mirror of
https://github.com/jomjol/AI-on-the-edge-device.git
synced 2025-12-07 20:16:55 +03:00
removed esp-nn
This commit is contained in:
57
code/components/esp-nn/.gitignore
vendored
57
code/components/esp-nn/.gitignore
vendored
@@ -1,57 +0,0 @@
|
||||
.config
|
||||
*.o
|
||||
*.i
|
||||
*.s
|
||||
*.orig
|
||||
*.pyc
|
||||
|
||||
# gtags
|
||||
GTAGS
|
||||
GRTAGS
|
||||
GPATH
|
||||
|
||||
# emacs
|
||||
.dir-locals.el
|
||||
|
||||
# emacs temp file suffixes
|
||||
*~
|
||||
.#*
|
||||
\#*#
|
||||
|
||||
# eclipse setting
|
||||
.settings
|
||||
|
||||
# MacOS directory files
|
||||
.DS_Store
|
||||
|
||||
# Example project files
|
||||
examples/**/sdkconfig
|
||||
examples/**/sdkconfig.old
|
||||
examples/**/build
|
||||
|
||||
# Test app files
|
||||
test_app/build
|
||||
test_app/sdkconfig
|
||||
test_app/sdkconfig.old
|
||||
|
||||
# Doc build artifacts
|
||||
docs/_build/
|
||||
docs/doxygen-warning-log.txt
|
||||
docs/sphinx-warning-log.txt
|
||||
docs/sphinx-warning-log-sanitized.txt
|
||||
docs/xml/
|
||||
docs/xml_in/
|
||||
docs/man/
|
||||
docs/doxygen_sqlite3.db
|
||||
|
||||
TEST_LOGS
|
||||
|
||||
|
||||
# gcov coverage reports
|
||||
*.gcda
|
||||
*.gcno
|
||||
coverage.info
|
||||
coverage_report/
|
||||
|
||||
# VS Code Settings
|
||||
.vscode/
|
||||
@@ -1,55 +0,0 @@
|
||||
stages:
|
||||
- build
|
||||
|
||||
variables:
|
||||
BATCH_BUILD: "1"
|
||||
V: "0"
|
||||
MAKEFLAGS: "-j8 --no-keep-going"
|
||||
IDF_PATH: "$CI_PROJECT_DIR/esp-idf"
|
||||
LOG_PATH: "$CI_PROJECT_DIR"
|
||||
|
||||
.set_git_config: &set_git_config
|
||||
# Set git config
|
||||
- git config user.email "test@espressif.com"
|
||||
- git config user.name "Espressif"
|
||||
|
||||
.add_ssh_key: &add_ssh_key
|
||||
# Add gitlab ssh key
|
||||
- mkdir -p ~/.ssh
|
||||
- chmod 700 ~/.ssh
|
||||
- echo -n $GITLAB_KEY > ~/.ssh/id_rsa_base64
|
||||
- base64 --decode --ignore-garbage ~/.ssh/id_rsa_base64 > ~/.ssh/id_rsa
|
||||
- chmod 600 ~/.ssh/id_rsa
|
||||
- echo -e "Host gitlab.espressif.cn\n\tStrictHostKeyChecking no\n" >> ~/.ssh/config
|
||||
|
||||
before_script:
|
||||
# Add gitlab ssh key
|
||||
- *add_ssh_key
|
||||
# Set git config
|
||||
- *set_git_config
|
||||
|
||||
.build_esp32s3: &build_esp32s3
|
||||
- idf.py set-target esp32s3 build
|
||||
|
||||
.build_esp32: &build_esp32
|
||||
- idf.py set-target esp32 build
|
||||
|
||||
build_demo:
|
||||
stage: build
|
||||
image: $CI_DOCKER_REGISTRY/esp32-ci-env:esp-nn
|
||||
tags:
|
||||
- build
|
||||
script:
|
||||
# Clone IDF
|
||||
- git clone --recursive --single-branch -b release/v4.4 --reference-if-able /local_references/gitlab/ https://gitlab-ci-token:${BOT_TOKEN}@gitlab.espressif.cn:6688/espressif/esp-idf.git
|
||||
- cd esp-idf
|
||||
- ./install.sh
|
||||
- . ./export.sh
|
||||
- cd ..
|
||||
# Build examples now
|
||||
- cd test_app
|
||||
# Build esp32s3
|
||||
- *build_esp32s3
|
||||
# Build esp32
|
||||
- *build_esp32
|
||||
- cd -
|
||||
@@ -1,50 +0,0 @@
|
||||
idf_build_get_property(idf_target IDF_TARGET)
|
||||
|
||||
set(c_srcs
|
||||
"src/activation_functions/esp_nn_relu_ansi.c"
|
||||
"src/basic_math/esp_nn_add_ansi.c"
|
||||
"src/basic_math/esp_nn_mul_ansi.c"
|
||||
"src/convolution/esp_nn_conv_ansi.c"
|
||||
"src/convolution/esp_nn_conv_opt.c"
|
||||
"src/convolution/esp_nn_depthwise_conv_ansi.c"
|
||||
"src/convolution/esp_nn_depthwise_conv_opt.c"
|
||||
"src/fully_connected/esp_nn_fully_connected_ansi.c"
|
||||
"src/softmax/esp_nn_softmax_ansi.c"
|
||||
"src/softmax/esp_nn_softmax_opt.c"
|
||||
"src/pooling/esp_nn_avg_pool_ansi.c"
|
||||
"src/pooling/esp_nn_max_pool_ansi.c")
|
||||
|
||||
if(CONFIG_IDF_TARGET_ESP32S3)
|
||||
set(s3_srcs
|
||||
"src/common/esp_nn_common_functions_esp32s3.S"
|
||||
"src/common/esp_nn_multiply_by_quantized_mult_esp32s3.S"
|
||||
"src/common/esp_nn_multiply_by_quantized_mult_ver1_esp32s3.S"
|
||||
"src/activation_functions/esp_nn_relu_s8_esp32s3.S"
|
||||
"src/basic_math/esp_nn_add_s8_esp32s3.S"
|
||||
"src/basic_math/esp_nn_mul_s8_esp32s3.S"
|
||||
"src/convolution/esp_nn_conv_esp32s3.c"
|
||||
"src/convolution/esp_nn_depthwise_conv_s8_esp32s3.c"
|
||||
"src/convolution/esp_nn_conv_s16_mult8_esp32s3.S"
|
||||
"src/convolution/esp_nn_conv_s8_mult8_1x1_esp32s3.S"
|
||||
"src/convolution/esp_nn_conv_s16_mult4_1x1_esp32s3.S"
|
||||
"src/convolution/esp_nn_depthwise_conv_s8_mult1_3x3_padded_esp32s3.S"
|
||||
"src/convolution/esp_nn_depthwise_conv_s16_mult1_esp32s3.S"
|
||||
"src/convolution/esp_nn_depthwise_conv_s16_mult1_3x3_esp32s3.S"
|
||||
"src/convolution/esp_nn_depthwise_conv_s16_mult1_3x3_no_pad_esp32s3.S"
|
||||
"src/convolution/esp_nn_depthwise_conv_s16_mult8_3x3_esp32s3.S"
|
||||
"src/convolution/esp_nn_depthwise_conv_s16_mult4_esp32s3.S"
|
||||
"src/convolution/esp_nn_depthwise_conv_s16_mult8_esp32s3.S"
|
||||
"src/fully_connected/esp_nn_fully_connected_s8_esp32s3.S"
|
||||
"src/pooling/esp_nn_max_pool_s8_esp32s3.S"
|
||||
"src/pooling/esp_nn_avg_pool_s8_esp32s3.S")
|
||||
endif()
|
||||
|
||||
idf_component_register(SRCS "${c_srcs}"
|
||||
"${s3_srcs}"
|
||||
INCLUDE_DIRS "include" "src/common")
|
||||
|
||||
if(CONFIG_IDF_TARGET_ESP32S3)
|
||||
target_compile_options(${COMPONENT_LIB} PRIVATE -mlongcalls -fno-unroll-loops -O2 -Wno-unused-function)
|
||||
else()
|
||||
target_compile_options(${COMPONENT_LIB} PRIVATE -Wno-unused-function)
|
||||
endif()
|
||||
@@ -1,29 +0,0 @@
|
||||
menu "ESP-NN"
|
||||
|
||||
choice NN_OPTIMIZATIONS
|
||||
bool "Optimization for nn functions"
|
||||
default NN_OPTIMIZED
|
||||
help
|
||||
Use ANSI-C versions for verification and debug purpose.
|
||||
Optimisations are automatically picked up for a chipset.
|
||||
For ESP32-S3, assembly optimisations are selected.
|
||||
For other platforms(viz., ESP32, ESP32-C3), generic optimisations are used.
|
||||
|
||||
config NN_ANSI_C
|
||||
bool "ANSI C"
|
||||
help
|
||||
ANSI C versions for verification and debug purposes.
|
||||
config NN_OPTIMIZED
|
||||
bool "Optimized versions"
|
||||
help
|
||||
Optimisations are automatically picked up for a chipset.
|
||||
For ESP32-S3, assembly optimisations are selected.
|
||||
For other platforms(viz., ESP32, ESP32-C3), generic optimisations are used.
|
||||
endchoice
|
||||
|
||||
config NN_OPTIMIZATIONS
|
||||
int
|
||||
default 0 if NN_ANSI_C
|
||||
default 1 if NN_OPTIMIZED
|
||||
|
||||
endmenu
|
||||
@@ -1,202 +0,0 @@
|
||||
|
||||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
APPENDIX: How to apply the Apache License to your work.
|
||||
|
||||
To apply the Apache License to your work, attach the following
|
||||
boilerplate notice, with the fields enclosed by brackets "[]"
|
||||
replaced with your own identifying information. (Don't include
|
||||
the brackets!) The text should be enclosed in the appropriate
|
||||
comment syntax for the file format. We also recommend that a
|
||||
file or class name and description of purpose be included on the
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright [yyyy] [name of copyright owner]
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
@@ -1,55 +0,0 @@
|
||||
# ESP-NN
|
||||
|
||||
The library contains optimised NN (Neural Network) functions for various Espressif chipsets.
