This commit is contained in:
michael
2026-01-17 02:49:32 +01:00
parent a1ccda2e88
commit 4905663933
283 changed files with 32074 additions and 15759 deletions

View File

@@ -1,7 +1,7 @@
FILE(GLOB_RECURSE app_sources ${CMAKE_CURRENT_SOURCE_DIR}/*.*)
idf_component_register(SRCS ${app_sources}
INCLUDE_DIRS "."
REQUIRES esp_timer esp-tflite-micro jomjol_logfile fatfs sdmmc vfs)
INCLUDE_DIRS "." "../../include"
REQUIRES driver esp_driver_uart log esp_timer esp-tflite-micro jomjol_logfile fatfs sdmmc vfs)

File diff suppressed because it is too large Load Diff

View File

@@ -3,113 +3,148 @@
#ifndef HELPER_H
#define HELPER_H
#include "sdkconfig.h"
#include <string>
#include <fstream>
#include <vector>
#include "sdmmc_cmd.h"
#include "defines.h"
#ifdef CONFIG_SOC_TEMP_SENSOR_SUPPORTED
#include <driver/temperature_sensor.h>
#endif
#if (ESP_IDF_VERSION_MAJOR >= 5)
#include "soc/periph_defs.h"
#include "esp_private/periph_ctrl.h"
#include "soc/gpio_sig_map.h"
#include "soc/gpio_periph.h"
#include "soc/io_mux_reg.h"
#include "esp_rom_gpio.h"
#define gpio_pad_select_gpio esp_rom_gpio_pad_select_gpio
#define gpio_matrix_in(a, b, c) esp_rom_gpio_connect_in_signal(a, b, c)
#define gpio_matrix_out(a, b, c, d) esp_rom_gpio_connect_out_signal(a, b, c, d)
#define ets_delay_us(a) esp_rom_delay_us(a)
#endif
using namespace std;
std::string FormatFileName(std::string input);
std::size_t file_size(const std::string& file_name);
void FindReplace(std::string& line, std::string& oldString, std::string& newString);
bool CopyFile(string input, string output);
bool DeleteFile(string filename);
bool RenameFile(string from, string to);
bool RenameFolder(string from, string to);
bool MakeDir(std::string _what);
bool FileExists(string filename);
bool FolderExists(string foldername);
string RundeOutput(double _in, int _anzNachkomma);
size_t findDelimiterPos(string input, string delimiter);
//string trim(string istring);
string trim(string istring, string adddelimiter = "");
bool ctype_space(const char c, string adddelimiter);
string getFileType(string filename);
string getFileFullFileName(string filename);
string getDirectory(string filename);
int mkdir_r(const char *dir, const mode_t mode);
int removeFolder(const char* folderPath, const char* logTag);
string toLower(string in);
string toUpper(string in);
float temperatureRead();
std::string intToHexString(int _valueInt);
time_t addDays(time_t startTime, int days);
void memCopyGen(uint8_t* _source, uint8_t* _target, int _size);
std::vector<string> HelperZerlegeZeile(std::string input, std::string _delimiter);
std::vector<std::string> ZerlegeZeile(std::string input, std::string delimiter = " =, \t");
///////////////////////////
size_t getInternalESPHeapSize();
size_t getESPHeapSize();
string getESPHeapInfo();
/////////////////////////////
string getSDCardPartitionSize();
string getSDCardFreePartitionSpace();
string getSDCardPartitionAllocationSize();
void SaveSDCardInfo(sdmmc_card_t* card);
string SDCardParseManufacturerIDs(int);
string getSDCardManufacturer();
string getSDCardName();
string getSDCardCapacity();
string getSDCardSectorSize();
string getMac(void);
/* Error bit fields
One bit per error
Make sure it matches https://jomjol.github.io/AI-on-the-edge-device-docs/Error-Codes */
enum SystemStatusFlag_t { // One bit per error
// First Byte
SYSTEM_STATUS_PSRAM_BAD = 1 << 0, // 1, Critical Error
SYSTEM_STATUS_HEAP_TOO_SMALL = 1 << 1, // 2, Critical Error
SYSTEM_STATUS_CAM_BAD = 1 << 2, // 4, Critical Error
SYSTEM_STATUS_SDCARD_CHECK_BAD = 1 << 3, // 8, Critical Error
SYSTEM_STATUS_FOLDER_CHECK_BAD = 1 << 4, // 16, Critical Error
enum SystemStatusFlag_t
{ // One bit per error
// First Byte
SYSTEM_STATUS_PSRAM_BAD = 1 << 0, // 1, Critical Error
SYSTEM_STATUS_HEAP_TOO_SMALL = 1 << 1, // 2, Critical Error
SYSTEM_STATUS_CAM_BAD = 1 << 2, // 4, Critical Error
SYSTEM_STATUS_SDCARD_CHECK_BAD = 1 << 3, // 8, Critical Error
SYSTEM_STATUS_FOLDER_CHECK_BAD = 1 << 4, // 16, Critical Error
// Second Byte
SYSTEM_STATUS_CAM_FB_BAD = 1 << (0+8), // 8, Flow still might work
SYSTEM_STATUS_NTP_BAD = 1 << (1+8), // 9, Flow will work but time will be wrong
// Second Byte
SYSTEM_STATUS_CAM_FB_BAD = 1 << (0 + 8), // 8, Flow still might work
SYSTEM_STATUS_NTP_BAD = 1 << (1 + 8), // 9, Flow will work but time will be wrong
};
void setSystemStatusFlag(SystemStatusFlag_t flag);
void clearSystemStatusFlag(SystemStatusFlag_t flag);
int getSystemStatus(void);
bool isSetSystemStatusFlag(SystemStatusFlag_t flag);
void string_to_ip4(const char *ip, int &a, int &b, int &c, int &d);
std::string bssid_to_string(const char *c);
time_t getUpTime(void);
string getResetReason(void);
std::string getFormatedUptime(bool compact);
std::string format_filename(std::string input);
std::size_t file_size(const std::string &file_name);
void find_replace(std::string &line, std::string &oldString, std::string &newString);
const char* get404(void);
bool copy_file(string input, string output);
bool delete_file(string filename);
bool rename_file(string from, string to);
bool rename_folder(string from, string to);
bool make_dir(std::string _what);
bool file_exists(string filename);
bool folder_exists(string foldername);
std::string UrlDecode(const std::string& value);
string round_output(double _in, int _anzNachkomma);
void replaceAll(std::string& s, const std::string& toReplace, const std::string& replaceWith);
bool replaceString(std::string& s, std::string const& toReplace, std::string const& replaceWith);
bool replaceString(std::string& s, std::string const& toReplace, std::string const& replaceWith, bool logIt);
bool isInString(std::string& s, std::string const& toFind);
size_t find_delimiter_pos(string input, string delimiter);
bool isStringNumeric(std::string &input);
bool isStringAlphabetic(std::string &input);
bool isStringAlphanumeric(std::string &input);
bool alphanumericToBoolean(std::string &input);
std::string trim_string_left_right(std::string istring, std::string adddelimiter = "");
std::string trim_string_left(std::string istring, std::string adddelimiter = "");
std::string trim_string_right(std::string istring, std::string adddelimiter = "");
int clipInt(int input, int high, int low);
bool numericStrToBool(std::string input);
bool stringToBoolean(std::string input);
bool ctype_space(const char c, string adddelimiter);
#endif //HELPER_H
string get_file_type(string filename);
string get_file_full_filename(string filename);
string get_directory(string filename);
int mkdir_r(const char *dir, const mode_t mode);
int remove_folder(const char *folderPath, const char *logTag);
string to_lower(string in);
string to_upper(string in);
static float temp_sens_value = -1;
#ifdef CONFIG_SOC_TEMP_SENSOR_SUPPORTED
void init_tempsensor(void);
#endif
float read_tempsensor(void);
time_t add_days(time_t startTime, int days);
void mem_copy_gen(uint8_t *_source, uint8_t *_target, int _size);
std::vector<std::string> split_string(const std::string &str);
std::vector<std::string> split_line(std::string input, std::string _delimiter = "=");
///////////////////////////
size_t get_internal_heapsize();
size_t get_heapsize();
string get_heapinfo();
/////////////////////////////
string get_sd_card_partition_size();
string get_sd_card_free_partition_space();
string get_sd_card_partition_allocation_size();
void save_sd_card_info(sdmmc_card_t *card);
string sd_card_parse_manufacturer_ids(int);
string get_sd_card_manufacturer();
string get_sd_card_name();
string get_sd_card_capacity();
string get_sd_card_sector_size();
string get_mac(void);
void set_system_statusflag(SystemStatusFlag_t flag);
void clear_system_statusflag(SystemStatusFlag_t flag);
int get_system_status(void);
bool is_set_system_statusflag(SystemStatusFlag_t flag);
time_t get_uptime(void);
string get_reset_reason(void);
std::string get_formated_uptime(bool compact);
const char *get404(void);
std::string url_decode(const std::string &value);
void replace_all(std::string &s, const std::string &toReplace, const std::string &replaceWith);
bool replace_string(std::string &s, std::string const &toReplace, std::string const &replaceWith);
bool replace_string(std::string &s, std::string const &toReplace, std::string const &replaceWith, bool logIt);
std::string encrypt_decrypt_string(std::string toEncrypt);
std::string encrypt_pw_string(std::string toEncrypt);
std::string decrypt_pw_string(std::string toDecrypt);
esp_err_t encrypt_decrypt_pw_on_sd(bool _encrypt, std::string filename);
bool is_in_string(std::string &s, std::string const &toFind);
bool is_string_numeric(std::string &input);
bool is_string_alphabetic(std::string &input);
bool is_string_alphanumeric(std::string &input);
bool alphanumeric_to_boolean(std::string &input);
int clip_int(int input, int high, int low);
bool numeric_str_to_boolean(std::string input);
bool string_to_boolean(std::string input);
#endif // HELPER_H

