input_shape, batch, in_y,
in_x, in_channel)];
int32 filter_val =
filter_data[Offset(filter_shape, out_channel, filter_y,
filter_x, in_channel)];
// Accumulate with 64 bits accumulator.
// int64 += int8 * int16 so the highest value we can
// get from each accumulation is [-127, 127] * ([-32768,
// 32767] -
// [-32768, 32767]), which is [-8322945, 8322945].
// log2(8322945) = 22.99.
acc += filter_val * input_val;
}
int32_t filter_val = filter_data[Offset(
filter_shape, out_channel, filter_y, filter_x, in_channel)];
// Accumulate with 64 bits accumulator.
// int64_t += int8_t * int16_t so the highest value we can
// get from each accumulation is [-127, 127] * ([-32768,
// 32767] -
// [-32768, 32767]), which is [-8322945, 8322945].
// log2(8322945) = 22.99.
acc += filter_val * input_val;
}
}
}

View File

@@ -20,12 +20,12 @@ limitations under the License.
namespace tflite {
namespace reference_integer_ops {
inline void DepthwiseConvPerChannel(
const DepthwiseParams& params, const int32* output_multiplier,
const int32* output_shift, const RuntimeShape& input_shape,
const int8* input_data, const RuntimeShape& filter_shape,
const int8* filter_data, const RuntimeShape& bias_shape,
const int32* bias_data, const RuntimeShape& output_shape,
int8* output_data) {
const DepthwiseParams& params, const int32_t* output_multiplier,
const int32_t* output_shift, const RuntimeShape& input_shape,
const int8_t* input_data, const RuntimeShape& filter_shape,
const int8_t* filter_data, const RuntimeShape& bias_shape,
const int32_t* bias_data, const RuntimeShape& output_shape,
int8_t* output_data) {
// Get parameters.
// TODO(b/141565753): Re-introduce ScopedProfilingLabel on Micro.
const int stride_width = params.stride_width;
@@ -35,10 +35,10 @@ inline void DepthwiseConvPerChannel(
const int pad_width = params.padding_values.width;
const int pad_height = params.padding_values.height;
const int depth_multiplier = params.depth_multiplier;
const int32 input_offset = params.input_offset;
const int32 output_offset = params.output_offset;
const int32 output_activation_min = params.quantized_activation_min;
const int32 output_activation_max = params.quantized_activation_max;
const int32_t input_offset = params.input_offset;
const int32_t output_offset = params.output_offset;
const int32_t output_activation_min = params.quantized_activation_min;
const int32_t output_activation_max = params.quantized_activation_max;
// Check dimensions of the tensors.
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
@@ -66,7 +66,7 @@ inline void DepthwiseConvPerChannel(
const int output_channel = m + in_channel * depth_multiplier;
const int in_x_origin = (out_x * stride_width) - pad_width;
const int in_y_origin = (out_y * stride_height) - pad_height;
int32 acc = 0;
int32_t acc = 0;
for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
const int in_x = in_x_origin + dilation_width_factor * filter_x;
@@ -77,17 +77,17 @@ inline void DepthwiseConvPerChannel(
(in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
(in_y < input_height);
if (is_point_inside_image) {
int32 input_val = input_data[Offset(input_shape, batch, in_y,
in_x, in_channel)];
int32 filter_val = filter_data[Offset(
int32_t input_val = input_data[Offset(
input_shape, batch, in_y, in_x, in_channel)];
int32_t filter_val = filter_data[Offset(
filter_shape, 0, filter_y, filter_x, output_channel)];
// Accumulate with 32 bits accumulator.
// In the nudging process during model quantization, we force
// real value of 0.0 be represented by a quantized value. This
// guarantees that the input_offset is a int8, even though it
// is represented using int32.
// int32 += int8 * (int8 - int8) so the highest value we can
// get from each accumulation is [-127, 127] * ([-128, 127] -
// guarantees that the input_offset is a int8_t, even though
// it is represented using int32_t. int32_t += int8_t *
// (int8_t - int8_t) so the highest value we can get from each
// accumulation is [-127, 127] * ([-128, 127] -
// [-128, 127]), which is [-32512, 32512]. log2(32512)
// = 14.98, which means we can accumulate at least 2^16
// multiplications without overflow. The accumulator is
@@ -120,12 +120,12 @@ inline void DepthwiseConvPerChannel(
}
inline void DepthwiseConvPerChannel(
const DepthwiseParams& params, const int32* output_multiplier,
const int32* output_shift, const RuntimeShape& input_shape,
const int16* input_data, const RuntimeShape& filter_shape,
const int8* filter_data, const RuntimeShape& bias_shape,
const DepthwiseParams& params, const int32_t* output_multiplier,
const int32_t* output_shift, const RuntimeShape& input_shape,
const int16_t* input_data, const RuntimeShape& filter_shape,
const int8_t* filter_data, const RuntimeShape& bias_shape,
const std::int64_t* bias_data, const RuntimeShape& output_shape,
int16* output_data) {
int16_t* output_data) {
// Get parameters.
const int stride_width = params.stride_width;
const int stride_height = params.stride_height;
@@ -134,8 +134,8 @@ inline void DepthwiseConvPerChannel(
const int pad_width = params.padding_values.width;
const int pad_height = params.padding_values.height;
const int depth_multiplier = params.depth_multiplier;
const int32 output_activation_min = params.quantized_activation_min;
const int32 output_activation_max = params.quantized_activation_max;
const int32_t output_activation_min = params.quantized_activation_min;
const int32_t output_activation_max = params.quantized_activation_max;
// Check dimensions of the tensors.
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
@@ -174,9 +174,9 @@ inline void DepthwiseConvPerChannel(
(in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
(in_y < input_height);
if (is_point_inside_image) {
int32 input_val = input_data[Offset(input_shape, batch, in_y,
in_x, in_channel)];
int32 filter_val = filter_data[Offset(
int32_t input_val = input_data[Offset(
input_shape, batch, in_y, in_x, in_channel)];
int32_t filter_val = filter_data[Offset(
filter_shape, 0, filter_y, filter_x, output_channel)];
// Accumulate with 64 bits accumulator.
// We assume maximum of 2^16 accumulations as with the 8-bit
@@ -190,7 +190,7 @@ inline void DepthwiseConvPerChannel(
if (bias_data) {
acc += bias_data[output_channel];
}
int32 scaled_acc = MultiplyByQuantizedMultiplier(
int32_t scaled_acc = MultiplyByQuantizedMultiplier(
acc, output_multiplier[output_channel],
output_shift[output_channel]);
scaled_acc = std::max(scaled_acc, output_activation_min);
@@ -207,8 +207,8 @@ inline void DepthwiseConvPerChannel(
inline void DepthwiseConvHybridPerChannel(
const DepthwiseParams& params, float* scaling_factors_ptr,
const RuntimeShape& input_shape, const int8* input_data,
const RuntimeShape& filter_shape, const int8* filter_data,
const RuntimeShape& input_shape, const int8_t* input_data,
const RuntimeShape& filter_shape, const int8_t* filter_data,
const RuntimeShape& bias_shape, const float* bias_data,
const RuntimeShape& output_shape, float* output_data,
const float* per_channel_scale, int32_t* input_offset) {
@@ -247,7 +247,7 @@ inline void DepthwiseConvHybridPerChannel(
const int output_channel = m + in_channel * depth_multiplier;
const int in_x_origin = (out_x * stride_width) - pad_width;
const int in_y_origin = (out_y * stride_height) - pad_height;
int32 acc = 0;
int32_t acc = 0;
for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
const int in_x = in_x_origin + dilation_width_factor * filter_x;
@@ -258,9 +258,9 @@ inline void DepthwiseConvHybridPerChannel(
(in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
(in_y < input_height);
if (is_point_inside_image) {
int32 input_val = input_data[Offset(input_shape, batch, in_y,
in_x, in_channel)];
int32 filter_val = filter_data[Offset(
int32_t input_val = input_data[Offset(
input_shape, batch, in_y, in_x, in_channel)];
int32_t filter_val = filter_data[Offset(
filter_shape, 0, filter_y, filter_x, output_channel)];
acc += filter_val * (input_val - input_offset[batch]);
}

View File

@@ -24,15 +24,15 @@ inline void FullyConnected(
const FullyConnectedParams& params, const RuntimeShape& input_shape,
const int8_t* input_data, const RuntimeShape& filter_shape,
const int8_t* filter_data, const RuntimeShape& bias_shape,
const int32* bias_data, const RuntimeShape& output_shape,
const int32_t* bias_data, const RuntimeShape& output_shape,
int8_t* output_data) {
const int32 input_offset = params.input_offset;
const int32 filter_offset = params.weights_offset;
const int32 output_offset = params.output_offset;
const int32 output_multiplier = params.output_multiplier;
const int32_t input_offset = params.input_offset;
const int32_t filter_offset = params.weights_offset;
const int32_t output_offset = params.output_offset;
const int32_t output_multiplier = params.output_multiplier;
const int output_shift = params.output_shift;
const int32 output_activation_min = params.quantized_activation_min;
const int32 output_activation_max = params.quantized_activation_max;
const int32_t output_activation_min = params.quantized_activation_min;
const int32_t output_activation_max = params.quantized_activation_max;
TFLITE_DCHECK_GE(filter_shape.DimensionsCount(), 2);
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 2);
@@ -44,10 +44,10 @@ inline void FullyConnected(
const int accum_depth = filter_shape.Dims(filter_dim_count - 1);
for (int b = 0; b < batches; ++b) {
for (int out_c = 0; out_c < output_depth; ++out_c) {
int32 acc = 0;
int32_t acc = 0;
for (int d = 0; d < accum_depth; ++d) {
int32 input_val = input_data[b * accum_depth + d];
int32 filter_val = filter_data[out_c * accum_depth + d];
int32_t input_val = input_data[b * accum_depth + d];
int32_t filter_val = filter_data[out_c * accum_depth + d];
acc += (filter_val + filter_offset) * (input_val + input_offset);
}
if (bias_data) {
@@ -68,11 +68,11 @@ inline void FullyConnected(
const int8_t* filter_data, const RuntimeShape& bias_shape,
const int64_t* bias_data, const RuntimeShape& output_shape,
int16_t* output_data) {
const int32 filter_offset = params.weights_offset;
const int32 output_multiplier = params.output_multiplier;
const int32_t filter_offset = params.weights_offset;
const int32_t output_multiplier = params.output_multiplier;
const int output_shift = params.output_shift;
const int32 output_activation_min = params.quantized_activation_min;
const int32 output_activation_max = params.quantized_activation_max;
const int32_t output_activation_min = params.quantized_activation_min;
const int32_t output_activation_max = params.quantized_activation_max;
TFLITE_DCHECK_GE(filter_shape.DimensionsCount(), 2);
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 2);
@@ -86,8 +86,8 @@ inline void FullyConnected(
for (int out_c = 0; out_c < output_depth; ++out_c) {
int64_t acc = 0;
for (int d = 0; d < accum_depth; ++d) {
int32 input_val = input_data[b * accum_depth + d];
int32 filter_val = filter_data[out_c * accum_depth + d];
int32_t input_val = input_data[b * accum_depth + d];
int32_t filter_val = filter_data[out_c * accum_depth + d];
acc += (filter_val + filter_offset) * input_val;
}
if (bias_data) {

View File

@@ -21,8 +21,8 @@ namespace tflite {
namespace reference_integer_ops {
inline void L2Normalization(int32_t input_zero_point, int32_t outer_size,
int32_t depth, const int8* input_data,
int8* output_data) {
int32_t depth, const int8_t* input_data,
int8_t* output_data) {
static constexpr int8_t kMinInt8 = std::numeric_limits<int8_t>::min();
static constexpr int8_t kMaxInt8 = std::numeric_limits<int8_t>::max();
// The output scale must be in sync with Prepare().
@@ -30,7 +30,7 @@ inline void L2Normalization(int32_t input_zero_point, int32_t outer_size,
// to [-1, 127/128].
static constexpr int32_t kOutputScale = 7;
for (int outer_index = 0; outer_index < outer_size; ++outer_index) {
// int32 = (int8 - int8) ^ 2.
// int32_t = (int8_t - int8_t) ^ 2.
// ([-128, 127] - [-128, 127]) ^ 2 = [0, (2^8 - 1)^2] so the accumulator is
// safe from overflowing in at least 2^16 steps.
int32_t acc = 0;
@@ -55,7 +55,7 @@ inline void L2Normalization(int32_t input_zero_point, int32_t outer_size,
std::min(static_cast<int32_t>(kMaxInt8),
std::max(static_cast<int32_t>(kMinInt8), output_in_q24));
output_data[depth * outer_index + inner_index] =
static_cast<int8>(output_in_q24);
static_cast<int8_t>(output_in_q24);
}
}
}

View File

@@ -58,12 +58,15 @@ inline void Logistic(int32_t input_zero_point, int32_t input_range_radius,
}
}
inline void Logistic(int32_t input_size, const int16_t* ptr_input_data,
int16_t* ptr_output_data) {
inline void Logistic(int32_t input_multiplier, int32_t input_size,
const int16_t* ptr_input_data, int16_t* ptr_output_data) {
// We use the LUT for sigmoid and take into account, that
// tanh(x) = 2*sigmoid(2*x) - 1
int32_t input_data_mul = (input_multiplier > 0) ? input_multiplier : 1;
for (int i = 0; i < input_size; ++i, ptr_input_data++, ptr_output_data++) {
int32_t input_data = *ptr_input_data;
int32_t input_data = (*ptr_input_data) * input_data_mul;
// Scale by 3/4 to expand range [-8,8]->[-10.7,10.7] and
// we do interpolation on unsigned values.
@@ -72,13 +75,20 @@ inline void Logistic(int32_t input_size, const int16_t* ptr_input_data,
// We divide by 2 power of 9, because
// we need to divide by 2 in power of 7 for
// the input conversion + 1/4 from the scale above.
uint8_t uh = abs_input_data >> 9;
uint32_t ua = sigmoid_table_uint16[uh];
uint32_t ub = sigmoid_table_uint16[uh + 1];
uint32_t ut = abs_input_data & 0x1ff;
// Define uh as uint32_t type not to make this function overflow.
uint32_t uh = abs_input_data >> 9;
uint32_t result;
// Interpolation is done using the fractional bit.
uint32_t result = (ua << 9) + ut * (ub - ua);
if (uh >= 255) {
// Saturate to maximum.
result = 0x7FFF << 10;
} else {
uint32_t ua = sigmoid_table_uint16[uh];
uint32_t ub = sigmoid_table_uint16[uh + 1];
uint32_t ut = abs_input_data & 0x1ff;
// Interpolation is done using the fractional bit.
result = (ua << 9) + ut * (ub - ua);
}
result = (input_data >= 0) ? (result + (1 << 9))
: ((1 << (16 + 9)) - result + (1 << 9) - 1);