|
||||
|
||||
* Supported platforms:
|
||||
* TensorFlow Lite Micro (TFLite Micro). Repo can be found [here](https://github.com/espressif/tflite-micro-esp-examples)
|
||||
|
||||
* Supported ESP chipsets include:
|
||||
* ESP32-S3 (Assembly versions optimised to benefit from vector instructions of ESP32-S3)
|
||||
* ESP32 (Generic optimisations)
|
||||
* ESP32-C3 (Generic optimisations)
|
||||
|
||||
## Performance
|
||||
|
||||
### Kernelwise performance for s8 versions:
|
||||
|
||||
* Kernelwise performance on ESP32-S3 chip
|
||||
* Numbers are ticks taken for kernel to execute
|
||||
* Chip config: 240MHz, SPI: QPI 80MHz, Data cache: 64KB
|
||||
|
||||
| Function | ANSI C | ESP32-S3 Opt | Opt Ratio | Data info | Memory |
|
||||
| ----------------| --------|---------|---------|-------------|-----------|
|
||||
| elementwise_add | 320397 | 87119 | 3.68 | size = 1615 | External |
|
||||
| elementwise_mul | 125958 | 44239 | 2.85 | size = 1615 | External |
|
||||
| convolution | 4663012 | 428675 | 10.88 | input(10,10), filter(64x1x1x64) | External |
|
||||
| convolution | 301014 | 32433 | 9.28 | input(8,8), filter(16x1x1x16) | External |
|
||||
| convolution | 2115418 | 1020923 | 2.07 | input(10,10), filter(64x3x3x3) | External |
|
||||
| depthwise conv | 1190062 | 203278 | 5.85 | input (18, 18), pad(0,0), stride(1,1) filter: 1x3x3x16 | External |
|
||||
| depthwise conv | 837072 | 182335 | 4.59 | input (12, 12), pad(1,1), stride(1,1) filter: 8x5x5x4 | External |
|
||||
| max pool | 485714 | 76747 | 6.33 | input(16,16), filter (1x3x3x16) | Internal |
|
||||
| avg pool | 541462 | 160580 | 3.37 | input(16,16), filter (1x3x3x16) | Internal |
|
||||
| fully connected | 15853 | 9547 | 1.66 | len: 265, ch = 3 | Internal |
|
||||
| prelu (relu6) | 19472 | 2734 | 7.12 | size, 1615 | Internal |
|
||||
|
||||
|
||||
## Configuration
|
||||
|
||||
* To configure, please use `idf.py menuconfig` and under `ESP-NN` select `NN_OPTIMIZATIONS`
|
||||
* There are two options presented:
|
||||
* Optimized versions
|
||||
* ANSI C
|
||||
|
||||
* Default selection is for `Optimized versions`. For ESP32-S3, assembly versions are automatically selected, whereas for other chipsets (viz., ESP32, ESP32-C3), generic optimisations are selected.
|
||||
* For debugging purposes, you may want to select `ANSI C` reference versions.
|
||||
|
||||
|
||||
## Contributing
|
||||
|
||||
If you encounter an issue with ESP-NN, or wish to submit a feature request, please use the Issues section on the Github.
|
||||
|
||||
For general questions related to this library, please use the esp32.com forum.
|
||||
|
||||
## Copyrights and License
|
||||
|
||||
All original source code in this repository is Copyright (C) 2020-2021 Espressif Systems. This source code is licensed under the Apache License 2.0 as described in the file LICENSE.
|
||||
@@ -1,46 +0,0 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#if defined(CONFIG_NN_OPTIMIZED)
|
||||
// select apt optimisations
|
||||
#ifdef CONFIG_IDF_TARGET_ESP32S3
|
||||
#define ARCH_ESP32_S3 1
|
||||
#endif
|
||||
#ifdef CONFIG_IDF_TARGET_ESP32
|
||||
#define ARCH_ESP32 1
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/* reference kernels included by default */
|
||||
#include "esp_nn_ansi_headers.h"
|
||||
|
||||
#if defined(CONFIG_NN_OPTIMIZED)
|
||||
#if defined(ARCH_ESP32_S3)
|
||||
#include "esp_nn_esp32s3.h"
|
||||
#else // for other platforms use generic optimisations
|
||||
#include "esp_nn_generic_opt.h"
|
||||
#endif // #if defined(ARCH_ESP32_S3)
|
||||
#else
|
||||
#include "esp_nn_ansi_c.h"
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
@@ -1,47 +0,0 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
/**
|
||||
* @file Header definitions to include for ANSI C versions.
|
||||
* These are just typedefs to pick up ANSI versions.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "esp_nn_defs.h"
|
||||
#include "esp_nn_ansi_headers.h"
|
||||
|
||||
#define esp_nn_add_elementwise_s8 esp_nn_add_elementwise_s8_ansi
|
||||
#define esp_nn_mul_elementwise_s8 esp_nn_mul_elementwise_s8_ansi
|
||||
|
||||
#define esp_nn_depthwise_conv_s8 esp_nn_depthwise_conv_s8_ansi
|
||||
|
||||
#define esp_nn_conv_s8 esp_nn_conv_s8_ansi
|
||||
|
||||
#define esp_nn_get_conv_scratch_size esp_nn_get_conv_scratch_size_ansi
|
||||
#define esp_nn_set_conv_scratch_buf esp_nn_set_conv_scratch_buf_ansi
|
||||
|
||||
#define esp_nn_get_depthwise_conv_scratch_size esp_nn_get_depthwise_conv_scratch_size_ansi
|
||||
#define esp_nn_set_depthwise_conv_scratch_buf esp_nn_set_depthwise_conv_scratch_buf_ansi
|
||||
|
||||
#define esp_nn_relu6_s8 esp_nn_relu6_s8_ansi
|
||||
|
||||
#define esp_nn_avg_pool_s8 esp_nn_avg_pool_s8_ansi
|
||||
#define esp_nn_max_pool_s8 esp_nn_max_pool_s8_ansi
|
||||
|
||||
#define esp_nn_fully_connected_s8 esp_nn_fully_connected_s8_ansi
|
||||
|
||||
#define esp_nn_get_softmax_scratch_size esp_nn_get_softmax_scratch_size_ansi
|
||||
#define esp_nn_set_softmax_scratch_buf esp_nn_set_softmax_scratch_buf_ansi
|
||||
#define esp_nn_softmax_s8 esp_nn_softmax_s8_ansi
|
||||
@@ -1,309 +0,0 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
/**
|
||||
* @file Header definitions to include for esp_nn reference functions
|
||||
*/
|
||||
|
||||
#include "esp_nn_defs.h"
|
||||
/************************** Basic math functions ****************************/
|
||||
|
||||
/**
|
||||
* @brief elementwise addition
|
||||
*
|
||||
* @note inputs type: int8_t, output: int8_t
|
||||
* input offsets: although int32_t, they are contained in 8 bits [-128, 127]
|
||||
*
|
||||
* shift values are expected to be <= 0
|
||||
*/
|
||||
void esp_nn_add_elementwise_s8_ansi(const int8_t *input1_data,
|
||||
const int8_t *input2_data,
|
||||
const int32_t input1_offset,
|
||||
const int32_t input2_offset,
|
||||
const int32_t input1_mult,
|
||||
const int32_t input2_mult,
|
||||
const int32_t input1_shift,
|
||||
const int32_t input2_shift,
|
||||
const int32_t left_shift,
|
||||
int8_t *output,
|
||||
const int32_t out_offset,
|
||||
const int32_t out_mult,
|
||||
const int32_t out_shift,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max,
|
||||
const int32_t size);
|
||||
/**
|
||||
* @brief elementwise multiplication
|
||||
*
|
||||
* @note inputs type: int8_t, output: int8_t
|
||||
* input offsets: although int32_t, they are contained in 8 bits [-128, 127]
|
||||
*
|
||||
* output shift is expected to be <= 0
|
||||
*/
|
||||
void esp_nn_mul_elementwise_s8_ansi(const int8_t *input1_data,
|
||||
const int8_t *input2_data,
|
||||
const int32_t input1_offset,
|
||||
const int32_t input2_offset,
|
||||
int8_t *output,
|
||||
const int32_t out_offset,
|
||||
const int32_t out_mult,
|
||||
const int32_t out_shift,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max,
|
||||
const int32_t size);
|
||||
|
||||
|
||||
/************************** Convolution functions *****************************/
|
||||
|
||||
/**
|
||||
* @brief depthwise convolution per channel
|
||||
*
|
||||
* @note inputs type: int8_t, output: int8_t
|
||||
* Version used in tflite is per channel.
|
||||
* This version follows the same footsprints.
