Merge remote-tracking branch 'upstream/rolling' into analog-digit-early-digit-test

This commit is contained in:
Frank Haverland
2024-04-28 19:40:03 +02:00
215 changed files with 12845 additions and 7039 deletions

View File

@@ -1,393 +1,402 @@
#include "ClassFlowAlignment.h"
#include "ClassFlowTakeImage.h"
#include "ClassFlow.h"
#include "MainFlowControl.h"
#include "CRotateImage.h"
#include "esp_log.h"
#include "ClassLogFile.h"
#include "psram.h"
#include "../../include/defines.h"
static const char *TAG = "ALIGN";
// #define DEBUG_DETAIL_ON
void ClassFlowAlignment::SetInitialParameter(void)
{
initalrotate = 0;
anz_ref = 0;
initialmirror = false;
use_antialiasing = false;
initialflip = false;
SaveAllFiles = false;
namerawimage = "/sdcard/img_tmp/raw.jpg";
FileStoreRefAlignment = "/sdcard/config/align.txt";
ListFlowControll = NULL;
AlignAndCutImage = NULL;
ImageBasis = NULL;
ImageTMP = NULL;
#ifdef ALGROI_LOAD_FROM_MEM_AS_JPG
AlgROI = (ImageData*)malloc_psram_heap(std::string(TAG) + "->AlgROI", sizeof(ImageData), MALLOC_CAP_8BIT | MALLOC_CAP_SPIRAM);
#endif
previousElement = NULL;
disabled = false;
SAD_criteria = 0.05;
}
ClassFlowAlignment::ClassFlowAlignment(std::vector<ClassFlow*>* lfc)
{
SetInitialParameter();
ListFlowControll = lfc;
for (int i = 0; i < ListFlowControll->size(); ++i)
{
if (((*ListFlowControll)[i])->name().compare("ClassFlowTakeImage") == 0)
{
ImageBasis = ((ClassFlowTakeImage*) (*ListFlowControll)[i])->rawImage;
}
}
if (!ImageBasis) // the function take pictures does not exist --> must be created first ONLY FOR TEST PURPOSES
{
ESP_LOGD(TAG, "CImageBasis had to be created");
ImageBasis = new CImageBasis("ImageBasis", namerawimage);
}
}
bool ClassFlowAlignment::ReadParameter(FILE* pfile, string& aktparamgraph)
{
std::vector<string> splitted;
int suchex = 40;
int suchey = 40;
int alg_algo = 0; //default=0; 1 =HIGHACCURACY; 2= FAST; 3= OFF //add disable aligment algo |01.2023
aktparamgraph = trim(aktparamgraph);
if (aktparamgraph.size() == 0)
if (!this->GetNextParagraph(pfile, aktparamgraph))
return false;
if (aktparamgraph.compare("[Alignment]") != 0) //Paragraph does not fit Alignment
return false;
while (this->getNextLine(pfile, &aktparamgraph) && !this->isNewParagraph(aktparamgraph))
{
splitted = ZerlegeZeile(aktparamgraph);
if ((toUpper(splitted[0]) == "FLIPIMAGESIZE") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
initialflip = true;
}
if ((toUpper(splitted[0]) == "INITIALMIRROR") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
initialmirror = true;
}
if (((toUpper(splitted[0]) == "INITALROTATE") || (toUpper(splitted[0]) == "INITIALROTATE")) && (splitted.size() > 1))
{
this->initalrotate = std::stod(splitted[1]);
}
if ((toUpper(splitted[0]) == "SEARCHFIELDX") && (splitted.size() > 1))
{
suchex = std::stod(splitted[1]);
}
if ((toUpper(splitted[0]) == "SEARCHFIELDY") && (splitted.size() > 1))
{
suchey = std::stod(splitted[1]);
}
if ((toUpper(splitted[0]) == "ANTIALIASING") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
use_antialiasing = true;
}
if ((splitted.size() == 3) && (anz_ref < 2))
{
References[anz_ref].image_file = FormatFileName("/sdcard" + splitted[0]);
References[anz_ref].target_x = std::stod(splitted[1]);
References[anz_ref].target_y = std::stod(splitted[2]);
anz_ref++;
}
if ((toUpper(splitted[0]) == "SAVEALLFILES") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
SaveAllFiles = true;
}
if ((toUpper(splitted[0]) == "ALIGNMENTALGO") && (splitted.size() > 1))
{
#ifdef DEBUG_DETAIL_ON
std::string zw2 = "Alignment mode selected: " + splitted[1];
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, zw2);
#endif
if (toUpper(splitted[1]) == "HIGHACCURACY")
alg_algo = 1;
if (toUpper(splitted[1]) == "FAST")
alg_algo = 2;
if (toUpper(splitted[1]) == "OFF") //no align algo if set to 3 = off => no draw ref //add disable aligment algo |01.2023
alg_algo = 3;
}
}
for (int i = 0; i < anz_ref; ++i)
{
References[i].search_x = suchex;
References[i].search_y = suchey;
References[i].fastalg_SAD_criteria = SAD_criteria;
References[i].alignment_algo = alg_algo;
#ifdef DEBUG_DETAIL_ON
std::string zw2 = "Alignment mode written: " + std::to_string(alg_algo);
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, zw2);
#endif
}
//no align algo if set to 3 = off => no draw ref //add disable aligment algo |01.2023
if(References[0].alignment_algo != 3){
LoadReferenceAlignmentValues();
}
return true;
}
string ClassFlowAlignment::getHTMLSingleStep(string host)
{
string result;
result = "<p>Rotated Image: </p> <p><img src=\"" + host + "/img_tmp/rot.jpg\"></p>\n";
result = result + "<p>Found Alignment: </p> <p><img src=\"" + host + "/img_tmp/rot_roi.jpg\"></p>\n";
result = result + "<p>Aligned Image: </p> <p><img src=\"" + host + "/img_tmp/alg.jpg\"></p>\n";
return result;
}
bool ClassFlowAlignment::doFlow(string time)
{
#ifdef ALGROI_LOAD_FROM_MEM_AS_JPG
if (!AlgROI) // AlgROI needs to be allocated before ImageTMP to avoid heap fragmentation
{
AlgROI = (ImageData*)heap_caps_realloc(AlgROI, sizeof(ImageData), MALLOC_CAP_8BIT | MALLOC_CAP_SPIRAM);
if (!AlgROI)
{
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "Can't allocate AlgROI");
LogFile.WriteHeapInfo("ClassFlowAlignment-doFlow");
}
}
if (AlgROI)
{
ImageBasis->writeToMemoryAsJPG((ImageData*)AlgROI, 90);
}
#endif
if (!ImageTMP)
{
ImageTMP = new CImageBasis("tmpImage", ImageBasis); // Make sure the name does not get change, it is relevant for the PSRAM allocation!
if (!ImageTMP)
{
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "Can't allocate tmpImage -> Exec this round aborted!");
LogFile.WriteHeapInfo("ClassFlowAlignment-doFlow");
return false;
}
}
delete AlignAndCutImage;
AlignAndCutImage = new CAlignAndCutImage("AlignAndCutImage", ImageBasis, ImageTMP);
if (!AlignAndCutImage)
{
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "Can't allocate AlignAndCutImage -> Exec this round aborted!");
LogFile.WriteHeapInfo("ClassFlowAlignment-doFlow");
return false;
}
CRotateImage rt("rawImage", AlignAndCutImage, ImageTMP, initialflip);
if (initialflip)
{
int _zw = ImageBasis->height;
ImageBasis->height = ImageBasis->width;
ImageBasis->width = _zw;
_zw = ImageTMP->width;
ImageTMP->width = ImageTMP->height;
ImageTMP->height = _zw;
}
if (initialmirror)
{
ESP_LOGD(TAG, "do mirror");
rt.Mirror();
if (SaveAllFiles)
AlignAndCutImage->SaveToFile(FormatFileName("/sdcard/img_tmp/mirror.jpg"));
}
if ((initalrotate != 0) || initialflip)
{
if (use_antialiasing)
rt.RotateAntiAliasing(initalrotate);
else
rt.Rotate(initalrotate);
if (SaveAllFiles)
AlignAndCutImage->SaveToFile(FormatFileName("/sdcard/img_tmp/rot.jpg"));
}
//no align algo if set to 3 = off //add disable aligment algo |01.2023
if(References[0].alignment_algo != 3){
if (!AlignAndCutImage->Align(&References[0], &References[1]))
{
SaveReferenceAlignmentValues();
}
}// no align
#ifdef ALGROI_LOAD_FROM_MEM_AS_JPG
if (AlgROI) {
//no align algo if set to 3 = off => no draw ref //add disable aligment algo |01.2023
if(References[0].alignment_algo != 3){
DrawRef(ImageTMP);
}
flowctrl.DigitalDrawROI(ImageTMP);
flowctrl.AnalogDrawROI(ImageTMP);
ImageTMP->writeToMemoryAsJPG((ImageData*)AlgROI, 90);
}
#endif
if (SaveAllFiles)
{
AlignAndCutImage->SaveToFile(FormatFileName("/sdcard/img_tmp/alg.jpg"));
ImageTMP->SaveToFile(FormatFileName("/sdcard/img_tmp/alg_roi.jpg"));
}
// must be deleted to have memory space for loading tflite
delete ImageTMP;
ImageTMP = NULL;
//no align algo if set to 3 = off => no draw ref //add disable aligment algo |01.2023
if(References[0].alignment_algo != 3){
LoadReferenceAlignmentValues();
}
return true;
}
void ClassFlowAlignment::SaveReferenceAlignmentValues()
{
FILE* pFile;
std::string zwtime, zwvalue;
pFile = fopen(FileStoreRefAlignment.c_str(), "w");
if (strlen(zwtime.c_str()) == 0)
{
time_t rawtime;
struct tm* timeinfo;
char buffer[80];
time(&rawtime);
timeinfo = localtime(&rawtime);
strftime(buffer, 80, "%Y-%m-%dT%H:%M:%S", timeinfo);
zwtime = std::string(buffer);
}
fputs(zwtime.c_str(), pFile);
fputs("\n", pFile);
zwvalue = std::to_string(References[0].fastalg_x) + "\t" + std::to_string(References[0].fastalg_y);
zwvalue = zwvalue + "\t" +std::to_string(References[0].fastalg_SAD)+ "\t" +std::to_string(References[0].fastalg_min);
zwvalue = zwvalue + "\t" +std::to_string(References[0].fastalg_max)+ "\t" +std::to_string(References[0].fastalg_avg);
fputs(zwvalue.c_str(), pFile);
fputs("\n", pFile);
zwvalue = std::to_string(References[1].fastalg_x) + "\t" + std::to_string(References[1].fastalg_y);
zwvalue = zwvalue + "\t" +std::to_string(References[1].fastalg_SAD)+ "\t" +std::to_string(References[1].fastalg_min);
zwvalue = zwvalue + "\t" +std::to_string(References[1].fastalg_max)+ "\t" +std::to_string(References[1].fastalg_avg);
fputs(zwvalue.c_str(), pFile);
fputs("\n", pFile);
fclose(pFile);
}
bool ClassFlowAlignment::LoadReferenceAlignmentValues(void)
{
FILE* pFile;
char zw[1024];
string zwvalue;
std::vector<string> splitted;
pFile = fopen(FileStoreRefAlignment.c_str(), "r");
if (pFile == NULL)
return false;
fgets(zw, 1024, pFile);
ESP_LOGD(TAG, "%s", zw);
fgets(zw, 1024, pFile);
splitted = ZerlegeZeile(std::string(zw), " \t");
if (splitted.size() < 6)
{
fclose(pFile);
return false;
}
References[0].fastalg_x = stoi(splitted[0]);
References[0].fastalg_y = stoi(splitted[1]);
References[0].fastalg_SAD = stof(splitted[2]);
References[0].fastalg_min = stoi(splitted[3]);
References[0].fastalg_max = stoi(splitted[4]);
References[0].fastalg_avg = stof(splitted[5]);
fgets(zw, 1024, pFile);
splitted = ZerlegeZeile(std::string(zw));
if (splitted.size() < 6)
{
fclose(pFile);
return false;
}
References[1].fastalg_x = stoi(splitted[0]);
References[1].fastalg_y = stoi(splitted[1]);
References[1].fastalg_SAD = stof(splitted[2]);
References[1].fastalg_min = stoi(splitted[3]);
References[1].fastalg_max = stoi(splitted[4]);
References[1].fastalg_avg = stof(splitted[5]);
fclose(pFile);
/*#ifdef DEBUG_DETAIL_ON
std::string _zw = "\tLoadReferences[0]\tx,y:\t" + std::to_string(References[0].fastalg_x) + "\t" + std::to_string(References[0].fastalg_x);
_zw = _zw + "\tSAD, min, max, avg:\t" + std::to_string(References[0].fastalg_SAD) + "\t" + std::to_string(References[0].fastalg_min);
_zw = _zw + "\t" + std::to_string(References[0].fastalg_max) + "\t" + std::to_string(References[0].fastalg_avg);
LogFile.WriteToDedicatedFile("/sdcard/alignment.txt", _zw);
_zw = "\tLoadReferences[1]\tx,y:\t" + std::to_string(References[1].fastalg_x) + "\t" + std::to_string(References[1].fastalg_x);
_zw = _zw + "\tSAD, min, max, avg:\t" + std::to_string(References[1].fastalg_SAD) + "\t" + std::to_string(References[1].fastalg_min);
_zw = _zw + "\t" + std::to_string(References[1].fastalg_max) + "\t" + std::to_string(References[1].fastalg_avg);
LogFile.WriteToDedicatedFile("/sdcard/alignment.txt", _zw);
#endif*/
return true;
}
void ClassFlowAlignment::DrawRef(CImageBasis *_zw)
{
if (_zw->ImageOkay())
{
_zw->drawRect(References[0].target_x, References[0].target_y, References[0].width, References[0].height, 255, 0, 0, 2);
_zw->drawRect(References[1].target_x, References[1].target_y, References[1].width, References[1].height, 255, 0, 0, 2);
}
}
#include "ClassFlowAlignment.h"
#include "ClassFlowTakeImage.h"
#include "ClassFlow.h"
#include "MainFlowControl.h"
#include "CRotateImage.h"
#include "esp_log.h"
#include "ClassLogFile.h"
#include "psram.h"
#include "../../include/defines.h"
static const char *TAG = "ALIGN";
// #define DEBUG_DETAIL_ON
void ClassFlowAlignment::SetInitialParameter(void)
{
initialrotate = 0;
anz_ref = 0;
use_antialiasing = false;
initialflip = false;
SaveAllFiles = false;
namerawimage = "/sdcard/img_tmp/raw.jpg";
FileStoreRefAlignment = "/sdcard/config/align.txt";
ListFlowControll = NULL;
AlignAndCutImage = NULL;
ImageBasis = NULL;
ImageTMP = NULL;
#ifdef ALGROI_LOAD_FROM_MEM_AS_JPG
AlgROI = (ImageData *)malloc_psram_heap(std::string(TAG) + "->AlgROI", sizeof(ImageData), MALLOC_CAP_8BIT | MALLOC_CAP_SPIRAM);
#endif
previousElement = NULL;
disabled = false;
SAD_criteria = 0.05;
}
ClassFlowAlignment::ClassFlowAlignment(std::vector<ClassFlow *> *lfc)
{
SetInitialParameter();
ListFlowControll = lfc;
for (int i = 0; i < ListFlowControll->size(); ++i)
{
if (((*ListFlowControll)[i])->name().compare("ClassFlowTakeImage") == 0)
{
ImageBasis = ((ClassFlowTakeImage *)(*ListFlowControll)[i])->rawImage;
}
}
if (!ImageBasis) // the function take pictures does not exist --> must be created first ONLY FOR TEST PURPOSES
{
ESP_LOGD(TAG, "CImageBasis had to be created");
ImageBasis = new CImageBasis("ImageBasis", namerawimage);
}
}
bool ClassFlowAlignment::ReadParameter(FILE *pfile, string &aktparamgraph)
{
std::vector<string> splitted;
int suchex = 40;
int suchey = 40;
int alg_algo = 0; // default=0; 1 =HIGHACCURACY; 2= FAST; 3= OFF //add disable aligment algo |01.2023
aktparamgraph = trim(aktparamgraph);
if (aktparamgraph.size() == 0)
{
if (!this->GetNextParagraph(pfile, aktparamgraph))
{
return false;
}
}
if (aktparamgraph.compare("[Alignment]") != 0)
{
// Paragraph does not fit Alignment
return false;
}
while (this->getNextLine(pfile, &aktparamgraph) && !this->isNewParagraph(aktparamgraph))
{
splitted = ZerlegeZeile(aktparamgraph);
if ((toUpper(splitted[0]) == "FLIPIMAGESIZE") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
{
initialflip = true;
}
}
else if (((toUpper(splitted[0]) == "initialrotate") || (toUpper(splitted[0]) == "INITIALROTATE")) && (splitted.size() > 1))
{
this->initialrotate = std::stod(splitted[1]);
}
else if ((toUpper(splitted[0]) == "SEARCHFIELDX") && (splitted.size() > 1))
{
suchex = std::stod(splitted[1]);
}
else if ((toUpper(splitted[0]) == "SEARCHFIELDY") && (splitted.size() > 1))
{
suchey = std::stod(splitted[1]);
}
else if ((toUpper(splitted[0]) == "ANTIALIASING") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
{
use_antialiasing = true;
}
}
else if ((splitted.size() == 3) && (anz_ref < 2))
{
References[anz_ref].image_file = FormatFileName("/sdcard" + splitted[0]);
References[anz_ref].target_x = std::stod(splitted[1]);
References[anz_ref].target_y = std::stod(splitted[2]);
anz_ref++;
}
else if ((toUpper(splitted[0]) == "SAVEALLFILES") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
{
SaveAllFiles = true;
}
}
else if ((toUpper(splitted[0]) == "ALIGNMENTALGO") && (splitted.size() > 1))
{
#ifdef DEBUG_DETAIL_ON
std::string zw2 = "Alignment mode selected: " + splitted[1];
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, zw2);
#endif
if (toUpper(splitted[1]) == "HIGHACCURACY")
{
alg_algo = 1;
}
if (toUpper(splitted[1]) == "FAST")
{
alg_algo = 2;
}
if (toUpper(splitted[1]) == "OFF")
{
// no align algo if set to 3 = off => no draw ref //add disable aligment algo |01.2023
alg_algo = 3;
}
}
}
for (int i = 0; i < anz_ref; ++i)
{
References[i].search_x = suchex;
References[i].search_y = suchey;
References[i].fastalg_SAD_criteria = SAD_criteria;
References[i].alignment_algo = alg_algo;
#ifdef DEBUG_DETAIL_ON
std::string zw2 = "Alignment mode written: " + std::to_string(alg_algo);
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, zw2);
#endif
}
// no align algo if set to 3 = off => no draw ref //add disable aligment algo |01.2023
if (References[0].alignment_algo != 3)
{
LoadReferenceAlignmentValues();
}
return true;
}
string ClassFlowAlignment::getHTMLSingleStep(string host)
{
string result;
result = "<p>Rotated Image: </p> <p><img src=\"" + host + "/img_tmp/rot.jpg\"></p>\n";
result = result + "<p>Found Alignment: </p> <p><img src=\"" + host + "/img_tmp/rot_roi.jpg\"></p>\n";
result = result + "<p>Aligned Image: </p> <p><img src=\"" + host + "/img_tmp/alg.jpg\"></p>\n";
return result;
}
bool ClassFlowAlignment::doFlow(string time)
{
#ifdef ALGROI_LOAD_FROM_MEM_AS_JPG
if (!AlgROI) // AlgROI needs to be allocated before ImageTMP to avoid heap fragmentation
{
AlgROI = (ImageData *)heap_caps_realloc(AlgROI, sizeof(ImageData), MALLOC_CAP_8BIT | MALLOC_CAP_SPIRAM);
if (!AlgROI)
{
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "Can't allocate AlgROI");
LogFile.WriteHeapInfo("ClassFlowAlignment-doFlow");
}
}
if (AlgROI)
{
ImageBasis->writeToMemoryAsJPG((ImageData *)AlgROI, 90);
}
#endif
if (!ImageTMP)
{
ImageTMP = new CImageBasis("tmpImage", ImageBasis); // Make sure the name does not get change, it is relevant for the PSRAM allocation!
if (!ImageTMP)
{
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "Can't allocate tmpImage -> Exec this round aborted!");
LogFile.WriteHeapInfo("ClassFlowAlignment-doFlow");
return false;
}
}
delete AlignAndCutImage;
AlignAndCutImage = new CAlignAndCutImage("AlignAndCutImage", ImageBasis, ImageTMP);
if (!AlignAndCutImage)
{
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "Can't allocate AlignAndCutImage -> Exec this round aborted!");
LogFile.WriteHeapInfo("ClassFlowAlignment-doFlow");
return false;
}
CRotateImage rt("rawImage", AlignAndCutImage, ImageTMP, initialflip);
if (initialflip)
{
int _zw = ImageBasis->height;
ImageBasis->height = ImageBasis->width;
ImageBasis->width = _zw;
_zw = ImageTMP->width;
ImageTMP->width = ImageTMP->height;
ImageTMP->height = _zw;
}
if ((initialrotate != 0) || initialflip)
{
if (use_antialiasing)
{
rt.RotateAntiAliasing(initialrotate);
}
else
{
rt.Rotate(initialrotate);
}
if (SaveAllFiles)
{
AlignAndCutImage->SaveToFile(FormatFileName("/sdcard/img_tmp/rot.jpg"));
}
}
// no align algo if set to 3 = off //add disable aligment algo |01.2023
if (References[0].alignment_algo != 3)
{
if (!AlignAndCutImage->Align(&References[0], &References[1]))
{
SaveReferenceAlignmentValues();
}
} // no align
#ifdef ALGROI_LOAD_FROM_MEM_AS_JPG
if (AlgROI)
{
// no align algo if set to 3 = off => no draw ref //add disable aligment algo |01.2023
if (References[0].alignment_algo != 3)
{
DrawRef(ImageTMP);
}
flowctrl.DigitalDrawROI(ImageTMP);
flowctrl.AnalogDrawROI(ImageTMP);
ImageTMP->writeToMemoryAsJPG((ImageData *)AlgROI, 90);
}
#endif
if (SaveAllFiles)
{
AlignAndCutImage->SaveToFile(FormatFileName("/sdcard/img_tmp/alg.jpg"));
ImageTMP->SaveToFile(FormatFileName("/sdcard/img_tmp/alg_roi.jpg"));
}
// must be deleted to have memory space for loading tflite
delete ImageTMP;
ImageTMP = NULL;
// no align algo if set to 3 = off => no draw ref //add disable aligment algo |01.2023
if (References[0].alignment_algo != 3)
{
LoadReferenceAlignmentValues();
}
return true;
}
void ClassFlowAlignment::SaveReferenceAlignmentValues()
{
FILE *pFile;
std::string zwtime, zwvalue;
pFile = fopen(FileStoreRefAlignment.c_str(), "w");
if (strlen(zwtime.c_str()) == 0)
{
time_t rawtime;
struct tm *timeinfo;
char buffer[80];
time(&rawtime);
timeinfo = localtime(&rawtime);
strftime(buffer, 80, "%Y-%m-%dT%H:%M:%S", timeinfo);
zwtime = std::string(buffer);
}
fputs(zwtime.c_str(), pFile);
fputs("\n", pFile);
zwvalue = std::to_string(References[0].fastalg_x) + "\t" + std::to_string(References[0].fastalg_y);
zwvalue = zwvalue + "\t" + std::to_string(References[0].fastalg_SAD) + "\t" + std::to_string(References[0].fastalg_min);
zwvalue = zwvalue + "\t" + std::to_string(References[0].fastalg_max) + "\t" + std::to_string(References[0].fastalg_avg);
fputs(zwvalue.c_str(), pFile);
fputs("\n", pFile);
zwvalue = std::to_string(References[1].fastalg_x) + "\t" + std::to_string(References[1].fastalg_y);
zwvalue = zwvalue + "\t" + std::to_string(References[1].fastalg_SAD) + "\t" + std::to_string(References[1].fastalg_min);
zwvalue = zwvalue + "\t" + std::to_string(References[1].fastalg_max) + "\t" + std::to_string(References[1].fastalg_avg);
fputs(zwvalue.c_str(), pFile);
fputs("\n", pFile);
fclose(pFile);
}
bool ClassFlowAlignment::LoadReferenceAlignmentValues(void)
{
FILE *pFile;
char zw[1024];
string zwvalue;
std::vector<string> splitted;
pFile = fopen(FileStoreRefAlignment.c_str(), "r");
if (pFile == NULL)
return false;
fgets(zw, 1024, pFile);
ESP_LOGD(TAG, "%s", zw);
fgets(zw, 1024, pFile);
splitted = ZerlegeZeile(std::string(zw), " \t");
if (splitted.size() < 6)
{
fclose(pFile);
return false;
}
References[0].fastalg_x = stoi(splitted[0]);
References[0].fastalg_y = stoi(splitted[1]);
References[0].fastalg_SAD = stof(splitted[2]);
References[0].fastalg_min = stoi(splitted[3]);
References[0].fastalg_max = stoi(splitted[4]);
References[0].fastalg_avg = stof(splitted[5]);
fgets(zw, 1024, pFile);
splitted = ZerlegeZeile(std::string(zw));
if (splitted.size() < 6)
{
fclose(pFile);
return false;
}
References[1].fastalg_x = stoi(splitted[0]);
References[1].fastalg_y = stoi(splitted[1]);
References[1].fastalg_SAD = stof(splitted[2]);
References[1].fastalg_min = stoi(splitted[3]);
References[1].fastalg_max = stoi(splitted[4]);
References[1].fastalg_avg = stof(splitted[5]);
fclose(pFile);
/*#ifdef DEBUG_DETAIL_ON
std::string _zw = "\tLoadReferences[0]\tx,y:\t" + std::to_string(References[0].fastalg_x) + "\t" + std::to_string(References[0].fastalg_x);
_zw = _zw + "\tSAD, min, max, avg:\t" + std::to_string(References[0].fastalg_SAD) + "\t" + std::to_string(References[0].fastalg_min);
_zw = _zw + "\t" + std::to_string(References[0].fastalg_max) + "\t" + std::to_string(References[0].fastalg_avg);
LogFile.WriteToDedicatedFile("/sdcard/alignment.txt", _zw);
_zw = "\tLoadReferences[1]\tx,y:\t" + std::to_string(References[1].fastalg_x) + "\t" + std::to_string(References[1].fastalg_x);
_zw = _zw + "\tSAD, min, max, avg:\t" + std::to_string(References[1].fastalg_SAD) + "\t" + std::to_string(References[1].fastalg_min);
_zw = _zw + "\t" + std::to_string(References[1].fastalg_max) + "\t" + std::to_string(References[1].fastalg_avg);
LogFile.WriteToDedicatedFile("/sdcard/alignment.txt", _zw);
#endif*/
return true;
}
void ClassFlowAlignment::DrawRef(CImageBasis *_zw)
{
if (_zw->ImageOkay())
{
_zw->drawRect(References[0].target_x, References[0].target_y, References[0].width, References[0].height, 255, 0, 0, 2);
_zw->drawRect(References[1].target_x, References[1].target_y, References[1].width, References[1].height, 255, 0, 0, 2);
}
}