View File

@@ -0,0 +1,77 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_MEAN_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_MEAN_H_
#include "tensorflow/lite/kernels/internal/common.h"
namespace tflite {
namespace reference_integer_ops {
template <typename integer_type>
inline void Mean(const tflite::MeanParams& op_params, int32_t multiplier,
int32_t shift, const RuntimeShape& unextended_input_shape,
const integer_type* input_data, int32_t input_zero_point,
const RuntimeShape& unextended_output_shape,
integer_type* output_data, int32_t output_zero_point) {
// Current implementation only supports dimension equals 4 and simultaneous
// reduction over width and height.
TFLITE_CHECK_EQ(unextended_input_shape.DimensionsCount(), 4);
TFLITE_CHECK_LE(unextended_output_shape.DimensionsCount(), 4);
const RuntimeShape input_shape =
RuntimeShape::ExtendedShape(4, unextended_input_shape);
const RuntimeShape output_shape =
RuntimeShape::ExtendedShape(4, unextended_output_shape);
const int output_batch = output_shape.Dims(0);
const int output_height = output_shape.Dims(1);
const int output_width = output_shape.Dims(2);
const int output_depth = output_shape.Dims(3);
const int input_height = input_shape.Dims(1);
const int input_width = input_shape.Dims(2);
const int num_elements_in_axis = input_width * input_height;
TFLITE_CHECK_EQ(op_params.axis_count, 2);
TFLITE_CHECK((op_params.axis[0] == 1 && op_params.axis[1] == 2) ||
(op_params.axis[0] == 2 && op_params.axis[1] == 1));
TFLITE_CHECK_EQ(output_height, 1);
TFLITE_CHECK_EQ(output_width, 1);
static constexpr int32_t kMinInt = std::numeric_limits<integer_type>::min();
static constexpr int32_t kMaxInt = std::numeric_limits<integer_type>::max();
for (int out_b = 0; out_b < output_batch; ++out_b) {
for (int out_d = 0; out_d < output_depth; ++out_d) {
int32_t acc = 0;
for (int in_h = 0; in_h < input_height; ++in_h) {
for (int in_w = 0; in_w < input_width; ++in_w) {
acc += input_data[Offset(input_shape, out_b, in_h, in_w, out_d)] -
input_zero_point;
}
}
acc = MultiplyByQuantizedMultiplier(acc, multiplier, shift);
acc = acc > 0 ? (acc + num_elements_in_axis / 2) / num_elements_in_axis
: (acc - num_elements_in_axis / 2) / num_elements_in_axis;
acc += output_zero_point;
acc = std::min(std::max(acc, kMinInt), kMaxInt);
output_data[Offset(output_shape, out_b, 0, 0, out_d)] =
static_cast<integer_type>(acc);
}
}
}
} // namespace reference_integer_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_MEAN_H_

View File

@@ -27,14 +27,14 @@ inline void MulElementwise(int size, const ArithmeticParams& params,
const T* input1_data, const T* input2_data,
T* output_data) {
for (int i = 0; i < size; ++i) {
const int32 input1_val = params.input1_offset + input1_data[i];
const int32 input2_val = params.input2_offset + input2_data[i];
const int32 unclamped_result =
const int32_t input1_val = params.input1_offset + input1_data[i];
const int32_t input2_val = params.input2_offset + input2_data[i];
const int32_t unclamped_result =
params.output_offset +
MultiplyByQuantizedMultiplier(input1_val * input2_val,
params.output_multiplier,
params.output_shift);
const int32 clamped_output =
const int32_t clamped_output =
std::min(params.quantized_activation_max,
std::max(params.quantized_activation_min, unclamped_result));
output_data[i] = static_cast<T>(clamped_output);
@@ -57,13 +57,13 @@ inline void Mul(const ArithmeticParams& params,
// Mul with 16 bit inputs and int8_t outputs.
inline void Mul(const ArithmeticParams& params,
const RuntimeShape& input1_shape, const int16* input1_data,
const RuntimeShape& input2_shape, const int16* input2_data,
const RuntimeShape& input1_shape, const int16_t* input1_data,
const RuntimeShape& input2_shape, const int16_t* input2_data,
const RuntimeShape& output_shape, int8_t* output_data) {
ruy::profiler::ScopeLabel label("Mul/Int16Int8");
int32 output_offset = params.output_offset;
int32 output_activation_min = params.quantized_activation_min;
int32 output_activation_max = params.quantized_activation_max;
int32_t output_offset = params.output_offset;
int32_t output_activation_min = params.quantized_activation_min;
int32_t output_activation_max = params.quantized_activation_max;
TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
const int flat_size =
@@ -75,12 +75,12 @@ inline void Mul(const ArithmeticParams& params,
F0 unclamped_result =
F0::FromRaw(input1_data[i]) * F0::FromRaw(input2_data[i]);
int16 rescaled_result =
int16_t rescaled_result =
gemmlowp::RoundingDivideByPOT(unclamped_result.raw(), 8);
int16 clamped_result =
std::min<int16>(output_activation_max - output_offset, rescaled_result);
clamped_result =
std::max<int16>(output_activation_min - output_offset, clamped_result);
int16_t clamped_result = std::min<int16_t>(
output_activation_max - output_offset, rescaled_result);
clamped_result = std::max<int16_t>(output_activation_min - output_offset,
clamped_result);
output_data[i] = output_offset + clamped_result;
}
}
@@ -104,18 +104,18 @@ inline void BroadcastMul4DSlow(
for (int y = 0; y < extended_output_shape.Dims(1); ++y) {
for (int x = 0; x < extended_output_shape.Dims(2); ++x) {
for (int c = 0; c < extended_output_shape.Dims(3); ++c) {
const int32 input1_val =
const int32_t input1_val =
params.input1_offset +
input1_data[SubscriptToIndex(desc1, b, y, x, c)];
const int32 input2_val =
const int32_t input2_val =
params.input2_offset +
input2_data[SubscriptToIndex(desc2, b, y, x, c)];
const int32 unclamped_result =
const int32_t unclamped_result =
params.output_offset +
MultiplyByQuantizedMultiplier(input1_val * input2_val,
params.output_multiplier,
params.output_shift);
const int32 clamped_output = std::min(
const int32_t clamped_output = std::min(
params.quantized_activation_max,
std::max(params.quantized_activation_min, unclamped_result));
output_data[Offset(extended_output_shape, b, y, x, c)] =

View File

@@ -22,8 +22,9 @@ namespace tflite {
namespace reference_integer_ops {
inline void AveragePool(const PoolParams& params,
const RuntimeShape& input_shape, const int8* input_data,
const RuntimeShape& output_shape, int8* output_data) {
const RuntimeShape& input_shape,
const int8_t* input_data,
const RuntimeShape& output_shape, int8_t* output_data) {
TFLITE_DCHECK_LE(params.quantized_activation_min,
params.quantized_activation_max);
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
@@ -52,7 +53,7 @@ inline void AveragePool(const PoolParams& params,
const int filter_y_start = std::max(0, -in_y_origin);
const int filter_y_end =
std::min(params.filter_height, input_height - in_y_origin);
int32 acc = 0;
int32_t acc = 0;
int filter_count = 0;
for (int filter_y = filter_y_start; filter_y < filter_y_end;
++filter_y) {
@@ -71,7 +72,7 @@ inline void AveragePool(const PoolParams& params,
acc = std::max(acc, params.quantized_activation_min);
acc = std::min(acc, params.quantized_activation_max);
output_data[Offset(output_shape, batch, out_y, out_x, channel)] =
static_cast<int8>(acc);
static_cast<int8_t>(acc);
}
}
}
@@ -79,8 +80,8 @@ inline void AveragePool(const PoolParams& params,
}
inline void MaxPool(const PoolParams& params, const RuntimeShape& input_shape,
const int8* input_data, const RuntimeShape& output_shape,
int8* output_data) {
const int8_t* input_data, const RuntimeShape& output_shape,
int8_t* output_data) {
TFLITE_DCHECK_LE(params.quantized_activation_min,
params.quantized_activation_max);
TFLITE_DCHECK_GE(params.quantized_activation_min,
@@ -137,8 +138,9 @@ inline void MaxPool(const PoolParams& params, const RuntimeShape& input_shape,
inline void AveragePool(const PoolParams& params,
const RuntimeShape& input_shape,
const int16* input_data,
const RuntimeShape& output_shape, int16* output_data) {
const int16_t* input_data,
const RuntimeShape& output_shape,
int16_t* output_data) {
TFLITE_DCHECK_LE(params.quantized_activation_min,
params.quantized_activation_max);
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
@@ -167,7 +169,7 @@ inline void AveragePool(const PoolParams& params,
const int filter_y_start = std::max(0, -in_y_origin);
const int filter_y_end =
std::min(params.filter_height, input_height - in_y_origin);
int32 acc = 0;
int32_t acc = 0;
int filter_count = 0;
for (int filter_y = filter_y_start; filter_y < filter_y_end;
++filter_y) {
@@ -186,7 +188,7 @@ inline void AveragePool(const PoolParams& params,
acc = std::max(acc, params.quantized_activation_min);
acc = std::min(acc, params.quantized_activation_max);
output_data[Offset(output_shape, batch, out_y, out_x, channel)] =
static_cast<int16>(acc);
static_cast<int16_t>(acc);
}
}
}
@@ -194,8 +196,8 @@ inline void AveragePool(const PoolParams& params,
}
inline void MaxPool(const PoolParams& params, const RuntimeShape& input_shape,
const int16* input_data, const RuntimeShape& output_shape,
int16* output_data) {
const int16_t* input_data, const RuntimeShape& output_shape,
int16_t* output_data) {
TFLITE_DCHECK_LE(params.quantized_activation_min,
params.quantized_activation_max);
TFLITE_DCHECK_GE(params.quantized_activation_min,

View File

@@ -0,0 +1,110 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_TANH_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_TANH_H_
#include <limits>
#include "fixedpoint/fixedpoint.h"
#include "tensorflow/lite/kernels/internal/common.h"
namespace tflite {
namespace reference_integer_ops {
inline void Tanh(int32_t input_zero_point, int32_t input_range_radius,
int32_t input_multiplier, int32_t input_shift,
const RuntimeShape& input_shape, const int8_t* input_data,
const RuntimeShape& output_shape, int8_t* output_data) {
// Integer bits must be in sync with Prepare() function.
static constexpr int32_t kInputIntegerBits = 4;
static constexpr int32_t kOutputScale = 7;
static constexpr int32_t kMinInt8 = std::numeric_limits<int8_t>::min();
static constexpr int32_t kMaxInt8 = std::numeric_limits<int8_t>::max();
using F4 = gemmlowp::FixedPoint<int32_t, kInputIntegerBits>;
const int flat_size = MatchingFlatSize(input_shape, output_shape);
for (int i = 0; i < flat_size; ++i) {
const int32_t input =
static_cast<int32_t>(input_data[i]) - input_zero_point;
if (input <= -input_range_radius) {
output_data[i] = kMinInt8;
} else if (input >= input_range_radius) {
output_data[i] = kMaxInt8;
} else {
const int32_t input_in_q4 =
MultiplyByQuantizedMultiplier(input, input_multiplier, input_shift);
const int32_t output_in_q0 =
gemmlowp::tanh(F4::FromRaw(input_in_q4)).raw();
// Rescale and downcast.
using gemmlowp::RoundingDivideByPOT;
int32_t output_in_q24 =
RoundingDivideByPOT(output_in_q0, 31 - kOutputScale);
output_in_q24 = std::min(std::max(output_in_q24, kMinInt8), kMaxInt8);
output_data[i] = static_cast<int8_t>(output_in_q24);
}
}
}
inline void Tanh(int32_t input_multiplier, int32_t input_left_shift,
const RuntimeShape& input_shape, const int16_t* ptr_input_data,
const RuntimeShape& output_shape, int16_t* ptr_output_data) {
// We use the LUT for sigmoid and take into account, that
// tanh(x) = 2*sigmoid(2*x) - 1
int32_t input_data_mul = (input_multiplier > 0) ? input_multiplier : 1;
int flat_size = MatchingFlatSize(input_shape, output_shape);
for (int i = 0; i < flat_size; ++i, ptr_input_data++, ptr_output_data++) {
int32_t input_data = (*ptr_input_data) * input_data_mul;
if (input_left_shift == 1) {
input_data <<= 1;
}
// Scale by 3/4 to expand range [-8,8]->[-10.7,10.7].
uint32_t abs_input_data = 3 * abs(input_data);
uint32_t uh = abs_input_data >> 8;
int32_t result;
if (uh >= 255) {
// Saturate to maximum.
result = 0xFFFF << 8;
} else {
uint32_t ua = sigmoid_table_uint16[uh];
uint32_t ub = sigmoid_table_uint16[uh + 1];
uint8_t ut = abs_input_data & 0xFF;
result = (ua << 8) + ut * (ub - ua);
}
result = (input_data >= 0)
? (result - (1 << (14 + 9)) + (1 << (9 - 2)))
: (-result + (1 << (14 + 9)) + (1 << (9 - 2)) - 1);
// Convert back to 16-bit.
result >>= (9 - 1);
*ptr_output_data = result;
}
}
} // namespace reference_integer_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_TANH_H_

View File

@@ -52,40 +52,39 @@ inline void L2Normalization(const tflite::L2NormalizationParams& op_params,
inline void L2Normalization(const tflite::L2NormalizationParams& op_params,
const RuntimeShape& input_shape,
const uint8* input_data,
const uint8_t* input_data,
const RuntimeShape& output_shape,
uint8* output_data) {
uint8_t* output_data) {
const int trailing_dim = input_shape.DimensionsCount() - 1;
const int depth =
MatchingDim(input_shape, trailing_dim, output_shape, trailing_dim);
const int outer_size =
MatchingFlatSizeSkipDim(input_shape, trailing_dim, output_shape);
const int32 input_zero_point = op_params.input_zero_point;
const int32_t input_zero_point = op_params.input_zero_point;
for (int i = 0; i < outer_size; ++i) {
int32 square_l2_norm = 0;
int32_t square_l2_norm = 0;
for (int c = 0; c < depth; c++) {
int32 diff = input_data[depth * i + c] - input_zero_point;
int32_t diff = input_data[depth * i + c] - input_zero_point;
square_l2_norm += diff * diff;
}
int32 inv_l2norm_multiplier;
int32_t inv_l2norm_multiplier;
int inv_l2norm_shift;
GetInvSqrtQuantizedMultiplierExp(square_l2_norm, kReverseShift,
&inv_l2norm_multiplier, &inv_l2norm_shift);
for (int c = 0; c < depth; c++) {
int32 diff = input_data[depth * i + c] - input_zero_point;
int32 rescaled_diff = MultiplyByQuantizedMultiplierSmallerThanOneExp(
int32_t diff = input_data[depth * i + c] - input_zero_point;
int32_t rescaled_diff = MultiplyByQuantizedMultiplierSmallerThanOneExp(
128 * diff, inv_l2norm_multiplier, inv_l2norm_shift);
int32 unclamped_output_val = 128 + rescaled_diff;
int32 output_val =
std::min(static_cast<int32>(255),
std::max(static_cast<int32>(0), unclamped_output_val));
output_data[depth * i + c] = static_cast<uint8>(output_val);
int32_t unclamped_output_val = 128 + rescaled_diff;
int32_t output_val =
std::min(static_cast<int32_t>(255),
std::max(static_cast<int32_t>(0), unclamped_output_val));
output_data[depth * i + c] = static_cast<uint8_t>(output_val);
}
}
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_L2NORMALIZATION_H_

View File

@@ -66,8 +66,8 @@ inline void Logistic(const LogisticParams&, const RuntimeShape& input_shape,
}
inline void Logistic(const LogisticParams& params,
const RuntimeShape& input_shape, const int16* input_data,
const RuntimeShape& output_shape, int16* output_data) {
const RuntimeShape& input_shape, const int16_t* input_data,
const RuntimeShape& output_shape, int16_t* output_data) {
const int flat_size = MatchingFlatSize(input_shape, output_shape);
for (int i = 0; i < flat_size; i++) {
@@ -84,12 +84,12 @@ inline void Logistic(const LogisticParams& params,
}
}
// Quantized int8 logistic activation. Cheats by dequantizing and requantizing
// around the floating point logistic method. This implementation is slow on
// platforms without a floating point unit.
// Quantized int8_t logistic activation. Cheats by dequantizing and
// requantizing around the floating point logistic method. This implementation
// is slow on platforms without a floating point unit.
// TODO(b/141211002): Delete this int8 implementation once we can reuse the
// approach used in TFLite for int8 Logistic.
// TODO(b/141211002): Delete this int8_t implementation once we can reuse the
// approach used in TFLite for int8_t Logistic.
inline void Logistic(const RuntimeShape& input_shape, const int8_t* input_data,
float input_scale, int input_zero_point,
const RuntimeShape& output_shape, int8_t* output_data,