|
||||
* Meaning, it has per out_channel shift and multiplier for
|
||||
* requantization
|
||||
*
|
||||
* optimization notes: Though input_offset is int32 type,
|
||||
* offset values are contained in 8 bits [-128, 127]
|
||||
*/
|
||||
void esp_nn_depthwise_conv_s8_ansi(const data_dims_t *input_dims,
|
||||
const int8_t *input_data,
|
||||
const data_dims_t *filter_dims,
|
||||
const int8_t *filter_data,
|
||||
const int32_t *bias,
|
||||
const data_dims_t *output_dims,
|
||||
int8_t *out_data,
|
||||
const dw_conv_params_t *conv_params,
|
||||
const quant_data_t *quant_data);
|
||||
|
||||
/**
|
||||
* @brief 2d-convolution channelwise
|
||||
*
|
||||
* @note operation: result += (input + offset) * filter
|
||||
*
|
||||
* inputs type: int8_t, output: int8_t
|
||||
* input offsets: although int32_t, they are contained in 8 bits [-128, 127]
|
||||
*/
|
||||
void esp_nn_conv_s8_ansi(const data_dims_t *input_dims,
|
||||
const int8_t *input_data,
|
||||
const data_dims_t *filter_dims,
|
||||
const int8_t *filter_data,
|
||||
const int32_t *bias,
|
||||
const data_dims_t *output_dims,
|
||||
int8_t *out_data,
|
||||
const conv_params_t *conv_params,
|
||||
const quant_data_t *quant_data);
|
||||
|
||||
int esp_nn_get_conv_scratch_size_ansi(const data_dims_t *input_dims,
|
||||
const data_dims_t *filter_dims,
|
||||
const data_dims_t *output_dims,
|
||||
const conv_params_t *conv_params);
|
||||
void esp_nn_set_conv_scratch_buf_ansi(const void *buf);
|
||||
|
||||
int esp_nn_get_depthwise_conv_scratch_size_ansi(const data_dims_t *input_dims,
|
||||
const data_dims_t *filter_dims,
|
||||
const data_dims_t *output_dims,
|
||||
const dw_conv_params_t *conv_params);
|
||||
void esp_nn_set_depthwise_conv_scratch_buf_ansi(const void *buf);
|
||||
|
||||
/************************** Activation functions *****************************/
|
||||
|
||||
/**
|
||||
* @brief relu6
|
||||
*
|
||||
* @note inout: int8_t
|
||||
*/
|
||||
void esp_nn_relu6_s8_ansi(int8_t *data, uint16_t size);
|
||||
|
||||
/************************** Pooling functions *****************************/
|
||||
|
||||
|
||||
/**
|
||||
* @brief max_pool
|
||||
*
|
||||
* @note inputs type: int8_t, output: int8_t
|
||||
* input offsets: although int32_t, they are contained in 8 bits [-128, 127]
|
||||
*/
|
||||
void esp_nn_max_pool_s8_ansi(const int8_t *input,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
int8_t *output,
|
||||
const uint16_t output_wd,
|
||||
const uint16_t output_ht,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht,
|
||||
const uint16_t pad_wd,
|
||||
const uint16_t pad_ht,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max,
|
||||
const uint16_t channels);
|
||||
|
||||
/**
|
||||
* @brief avg_pool
|
||||
*
|
||||
* @note inputs type: int8_t, output: int8_t
|
||||
* input offsets: although int32_t, they are contained in 8 bits [-128, 127]
|
||||
*/
|
||||
void esp_nn_avg_pool_s8_ansi(const int8_t *input,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
int8_t *output,
|
||||
const uint16_t output_wd,
|
||||
const uint16_t output_ht,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht,
|
||||
const uint16_t pad_wd,
|
||||
const uint16_t pad_ht,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max,
|
||||
const uint16_t channels);
|
||||
|
||||
|
||||
/************************** Fully connected functions ***********************/
|
||||
|
||||
/**
|
||||
* @brief fully connected
|
||||
*
|
||||
* @note inputs type: int8_t, output: int8_t
|
||||
* input offsets: although int32_t, they are contained in 8 bits [-128, 127]
|
||||
*/
|
||||
void esp_nn_fully_connected_s8_ansi(const int8_t *input_data,
|
||||
const int32_t input_offset,
|
||||
const uint16_t row_len,
|
||||
const int8_t *filter_data,
|
||||
const int32_t filter_offset,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_channels,
|
||||
const int32_t out_offset,
|
||||
const int32_t out_shift,
|
||||
const int32_t out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max);
|
||||
|
||||
/**
|
||||
* @brief Get scratch buffer size needed by softmax function
|
||||
*
|
||||
* @param width
|
||||
* @param height
|
||||
* @return size in bytes
|
||||
*
|
||||
* @note buffer must be 4 byte aligned
|
||||
*/
|
||||
int32_t esp_nn_get_softmax_scratch_size_ansi(const int32_t width, const int32_t height);
|
||||
|
||||
/* ANSI C function to be hooked up when optimised version needed */
|
||||
int32_t esp_nn_get_softmax_scratch_size_opt(const int32_t width, const int32_t height);
|
||||
|
||||
/**
|
||||
* @brief Set scratch buffer to be used by softmax function
|
||||
*
|
||||
* @param buffer this can be NULL if one needs to unset it
|
||||
* must be aligned to 4 bytes
|
||||
*/
|
||||
void esp_nn_set_softmax_scratch_buf_ansi(void *buffer);
|
||||
|
||||
/**
|
||||
* @brief reference softmax function
|
||||
*
|
||||
* @note inputs type: int8_t, output: int8_t
|
||||
*/
|
||||
void esp_nn_softmax_s8_ansi(const int8_t *input_data,
|
||||
const int32_t height,
|
||||
const int32_t width,
|
||||
const int32_t mult,
|
||||
const int32_t shift,
|
||||
const int32_t diff_min,
|
||||
int8_t *output_data);
|
||||
|
||||
|
||||
//////////////////////////// Generic optimisations /////////////////////////////
|
||||
|
||||
/************************** Convolution functions *****************************/
|
||||
|
||||
/**
|
||||
* @brief 2d-convolution channelwise optimized version
|
||||
*
|
||||
* @note operation: result += (input + offset) * filter
|
||||
*
|
||||
* inputs type: int8_t, output: int8_t
|
||||
* input offsets: although int32_t, they are contained in 8 bits [-128, 127]
|
||||
*/
|
||||
void esp_nn_conv_s8_opt(const data_dims_t *input_dims,
|
||||
const int8_t *input_data,
|
||||
const data_dims_t *filter_dims,
|
||||
const int8_t *filter_data,
|
||||
const int32_t *bias,
|
||||
const data_dims_t *output_dims,
|
||||
int8_t *out_data,
|
||||
const conv_params_t *conv_params,
|
||||
const quant_data_t *quant_data);
|
||||
|
||||
/**
|
||||
* @brief depthwise convolution per channel optimized version
|
||||
*
|
||||
* @note inputs type: int8_t, output: int8_t
|
||||
* Version used in tflite is per channel.
|
||||
* This version follows the same footsprints.
|
||||
* Meaning, it has per out_channel shift and multiplier for
|
||||
* requantization
|
||||
*
|
||||
* optimization notes: Though input_offset is int32 type,
|
||||
* offset values are contained in 8 bits [-128, 127]
|
||||
*/
|
||||
void esp_nn_depthwise_conv_s8_opt(const data_dims_t *input_dims,
|
||||
const int8_t *input_data,
|
||||
const data_dims_t *filter_dims,
|
||||
const int8_t *filter_data,
|
||||
const int32_t *bias,
|
||||
const data_dims_t *output_dims,
|
||||
int8_t *out_data,
|
||||
const dw_conv_params_t *conv_params,
|
||||
const quant_data_t *quant_data);
|
||||
|
||||
int esp_nn_get_conv_scratch_size_opt(const data_dims_t *input_dims,
|
||||
const data_dims_t *filter_dims,
|
||||
const data_dims_t *output_dims,
|
||||
const conv_params_t *conv_params);
|
||||
void esp_nn_set_conv_scratch_buf_opt(const void *buf);
|
||||
|
||||
int esp_nn_get_depthwise_conv_scratch_size_opt(const data_dims_t *input_dims,
|
||||
const data_dims_t *filter_dims,
|
||||
const data_dims_t *output_dims,
|
||||
const dw_conv_params_t *conv_params);
|
||||
void esp_nn_set_depthwise_conv_scratch_buf_opt(const void *buf);
|
||||
|
||||
/* ANSI C function to be hooked up when optimised version needed */
|
||||
void esp_nn_set_softmax_scratch_buf_opt(void *buffer);
|
||||
|
||||
/**
|
||||
* @brief optimised version of softmax function
|
||||
*
|
||||
* @note the function uses extra buffer (4 * width bytes)
|
||||
* hence, scratch buffers must be set before calling this.
|
||||
*/
|
||||
void esp_nn_softmax_s8_opt(const int8_t *input_data,
|
||||
const int32_t height,
|
||||
const int32_t width,
|
||||
const int32_t mult,
|
||||
const int32_t shift,
|
||||
const int32_t diff_min,
|
||||
int8_t *output_data);
|
||||
@@ -1,83 +0,0 @@
|
||||
// Copyright 2022 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
/**
|
||||
* @brief structure to club data dims
|
||||
* this structure can be used for input, output and filter
|
||||
*/
|
||||
typedef struct data_dims {
|
||||
int32_t width;
|
||||
int32_t height;
|
||||
int32_t channels;
|
||||
|
||||
int32_t extra; // can be used as batch or any other param
|
||||
} data_dims_t;
|
||||
|
||||
/**
|
||||
* @brief 2d data structure (width, height)
|
||||
*
|
||||
*/
|
||||
typedef struct data_2d {
|
||||
int32_t width;
|
||||
int32_t height;
|
||||
} data_2d_t;
|
||||
|
||||
/**
|
||||
* @brief min/max activation
|
||||
*/
|
||||
typedef struct act_params {
|
||||
int32_t min;
|
||||
int32_t max;
|
||||
} act_params_t;
|
||||
|
||||
/**
|
||||
* @brief per channel quant data
|
||||
*
|
||||
* @note number of shift and mult elements are equal to output channels
|
||||
*/
|
||||
typedef struct quant_data {
|
||||
int32_t *shift;
|
||||
int32_t *mult;
|
||||
} quant_data_t;
|
||||
|
||||
/**
|
||||
* @brief params specific to convolution 2d
|
||||
*
|
||||
*/
|
||||
typedef struct conv_params {
|
||||
int32_t in_offset;
|
||||
int32_t out_offset;
|
||||
data_2d_t stride;
|
||||
data_2d_t padding;
|
||||
data_2d_t dilation;
|
||||
act_params_t activation;
|
||||
} conv_params_t;
|
||||
|
||||
/**
|
||||
* @brief params specific to depthwise convolution 2d
|
||||
*
|
||||
*/
|
||||
typedef struct dw_conv_params {
|
||||
int32_t in_offset;
|
||||
int32_t out_offset;
|
||||
int32_t ch_mult; // channel multiplier. (in_ch * ch_mult = out_ch)
|
||||
data_2d_t stride;
|
||||
data_2d_t padding;
|
||||
data_2d_t dilation;
|
||||
act_params_t activation;
|
||||
} dw_conv_params_t;
|
||||
@@ -1,231 +0,0 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
/**
|
||||
* @file Header definitions to include for esp_nn optimized functions for
|
||||
* the ESP32-S3 platform
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "esp_nn_defs.h"
|
||||
#include "esp_nn_ansi_headers.h"
|
||||
|
||||
/************************** Basic math functions *****************************/
|
||||
|
||||
|
||||
/**
|
||||
* @brief elementwise addition
|
||||
*
|
||||
* @note inputs type: int8_t, output: int8_t
|
||||
* input offsets: although int32_t, they are contained in 8 bits [-128, 127]
|
||||
*
|
||||
* shift values are expected to be <= 0
|
||||
*/
|
||||
void esp_nn_add_elementwise_s8_esp32s3(const int8_t *input1_data,
|
||||
const int8_t *input2_data,
|
||||
const int32_t input1_offset,
|
||||
const int32_t input2_offset,
|
||||
const int32_t input1_mult,
|
||||
const int32_t input2_mult,
|
||||
const int32_t input1_shift,
|
||||
const int32_t input2_shift,
|
||||
const int32_t left_shift,
|
||||
int8_t *output,
|
||||
const int32_t out_offset,
|
||||
const int32_t out_mult,
|
||||
const int32_t out_shift,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max,
|
||||
const int32_t size);
|
||||
|
||||
/**
|
||||
* @brief elementwise multiplication
|
||||
*
|
||||
* @note inputs type: int8_t, output: int8_t
|
||||
* input offsets: although int32_t, they are contained in 8 bits [-128, 127]
|
||||
*
|
||||
* output shift is expected to be <= 0
|
||||
*/
|
||||
void esp_nn_mul_elementwise_s8_esp32s3(const int8_t *input1_data,
|
||||
const int8_t *input2_data,
|
||||
const int32_t input1_offset,
|
||||
const int32_t input2_offset,
|
||||
int8_t *output,
|
||||
const int32_t out_offset,
|
||||
const int32_t out_mult,
|
||||
const int32_t out_shift,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max,
|
||||
const int32_t size);
|
||||
|
||||
|
||||
/************************** Convolution functions *****************************/
|
||||
|
||||
/**
|
||||
* @brief depthwise convolution per channel
|
||||
*
|
||||
* @note inputs type: int8_t, output: int8_t
|
||||
* Version used in tflite is per channel.