View File

@@ -1,179 +0,0 @@
#include "../../include/defines.h"
#ifdef DEBUG_ENABLE_SYSINFO
#include "esp_sys.h"
#include "esp_chip_info.h"
#include <string>
#include "esp_chip_info.h"
void Restart() {
esp_restart();
}
//source : https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/misc_system_api.html#_CPPv416esp_chip_model_t
//https://github.com/espressif/esp-idf/blob/8464186e67e34b417621df6b6f1f289a6c60b859/components/esp_hw_support/include/esp_chip_info.h
/*
typedef enum {
CHIP_ESP32 = 1, //!< ESP32
CHIP_ESP32S2 = 2, //!< ESP32-S2
CHIP_ESP32S3 = 9, //!< ESP32-S3
CHIP_ESP32C3 = 5, //!< ESP32-C3
CHIP_ESP32H4 = 6, //!< ESP32-H4
CHIP_ESP32C2 = 12, //!< ESP32-C2
CHIP_ESP32C6 = 13, //!< ESP32-C6
CHIP_ESP32H2 = 16, //!< ESP32-H2
CHIP_POSIX_LINUX = 999, //!< The code is running on POSIX/Linux simulator
} esp_chip_model_t;
*/
char* GetChipModel(){
esp_chip_info_t chipInfo;
esp_chip_info(&chipInfo);
switch((int)chipInfo.model) {
case 0 : return (char*)"ESP8266";
case (int)esp_chip_model_t::CHIP_ESP32 : return (char*)"ESP32";
#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(4, 0, 0)
case (int)esp_chip_model_t::CHIP_ESP32S2 : return (char*)"ESP32-S2";
case (int)esp_chip_model_t::CHIP_ESP32S3 : return (char*)"ESP32-S3";
case (int)esp_chip_model_t::CHIP_ESP32C3 : return (char*)"ESP32-C3";
case 6 : return (char*)"ESP32-H4";
case 12 : return (char*)"ESP32-C2";
case 13 : return (char*)"ESP32-C6";
//case (int)esp_chip_model_t::CHIP_ESP32H4 : return (char*)"ESP32-H4";
//case (int)esp_chip_model_t::CHIP_ESP32C2 : return (char*)"ESP32-C2";
//case (int)esp_chip_model_t::CHIP_ESP32C6 : return (char*)"ESP32-C6";
//case (int)esp_chip_model_t::CHIP_ESP32H2 : return (char*)"ESP32-H2";
case 16 : return (char*)"ESP32-H2";
//case (int)esp_chip_model_t::CHIP_POSIX_LINUX : return (char*)"CHIP_POSIX_LINUX";
#endif
}
return (char*)"Chip Unknown";
}
uint8_t GetChipCoreCount() {
esp_chip_info_t chipInfo;
esp_chip_info(&chipInfo);
return chipInfo.cores;
}
uint16_t GetChipRevision() {
esp_chip_info_t chipInfo;
esp_chip_info(&chipInfo);
return chipInfo.revision;
}
uint32_t GetChipfeatures() {
esp_chip_info_t chipInfo;
esp_chip_info(&chipInfo);
return chipInfo.features;
}
uint32_t GetFreeHeap() {
return esp_get_free_heap_size();
}
uint32_t GetLeastHeapFreeSinceBoot() {
return esp_get_minimum_free_heap_size();
}
std::string get_device_info()
{
esp_chip_info_t chip_info;
esp_chip_info(&chip_info);
std::string espInfoResultStr = "";
char aMsgBuf[40];
espInfoResultStr += "Device Info:";
espInfoResultStr += "---------------\n";
espInfoResultStr += "Chip Model: " + std::string(GetChipModel()) +"\n";
sprintf(aMsgBuf,"Chip Revision: %d\n", chip_info.revision);
espInfoResultStr += std::string(aMsgBuf);
sprintf(aMsgBuf,"CPU Cores: %d\n", chip_info.cores);
espInfoResultStr += std::string(aMsgBuf);
sprintf(aMsgBuf,"Flash Memory: %dMB\n", spi_flash_get_chip_size()/(1024*1024));
espInfoResultStr += std::string(aMsgBuf);
if(chip_info.features & CHIP_FEATURE_WIFI_BGN)
//espInfoResultStr += "Base MAC: " + std::string(getMac()) +"\n";
espInfoResultStr += "ESP-IDF version: " + std::string(esp_get_idf_version()) +"\n";
if((chip_info.features & CHIP_FEATURE_WIFI_BGN) || (chip_info.features & CHIP_FEATURE_BT) ||
(chip_info.features & CHIP_FEATURE_BLE) || (chip_info.features & CHIP_FEATURE_EMB_FLASH))
{
espInfoResultStr += "Characteristics:\n";
if(chip_info.features & CHIP_FEATURE_WIFI_BGN)
espInfoResultStr += " WiFi 2.4GHz\n";
if(chip_info.features & CHIP_FEATURE_BT)
espInfoResultStr += " Bluetooth Classic\n";
if(chip_info.features & CHIP_FEATURE_BLE)
espInfoResultStr += " Bluetooth Low Energy\n";
if(chip_info.features & CHIP_FEATURE_EMB_FLASH)
espInfoResultStr += " Embedded Flash memory\n";
else
espInfoResultStr += " External Flash memory\n";
}
#ifdef USE_HIMEM_IF_AVAILABLE
sprintf(aMsgBuf,"spiram size %u\n", esp_psram_get_size());
espInfoResultStr += std::string(aMsgBuf);
sprintf(aMsgBuf,"himem free %u\n", esp_himem_get_free_size());
espInfoResultStr += std::string(aMsgBuf);
sprintf(aMsgBuf,"himem phys %u\n", esp_himem_get_phys_size());
espInfoResultStr += std::string(aMsgBuf);
sprintf(aMsgBuf,"himem reserved %u\n", esp_himem_reserved_area_size());
espInfoResultStr += std::string(aMsgBuf);
#endif
return espInfoResultStr;
}
size_t getFreeMemoryInternal(){ //Current Free Memory
return heap_caps_get_free_size(MALLOC_CAP_8BIT) - heap_caps_get_free_size(MALLOC_CAP_SPIRAM);
}
size_t getFreeMemorySPIRAM(){ //Current Free Memory
return heap_caps_get_free_size(MALLOC_CAP_SPIRAM);
}
size_t getLargestFreeBlockInternal(){ //Largest Free Block
return heap_caps_get_largest_free_block(MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL);
}
size_t getLargestFreeBlockSPIRAM(){ //Largest Free Block
return heap_caps_get_largest_free_block(MALLOC_CAP_SPIRAM);
}
size_t getMinEverFreeMemInternal(){ //Min. Ever Free Size
return heap_caps_get_minimum_free_size(MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL);
}
size_t getMinEverFreeMemSPIRAM(){ //Min. Ever Free Size
return heap_caps_get_minimum_free_size(MALLOC_CAP_SPIRAM);
}
#ifdef USE_HIMEM_IF_AVAILABLE
size_t getHimemTotSpace(){
return esp_himem_get_phys_size();
}
size_t getHimemFreeSpace(){
return esp_himem_get_free_size();
}
size_t getHimemReservedArea(){
return esp_himem_reserved_area_size();
}
#endif
#endif //DEBUG_ENABLE_SYSINFO

View File

@@ -1,54 +0,0 @@
#pragma once
#include "../../include/defines.h"
#ifdef DEBUG_ENABLE_SYSINFO
#ifndef ESP_SYS_H
#define ESP_SYS_H
#include <string>
// Device libraries (ESP-IDF)
#include <esp_system.h>
#include <esp_spi_flash.h>
#include <esp_heap_caps.h>
// for esp_psram_get_size
extern "C" {
#include "esp_psram.h"
#ifdef USE_HIMEM_IF_AVAILABLE
#include <esp32/himem.h>
#endif
}
void Restart();
char *GetChipModel();
uint8_t GetChipCoreCount();
uint16_t GetChipRevision();
uint32_t GetChipfeatures();
uint32_t GetFreeHeap();
uint32_t GetLeastHeapFreeSinceBoot();
std::string get_device_info();
size_t getFreeMemoryInternal();
size_t getFreeMemorySPIRAM();
size_t getLargestFreeBlockInternal();
size_t getLargestFreeBlockSPIRAM();
size_t getMinEverFreeMemInternal();
size_t getMinEverFreeMemSPIRAM();
#ifdef USE_HIMEM_IF_AVAILABLE
size_t getHimemTotSpace();
size_t getHimemFreeSpace();
size_t getHimemReservedArea();
#endif
#endif //ESP_SYS_H
#endif // DEBUG_ENABLE_SYSINFO