View File

@@ -1,54 +1,51 @@
#pragma once
#ifndef CLASSFLOWALIGNMENT_H
#define CLASSFLOWALIGNMENT_H
#include "ClassFlow.h"
#include "Helper.h"
#include "CAlignAndCutImage.h"
#include "CFindTemplate.h"
#include <string>
using namespace std;
class ClassFlowAlignment :
public ClassFlow
{
protected:
float initalrotate;
bool initialmirror;
bool initialflip;
bool use_antialiasing;
RefInfo References[2];
int anz_ref;
string namerawimage;
bool SaveAllFiles;
CAlignAndCutImage *AlignAndCutImage;
std::string FileStoreRefAlignment;
float SAD_criteria;
void SetInitialParameter(void);
bool LoadReferenceAlignmentValues(void);
void SaveReferenceAlignmentValues();
public:
CImageBasis *ImageBasis, *ImageTMP;
#ifdef ALGROI_LOAD_FROM_MEM_AS_JPG
ImageData *AlgROI;
#endif
ClassFlowAlignment(std::vector<ClassFlow*>* lfc);
CAlignAndCutImage* GetAlignAndCutImage(){return AlignAndCutImage;};
void DrawRef(CImageBasis *_zw);
bool ReadParameter(FILE* pfile, string& aktparamgraph);
bool doFlow(string time);
string getHTMLSingleStep(string host);
string name(){return "ClassFlowAlignment";};
};
#endif //CLASSFLOWALIGNMENT_H
#pragma once
#ifndef CLASSFLOWALIGNMENT_H
#define CLASSFLOWALIGNMENT_H
#include "ClassFlow.h"
#include "Helper.h"
#include "CAlignAndCutImage.h"
#include "CFindTemplate.h"
#include <string>
using namespace std;
class ClassFlowAlignment : public ClassFlow
{
protected:
float initialrotate;
bool initialflip;
bool use_antialiasing;
RefInfo References[2];
int anz_ref;
string namerawimage;
bool SaveAllFiles;
CAlignAndCutImage *AlignAndCutImage;
std::string FileStoreRefAlignment;
float SAD_criteria;
void SetInitialParameter(void);
bool LoadReferenceAlignmentValues(void);
void SaveReferenceAlignmentValues();
public:
CImageBasis *ImageBasis, *ImageTMP;
#ifdef ALGROI_LOAD_FROM_MEM_AS_JPG
ImageData *AlgROI;
#endif
ClassFlowAlignment(std::vector<ClassFlow *> *lfc);
CAlignAndCutImage *GetAlignAndCutImage() { return AlignAndCutImage; };
void DrawRef(CImageBasis *_zw);
bool ReadParameter(FILE *pfile, string &aktparamgraph);
bool doFlow(string time);
string getHTMLSingleStep(string host);
string name() { return "ClassFlowAlignment"; };
};
#endif // CLASSFLOWALIGNMENT_H