|
||||
* This version follows the same footsprints.
|
||||
* Meaning, it has per out_channel shift and multiplier for
|
||||
* requantization
|
||||
*
|
||||
* optimization notes: Though input_offset is int32 type,
|
||||
* offset values are contained in 8 bits [-128, 127]
|
||||
*/
|
||||
void esp_nn_depthwise_conv_s8_esp32s3(const data_dims_t *input_dims,
|
||||
const int8_t *input_data,
|
||||
const data_dims_t *filter_dims,
|
||||
const int8_t *filter_data,
|
||||
const int32_t *bias,
|
||||
const data_dims_t *output_dims,
|
||||
int8_t *output_data,
|
||||
const dw_conv_params_t *conv_params,
|
||||
const quant_data_t *quant_data);
|
||||
|
||||
/**
|
||||
* @brief 2d - convolution channelwise
|
||||
*
|
||||
* @note operation: result += (input + offset) * filter
|
||||
*
|
||||
* inputs type: int8_t, output: int8_t
|
||||
* input offsets: although int32_t, they are contained in 8 bits [-128, 127]
|
||||
*/
|
||||
void esp_nn_conv_s8_esp32s3(const data_dims_t *input_dims,
|
||||
const int8_t *input_data,
|
||||
const data_dims_t *filter_dims,
|
||||
const int8_t *filter_data,
|
||||
const int32_t *bias,
|
||||
const data_dims_t *output_dims,
|
||||
int8_t *output_data,
|
||||
const conv_params_t *conv_params,
|
||||
const quant_data_t *quant_data);
|
||||
|
||||
int esp_nn_get_conv_scratch_size_esp32s3(const data_dims_t *input_dims,
|
||||
const data_dims_t *filter_dims,
|
||||
const data_dims_t *output_dims,
|
||||
const conv_params_t *conv_params);
|
||||
void esp_nn_set_conv_scratch_buf_esp32s3(const void *buf);
|
||||
|
||||
int esp_nn_get_depthwise_conv_scratch_size_esp32s3(const data_dims_t *input_dims,
|
||||
const data_dims_t *filter_dims,
|
||||
const data_dims_t *output_dims,
|
||||
const dw_conv_params_t *conv_params);
|
||||
void esp_nn_set_depthwise_conv_scratch_buf_esp32s3(const void *buf);
|
||||
|
||||
/************************** Pooling functions *****************************/
|
||||
|
||||
/**
|
||||
* @brief max_pool
|
||||
*
|
||||
* @note inputs type: int8_t, output: int8_t
|
||||
* input offsets: although int32_t, they are contained in 8 bits [-128, 127]
|
||||
*/
|
||||
void esp_nn_max_pool_s8_esp32s3(const int8_t *input,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
int8_t *output,
|
||||
const uint16_t output_wd,
|
||||
const uint16_t output_ht,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht,
|
||||
const uint16_t pad_wd,
|
||||
const uint16_t pad_ht,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max,
|
||||
const uint16_t channels);
|
||||
|
||||
/**
|
||||
* @brief avg_pool
|
||||
*
|
||||
* @note inputs type: int8_t, output: int8_t
|
||||
* input offsets: although int32_t, they are contained in 8 bits [-128, 127]
|
||||
*/
|
||||
void esp_nn_avg_pool_s8_esp32s3(const int8_t *input,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
int8_t *output,
|
||||
const uint16_t output_wd,
|
||||
const uint16_t output_ht,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht,
|
||||
const uint16_t pad_wd,
|
||||
const uint16_t pad_ht,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max,
|
||||
const uint16_t channels);
|
||||
|
||||
|
||||
/************************** Fully connected functions *****************************/
|
||||
|
||||
/**
|
||||
* @brief fully connected
|
||||
*
|
||||
* @note inputs type: int8_t, output: int8_t
|
||||
* input offsets: although int32_t, they are contained in 8 bits [-128, 127]
|
||||
*
|
||||
* Current version works only on aligned input.
|
||||
* row_len and channels should both be multiple of 8.
|
||||
*/
|
||||
void esp_nn_fully_connected_s8_esp32s3(const int8_t *input_data,
|
||||
const int32_t input_offset,
|
||||
const uint16_t row_len,
|
||||
const int8_t *filter_data,
|
||||
const int32_t filter_offset,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_channels,
|
||||
const int32_t out_offset,
|
||||
const int32_t out_shift,
|
||||
const int32_t out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max);
|
||||
|
||||
/**
|
||||
* @brief relu6
|
||||
*
|
||||
* @note inout: int8_t
|
||||
*/
|
||||
void esp_nn_relu6_s8_esp32s3(int8_t *data, uint16_t size);
|
||||
|
||||
/********************** function defines ***************************/
|
||||
|
||||
#define esp_nn_add_elementwise_s8 esp_nn_add_elementwise_s8_esp32s3
|
||||
#define esp_nn_mul_elementwise_s8 esp_nn_mul_elementwise_s8_esp32s3
|
||||
|
||||
#define esp_nn_depthwise_conv_s8 esp_nn_depthwise_conv_s8_esp32s3
|
||||
|
||||
#define esp_nn_get_conv_scratch_size esp_nn_get_conv_scratch_size_esp32s3
|
||||
#define esp_nn_set_conv_scratch_buf esp_nn_set_conv_scratch_buf_esp32s3
|
||||
|
||||
#define esp_nn_get_depthwise_conv_scratch_size esp_nn_get_depthwise_conv_scratch_size_esp32s3
|
||||
#define esp_nn_set_depthwise_conv_scratch_buf esp_nn_set_depthwise_conv_scratch_buf_esp32s3
|
||||
|
||||
#define esp_nn_conv_s8 esp_nn_conv_s8_esp32s3
|
||||
|
||||
#define esp_nn_relu6_s8 esp_nn_relu6_s8_esp32s3
|
||||
|
||||
#define esp_nn_avg_pool_s8 esp_nn_avg_pool_s8_esp32s3
|
||||
#define esp_nn_max_pool_s8 esp_nn_max_pool_s8_esp32s3
|
||||
|
||||
#define esp_nn_fully_connected_s8 esp_nn_fully_connected_s8_esp32s3
|
||||
|
||||
#define esp_nn_get_softmax_scratch_size esp_nn_get_softmax_scratch_size_opt
|
||||
#define esp_nn_set_softmax_scratch_buf esp_nn_set_softmax_scratch_buf_opt
|
||||
#define esp_nn_softmax_s8 esp_nn_softmax_s8_opt
|
||||
@@ -1,47 +0,0 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
/**
|
||||
* @file Header definitions to include for esp_nn generic optimisations
|
||||
* For functions which not having optimisations, _ansi versions are picked.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "esp_nn_defs.h"
|
||||
#include "esp_nn_ansi_headers.h"
|
||||
|
||||
#define esp_nn_add_elementwise_s8 esp_nn_add_elementwise_s8_ansi
|
||||
#define esp_nn_mul_elementwise_s8 esp_nn_mul_elementwise_s8_ansi
|
||||
|
||||
#define esp_nn_depthwise_conv_s8 esp_nn_depthwise_conv_s8_opt
|
||||
|
||||
#define esp_nn_conv_s8 esp_nn_conv_s8_opt
|
||||
|
||||
#define esp_nn_get_conv_scratch_size esp_nn_get_conv_scratch_size_opt
|
||||
#define esp_nn_set_conv_scratch_buf esp_nn_set_conv_scratch_buf_opt
|
||||
|
||||
#define esp_nn_get_depthwise_conv_scratch_size esp_nn_get_depthwise_conv_scratch_size_opt
|
||||
#define esp_nn_set_depthwise_conv_scratch_buf esp_nn_set_depthwise_conv_scratch_buf_opt
|
||||
|
||||
#define esp_nn_relu6_s8 esp_nn_relu6_s8_ansi
|
||||
|
||||
#define esp_nn_avg_pool_s8 esp_nn_avg_pool_s8_ansi
|
||||
#define esp_nn_max_pool_s8 esp_nn_max_pool_s8_ansi
|
||||
|
||||
#define esp_nn_fully_connected_s8 esp_nn_fully_connected_s8_ansi
|
||||
|
||||
#define esp_nn_get_softmax_scratch_size esp_nn_get_softmax_scratch_size_opt
|
||||
#define esp_nn_set_softmax_scratch_buf esp_nn_set_softmax_scratch_buf_opt
|
||||
#define esp_nn_softmax_s8 esp_nn_softmax_s8_opt
|
||||
@@ -1,30 +0,0 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#include <common_functions.h>
|
||||
|
||||