View File

@@ -1,115 +0,0 @@
// need [env:esp32cam-dev-himem]
//CONFIG_SPIRAM_BANKSWITCH_ENABLE=y
//CONFIG_SPIRAM_BANKSWITCH_RESERVE=4
#include "../../include/defines.h"
#ifdef DEBUG_HIMEM_MEMORY_CHECK
#include "himem_memory_check.h"
//source adapted from : https://github.com/espressif/esp-idf/blob/master/examples/system/himem/main/himem_example_main.c
//Fill memory with pseudo-random data generated from the given seed.
//Fills the memory in 32-bit words for speed.
static void fill_mem_seed(int seed, void *mem, int len)
{
uint32_t *p = (uint32_t *)mem;
unsigned int rseed = seed ^ 0xa5a5a5a5;
for (int i = 0; i < len / 4; i++) {
*p++ = rand_r(&rseed);
}
}
//Check the memory filled by fill_mem_seed. Returns true if the data matches the data
//that fill_mem_seed wrote (when given the same seed).
//Returns true if there's a match, false when the region differs from what should be there.
static bool check_mem_seed(int seed, void *mem, int len, int phys_addr)
{
uint32_t *p = (uint32_t *)mem;
unsigned int rseed = seed ^ 0xa5a5a5a5;
for (int i = 0; i < len / 4; i++) {
uint32_t ex = rand_r(&rseed);
if (ex != *p) {
//printf("check_mem_seed: %x has 0x%08"PRIx32" expected 0x%08"PRIx32"\n", phys_addr+((char*)p-(char*)mem), *p, ex);
return false;
}
p++;
}
return true;
}
//Allocate a himem region, fill it with data, check it and release it.
static bool test_region(int check_size, int seed)
{
esp_himem_handle_t mh; //Handle for the address space we're using
esp_himem_rangehandle_t rh; //Handle for the actual RAM.
bool ret = true;
//Allocate the memory we're going to check.
ESP_ERROR_CHECK(esp_himem_alloc(check_size, &mh));
//Allocate a block of address range
ESP_ERROR_CHECK(esp_himem_alloc_map_range(ESP_HIMEM_BLKSZ, &rh));
for (int i = 0; i < check_size; i += ESP_HIMEM_BLKSZ) {
uint32_t *ptr = NULL;
//Map in block, write pseudo-random data, unmap block.
ESP_ERROR_CHECK(esp_himem_map(mh, rh, i, 0, ESP_HIMEM_BLKSZ, 0, (void**)&ptr));
fill_mem_seed(i ^ seed, ptr, ESP_HIMEM_BLKSZ); //
ESP_ERROR_CHECK(esp_himem_unmap(rh, ptr, ESP_HIMEM_BLKSZ));
}
vTaskDelay(5); //give the OS some time to do things so the task watchdog doesn't bark
for (int i = 0; i < check_size; i += ESP_HIMEM_BLKSZ) {
uint32_t *ptr;
//Map in block, check against earlier written pseudo-random data, unmap block.
ESP_ERROR_CHECK(esp_himem_map(mh, rh, i, 0, ESP_HIMEM_BLKSZ, 0, (void**)&ptr));
if (!check_mem_seed(i ^ seed, ptr, ESP_HIMEM_BLKSZ, i)) {
//printf("Error in block %d\n", i / ESP_HIMEM_BLKSZ);
ret = false;
}
ESP_ERROR_CHECK(esp_himem_unmap(rh, ptr, ESP_HIMEM_BLKSZ));
if (!ret) break; //don't check rest of blocks if error occurred
}
//Okay, all done!
ESP_ERROR_CHECK(esp_himem_free(mh));
ESP_ERROR_CHECK(esp_himem_free_map_range(rh));
return ret;
}
std::string himem_memory_check()
{
size_t memcnt=esp_himem_get_phys_size();
size_t memfree=esp_himem_get_free_size();
std::string espInfoResultStr = "";
char aMsgBuf[40];
espInfoResultStr += "Running HIMEM memory check";
sprintf(aMsgBuf,"Himem has %dKiB of memory", (int)memcnt/1024);
espInfoResultStr += std::string(aMsgBuf);
sprintf(aMsgBuf,"%dKiB of which is free", (int)memfree/1024);
espInfoResultStr += std::string(aMsgBuf);
espInfoResultStr += "\n please wait ....\n";
//running memory checks
//assert(test_region(memfree, 0xaaaa));
if(test_region(memfree, 0xaaaa)) {
espInfoResultStr += "Himem check Failed!\n";
} else {
espInfoResultStr += "Himem check Done!\n";
}
return espInfoResultStr;
}
#endif // DEBUG_HIMEM_MEMORY_CHECK

View File

@@ -1,41 +0,0 @@
// need [env:esp32cam-dev-himem]
//CONFIG_SPIRAM_BANKSWITCH_ENABLE=y
//CONFIG_SPIRAM_BANKSWITCH_RESERVE=4
#pragma once
#include "../../include/defines.h"
#ifdef DEBUG_HIMEM_MEMORY_CHECK
#ifndef HIMEM_MEMORY_CHECK_H
#define HIMEM_MEMORY_CHECK_H
//source : //source : https://github.com/espressif/esp-idf/blob/master/examples/system/himem/main/himem_example_main.c
#include <stdio.h>
#include <stdbool.h>
#include <stdint.h>
#include <inttypes.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "esp_system.h"
#include "esp_heap_caps.h"
#include "esp32/himem.h"
#include <string>
#include "esp32/himem.h"
std::string himem_memory_check();
#endif //HIMEM_MEMORY_CHECK_H
#endif // DEBUG_HIMEM_MEMORY_CHECK

View File

@@ -1,87 +0,0 @@
//source : https://github.com/Carbon225/esp32-perfmon
#include "../../include/defines.h"
/*
ESP32 CPU usage monitor
Gives you a rough idea of how the Xtensa cores are utilized.
Works by attaching idle hooks and measuring how often they get called. The core usage is calculated: usage% = idle ticks since last measurement / expected idle ticks if core were idle * 100%. The expected idle tick count was measured by running an empty program.
Limitations:
Should only be used for user information, not in logic that needs accurate values
New IDF versions could optimize performance and therefore introduce an error to usage estimation.
When one core is at 100% the other might report a negative value
Usage:
#include "perfmon.h"
Call perfmon_start() once
*/
#ifdef DEBUG_ENABLE_PERFMON
#include "perfmon.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_freertos_hooks.h"
#include "sdkconfig.h"
#include "esp_log.h"
static const char *TAG = "perfmon";
static uint64_t idle0Calls = 0;
static uint64_t idle1Calls = 0;
#if defined(CONFIG_ESP32_DEFAULT_CPU_FREQ_240)
static const uint64_t MaxIdleCalls = 1855000;
#elif defined(CONFIG_ESP32_DEFAULT_CPU_FREQ_160)
static const uint64_t MaxIdleCalls = 1233100;
#else
#error "Unsupported CPU frequency"
#endif
static bool idle_task_0()
{
idle0Calls += 1;
return false;
}
static bool idle_task_1()
{
idle1Calls += 1;
return false;
}
static void perfmon_task(void *args)
{
while (1)
{
float idle0 = idle0Calls;
float idle1 = idle1Calls;
idle0Calls = 0;
idle1Calls = 0;
int cpu0 = 100.f - idle0 / MaxIdleCalls * 100.f;
int cpu1 = 100.f - idle1 / MaxIdleCalls * 100.f;
ESP_LOGI(TAG, "Core 0 at %d%%", cpu0);
ESP_LOGI(TAG, "Core 1 at %d%%", cpu1);
// TODO configurable delay
vTaskDelay(5000 / portTICK_PERIOD_MS);
}
vTaskDelete(NULL);
}
esp_err_t perfmon_start()
{
ESP_ERROR_CHECK(esp_register_freertos_idle_hook_for_cpu(idle_task_0, 0));
ESP_ERROR_CHECK(esp_register_freertos_idle_hook_for_cpu(idle_task_1, 1));
// TODO calculate optimal stack size
xTaskCreate(perfmon_task, "perfmon", 2048, NULL, 1, NULL);
return ESP_OK;
}
#endif // DEBUG_ENABLE_PERFMON

View File

@@ -1,24 +0,0 @@
#include "../../include/defines.h"
#ifdef DEBUG_ENABLE_PERFMON
#ifndef COMPONENTS_PERFMON_INCLUDE_PERFMON_H_
#define COMPONENTS_PERFMON_INCLUDE_PERFMON_H_
#ifdef __cplusplus
extern "C" {
#endif
#include "esp_err.h"
esp_err_t perfmon_start();
#ifdef __cplusplus
}
#endif
#endif /* COMPONENTS_PERFMON_INCLUDE_PERFMON_H_ */
#endif //DEBUG_ENABLE_PERFMON