View File

@@ -24,20 +24,20 @@ namespace reference_ops {
// Element-wise mul that can often be used for inner loop of broadcast Mul as
// well as the non-broadcast Mul.
inline void MulElementwise(int size, const ArithmeticParams& params,
const uint8* input1_data, const uint8* input2_data,
uint8* output_data) {
const uint8_t* input1_data,
const uint8_t* input2_data, uint8_t* output_data) {
for (int i = 0; i < size; ++i) {
const int32 input1_val = params.input1_offset + input1_data[i];
const int32 input2_val = params.input2_offset + input2_data[i];
const int32 unclamped_result =
const int32_t input1_val = params.input1_offset + input1_data[i];
const int32_t input2_val = params.input2_offset + input2_data[i];
const int32_t unclamped_result =
params.output_offset +
MultiplyByQuantizedMultiplier(input1_val * input2_val,
params.output_multiplier,
params.output_shift);
const int32 clamped_output =
const int32_t clamped_output =
std::min(params.quantized_activation_max,
std::max(params.quantized_activation_min, unclamped_result));
output_data[i] = static_cast<uint8>(clamped_output);
output_data[i] = static_cast<uint8_t>(clamped_output);
}
}
@@ -60,9 +60,9 @@ inline void Mul(const ArithmeticParams& params,
}
inline void Mul(const ArithmeticParams& params,
const RuntimeShape& input1_shape, const uint8* input1_data,
const RuntimeShape& input2_shape, const uint8* input2_data,
const RuntimeShape& output_shape, uint8* output_data) {
const RuntimeShape& input1_shape, const uint8_t* input1_data,
const RuntimeShape& input2_shape, const uint8_t* input2_data,
const RuntimeShape& output_shape, uint8_t* output_data) {
TFLITE_DCHECK_LE(params.quantized_activation_min,
params.quantized_activation_max);
const int flat_size =
@@ -73,11 +73,11 @@ inline void Mul(const ArithmeticParams& params,
inline void BroadcastMul4DSlow(const ArithmeticParams& params,
const RuntimeShape& input1_shape,
const uint8* input1_data,
const uint8_t* input1_data,
const RuntimeShape& input2_shape,
const uint8* input2_data,
const uint8_t* input2_data,
const RuntimeShape& output_shape,
uint8* output_data) {
uint8_t* output_data) {
NdArrayDesc<4> desc1;
NdArrayDesc<4> desc2;
NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
@@ -89,22 +89,22 @@ inline void BroadcastMul4DSlow(const ArithmeticParams& params,
for (int y = 0; y < extended_output_shape.Dims(1); ++y) {
for (int x = 0; x < extended_output_shape.Dims(2); ++x) {
for (int c = 0; c < extended_output_shape.Dims(3); ++c) {
const int32 input1_val =
const int32_t input1_val =
params.input1_offset +
input1_data[SubscriptToIndex(desc1, b, y, x, c)];
const int32 input2_val =
const int32_t input2_val =
params.input2_offset +
input2_data[SubscriptToIndex(desc2, b, y, x, c)];
const int32 unclamped_result =
const int32_t unclamped_result =
params.output_offset +
MultiplyByQuantizedMultiplier(input1_val * input2_val,
params.output_multiplier,
params.output_shift);
const int32 clamped_output = std::min(
const int32_t clamped_output = std::min(
params.quantized_activation_max,
std::max(params.quantized_activation_min, unclamped_result));
output_data[Offset(extended_output_shape, b, y, x, c)] =
static_cast<uint8>(clamped_output);
static_cast<uint8_t>(clamped_output);
}
}
}

View File

@@ -32,8 +32,8 @@ constexpr int PadKernelMaxDimensionCount() { return 4; }
// equivalent to a simple input1_data. For Pad, it should point to a zero
// value.
//
// Note that two typenames are required, so that T=P=int32 is considered a
// specialization distinct from P=int32.
// Note that two typenames are required, so that T=P=int32_t is considered a
// specialization distinct from P=int32_t.
template <typename T, typename P>
inline void PadImpl(const tflite::PadParams& op_params,
const RuntimeShape& input_shape, const T* input_data,
@@ -116,11 +116,11 @@ inline void Pad(const tflite::PadParams& op_params,
output_data);
}
// The second (pad-value) input can be int32 when, say, the first is uint8.
// The second (pad-value) input can be int32_t when, say, the first is uint8_t.
template <typename T>
inline void Pad(const tflite::PadParams& op_params,
const RuntimeShape& input_shape, const T* input_data,
const int32* pad_value_ptr, const RuntimeShape& output_shape,
const int32_t* pad_value_ptr, const RuntimeShape& output_shape,
T* output_data) {
const T converted_pad_value = static_cast<T>(*pad_value_ptr);
PadImpl(op_params, input_shape, input_data, &converted_pad_value,
@@ -130,40 +130,18 @@ inline void Pad(const tflite::PadParams& op_params,
// This version avoids conflicting template matching.
template <>
inline void Pad(const tflite::PadParams& op_params,
const RuntimeShape& input_shape, const int32* input_data,
const int32* pad_value_ptr, const RuntimeShape& output_shape,
int32* output_data) {
const RuntimeShape& input_shape, const int32_t* input_data,
const int32_t* pad_value_ptr, const RuntimeShape& output_shape,
int32_t* output_data) {
PadImpl(op_params, input_shape, input_data, pad_value_ptr, output_shape,
output_data);
}
// One could make all PadImageStyle calls simply delegate the work to the
// ordinary Pad. However, it is better that the reference code asserts false in
// similar cases.
template <typename T, typename P>
inline void PadImageStyle(const tflite::PadParams& op_params,
const RuntimeShape& input_shape, const T* input_data,
const P* pad_value_ptr,
const RuntimeShape& output_shape, T* output_data) {
TFLITE_ASSERT_FALSE;
}
template <typename P>
inline void PadImageStyle(const tflite::PadParams& op_params,
const RuntimeShape& input_shape,
const uint8* input_data, const P* pad_value_ptr,
const RuntimeShape& output_shape,
uint8* output_data) {
Pad(op_params, input_shape, input_data, pad_value_ptr, output_shape,
output_data);
}
template <typename P>
inline void PadImageStyle(const tflite::PadParams& op_params,
const RuntimeShape& input_shape,
const int8_t* input_data, const P* pad_value_ptr,
const RuntimeShape& output_shape,
int8_t* output_data) {
Pad(op_params, input_shape, input_data, pad_value_ptr, output_shape,
output_data);
}

View File

@@ -78,8 +78,9 @@ inline void AveragePool(const PoolParams& params,
inline void AveragePool(const PoolParams& params,
const RuntimeShape& input_shape,
const uint8* input_data,
const RuntimeShape& output_shape, uint8* output_data) {
const uint8_t* input_data,
const RuntimeShape& output_shape,
uint8_t* output_data) {
TFLITE_DCHECK_LE(params.quantized_activation_min,
params.quantized_activation_max);
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
@@ -108,7 +109,7 @@ inline void AveragePool(const PoolParams& params,
const int filter_y_start = std::max(0, -in_y_origin);
const int filter_y_end =
std::min(params.filter_height, input_height - in_y_origin);
int32 acc = 0;
int32_t acc = 0;
int filter_count = 0;
for (int filter_y = filter_y_start; filter_y < filter_y_end;
++filter_y) {
@@ -125,7 +126,7 @@ inline void AveragePool(const PoolParams& params,
acc = std::max(acc, params.quantized_activation_min);
acc = std::min(acc, params.quantized_activation_max);
output_data[Offset(output_shape, batch, out_y, out_x, channel)] =
static_cast<uint8>(acc);
static_cast<uint8_t>(acc);
}
}
}
@@ -237,8 +238,8 @@ inline void MaxPool(const PoolParams& params, const RuntimeShape& input_shape,
}
inline void MaxPool(const PoolParams& params, const RuntimeShape& input_shape,
const uint8* input_data, const RuntimeShape& output_shape,
uint8* output_data) {
const uint8_t* input_data, const RuntimeShape& output_shape,
uint8_t* output_data) {
TFLITE_DCHECK_LE(params.quantized_activation_min,
params.quantized_activation_max);
TFLITE_DCHECK_GE(params.quantized_activation_min, 0);
@@ -269,7 +270,7 @@ inline void MaxPool(const PoolParams& params, const RuntimeShape& input_shape,
const int filter_y_start = std::max(0, -in_y_origin);
const int filter_y_end =
std::min(params.filter_height, input_height - in_y_origin);
uint8 max = 0;
uint8_t max = 0;
for (int filter_y = filter_y_start; filter_y < filter_y_end;
++filter_y) {
for (int filter_x = filter_x_start; filter_x < filter_x_end;
@@ -281,10 +282,10 @@ inline void MaxPool(const PoolParams& params, const RuntimeShape& input_shape,
input_data[Offset(input_shape, batch, in_y, in_x, channel)]);
}
}
max = std::max<uint8>(max, params.quantized_activation_min);
max = std::min<uint8>(max, params.quantized_activation_max);
max = std::max<uint8_t>(max, params.quantized_activation_min);
max = std::min<uint8_t>(max, params.quantized_activation_max);
output_data[Offset(output_shape, batch, out_y, out_x, channel)] =
static_cast<uint8>(max);
static_cast<uint8_t>(max);
}
}
}

View File

@@ -23,7 +23,7 @@ namespace tflite {
namespace reference_ops {
// Broadcast prelu to output_shape for quantized uint8/int8 data.
// Broadcast prelu to output_shape for quantized uint8_t/int8_t data.
template <typename T>
inline void BroadcastPrelu4DSlow(
const PreluParams& params, const RuntimeShape& input_shape,
@@ -44,24 +44,26 @@ inline void BroadcastPrelu4DSlow(
for (int c = 0; c < extended_output_shape.Dims(3); ++c) {
int output_index = Offset(extended_output_shape, b, y, x, c);
int input_index = SubscriptToIndex(desc1, b, y, x, c);
const int32 input_value =
const int32_t input_value =
params.input_offset + input_data[input_index];
int32 output_value;
int32_t output_value;
if (input_value >= 0) {
output_value = input_value;
output_value = MultiplyByQuantizedMultiplier(
input_value, params.output_multiplier_1, params.output_shift_1);
} else {
auto alpha_index = SubscriptToIndex(desc2, b, y, x, c);
const int32 alpha_value =
const int32_t alpha_value =
params.alpha_offset + alpha_data[alpha_index];
output_value = MultiplyByQuantizedMultiplier(
input_value * alpha_value, params.output_multiplier,
params.output_shift);
input_value * alpha_value, params.output_multiplier_2,
params.output_shift_2);
}
output_value += params.output_offset;
const int32 quantized_min = std::numeric_limits<T>::min();
const int32 quantized_max = std::numeric_limits<T>::max();
const int32 clamped_output =
const int32_t quantized_min = std::numeric_limits<T>::min();
const int32_t quantized_max = std::numeric_limits<T>::max();
const int32_t clamped_output =
std::min(quantized_max, std::max(quantized_min, output_value));
output_data[output_index] = static_cast<T>(clamped_output);
}
@@ -70,6 +72,37 @@ inline void BroadcastPrelu4DSlow(
}
}
template <typename T>
inline void Prelu(const PreluParams& params, const RuntimeShape& input_shape,
const T* input_data, const RuntimeShape& alpha_shape,
const T* alpha_data, const RuntimeShape& output_shape,
T* output_data) {
const int32_t quantized_min = std::numeric_limits<T>::min();
const int32_t quantized_max = std::numeric_limits<T>::max();
const int flat_size =
MatchingElementsSize(input_shape, alpha_shape, output_shape);
for (int i = 0; i < flat_size; ++i) {
const int32_t input_value = params.input_offset + input_data[i];
int32_t output_value;
if (input_value >= 0) {
output_value = MultiplyByQuantizedMultiplier(
input_value, params.output_multiplier_1, params.output_shift_1);
} else {
const int32_t alpha_value = params.alpha_offset + alpha_data[i];
output_value = MultiplyByQuantizedMultiplier(input_value * alpha_value,
params.output_multiplier_2,
params.output_shift_2);
}
output_value += params.output_offset;
const int32_t clamped_output =
std::min(quantized_max, std::max(quantized_min, output_value));
output_data[i] = static_cast<T>(clamped_output);
}
}
} // namespace reference_ops
} // namespace tflite

View File

@@ -76,6 +76,10 @@ inline bool ProcessBroadcastShapes(const RuntimeShape& shape0,
BroadcastableOpCategory::kFirstInputBroadcastsFast &&
params->broadcast_category !=
BroadcastableOpCategory::kSecondInputBroadcastsFast) {
// This is unreachable because at least one else clause in the above loop
// must be reached.
TFLITE_DCHECK(false);
params->broadcast_category = BroadcastableOpCategory::kNonBroadcast;
return false;
}

View File

@@ -15,7 +15,11 @@ limitations under the License.
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_QUANTIZE_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_QUANTIZE_H_
#include <algorithm>
#include <limits>
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/compatibility.h"
#include "tensorflow/lite/kernels/internal/cppmath.h"
#include "tensorflow/lite/kernels/internal/types.h"
@@ -29,18 +33,18 @@ inline void AffineQuantize(const tflite::QuantizationParams& op_params,
const InputT* input_data,
const RuntimeShape& output_shape,
OutputT* output_data) {
const int32 zero_point = op_params.zero_point;
const int32_t zero_point = op_params.zero_point;
const double scale = op_params.scale;
const int flat_size = MatchingFlatSize(input_shape, output_shape);
static constexpr int32 min_val = std::numeric_limits<OutputT>::min();
static constexpr int32 max_val = std::numeric_limits<OutputT>::max();
static constexpr int32_t min_val = std::numeric_limits<OutputT>::min();
static constexpr int32_t max_val = std::numeric_limits<OutputT>::max();
for (int i = 0; i < flat_size; i++) {
const InputT val = input_data[i];
int32 unclamped =
static_cast<int32>(TfLiteRound(val / static_cast<float>(scale))) +
int32_t unclamped =
static_cast<int32_t>(TfLiteRound(val / static_cast<float>(scale))) +
zero_point;
int32 clamped = std::min(std::max(unclamped, min_val), max_val);
int32_t clamped = std::min(std::max(unclamped, min_val), max_val);
output_data[i] = clamped;
}
}