void esp_nn_relu6_s8_ansi(int8_t *data, uint16_t size)
|
||||
{
|
||||
int32_t i;
|
||||
|
||||
for (i = 0; i < size; i++) {
|
||||
int32_t ip = data[i];
|
||||
|
||||
ip = max(ip, 0);
|
||||
data[i] = min(ip, 6);
|
||||
}
|
||||
}
|
||||
@@ -1,97 +0,0 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#include <common_functions.h>
|
||||
|
||||
void esp_nn_add_elementwise_u8_ansi(const uint8_t *input1_data,
|
||||
const uint8_t *input2_data,
|
||||
const int32_t input1_offset,
|
||||
const int32_t input2_offset,
|
||||
const int32_t input1_mult,
|
||||
const int32_t input2_mult,
|
||||
const int32_t input1_shift,
|
||||
const int32_t input2_shift,
|
||||
const int32_t left_shift,
|
||||
uint8_t *output,
|
||||
const int32_t out_offset,
|
||||
const int32_t out_mult,
|
||||
const int32_t out_shift,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max,
|
||||
const int32_t size)
|
||||
{
|
||||
for (int i = 0; i < size; i++) {
|
||||
int32_t tmp1 = input1_data[i] + input1_offset;
|
||||
int32_t tmp2 = input2_data[i] + input2_offset;
|
||||
|
||||
tmp1 <<= left_shift;
|
||||
tmp2 <<= left_shift;
|
||||
|
||||
tmp1 = esp_nn_sat_round_doubling_high_mul(tmp1, input1_mult);
|
||||
tmp2 = esp_nn_sat_round_doubling_high_mul(tmp2, input2_mult);
|
||||
|
||||
tmp1 = esp_nn_div_by_power_of_two(tmp1, -input1_shift);
|
||||
tmp2 = esp_nn_div_by_power_of_two(tmp2, -input2_shift);
|
||||
|
||||
int32_t out = tmp1 + tmp2;
|
||||
out = esp_nn_sat_round_doubling_high_mul(out, out_mult);
|
||||
out = esp_nn_div_by_power_of_two(out, -out_shift);
|
||||
out = out + out_offset;
|
||||
|
||||
out = max(activation_min, min(out, activation_max));
|
||||
output[i] = (uint8_t) out;
|
||||
}
|
||||
}
|
||||
|
||||
void esp_nn_add_elementwise_s8_ansi(const int8_t *input1_data,
|
||||
const int8_t *input2_data,
|
||||
const int32_t input1_offset,
|
||||
const int32_t input2_offset,
|
||||
const int32_t input1_mult,
|
||||
const int32_t input2_mult,
|
||||
const int32_t input1_shift,
|
||||
const int32_t input2_shift,
|
||||
const int32_t left_shift,
|
||||
int8_t *output,
|
||||
const int32_t out_offset,
|
||||
const int32_t out_mult,
|
||||
const int32_t out_shift,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max,
|
||||
const int32_t size)
|
||||
{
|
||||
for (int i = 0; i < size; i++) {
|
||||
int32_t tmp1 = input1_data[i] + input1_offset;
|
||||
int32_t tmp2 = input2_data[i] + input2_offset;
|
||||
|
||||
tmp1 <<= left_shift;
|
||||
tmp2 <<= left_shift;
|
||||
|
||||
tmp1 = esp_nn_sat_round_doubling_high_mul(tmp1, input1_mult);
|
||||
tmp2 = esp_nn_sat_round_doubling_high_mul(tmp2, input2_mult);
|
||||
|
||||
tmp1 = esp_nn_div_by_power_of_two(tmp1, -input1_shift);
|
||||
tmp2 = esp_nn_div_by_power_of_two(tmp2, -input2_shift);
|
||||
|
||||
int32_t out = tmp1 + tmp2;
|
||||
out = esp_nn_sat_round_doubling_high_mul(out, out_mult);
|
||||
out = esp_nn_div_by_power_of_two(out, -out_shift);
|
||||
out = out + out_offset;
|
||||
|
||||
out = max(activation_min, min(out, activation_max));
|
||||
output[i] = (int8_t) out;
|
||||
}
|
||||
}
|
||||
@@ -1,42 +0,0 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#include <common_functions.h>
|
||||
|
||||
void esp_nn_mul_elementwise_s8_ansi(const int8_t *input1_data,
|
||||
const int8_t *input2_data,
|
||||
const int32_t input1_offset,
|
||||
const int32_t input2_offset,
|
||||
int8_t *output,
|
||||
const int32_t out_offset,
|
||||
const int32_t out_mult,
|
||||
const int32_t out_shift,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max,
|
||||
const int32_t size)
|
||||
{
|
||||
for (int i = 0; i < size; i++) {
|
||||
int32_t tmp1 = input1_data[i] + input1_offset;
|
||||
int32_t tmp2 = input2_data[i] + input2_offset;
|
||||
|
||||
int32_t out = tmp1 * tmp2;
|
||||
out = esp_nn_multiply_by_quantized_mult(out, out_mult, out_shift);
|
||||
out = out + out_offset;
|
||||
|
||||
out = max(activation_min, min(out, activation_max));
|
||||
output[i] = (int8_t) out;
|
||||
}
|
||||
}
|
||||
@@ -1,255 +0,0 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
#include <string.h>
|
||||
|
||||
/**
|
||||
* c99 standard still doesn't strictly inline functions
|
||||
* We need to use attribute as well to do this.
|
||||
*/
|
||||
#define __NN_FORCE_INLINE__ __attribute((always_inline)) static inline
|
||||
|
||||
/* min/max macros */
|
||||
#ifndef max
|
||||
#define max(a, b) ({ \
|
||||
__typeof__ (a) _a = (a); \
|
||||
__typeof__ (b) _b = (b); \
|
||||
_a > _b ? _a : _b; \
|
||||
})
|
||||
|
||||
#define min(a, b) ({ \
|
||||
__typeof__ (a) _a = (a); \
|
||||
__typeof__ (b) _b = (b); \
|
||||
_a < _b ? _a : _b; \
|
||||
})
|
||||
#endif
|
||||
|
||||
__NN_FORCE_INLINE__ int32_t esp_nn_clz32(uint32_t in)
|
||||
{
|
||||
#if CONFIG_IDF_TARGET_ARCH_XTENSA
|
||||
__asm__ volatile("nsau %0, %0" : "+r" (in));
|
||||
return in;
|
||||
#elif defined(__GNUC__)
|
||||
return __builtin_clz(in);
|
||||
#else
|
||||
int32_t count = 32;
|
||||
uint32_t x = in, y = in >> 16;
|
||||
if (y != 0) {
|
||||
count -= 16;
|
||||
x = y;
|
||||
}
|
||||
y = x >> 8;
|
||||
if (y != 0) {
|
||||
count -= 8;
|
||||
x = y;
|
||||
}
|
||||
y = x >> 4;
|
||||
if (y != 0) {
|
||||
count -= 4;
|
||||
x = y;
|
||||
}
|
||||
y = x >> 2;
|
||||
if (y != 0) {
|
||||
count -= 2;
|
||||
x = y;
|
||||
}
|
||||
y = x >> 1;
|
||||
if (y != 0) {
|
||||
return count - 2;
|
||||
}
|
||||
return count - x;
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* Signed saturate a 32 bit value to 8 bits keeping output in 32 bit variable.
|
||||
*/
|
||||
__NN_FORCE_INLINE__ int32_t esp_nn_saturate8(int32_t in)
|
||||
{
|
||||
#if CONFIG_IDF_TARGET_ARCH_XTENSA
|
||||
__asm__ volatile("clamps %0, %0, 7" : "+a"(in));
|
||||
return in;
|
||||
#else
|
||||
return max(INT8_MIN, min(in, INT8_MAX));
|
||||
#endif
|
||||
}
|
||||
|
||||
__NN_FORCE_INLINE__ int32_t esp_nn_pick_sat_high32_of64(int64_t val64)
|
||||
{
|
||||
int32_t sign = (int32_t) (val64 >> 63);
|
||||
int32_t to_add = sign & ((1ul << 31) - 1);
|
||||
return (int32_t) ((int64_t) (val64 + to_add) >> 31);
|
||||
}
|
||||
|
||||
__NN_FORCE_INLINE__ int32_t esp_nn_sat_round_doubling_high_mul(int32_t in0, int32_t in1)
|
||||
{
|
||||
int32_t result;
|
||||
int64_t in0_64 = (int64_t) in0;
|
||||
bool overflow = (in0 == in1) && (in0 == (int32_t) INT32_MIN);
|
||||
|
||||
/* Nudge value */
|
||||
int64_t nudge_val = 1 << 30;
|
||||
if ((in0 < 0) ^ (in1 < 0)) {
|
||||
nudge_val = 1 - nudge_val;
|
||||
}
|
||||
|
||||
/* Multiply and add nudge */
|
||||
int64_t mult = in0_64 * in1 + nudge_val;
|
||||
|
||||
/* Round and pickup 32 bits */
|
||||
result = esp_nn_pick_sat_high32_of64(mult);
|
||||
|
||||
return overflow ? INT32_MAX : result;
|
||||
}
|
||||
|
||||
/**
|
||||
* fast version
|
||||
* this will fail for values closer to INT32_MAX and INT32_MIN by `1 << (exponent - 1)`.
|
||||
* We can afford to do this because we are at the very last stage of filter.
|
||||
* Also it is pretty rare condition as our output is going to be 8 bit.