View File

@@ -20,8 +20,7 @@ static const char* TAG = "CNN";
#endif
ClassFlowCNNGeneral::ClassFlowCNNGeneral(ClassFlowAlignment *_flowalign, t_CNNType _cnntype) : ClassFlowImage(NULL, TAG)
{
ClassFlowCNNGeneral::ClassFlowCNNGeneral(ClassFlowAlignment *_flowalign, t_CNNType _cnntype) : ClassFlowImage(NULL, TAG) {
string cnnmodelfile = "";
modelxsize = 1;
modelysize = 1;
@@ -38,16 +37,16 @@ ClassFlowCNNGeneral::ClassFlowCNNGeneral(ClassFlowAlignment *_flowalign, t_CNNTy
}
string ClassFlowCNNGeneral::getReadout(int _analog = 0, bool _extendedResolution, int prev, float _before_narrow_Analog, float analogDigitalTransitionStart)
{
string ClassFlowCNNGeneral::getReadout(int _analog = 0, bool _extendedResolution, int prev, float _before_narrow_Analog, float analogDigitalTransitionStart) {
string result = "";
if (GENERAL[_analog]->ROI.size() == 0)
if (GENERAL[_analog]->ROI.size() == 0) {
return result;
}
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "getReadout _analog=" + std::to_string(_analog) + ", _extendedResolution=" + std::to_string(_extendedResolution) + ", prev=" + std::to_string(prev));
if (CNNType == Analogue || CNNType == Analogue100)
{
if (CNNType == Analogue || CNNType == Analogue100) {
float number = GENERAL[_analog]->ROI[GENERAL[_analog]->ROI.size() - 1]->result_float;
int result_after_decimal_point = ((int) floor(number * 10) + 10) % 10;
@@ -55,37 +54,35 @@ string ClassFlowCNNGeneral::getReadout(int _analog = 0, bool _extendedResolution
// LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "getReadout(analog) number=" + std::to_string(number) + ", result_after_decimal_point=" + std::to_string(result_after_decimal_point) + ", prev=" + std::to_string(prev));
result = std::to_string(prev);
if (_extendedResolution)
if (_extendedResolution) {
result = result + std::to_string(result_after_decimal_point);
}
for (int i = GENERAL[_analog]->ROI.size() - 2; i >= 0; --i)
{
for (int i = GENERAL[_analog]->ROI.size() - 2; i >= 0; --i) {
prev = PointerEvalAnalogNew(GENERAL[_analog]->ROI[i]->result_float, prev);
result = std::to_string(prev) + result;
}
return result;
}
if (CNNType == Digital)
{
for (int i = 0; i < GENERAL[_analog]->ROI.size(); ++i)
{
if (GENERAL[_analog]->ROI[i]->result_klasse >= 10)
if (CNNType == Digital) {
for (int i = 0; i < GENERAL[_analog]->ROI.size(); ++i) {
if (GENERAL[_analog]->ROI[i]->result_klasse >= 10) {
result = result + "N";
else
}
else {
result = result + std::to_string(GENERAL[_analog]->ROI[i]->result_klasse);
}
}
return result;
}
if ((CNNType == DoubleHyprid10) || (CNNType == Digital100))
{
if ((CNNType == DoubleHyprid10) || (CNNType == Digital100)) {
float number = GENERAL[_analog]->ROI[GENERAL[_analog]->ROI.size() - 1]->result_float;
if (number >= 0) // NaN?
{
if (_extendedResolution) // is only set if it is the first digit (no analogue before!)
{
// NaN?
if (number >= 0) {
// is only set if it is the first digit (no analogue before!)
if (_extendedResolution) {
int result_after_decimal_point = ((int) floor(number * 10)) % 10;
int result_before_decimal_point = ((int) floor(number)) % 10;
@@ -93,36 +90,32 @@ string ClassFlowCNNGeneral::getReadout(int _analog = 0, bool _extendedResolution
prev = result_before_decimal_point;
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "getReadout(dig100-ext) result_before_decimal_point=" + std::to_string(result_before_decimal_point) + ", result_after_decimal_point=" + std::to_string(result_after_decimal_point) + ", prev=" + std::to_string(prev));
}
else
{
if (_before_narrow_Analog >= 0)
else {
if (_before_narrow_Analog >= 0) {
prev = PointerEvalHybridNew(GENERAL[_analog]->ROI[GENERAL[_analog]->ROI.size() - 1]->result_float, _before_narrow_Analog, prev, true, analogDigitalTransitionStart);
else
}
else {
prev = PointerEvalHybridNew(GENERAL[_analog]->ROI[GENERAL[_analog]->ROI.size() - 1]->result_float, prev, prev);
}
result = std::to_string(prev);
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "getReadout(dig100) prev=" + std::to_string(prev));
}
}
else
{
else {
result = "N";
if (_extendedResolution && (CNNType != Digital))
if (_extendedResolution && (CNNType != Digital)) {
result = "NN";
}
}
for (int i = GENERAL[_analog]->ROI.size() - 2; i >= 0; --i)
{
if (GENERAL[_analog]->ROI[i]->result_float >= 0)
{
for (int i = GENERAL[_analog]->ROI.size() - 2; i >= 0; --i) {
if (GENERAL[_analog]->ROI[i]->result_float >= 0) {
prev = PointerEvalHybridNew(GENERAL[_analog]->ROI[i]->result_float, GENERAL[_analog]->ROI[i+1]->result_float, prev);
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "getReadout#PointerEvalHybridNew()= " + std::to_string(prev));
result = std::to_string(prev) + result;
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "getReadout#result= " + result);
}
else
{
else {
prev = -1;
result = "N" + result;
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "getReadout(result_float<0 /'N') result_float=" + std::to_string(GENERAL[_analog]->ROI[i]->result_float));
@@ -134,15 +127,28 @@ string ClassFlowCNNGeneral::getReadout(int _analog = 0, bool _extendedResolution
return result;
}
int ClassFlowCNNGeneral::PointerEvalHybridNew(float number, float number_of_predecessors, int eval_predecessors, bool Analog_Predecessors, float digitalAnalogTransitionStart)
{
/**
* @brief Determines the number of an ROI in connection with previous ROI results
*
* @param number: is the current ROI as float value from recognition
* @param number_of_predecessors: is the last (lower) ROI as float from recognition
* @param eval_predecessors: is the evaluated number. Sometimes a much lower value can change higer values
* example: 9.8, 9.9, 0.1
* 0.1 => 0 (eval_predecessors)
* The 0 makes a 9.9 to 0 (eval_predecessors)
* The 0 makes a 9.8 to 0
* @param Analog_Predecessors false/true if the last ROI is an analog or digital ROI (default=false)
* runs in special handling because analog is much less precise
* @param digitalAnalogTransitionStart start of the transitionlogic begins on number_of_predecessor (default=9.2)
*
* @return int the determined number of the current ROI
*/
int ClassFlowCNNGeneral::PointerEvalHybridNew(float number, float number_of_predecessors, int eval_predecessors, bool Analog_Predecessors, float digitalAnalogTransitionStart) {
int result;
int result_after_decimal_point = ((int) floor(number * 10)) % 10;
int result_before_decimal_point = ((int) floor(number) + 10) % 10;
if (eval_predecessors < 0)
{
if (eval_predecessors < 0) {
// on first digit is no spezial logic for transition needed
// we use the recognition as given. The result is the int value of the recognition
// add precisition of 2 digits and round before trunc
@@ -153,8 +159,7 @@ int ClassFlowCNNGeneral::PointerEvalHybridNew(float number, float number_of_pred
return result;
}
if (Analog_Predecessors)
{
if (Analog_Predecessors) {
result = PointerEvalAnalogToDigitNew(number, number_of_predecessors, eval_predecessors, digitalAnalogTransitionStart);
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "PointerEvalHybridNew - Analog predecessor, evaluation over PointerEvalAnalogNew = " + std::to_string(result) +
" number: " + std::to_string(number) + " number_of_predecessors = " + std::to_string(number_of_predecessors)+ " eval_predecessors = " + std::to_string(eval_predecessors) + " Digital_Uncertainty = " + std::to_string(Digital_Uncertainty));
@@ -164,26 +169,31 @@ int ClassFlowCNNGeneral::PointerEvalHybridNew(float number, float number_of_pred
if ((number_of_predecessors > Digital_Transition_Area_Predecessor ) && (number_of_predecessors < (10.0 - Digital_Transition_Area_Predecessor)))
{
// no digit change, because predecessor is far enough away (0+/-DigitalTransitionRangePredecessor) --> number is rounded
if ((result_after_decimal_point <= DigitalBand) || (result_after_decimal_point >= (10-DigitalBand))) // Band around the digit --> Round off, as digit reaches inaccuracy in the frame
// Band around the digit --> Round off, as digit reaches inaccuracy in the frame
if ((result_after_decimal_point <= DigitalBand) || (result_after_decimal_point >= (10-DigitalBand))) {
result = ((int) round(number) + 10) % 10;
else
}
else {
result = ((int) trunc(number) + 10) % 10;
}
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "PointerEvalHybridNew - NO analogue predecessor, no change of digits, as pre-decimal point far enough away = " + std::to_string(result) +
" number: " + std::to_string(number) + " number_of_predecessors = " + std::to_string(number_of_predecessors)+ " eval_predecessors = " + std::to_string(eval_predecessors) + " Digital_Uncertainty = " + std::to_string(Digital_Uncertainty));
return result;
}
if (eval_predecessors <= 1) // Zero crossing at the predecessor has taken place (! evaluation via Prev_value and not number!) --> round up here (2.8 --> 3, but also 3.1 --> 3)
{
// Zero crossing at the predecessor has taken place (! evaluation via Prev_value and not number!) --> round up here (2.8 --> 3, but also 3.1 --> 3)
if (eval_predecessors <= 1) {
// We simply assume that the current digit after the zero crossing of the predecessor
// has passed through at least half (x.5)
if (result_after_decimal_point > 5)
if (result_after_decimal_point > 5) {
// The current digit does not yet have a zero crossing, but the predecessor does..
result = (result_before_decimal_point + 1) % 10;
else
}
else {
// Act. digit and predecessor have zero crossing
result = result_before_decimal_point % 10;
}
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "PointerEvalHybridNew - NO analogue predecessor, zero crossing has taken placen = " + std::to_string(result) +
" number: " + std::to_string(number) + " number_of_predecessors = " + std::to_string(number_of_predecessors)+ " eval_predecessors = " + std::to_string(eval_predecessors) + " Digital_Uncertainty = " + std::to_string(Digital_Uncertainty));
return result;
@@ -199,10 +209,12 @@ int ClassFlowCNNGeneral::PointerEvalHybridNew(float number, float number_of_pred
|| result_after_decimal_point >= 4)
// The current digit, like the previous digit, does not yet have a zero crossing.
result = result_before_decimal_point % 10;
else
}
else {
// current digit precedes the smaller digit (9.x). So already >=x.0 while the previous digit has not yet
// has no zero crossing. Therefore, it is reduced by 1.
result = (result_before_decimal_point - 1 + 10) % 10;
}
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "PointerEvalHybridNew - O analogue predecessor, >= 9.5 --> no zero crossing yet = " + std::to_string(result) +
" number: " + std::to_string(number) + " number_of_predecessors = " + std::to_string(number_of_predecessors)+ " eval_predecessors = " + std::to_string(eval_predecessors) + " Digital_Uncertainty = " + std::to_string(Digital_Uncertainty) + " result_after_decimal_point = " + std::to_string(result_after_decimal_point));
@@ -210,8 +222,7 @@ int ClassFlowCNNGeneral::PointerEvalHybridNew(float number, float number_of_pred
}
int ClassFlowCNNGeneral::PointerEvalAnalogToDigitNew(float number, float numeral_preceder, int eval_predecessors, float analogDigitalTransitionStart)
{
int ClassFlowCNNGeneral::PointerEvalAnalogToDigitNew(float number, float numeral_preceder, int eval_predecessors, float analogDigitalTransitionStart) {
int result;
int result_after_decimal_point = ((int) floor(number * 10)) % 10;
int result_before_decimal_point = ((int) floor(number) + 10) % 10;
@@ -253,21 +264,17 @@ int ClassFlowCNNGeneral::PointerEvalAnalogToDigitNew(float number, float numeral
" number: " + std::to_string(number) +
" numeral_preceder = " + std::to_string(numeral_preceder) +