View File

@@ -18,6 +18,8 @@ limitations under the License.
#include "ruy/profiler/instrumentation.h" // from @ruy
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/cppmath.h"
#include "tensorflow/lite/kernels/internal/max.h"
#include "tensorflow/lite/kernels/internal/min.h"
#include "tensorflow/lite/kernels/internal/quantization_util.h"
#include "tensorflow/lite/kernels/internal/types.h"
@@ -68,6 +70,9 @@ inline bool ResolveAxis(const int num_dims, const int* axis,
// eg: For num_dims=3, [0, 1, 2] is the same as [-3, -2, -1] */
int current = axis[idx] < 0 ? (axis[idx] + num_dims) : axis[idx];
TFLITE_DCHECK(current >= 0 && current < num_dims);
if (current < 0 || current >= num_dims) {
return false;
}
bool is_dup = false;
for (int j = 0; j < *out_num_axis; ++j) {
if (out_axis[j] == current) {
@@ -127,6 +132,11 @@ inline bool ReduceGeneric(const T* input_data, const int* input_dims,
bool keep_dims, int* temp_index, int* resolved_axis,
T init_value,
T reducer(const T current, const T in)) {
// Return early when input shape has zero dim.
for (int i = 0; i < input_num_dims; ++i) {
if (input_dims[i] == 0) return true;
}
// Reset output data.
if (!InitTensorDataForReduce(output_dims, output_num_dims, init_value,
output_data)) {
@@ -184,11 +194,11 @@ inline bool Mean(const T* input_data, const int* input_dims,
}
// Calculate mean by dividing output_data by num of aggregated element.
U num_elements_in_axis = 1;
size_t num_elements_in_axis = 1;
for (int idx = 0; idx < num_resolved_axis; ++idx) {
size_t current = static_cast<size_t>(input_dims[resolved_axis[idx]]);
// Overflow prevention.
if (current > (std::numeric_limits<U>::max() / num_elements_in_axis)) {
if (current > (std::numeric_limits<size_t>::max() / num_elements_in_axis)) {
return false;
}
num_elements_in_axis *= current;
@@ -249,9 +259,9 @@ inline void Mean(const tflite::MeanParams& op_params,
inline void Mean(const tflite::MeanParams& op_params,
const RuntimeShape& unextended_input_shape,
const uint8_t* input_data, int32 input_zero_point,
const uint8_t* input_data, int32_t input_zero_point,
float input_scale, const RuntimeShape& unextended_output_shape,
uint8_t* output_data, int32 output_zero_point,
uint8_t* output_data, int32_t output_zero_point,
float output_scale) {
ruy::profiler::ScopeLabel label("Mean4D/Uint8");
@@ -280,9 +290,9 @@ inline void Mean(const tflite::MeanParams& op_params,
constexpr int32_t kMinValue = std::numeric_limits<uint8_t>::min();
constexpr int32_t kMaxValue = std::numeric_limits<uint8_t>::max();
int32 bias =
int32_t bias =
output_zero_point -
static_cast<int32>(input_zero_point * input_scale / output_scale);
static_cast<int32_t>(input_zero_point * input_scale / output_scale);
double real_scale =
static_cast<double>(input_scale / (num_elements_in_axis * output_scale));
@@ -291,7 +301,7 @@ inline void Mean(const tflite::MeanParams& op_params,
QuantizeMultiplier(real_scale, &multiplier, &shift);
for (int out_b = 0; out_b < output_batch; ++out_b) {
for (int out_d = 0; out_d < output_depth; ++out_d) {
int32 acc = 0;
int32_t acc = 0;
for (int in_h = 0; in_h < input_height; ++in_h) {
for (int in_w = 0; in_w < input_width; ++in_w) {
acc += input_data[Offset(input_shape, out_b, in_h, in_w, out_d)];
@@ -310,18 +320,21 @@ inline void Mean(const tflite::MeanParams& op_params,
// It does so in two stages, first calculates the sum of elements along the axis
// then divides it by the number of element in axis for quantized values.
template <typename T, typename U>
inline bool QuantizedMeanOrSum(const T* input_data, int32 input_zero_point,
inline bool QuantizedMeanOrSum(const T* input_data, int32_t input_zero_point,
float input_scale, const int* input_dims,
const int input_num_dims, T* output_data,
int32 output_zero_point, float output_scale,
int32_t output_zero_point, float output_scale,
const int* output_dims,
const int output_num_dims, const int* axis,
const int num_axis_dimensions, bool keep_dims,
int* temp_index, int* resolved_axis, U* temp_sum,
bool compute_sum) {
const bool uint8_case = std::is_same<T, int8_t>::value;
const bool uint8_case = std::is_same<T, uint8_t>::value;
const bool int16_case = std::is_same<T, int16_t>::value;
if (uint8_case) {
ruy::profiler::ScopeLabel label(compute_sum ? "Sum/Uint8" : "Mean/Uint8");
} else if (int16_case) {
ruy::profiler::ScopeLabel label(compute_sum ? "Sum/Int16" : "Mean/Int16");
} else {
ruy::profiler::ScopeLabel label(compute_sum ? "Sum/Int8" : "Mean/Int8");
}
@@ -354,11 +367,11 @@ inline bool QuantizedMeanOrSum(const T* input_data, int32 input_zero_point,
}
// Calculate mean by dividing output_data by num of aggregated element.
U num_elements_in_axis = 1;
size_t num_elements_in_axis = 1;
for (int idx = 0; idx < num_resolved_axis; ++idx) {
size_t current = static_cast<size_t>(input_dims[resolved_axis[idx]]);
// Overflow prevention.
if (current > (std::numeric_limits<U>::max() / num_elements_in_axis)) {
if (current > (std::numeric_limits<size_t>::max() / num_elements_in_axis)) {
return false;
}
num_elements_in_axis *= current;
@@ -368,8 +381,7 @@ inline bool QuantizedMeanOrSum(const T* input_data, int32 input_zero_point,
const float scale = input_scale / output_scale;
if (compute_sum) {
// TODO(b/116341117): Eliminate float and do this completely in 8bit.
const float bias =
-input_zero_point * scale * num_elements_in_axis + 0.5f;
const float bias = -input_zero_point * scale * num_elements_in_axis;
for (size_t idx = 0; idx < num_outputs; ++idx) {
const U value =
static_cast<U>(TfLiteRound(temp_sum[idx] * scale + bias)) +
@@ -377,15 +389,15 @@ inline bool QuantizedMeanOrSum(const T* input_data, int32 input_zero_point,
output_data[idx] = static_cast<T>(value);
}
} else {
const float bias = -input_zero_point * scale + 0.5f;
const float bias = -input_zero_point * scale;
for (size_t idx = 0; idx < num_outputs; ++idx) {
float float_mean = static_cast<float>(temp_sum[idx]) /
static_cast<float>(num_elements_in_axis);
float result =
std::min(TfLiteRound(float_mean * scale + bias) + output_zero_point,
static_cast<float>(std::numeric_limits<T>::max()));
result =
std::max(result, static_cast<float>(std::numeric_limits<T>::min()));
float result = TfLiteMin(
TfLiteRound(float_mean * scale + bias) + output_zero_point,
static_cast<float>(std::numeric_limits<T>::max()));
result = TfLiteMax(result,
static_cast<float>(std::numeric_limits<T>::min()));
output_data[idx] = static_cast<T>(result);
}
}

View File

@@ -17,28 +17,30 @@ limitations under the License.
#include <cmath>
#include "tensorflow/lite/kernels/internal/cppmath.h"
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
namespace reference_ops {
inline int32 GetNearestNeighbor(const int input_value, const int32 input_size,
const int32 output_size,
const bool align_corners,
const bool half_pixel_centers) {
inline int32_t GetNearestNeighbor(const int input_value,
const int32_t input_size,
const int32_t output_size,
const bool align_corners,
const bool half_pixel_centers) {
const float scale =
(align_corners && output_size > 1)
? (input_size - 1) / static_cast<float>(output_size - 1)
: input_size / static_cast<float>(output_size);
const float offset = half_pixel_centers ? 0.5f : 0.0f;
int32 output_value = std::min(
int32_t output_value = std::min(
align_corners
? static_cast<int32>(std::round((input_value + offset) * scale))
: static_cast<int32>(std::floor((input_value + offset) * scale)),
? static_cast<int32_t>(TfLiteRound((input_value + offset) * scale))
: static_cast<int32_t>(std::floor((input_value + offset) * scale)),
input_size - 1);
if (half_pixel_centers) {
output_value = std::max(static_cast<int32>(0), output_value);
output_value = std::max(static_cast<int32_t>(0), output_value);
}
return output_value;
}
@@ -47,7 +49,7 @@ template <typename T>
inline void ResizeNearestNeighbor(
const tflite::ResizeNearestNeighborParams& op_params,
const RuntimeShape& unextended_input_shape, const T* input_data,
const RuntimeShape& output_size_shape, const int32* output_size_data,
const RuntimeShape& output_size_shape, const int32_t* output_size_data,
const RuntimeShape& unextended_output_shape, T* output_data) {
TFLITE_DCHECK_LE(unextended_input_shape.DimensionsCount(), 4);
TFLITE_DCHECK_LE(unextended_output_shape.DimensionsCount(), 4);
@@ -57,16 +59,16 @@ inline void ResizeNearestNeighbor(
const RuntimeShape output_shape =
RuntimeShape::ExtendedShape(4, unextended_output_shape);
int32 batches = MatchingDim(input_shape, 0, output_shape, 0);
int32 input_height = input_shape.Dims(1);
int32 input_width = input_shape.Dims(2);
int32 depth = MatchingDim(input_shape, 3, output_shape, 3);
int32_t batches = MatchingDim(input_shape, 0, output_shape, 0);
int32_t input_height = input_shape.Dims(1);
int32_t input_width = input_shape.Dims(2);
int32_t depth = MatchingDim(input_shape, 3, output_shape, 3);
// The Tensorflow version of this op allows resize on the width and height
// axis only.
TFLITE_DCHECK_EQ(output_size_shape.FlatSize(), 2);
int32 output_height = output_size_data[0];
int32 output_width = output_size_data[1];
int32_t output_height = output_size_data[0];
int32_t output_width = output_size_data[1];
const int col_offset = input_shape.Dims(3);
const int row_offset = input_shape.Dims(2) * col_offset;
@@ -76,14 +78,14 @@ inline void ResizeNearestNeighbor(
T* output_ptr = output_data;
for (int b = 0; b < batches; ++b) {
for (int y = 0; y < output_height; ++y) {
int32 in_y = GetNearestNeighbor(y, input_height, output_height,
op_params.align_corners,
op_params.half_pixel_centers);
const T* y_input_ptr = input_ptr + in_y * row_offset;
for (int x = 0; x < output_width; ++x) {
int32 in_x = GetNearestNeighbor(x, input_width, output_width,
int32_t in_y = GetNearestNeighbor(y, input_height, output_height,
op_params.align_corners,
op_params.half_pixel_centers);
const T* y_input_ptr = input_ptr + in_y * row_offset;
for (int x = 0; x < output_width; ++x) {
int32_t in_x = GetNearestNeighbor(x, input_width, output_width,
op_params.align_corners,
op_params.half_pixel_centers);
const T* x_input_ptr = y_input_ptr + in_x * col_offset;
memcpy(output_ptr, x_input_ptr, depth * sizeof(T));
output_ptr += depth;

View File

@@ -16,7 +16,6 @@ limitations under the License.
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_SOFTMAX_H_
#include <limits>
#include <vector>
#include "fixedpoint/fixedpoint.h"
#include "tensorflow/lite/kernels/internal/common.h"
@@ -49,26 +48,27 @@ inline void Softmax(const SoftmaxParams& params,
// Compute sum.
float sum = 0.f;
for (int c = 0; c < depth; ++c) {
sum += std::exp((input_data[i * depth + c] - max) *
static_cast<float>(params.beta));
const float exp_c = std::exp((input_data[i * depth + c] - max) *
static_cast<float>(params.beta));
output_data[i * depth + c] = exp_c;
sum += exp_c;
}
// Compute result.
for (int c = 0; c < depth; ++c) {
output_data[i * depth + c] = std::exp((input_data[i * depth + c] - max) *
static_cast<float>(params.beta)) /
sum;
output_data[i * depth + c] = output_data[i * depth + c] / sum;
}
}
}
// Quantized softmax with int8/uint8 input and int8/uint8/int16 output.
// Quantized softmax with int8_t/uint8_t input and int8_t/uint8_t/int16_t
// output.
template <typename InputT, typename OutputT>
inline void Softmax(const SoftmaxParams& params,
const RuntimeShape& input_shape, const InputT* input_data,
const RuntimeShape& output_shape, OutputT* output_data) {
const int32 input_beta_multiplier = params.input_multiplier;
const int32 input_beta_left_shift = params.input_left_shift;
const int32_t input_beta_multiplier = params.input_multiplier;
const int32_t input_beta_left_shift = params.input_left_shift;
const int diff_min = params.diff_min;
// The representation chosen for the input to the exp() function is Q5.26.
// We need to leave extra space since values that we skip might be as large as
@@ -78,9 +78,10 @@ inline void Softmax(const SoftmaxParams& params,
static const int kScaledDiffIntegerBits = 5;
static const int kAccumulationIntegerBits = 12;
using FixedPointScaledDiff =
gemmlowp::FixedPoint<int32, kScaledDiffIntegerBits>;
using FixedPointAccum = gemmlowp::FixedPoint<int32, kAccumulationIntegerBits>;
using FixedPoint0 = gemmlowp::FixedPoint<int32, 0>;
gemmlowp::FixedPoint<int32_t, kScaledDiffIntegerBits>;
using FixedPointAccum =
gemmlowp::FixedPoint<int32_t, kAccumulationIntegerBits>;
using FixedPoint0 = gemmlowp::FixedPoint<int32_t, 0>;
const int trailing_dim = input_shape.DimensionsCount() - 1;
const int outer_size =
@@ -96,10 +97,10 @@ inline void Softmax(const SoftmaxParams& params,
FixedPointAccum sum_of_exps = FixedPointAccum::Zero();
for (int c = 0; c < depth; ++c) {
int32 input_diff =
static_cast<int32>(input_data[i * depth + c]) - max_in_row;
int32_t input_diff =
static_cast<int32_t>(input_data[i * depth + c]) - max_in_row;
if (input_diff >= diff_min) {
const int32 input_diff_rescaled =
const int32_t input_diff_rescaled =
MultiplyByQuantizedMultiplierGreaterThanOne(
input_diff, input_beta_multiplier, input_beta_left_shift);
const FixedPointScaledDiff scaled_diff_f8 =
@@ -114,28 +115,28 @@ inline void Softmax(const SoftmaxParams& params,
sum_of_exps.raw(), kAccumulationIntegerBits, &num_bits_over_unit));
for (int c = 0; c < depth; ++c) {
int32 input_diff =
static_cast<int32>(input_data[i * depth + c]) - max_in_row;
int32_t input_diff =
static_cast<int32_t>(input_data[i * depth + c]) - max_in_row;
if (input_diff >= diff_min) {
const int32 input_diff_rescaled =
const int32_t input_diff_rescaled =
MultiplyByQuantizedMultiplierGreaterThanOne(
input_diff, input_beta_multiplier, input_beta_left_shift);
const FixedPointScaledDiff scaled_diff_f8 =
FixedPointScaledDiff::FromRaw(input_diff_rescaled);
FixedPoint0 exp_in_0 = exp_on_negative_values(scaled_diff_f8);
int32 unsat_output = gemmlowp::RoundingDivideByPOT(
int32_t unsat_output = gemmlowp::RoundingDivideByPOT(
(shifted_scale * exp_in_0).raw(),
num_bits_over_unit + 31 - (sizeof(OutputT) * 8));
const int32 shifted_output =
const int32_t shifted_output =
unsat_output +
static_cast<int32>(std::numeric_limits<OutputT>::min());
static_cast<int32_t>(std::numeric_limits<OutputT>::min());
output_data[i * depth + c] = static_cast<OutputT>(std::max(
std::min(shifted_output,
static_cast<int32>(std::numeric_limits<OutputT>::max())),
static_cast<int32>(std::numeric_limits<OutputT>::min())));
static_cast<int32_t>(std::numeric_limits<OutputT>::max())),
static_cast<int32_t>(std::numeric_limits<OutputT>::min())));
} else {
output_data[i * depth + c] = std::numeric_limits<OutputT>::min();
}
@@ -143,7 +144,24 @@ inline void Softmax(const SoftmaxParams& params,
}
}
// Quantized softmax with int16 input and int16 output.
// Computes exp(input - max_input)
inline int16_t SoftMaxCalculateExp(const SoftmaxParams& params,
const int16_t* input_data, const int depth,
int16_t max_in_row, int i, int c) {
int32_t input_diff = input_data[i * depth + c] - max_in_row;
// scale the input_diff such that [-65535, 0] correspond to [-10.0, 0.0]
// exp lut generated with range [-10, 0], as exp(-10) is negligible.
int32_t scaled_diff = MultiplyByQuantizedMultiplier(
input_diff, params.input_multiplier, params.input_left_shift);
// recenter to [-32768, 32767]
int32_t sym_scaled_diff = scaled_diff + 32767;
int16_t sat_sym_scaled_diff =
std::min(std::max(sym_scaled_diff, static_cast<int32_t>(-32768)),
static_cast<int32_t>(32767));
// apply the exp() LUT activation function
return generic_int16_table_lookup(sat_sym_scaled_diff, params.exp_lut);
}
// Quantized softmax with int16_t input and int16_t output.
inline void SoftmaxInt16(const SoftmaxParams& params,
const RuntimeShape& input_shape,
const int16_t* input_data,
@@ -162,28 +180,16 @@ inline void SoftmaxInt16(const SoftmaxParams& params,
max_in_row = std::max(max_in_row, input_data[i * depth + c]);
}
// Compute exp(input - max_input)
std::vector<int16_t> exp_result_Q015(depth);
// This loops computes the exp values and their sum. We will need the exp
// values later on in the function so we cache them in the output_data
// buffer. This is an optimization done to avoid calculating the exp values
// twice making use of the output_data buffer as scratch memory.
int32_t sum_of_exps = 0; // Q16.15 fixed point format.
int16_t* exp_results_Q015 = output_data + i * depth;
for (int c = 0; c < depth; ++c) {
int32_t input_diff = input_data[i * depth + c] - max_in_row;
// scale the input_diff such that [-65535, 0] correspond to [-10.0, 0.0]
int32_t scaled_diff = MultiplyByQuantizedMultiplier(
input_diff, params.input_multiplier, params.input_left_shift);
// recenter to [-32768, 32767]
int32_t sym_scaled_diff = scaled_diff + 32767;
int16_t sat_sym_scaled_diff =
std::min(std::max(sym_scaled_diff, static_cast<int32_t>(-32768)),
static_cast<int32_t>(32767));
// apply the exp() LUT activation function
exp_result_Q015[c] =
generic_int16_table_lookup(sat_sym_scaled_diff, params.exp_lut);
}
// sum_of_exps is a Q16.15 fixed point format.
int32_t sum_of_exps = 0;
for (int c = 0; c < depth; ++c) {
// Q16.15 + Q0.15
sum_of_exps += exp_result_Q015[c];
exp_results_Q015[c] =
SoftMaxCalculateExp(params, input_data, depth, max_in_row, i, c);
sum_of_exps += exp_results_Q015[c];
}
// Compute the reciprocal 1/sum_of_exps
@@ -209,7 +215,7 @@ inline void SoftmaxInt16(const SoftmaxParams& params,
for (int c = 0; c < depth; ++c) {
uint8_t right_shift = 31 - headroom_plus_one;
int64_t round = 1 << (right_shift - 1);
int32_t result = (static_cast<int64_t>(exp_result_Q015[c]) *
int32_t result = (static_cast<int64_t>(exp_results_Q015[c]) *
static_cast<int64_t>(reciprocal_scale_Q015) +
round) >>
right_shift;