|
||||
*/
|
||||
__NN_FORCE_INLINE__ int32_t esp_nn_div_by_power_of_two_fast(int32_t val, int32_t exponent)
|
||||
{
|
||||
int32_t to_add = (1 << (exponent - 1)) - (val < 0);
|
||||
return (int32_t) ((val + to_add) >> exponent);
|
||||
}
|
||||
|
||||
__NN_FORCE_INLINE__ int32_t esp_nn_div_by_power_of_two(int32_t val, int32_t exponent)
|
||||
{
|
||||
int32_t result;
|
||||
|
||||
const int32_t mask = (1 << exponent) - 1;
|
||||
const int32_t remainder = val & mask;
|
||||
|
||||
result = val >> exponent;
|
||||
int32_t threshold = (mask >> 1) + (result < 0);
|
||||
|
||||
if (remainder > threshold) {
|
||||
result += 1;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
__NN_FORCE_INLINE__ int32_t esp_nn_multiply_by_quantized_mult(int32_t x, int32_t mult, int32_t shift)
|
||||
{
|
||||
int32_t left_shift = shift > 0 ? shift : 0;
|
||||
int32_t right_shift = shift > 0 ? 0 : -shift;
|
||||
int32_t result = esp_nn_sat_round_doubling_high_mul(x * (1 << left_shift), mult);
|
||||
return esp_nn_div_by_power_of_two(result, right_shift);
|
||||
}
|
||||
|
||||
__NN_FORCE_INLINE__ int32_t esp_nn_multiply_by_quantized_mult_fast(int32_t x, int32_t mult, int32_t shift)
|
||||
{
|
||||
int32_t left_shift = max(shift, 0);
|
||||
int32_t right_shift = left_shift - shift;
|
||||
|
||||
int64_t nudge_val = 1 << 30;
|
||||
int64_t in0_64 = (int64_t) (x << left_shift);
|
||||
|
||||
/* Multiply and add nudge */
|
||||
int64_t mult_64 = in0_64 * mult + nudge_val;
|
||||
int32_t result = (int32_t) (mult_64 >> 31);
|
||||
if (right_shift) {
|
||||
result = esp_nn_div_by_power_of_two_fast(result, right_shift);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
static void esp_nn_aligned_s8_pad_with_value(const int8_t *src, int8_t *dst,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t channels,
|
||||
const int32_t pad_val,
|
||||
const uint16_t pad_wd,
|
||||
const uint16_t pad_ht)
|
||||
{
|
||||
/* memset with pad_val */
|
||||
memset(dst, pad_val, ((input_wd + 2 * pad_wd) * (input_ht + 2 * pad_ht)) * channels);
|
||||
dst += (pad_wd + input_wd + pad_wd) * channels;
|
||||
|
||||
for (int i = 0; i < input_ht; i++) {
|
||||
dst += pad_wd * channels;
|
||||
for (int j = 0; j < input_wd * channels; j++) {
|
||||
*dst++ = *src++;
|
||||
}
|
||||
dst += pad_wd * channels;
|
||||
}
|
||||
}
|
||||
|
||||
static void esp_nn_aligned_s8_pad_end_with_value(const int8_t *src, int8_t *dst,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t channels,
|
||||
const int32_t pad_val,
|
||||
const uint16_t pad_wd,
|
||||
const uint16_t pad_ht)
|
||||
{
|
||||
for (int i = 0; i < input_ht; i++) {
|
||||
for (int j = 0; j < input_wd * channels; j++) {
|
||||
*dst++ = *src++;
|
||||
}
|
||||
if (pad_wd) {
|
||||
memset(dst, pad_val, pad_wd * channels);
|
||||
dst += pad_wd * channels;
|
||||
}
|
||||
}
|
||||
/* pad end `pad_ht` lines at end */
|
||||
if (pad_ht) {
|
||||
memset(dst, pad_val, (input_wd + pad_wd) * pad_ht * channels);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief convert 8 bit input data to 16 bit
|
||||
*
|
||||
* @param src int8_t source data
|
||||
* @param dst int16_t dst data
|
||||
* @param size length of data
|
||||
* @param offset offset to be added to src data. Range: [-128, 127]
|
||||
*/
|
||||
__NN_FORCE_INLINE__ void esp_nn_s8_to_s16_with_offset(const int8_t *src, int16_t *dst,
|
||||
const int size, const int32_t offset)
|
||||
{
|
||||
int i = 0;
|
||||
for (; i < size; i += 2) {
|
||||
dst[i + 0] = src[i + 0] + offset;
|
||||
dst[i + 1] = src[i + 1] + offset;
|
||||
}
|
||||
if(i < size) {
|
||||
dst[i] = src[i] + offset;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief convert 8 bit input data to 16 bit
|
||||
*
|
||||
* @param src int8_t source data
|
||||
* @param dst int16_t dst data
|
||||
* @param size length of data
|
||||
*/
|
||||
__NN_FORCE_INLINE__ void esp_nn_s8_to_s16(const int8_t *src, int16_t *dst, const int size)
|
||||
{
|
||||
int i = 0;
|
||||
for (; i < size; i += 2) {
|
||||
dst[i + 0] = src[i + 0];
|
||||
dst[i + 1] = src[i + 1];
|
||||
}
|
||||
if(i < size) {
|
||||
dst[i] = src[i];
|
||||
}
|
||||
}
|
||||
@@ -1,179 +0,0 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <esp_nn_defs.h>
|
||||
|
||||
#include <common_functions.h>
|
||||
|
||||
int esp_nn_get_conv_scratch_size_ansi(const data_dims_t *input_dims,
|
||||
const data_dims_t *filter_dims,
|
||||
const data_dims_t *output_dims,
|
||||
const conv_params_t *conv_params)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
void esp_nn_set_conv_scratch_buf_ansi(const void *buf)
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Assumption 1: i/p channels == o/p channels
|
||||
* Assumption 2: Pointers are valid
|
||||
* Assumption 3: dialation width = 1
|
||||
*/
|
||||
void esp_nn_conv_u8_ansi(const uint8_t *input_data,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t in_channels,
|
||||
const int32_t input_offset,
|
||||
const uint16_t pad_wd,
|
||||
const uint16_t pad_ht,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const uint8_t *filter_data,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht,
|
||||
const int32_t filter_offset,
|
||||
const int32_t *bias,
|
||||
uint8_t *out_data,
|
||||
const uint16_t out_wd,
|
||||
const uint16_t out_ht,
|
||||
const uint16_t out_channels,
|
||||
const int32_t out_offset,
|
||||
const int32_t out_shift,
|
||||
const int32_t out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max)
|
||||
{
|
||||
for (int out_y = 0; out_y < out_ht; out_y++) { //height loop
|
||||
const int16_t base_y = (out_y * stride_ht) - pad_ht;
|
||||
for (int out_x = 0; out_x < out_wd; out_x++) { //width_loop
|
||||
const int16_t base_x = (out_x * stride_wd) - pad_wd;
|
||||
for (int out_ch_idx = 0; out_ch_idx < out_channels; out_ch_idx++) {//channel_loop
|
||||
int32_t result = 0;
|
||||
|
||||
/* Select filter so as the point doesn't lie outside block */
|
||||
int filter_y_start = max(0, -base_y);
|
||||
int filter_x_start = max(0, -base_x);
|
||||
int filter_y_end = min(filter_ht, input_ht - base_y);
|
||||
int filter_x_end = min(filter_wd, input_wd - base_x);
|
||||
|
||||
for (int filter_y_idx = filter_y_start; filter_y_idx < filter_y_end; filter_y_idx++) {
|
||||
const int32_t idx_y = base_y + filter_y_idx;
|
||||
for (int filter_x_idx = filter_x_start; filter_x_idx < filter_x_end; filter_x_idx++) {
|
||||
const int32_t idx_x = base_x + filter_x_idx;
|
||||
for (int in_ch_idx = 0; in_ch_idx < in_channels; in_ch_idx++) {
|
||||
int32_t input_index = (idx_y * input_wd + idx_x) * in_channels + in_ch_idx;
|
||||
int32_t filter_index = ((out_ch_idx * filter_ht + filter_y_idx)
|
||||
* filter_wd + filter_x_idx) * in_channels
|
||||
+ in_ch_idx;
|
||||
int32_t input_val = input_data[input_index] + input_offset;
|
||||
int32_t filter_val = filter_data[filter_index] + filter_offset;
|
||||
result += input_val * filter_val;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (bias) {
|
||||
result += bias[out_ch_idx];
|
||||
}
|
||||
result = esp_nn_multiply_by_quantized_mult(result, out_mult, out_shift);
|
||||
result += out_offset;
|
||||
result = max(result, activation_min);
|
||||
result = min(result, activation_max);
|
||||
|
||||
int out_index = (out_y * out_wd + out_x) * out_channels + out_ch_idx;
|
||||
out_data[out_index] = (uint8_t) result;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Assumption 1: i/p channels == o/p channels
|
||||
* Assumption 2: Pointers are valid
|
||||
* Assumption 3: dialation width = 1
|
||||
*/
|
||||
void esp_nn_conv_s8_ansi(const data_dims_t *input_dims,
|
||||
const int8_t *input_data,
|
||||
const data_dims_t *filter_dims,
|
||||
const int8_t *filter_data,
|
||||
const int32_t *bias,
|
||||
const data_dims_t *output_dims,
|
||||
int8_t *out_data,
|
||||
const conv_params_t *conv_params,
|
||||
const quant_data_t *quant_data)
|
||||
{
|
||||
const uint16_t input_wd = input_dims->width;
|
||||
const uint16_t input_ht = input_dims->height;
|
||||
const uint16_t in_channels = input_dims->channels;
|
||||
const int32_t input_offset = conv_params->in_offset;
|
||||
const int32_t out_offset = conv_params->out_offset;
|
||||
const uint16_t pad_wd = conv_params->padding.width;
|
||||
const uint16_t pad_ht = conv_params->padding.height;
|
||||
const uint16_t stride_wd = conv_params->stride.width;
|
||||
const uint16_t stride_ht = conv_params->stride.height;
|
||||
const uint16_t filter_wd = filter_dims->width;
|
||||
const uint16_t filter_ht = filter_dims->height;
|
||||
const uint16_t out_wd = output_dims->width;
|
||||
const uint16_t out_ht = output_dims->height;
|
||||
const uint16_t out_channels = output_dims->channels;
|
||||
const int32_t *out_shift = quant_data->shift;
|
||||
const int32_t *out_mult = quant_data->mult;
|
||||
const int32_t activation_min = conv_params->activation.min;
|
||||
const int32_t activation_max = conv_params->activation.max;
|
||||
|
||||
int32_t out_ch_idx, out_y, out_x, in_ch_idx, filter_y_idx, filter_x_idx;
|
||||
|
||||
for (out_y = 0; out_y < out_ht; out_y++) {
|
||||
for (out_x = 0; out_x < out_wd; out_x++) {
|
||||
for (out_ch_idx = 0; out_ch_idx < out_channels; out_ch_idx++) {
|
||||
int32_t conv_out = 0;
|
||||
|
||||
const int32_t base_y = stride_ht * out_y - pad_ht;
|
||||
const int32_t base_x = stride_wd * out_x - pad_wd;
|
||||
|
||||
const int32_t filter_y_start = max(0, -base_y);
|
||||
const int32_t filter_x_start = max(0, -base_x);
|
||||
|
||||
const int32_t filter_y_end = min(filter_ht, input_ht - base_y);
|
||||
const int32_t filter_x_end = min(filter_wd, input_wd - base_x);
|
||||
|
||||
for (filter_y_idx = filter_y_start; filter_y_idx < filter_y_end; filter_y_idx++) {