View File

@@ -1,41 +1,41 @@
#include "defines.h"
#include "ClassLogFile.h"
#include "../../include/defines.h"
#include "psram.h"
static const char* TAG = "PSRAM";
static const char *TAG = "PSRAM";
using namespace std;
void *shared_region = NULL;
uint32_t allocatedBytesForSTBI = 0;
std::string sharedMemoryInUseFor = "";
/** Reserve a large block in the PSRAM which will be shared between the different steps.
* Each step uses it differently but only wiuthin itself. */
bool reserve_psram_shared_region(void) {
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "Allocating shared PSRAM region (" +
std::to_string(TENSOR_ARENA_SIZE + MAX_MODEL_SIZE) + " bytes)...");
shared_region = malloc_psram_heap("Shared PSRAM region", TENSOR_ARENA_SIZE + MAX_MODEL_SIZE,
MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
bool reserve_psram_shared_region(void)
{
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "Allocating shared PSRAM region (" + std::to_string(TENSOR_ARENA_SIZE + MAX_MODEL_SIZE) + " bytes)...");
shared_region = malloc_psram_heap("Shared PSRAM region", TENSOR_ARENA_SIZE + MAX_MODEL_SIZE, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
if (shared_region == NULL) {
if (shared_region == NULL)
{
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "Failed to allocating shared PSRAM region!");
return false;
}
else {
else
{
return true;
}
}
/*******************************************************************
* Memory used in Take Image (STBI)
*******************************************************************/
bool psram_init_shared_memory_for_take_image_step(void) {
if (sharedMemoryInUseFor != "") {
bool psram_init_shared_memory_for_take_image_step(void)
{
if (sharedMemoryInUseFor != "")
{
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "Shared memory in PSRAM already in use for " + sharedMemoryInUseFor + "!");
return false;
}
@@ -47,78 +47,87 @@ bool psram_init_shared_memory_for_take_image_step(void) {
return true;
}
void psram_deinit_shared_memory_for_take_image_step(void) {
void psram_deinit_shared_memory_for_take_image_step(void)
{
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "Deinit shared memory for step 'Take Image' (STBI buffers)");
allocatedBytesForSTBI = 0;
sharedMemoryInUseFor = "";
}
/*******************************************************************
* Memory used in Aligning Step
* During this step we only use the shared part of the PSRAM
* for the TempImage.
*******************************************************************/
void *psram_reserve_shared_tmp_image_memory(void)
{
if (sharedMemoryInUseFor != "")
{
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "Shared memory in PSRAM already in use for " + sharedMemoryInUseFor + "!");
return NULL;
}
void *psram_reserve_shared_stbi_memory(size_t size) {
/* Only large buffers should be placed in the shared PSRAM
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "Allocating TempImage (" + std::to_string(IMAGE_SIZE) + " bytes, use shared memory in PSRAM)...");
sharedMemoryInUseFor = "TempImage";
return shared_region; // Use 1th part of the shared memory for the TempImage (only user)
}
void psram_free_shared_temp_image_memory(void)
{
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "Shared memory used for TempImage (PSRAM, part of shared memory) is free again");
sharedMemoryInUseFor = "";
}
/*******************************************************************
*
*******************************************************************/
void *psram_reserve_shared_stbi_memory(size_t size)
{
/* Only large buffers should be placed in the shared PSRAM
* If we also place all smaller STBI buffers here, we get artefacts for some reasons. */
if (size >= 100000) {
if ((allocatedBytesForSTBI + size) > TENSOR_ARENA_SIZE + MAX_MODEL_SIZE) { // Check if it still fits in the shared region
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "Shared memory in PSRAM too small (STBI) to fit additional " +
std::to_string(size) + " bytes! Available: " + std::to_string(TENSOR_ARENA_SIZE + MAX_MODEL_SIZE - allocatedBytesForSTBI) + " bytes!");
if (size >= 100000)
{
if ((allocatedBytesForSTBI + size) > TENSOR_ARENA_SIZE + MAX_MODEL_SIZE)
{
// Check if it still fits in the shared region
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "Shared memory in PSRAM too small (STBI) to fit additional " + std::to_string(size) + " bytes! Available: " + std::to_string(TENSOR_ARENA_SIZE + MAX_MODEL_SIZE - allocatedBytesForSTBI) + " bytes!");
return NULL;
}
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "Allocating memory (" + std::to_string(size) + " bytes) for STBI (use shared memory in PSRAM)...");
allocatedBytesForSTBI += size;
return (uint8_t *)shared_region + allocatedBytesForSTBI - size;
}
else { // Normal PSRAM
else
{
// Normal PSRAM
return malloc_psram_heap("STBI", size, MALLOC_CAP_SPIRAM);
}
}
void *psram_reallocate_shared_stbi_memory(void *ptr, size_t newsize) {
void *psram_reallocate_shared_stbi_memory(void *ptr, size_t newsize)
{
char buf[20];
sprintf(buf, "%p", ptr);
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "STBI requested realloc for " + std::string(buf) + " but this is currently unsupported!");
return NULL;
}
void psram_free_shared_stbi_memory(void *p) {
if ((p >= shared_region) && (p <= ((uint8_t *)shared_region + allocatedBytesForSTBI))) { // was allocated inside the shared memory
void psram_free_shared_stbi_memory(void *p)
{
if ((p >= shared_region) && (p <= ((uint8_t *)shared_region + allocatedBytesForSTBI)))
{
// was allocated inside the shared memory
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "Part of shared memory used for STBI (PSRAM, part of shared memory) is free again");
}
else { // Normal PSRAM
else
{
// Normal PSRAM
free_psram_heap("STBI", p);
}
}
/*******************************************************************
* Memory used in Aligning Step
* During this step we only use the shared part of the PSRAM
* for the tmpImage.
*******************************************************************/
void *psram_reserve_shared_tmp_image_memory(void) {
if (sharedMemoryInUseFor != "") {
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "Shared memory in PSRAM already in use for " + sharedMemoryInUseFor + "!");
return NULL;
}
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "Allocating tmpImage (" + std::to_string(IMAGE_SIZE) + " bytes, use shared memory in PSRAM)...");
sharedMemoryInUseFor = "Aligning";
return shared_region; // Use 1th part of the shared memory for the tmpImage (only user)
}
void psram_free_shared_temp_image_memory(void) {
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "Shared memory used for tmpImage (PSRAM, part of shared memory) is free again");
sharedMemoryInUseFor = "";
}
/*******************************************************************
* Memory used in Digitization Steps
* During this step we only use the shared part of the PSRAM for the
@@ -126,86 +135,96 @@ void psram_free_shared_temp_image_memory(void) {
* The shared memory is large enough for the largest model and the
* Tensor Arena. Therefore we do not need to monitor the usage.
*******************************************************************/
void *psram_get_shared_tensor_arena_memory(void) {
if ((sharedMemoryInUseFor == "") || (sharedMemoryInUseFor == "Digitization_Model")) {
void *psram_get_shared_tensor_arena_memory(void)
{
if ((sharedMemoryInUseFor == "") || (sharedMemoryInUseFor == "Digitization_Model"))
{
sharedMemoryInUseFor = "Digitization_Tensor";
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "Allocating Tensor Arena (" + std::to_string(TENSOR_ARENA_SIZE) + " bytes, use shared memory in PSRAM)...");
return shared_region; // Use 1th part of the shared memory for Tensor
}
else {
else
{
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "Shared memory in PSRAM already in use for " + sharedMemoryInUseFor + "!");
return NULL;
}
}
void *psram_get_shared_model_memory(void) {
if ((sharedMemoryInUseFor == "") || (sharedMemoryInUseFor == "Digitization_Tensor")) {
void *psram_get_shared_model_memory(void)
{
if ((sharedMemoryInUseFor == "") || (sharedMemoryInUseFor == "Digitization_Tensor"))
{
sharedMemoryInUseFor = "Digitization_Model";
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "Allocating Model memory (" + std::to_string(MAX_MODEL_SIZE) + " bytes, use shared memory in PSRAM)...");
return (uint8_t *)shared_region + TENSOR_ARENA_SIZE; // Use 2nd part of the shared memory (after Tensor Arena) for the model
}
else {
else
{
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "Shared memory in PSRAM already in use for " + sharedMemoryInUseFor + "!");
return NULL;
}
}
void psram_free_shared_tensor_arena_and_model_memory(void) {
void psram_free_shared_tensor_arena_and_model_memory(void)
{
sharedMemoryInUseFor = "";
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "Shared memory used for Tensor Arena and model (PSRAM, part of shared memory) is free again");
}
/*******************************************************************
* General
*******************************************************************/
void *malloc_psram_heap(std::string name, size_t size, uint32_t caps) {
void *ptr;
void *malloc_psram_heap(std::string name, size_t size, uint32_t caps)
{
void *ptr;
ptr = heap_caps_malloc(size, caps);
if (ptr != NULL) {
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "Allocated " + to_string(size) + " bytes in PSRAM for '" + name + "'");
}
else {
ptr = heap_caps_malloc(size, caps);
if (ptr != NULL)
{
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "Allocated " + to_string(size) + " bytes in PSRAM for '" + name + "'");
}
else
{
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "Failed to allocate " + to_string(size) + " bytes in PSRAM for '" + name + "'!");
}
return ptr;
return ptr;
}
void *realloc_psram_heap(std::string name, void *ptr, size_t size, uint32_t caps) {
ptr = heap_caps_realloc(ptr, size, caps);
if (ptr != NULL) {
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "Reallocated " + to_string(size) + " bytes in PSRAM for '" + name + "'");
}
else {
void *realloc_psram_heap(std::string name, void *ptr, size_t size, uint32_t caps)
{
ptr = heap_caps_realloc(ptr, size, caps);
if (ptr != NULL)
{
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "Reallocated " + to_string(size) + " bytes in PSRAM for '" + name + "'");
}
else
{
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "Failed to reallocate " + to_string(size) + " bytes in PSRAM for '" + name + "'!");
}
return ptr;
return ptr;
}
void *calloc_psram_heap(std::string name, size_t n, size_t size, uint32_t caps)
{
void *ptr;
void *calloc_psram_heap(std::string name, size_t n, size_t size, uint32_t caps) {
void *ptr;
ptr = heap_caps_calloc(n, size, caps);
if (ptr != NULL) {
LogFile.WriteToFile(ESP_LOG_INFO, TAG, "Allocated " + to_string(size) + " bytes in PSRAM for '" + name + "'");
}
else {
ptr = heap_caps_calloc(n, size, caps);
if (ptr != NULL)
{
LogFile.WriteToFile(ESP_LOG_INFO, TAG, "Allocated " + to_string(size) + " bytes in PSRAM for '" + name + "'");
}
else
{
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "Failed to allocate " + to_string(size) + " bytes in PSRAM for '" + name + "'!");
}
return ptr;
return ptr;
}
void free_psram_heap(std::string name, void *ptr) {
void free_psram_heap(std::string name, void *ptr)
{
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "Freeing memory in PSRAM used for '" + name + "'...");
heap_caps_free(ptr);
}