" eerg after comma = " + std::to_string(result_after_decimal_point));
}
return result;
}
int ClassFlowCNNGeneral::PointerEvalAnalogNew(float number, int numeral_preceder)
{
int ClassFlowCNNGeneral::PointerEvalAnalogNew(float number, int numeral_preceder) {
float number_min, number_max;
int result;
if (numeral_preceder == -1)
{
if (numeral_preceder == -1) {
result = (int) floor(number);
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "PointerEvalAnalogNew - No predecessor - Result = " + std::to_string(result) +
" number: " + std::to_string(number) + " numeral_preceder = " + std::to_string(numeral_preceder) + " Analog_error = " + std::to_string(Analog_error));
@@ -277,17 +284,14 @@ int ClassFlowCNNGeneral::PointerEvalAnalogNew(float number, int numeral_preceder
number_min = number - Analog_error / 10.0;
number_max = number + Analog_error / 10.0;
if ((int) floor(number_max) - (int) floor(number_min) != 0)
{
if (numeral_preceder <= Analog_error)
{
if ((int) floor(number_max) - (int) floor(number_min) != 0) {
if (numeral_preceder <= Analog_error) {
result = ((int) floor(number_max) + 10) % 10;
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "PointerEvalAnalogNew - number ambiguous, correction upwards - result = " + std::to_string(result) +
" number: " + std::to_string(number) + " numeral_preceder = " + std::to_string(numeral_preceder) + " Analog_error = " + std::to_string(Analog_error));
return result;
}
if (numeral_preceder >= 10 - Analog_error)
{
if (numeral_preceder >= 10 - Analog_error) {
result = ((int) floor(number_min) + 10) % 10;
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "PointerEvalAnalogNew - number ambiguous, downward correction - result = " + std::to_string(result) +
" number: " + std::to_string(number) + " numeral_preceder = " + std::to_string(numeral_preceder) + " Analog_error = " + std::to_string(Analog_error));
@@ -295,7 +299,6 @@ int ClassFlowCNNGeneral::PointerEvalAnalogNew(float number, int numeral_preceder
}
}
result = ((int) floor(number) + 10) % 10;
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "PointerEvalAnalogNew - number unambiguous, no correction necessary - result = " + std::to_string(result) +
" number: " + std::to_string(number) + " numeral_preceder = " + std::to_string(numeral_preceder) + " Analog_error = " + std::to_string(Analog_error));
@@ -304,25 +307,25 @@ int ClassFlowCNNGeneral::PointerEvalAnalogNew(float number, int numeral_preceder
}
bool ClassFlowCNNGeneral::ReadParameter(FILE* pfile, string& aktparamgraph)
{
bool ClassFlowCNNGeneral::ReadParameter(FILE* pfile, string& aktparamgraph) {
std::vector<string> splitted;
aktparamgraph = trim(aktparamgraph);
if (aktparamgraph.size() == 0)
if (!this->GetNextParagraph(pfile, aktparamgraph))
if (aktparamgraph.size() == 0) {
if (!this->GetNextParagraph(pfile, aktparamgraph)) {
return false;
}
}
if ((toUpper(aktparamgraph) != "[ANALOG]") && (toUpper(aktparamgraph) != ";[ANALOG]")
&& (toUpper(aktparamgraph) != "[DIGIT]") && (toUpper(aktparamgraph) != ";[DIGIT]")
&& (toUpper(aktparamgraph) != "[DIGITS]") && (toUpper(aktparamgraph) != ";[DIGITS]")
) // Paragraph passt nicht
&& (toUpper(aktparamgraph) != "[DIGITS]") && (toUpper(aktparamgraph) != ";[DIGITS]")) {
// Paragraph passt nicht
return false;
}
if (aktparamgraph[0] == ';')
{
if (aktparamgraph[0] == ';') {
disabled = true;
while (getNextLine(pfile, &aktparamgraph) && !isNewParagraph(aktparamgraph));
ESP_LOGD(TAG, "[Analog/Digit] is disabled!");
@@ -330,36 +333,31 @@ bool ClassFlowCNNGeneral::ReadParameter(FILE* pfile, string& aktparamgraph)
}
while (this->getNextLine(pfile, &aktparamgraph) && !this->isNewParagraph(aktparamgraph))
{
while (this->getNextLine(pfile, &aktparamgraph) && !this->isNewParagraph(aktparamgraph)) {
splitted = ZerlegeZeile(aktparamgraph);
if ((toUpper(splitted[0]) == "ROIIMAGESLOCATION") && (splitted.size() > 1))
{
if ((toUpper(splitted[0]) == "ROIIMAGESLOCATION") && (splitted.size() > 1)) {
this->imagesLocation = "/sdcard" + splitted[1];
this->isLogImage = true;
}
if ((toUpper(splitted[0]) == "LOGIMAGESELECT") && (splitted.size() > 1))
{
if ((toUpper(splitted[0]) == "LOGIMAGESELECT") && (splitted.size() > 1)) {
LogImageSelect = splitted[1];
isLogImageSelect = true;
}
if ((toUpper(splitted[0]) == "ROIIMAGESRETENTION") && (splitted.size() > 1))
{
if ((toUpper(splitted[0]) == "ROIIMAGESRETENTION") && (splitted.size() > 1)) {
this->imagesRetention = std::stoi(splitted[1]);
}
if ((toUpper(splitted[0]) == "MODEL") && (splitted.size() > 1))
{
if ((toUpper(splitted[0]) == "MODEL") && (splitted.size() > 1)) {
this->cnnmodelfile = splitted[1];
}
if ((toUpper(splitted[0]) == "CNNGOODTHRESHOLD") && (splitted.size() > 1))
{
if ((toUpper(splitted[0]) == "CNNGOODTHRESHOLD") && (splitted.size() > 1)) {
CNNGoodThreshold = std::stof(splitted[1]);
}
if (splitted.size() >= 5)
{
if (splitted.size() >= 5) {
general* _analog = GetGENERAL(splitted[0], true);
roi* neuroi = _analog->ROI[_analog->ROI.size()-1];
neuroi->posx = std::stoi(splitted[1]);
@@ -367,19 +365,20 @@ bool ClassFlowCNNGeneral::ReadParameter(FILE* pfile, string& aktparamgraph)
neuroi->deltax = std::stoi(splitted[3]);
neuroi->deltay = std::stoi(splitted[4]);
neuroi->CCW = false;
if (splitted.size() >= 6)
{
if (splitted.size() >= 6) {
neuroi->CCW = toUpper(splitted[5]) == "TRUE";
}
neuroi->result_float = -1;
neuroi->image = NULL;
neuroi->image_org = NULL;
}
if ((toUpper(splitted[0]) == "SAVEALLFILES") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
if ((toUpper(splitted[0]) == "SAVEALLFILES") && (splitted.size() > 1)) {
if (toUpper(splitted[1]) == "TRUE") {
SaveAllFiles = true;
}
}
}
@@ -390,55 +389,57 @@ bool ClassFlowCNNGeneral::ReadParameter(FILE* pfile, string& aktparamgraph)
}
for (int _ana = 0; _ana < GENERAL.size(); ++_ana)
for (int i = 0; i < GENERAL[_ana]->ROI.size(); ++i)
{
for (int _ana = 0; _ana < GENERAL.size(); ++_ana) {
for (int i = 0; i < GENERAL[_ana]->ROI.size(); ++i) {
GENERAL[_ana]->ROI[i]->image = new CImageBasis("ROI " + GENERAL[_ana]->ROI[i]->name,
modelxsize, modelysize, modelchannel);
GENERAL[_ana]->ROI[i]->image_org = new CImageBasis("ROI " + GENERAL[_ana]->ROI[i]->name + " original",
GENERAL[_ana]->ROI[i]->deltax, GENERAL[_ana]->ROI[i]->deltay, 3);
}
}
return true;
}
general* ClassFlowCNNGeneral::FindGENERAL(string _name_number)
{
for (int i = 0; i < GENERAL.size(); ++i)
if (GENERAL[i]->name == _name_number)
general* ClassFlowCNNGeneral::FindGENERAL(string _name_number) {
for (int i = 0; i < GENERAL.size(); ++i) {
if (GENERAL[i]->name == _name_number) {
return GENERAL[i];
}
}
return NULL;
}
general* ClassFlowCNNGeneral::GetGENERAL(string _name, bool _create = true)
{
general* ClassFlowCNNGeneral::GetGENERAL(string _name, bool _create = true) {
string _analog, _roi;
int _pospunkt = _name.find_first_of(".");
if (_pospunkt > -1)
{
if (_pospunkt > -1) {
_analog = _name.substr(0, _pospunkt);
_roi = _name.substr(_pospunkt+1, _name.length() - _pospunkt - 1);
}
else
{
else {
_analog = "default";
_roi = _name;
}
general *_ret = NULL;
for (int i = 0; i < GENERAL.size(); ++i)
if (GENERAL[i]->name == _analog)
for (int i = 0; i < GENERAL.size(); ++i) {
if (GENERAL[i]->name == _analog) {
_ret = GENERAL[i];
}
}
if (!_create) // not found and should not be created
// not found and should not be created
if (!_create) {
return _ret;
}
if (_ret == NULL)
{
if (_ret == NULL) {
_ret = new general;
_ret->name = _analog;
GENERAL.push_back(_ret);
@@ -455,8 +456,7 @@ general* ClassFlowCNNGeneral::GetGENERAL(string _name, bool _create = true)
}
string ClassFlowCNNGeneral::getHTMLSingleStep(string host)
{
string ClassFlowCNNGeneral::getHTMLSingleStep(string host) {
string result, zw;
std::vector<HTMLInfo*> htmlinfo;
@@ -464,8 +464,8 @@ string ClassFlowCNNGeneral::getHTMLSingleStep(string host)
result = result + "Analog Pointers: <p> ";
htmlinfo = GetHTMLInfo();
for (int i = 0; i < htmlinfo.size(); ++i)
{
for (int i = 0; i < htmlinfo.size(); ++i) {
std::stringstream stream;
stream << std::fixed << std::setprecision(1) << htmlinfo[i]->val;
zw = stream.str();
@@ -473,15 +473,14 @@ string ClassFlowCNNGeneral::getHTMLSingleStep(string host)
result = result + "<img src=\"" + host + "/img_tmp/" + htmlinfo[i]->filename + "\"> " + zw;
delete htmlinfo[i];
}
htmlinfo.clear();
return result;
}
bool ClassFlowCNNGeneral::doFlow(string time)
{
bool ClassFlowCNNGeneral::doFlow(string time) {
#ifdef HEAP_TRACING_CLASS_FLOW_CNN_GENERAL_DO_ALING_AND_CUT
//register a buffer to record the memory trace
ESP_ERROR_CHECK( heap_trace_init_standalone(trace_record, NUM_RECORDS) );
@@ -489,8 +488,9 @@ bool ClassFlowCNNGeneral::doFlow(string time)
ESP_ERROR_CHECK( heap_trace_start(HEAP_TRACE_LEAKS) );
#endif
if (disabled)
if (disabled) {
return true;
}
if (!doAlignAndCut(time)){
return false;
@@ -511,79 +511,80 @@ bool ClassFlowCNNGeneral::doFlow(string time)
}
bool ClassFlowCNNGeneral::doAlignAndCut(string time)
{
if (disabled)
bool ClassFlowCNNGeneral::doAlignAndCut(string time) {
if (disabled) {
return true;
}
CAlignAndCutImage *caic = flowpostalignment->GetAlignAndCutImage();
for (int _ana = 0; _ana < GENERAL.size(); ++_ana)
for (int i = 0; i < GENERAL[_ana]->ROI.size(); ++i)
{
for (int _ana = 0; _ana < GENERAL.size(); ++_ana) {
for (int i = 0; i < GENERAL[_ana]->ROI.size(); ++i) {
ESP_LOGD(TAG, "General %d - Align&Cut", i);
caic->CutAndSave(GENERAL[_ana]->ROI[i]->posx, GENERAL[_ana]->ROI[i]->posy, GENERAL[_ana]->ROI[i]->deltax, GENERAL[_ana]->ROI[i]->deltay, GENERAL[_ana]->ROI[i]->image_org);
if (SaveAllFiles)
{
if (GENERAL[_ana]->name == "default")
if (SaveAllFiles) {
if (GENERAL[_ana]->name == "default") {
GENERAL[_ana]->ROI[i]->image_org->SaveToFile(FormatFileName("/sdcard/img_tmp/" + GENERAL[_ana]->ROI[i]->name + ".jpg"));
else
}
else {
GENERAL[_ana]->ROI[i]->image_org->SaveToFile(FormatFileName("/sdcard/img_tmp/" + GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name + ".jpg"));
}
}
GENERAL[_ana]->ROI[i]->image_org->Resize(modelxsize, modelysize, GENERAL[_ana]->ROI[i]->image);
if (SaveAllFiles)
{
if (GENERAL[_ana]->name == "default")
if (SaveAllFiles) {
if (GENERAL[_ana]->name == "default") {
GENERAL[_ana]->ROI[i]->image->SaveToFile(FormatFileName("/sdcard/img_tmp/" + GENERAL[_ana]->ROI[i]->name + ".jpg"));
else
}
else {
GENERAL[_ana]->ROI[i]->image->SaveToFile(FormatFileName("/sdcard/img_tmp/" + GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name + ".jpg"));
}
}
}
}
return true;
}
void ClassFlowCNNGeneral::DrawROI(CImageBasis *_zw)
{
if (_zw->ImageOkay())
{
if (CNNType == Analogue || CNNType == Analogue100)
{
void ClassFlowCNNGeneral::DrawROI(CImageBasis *_zw) {
if (_zw->ImageOkay()) {
if (CNNType == Analogue || CNNType == Analogue100) {
int r = 0;
int g = 255;
int b = 0;
for (int _ana = 0; _ana < GENERAL.size(); ++_ana)
for (int i = 0; i < GENERAL[_ana]->ROI.size(); ++i)
{
for (int _ana = 0; _ana < GENERAL.size(); ++_ana) {
for (int i = 0; i < GENERAL[_ana]->ROI.size(); ++i) {
_zw->drawRect(GENERAL[_ana]->ROI[i]->posx, GENERAL[_ana]->ROI[i]->posy, GENERAL[_ana]->ROI[i]->deltax, GENERAL[_ana]->ROI[i]->deltay, r, g, b, 1);
_zw->drawEllipse( (int) (GENERAL[_ana]->ROI[i]->posx + GENERAL[_ana]->ROI[i]->deltax/2), (int) (GENERAL[_ana]->ROI[i]->posy + GENERAL[_ana]->ROI[i]->deltay/2), (int) (GENERAL[_ana]->ROI[i]->deltax/2), (int) (GENERAL[_ana]->ROI[i]->deltay/2), r, g, b, 2);
_zw->drawLine((int) (GENERAL[_ana]->ROI[i]->posx + GENERAL[_ana]->ROI[i]->deltax/2), (int) GENERAL[_ana]->ROI[i]->posy, (int) (GENERAL[_ana]->ROI[i]->posx + GENERAL[_ana]->ROI[i]->deltax/2), (int) (GENERAL[_ana]->ROI[i]->posy + GENERAL[_ana]->ROI[i]->deltay), r, g, b, 2);