|
||||
for (filter_x_idx = filter_x_start; filter_x_idx < filter_x_end; filter_x_idx++) {
|
||||
const int32_t in_row = base_y + filter_y_idx;
|
||||
const int32_t in_col = base_x + filter_x_idx;
|
||||
int32_t input_base_offset = (in_row * input_wd + in_col) * in_channels;
|
||||
int32_t filter_base_offset = out_ch_idx * in_channels * filter_ht * filter_wd +
|
||||
(filter_y_idx * filter_wd + filter_x_idx) * in_channels;
|
||||
for (in_ch_idx = 0; in_ch_idx < in_channels; in_ch_idx++) {
|
||||
conv_out +=
|
||||
(input_data[input_base_offset + in_ch_idx] + input_offset) *
|
||||
filter_data[filter_base_offset + in_ch_idx];
|
||||
}
|
||||
}
|
||||
}
|
||||
if (bias) {
|
||||
conv_out += bias[out_ch_idx];
|
||||
}
|
||||
conv_out = esp_nn_multiply_by_quantized_mult(conv_out, out_mult[out_ch_idx], out_shift[out_ch_idx]);
|
||||
conv_out += out_offset;
|
||||
conv_out = max(conv_out, activation_min);
|
||||
conv_out = min(conv_out, activation_max);
|
||||
*out_data++ = (int8_t) conv_out;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,463 +0,0 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdio.h>
|
||||
#include <esp_nn_defs.h>
|
||||
|
||||
#include <common_functions.h>
|
||||
|
||||
static int16_t *scratch_buffer = NULL;
|
||||
|
||||
extern void esp_nn_conv_s8_mult8_1x1_esp32s3(const int8_t *input_data,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t in_channels,
|
||||
const int32_t input_offset,
|
||||
const int8_t *filter_aligned,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_wd,
|
||||
const uint16_t out_ht,
|
||||
const uint16_t out_channels,
|
||||
const int32_t out_offset,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max,
|
||||
void *buffer /* scratch buffer */);
|
||||
|
||||
extern void esp_nn_conv_s16_mult4_1x1_esp32s3(const int16_t *input_data,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t in_channels,
|
||||
const int16_t *filter_data,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_wd,
|
||||
const uint16_t out_ht,
|
||||
const uint16_t out_channels,
|
||||
const int32_t out_offset,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max,
|
||||
void *buffer /* scratch buffer */);
|
||||
|
||||
extern void esp_nn_conv_s16_mult8_esp32s3(const int16_t *input_data,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t in_channels,
|
||||
const uint16_t pad_wd,
|
||||
const uint16_t pad_ht,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const int16_t *filter_data,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_wd,
|
||||
const uint16_t out_ht,
|
||||
const uint16_t out_channels,
|
||||
const int32_t out_offset,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max);
|
||||
|
||||
extern void esp_nn_aligned_s8_to_s16_with_offset_esp32s3(const int8_t *src, int16_t *dst,
|
||||
const int size, const int32_t offset);
|
||||
|
||||
extern void esp_nn_s8_to_s16_esp32s3(const int8_t *src, int16_t *dst, const int size);
|
||||
|
||||
static void esp_nn_conv_s8_unrolled(const data_dims_t *input_dims,
|
||||
const int8_t *input_data,
|
||||
const data_dims_t *filter_dims,
|
||||
const int8_t *filter_data,
|
||||
const int32_t *bias,
|
||||
const data_dims_t *output_dims,
|
||||
int8_t *out_data,
|
||||
const conv_params_t *conv_params,
|
||||
const quant_data_t *quant_data)
|
||||
{
|
||||
const uint16_t input_wd = input_dims->width;
|
||||
const uint16_t input_ht = input_dims->height;
|
||||
const uint16_t in_ch = input_dims->channels;
|
||||
const int32_t input_offset = conv_params->in_offset;
|
||||
const int32_t out_offset = conv_params->out_offset;
|
||||
const uint16_t pad_wd = conv_params->padding.width;
|
||||
const uint16_t pad_ht = conv_params->padding.height;
|
||||
const uint16_t stride_wd = conv_params->stride.width;
|
||||
const uint16_t stride_ht = conv_params->stride.height;
|
||||
const uint16_t filter_wd = filter_dims->width;
|
||||
const uint16_t filter_ht = filter_dims->height;
|
||||
const uint16_t out_wd = output_dims->width;
|
||||
const uint16_t out_ht = output_dims->height;
|
||||
const uint16_t out_ch = output_dims->channels;
|
||||
const int32_t *out_shift = quant_data->shift;
|
||||
const int32_t *out_mult = quant_data->mult;
|
||||
const int32_t activation_min = conv_params->activation.min;
|
||||
const int32_t activation_max = conv_params->activation.max;
|
||||
|
||||
int32_t out_ch_idx, out_y, out_x, in_ch_idx, filter_y_idx, filter_x_idx;
|
||||
|
||||
for (out_y = 0; out_y < out_ht; out_y++) {
|
||||
for (out_x = 0; out_x < out_wd; out_x++) {
|
||||
for (out_ch_idx = 0; out_ch_idx < out_ch; out_ch_idx++) {
|
||||
int32_t conv_out = 0;
|
||||
|
||||
const int32_t base_y = stride_ht * out_y - pad_ht;
|
||||
const int32_t base_x = stride_wd * out_x - pad_wd;
|
||||
|
||||
const int32_t filter_y_start = max(0, -base_y);
|
||||
const int32_t filter_x_start = max(0, -base_x);
|
||||
|
||||
const int32_t filter_y_end = min(filter_ht, input_ht - base_y);
|
||||
const int32_t filter_x_end = min(filter_wd, input_wd - base_x);
|
||||
|
||||
for (filter_y_idx = filter_y_start; filter_y_idx < filter_y_end; filter_y_idx++) {
|
||||
for (filter_x_idx = filter_x_start; filter_x_idx < filter_x_end; filter_x_idx++) {
|
||||
const int32_t in_row = base_y + filter_y_idx;
|
||||
const int32_t in_col = base_x + filter_x_idx;
|
||||
int32_t input_base_offset = (in_row * input_wd + in_col) * in_ch;
|
||||
int32_t filter_base_offset = out_ch_idx * in_ch * filter_ht * filter_wd +
|
||||
(filter_y_idx * filter_wd + filter_x_idx) * in_ch;
|
||||
for (in_ch_idx = 0; in_ch_idx < in_ch; in_ch_idx++) {
|
||||
conv_out +=
|
||||
(input_data[input_base_offset + in_ch_idx] + input_offset) *
|
||||
filter_data[filter_base_offset + in_ch_idx];
|
||||
}
|
||||
}
|
||||
}
|
||||
if (bias) {
|
||||
conv_out += bias[out_ch_idx];
|
||||
}
|
||||
conv_out = esp_nn_multiply_by_quantized_mult_fast(conv_out, out_mult[out_ch_idx], out_shift[out_ch_idx]);
|
||||
conv_out += out_offset;
|
||||
conv_out = max(conv_out, activation_min);
|
||||
conv_out = min(conv_out, activation_max);
|
||||
*out_data++ = (int8_t) conv_out;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void esp_nn_conv_s8_pad_valid(const int8_t *input_data,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t in_channels,
|
||||
const int32_t input_offset,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const int8_t *filter_data,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_wd,
|
||||
const uint16_t out_ht,
|
||||
const uint16_t out_channels,
|
||||
const int32_t out_offset,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max)
|
||||
{
|
||||
int32_t out_ch_idx, out_y, out_x, in_ch_idx, filter_y_idx, filter_x_idx;
|
||||
|
||||
for (out_y = 0; out_y < out_ht; out_y++) {
|
||||
for (out_x = 0; out_x < out_wd; out_x++) {
|
||||
for (out_ch_idx = 0; out_ch_idx < out_channels; out_ch_idx++) {
|
||||
int32_t conv_out = 0;
|
||||
|
||||
const int32_t base_y = stride_ht * out_y;
|
||||
const int32_t base_x = stride_wd * out_x;
|
||||
|
||||
for (filter_y_idx = 0; filter_y_idx < filter_ht; filter_y_idx++) {
|
||||
for (filter_x_idx = 0; filter_x_idx < filter_wd; filter_x_idx++) {
|
||||
const int32_t in_row = base_y + filter_y_idx;
|
||||
const int32_t in_col = base_x + filter_x_idx;
|
||||
int32_t input_base_offset = (in_row * input_wd + in_col) * in_channels;
|
||||
int32_t filter_base_offset = out_ch_idx * in_channels * filter_ht * filter_wd +
|
||||
(filter_y_idx * filter_wd + filter_x_idx) * in_channels;
|
||||
const int8_t *input_data_ptr = input_data + input_base_offset;
|
||||
const int8_t *filter_data_ptr = filter_data + filter_base_offset;
|
||||
for (in_ch_idx = 0; in_ch_idx < in_channels; in_ch_idx++) {
|
||||
conv_out += (*input_data_ptr++ + input_offset) * *filter_data_ptr++;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (bias) {
|
||||
conv_out += bias[out_ch_idx];
|
||||
}
|
||||
conv_out = esp_nn_multiply_by_quantized_mult_fast(conv_out, out_mult[out_ch_idx], out_shift[out_ch_idx]);
|
||||
conv_out += out_offset;
|
||||
conv_out = max(conv_out, activation_min);
|
||||
conv_out = min(conv_out, activation_max);
|
||||
*out_data++ = (int8_t) conv_out;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void esp_nn_conv_s8_pad_valid_3x3(const int8_t *input_data,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t in_channels,
|
||||
const int32_t input_offset,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const int8_t *filter_data,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_wd,
|
||||
const uint16_t out_ht,
|
||||
const uint16_t out_channels,
|
||||
const int32_t out_offset,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max)
|
||||
{
|
||||
int32_t out_ch_idx, out_y, out_x, in_ch_idx, filter_y_idx, filter_x_idx;
|
||||
|
||||
for (out_y = 0; out_y < out_ht; out_y++) {
|
||||
for (out_x = 0; out_x < out_wd; out_x++) {
|
||||
const int32_t base_y = stride_ht * out_y;
|
||||
const int32_t base_x = stride_wd * out_x;
|
||||
for (out_ch_idx = 0; out_ch_idx < out_channels; out_ch_idx++) {
|
||||
int32_t conv_out = 0;
|
||||
for (filter_y_idx = 0; filter_y_idx < 3; filter_y_idx++) {
|
||||
for (filter_x_idx = 0; filter_x_idx < 3; filter_x_idx++) {
|
||||
const int32_t in_row = base_y + filter_y_idx;
|
||||
const int32_t in_col = base_x + filter_x_idx;
|
||||
int32_t input_base_offset = (in_row * input_wd + in_col) * in_channels;
|
||||
int32_t filter_base_offset = out_ch_idx * in_channels * 3 * 3 +
|
||||
(filter_y_idx * 3 + filter_x_idx) * in_channels;
|
||||
const int8_t *input_data_ptr = input_data + input_base_offset;
|
||||
const int8_t *filter_data_ptr = filter_data + filter_base_offset;
|
||||