View File

@@ -16,8 +16,10 @@ limitations under the License.
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_STRIDED_SLICE_H_
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/compatibility.h"
#include "tensorflow/lite/kernels/internal/strided_slice_logic.h"
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
namespace reference_ops {

View File

@@ -15,9 +15,15 @@ limitations under the License.
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_SUB_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_SUB_H_
#include "fixedpoint/fixedpoint.h"
#include <stdint.h>
#include <algorithm>
#include <limits>
#include "ruy/profiler/instrumentation.h" // from @ruy
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/compatibility.h"
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
@@ -41,11 +47,11 @@ inline void SubNonBroadcast(const ArithmeticParams& params,
inline void SubNonBroadcast(const ArithmeticParams& params,
const RuntimeShape& input1_shape,
const int32* input1_data,
const int32_t* input1_data,
const RuntimeShape& input2_shape,
const int32* input2_data,
const int32_t* input2_data,
const RuntimeShape& output_shape,
int32* output_data) {
int32_t* output_data) {
const int flat_size =
MatchingElementsSize(input1_shape, input2_shape, output_shape);
for (int i = 0; i < flat_size; ++i) {
@@ -106,12 +112,12 @@ inline void BroadcastSubSlow(const ArithmeticParams& params,
template <int N = 5>
inline void BroadcastSubSlow(const ArithmeticParams& params,
const RuntimeShape& input1_shape,
const uint8* input1_data,
const uint8_t* input1_data,
const RuntimeShape& input2_shape,
const uint8* input2_data,
const uint8_t* input2_data,
const RuntimeShape& output_shape,
uint8* output_data) {
ruy::profiler::ScopeLabel label("BroadcastSubSlow/uint8");
uint8_t* output_data) {
ruy::profiler::ScopeLabel label("BroadcastSubSlow/uint8_t");
TFLITE_DCHECK_LE(input1_shape.DimensionsCount(), N);
TFLITE_DCHECK_LE(input2_shape.DimensionsCount(), N);
TFLITE_DCHECK_LE(output_shape.DimensionsCount(), N);
@@ -134,28 +140,28 @@ inline void BroadcastSubSlow(const ArithmeticParams& params,
// nesting loops such that the innermost loop has the smallest stride for the
// best cache behavior.
auto sub_func = [&](int indexes[N]) {
const int32 input1_val =
const int32_t input1_val =
params.input1_offset + input1_data[SubscriptToIndex(desc1, indexes)];
const int32 input2_val =
const int32_t input2_val =
params.input2_offset + input2_data[SubscriptToIndex(desc2, indexes)];
const int32 shifted_input1_val = input1_val * (1 << params.left_shift);
const int32 shifted_input2_val = input2_val * (1 << params.left_shift);
const int32 scaled_input1_val =
const int32_t shifted_input1_val = input1_val * (1 << params.left_shift);
const int32_t shifted_input2_val = input2_val * (1 << params.left_shift);
const int32_t scaled_input1_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input1_val, params.input1_multiplier, params.input1_shift);
const int32 scaled_input2_val =
const int32_t scaled_input2_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input2_val, params.input2_multiplier, params.input2_shift);
const int32 raw_sub = scaled_input1_val - scaled_input2_val;
const int32 raw_output =
const int32_t raw_sub = scaled_input1_val - scaled_input2_val;
const int32_t raw_output =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
raw_sub, params.output_multiplier, params.output_shift) +
params.output_offset;
const int32 clamped_output =
const int32_t clamped_output =
std::min(params.quantized_activation_max,
std::max(params.quantized_activation_min, raw_output));
output_data[SubscriptToIndex(output_desc, indexes)] =
static_cast<uint8>(clamped_output);
static_cast<uint8_t>(clamped_output);
};
NDOpsHelper<N>(output_desc, sub_func);
}
@@ -163,12 +169,12 @@ inline void BroadcastSubSlow(const ArithmeticParams& params,
template <int N = 5>
inline void BroadcastSubSlow(const ArithmeticParams& params,
const RuntimeShape& input1_shape,
const int32* input1_data,
const int32_t* input1_data,
const RuntimeShape& input2_shape,
const int32* input2_data,
const int32_t* input2_data,
const RuntimeShape& output_shape,
int32* output_data) {
ruy::profiler::ScopeLabel label("BroadcastSubSlow/int32");
int32_t* output_data) {
ruy::profiler::ScopeLabel label("BroadcastSubSlow/int32_t");
TFLITE_DCHECK_LE(input1_shape.DimensionsCount(), N);
TFLITE_DCHECK_LE(input2_shape.DimensionsCount(), N);
TFLITE_DCHECK_LE(output_shape.DimensionsCount(), N);
@@ -208,7 +214,7 @@ inline void BroadcastSubSlow(const ArithmeticParams& params,
const int8_t* input2_data,
const RuntimeShape& output_shape,
int8_t* output_data) {
ruy::profiler::ScopeLabel label("BroadcastSubSlow/int8");
ruy::profiler::ScopeLabel label("BroadcastSubSlow/int8_t");
NdArrayDesc<N> desc1;
NdArrayDesc<N> desc2;
NdArrayDesc<N> output_desc;
@@ -254,6 +260,45 @@ inline void BroadcastSubSlow(const ArithmeticParams& params,
NDOpsHelper<N>(output_desc, sub_func);
}
template <int N = 5>
void BroadcastSubSlow(const ArithmeticParams& params,
const RuntimeShape& input1_shape,
const int64_t* input1_data,
const RuntimeShape& input2_shape,
const int64_t* input2_data,
const RuntimeShape& output_shape, int64_t* output_data) {
ruy::profiler::ScopeLabel label("BroadcastSubSlow/int64_t");
TFLITE_DCHECK_LE(input1_shape.DimensionsCount(), N);
TFLITE_DCHECK_LE(input2_shape.DimensionsCount(), N);
TFLITE_DCHECK_LE(output_shape.DimensionsCount(), N);
NdArrayDesc<N> desc1;
NdArrayDesc<N> desc2;
NdArrayDesc<N> output_desc;
NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
&desc2);
CopyDimsToDesc(RuntimeShape::ExtendedShape(N, output_shape), &output_desc);
// In Tensorflow, the dimensions are canonically named (batch_number, row,
// col, channel), with extents (batches, height, width, depth), with the
// trailing dimension changing most rapidly (channels has the smallest stride,
// typically 1 element).
//
// In generated C code, we store arrays with the dimensions reversed. The
// first dimension has smallest stride.
//
// We name our variables by their Tensorflow convention, but generate C code
// nesting loops such that the innermost loop has the smallest stride for the
// best cache behavior.
auto sub_func = [&](int indexes[N]) {
output_data[SubscriptToIndex(output_desc, indexes)] =
ActivationFunctionWithMinMax(
input1_data[SubscriptToIndex(desc1, indexes)] -
input2_data[SubscriptToIndex(desc2, indexes)],
params.int64_activation_min, params.int64_activation_max);
};
NDOpsHelper<N>(output_desc, sub_func);
}
template <typename T, int N = 5>
void BroadcastSubSlow(const ArithmeticParams& params,
const RuntimeShape& input1_shape, const T* input1_data,
@@ -294,33 +339,33 @@ void BroadcastSubSlow(const ArithmeticParams& params,
// Element-wise Sub that can often be used for inner loop of broadcast sub as
// well as the non-broadcast sub.
inline void SubElementwise(int size, const ArithmeticParams& params,
const uint8* input1_data, const uint8* input2_data,
uint8* output_data) {
const uint8_t* input1_data,
const uint8_t* input2_data, uint8_t* output_data) {
TFLITE_DCHECK_GT(params.input1_offset, -256);
TFLITE_DCHECK_GT(params.input2_offset, -256);
TFLITE_DCHECK_LT(params.input1_offset, 256);
TFLITE_DCHECK_LT(params.input2_offset, 256);
for (int i = 0; i < size; ++i) {
const int32 input1_val = params.input1_offset + input1_data[i];
const int32 input2_val = params.input2_offset + input2_data[i];
const int32 shifted_input1_val = input1_val * (1 << params.left_shift);
const int32 shifted_input2_val = input2_val * (1 << params.left_shift);
const int32 scaled_input1_val =
const int32_t input1_val = params.input1_offset + input1_data[i];
const int32_t input2_val = params.input2_offset + input2_data[i];
const int32_t shifted_input1_val = input1_val * (1 << params.left_shift);
const int32_t shifted_input2_val = input2_val * (1 << params.left_shift);
const int32_t scaled_input1_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input1_val, params.input1_multiplier, params.input1_shift);
const int32 scaled_input2_val =
const int32_t scaled_input2_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input2_val, params.input2_multiplier, params.input2_shift);
const int32 raw_sub = scaled_input1_val - scaled_input2_val;
const int32 raw_output =
const int32_t raw_sub = scaled_input1_val - scaled_input2_val;
const int32_t raw_output =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
raw_sub, params.output_multiplier, params.output_shift) +
params.output_offset;
const int32 clamped_output =
const int32_t clamped_output =
std::min(params.quantized_activation_max,
std::max(params.quantized_activation_min, raw_output));
output_data[i] = static_cast<uint8>(clamped_output);
output_data[i] = static_cast<uint8_t>(clamped_output);
}
}
@@ -336,22 +381,22 @@ inline void SubElementwise(int size, const ArithmeticParams& params,
TFLITE_DCHECK_LE(params.input2_offset, int8_max_value);
for (int i = 0; i < size; ++i) {
const int32 input1_val = params.input1_offset + input1_data[i];
const int32 input2_val = params.input2_offset + input2_data[i];
const int32 shifted_input1_val = input1_val * (1 << params.left_shift);
const int32 shifted_input2_val = input2_val * (1 << params.left_shift);
const int32 scaled_input1_val =
const int32_t input1_val = params.input1_offset + input1_data[i];
const int32_t input2_val = params.input2_offset + input2_data[i];
const int32_t shifted_input1_val = input1_val * (1 << params.left_shift);
const int32_t shifted_input2_val = input2_val * (1 << params.left_shift);
const int32_t scaled_input1_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input1_val, params.input1_multiplier, params.input1_shift);
const int32 scaled_input2_val =
const int32_t scaled_input2_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input2_val, params.input2_multiplier, params.input2_shift);
const int32 raw_sub = scaled_input1_val - scaled_input2_val;
const int32 raw_output =
const int32_t raw_sub = scaled_input1_val - scaled_input2_val;
const int32_t raw_output =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
raw_sub, params.output_multiplier, params.output_shift) +
params.output_offset;
const int32 clamped_output =
const int32_t clamped_output =
std::min(params.quantized_activation_max,
std::max(params.quantized_activation_min, raw_output));
output_data[i] = static_cast<int8_t>(clamped_output);
@@ -359,9 +404,9 @@ inline void SubElementwise(int size, const ArithmeticParams& params,
}
inline void Sub(const ArithmeticParams& params,
const RuntimeShape& input1_shape, const uint8* input1_data,
const RuntimeShape& input2_shape, const uint8* input2_data,
const RuntimeShape& output_shape, uint8* output_data) {
const RuntimeShape& input1_shape, const uint8_t* input1_data,
const RuntimeShape& input2_shape, const uint8_t* input2_data,
const RuntimeShape& output_shape, uint8_t* output_data) {
TFLITE_DCHECK_LE(params.quantized_activation_min,
params.quantized_activation_max);
const int flat_size =
@@ -428,40 +473,43 @@ void Sub(const ArithmeticParams& params, const RuntimeShape& input1_shape,
}
}
inline void SubWithActivation(const ArithmeticParams& params,
const RuntimeShape& input1_shape,
const int32* input1_data,
const RuntimeShape& input2_shape,
const int32* input2_data,
const RuntimeShape& output_shape,
int32* output_data) {
inline void SetActivationMinMax(const ArithmeticParams& params,
int32_t* activation_min,
int32_t* activation_max) {
*activation_min = params.quantized_activation_min;
*activation_max = params.quantized_activation_max;
}
inline void SetActivationMinMax(const ArithmeticParams& params,
float* activation_min, float* activation_max) {
*activation_min = params.float_activation_min;
*activation_max = params.float_activation_max;
}
inline void SetActivationMinMax(const ArithmeticParams& params,
int64_t* activation_min,
int64_t* activation_max) {
*activation_min = params.int64_activation_min;
*activation_max = params.int64_activation_max;
}
template <typename T>
inline void SubWithActivation(
const ArithmeticParams& params, const RuntimeShape& input1_shape,
const T* input1_data, const RuntimeShape& input2_shape,
const T* input2_data, const RuntimeShape& output_shape, T* output_data) {
ruy::profiler::ScopeLabel label("SubWithActivation");
const int flat_size =
MatchingElementsSize(input1_shape, input2_shape, output_shape);
T activation_min, activation_max;
SetActivationMinMax(params, &activation_min, &activation_max);
for (int i = 0; i < flat_size; ++i) {
output_data[i] = ActivationFunctionWithMinMax(
input1_data[i] - input2_data[i], params.quantized_activation_min,
params.quantized_activation_max);
input1_data[i] - input2_data[i], activation_min, activation_max);
}
}
inline void SubWithActivation(const ArithmeticParams& params,
const RuntimeShape& input1_shape,
const float* input1_data,
const RuntimeShape& input2_shape,
const float* input2_data,
const RuntimeShape& output_shape,
float* output_data) {
const int flat_size =
MatchingElementsSize(input1_shape, input2_shape, output_shape);
for (int i = 0; i < flat_size; ++i) {
output_data[i] = ActivationFunctionWithMinMax(
input1_data[i] - input2_data[i], params.float_activation_min,
params.float_activation_max);
}
}
} // namespace reference_ops
} // namespace tflite