_zw->drawLine((int) GENERAL[_ana]->ROI[i]->posx, (int) (GENERAL[_ana]->ROI[i]->posy + GENERAL[_ana]->ROI[i]->deltay/2), (int) GENERAL[_ana]->ROI[i]->posx + GENERAL[_ana]->ROI[i]->deltax, (int) (GENERAL[_ana]->ROI[i]->posy + GENERAL[_ana]->ROI[i]->deltay/2), r, g, b, 2);
}
}
}
else
{
for (int _dig = 0; _dig < GENERAL.size(); ++_dig)
for (int i = 0; i < GENERAL[_dig]->ROI.size(); ++i)
else {
for (int _dig = 0; _dig < GENERAL.size(); ++_dig) {
for (int i = 0; i < GENERAL[_dig]->ROI.size(); ++i) {
_zw->drawRect(GENERAL[_dig]->ROI[i]->posx, GENERAL[_dig]->ROI[i]->posy, GENERAL[_dig]->ROI[i]->deltax, GENERAL[_dig]->ROI[i]->deltay, 0, 0, (255 - _dig*100), 2);
}
}
}
}
}
bool ClassFlowCNNGeneral::getNetworkParameter()
{
if (disabled)
bool ClassFlowCNNGeneral::getNetworkParameter() {
if (disabled) {
return true;
}
CTfLiteClass *tflite = new CTfLiteClass;
string zwcnn = "/sdcard" + cnnmodelfile;
zwcnn = FormatFileName(zwcnn);
ESP_LOGD(TAG, "%s", zwcnn.c_str());
if (!tflite->LoadModel(zwcnn)) {
LogFile.WriteToFile(ESP_LOG_ERROR, TAG, "Can't load tflite model " + cnnmodelfile + " -> Init aborted!");
LogFile.WriteHeapInfo("getNetworkParameter-LoadModel");
@@ -598,16 +599,14 @@ bool ClassFlowCNNGeneral::getNetworkParameter()
return false;
}
if (CNNType == AutoDetect)
{
if (CNNType == AutoDetect) {
tflite->GetInputDimension(false);
modelxsize = tflite->ReadInputDimenstion(0);
modelysize = tflite->ReadInputDimenstion(1);
modelchannel = tflite->ReadInputDimenstion(2);
int _anzoutputdimensions = tflite->GetAnzOutPut();
switch (_anzoutputdimensions)
{
switch (_anzoutputdimensions) {
case 2:
CNNType = Analogue;
ESP_LOGD(TAG, "TFlite-Type set to Analogue");
@@ -633,7 +632,8 @@ bool ClassFlowCNNGeneral::getNetworkParameter()
if (modelxsize==32 && modelysize == 32) {
CNNType = Analogue100;
ESP_LOGD(TAG, "TFlite-Type set to Analogue100");
} else {
}
else {
CNNType = Digital100;
ESP_LOGD(TAG, "TFlite-Type set to Digital");
}
@@ -648,10 +648,10 @@ bool ClassFlowCNNGeneral::getNetworkParameter()
}
bool ClassFlowCNNGeneral::doNeuralNetwork(string time)
{
if (disabled)
bool ClassFlowCNNGeneral::doNeuralNetwork(string time) {
if (disabled) {
return true;
}
string logPath = CreateLogFolder(time);
@@ -674,11 +674,11 @@ bool ClassFlowCNNGeneral::doNeuralNetwork(string time)
return false;
}
for (int n = 0; n < GENERAL.size(); ++n) // For each NUMBER
{
// For each NUMBER
for (int n = 0; n < GENERAL.size(); ++n) {
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "Processing Number '" + GENERAL[n]->name + "'");
for (int roi = 0; roi < GENERAL[n]->ROI.size(); ++roi) // For each ROI
{
// For each ROI
for (int roi = 0; roi < GENERAL[n]->ROI.size(); ++roi) {
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "ROI #" + std::to_string(roi) + " - TfLite");
//ESP_LOGD(TAG, "General %d - TfLite", i);
@@ -697,14 +697,17 @@ bool ClassFlowCNNGeneral::doNeuralNetwork(string time)
f2 = tflite->GetOutputValue(1);
float result = fmod(atan2(f1, f2) / (M_PI * 2) + 2, 1);
if(GENERAL[n]->ROI[roi]->CCW)
if(GENERAL[n]->ROI[roi]->CCW) {
GENERAL[n]->ROI[roi]->result_float = 10 - (result * 10);
else
}
else {
GENERAL[n]->ROI[roi]->result_float = result * 10;
}
ESP_LOGD(TAG, "General result (Analog)%i - CCW: %d - %f", roi, GENERAL[n]->ROI[roi]->CCW, GENERAL[n]->ROI[roi]->result_float);
if (isLogImage)
if (isLogImage) {
LogImage(logPath, GENERAL[n]->ROI[roi]->name, &GENERAL[n]->ROI[roi]->result_float, NULL, time, GENERAL[n]->ROI[roi]->image_org);
}
} break;
case Digital:
@@ -714,22 +717,19 @@ bool ClassFlowCNNGeneral::doNeuralNetwork(string time)
GENERAL[n]->ROI[roi]->result_klasse = tflite->GetClassFromImageBasis(GENERAL[n]->ROI[roi]->image);
ESP_LOGD(TAG, "General result (Digit)%i: %d", roi, GENERAL[n]->ROI[roi]->result_klasse);
if (isLogImage)
{
if (isLogImage) {
string _imagename = GENERAL[n]->name + "_" + GENERAL[n]->ROI[roi]->name;
if (isLogImageSelect)
{
if (LogImageSelect.find(GENERAL[n]->ROI[roi]->name) != std::string::npos)
if (isLogImageSelect) {
if (LogImageSelect.find(GENERAL[n]->ROI[roi]->name) != std::string::npos) {
LogImage(logPath, _imagename, NULL, &GENERAL[n]->ROI[roi]->result_klasse, time, GENERAL[n]->ROI[roi]->image_org);
}
}
else
{
else {
LogImage(logPath, _imagename, NULL, &GENERAL[n]->ROI[roi]->result_klasse, time, GENERAL[n]->ROI[roi]->image_org);
}
}
} break;
case DoubleHyprid10:
{
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "CNN Type: DoubleHyprid10");
@@ -752,62 +752,56 @@ bool ClassFlowCNNGeneral::doNeuralNetwork(string time)
float result = _num;
if (_valplus > _valminus)
{
if (_valplus > _valminus) {
result = result + _valplus / (_valplus + _val);
_fit = _val + _valplus;
}
else
{
else {
result = result - _valminus / (_val + _valminus);
_fit = _val + _valminus;
}
if (result >= 10)
if (result >= 10) {
result = result - 10;
if (result < 0)
}
if (result < 0) {
result = result + 10;
}
string zw = "_num (p, m): " + to_string(_num) + " " + to_string(_numplus) + " " + to_string(_numminus);
zw = zw + " _val (p, m): " + to_string(_val) + " " + to_string(_valplus) + " " + to_string(_valminus);
zw = zw + " result: " + to_string(result) + " _fit: " + to_string(_fit);
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, zw);
_result_save_file = result;
if (_fit < CNNGoodThreshold)
{
if (_fit < CNNGoodThreshold) {
GENERAL[n]->ROI[roi]->isReject = true;
result = -1;
_result_save_file+= 100; // In case fit is not sufficient, the result should still be saved with "-10x.y".
string zw = "Value Rejected due to Threshold (Fit: " + to_string(_fit) + ", Threshold: " + to_string(CNNGoodThreshold) + ")";
LogFile.WriteToFile(ESP_LOG_WARN, TAG, zw);
}
else
{
else {
GENERAL[n]->ROI[roi]->isReject = false;
}
GENERAL[n]->ROI[roi]->result_float = result;
ESP_LOGD(TAG, "Result General(Analog)%i: %f", roi, GENERAL[n]->ROI[roi]->result_float);
if (isLogImage)
{
if (isLogImage) {
string _imagename = GENERAL[n]->name + "_" + GENERAL[n]->ROI[roi]->name;
if (isLogImageSelect)
{
if (LogImageSelect.find(GENERAL[n]->ROI[roi]->name) != std::string::npos)
if (isLogImageSelect) {
if (LogImageSelect.find(GENERAL[n]->ROI[roi]->name) != std::string::npos) {
LogImage(logPath, _imagename, &_result_save_file, NULL, time, GENERAL[n]->ROI[roi]->image_org);
}
}
else
{
else {
LogImage(logPath, _imagename, &_result_save_file, NULL, time, GENERAL[n]->ROI[roi]->image_org);
}
}
}
break;
} break;
case Digital100:
case Analogue100:
{
@@ -820,28 +814,27 @@ bool ClassFlowCNNGeneral::doNeuralNetwork(string time)
_num = tflite->GetOutClassification();
if(GENERAL[n]->ROI[roi]->CCW)
GENERAL[n]->ROI[roi]->result_float = 10 - ((float)_num / 10.0);
else
if(GENERAL[n]->ROI[roi]->CCW) {
GENERAL[n]->ROI[roi]->result_float = 10 - ((float)_num / 10.0);
}
else {
GENERAL[n]->ROI[roi]->result_float = (float)_num / 10.0;
}
_result_save_file = GENERAL[n]->ROI[roi]->result_float;
GENERAL[n]->ROI[roi]->isReject = false;
ESP_LOGD(TAG, "Result General(Analog)%i - CCW: %d - %f", roi, GENERAL[n]->ROI[roi]->CCW, GENERAL[n]->ROI[roi]->result_float);
if (isLogImage)
{
if (isLogImage) {
string _imagename = GENERAL[n]->name + "_" + GENERAL[n]->ROI[roi]->name;
if (isLogImageSelect)
{
if (LogImageSelect.find(GENERAL[n]->ROI[roi]->name) != std::string::npos)
if (isLogImageSelect) {
if (LogImageSelect.find(GENERAL[n]->ROI[roi]->name) != std::string::npos) {
LogImage(logPath, _imagename, &_result_save_file, NULL, time, GENERAL[n]->ROI[roi]->image_org);
}
}
else
{
else {
LogImage(logPath, _imagename, &_result_save_file, NULL, time, GENERAL[n]->ROI[roi]->image_org);
}
}
@@ -860,93 +853,94 @@ bool ClassFlowCNNGeneral::doNeuralNetwork(string time)
}
bool ClassFlowCNNGeneral::isExtendedResolution(int _number)
{
if (CNNType == Digital)
bool ClassFlowCNNGeneral::isExtendedResolution(int _number) {
if (CNNType == Digital) {
return false;
}
return true;
}
std::vector<HTMLInfo*> ClassFlowCNNGeneral::GetHTMLInfo()
{
std::vector<HTMLInfo*> ClassFlowCNNGeneral::GetHTMLInfo() {
std::vector<HTMLInfo*> result;
for (int _ana = 0; _ana < GENERAL.size(); ++_ana)
for (int i = 0; i < GENERAL[_ana]->ROI.size(); ++i)
{
for (int _ana = 0; _ana < GENERAL.size(); ++_ana) {
for (int i = 0; i < GENERAL[_ana]->ROI.size(); ++i) {
ESP_LOGD(TAG, "Image: %d", (int) GENERAL[_ana]->ROI[i]->image);
if (GENERAL[_ana]->ROI[i]->image)
{
if (GENERAL[_ana]->name == "default")
if (GENERAL[_ana]->ROI[i]->image) {
if (GENERAL[_ana]->name == "default") {
GENERAL[_ana]->ROI[i]->image->SaveToFile(FormatFileName("/sdcard/img_tmp/" + GENERAL[_ana]->ROI[i]->name + ".jpg"));
else
}
else {
GENERAL[_ana]->ROI[i]->image->SaveToFile(FormatFileName("/sdcard/img_tmp/" + GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name + ".jpg"));
}
}
HTMLInfo *zw = new HTMLInfo;
if (GENERAL[_ana]->name == "default")
{
if (GENERAL[_ana]->name == "default") {
zw->filename = GENERAL[_ana]->ROI[i]->name + ".jpg";
zw->filename_org = GENERAL[_ana]->ROI[i]->name + ".jpg";
}
else
{
else {
zw->filename = GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name + ".jpg";
zw->filename_org = GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name + ".jpg";
}
if (CNNType == Digital)
if (CNNType == Digital) {
zw->val = GENERAL[_ana]->ROI[i]->result_klasse;
else
}
else {
zw->val = GENERAL[_ana]->ROI[i]->result_float;
}
zw->image = GENERAL[_ana]->ROI[i]->image;
zw->image_org = GENERAL[_ana]->ROI[i]->image_org;
result.push_back(zw);
}
}
return result;
}
int ClassFlowCNNGeneral::getNumberGENERAL()
{
int ClassFlowCNNGeneral::getNumberGENERAL() {
return GENERAL.size();
}
string ClassFlowCNNGeneral::getNameGENERAL(int _analog)
{
if (_analog < GENERAL.size())
string ClassFlowCNNGeneral::getNameGENERAL(int _analog) {
if (_analog < GENERAL.size()) {
return GENERAL[_analog]->name;
}
return "GENERAL DOES NOT EXIST";
}
general* ClassFlowCNNGeneral::GetGENERAL(int _analog)
{
if (_analog < GENERAL.size())
general* ClassFlowCNNGeneral::GetGENERAL(int _analog) {
if (_analog < GENERAL.size()) {
return GENERAL[_analog];
}
return NULL;
}
void ClassFlowCNNGeneral::UpdateNameNumbers(std::vector<std::string> *_name_numbers)
{
for (int _dig = 0; _dig < GENERAL.size(); _dig++)
{
void ClassFlowCNNGeneral::UpdateNameNumbers(std::vector<std::string> *_name_numbers) {
for (int _dig = 0; _dig < GENERAL.size(); _dig++) {
std::string _name = GENERAL[_dig]->name;
bool found = false;
for (int i = 0; i < (*_name_numbers).size(); ++i)
{
if ((*_name_numbers)[i] == _name)
for (int i = 0; i < (*_name_numbers).size(); ++i) {
if ((*_name_numbers)[i] == _name) {
found = true;
}
}
if (!found)
if (!found) {
(*_name_numbers).push_back(_name);
}
}
}
@@ -955,26 +949,25 @@ string ClassFlowCNNGeneral::getReadoutRawString(int _analog)
{
string rt = "";
if (_analog >= GENERAL.size() || GENERAL[_analog]==NULL || GENERAL[_analog]->ROI.size() == 0)
if (_analog >= GENERAL.size() || GENERAL[_analog]==NULL || GENERAL[_analog]->ROI.size() == 0) {
return rt;
}
for (int i = 0; i < GENERAL[_analog]->ROI.size(); ++i)
{
if (CNNType == Analogue || CNNType == Analogue100)
{
for (int i = 0; i < GENERAL[_analog]->ROI.size(); ++i) {
if (CNNType == Analogue || CNNType == Analogue100) {
rt = rt + "," + RundeOutput(GENERAL[_analog]->ROI[i]->result_float, 1);
}
if (CNNType == Digital)
{
if (GENERAL[_analog]->ROI[i]->result_klasse == 10)
if (CNNType == Digital) {
if (GENERAL[_analog]->ROI[i]->result_klasse >= 10) {
rt = rt + ",N";
else
}
else {
rt = rt + "," + RundeOutput(GENERAL[_analog]->ROI[i]->result_klasse, 0);
}
}
if ((CNNType == DoubleHyprid10) || (CNNType == Digital100))
{
if ((CNNType == DoubleHyprid10) || (CNNType == Digital100)) {
rt = rt + "," + RundeOutput(GENERAL[_analog]->ROI[i]->result_float, 1);
}
}