View File

@@ -4,10 +4,8 @@
#include "esp_heap_caps.h"
bool reserve_psram_shared_region(void);
/* Memory used in Take Image Step */
bool psram_init_shared_memory_for_take_image_step(void);
void psram_deinit_shared_memory_for_take_image_step(void);
@@ -15,7 +13,6 @@ void *psram_reserve_shared_stbi_memory(size_t size);
void *psram_reallocate_shared_stbi_memory(void *ptr, size_t newsize);
void psram_free_shared_stbi_memory(void *p);
/* Memory used in Aligning Step */
void *psram_reserve_shared_tmp_image_memory(void);
void psram_free_shared_temp_image_memory(void);

View File

@@ -3,7 +3,7 @@
#ifndef COMPONENTS_HELPER_SDCARD_CHECK_H
#define COMPONENTS_HELPER_SDCARD_CHECK_H
#include "../../include/defines.h"
#include "defines.h"
int SDCardCheckRW(void);
bool SDCardCheckFolderFilePresence(void);

View File

@@ -1,646 +0,0 @@
/*
* SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdlib.h>
#include <string.h>
#include "sdcard_init.h"
#include "esp_log.h"
#include "ffconf.h"
#include "esp_compiler.h"
#include "esp_vfs.h"
#include "vfs_fat_internal.h"
#include "diskio_impl.h"
#include "diskio_sdmmc.h"
#include "soc/soc_caps.h"
#include "driver/sdmmc_defs.h"
#if SOC_SDMMC_HOST_SUPPORTED
#include "driver/sdmmc_host.h"
#endif
static sdmmc_card_t* s_cards[FF_VOLUMES] = { NULL };
static bool s_disk_status_check_en[FF_VOLUMES] = { };
static const char* TAG = "sdcard_init";
#define CHECK_EXECUTE_RESULT(err, str) do { \
if ((err) !=ESP_OK) { \
ESP_LOGE(TAG, str" (0x%x).", err); \
goto cleanup; \
} \
} while(0)
typedef struct mh_vfs_fat_sd_ctx_t {
BYTE pdrv; //Drive number that is mounted
esp_vfs_fat_mount_config_t mount_config; //Mount configuration
FATFS *fs; //FAT structure pointer that is registered
sdmmc_card_t *card; //Card info
char *base_path; //Path where partition is registered
} mh_vfs_fat_sd_ctx_t;
static mh_vfs_fat_sd_ctx_t *s_ctx[FF_VOLUMES] = {};
/**
* This `s_saved_ctx_id` is only used by `esp_vfs_fat_sdmmc_unmount`, which is deprecated.
* This variable together with `esp_vfs_fat_sdmmc_unmount` should be removed in next major version
*/
static uint32_t s_saved_ctx_id = FF_VOLUMES;
static void call_host_deinit_mh(const sdmmc_host_t *host_config);
static esp_err_t partition_card_mh(const esp_vfs_fat_mount_config_t *mount_config, const char *drv, sdmmc_card_t *card, BYTE pdrv);
//Check if SD/MMC card is present
static DSTATUS ff_sdmmc_card_available_mh(BYTE pdrv)
{
sdmmc_card_t* card = s_cards[pdrv];
assert(card);
esp_err_t err = sdmmc_get_status(card);
if (unlikely(err != ESP_OK)) {
ESP_LOGE(TAG, "Check status failed (0x%x)", err);
return STA_NOINIT;
}
return 0;
}
/**
* ff_sdmmc_status() and ff_sdmmc_initialize() return STA_NOINIT when sdmmc_get_status()
* fails. This error value is checked throughout the FATFS code.
* Both functions return 0 on success.
*/
DSTATUS ff_sdmmc_initialize_mh (BYTE pdrv)
{
return ff_sdmmc_card_available_mh(pdrv);
}
DSTATUS ff_sdmmc_status_mh(BYTE pdrv)
{
if (s_disk_status_check_en[pdrv]) {
return ff_sdmmc_card_available_mh(pdrv);
}
return 0;
}
DRESULT ff_sdmmc_read_mh (BYTE pdrv, BYTE* buff, DWORD sector, UINT count)
{
sdmmc_card_t* card = s_cards[pdrv];
assert(card);
esp_err_t err = sdmmc_read_sectors(card, buff, sector, count);
if (unlikely(err != ESP_OK)) {
ESP_LOGE(TAG, "sdmmc_read_blocks failed (%d)", err);
return RES_ERROR;
}
return RES_OK;
}
DRESULT ff_sdmmc_write_mh (BYTE pdrv, const BYTE* buff, DWORD sector, UINT count)
{
sdmmc_card_t* card = s_cards[pdrv];
assert(card);
esp_err_t err = sdmmc_write_sectors(card, buff, sector, count);
if (unlikely(err != ESP_OK)) {
ESP_LOGE(TAG, "sdmmc_write_blocks failed (%d)", err);
return RES_ERROR;
}
return RES_OK;
}
#if FF_USE_TRIM
DRESULT ff_sdmmc_trim_mh (BYTE pdrv, DWORD start_sector, DWORD sector_count)
{
sdmmc_card_t* card = s_cards[pdrv];
assert(card);
sdmmc_erase_arg_t arg;
arg = sdmmc_can_discard(card) == ESP_OK ? SDMMC_DISCARD_ARG : SDMMC_ERASE_ARG;
esp_err_t err = sdmmc_erase_sectors(card, start_sector, sector_count, arg);
if (unlikely(err != ESP_OK)) {
ESP_LOGE(TAG, "sdmmc_erase_sectors failed (%d)", err);
return RES_ERROR;
}
return RES_OK;
}
#endif //FF_USE_TRIM
DRESULT ff_sdmmc_ioctl_mh (BYTE pdrv, BYTE cmd, void* buff)
{
sdmmc_card_t* card = s_cards[pdrv];
assert(card);
switch(cmd) {
case CTRL_SYNC:
return RES_OK;
case GET_SECTOR_COUNT:
*((DWORD*) buff) = card->csd.capacity;
return RES_OK;
case GET_SECTOR_SIZE:
*((WORD*) buff) = card->csd.sector_size;
return RES_OK;
case GET_BLOCK_SIZE:
return RES_ERROR;
#if FF_USE_TRIM
case CTRL_TRIM:
if (sdmmc_can_trim(card) != ESP_OK) {
return RES_PARERR;
}
return ff_sdmmc_trim_mh (pdrv, *((DWORD*)buff), //start_sector
(*((DWORD*)buff + 1) - *((DWORD*)buff) + 1)); //sector_count
#endif //FF_USE_TRIM
}
return RES_ERROR;
}
void ff_sdmmc_set_disk_status_check_mh(BYTE pdrv, bool enable)
{
s_disk_status_check_en[pdrv] = enable;
}
void ff_diskio_register_sdmmc_mh(BYTE pdrv, sdmmc_card_t* card)
{
static const ff_diskio_impl_t sdmmc_impl = {
.init = &ff_sdmmc_initialize_mh,
.status = &ff_sdmmc_status_mh,
.read = &ff_sdmmc_read_mh,
.write = &ff_sdmmc_write_mh,
.ioctl = &ff_sdmmc_ioctl_mh
};
s_cards[pdrv] = card;
s_disk_status_check_en[pdrv] = false;
ff_diskio_register(pdrv, &sdmmc_impl);
}
BYTE ff_diskio_get_pdrv_card_mh(const sdmmc_card_t* card)
{
for (int i = 0; i < FF_VOLUMES; i++) {
if (card == s_cards[i]) {
return i;
}
}
return 0xff;
}
static bool s_get_context_id_by_card_mh(const sdmmc_card_t *card, uint32_t *out_id)
{
mh_vfs_fat_sd_ctx_t *p_ctx = NULL;
for (int i = 0; i < FF_VOLUMES; i++) {
p_ctx = s_ctx[i];
if (p_ctx) {
if (p_ctx->card == card) {
*out_id = i;
return true;
}
}
}
return false;
}
static uint32_t s_get_unused_context_id_mh(void)
{
for (uint32_t i = 0; i < FF_VOLUMES; i++) {
if (!s_ctx[i]) {
return i;
}
}
return FF_VOLUMES;
}
static esp_err_t mount_prepare_mem_mh(const char *base_path, BYTE *out_pdrv, char **out_dup_path, sdmmc_card_t** out_card)
{
esp_err_t err = ESP_OK;
char* dup_path = NULL;
sdmmc_card_t* card = NULL;
// connect SDMMC driver to FATFS
BYTE pdrv = FF_DRV_NOT_USED;
if (ff_diskio_get_drive(&pdrv) != ESP_OK || pdrv == FF_DRV_NOT_USED) {
ESP_LOGD(TAG, "the maximum count of volumes is already mounted");
return ESP_ERR_NO_MEM;
}
// not using ff_memalloc here, as allocation in internal RAM is preferred
card = (sdmmc_card_t*)malloc(sizeof(sdmmc_card_t));
if (card == NULL) {
ESP_LOGD(TAG, "could not locate new sdmmc_card_t");
err = ESP_ERR_NO_MEM;
goto cleanup;
}
dup_path = strdup(base_path);
if(!dup_path){
ESP_LOGD(TAG, "could not copy base_path");
err = ESP_ERR_NO_MEM;
goto cleanup;
}
*out_card = card;
*out_pdrv = pdrv;
*out_dup_path = dup_path;
return ESP_OK;
cleanup:
free(card);
free(dup_path);
return err;
}
static esp_err_t s_f_mount_mh(sdmmc_card_t *card, FATFS *fs, const char *drv, uint8_t pdrv, const esp_vfs_fat_mount_config_t *mount_config)
{
esp_err_t err = ESP_OK;
FRESULT res = f_mount(fs, drv, 1);
if (res != FR_OK) {
err = ESP_FAIL;
ESP_LOGW(TAG, "failed to mount card (%d)", res);
bool need_mount_again = (res == FR_NO_FILESYSTEM || res == FR_INT_ERR) && mount_config->format_if_mount_failed;
if (!need_mount_again) {
return ESP_FAIL;
}
err = partition_card_mh(mount_config, drv, card, pdrv);
if (err != ESP_OK) {
return err;
}
ESP_LOGW(TAG, "mounting again");
res = f_mount(fs, drv, 0);
if (res != FR_OK) {
err = ESP_FAIL;
ESP_LOGD(TAG, "f_mount failed after formatting (%d)", res);
return err;
}
}
return ESP_OK;
}
static esp_err_t mount_to_vfs_fat_mh(const esp_vfs_fat_mount_config_t *mount_config, sdmmc_card_t *card, uint8_t pdrv, const char *base_path, FATFS **out_fs)
{
FATFS *fs = NULL;
esp_err_t err;
ff_diskio_register_sdmmc_mh(pdrv, card);
ff_sdmmc_set_disk_status_check_mh(pdrv, mount_config->disk_status_check_enable);
ESP_LOGD(TAG, "using pdrv=%i", pdrv);
char drv[3] = {(char)('0' + pdrv), ':', 0};
// connect FATFS to VFS
err = esp_vfs_fat_register(base_path, drv, mount_config->max_files, &fs);
*out_fs = fs;
if (err == ESP_ERR_INVALID_STATE) {
// it's okay, already registered with VFS
} else if (err != ESP_OK) {
ESP_LOGD(TAG, "esp_vfs_fat_register failed 0x(%x)", err);
goto fail;
}
// Try to mount partition
err = s_f_mount_mh(card, fs, drv, pdrv, mount_config);
if (err != ESP_OK) {
goto fail;
}
return ESP_OK;
fail:
if (fs) {