View File

@@ -0,0 +1,129 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_TANH_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_TANH_H_
#include <cmath>
#include "fixedpoint/fixedpoint.h"
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/cppmath.h"
#include "tensorflow/lite/kernels/internal/types.h"
#include "tensorflow/lite/kernels/op_macros.h"
namespace tflite {
namespace reference_ops {
inline void Tanh(const RuntimeShape& input_shape, const float* input_data,
const RuntimeShape& output_shape, float* output_data) {
const int flat_size = MatchingFlatSize(input_shape, output_shape);
for (int i = 0; i < flat_size; i++) {
float val = input_data[i];
float result = std::tanh(val);
output_data[i] = result;
}
}
// Convenience version that allows, for example, generated-code calls to be
// uniform between data types.
inline void Tanh(const TanhParams&, const RuntimeShape& input_shape,
const float* input_data, const RuntimeShape& output_shape,
float* output_data) {
// Drop params: not needed.
Tanh(input_shape, input_data, output_shape, output_data);
}
inline void Tanh(const TanhParams& params, const RuntimeShape& input_shape,
const int16_t* input_data, const RuntimeShape& output_shape,
int16_t* output_data) {
const int input_left_shift = params.input_left_shift;
// Support for shifts is limited until we have a parameterized version of
// SaturatingRoundingMultiplyByPOT().
TFLITE_DCHECK_GE(input_left_shift, 0);
TFLITE_DCHECK_LE(input_left_shift, 1);
const int flat_size = MatchingFlatSize(input_shape, output_shape);
// F0 uses 0 integer bits, range [-1, 1].
// This is the return type of math functions such as tanh, logistic,
// whose range is in [-1, 1].
using F0 = gemmlowp::FixedPoint<std::int16_t, 0>;
// F3 uses 3 integer bits, range [-8, 8], the input range expected here.
using F3 = gemmlowp::FixedPoint<std::int16_t, 3>;
if (input_left_shift == 0) {
for (int i = 0; i < flat_size; i++) {
F3 input = F3::FromRaw(input_data[i]);
F0 output = gemmlowp::tanh(input);
output_data[i] = output.raw();
}
} else {
for (int i = 0; i < flat_size; i++) {
F3 input = F3::FromRaw(
gemmlowp::SaturatingRoundingMultiplyByPOT<1>(input_data[i]));
F0 output = gemmlowp::tanh(input);
output_data[i] = output.raw();
}
}
}
inline void Tanh(const TanhParams& params, const RuntimeShape& input_shape,
const uint8_t* input_data, const RuntimeShape& output_shape,
uint8_t* output_data) {
const int32_t input_zero_point = params.input_zero_point;
const int32_t input_range_radius = params.input_range_radius;
const int32_t input_multiplier = params.input_multiplier;
const int input_left_shift = params.input_left_shift;
const int32_t output_zero_point = 128;
const int flat_size = MatchingFlatSize(input_shape, output_shape);
for (int i = 0; i < flat_size; i++) {
const uint8_t input_val_u8 = input_data[i];
const int32_t input_val_centered =
static_cast<int32_t>(input_val_u8) - input_zero_point;
uint8_t output_val;
if (input_val_centered <= -input_range_radius) {
output_val = 0;
} else if (input_val_centered >= input_range_radius) {
output_val = 255;
} else {
const int32_t input_val_rescaled =
MultiplyByQuantizedMultiplierGreaterThanOne(
input_val_centered, input_multiplier, input_left_shift);
using FixedPoint4 = gemmlowp::FixedPoint<int32_t, 4>;
using FixedPoint0 = gemmlowp::FixedPoint<int32_t, 0>;
const FixedPoint4 input_val_f4 = FixedPoint4::FromRaw(input_val_rescaled);
const FixedPoint0 output_val_f0 = gemmlowp::tanh(input_val_f4);
// Convert from Q0.31 to Q24.7.
using gemmlowp::RoundingDivideByPOT;
int32_t output_val_s32 = RoundingDivideByPOT(output_val_f0.raw(), 24);
output_val_s32 += output_zero_point;
if (output_val_s32 == 256) {
output_val_s32 = 255;
}
// Reinterpret as Q0.7, encoded in uint8_t.
TFLITE_DCHECK_GE(output_val_s32, 0);
TFLITE_DCHECK_LE(output_val_s32, 255);
output_val = static_cast<uint8_t>(output_val_s32);
}
output_data[i] = output_val;
}
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_TANH_H_

View File

@@ -18,6 +18,7 @@ limitations under the License.
#include <limits>
#include <vector>
#include "tensorflow/lite/kernels/internal/compatibility.h"
#include "tensorflow/lite/kernels/internal/types.h"
@@ -69,8 +70,8 @@ inline void StridedSlicePadIndices(tflite::StridedSliceParams* p,
}
// Return the index for the first element along that axis. This index will be a
// positive integer between [0, axis_size - 1] that can be used to index
// directly into the data.
// positive integer between [0, axis_size] (or [-1, axis_size -1] if stride < 0)
// that can be used to index directly into the data.
inline int StartForAxis(const tflite::StridedSliceParams& params,
const RuntimeShape& input_shape, int axis) {
const auto begin_mask = params.begin_mask;
@@ -102,7 +103,13 @@ inline int StartForAxis(const tflite::StridedSliceParams& params,
}
// Clamping
start = Clamp(start, 0, axis_size - 1);
if (strides[axis] > 0) {
// Forward iteration
start = Clamp(start, 0, axis_size);
} else {
// Backward iteration
start = Clamp(start, -1, axis_size - 1);
}
return start;
}