View File

@@ -34,6 +34,7 @@ struct NumberPost {
bool AllowNegativeRates;
bool checkDigitIncreaseConsistency;
time_t lastvalue;
time_t timeStampTimeUTC;
string timeStamp;
double FlowRateAct; // m3 / min
double PreValue; // last value that was read out well

View File

@@ -137,6 +137,7 @@ bool ClassFlowInfluxDB::doFlow(string zwtime)
std::string resultraw = "";
std::string resultrate = "";
std::string resulttimestamp = "";
long int timeutc;
string zw = "";
string namenumber = "";
@@ -152,6 +153,7 @@ bool ClassFlowInfluxDB::doFlow(string zwtime)
resulterror = (*NUMBERS)[i]->ErrorMessageText;
resultrate = (*NUMBERS)[i]->ReturnRateValue;
resulttimestamp = (*NUMBERS)[i]->timeStamp;
timeutc = (*NUMBERS)[i]->timeStampTimeUTC;
if ((*NUMBERS)[i]->FieldV1.length() > 0)
{
@@ -167,7 +169,7 @@ bool ClassFlowInfluxDB::doFlow(string zwtime)
}
if (result.length() > 0)
InfluxDBPublish(measurement, namenumber, result, resulttimestamp);
InfluxDBPublish(measurement, namenumber, result, timeutc);
}
}

View File

@@ -196,6 +196,7 @@ bool ClassFlowInfluxDBv2::doFlow(string zwtime)
std::string resultraw = "";
std::string resultrate = "";
std::string resulttimestamp = "";
long int resulttimeutc = 0;
string zw = "";
string namenumber = "";
@@ -212,6 +213,8 @@ bool ClassFlowInfluxDBv2::doFlow(string zwtime)
resulterror = (*NUMBERS)[i]->ErrorMessageText;
resultrate = (*NUMBERS)[i]->ReturnRateValue;
resulttimestamp = (*NUMBERS)[i]->timeStamp;
resulttimeutc = (*NUMBERS)[i]->timeStampTimeUTC;
if ((*NUMBERS)[i]->FieldV2.length() > 0)
{
@@ -229,8 +232,7 @@ bool ClassFlowInfluxDBv2::doFlow(string zwtime)
printf("vor sende Influx_DB_V2 - namenumber. %s, result: %s, timestampt: %s", namenumber.c_str(), result.c_str(), resulttimestamp.c_str());
if (result.length() > 0)
InfluxDB_V2_Publish(measurement, namenumber, result, resulttimestamp);
// InfluxDB_V2_Publish(namenumber, result, resulttimestamp);
InfluxDB_V2_Publish(measurement, namenumber, result, resulttimeutc);
}
}