f_mount(NULL, drv, 0);
}
esp_vfs_fat_unregister_path(base_path);
ff_diskio_unregister(pdrv);
return err;
}
static esp_err_t partition_card_mh(const esp_vfs_fat_mount_config_t *mount_config, const char *drv, sdmmc_card_t *card, BYTE pdrv)
{
FRESULT res = FR_OK;
esp_err_t err;
const size_t workbuf_size = 4096;
void* workbuf = NULL;
ESP_LOGW(TAG, "partitioning card");
workbuf = ff_memalloc(workbuf_size);
if (workbuf == NULL) {
return ESP_ERR_NO_MEM;
}
LBA_t plist[] = {100, 0, 0, 0};
res = f_fdisk(pdrv, plist, workbuf);
if (res != FR_OK) {
err = ESP_FAIL;
ESP_LOGD(TAG, "f_fdisk failed (%d)", res);
goto fail;
}
size_t alloc_unit_size = esp_vfs_fat_get_allocation_unit_size(card->csd.sector_size, mount_config->allocation_unit_size);
ESP_LOGW(TAG, "formatting card, allocation unit size=%d", alloc_unit_size);
const MKFS_PARM opt = {(BYTE)FM_ANY, 0, 0, 0, alloc_unit_size};
res = f_mkfs(drv, &opt, workbuf, workbuf_size);
if (res != FR_OK) {
err = ESP_FAIL;
ESP_LOGD(TAG, "f_mkfs failed (%d)", res);
goto fail;
}
free(workbuf);
return ESP_OK;
fail:
free(workbuf);
return err;
}
#if SOC_SDMMC_HOST_SUPPORTED
static esp_err_t init_sdmmc_host_mh(int slot, const void *slot_config, int *out_slot)
{
*out_slot = slot;
return sdmmc_host_init_slot(slot, (const sdmmc_slot_config_t*) slot_config);
}
esp_err_t esp_vfs_fat_sdmmc_mount_mh(const char* base_path, const sdmmc_host_t* host_config, const void* slot_config, const esp_vfs_fat_mount_config_t* mount_config, sdmmc_card_t** out_card)
{
esp_err_t err;
mh_vfs_fat_sd_ctx_t *ctx = NULL;
uint32_t ctx_id = FF_VOLUMES;
FATFS *fs = NULL;
int card_handle = -1; //uninitialized
sdmmc_card_t* card = NULL;
BYTE pdrv = FF_DRV_NOT_USED;
char* dup_path = NULL;
bool host_inited = false;
err = mount_prepare_mem_mh(base_path, &pdrv, &dup_path, &card);
if (err != ESP_OK) {
ESP_LOGE(TAG, "mount_prepare failed");
return err;
}
err = (*host_config->init)();
CHECK_EXECUTE_RESULT(err, "host init failed");
//deinit() needs to be called to revert the init
host_inited = true;
//If this failed (indicated by card_handle != -1), slot deinit needs to called()
//leave card_handle as is to indicate that (though slot deinit not implemented yet.
err = init_sdmmc_host_mh(host_config->slot, slot_config, &card_handle);
CHECK_EXECUTE_RESULT(err, "slot init failed");
// probe and initialize card
err = sdmmc_card_init(host_config, card);
CHECK_EXECUTE_RESULT(err, "sdmmc_card_init failed");
err = mount_to_vfs_fat_mh(mount_config, card, pdrv, dup_path, &fs);
CHECK_EXECUTE_RESULT(err, "mount_to_vfs failed");
if (out_card != NULL) {
*out_card = card;
}
//For deprecation backward compatibility
if (s_saved_ctx_id == FF_VOLUMES) {
s_saved_ctx_id = 0;
}
ctx = calloc(sizeof(mh_vfs_fat_sd_ctx_t), 1);
if (!ctx) {
CHECK_EXECUTE_RESULT(ESP_ERR_NO_MEM, "no mem");
}
ctx->pdrv = pdrv;
memcpy(&ctx->mount_config, mount_config, sizeof(esp_vfs_fat_mount_config_t));
ctx->card = card;
ctx->base_path = dup_path;
ctx->fs = fs;
ctx_id = s_get_unused_context_id_mh();
assert(ctx_id != FF_VOLUMES);
s_ctx[ctx_id] = ctx;
return ESP_OK;
cleanup:
if (host_inited) {
call_host_deinit_mh(host_config);
}
free(card);
free(dup_path);
return err;
}
#endif
static esp_err_t init_sdspi_host_mh(int slot, const void *slot_config, int *out_slot)
{
esp_err_t err = sdspi_host_init_device((const sdspi_device_config_t*)slot_config, out_slot);
if (err != ESP_OK) {
ESP_LOGE(TAG,
"Failed to attach sdspi device onto an SPI bus (rc=0x%x), please initialize the \
bus first and check the device parameters."
, err);
}
return err;
}
esp_err_t esp_vfs_fat_sdspi_mount_mh(const char* base_path, const sdmmc_host_t* host_config_input, const sdspi_device_config_t* slot_config, const esp_vfs_fat_mount_config_t* mount_config, sdmmc_card_t** out_card)
{
const sdmmc_host_t* host_config = host_config_input;
esp_err_t err;
mh_vfs_fat_sd_ctx_t *ctx = NULL;
uint32_t ctx_id = FF_VOLUMES;
FATFS *fs = NULL;
int card_handle = -1; //uninitialized
bool host_inited = false;
BYTE pdrv = FF_DRV_NOT_USED;
sdmmc_card_t* card = NULL;
char* dup_path = NULL;
err = mount_prepare_mem_mh(base_path, &pdrv, &dup_path, &card);
if (err != ESP_OK) {
ESP_LOGE(TAG, "mount_prepare failed");
return err;
}
//the init() function is usually empty, doesn't require any deinit to revert it
err = (*host_config->init)();
CHECK_EXECUTE_RESULT(err, "host init failed");
err = init_sdspi_host_mh(host_config->slot, slot_config, &card_handle);
CHECK_EXECUTE_RESULT(err, "slot init failed");
//Set `host_inited` to true to indicate that host_config->deinit() needs
//to be called to revert `init_sdspi_host`
host_inited = true;
//The `slot` argument inside host_config should be replaced by the SD SPI handled returned
//above. But the input pointer is const, so create a new variable.
sdmmc_host_t new_config;
if (card_handle != host_config->slot) {
new_config = *host_config_input;
host_config = &new_config;
new_config.slot = card_handle;
}
// probe and initialize card
err = sdmmc_card_init(host_config, card);
CHECK_EXECUTE_RESULT(err, "sdmmc_card_init failed");
err = mount_to_vfs_fat_mh(mount_config, card, pdrv, dup_path, &fs);
CHECK_EXECUTE_RESULT(err, "mount_to_vfs failed");
if (out_card != NULL) {
*out_card = card;
}
//For deprecation backward compatibility
if (s_saved_ctx_id == FF_VOLUMES) {
s_saved_ctx_id = 0;
}
ctx = calloc(sizeof(mh_vfs_fat_sd_ctx_t), 1);
if (!ctx) {
CHECK_EXECUTE_RESULT(ESP_ERR_NO_MEM, "no mem");
}
ctx->pdrv = pdrv;
memcpy(&ctx->mount_config, mount_config, sizeof(esp_vfs_fat_mount_config_t));
ctx->card = card;
ctx->base_path = dup_path;
ctx->fs = fs;
ctx_id = s_get_unused_context_id_mh();
assert(ctx_id != FF_VOLUMES);
s_ctx[ctx_id] = ctx;
return ESP_OK;
cleanup:
if (host_inited) {
call_host_deinit_mh(host_config);
}
free(card);
free(dup_path);
return err;
}
static void call_host_deinit_mh(const sdmmc_host_t *host_config)
{
if (host_config->flags & SDMMC_HOST_FLAG_DEINIT_ARG) {
host_config->deinit_p(host_config->slot);
} else {
host_config->deinit();
}
}
static esp_err_t unmount_card_core_mh(const char *base_path, sdmmc_card_t *card)
{
BYTE pdrv = ff_diskio_get_pdrv_card_mh(card);
if (pdrv == 0xff) {
return ESP_ERR_INVALID_ARG;
}
// unmount
char drv[3] = {(char)('0' + pdrv), ':', 0};
f_mount(0, drv, 0);
// release SD driver
ff_diskio_unregister(pdrv);
call_host_deinit_mh(&card->host);
free(card);
esp_err_t err = esp_vfs_fat_unregister_path(base_path);
return err;
}
esp_err_t esp_vfs_fat_sdmmc_unmount_mh(void)
{
esp_err_t err = unmount_card_core_mh(s_ctx[s_saved_ctx_id]->base_path, s_ctx[s_saved_ctx_id]->card);
free(s_ctx[s_saved_ctx_id]);
s_ctx[s_saved_ctx_id] = NULL;
s_saved_ctx_id = FF_VOLUMES;
return err;
}
esp_err_t esp_vfs_fat_sdcard_unmount_mh(const char *base_path, sdmmc_card_t *card)
{
uint32_t id = FF_VOLUMES;
bool found = s_get_context_id_by_card_mh(card, &id);
if (!found) {
return ESP_ERR_INVALID_ARG;
}
free(s_ctx[id]);
s_ctx[id] = NULL;
esp_err_t err = unmount_card_core_mh(base_path, card);
return err;
}
esp_err_t esp_vfs_fat_sdcard_format_mh(const char *base_path, sdmmc_card_t *card)
{
esp_err_t ret = ESP_OK;
if (!card) {
ESP_LOGE(TAG, "card not initialized");
return ESP_ERR_INVALID_STATE;
}
BYTE pdrv = ff_diskio_get_pdrv_card_mh(card);
if (pdrv == 0xff) {
ESP_LOGE(TAG, "card driver not registered");
return ESP_ERR_INVALID_STATE;
}
const size_t workbuf_size = 4096;
void *workbuf = ff_memalloc(workbuf_size);
if (workbuf == NULL) {
return ESP_ERR_NO_MEM;
}
//unmount
char drv[3] = {(char)('0' + pdrv), ':', 0};
f_mount(0, drv, 0);
//format
uint32_t id = FF_VOLUMES;
bool found = s_get_context_id_by_card_mh(card, &id);
assert(found);
size_t alloc_unit_size = esp_vfs_fat_get_allocation_unit_size(card->csd.sector_size, s_ctx[id]->mount_config.allocation_unit_size);
ESP_LOGI(TAG, "Formatting card, allocation unit size=%d", alloc_unit_size);
const MKFS_PARM opt = {(BYTE)FM_ANY, 0, 0, 0, alloc_unit_size};
FRESULT res = f_mkfs(drv, &opt, workbuf, workbuf_size);
free(workbuf);
if (res != FR_OK) {
ret = ESP_FAIL;
ESP_LOGD(TAG, "f_mkfs failed (%d)", res);
}
//mount back
esp_err_t err = s_f_mount_mh(card, s_ctx[id]->fs, drv, pdrv, &s_ctx[id]->mount_config);
if (err != ESP_OK) {
unmount_card_core_mh(base_path, card);
ESP_LOGE(TAG, "failed to format, resources recycled, please mount again");
}
return ret;
}