View File

@@ -24,24 +24,29 @@ limitations under the License.
namespace tflite {
enum class FusedActivationFunctionType : uint8 { kNone, kRelu6, kRelu1, kRelu };
enum class PaddingType : uint8 { kNone, kSame, kValid };
enum class FusedActivationFunctionType : uint8_t {
kNone,
kRelu6,
kRelu1,
kRelu
};
enum class PaddingType : uint8_t { kNone, kSame, kValid };
struct PaddingValues {
int16 width;
int16 height;
int16_t width;
int16_t height;
// offset is used for calculating "remaining" padding, for example, `width`
// is 1 and `width_offset` is 1, so padding_left is 1 while padding_right is
// 1 + 1 = 2.
int16 width_offset;
int16_t width_offset;
// Same as width_offset except it's over the height dimension.
int16 height_offset;
int16_t height_offset;
};
// This enumeration allows for non-default formats for the weights array
// of a fully-connected operator, allowing the use of special optimized
// runtime paths.
enum class FullyConnectedWeightsFormat : uint8 {
enum class FullyConnectedWeightsFormat : uint8_t {
// Default format (flat 2D layout, the inner contiguous dimension
// is input_depth, the outer non-contiguous dimension is output_depth)
kDefault,
@@ -88,11 +93,11 @@ enum class FullyConnectedWeightsFormat : uint8 {
// maximize arithmetic throughput.
//
// Finally, the 'Int8' part in the name refers to the fact that this
// weights format has each weights value encoded as a signed int8 value,
// even if the data type of the weights buffer is uint8. This is intended
// weights format has each weights value encoded as a signed int8_t value,
// even if the data type of the weights buffer is uint8_t. This is intended
// to save runtime kernels the effort to have to XOR the top bit of these
// bytes before using them in signed arithmetic, see this file for more
// explanations on the 'signed int8 trick' in matrix multiplication kernels:
// explanations on the 'signed int8_t trick' in matrix multiplication kernels:
//
// tensorflow/lite/toco/graph_transformations/ensure_uint8_weights_safe_for_fast_int8_kernels.cc
//
@@ -111,7 +116,7 @@ enum class FullyConnectedWeightsFormat : uint8 {
// the real 0 value, and scale designates the difference between the real values
// corresponding to consecutive quantized values differing by 1.
struct QuantizationParams {
int32 zero_point = 0;
int32_t zero_point = 0;
double scale = 0.0;
};
@@ -140,20 +145,20 @@ class RuntimeShape {
if (dimensions_count > kMaxSmallSize) {
#ifdef TF_LITE_STATIC_MEMORY
TFLITE_CHECK(false && "No shape resizing supported on this platform");
#else // TF_LITE_STATIC_MEMORY
dims_pointer_ = new int32[dimensions_count];
#else // TF_LITE_STATIC_MEMORY
dims_pointer_ = new int32_t[dimensions_count];
#endif // TF_LITE_STATIC_MEMORY
}
}
RuntimeShape(int shape_size, int32 value) : size_(0) {
RuntimeShape(int shape_size, int32_t value) : size_(0) {
Resize(shape_size);
for (int i = 0; i < shape_size; ++i) {
SetDim(i, value);
}
}
RuntimeShape(int dimensions_count, const int32* dims_data) : size_(0) {
RuntimeShape(int dimensions_count, const int32_t* dims_data) : size_(0) {
ReplaceWith(dimensions_count, dims_data);
}
@@ -165,33 +170,34 @@ class RuntimeShape {
// rolls out.
RuntimeShape(RuntimeShape const& other) : size_(other.DimensionsCount()) {
if (size_ > kMaxSmallSize) {
dims_pointer_ = new int32[size_];
dims_pointer_ = new int32_t[size_];
}
std::memcpy(DimsData(), other.DimsData(), sizeof(int32) * size_);
std::memcpy(DimsData(), other.DimsData(), sizeof(int32_t) * size_);
}
bool operator==(const RuntimeShape& comp) const {
return this->size_ == comp.size_ &&
std::memcmp(DimsData(), comp.DimsData(), size_ * sizeof(int32)) == 0;
std::memcmp(DimsData(), comp.DimsData(), size_ * sizeof(int32_t)) ==
0;
}
~RuntimeShape() {
if (size_ > kMaxSmallSize) {
#ifdef TF_LITE_STATIC_MEMORY
TFLITE_CHECK(false && "No shape resizing supported on this platform");
#else // TF_LITE_STATIC_MEMORY
#else // TF_LITE_STATIC_MEMORY
delete[] dims_pointer_;
#endif // TF_LITE_STATIC_MEMORY
}
}
inline int32 DimensionsCount() const { return size_; }
inline int32 Dims(int i) const {
inline int32_t DimensionsCount() const { return size_; }
inline int32_t Dims(int i) const {
TFLITE_DCHECK_GE(i, 0);
TFLITE_DCHECK_LT(i, size_);
return size_ > kMaxSmallSize ? dims_pointer_[i] : dims_[i];
}
inline void SetDim(int i, int32 val) {
inline void SetDim(int i, int32_t val) {
TFLITE_DCHECK_GE(i, 0);
TFLITE_DCHECK_LT(i, size_);
if (size_ > kMaxSmallSize) {
@@ -201,20 +207,20 @@ class RuntimeShape {
}
}
inline int32* DimsData() {
inline int32_t* DimsData() {
return size_ > kMaxSmallSize ? dims_pointer_ : dims_;
}
inline const int32* DimsData() const {
inline const int32_t* DimsData() const {
return size_ > kMaxSmallSize ? dims_pointer_ : dims_;
}
// The caller must ensure that the shape is no bigger than 5-D.
inline const int32* DimsDataUpTo5D() const { return dims_; }
inline const int32_t* DimsDataUpTo5D() const { return dims_; }
inline void Resize(int dimensions_count) {
if (size_ > kMaxSmallSize) {
#ifdef TF_LITE_STATIC_MEMORY
TFLITE_CHECK(false && "No shape resizing supported on this platform");
#else // TF_LITE_STATIC_MEMORY
#else // TF_LITE_STATIC_MEMORY
delete[] dims_pointer_;
#endif // TF_LITE_STATIC_MEMORY
}
@@ -222,16 +228,16 @@ class RuntimeShape {
if (dimensions_count > kMaxSmallSize) {
#ifdef TF_LITE_STATIC_MEMORY
TFLITE_CHECK(false && "No shape resizing supported on this platform");
#else // TF_LITE_STATIC_MEMORY
dims_pointer_ = new int32[dimensions_count];
#else // TF_LITE_STATIC_MEMORY
dims_pointer_ = new int32_t[dimensions_count];
#endif // TF_LITE_STATIC_MEMORY
}
}
inline void ReplaceWith(int dimensions_count, const int32* dims_data) {
inline void ReplaceWith(int dimensions_count, const int32_t* dims_data) {
Resize(dimensions_count);
int32* dst_dims = DimsData();
std::memcpy(dst_dims, dims_data, dimensions_count * sizeof(int32));
int32_t* dst_dims = DimsData();
std::memcpy(dst_dims, dims_data, dimensions_count * sizeof(int32_t));
}
template <typename T>
@@ -239,7 +245,7 @@ class RuntimeShape {
const int dimensions_count =
std::distance(src_iterable.begin(), src_iterable.end());
Resize(dimensions_count);
int32* data = DimsData();
int32_t* data = DimsData();
for (auto it : src_iterable) {
*data = it;
++data;
@@ -288,13 +294,13 @@ class RuntimeShape {
SetDim(i, pad_value);
}
std::memcpy(DimsData() + size_increase, shape.DimsData(),
sizeof(int32) * shape.DimensionsCount());
sizeof(int32_t) * shape.DimensionsCount());
}
int32 size_;
int32_t size_;
union {
int32 dims_[kMaxSmallSize];
int32* dims_pointer_;
int32_t dims_[kMaxSmallSize];
int32_t* dims_pointer_;
};
};
@@ -432,7 +438,7 @@ int MatchingArraySize(const ArrayType1& array1, int index1,
inline int MatchingDim(const RuntimeShape& shape1, int index1,
const RuntimeShape& shape2, int index2) {
TFLITE_DCHECK_EQ(shape1.Dims(index1), shape2.Dims(index2));
return shape1.Dims(index1);
return std::min(shape1.Dims(index1), shape2.Dims(index2));
}
template <typename... Args>
@@ -713,7 +719,7 @@ void ComputeStrides(Dims<N>* dims) {
}
}
enum class BroadcastableOpCategory : uint8 {
enum class BroadcastableOpCategory : uint8_t {
kNone,
kNonBroadcast, // Matching input shapes.
kFirstInputBroadcastsFast, // Fivefold nested loops.
@@ -729,21 +735,21 @@ static_assert(sizeof(MinMax) == 8, "");
struct ActivationParams {
FusedActivationFunctionType activation_type;
// uint8, etc, activation params.
int32 quantized_activation_min;
int32 quantized_activation_max;
// uint8_t, etc, activation params.
int32_t quantized_activation_min;
int32_t quantized_activation_max;
};
struct ReluParams : public ActivationParams {
int32 input_offset;
int32 output_offset;
int32 output_multiplier;
int32 output_shift;
int32_t input_offset;
int32_t output_offset;
int32_t output_multiplier;
int output_shift;
};
// Styles of resizing op usages. For example, kImageStyle can be used with a Pad
// op for pattern-specific optimization.
enum class ResizingCategory : uint8 {
enum class ResizingCategory : uint8_t {
kNone,
kImageStyle, // 4D, operating on inner dimensions, say {0, a, b, 0}.
kGenericResize,
@@ -753,24 +759,29 @@ enum class ResizingCategory : uint8 {
struct ArithmeticParams {
// Shape dependent / common to data / op types.
BroadcastableOpCategory broadcast_category;
// uint8 inference params.
int32 input1_offset;
int32 input2_offset;
int32 output_offset;
int32 output_multiplier;
// uint8_t inference params.
int32_t input1_offset;
int32_t input2_offset;
int32_t output_offset;
int32_t output_multiplier;
int output_shift;
// Add / Sub, not Mul, uint8 inference params.
// Add / Sub, not Mul, uint8_t inference params.
int left_shift;
int32 input1_multiplier;
int32_t input1_multiplier;
int input1_shift;
int32 input2_multiplier;
int32_t input2_multiplier;
int input2_shift;
// uint8, etc, activation params.
int32 quantized_activation_min;
int32 quantized_activation_max;
// TODO(b/158622529): Union the following activation params.
// uint8_t, etc, activation params.
int32_t quantized_activation_min;
int32_t quantized_activation_max;
// float activation params.
float float_activation_min;
float float_activation_max;
// int64_t activation params.
int64_t int64_activation_min;
int64_t int64_activation_max;
// Processed output dimensions.
// Let input "a" be the one that broadcasts in the faster-changing dimension.
@@ -785,22 +796,22 @@ struct ArithmeticParams {
};
struct ConcatenationParams {
int8 axis;
const int32* input_zeropoint;
int8_t axis;
const int32_t* input_zeropoint;
const float* input_scale;
uint16 inputs_count;
int32 output_zeropoint;
uint16_t inputs_count;
int32_t output_zeropoint;
float output_scale;
};
struct ComparisonParams {
// uint8 inference params.
// uint8_t inference params.
int left_shift;
int32 input1_offset;
int32 input1_multiplier;
int32_t input1_offset;
int32_t input1_multiplier;
int input1_shift;
int32 input2_offset;
int32 input2_multiplier;
int32_t input2_offset;
int32_t input2_multiplier;
int input2_shift;
// Shape dependent / common to inference types.
bool is_broadcast;
@@ -810,81 +821,81 @@ struct ConvParams {
PaddingType padding_type;
PaddingValues padding_values;
// TODO(starka): This was just "stride", so check that width+height is OK.
int16 stride_width;
int16 stride_height;
int16 dilation_width_factor;
int16 dilation_height_factor;
// uint8 inference params.
int16_t stride_width;
int16_t stride_height;
int16_t dilation_width_factor;
int16_t dilation_height_factor;
// uint8_t inference params.
// TODO(b/65838351): Use smaller types if appropriate.
int32 input_offset;
int32 weights_offset;
int32 output_offset;
int32 output_multiplier;
int32_t input_offset;
int32_t weights_offset;
int32_t output_offset;
int32_t output_multiplier;
int output_shift;
// uint8, etc, activation params.
int32 quantized_activation_min;
int32 quantized_activation_max;
// uint8_t, etc, activation params.
int32_t quantized_activation_min;
int32_t quantized_activation_max;
// float activation params.
float float_activation_min;
float float_activation_max;
};
struct DepthToSpaceParams {
int32 block_size;
int32_t block_size;
};
struct DepthwiseParams {
PaddingType padding_type;
PaddingValues padding_values;
int16 stride_width;
int16 stride_height;
int16 dilation_width_factor;
int16 dilation_height_factor;
int16 depth_multiplier;
// uint8 inference params.
int16_t stride_width;
int16_t stride_height;
int16_t dilation_width_factor;
int16_t dilation_height_factor;
int16_t depth_multiplier;
// uint8_t inference params.
// TODO(b/65838351): Use smaller types if appropriate.
int32 input_offset;
int32 weights_offset;
int32 output_offset;
int32 output_multiplier;
int32_t input_offset;
int32_t weights_offset;
int32_t output_offset;
int32_t output_multiplier;
int output_shift;
// uint8, etc, activation params.
int32 quantized_activation_min;
int32 quantized_activation_max;
// uint8_t, etc, activation params.
int32_t quantized_activation_min;
int32_t quantized_activation_max;
// float activation params.
float float_activation_min;
float float_activation_max;
const int32* output_multiplier_per_channel;
const int32* output_shift_per_channel;
const int32_t* output_multiplier_per_channel;
const int32_t* output_shift_per_channel;
};
struct DequantizationParams {
double scale;
int32 zero_point;
int32_t zero_point;
};
struct PerChannelDequantizationParams {
const float* scale;
const int32* zero_point;
int32 quantized_dimension;
const int32_t* zero_point;
int32_t quantized_dimension;
};
struct FakeQuantParams {
MinMax minmax;
int32 num_bits;
int32_t num_bits;
};
struct FullyConnectedParams {
// uint8 inference params.
// uint8_t inference params.
// TODO(b/65838351): Use smaller types if appropriate.
int32 input_offset;
int32 weights_offset;
int32 output_offset;
int32 output_multiplier;
int32_t input_offset;
int32_t weights_offset;
int32_t output_offset;
int32_t output_multiplier;
int output_shift;
// uint8, etc, activation params.
int32 quantized_activation_min;
int32 quantized_activation_max;
// uint8_t, etc, activation params.
int32_t quantized_activation_min;
int32_t quantized_activation_max;
// float activation params.
float float_activation_min;
float float_activation_max;
@@ -895,16 +906,16 @@ struct FullyConnectedParams {
};
struct GatherParams {
int16 axis;
int16_t axis;
};
struct L2NormalizationParams {
// uint8 inference params.
int32 input_zero_point;
// uint8_t inference params.
int32_t input_zero_point;
};
struct LocalResponseNormalizationParams {
int32 range;
int32_t range;
double bias;
double alpha;
double beta;
@@ -932,48 +943,50 @@ struct HardSwishParams {
};
struct LogisticParams {
// uint8 inference params.
int32 input_zero_point;
int32 input_range_radius;
int32 input_multiplier;
// uint8_t inference params.
int32_t input_zero_point;
int32_t input_range_radius;
int32_t input_multiplier;
int input_left_shift;
};
struct LstmCellParams {
int32 weights_zero_point;
int32 accum_multiplier;
int32_t weights_zero_point;
int32_t accum_multiplier;
int accum_shift;
int state_integer_bits;
};
struct MeanParams {
int8 axis_count;
int16 axis[4];
int8_t axis_count;
int16_t axis[4];
};
struct PackParams {
int8 axis;
const int32* input_zeropoint;
int8_t axis;
const int32_t* input_zeropoint;
const float* input_scale;
uint16 inputs_count;
int32 output_zeropoint;
uint16_t inputs_count;
int32_t output_zeropoint;
float output_scale;
};
struct PadParams {
int8 left_padding_count;
int32 left_padding[4];
int8 right_padding_count;
int32 right_padding[4];
int8_t left_padding_count;
int32_t left_padding[4];
int8_t right_padding_count;
int32_t right_padding[4];
ResizingCategory resizing_category;
};
struct PreluParams {
int32 input_offset;
int32 alpha_offset;
int32 output_offset;
int32 output_multiplier;
int output_shift;
int32_t input_offset;
int32_t alpha_offset;
int32_t output_offset;
int32_t output_multiplier_1;
int output_shift_1;
int32_t output_multiplier_2;
int output_shift_2;
};
struct PoolParams {
@@ -984,17 +997,17 @@ struct PoolParams {
int stride_width;
int filter_height;
int filter_width;
// uint8, etc, activation params.
int32 quantized_activation_min;
int32 quantized_activation_max;
// uint8_t, etc, activation params.
int32_t quantized_activation_min;
int32_t quantized_activation_max;
// float activation params.
float float_activation_min;
float float_activation_max;
};
struct ReshapeParams {
int8 shape_count;
int32 shape[4];
int8_t shape_count;
int32_t shape[4];
};
struct ResizeBilinearParams {
@@ -1011,91 +1024,95 @@ struct ResizeNearestNeighborParams {
};
struct SliceParams {
int8 begin_count;
int32 begin[4];
int8 size_count;
int32 size[4];
int8_t begin_count;
int32_t begin[4];
int8_t size_count;
int32_t size[4];
};
struct SoftmaxParams {
// beta is not really used (not a Tensorflow parameter) and not implemented
// for LogSoftmax.
double beta;
// uint8 inference params. Used even when beta defaults to 1.0.
int32 input_multiplier;
int32 input_left_shift;
// uint8_t inference params. Used even when beta defaults to 1.0.
int32_t input_multiplier;
int32_t input_left_shift;
// Reverse scaling is only used by LogSoftmax.
int32 reverse_scaling_divisor;
int32 reverse_scaling_right_shift;
int32_t reverse_scaling_divisor;
int32_t reverse_scaling_right_shift;
int diff_min;
int32_t zero_point;
float scale;
float* table;
// int16 LUT for exp(x), where x uniform distributed between [-10.0 , 0.0]
int16_t* exp_lut;
// int16 LUT for 1 / (1 + x), where x uniform distributed between [0.0 , 1.0]
int16_t* one_over_one_plus_x_lut;
uint8_t* uint8_table1;
uint8_t* uint8_table2;
};
struct SpaceToBatchParams {
// "Zero" padding for uint8 means padding with the output offset.
int32 output_offset;
// "Zero" padding for uint8_t means padding with the output offset.
int32_t output_offset;
};
struct SpaceToDepthParams {
int32 block_size;
int32_t block_size;
};
struct SplitParams {
// Graphs that split into, say, 2000 nodes are encountered. The indices in
// OperatorEdges are of type uint16.
uint16 num_split;
int16 axis;
// OperatorEdges are of type uint16_t.
uint16_t num_split;
int16_t axis;
};
struct SqueezeParams {
int8 squeeze_dims_count;
int32 squeeze_dims[4];
int8_t squeeze_dims_count;
int32_t squeeze_dims[4];
};
struct StridedSliceParams {
int8 start_indices_count;
int32 start_indices[5];
int8 stop_indices_count;
int32 stop_indices[5];
int8 strides_count;
int32 strides[5];
int8_t start_indices_count;
int32_t start_indices[5];
int8_t stop_indices_count;
int32_t stop_indices[5];
int8_t strides_count;
int32_t strides[5];
int16 begin_mask;
int16 ellipsis_mask;
int16 end_mask;
int16 new_axis_mask;
int16 shrink_axis_mask;
int16_t begin_mask;
int16_t ellipsis_mask;
int16_t end_mask;
int16_t new_axis_mask;
int16_t shrink_axis_mask;
};
struct TanhParams {
int32 input_zero_point;
int32 input_range_radius;
int32 input_multiplier;
int32_t input_zero_point;
int32_t input_range_radius;
int32_t input_multiplier;
int input_left_shift;
};
struct TransposeParams {
int8 perm_count;
int32 perm[5];
int8_t perm_count;
int32_t perm[5];
};
struct UnpackParams {
uint16 num_split;
int16 axis;
uint16_t num_split;
int16_t axis;
};
struct LeakyReluParams {
float alpha;
int32 input_offset;
int32 output_offset;
int32 output_multiplier_alpha;
int32 output_shift_alpha;
int32 output_multiplier_identity;
int32 output_shift_identity;
int32_t input_offset;
int32_t output_offset;
int32_t output_multiplier_alpha;
int32_t output_shift_alpha;
int32_t output_multiplier_identity;
int32_t output_shift_identity;
};
template <typename P>
@@ -1105,13 +1122,19 @@ inline void SetActivationParams(float min, float max, P* params) {
}
template <typename P>
inline void SetActivationParams(int32 min, int32 max, P* params) {
inline void SetActivationParams(int32_t min, int32_t max, P* params) {
params->quantized_activation_min = min;
params->quantized_activation_max = max;
}
template <typename P>
inline void GetActivationParams(const P& params, int32* min, int32* max) {
inline void SetActivationParams(int64_t min, int64_t max, P* params) {
params->int64_activation_min = min;
params->int64_activation_max = max;
}
template <typename P>
inline void GetActivationParams(const P& params, int32_t* min, int32_t* max) {
*min = params.quantized_activation_min;
*max = params.quantized_activation_max;
}
@@ -1122,6 +1145,11 @@ inline void GetActivationParams(const P& params, float* min, float* max) {
*max = params.float_activation_max;
}
template <typename P>
inline void GetActivationParams(const P& params, int64_t* min, int64_t* max) {
*min = params.int64_activation_min;
*max = params.int64_activation_max;
}
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_TYPES_H_