View File

@@ -1,9 +1,15 @@
#include <iostream>
#include <string>
#include <vector>
#include <regex>
#include "ClassFlowTakeImage.h"
#include "Helper.h"
#include "ClassLogFile.h"
#include "CImageBasis.h"
#include "ClassControllCamera.h"
#include "MainFlowControl.h"
#include "esp_wifi.h"
#include "esp_log.h"
@@ -12,14 +18,14 @@
#include <time.h>
// #define DEBUG_DETAIL_ON
// #define DEBUG_DETAIL_ON
// #define WIFITURNOFF
static const char* TAG = "TAKEIMAGE";
static const char *TAG = "TAKEIMAGE";
esp_err_t ClassFlowTakeImage::camera_capture(){
string nm = namerawimage;
esp_err_t ClassFlowTakeImage::camera_capture(void)
{
string nm = namerawimage;
Camera.CaptureToFile(nm);
time(&TimeImageTaken);
localtime(&TimeImageTaken);
@@ -30,150 +36,480 @@ esp_err_t ClassFlowTakeImage::camera_capture(){
void ClassFlowTakeImage::takePictureWithFlash(int flash_duration)
{
// in case the image is flipped, it must be reset here //
rawImage->width = image_width;
rawImage->height = image_height;
/////////////////////////////////////////////////////////////////////////////////////
rawImage->width = CCstatus.ImageWidth;
rawImage->height = CCstatus.ImageHeight;
ESP_LOGD(TAG, "flash_duration: %d", flash_duration);
Camera.CaptureToBasisImage(rawImage, flash_duration);
time(&TimeImageTaken);
localtime(&TimeImageTaken);
if (SaveAllFiles) rawImage->SaveToFile(namerawimage);
if (CCstatus.SaveAllFiles)
{
rawImage->SaveToFile(namerawimage);
}
}
void ClassFlowTakeImage::SetInitialParameter(void)
{
waitbeforepicture = 5;
isImageSize = false;
ImageQuality = -1;
TimeImageTaken = 0;
ImageQuality = 5;
rawImage = NULL;
ImageSize = FRAMESIZE_VGA;
SaveAllFiles = false;
disabled = false;
FixedExposure = false;
namerawimage = "/sdcard/img_tmp/raw.jpg";
}
}
// auslesen der Kameraeinstellungen aus der config.ini
// wird beim Start aufgerufen
bool ClassFlowTakeImage::ReadParameter(FILE *pfile, string &aktparamgraph)
{
Camera.getSensorDatenToCCstatus(); // Kamera >>> CCstatus
ClassFlowTakeImage::ClassFlowTakeImage(std::vector<ClassFlow*>* lfc) : ClassFlowImage(lfc, TAG)
std::vector<string> splitted;
aktparamgraph = trim(aktparamgraph);
if (aktparamgraph.size() == 0)
{
if (!this->GetNextParagraph(pfile, aktparamgraph))
{
return false;
}
}
if (aktparamgraph.compare("[TakeImage]") != 0)
{
// Paragraph does not fit TakeImage
return false;
}
while (this->getNextLine(pfile, &aktparamgraph) && !this->isNewParagraph(aktparamgraph))
{
splitted = ZerlegeZeile(aktparamgraph);
if ((toUpper(splitted[0]) == "RAWIMAGESLOCATION") && (splitted.size() > 1))
{
imagesLocation = "/sdcard" + splitted[1];
isLogImage = true;
}
else if ((toUpper(splitted[0]) == "RAWIMAGESRETENTION") && (splitted.size() > 1))
{
this->imagesRetention = std::stod(splitted[1]);
}
else if ((toUpper(splitted[0]) == "SAVEALLFILES") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
{
CCstatus.SaveAllFiles = 1;
}
else
{
CCstatus.SaveAllFiles = 0;
}
}
else if ((toUpper(splitted[0]) == "WAITBEFORETAKINGPICTURE") && (splitted.size() > 1))
{
int _WaitBeforePicture = std::stoi(splitted[1]);
if (_WaitBeforePicture != 0)
{
CCstatus.WaitBeforePicture = _WaitBeforePicture;
}
else
{
CCstatus.WaitBeforePicture = 2;
}
}
else if ((toUpper(splitted[0]) == "CAMGAINCEILING") && (splitted.size() > 1))
{
std::string _ImageGainceiling = toUpper(splitted[1]);
if (_ImageGainceiling == "X4")
{
CCstatus.ImageGainceiling = GAINCEILING_4X;
}
else if (_ImageGainceiling == "X8")
{
CCstatus.ImageGainceiling = GAINCEILING_8X;
}
else if (_ImageGainceiling == "X16")
{
CCstatus.ImageGainceiling = GAINCEILING_16X;
}
else if (_ImageGainceiling == "X32")
{
CCstatus.ImageGainceiling = GAINCEILING_32X;
}
else if (_ImageGainceiling == "X64")
{
CCstatus.ImageGainceiling = GAINCEILING_64X;
}
else if (_ImageGainceiling == "X128")
{
CCstatus.ImageGainceiling = GAINCEILING_128X;
}
else
{
CCstatus.ImageGainceiling = GAINCEILING_2X;
}
}
else if ((toUpper(splitted[0]) == "CAMQUALITY") && (splitted.size() > 1))
{
int _ImageQuality = std::stoi(splitted[1]);
if ((_ImageQuality >= 0) && (_ImageQuality <= 63))
{
CCstatus.ImageQuality = _ImageQuality;
}
}
else if ((toUpper(splitted[0]) == "CAMBRIGHTNESS") && (splitted.size() > 1))
{
int _ImageBrightness = std::stoi(splitted[1]);
if ((_ImageBrightness >= -2) && (_ImageBrightness <= 2))
{
CCstatus.ImageBrightness = _ImageBrightness;
}
}
else if ((toUpper(splitted[0]) == "CAMCONTRAST") && (splitted.size() > 1))
{
int _ImageContrast = std::stoi(splitted[1]);
if ((_ImageContrast >= -2) && (_ImageContrast <= 2))
{
CCstatus.ImageContrast = _ImageContrast;
}
}
else if ((toUpper(splitted[0]) == "CAMSATURATION") && (splitted.size() > 1))
{
int _ImageSaturation = std::stoi(splitted[1]);
if ((_ImageSaturation >= -2) && (_ImageSaturation <= 2))
{
CCstatus.ImageSaturation = _ImageSaturation;
}
}
else if ((toUpper(splitted[0]) == "CAMSHARPNESS") && (splitted.size() > 1))
{
int _ImageSharpness = std::stoi(splitted[1]);
if ((_ImageSharpness >= -2) && (_ImageSharpness <= 2))
{
CCstatus.ImageSharpness = _ImageSharpness;
}
}
else if ((toUpper(splitted[0]) == "CAMAUTOSHARPNESS") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
{
CCstatus.ImageAutoSharpness = 1;
}
else
{
CCstatus.ImageAutoSharpness = 0;
}
}
else if ((toUpper(splitted[0]) == "CAMSPECIALEFFECT") && (splitted.size() > 1))
{
std::string _ImageSpecialEffect = toUpper(splitted[1]);
if (_ImageSpecialEffect == "NEGATIVE")
{
CCstatus.ImageSpecialEffect = 1;
}
else if (_ImageSpecialEffect == "GRAYSCALE")
{
CCstatus.ImageSpecialEffect = 2;
}
else if (_ImageSpecialEffect == "RED")
{
CCstatus.ImageSpecialEffect = 3;
}
else if (_ImageSpecialEffect == "GREEN")
{
CCstatus.ImageSpecialEffect = 4;
}
else if (_ImageSpecialEffect == "BLUE")
{
CCstatus.ImageSpecialEffect = 5;
}
else if (_ImageSpecialEffect == "RETRO")
{
CCstatus.ImageSpecialEffect = 6;
}
else
{
CCstatus.ImageSpecialEffect = 0;
}
}
else if ((toUpper(splitted[0]) == "CAMWBMODE") && (splitted.size() > 1))
{
std::string _ImageWbMode = toUpper(splitted[1]);
if (_ImageWbMode == "SUNNY")
{
CCstatus.ImageWbMode = 1;
}
else if (_ImageWbMode == "CLOUDY")
{
CCstatus.ImageWbMode = 2;
}
else if (_ImageWbMode == "OFFICE")
{
CCstatus.ImageWbMode = 3;
}
else if (_ImageWbMode == "HOME")
{
CCstatus.ImageWbMode = 4;
}
else
{
CCstatus.ImageWbMode = 0;
}
}
else if ((toUpper(splitted[0]) == "CAMAWB") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
{
CCstatus.ImageAwb = 1;
}
else
{
CCstatus.ImageAwb = 0;
}
}
else if ((toUpper(splitted[0]) == "CAMAWBGAIN") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
{
CCstatus.ImageAwbGain = 1;
}
else
{
CCstatus.ImageAwbGain = 0;
}
}
else if ((toUpper(splitted[0]) == "CAMAEC") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
{
CCstatus.ImageAec = 1;
}
else
{
CCstatus.ImageAec = 0;
}
}
else if ((toUpper(splitted[0]) == "CAMAEC2") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
{
CCstatus.ImageAec2 = 1;
}
else
{
CCstatus.ImageAec2 = 0;
}
}
else if ((toUpper(splitted[0]) == "CAMAELEVEL") && (splitted.size() > 1))
{
int _ImageAeLevel = std::stoi(splitted[1]);
if ((_ImageAeLevel >= -2) && (_ImageAeLevel <= 2))
{
CCstatus.ImageAeLevel = _ImageAeLevel;
}
}
else if ((toUpper(splitted[0]) == "CAMAECVALUE") && (splitted.size() > 1))
{
int _ImageAecValue = std::stoi(splitted[1]);
if ((_ImageAecValue >= 0) && (_ImageAecValue <= 1200))
{
CCstatus.ImageAecValue = _ImageAecValue;
}
}
else if ((toUpper(splitted[0]) == "CAMAGC") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
{
CCstatus.ImageAgc = 1;
}
else
{
CCstatus.ImageAgc = 0;
}
}
else if ((toUpper(splitted[0]) == "CAMAGCGAIN") && (splitted.size() > 1))
{
int _ImageAgcGain = std::stoi(splitted[1]);
if ((_ImageAgcGain >= 0) && (_ImageAgcGain <= 30))
{
CCstatus.ImageAgcGain = _ImageAgcGain;
}
}
else if ((toUpper(splitted[0]) == "CAMBPC") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
{
CCstatus.ImageBpc = 1;
}
else
{
CCstatus.ImageBpc = 0;
}
}
else if ((toUpper(splitted[0]) == "CAMWPC") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
{
CCstatus.ImageWpc = 1;
}
else
{
CCstatus.ImageWpc = 0;
}
}
else if ((toUpper(splitted[0]) == "CAMRAWGMA") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
{
CCstatus.ImageRawGma = 1;
}
else
{
CCstatus.ImageRawGma = 0;
}
}
else if ((toUpper(splitted[0]) == "CAMLENC") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
{
CCstatus.ImageLenc = 1;
}
else
{
CCstatus.ImageLenc = 0;
}
}
else if ((toUpper(splitted[0]) == "CAMHMIRROR") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
{
CCstatus.ImageHmirror = 1;
}
else
{
CCstatus.ImageHmirror = 0;
}
}
else if ((toUpper(splitted[0]) == "CAMVFLIP") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
{
CCstatus.ImageVflip = 1;
}
else
{
CCstatus.ImageVflip = 0;
}
}
else if ((toUpper(splitted[0]) == "CAMDCW") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
{
CCstatus.ImageDcw = 1;
}
else
{
CCstatus.ImageDcw = 0;
}
}
else if ((toUpper(splitted[0]) == "CAMZOOM") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
{
CCstatus.ImageZoomEnabled = 1;
}
else
{
CCstatus.ImageZoomEnabled = 0;
}
}
else if ((toUpper(splitted[0]) == "CAMZOOMOFFSETX") && (splitted.size() > 1))
{
CCstatus.ImageZoomOffsetX = std::stoi(splitted[1]);
}
else if ((toUpper(splitted[0]) == "CAMZOOMOFFSETY") && (splitted.size() > 1))
{
CCstatus.ImageZoomOffsetY = std::stoi(splitted[1]);
}
else if ((toUpper(splitted[0]) == "CAMZOOMSIZE") && (splitted.size() > 1))
{
int _ImageZoomSize = std::stoi(splitted[1]);
if (_ImageZoomSize >= 0)
{
CCstatus.ImageZoomSize = _ImageZoomSize;
}
}
else if ((toUpper(splitted[0]) == "LEDINTENSITY") && (splitted.size() > 1))
{
float ledintensity = std::stof(splitted[1]);
Camera.SetLEDIntensity(ledintensity);
}
else if ((toUpper(splitted[0]) == "DEMO") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
{
CCstatus.DemoMode = true;
Camera.useDemoMode();
}
else
{
CCstatus.DemoMode = false;
}
}
}
Camera.setSensorDatenFromCCstatus(); // CCstatus >>> Kamera
Camera.SetQualityZoomSize(CCstatus.ImageQuality, CCstatus.ImageFrameSize, CCstatus.ImageZoomEnabled, CCstatus.ImageZoomOffsetX, CCstatus.ImageZoomOffsetY, CCstatus.ImageZoomSize);
rawImage = new CImageBasis("rawImage");
rawImage->CreateEmptyImage(CCstatus.ImageWidth, CCstatus.ImageHeight, 3);
return true;
}
ClassFlowTakeImage::ClassFlowTakeImage(std::vector<ClassFlow *> *lfc) : ClassFlowImage(lfc, TAG)
{
imagesLocation = "/log/source";
imagesRetention = 5;
SetInitialParameter();
}
bool ClassFlowTakeImage::ReadParameter(FILE* pfile, string& aktparamgraph)
{
std::vector<string> splitted;
aktparamgraph = trim(aktparamgraph);
int _brightness = -100;
int _contrast = -100;
int _saturation = -100;
if (aktparamgraph.size() == 0)
if (!this->GetNextParagraph(pfile, aktparamgraph))
return false;
if (aktparamgraph.compare("[TakeImage]") != 0) // Paragraph does not fit TakeImage
return false;
while (this->getNextLine(pfile, &aktparamgraph) && !this->isNewParagraph(aktparamgraph))
{
splitted = ZerlegeZeile(aktparamgraph);
if ((toUpper(splitted[0]) == "RAWIMAGESLOCATION") && (splitted.size() > 1))
{
imagesLocation = "/sdcard" + splitted[1];
isLogImage = true;
}
if ((toUpper(splitted[0]) == "IMAGEQUALITY") && (splitted.size() > 1))
ImageQuality = std::stod(splitted[1]);
if ((toUpper(splitted[0]) == "IMAGESIZE") && (splitted.size() > 1))
{
ImageSize = Camera.TextToFramesize(splitted[1].c_str());
isImageSize = true;
}
if ((toUpper(splitted[0]) == "SAVEALLFILES") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
SaveAllFiles = true;
}
if ((toUpper(splitted[0]) == "WAITBEFORETAKINGPICTURE") && (splitted.size() > 1))
{
waitbeforepicture = stoi(splitted[1]);
}
if ((toUpper(splitted[0]) == "RAWIMAGESRETENTION") && (splitted.size() > 1))
{
this->imagesRetention = std::stoi(splitted[1]);
}
if ((toUpper(splitted[0]) == "BRIGHTNESS") && (splitted.size() > 1))
{
_brightness = stoi(splitted[1]);
}
if ((toUpper(splitted[0]) == "CONTRAST") && (splitted.size() > 1))
{
_contrast = stoi(splitted[1]);
}
if ((toUpper(splitted[0]) == "SATURATION") && (splitted.size() > 1))
{
_saturation = stoi(splitted[1]);
}
if ((toUpper(splitted[0]) == "FIXEDEXPOSURE") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
FixedExposure = true;
}
if ((toUpper(splitted[0]) == "LEDINTENSITY") && (splitted.size() > 1))
{
float ledintensity = stof(splitted[1]);
ledintensity = min((float) 100, ledintensity);
ledintensity = max((float) 0, ledintensity);
Camera.SetLEDIntensity(ledintensity);
}
if ((toUpper(splitted[0]) == "DEMO") && (splitted.size() > 1))
{
if (toUpper(splitted[1]) == "TRUE")
Camera.useDemoMode();
}
}
Camera.SetBrightnessContrastSaturation(_brightness, _contrast, _saturation);
Camera.SetQualitySize(ImageQuality, ImageSize);
image_width = Camera.image_width;
image_height = Camera.image_height;
rawImage = new CImageBasis("rawImage");
rawImage->CreateEmptyImage(image_width, image_height, 3);
waitbeforepicture_store = waitbeforepicture;
if (FixedExposure && (waitbeforepicture > 0))
{
// ESP_LOGD(TAG, "Fixed Exposure enabled!");
int flash_duration = (int) (waitbeforepicture * 1000);
Camera.EnableAutoExposure(flash_duration);
waitbeforepicture = 0.2;
// flash_duration = (int) (waitbeforepicture * 1000);
// takePictureWithFlash(flash_duration);
// rawImage->SaveToFile("/sdcard/init2.jpg");
}
return true;
}
string ClassFlowTakeImage::getHTMLSingleStep(string host)
{
string result;
@@ -181,74 +517,78 @@ string ClassFlowTakeImage::getHTMLSingleStep(string host)
return result;
}
// wird bei jeder Auswertrunde aufgerufen
bool ClassFlowTakeImage::doFlow(string zwtime)
{
psram_init_shared_memory_for_take_image_step();
string logPath = CreateLogFolder(zwtime);
int flash_duration = (int) (waitbeforepicture * 1000);
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("ClassFlowTakeImage::doFlow - Before takePictureWithFlash");
#endif
int flash_duration = (int)(CCstatus.WaitBeforePicture * 1000);
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("ClassFlowTakeImage::doFlow - Before takePictureWithFlash");
#endif
#ifdef WIFITURNOFF
esp_wifi_stop(); // to save power usage and
#endif
#ifdef WIFITURNOFF
esp_wifi_stop(); // to save power usage and
#endif
// wenn die Kameraeinstellungen durch Erstellen eines neuen Referenzbildes verändert wurden, müssen sie neu gesetzt werden
if (CFstatus.changedCameraSettings)
{
Camera.setSensorDatenFromCCstatus(); // CCstatus >>> Kamera
Camera.SetQualityZoomSize(CCstatus.ImageQuality, CCstatus.ImageFrameSize, CCstatus.ImageZoomEnabled, CCstatus.ImageZoomOffsetX, CCstatus.ImageZoomOffsetY, CCstatus.ImageZoomSize);
CFstatus.changedCameraSettings = false;
}
takePictureWithFlash(flash_duration);
#ifdef WIFITURNOFF
esp_wifi_start();
#endif
#ifdef WIFITURNOFF
esp_wifi_start();
#endif
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("ClassFlowTakeImage::doFlow - After takePictureWithFlash");
#endif
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("ClassFlowTakeImage::doFlow - After takePictureWithFlash");
#endif
LogImage(logPath, "raw", NULL, NULL, zwtime, rawImage);
RemoveOldLogs();
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("ClassFlowTakeImage::doFlow - After RemoveOldLogs");
#endif
#ifdef DEBUG_DETAIL_ON
LogFile.WriteHeapInfo("ClassFlowTakeImage::doFlow - After RemoveOldLogs");
#endif
psram_deinit_shared_memory_for_take_image_step();
return true;
}
esp_err_t ClassFlowTakeImage::SendRawJPG(httpd_req_t *req)
{
int flash_duration = (int) (waitbeforepicture * 1000);
int flash_duration = (int)(CCstatus.WaitBeforePicture * 1000);
time(&TimeImageTaken);
localtime(&TimeImageTaken);
return Camera.CaptureToHTTP(req, flash_duration);
}
ImageData* ClassFlowTakeImage::SendRawImage()
ImageData *ClassFlowTakeImage::SendRawImage(void)
{
CImageBasis *zw = new CImageBasis("SendRawImage", rawImage);
ImageData *id;
int flash_duration = (int) (waitbeforepicture * 1000);
int flash_duration = (int)(CCstatus.WaitBeforePicture * 1000);
Camera.CaptureToBasisImage(zw, flash_duration);
time(&TimeImageTaken);
localtime(&TimeImageTaken);
id = zw->writeToMemoryAsJPG();
id = zw->writeToMemoryAsJPG();
delete zw;
return id;
return id;
}
time_t ClassFlowTakeImage::getTimeImageTaken()
time_t ClassFlowTakeImage::getTimeImageTaken(void)
{
return TimeImageTaken;
}
@@ -257,4 +597,3 @@ ClassFlowTakeImage::~ClassFlowTakeImage(void)
{
delete rawImage;
}