View File

@@ -1,111 +0,0 @@
/*
* SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include <stddef.h>
#include "esp_err.h"
#include "driver/gpio.h"
#include "sdmmc_cmd.h"
#include "driver/sdmmc_types.h"
#include "driver/sdspi_host.h"
#include "ff.h"
#include "esp_vfs_fat.h"
#include "wear_levelling.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief Convenience function to get FAT filesystem on SD card registered in VFS
*
* This is an all-in-one function which does the following:
* - initializes SDMMC driver or SPI driver with configuration in host_config
* - initializes SD card with configuration in slot_config
* - mounts FAT partition on SD card using FATFS library, with configuration in mount_config
* - registers FATFS library with VFS, with prefix given by base_prefix variable
*
* This function is intended to make example code more compact.
* For real world applications, developers should implement the logic of
* probing SD card, locating and mounting partition, and registering FATFS in VFS,
* with proper error checking and handling of exceptional conditions.
*
* @note Use this API to mount a card through SDSPI is deprecated. Please call
* `esp_vfs_fat_sdspi_mount()` instead for that case.
*
* @param base_path path where partition should be registered (e.g. "/sdcard")
* @param host_config Pointer to structure describing SDMMC host. When using
* SDMMC peripheral, this structure can be initialized using
* SDMMC_HOST_DEFAULT() macro. When using SPI peripheral,
* this structure can be initialized using SDSPI_HOST_DEFAULT()
* macro.
* @param slot_config Pointer to structure with slot configuration.
* For SDMMC peripheral, pass a pointer to sdmmc_slot_config_t
* structure initialized using SDMMC_SLOT_CONFIG_DEFAULT.
* @param mount_config pointer to structure with extra parameters for mounting FATFS
* @param[out] out_card if not NULL, pointer to the card information structure will be returned via this argument
* @return
* - ESP_OK on success
* - ESP_ERR_INVALID_STATE if esp_vfs_fat_sdmmc_mount was already called
* - ESP_ERR_NO_MEM if memory can not be allocated
* - ESP_FAIL if partition can not be mounted
* - other error codes from SDMMC or SPI drivers, SDMMC protocol, or FATFS drivers
*/
esp_err_t esp_vfs_fat_sdmmc_mount_mh(const char* base_path, const sdmmc_host_t* host_config, const void* slot_config, const esp_vfs_fat_mount_config_t* mount_config, sdmmc_card_t** out_card);
/**
* @brief Convenience function to get FAT filesystem on SD card registered in VFS
*
* This is an all-in-one function which does the following:
* - initializes an SPI Master device based on the SPI Master driver with configuration in
* slot_config, and attach it to an initialized SPI bus.
* - initializes SD card with configuration in host_config_input
* - mounts FAT partition on SD card using FATFS library, with configuration in mount_config
* - registers FATFS library with VFS, with prefix given by base_prefix variable
*
* This function is intended to make example code more compact.
* For real world applications, developers should implement the logic of
* probing SD card, locating and mounting partition, and registering FATFS in VFS,
* with proper error checking and handling of exceptional conditions.
*
* @note This function try to attach the new SD SPI device to the bus specified in host_config.
* Make sure the SPI bus specified in `host_config->slot` have been initialized by
* `spi_bus_initialize()` before.
*
* @param base_path path where partition should be registered (e.g. "/sdcard")
* @param host_config_input Pointer to structure describing SDMMC host. This structure can be
* initialized using SDSPI_HOST_DEFAULT() macro.
* @param slot_config Pointer to structure with slot configuration.
* For SPI peripheral, pass a pointer to sdspi_device_config_t
* structure initialized using SDSPI_DEVICE_CONFIG_DEFAULT().
* @param mount_config pointer to structure with extra parameters for mounting FATFS
* @param[out] out_card If not NULL, pointer to the card information structure will be returned via
* this argument. It is suggested to hold this handle and use it to unmount the card later if
* needed. Otherwise it's not suggested to use more than one card at the same time and unmount one
* of them in your application.
* @return
* - ESP_OK on success
* - ESP_ERR_INVALID_STATE if esp_vfs_fat_sdmmc_mount was already called
* - ESP_ERR_NO_MEM if memory can not be allocated
* - ESP_FAIL if partition can not be mounted
* - other error codes from SDMMC or SPI drivers, SDMMC protocol, or FATFS drivers
*/
esp_err_t esp_vfs_fat_sdspi_mount_mh(const char* base_path, const sdmmc_host_t* host_config_input, const sdspi_device_config_t* slot_config, const esp_vfs_fat_mount_config_t* mount_config, sdmmc_card_t** out_card);
#ifdef __cplusplus
}
#endif