View File

@@ -14,15 +14,176 @@ limitations under the License.
==============================================================================*/
#include "tensorflow/lite/kernels/kernel_util.h"
#include <stdint.h>
#include <stdlib.h>
#include <algorithm>
#include <cmath>
#include <complex>
#include <limits>
#include <memory>
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/cppmath.h"
#include "tensorflow/lite/kernels/internal/quantization_util.h"
namespace tflite {
namespace {
// Assumes tensor_index is a valid index (in bounds)
inline TfLiteTensor* GetTensorAtIndex(const TfLiteContext* context,
int tensor_index) {
if (context->tensors != nullptr) {
return &context->tensors[tensor_index];
} else {
return context->GetTensor(context, tensor_index);
}
}
// Validate in a single place to reduce binary size
inline TfLiteStatus ValidateTensorIndexingSafe(const TfLiteContext* context,
int index, int max_size,
const int* tensor_indices,
int* tensor_index) {
if (index < 0 || index >= max_size) {
TF_LITE_KERNEL_LOG(const_cast<TfLiteContext*>(context),
"Invalid tensor index %d (not in [0, %d))\n", index,
max_size);
return kTfLiteError;
}
if (tensor_indices[index] == kTfLiteOptionalTensor) {
TF_LITE_KERNEL_LOG(const_cast<TfLiteContext*>(context),
"Tensor at index %d was optional but was expected\n",
index);
return kTfLiteError;
}
*tensor_index = tensor_indices[index];
return kTfLiteOk;
}
// Same as above but returns -1 for invalid inputs instead of status + logging
// error.
inline int ValidateTensorIndexing(const TfLiteContext* context, int index,
int max_size, const int* tensor_indices) {
if (index >= 0 && index < max_size) {
const int tensor_index = tensor_indices[index];
if (tensor_index != kTfLiteOptionalTensor) {
return tensor_index;
}
}
return -1;
}
inline TfLiteTensor* GetMutableInput(const TfLiteContext* context,
const TfLiteNode* node, int index) {
const int tensor_index = ValidateTensorIndexing(
context, index, node->inputs->size, node->inputs->data);
if (tensor_index < 0) {
return nullptr;
}
return GetTensorAtIndex(context, tensor_index);
}
inline TfLiteStatus GetMutableInputSafe(const TfLiteContext* context,
const TfLiteNode* node, int index,
const TfLiteTensor** tensor) {
int tensor_index;
TF_LITE_ENSURE_OK(
context, ValidateTensorIndexingSafe(context, index, node->inputs->size,
node->inputs->data, &tensor_index));
*tensor = GetTensorAtIndex(context, tensor_index);
return kTfLiteOk;
}
} // anonymous namespace.
const TfLiteTensor* GetInput(const TfLiteContext* context,
const TfLiteNode* node, int index) {
return GetMutableInput(context, node, index);
}
TfLiteStatus GetInputSafe(const TfLiteContext* context, const TfLiteNode* node,
int index, const TfLiteTensor** tensor) {
return GetMutableInputSafe(context, node, index, tensor);
}
TfLiteTensor* GetVariableInput(TfLiteContext* context, const TfLiteNode* node,
int index) {
TfLiteTensor* tensor = GetMutableInput(context, node, index);
return tensor->is_variable ? tensor : nullptr;
}
TfLiteTensor* GetOutput(TfLiteContext* context, const TfLiteNode* node,
int index) {
const int tensor_index = ValidateTensorIndexing(
context, index, node->outputs->size, node->outputs->data);
if (tensor_index < 0) {
return nullptr;
}
return GetTensorAtIndex(context, tensor_index);
}
TfLiteStatus GetOutputSafe(const TfLiteContext* context, const TfLiteNode* node,
int index, TfLiteTensor** tensor) {
int tensor_index;
TF_LITE_ENSURE_OK(
context, ValidateTensorIndexingSafe(context, index, node->outputs->size,
node->outputs->data, &tensor_index));
*tensor = GetTensorAtIndex(context, tensor_index);
return kTfLiteOk;
}
const TfLiteTensor* GetOptionalInputTensor(const TfLiteContext* context,
const TfLiteNode* node, int index) {
return GetInput(context, node, index);
}
#ifndef TF_LITE_STATIC_MEMORY
TfLiteTensor* GetTemporary(TfLiteContext* context, const TfLiteNode* node,
int index) {
const int tensor_index = ValidateTensorIndexing(
context, index, node->temporaries->size, node->temporaries->data);
if (tensor_index < 0) {
return nullptr;
}
return GetTensorAtIndex(context, tensor_index);
}
TfLiteStatus GetTemporarySafe(const TfLiteContext* context,
const TfLiteNode* node, int index,
TfLiteTensor** tensor) {
int tensor_index;
TF_LITE_ENSURE_OK(context, ValidateTensorIndexingSafe(
context, index, node->temporaries->size,
node->temporaries->data, &tensor_index));
*tensor = GetTensorAtIndex(context, tensor_index);
return kTfLiteOk;
}
const TfLiteTensor* GetIntermediates(TfLiteContext* context,
const TfLiteNode* node, int index) {
const int tensor_index = ValidateTensorIndexing(
context, index, node->intermediates->size, node->intermediates->data);
if (tensor_index < 0) {
return nullptr;
}
return GetTensorAtIndex(context, tensor_index);
}
TfLiteStatus GetIntermediatesSafe(const TfLiteContext* context,
const TfLiteNode* node, int index,
TfLiteTensor** tensor) {
int tensor_index;
TF_LITE_ENSURE_OK(context, ValidateTensorIndexingSafe(
context, index, node->intermediates->size,
node->intermediates->data, &tensor_index));
*tensor = GetTensorAtIndex(context, tensor_index);
return kTfLiteOk;
}
#endif // TF_LITE_STATIC_MEMORY
// Per-axis
TfLiteStatus PopulateConvolutionQuantizationParams(
TfLiteContext* context, const TfLiteTensor* input,
@@ -126,11 +287,27 @@ TfLiteStatus GetQuantizedConvolutionMultipler(TfLiteContext* context,
// pipeline.
if (bias) {
const double bias_scale = static_cast<double>(bias->params.scale);
// Here we're making sure the input_product_scale & bias_scale the same.
// Normally this should be guaranteed by the training pipeline, we are
// setting the threshold to be 2e-6 to allow some numeric stability
// difference.
TF_LITE_ENSURE(context, std::abs(input_product_scale - bias_scale) <= 2e-6);
// Here we're making sure the input_product_scale & bias_scale are about the
// same. Since we have:
// (output - output_zp) * output_scale =
// input_product_scale * input_product + bias * bias_scale ---- (0)
//
// (0) equals:
// (input_product + bias) * input_product_scale ----- (1)
// +
// bias * (bias_scale - input_product_scale) ------ (2)
//
// For the real kernel computation, we're doing (1), so we really need to
// make sure (2) has minimum impact on the output, so:
// bias * (bias_scale - input_product_scale) / output_scale should be
// a small number for an integer.
// Since normally bias should be within a small range.
// We should expect (bias_scale - input_product_scale) / output_scale to
// be a small number like 0.02.
const double scale_diff = std::abs(input_product_scale - bias_scale);
const double output_scale = static_cast<double>(output->params.scale);
TF_LITE_ENSURE(context, scale_diff / output_scale <= 0.02);
}
return GetQuantizedConvolutionMultipler(context, input, filter, output,
multiplier);
@@ -167,7 +344,7 @@ void CalculateActivationRangeQuantizedImpl(TfLiteFusedActivation activation,
} else if (activation == kTfLiteActRelu6) {
*act_min = std::max(qmin, quantize(0.0));
*act_max = std::min(qmax, quantize(6.0));
} else if (activation == kTfLiteActRelu1) {
} else if (activation == kTfLiteActReluN1To1) {
*act_min = std::max(qmin, quantize(-1.0));
*act_max = std::min(qmax, quantize(1.0));
} else {
@@ -258,4 +435,44 @@ TfLiteStatus CalculateShapeForBroadcast(TfLiteContext* context,
}
#endif // TF_LITE_STATIC_MEMORY
// Size of string is not constant, return 0 in such case.
int TfLiteTypeGetSize(TfLiteType type) {
switch (type) {
case kTfLiteUInt8:
TF_LITE_ASSERT_EQ(sizeof(uint8_t), 1);
return 1;
case kTfLiteInt8:
TF_LITE_ASSERT_EQ(sizeof(int8_t), 1);
return 1;
case kTfLiteBool:
return sizeof(bool);
case kTfLiteInt16:
TF_LITE_ASSERT_EQ(sizeof(int16_t), 2);
return 2;
case kTfLiteFloat16:
TF_LITE_ASSERT_EQ(sizeof(int16_t), 2);
return 2;
case kTfLiteFloat32:
TF_LITE_ASSERT_EQ(sizeof(float), 4);
return 4;
case kTfLiteInt32:
TF_LITE_ASSERT_EQ(sizeof(int32_t), 4);
return 4;
case kTfLiteInt64:
TF_LITE_ASSERT_EQ(sizeof(int64_t), 8);
return 8;
case kTfLiteFloat64:
TF_LITE_ASSERT_EQ(sizeof(double), 8);
return 8;
case kTfLiteComplex64:
TF_LITE_ASSERT_EQ(sizeof(std::complex<float>), 8);
return 8;
case kTfLiteComplex128:
TF_LITE_ASSERT_EQ(sizeof(std::complex<double>), 16);
return 16;
default:
return 0;
}
}
} // namespace tflite

View File

@@ -15,52 +15,148 @@ limitations under the License.
#ifndef TENSORFLOW_LITE_KERNELS_KERNEL_UTIL_H_
#define TENSORFLOW_LITE_KERNELS_KERNEL_UTIL_H_
#include <algorithm>
#include <stdint.h>
#include <limits>
#include "flatbuffers/flatbuffers.h"
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
namespace tflite {
// A fair number of functions in this header have historically been inline.
// It is ok to change functions to not be inline if the latency with
// benchmark_model for MobileNet + MobileBERT is unaffected. If such a change is
// made, move the newly non-inlined function declarations to the top of this
// header file.
// Note: You must check if result is not null:
//
// TfLiteTensor* my_tensor = GetInput(context, node, kMyTensorIdx);
// TF_LITE_ENSURE(context, my_tensor != nullptr);
//
// This is because the index might point to the optional tensor constant
// (kTfLiteOptionalTensor) in which case there is no tensor to return.
const TfLiteTensor* GetInput(const TfLiteContext* context,
const TfLiteNode* node, int index);
// Same as `GetInput` but returns boolean and uses output argument for tensor.
//
// TfLiteTensor* my_tensor;
// TF_LITE_ENSURE_OK(context,
// GetInputSafe(context, node, kMyTensorIdx, &my_tensor));
// // can use my_tensor directly from here onwards, it is not nullptr
//
// Should be used in cases where the binary size is too large.
TfLiteStatus GetInputSafe(const TfLiteContext* context, const TfLiteNode* node,
int index, const TfLiteTensor** tensor);
// Note: You must check if result is not null:
//
// TfLiteTensor* my_tensor = GetVariableInput(context, node, kMyTensorIdx);
// TF_LITE_ENSURE(context, my_tensor != nullptr);
//
// This is because the index might point to the optional tensor constant
// (kTfLiteOptionalTensor) in which case there is no tensor to return.
TfLiteTensor* GetVariableInput(TfLiteContext* context, const TfLiteNode* node,
int index);
// Note: You must check if result is not null:
//
// TfLiteTensor* my_tensor = GetOutput(context, node, kMyTensorIdx);
// TF_LITE_ENSURE(context, my_tensor != nullptr);
//
// This is because the index might point to the optional tensor constant
// (kTfLiteOptionalTensor) in which case there is no tensor to return.
TfLiteTensor* GetOutput(TfLiteContext* context, const TfLiteNode* node,
int index);
// Same as `GetOutput` but returns boolean and uses output argument for tensor.
//
// TfLiteTensor* my_tensor;
// TF_LITE_ENSURE_OK(context,
// GetOutputSafe(context, node, kMyTensorIdx, &my_tensor));
// // can use my_tensor directly from here onwards, it is not nullptr
//
// Should be used in cases where the binary size is too large.
TfLiteStatus GetOutputSafe(const TfLiteContext* context, const TfLiteNode* node,
int index, TfLiteTensor** tensor);
// Note: You must check if result is not null:
//
// TfLiteTensor* my_tensor = GetOptionalInputTensor(context, node, kIdx);
// TF_LITE_ENSURE(context, my_tensor != nullptr);
//
// This is because the index might point to the optional tensor constant
// (kTfLiteOptionalTensor) in which case there is no tensor to return.
//
// Deprecated. GetInput has the same functionality.
const TfLiteTensor* GetOptionalInputTensor(const TfLiteContext* context,
const TfLiteNode* node, int index);
#ifndef TF_LITE_STATIC_MEMORY
// Note: You must check if result is not null:
//
// TfLiteTensor* my_tensor = GetTemporary(context, node, kMyTensorIdx);
// TF_LITE_ENSURE(context, my_tensor != nullptr);
//
// This is because the index might point to the optional tensor constant
// (kTfLiteOptionalTensor) in which case there is no tensor to return.
TfLiteTensor* GetTemporary(TfLiteContext* context, const TfLiteNode* node,
int index);
// Same as `GetTemporary` but returns boolean and uses output argument for
// tensor.
//
// TfLiteTensor* my_tensor;
// TF_LITE_ENSURE_OK(context,
// GetTemporarySafe(context, node, kMyTensorIdx,
// &my_tensor));
// // can use my_tensor directly from here onwards, it is not nullptr
//
// Should be used in cases where the binary size is too large.
TfLiteStatus GetTemporarySafe(const TfLiteContext* context,
const TfLiteNode* node, int index,
TfLiteTensor** tensor);
// Note: You must check if result is not null:
//
// TfLiteTensor* my_tensor = GetIntermediates(context, node, kMyTensorIdx);
// TF_LITE_ENSURE(context, my_tensor != nullptr);
//
// This is because the index might point to the optional tensor constant
// (kTfLiteOptionalTensor) in which case there is no tensor to return.
const TfLiteTensor* GetIntermediates(TfLiteContext* context,
const TfLiteNode* node, int index);
// Same as `GetIntermediates` but returns boolean and uses output argument for
// tensor.
//
// TfLiteTensor* my_tensor;
// TF_LITE_ENSURE_OK(context,
// GetIntermediatesSafe(context, node, kMyTensorIdx,
// &my_tensor));
// // can use my_tensor directly from here onwards, it is not nullptr
//
// Should be used in cases where the binary size is too large.
TfLiteStatus GetIntermediatesSafe(const TfLiteContext* context,
const TfLiteNode* node, int index,
TfLiteTensor** tensor);
#endif // TF_LITE_STATIC_MEMORY
inline int NumDimensions(const TfLiteTensor* t) { return t->dims->size; }
inline int SizeOfDimension(const TfLiteTensor* t, int dim) {
return t->dims->data[dim];
}
inline const TfLiteTensor* GetInput(TfLiteContext* context,
const TfLiteNode* node, int index) {
return &context
->tensors[flatbuffers::EndianScalar(node->inputs->data[index])];
}
// Note: You must check if result is not null:
// TfLiteTensor* my_tensor = GetVariableInput(context, node, kMyTensorIdx);
// TF_LITE_ENSURE(context, my_tensor != nullptr);
inline TfLiteTensor* GetVariableInput(TfLiteContext* context,
const TfLiteNode* node, int index) {
TfLiteTensor* tensor =
&context->tensors[flatbuffers::EndianScalar(node->inputs->data[index])];
return (tensor->is_variable) ? tensor : nullptr;
}
inline TfLiteTensor* GetOutput(TfLiteContext* context, const TfLiteNode* node,
int index) {
return &context
->tensors[flatbuffers::EndianScalar(node->outputs->data[index])];
}
inline TfLiteTensor* GetTemporary(TfLiteContext* context,
const TfLiteNode* node, int index) {
return &context->tensors[flatbuffers::EndianScalar(
node->temporaries->data[index])];
}
inline const TfLiteTensor* GetIntermediates(TfLiteContext* context,
const TfLiteNode* node, int index) {
return &context->tensors[node->intermediates->data[index]];
}
inline int NumInputs(const TfLiteNode* node) { return node->inputs->size; }
inline int NumOutputs(const TfLiteNode* node) { return node->outputs->size; }
#ifndef TF_LITE_STATIC_MEMORY
inline int NumIntermediates(const TfLiteNode* node) {
return node->intermediates->size;
}
#endif // TF_LITE_STATIC_MEMORY
inline int64_t NumElements(const TfLiteIntArray* dims) {
int64_t count = 1;
@@ -74,19 +170,11 @@ inline int64_t NumElements(const TfLiteTensor* t) {
return NumElements(t->dims);
}
inline const TfLiteTensor* GetOptionalInputTensor(TfLiteContext* context,
const TfLiteNode* node,
int index) {
const bool use_tensor = index < node->inputs->size &&
node->inputs->data[index] != kTfLiteOptionalTensor;
if (use_tensor) {
return &context
->tensors[flatbuffers::EndianScalar(node->inputs->data[index])];
}
return nullptr;
}
// Determines whether tensor is constant.
// TODO(b/138199592): Introduce new query which checks for constant OR
// persistent-read-only, which would be useful for most tensor kernels that
// are potentially dynamic based on the input tensor value availability at the
// time of prepare.
inline bool IsConstantTensor(const TfLiteTensor* tensor) {
return tensor->allocation_type == kTfLiteMmapRo;
}
@@ -105,6 +193,14 @@ inline void SetTensorToDynamic(TfLiteTensor* tensor) {
}
}
// Sets tensor to persistent and read-only.
inline void SetTensorToPersistentRo(TfLiteTensor* tensor) {
if (tensor->allocation_type != kTfLitePersistentRo) {
tensor->allocation_type = kTfLitePersistentRo;
tensor->data.raw = nullptr;
}
}
// Determines whether it is a hybrid op - one that has float inputs and
// quantized weights.
inline bool IsHybridOp(const TfLiteTensor* input, const TfLiteTensor* weight) {
@@ -162,7 +258,7 @@ void CalculateActivationRange(TfLiteFusedActivation activation,
} else if (activation == kTfLiteActRelu6) {
*activation_min = 0;
*activation_max = 6;
} else if (activation == kTfLiteActRelu1) {
} else if (activation == kTfLiteActReluN1To1) {
*activation_min = -1;
*activation_max = 1;
} else {
@@ -188,6 +284,10 @@ TfLiteStatus CalculateShapeForBroadcast(TfLiteContext* context,
const TfLiteTensor* input2,
const TfLiteTensor* input3,
TfLiteIntArray** output_shape);
// Return the size of given type in bytes. Return 0 in in case of string.
int TfLiteTypeGetSize(TfLiteType type);
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_KERNEL_UTIL_H_

View File

@@ -19,7 +19,7 @@ limitations under the License.
// non-portable function.
#ifdef TF_LITE_MCU_DEBUG_LOG
#include "tensorflow/lite/micro/micro_error_reporter.h"
#include "tensorflow/lite/micro/debug_log.h"
#define DEBUG_LOG(x) \
do { \
@@ -36,7 +36,6 @@ inline void InfiniteLoop() {
#else // TF_LITE_MCU_DEBUG_LOG
#include <cassert>
#include <cstdio>
#include <cstdlib>
@@ -45,6 +44,15 @@ inline void InfiniteLoop() {
fprintf(stderr, "%s", (x)); \
} while (0)
// Report Error for unsupported type by op 'op_name' and returns kTfLiteError.
#define TF_LITE_UNSUPPORTED_TYPE(context, type, op_name) \
do { \
TF_LITE_KERNEL_LOG((context), "%s:%d Type %s is unsupported by op %s.", \
__FILE__, __LINE__, TfLiteTypeGetName(type), \
(op_name)); \
return kTfLiteError; \
} while (0)
#define TFLITE_ABORT abort()
#endif // TF_LITE_MCU_DEBUG_LOG