View File

@@ -9,47 +9,32 @@
#include <string>
class ClassFlowTakeImage :
public ClassFlowImage
class ClassFlowTakeImage : public ClassFlowImage
{
protected:
float waitbeforepicture;
float waitbeforepicture_store;
framesize_t ImageSize;
bool isImageSize;
int ImageQuality;
time_t TimeImageTaken;
string namerawimage;
int image_height, image_width;
bool SaveAllFiles;
bool FixedExposure;
void CopyFile(string input, string output);
esp_err_t camera_capture();
esp_err_t camera_capture(void);
void takePictureWithFlash(int flash_duration);
void SetInitialParameter(void);
void SetInitialParameter(void);
public:
CImageBasis *rawImage;
ClassFlowTakeImage(std::vector<ClassFlow*>* lfc);
ClassFlowTakeImage(std::vector<ClassFlow *> *lfc);
bool ReadParameter(FILE* pfile, string& aktparamgraph);
bool ReadParameter(FILE *pfile, string &aktparamgraph);
bool doFlow(string time);
string getHTMLSingleStep(string host);
time_t getTimeImageTaken();
string name(){return "ClassFlowTakeImage";};
time_t getTimeImageTaken(void);
string name() { return "ClassFlowTakeImage"; };
ImageData* SendRawImage();
ImageData *SendRawImage(void);
esp_err_t SendRawJPG(httpd_req_t *req);
~ClassFlowTakeImage(void);
};
#endif //CLASSFFLOWTAKEIMAGE_H
#endif // CLASSFFLOWTAKEIMAGE_H

File diff suppressed because it is too large Load Diff

View File

@@ -10,25 +10,78 @@
#include "CImageBasis.h"
#include "ClassFlowControll.h"
typedef struct
{
framesize_t ImageFrameSize = FRAMESIZE_VGA; // 0 - 10
gainceiling_t ImageGainceiling; // Image gain (GAINCEILING_x2, x4, x8, x16, x32, x64 or x128)
int ImageQuality; // 0 - 63
int ImageBrightness; // (-2 to 2) - set brightness
int ImageContrast; //-2 - 2
int ImageSaturation; //-2 - 2
int ImageSharpness; //-2 - 2
bool ImageAutoSharpness;
int ImageSpecialEffect; // 0 - 6
int ImageWbMode; // 0 to 4 - if awb_gain enabled (0 - Auto, 1 - Sunny, 2 - Cloudy, 3 - Office, 4 - Home)
int ImageAwb; // white balance enable (0 or 1)
int ImageAwbGain; // Auto White Balance enable (0 or 1)
int ImageAec; // auto exposure off (1 or 0)
int ImageAec2; // automatic exposure sensor (0 or 1)
int ImageAeLevel; // auto exposure levels (-2 to 2)
int ImageAecValue; // set exposure manually (0-1200)
int ImageAgc; // auto gain off (1 or 0)
int ImageAgcGain; // set gain manually (0 - 30)
int ImageBpc; // black pixel correction
int ImageWpc; // white pixel correction
int ImageRawGma; // (1 or 0)
int ImageLenc; // lens correction (1 or 0)
int ImageHmirror; // (0 or 1) flip horizontally
int ImageVflip; // Invert image (0 or 1)
int ImageDcw; // downsize enable (1 or 0)
int ImageWidth;
int ImageHeight;
int ImageLedIntensity;
bool ImageZoomEnabled;
int ImageZoomMode;
int ImageZoomOffsetX;
int ImageZoomOffsetY;
int ImageZoomSize;
int WaitBeforePicture;
bool isImageSize;
bool CameraInitSuccessful;
bool changedCameraSettings;
bool DemoMode;
bool SaveAllFiles;
} camera_flow_config_temp_t;
extern camera_flow_config_temp_t CFstatus;
extern ClassFlowControll flowctrl;
esp_err_t setCCstatusToCFstatus(void); // CCstatus >>> CFstatus
esp_err_t setCFstatusToCCstatus(void); // CFstatus >>> CCstatus
esp_err_t setCFstatusToCam(void); // CFstatus >>> Kamera
void register_server_main_flow_task_uri(httpd_handle_t server);
void CheckIsPlannedReboot();
bool getIsPlannedReboot();
void CheckIsPlannedReboot(void);
bool getIsPlannedReboot(void);
void InitializeFlowTask();
void DeleteMainFlowTask();
bool isSetupModusActive();
void InitializeFlowTask(void);
void DeleteMainFlowTask(void);
bool isSetupModusActive(void);
int getCountFlowRounds();
int getCountFlowRounds(void);
#ifdef ENABLE_MQTT
esp_err_t MQTTCtrlFlowStart(std::string _topic);
#endif //ENABLE_MQTT
#endif // ENABLE_MQTT
esp_err_t GetRawJPG(httpd_req_t *req);
esp_err_t GetJPG(std::string _filename, httpd_req_t *req);
#endif //MAINFLOWCONTROL_H
#endif // MAINFLOWCONTROL_H