View File

@@ -1,3 +1,5 @@
#include "defines.h"
#include "statusled.h"
#include <sys/types.h>
@@ -5,7 +7,6 @@
#include "driver/gpio.h"
#include "ClassLogFile.h"
#include "../../include/defines.h"
// define `gpio_pad_select_gpip` for newer versions of IDF
#if (ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(4, 3, 0))
@@ -13,141 +14,153 @@
#define gpio_pad_select_gpio esp_rom_gpio_pad_select_gpio
#endif
static const char* TAG = "STATUSLED";
static const char *TAG = "STATUSLED";
TaskHandle_t xHandle_task_StatusLED = NULL;
struct StatusLEDData StatusLEDData = {};
void task_StatusLED(void *pvParameter)
void task_status_led(void *pvParameter)
{
//ESP_LOGD(TAG, "task_StatusLED - create");
while (StatusLEDData.bProcessingRequest)
// ESP_LOGD(TAG, "task_StatusLED - create");
while (StatusLEDData.bProcessingRequest)
{
//ESP_LOGD(TAG, "task_StatusLED - start");
// ESP_LOGD(TAG, "task_StatusLED - start");
struct StatusLEDData StatusLEDDataInt = StatusLEDData;
gpio_pad_select_gpio(BLINK_GPIO); // Init the GPIO
gpio_pad_select_gpio(BLINK_GPIO); // Init the GPIO
gpio_set_direction(BLINK_GPIO, GPIO_MODE_OUTPUT); // Set the GPIO as a push/pull output
gpio_set_level(BLINK_GPIO, 1);// LED off
gpio_set_level(BLINK_GPIO, 1); // LED off
for (int i=0; i<2; ) // Default: repeat 2 times
for (int i = 0; i < 2;) // Default: repeat 2 times
{
if (!StatusLEDDataInt.bInfinite)
{
++i;
}
for (int j = 0; j < StatusLEDDataInt.iSourceBlinkCnt; ++j)
{
gpio_set_level(BLINK_GPIO, 0);
vTaskDelay(StatusLEDDataInt.iBlinkTime / portTICK_PERIOD_MS);
gpio_set_level(BLINK_GPIO, 1);
gpio_set_level(BLINK_GPIO, 1);
vTaskDelay(StatusLEDDataInt.iBlinkTime / portTICK_PERIOD_MS);
}
vTaskDelay(500 / portTICK_PERIOD_MS); // Delay between module code and error code
vTaskDelay(500 / portTICK_PERIOD_MS); // Delay between module code and error code
for (int j = 0; j < StatusLEDDataInt.iCodeBlinkCnt; ++j)
{
gpio_set_level(BLINK_GPIO, 0);
gpio_set_level(BLINK_GPIO, 0);
vTaskDelay(StatusLEDDataInt.iBlinkTime / portTICK_PERIOD_MS);
gpio_set_level(BLINK_GPIO, 1);
vTaskDelay(StatusLEDDataInt.iBlinkTime / portTICK_PERIOD_MS);
}
vTaskDelay(1500 / portTICK_PERIOD_MS); // Delay to signal new round
vTaskDelay(1500 / portTICK_PERIOD_MS); // Delay to signal new round
}
StatusLEDData.bProcessingRequest = false;
//ESP_LOGD(TAG, "task_StatusLED - done/wait");
vTaskDelay(10000 / portTICK_PERIOD_MS); // Wait for an upcoming request otherwise continue and delete task to save memory
// ESP_LOGD(TAG, "task_StatusLED - done/wait");
vTaskDelay(10000 / portTICK_PERIOD_MS); // Wait for an upcoming request otherwise continue and delete task to save memory
}
//ESP_LOGD(TAG, "task_StatusLED - delete");
// ESP_LOGD(TAG, "task_StatusLED - delete");
xHandle_task_StatusLED = NULL;
vTaskDelete(NULL); // Delete this task due to no request
vTaskDelete(NULL); // Delete this task due to no request
}
void StatusLED(StatusLedSource _eSource, int _iCode, bool _bInfinite)
void set_status_led(StatusLedSource _eSource, int _iCode, bool _bInfinite)
{
//ESP_LOGD(TAG, "StatusLED - start");
// ESP_LOGD(TAG, "StatusLED - start");
if (_eSource == WLAN_CONN) {
if (_eSource == WLAN_CONN)
{
StatusLEDData.iSourceBlinkCnt = WLAN_CONN;
StatusLEDData.iCodeBlinkCnt = _iCode;
StatusLEDData.iBlinkTime = 250;
StatusLEDData.bInfinite = _bInfinite;
}
else if (_eSource == WLAN_INIT) {
else if (_eSource == WLAN_INIT)
{
StatusLEDData.iSourceBlinkCnt = WLAN_INIT;
StatusLEDData.iCodeBlinkCnt = _iCode;
StatusLEDData.iBlinkTime = 250;
StatusLEDData.bInfinite = _bInfinite;
}
else if (_eSource == SDCARD_INIT) {
else if (_eSource == SDCARD_INIT)
{
StatusLEDData.iSourceBlinkCnt = SDCARD_INIT;
StatusLEDData.iCodeBlinkCnt = _iCode;
StatusLEDData.iBlinkTime = 250;
StatusLEDData.bInfinite = _bInfinite;
}
else if (_eSource == SDCARD_CHECK) {
else if (_eSource == SDCARD_CHECK)
{
StatusLEDData.iSourceBlinkCnt = SDCARD_CHECK;
StatusLEDData.iCodeBlinkCnt = _iCode;
StatusLEDData.iBlinkTime = 250;
StatusLEDData.bInfinite = _bInfinite;
}
else if (_eSource == CAM_INIT) {
else if (_eSource == CAM_INIT)
{
StatusLEDData.iSourceBlinkCnt = CAM_INIT;
StatusLEDData.iCodeBlinkCnt = _iCode;
StatusLEDData.iBlinkTime = 250;
StatusLEDData.bInfinite = _bInfinite;
}
else if (_eSource == PSRAM_INIT) {
else if (_eSource == PSRAM_INIT)
{
StatusLEDData.iSourceBlinkCnt = PSRAM_INIT;
StatusLEDData.iCodeBlinkCnt = _iCode;
StatusLEDData.iBlinkTime = 250;
StatusLEDData.bInfinite = _bInfinite;
}
else if (_eSource == TIME_CHECK) {
else if (_eSource == TIME_CHECK)
{
StatusLEDData.iSourceBlinkCnt = TIME_CHECK;
StatusLEDData.iCodeBlinkCnt = _iCode;
StatusLEDData.iBlinkTime = 250;
StatusLEDData.bInfinite = _bInfinite;
}
else if (_eSource == AP_OR_OTA) {
else if (_eSource == AP_OR_OTA)
{
StatusLEDData.iSourceBlinkCnt = AP_OR_OTA;
StatusLEDData.iCodeBlinkCnt = _iCode;
StatusLEDData.iBlinkTime = 350;
StatusLEDData.bInfinite = _bInfinite;
}
if (xHandle_task_StatusLED && !StatusLEDData.bProcessingRequest) {
if (xHandle_task_StatusLED && !StatusLEDData.bProcessingRequest)
{
StatusLEDData.bProcessingRequest = true;
BaseType_t xReturned = xTaskAbortDelay(xHandle_task_StatusLED); // Reuse still running status LED task
/*if (xReturned == pdPASS)
ESP_LOGD(TAG, "task_StatusLED - abort waiting delay");*/
BaseType_t xReturned = xTaskAbortDelay(xHandle_task_StatusLED); // Reuse still running status LED task
/*if (xReturned == pdPASS)
ESP_LOGD(TAG, "task_StatusLED - abort waiting delay");*/
}
else if (xHandle_task_StatusLED == NULL) {
else if (xHandle_task_StatusLED == NULL)
{
StatusLEDData.bProcessingRequest = true;
BaseType_t xReturned = xTaskCreate(&task_StatusLED, "task_StatusLED", 1280, NULL, tskIDLE_PRIORITY+1, &xHandle_task_StatusLED);
if(xReturned != pdPASS)
BaseType_t xReturned = xTaskCreate(&task_status_led, "task_StatusLED", 1280, NULL, tskIDLE_PRIORITY + 1, &xHandle_task_StatusLED);
if (xReturned != pdPASS)
{
xHandle_task_StatusLED = NULL;
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "task_StatusLED failed to create");
LogFile.WriteHeapInfo("task_StatusLED failed");
LogFile.WriteHeapInfo("task_StatusLED failed");
}
}
else {
ESP_LOGD(TAG, "task_StatusLED still processing, request skipped"); // Requests with high frequency could be skipped, but LED is only helpful for static states
else
{
ESP_LOGD(TAG, "task_StatusLED still processing, request skipped"); // Requests with high frequency could be skipped, but LED is only helpful for static states
}
//ESP_LOGD(TAG, "StatusLED - done");
// ESP_LOGD(TAG, "StatusLED - done");
}
void StatusLEDOff(void)
void set_status_led_off(void)
{
if (xHandle_task_StatusLED)
{
vTaskDelete(xHandle_task_StatusLED); // Delete task for StatusLED to force stop of blinking
gpio_pad_select_gpio(BLINK_GPIO); // Init the GPIO
}
gpio_pad_select_gpio(BLINK_GPIO); // Init the GPIO
gpio_set_direction(BLINK_GPIO, GPIO_MODE_OUTPUT); // Set the GPIO as a push/pull output
gpio_set_level(BLINK_GPIO, 1);// LED off
}
gpio_set_level(BLINK_GPIO, 1); // LED off
}

View File

@@ -6,21 +6,22 @@
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
extern TaskHandle_t xHandle_task_StatusLED;
enum StatusLedSource {
WLAN_CONN = 1,
enum StatusLedSource
{
WLAN_CONN = 1,
WLAN_INIT = 2,
SDCARD_INIT = 3,
SDCARD_CHECK = 4,
SDCARD_CHECK = 4,
CAM_INIT = 5,
PSRAM_INIT = 6,
TIME_CHECK = 7,
AP_OR_OTA = 8
};
struct StatusLEDData {
struct StatusLEDData
{
int iSourceBlinkCnt = 1;
int iCodeBlinkCnt = 1;
int iBlinkTime = 250;
@@ -28,7 +29,7 @@ struct StatusLEDData {
bool bProcessingRequest = false;
};
void StatusLED(StatusLedSource _eSource, int _iCode, bool _bInfinite);
void StatusLEDOff(void);
void set_status_led(StatusLedSource _eSource, int _iCode, bool _bInfinite);
void set_status_led_off(void);
#endif //STATUSLED_H
#endif // STATUSLED_H