for (in_ch_idx = 0; in_ch_idx < in_channels; in_ch_idx++) {
|
||||
conv_out += (*input_data_ptr++ + input_offset) * *filter_data_ptr++;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (bias) {
|
||||
conv_out += bias[out_ch_idx];
|
||||
}
|
||||
conv_out = esp_nn_multiply_by_quantized_mult_fast(conv_out, out_mult[out_ch_idx], out_shift[out_ch_idx]);
|
||||
conv_out += out_offset;
|
||||
conv_out = max(conv_out, activation_min);
|
||||
conv_out = min(conv_out, activation_max);
|
||||
*out_data++ = (int8_t) conv_out;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void esp_nn_conv_s8_pad_valid_ch3_3x3(const int8_t *input_data,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const int32_t input_offset,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const int8_t *filter_data,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_wd,
|
||||
const uint16_t out_ht,
|
||||
const uint16_t out_channels,
|
||||
const int32_t out_offset,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max)
|
||||
{
|
||||
int32_t out_ch_idx, out_y, out_x, filter_y_idx;
|
||||
|
||||
/* use scratch_buffer to pre-compute offset factor */
|
||||
int16_t *filter_sum = (int16_t *) scratch_buffer;
|
||||
const int8_t *filter_ptr = filter_data;
|
||||
for (out_ch_idx = 0; out_ch_idx < out_channels; out_ch_idx++) {
|
||||
int16_t sum_val = 0;
|
||||
for (int i = 0; i < 9; i++) {
|
||||
sum_val += *filter_ptr++;
|
||||
sum_val += *filter_ptr++;
|
||||
sum_val += *filter_ptr++;
|
||||
}
|
||||
*filter_sum++ = sum_val;
|
||||
}
|
||||
|
||||
for (out_y = 0; out_y < out_ht; out_y++) {
|
||||
for (out_x = 0; out_x < out_wd; out_x++) {
|
||||
const int8_t *filter_data_ptr = filter_data;
|
||||
const int32_t base_y = stride_ht * out_y;
|
||||
const int32_t base_x = stride_wd * out_x;
|
||||
const int8_t *input_base_ptr = input_data + (base_y * input_wd + base_x) * 3;
|
||||
int16_t *filter_sum = (int16_t *) scratch_buffer;
|
||||
for (out_ch_idx = 0; out_ch_idx < out_channels; out_ch_idx++) {
|
||||
int32_t conv_out = 0;
|
||||
|
||||
for (filter_y_idx = 0; filter_y_idx < 3; filter_y_idx++) {
|
||||
const int8_t *input_data_ptr = input_base_ptr + (filter_y_idx * input_wd) * 3;
|
||||
conv_out += (*input_data_ptr++) * (*filter_data_ptr++);
|
||||
conv_out += (*input_data_ptr++) * (*filter_data_ptr++);
|
||||
conv_out += (*input_data_ptr++) * (*filter_data_ptr++);
|
||||
|
||||
conv_out += (*input_data_ptr++) * (*filter_data_ptr++);
|
||||
conv_out += (*input_data_ptr++) * (*filter_data_ptr++);
|
||||
conv_out += (*input_data_ptr++) * (*filter_data_ptr++);
|
||||
|
||||
conv_out += (*input_data_ptr++) * (*filter_data_ptr++);
|
||||
conv_out += (*input_data_ptr++) * (*filter_data_ptr++);
|
||||
conv_out += (*input_data_ptr++) * (*filter_data_ptr++);
|
||||
}
|
||||
|
||||
conv_out += *filter_sum++ * input_offset;
|
||||
|
||||
if (bias) {
|
||||
conv_out += bias[out_ch_idx];
|
||||
}
|
||||
conv_out = esp_nn_multiply_by_quantized_mult_fast(conv_out, out_mult[out_ch_idx], out_shift[out_ch_idx]);
|
||||
conv_out += out_offset;
|
||||
conv_out = max(conv_out, activation_min);
|
||||
conv_out = min(conv_out, activation_max);
|
||||
*out_data++ = (int8_t) conv_out;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int esp_nn_get_conv_scratch_size_esp32s3(const data_dims_t *input_dims,
|
||||
const data_dims_t *filter_dims,
|
||||
const data_dims_t *output_dims,
|
||||
const conv_params_t *conv_params)
|
||||
{
|
||||
const uint16_t input_wd = input_dims->width;
|
||||
const uint16_t input_ht = input_dims->height;
|
||||
const uint16_t in_ch = input_dims->channels;
|
||||
const uint16_t filter_wd = filter_dims->width;
|
||||
const uint16_t filter_ht = filter_dims->height;
|
||||
const uint16_t out_ch = output_dims->channels;
|
||||
const uint16_t pad_wd = conv_params->padding.width;
|
||||
const uint16_t pad_ht = conv_params->padding.height;
|
||||
const uint16_t stride_wd = conv_params->stride.width;
|
||||
const uint16_t stride_ht = conv_params->stride.height;
|
||||
|
||||
int filter_size = filter_wd * filter_ht * in_ch * out_ch;
|
||||
int input_size = input_wd * input_ht * in_ch;
|
||||
|
||||
int transpose_buf_size = 2 * (8 * in_ch); /* to store intermediate data */
|
||||
if (input_wd * input_ht < 8) {
|
||||
transpose_buf_size = 0; // not using this for leftover
|
||||
}
|
||||
int align_buf_size = 32; /* extra buffer for alignment */
|
||||
if (in_ch % 8 == 0 && filter_wd == 1 && filter_ht == 1 &&
|
||||
pad_wd == 0 && pad_ht == 0 && stride_wd == 1 && stride_ht == 1) {
|
||||
return filter_size + transpose_buf_size + align_buf_size;
|
||||
}
|
||||
return 2 * (filter_size + input_size) + transpose_buf_size + align_buf_size;
|
||||
}
|
||||
|
||||
void esp_nn_set_conv_scratch_buf_esp32s3(void *buf)
|
||||
{
|
||||
scratch_buffer = (int16_t *) buf;
|
||||
}
|
||||
|
||||
void esp_nn_conv_s8_esp32s3(const data_dims_t *input_dims,
|
||||
const int8_t *input,
|
||||
const data_dims_t *filter_dims,
|
||||
const int8_t *filter_data,
|
||||
const int32_t *bias,
|
||||
const data_dims_t *output_dims,
|
||||
int8_t *out_data,
|
||||
const conv_params_t *conv_params,
|
||||
const quant_data_t *quant_data)
|
||||
{
|
||||
const uint16_t input_wd = input_dims->width;
|
||||
const uint16_t input_ht = input_dims->height;
|
||||
const uint16_t channels = input_dims->channels;
|
||||
const int32_t input_offset = conv_params->in_offset;
|
||||
const int32_t out_offset = conv_params->out_offset;
|
||||
const uint16_t pad_wd = conv_params->padding.width;
|
||||
const uint16_t pad_ht = conv_params->padding.height;
|
||||
const uint16_t stride_wd = conv_params->stride.width;
|
||||
const uint16_t stride_ht = conv_params->stride.height;
|
||||
const uint16_t filter_wd = filter_dims->width;
|
||||
const uint16_t filter_ht = filter_dims->height;
|
||||
const uint16_t out_wd = output_dims->width;
|
||||
const uint16_t out_ht = output_dims->height;
|
||||
const uint16_t out_channels = output_dims->channels;
|
||||
const int32_t *out_shift = quant_data->shift;
|
||||
const int32_t *out_mult = quant_data->mult;
|
||||
const int32_t activation_min = conv_params->activation.min;
|
||||
const int32_t activation_max = conv_params->activation.max;
|
||||
|
||||
int filter_size = filter_wd * filter_ht * channels * out_channels;
|
||||
int input_size = input_wd * input_ht * channels;
|
||||
int align_len = 16 - (filter_size & 15);
|
||||
int16_t *filter_data16 = scratch_buffer;
|
||||
int16_t *input_data16 = scratch_buffer + filter_size + align_len;
|
||||
|
||||
if (scratch_buffer == NULL) {
|
||||
printf("esp_nn_conv error! scratch_buffer not set!\n");
|
||||
return;
|
||||
}
|
||||
|
||||
if (channels % 8 == 0 && filter_wd == 1 && filter_ht == 1 &&
|
||||
pad_wd == 0 && pad_ht == 0 && stride_wd == 1 && stride_ht == 1) {
|
||||
int8_t *filter_aligned = (int8_t *) scratch_buffer;
|
||||
int scratch_offset = (int) (filter_aligned + filter_size);
|
||||
void *scratch_buf = (void *) (scratch_offset + 16 - (scratch_offset & 15));
|
||||
memcpy(filter_aligned, filter_data, filter_size); // copy to aligned address
|
||||
esp_nn_conv_s8_mult8_1x1_esp32s3(
|
||||
input, input_wd, input_ht, channels, input_offset, filter_aligned,
|
||||
bias, out_data, out_wd, out_ht, out_channels, out_offset,
|
||||
out_shift, out_mult, activation_min, activation_max, scratch_buf);
|
||||
} else if (channels % 4 == 0 && filter_wd == 1 && filter_ht == 1 &&
|
||||
(input_wd * input_ht) % 4 == 0 && /* TODO: remove this check */
|
||||
pad_wd == 0 && pad_ht == 0 && stride_wd == 1 && stride_ht == 1) {
|
||||
int scratch_offset = (int) (input_data16 + input_size);
|
||||
void *scratch_buf = (void *) (scratch_offset + 16 - (scratch_offset & 15));
|
||||
esp_nn_s8_to_s16_esp32s3(filter_data, filter_data16, filter_size);
|
||||
esp_nn_aligned_s8_to_s16_with_offset_esp32s3(input, input_data16, input_size, input_offset);
|
||||
esp_nn_conv_s16_mult4_1x1_esp32s3(
|
||||
input_data16, input_wd, input_ht, channels, filter_data16,
|
||||
bias, out_data, out_wd, out_ht, out_channels, out_offset,
|
||||
out_shift, out_mult, activation_min, activation_max, scratch_buf);
|
||||
} else if (channels % 8 == 0) {
|
||||
esp_nn_s8_to_s16_esp32s3(filter_data, filter_data16, filter_size);
|
||||
esp_nn_aligned_s8_to_s16_with_offset_esp32s3(input, input_data16, input_size, input_offset);
|
||||
esp_nn_conv_s16_mult8_esp32s3(
|
||||
input_data16, input_wd, input_ht, channels, pad_wd, pad_ht,
|
||||
stride_wd, stride_ht, filter_data16, filter_wd, filter_ht, bias,
|
||||
out_data, out_wd, out_ht, out_channels, out_offset, out_shift,
|
||||
out_mult, activation_min, activation_max);
|
||||
} else if (pad_wd == 0 && pad_ht == 0) {
|
||||
if (filter_wd == 3 && filter_ht == 3 && channels == 3) {
|
||||
esp_nn_conv_s8_pad_valid_ch3_3x3(input, input_wd, input_ht, input_offset,
|
||||
stride_wd, stride_ht, filter_data, bias,
|
||||
out_data, out_wd, out_ht, out_channels, out_offset,
|
||||
out_shift, out_mult, activation_min, activation_max);
|
||||
} else {
|
||||
esp_nn_conv_s8_pad_valid(input, input_wd, input_ht, channels, input_offset,
|
||||
stride_wd, stride_ht, filter_data, filter_wd, filter_ht, bias,
|
||||
out_data, out_wd, out_ht, out_channels, out_offset, out_shift,
|
||||
out_mult, activation_min, activation_max);
|
||||
}
|
||||
} else {
|
||||
/* Basic unrolled version */
|
||||
esp_nn_conv_s8_unrolled(input_dims, input, filter_dims, filter_data,
|
||||
bias, output_dims, out_data, conv_params, quant_data);
|
||||
}
|
||||
}
|
||||
@@ -1,179 +0,0 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <esp_nn_defs.h>
|
||||
|
||||
#include <common_functions.h>
|
||||
|
||||
int esp_nn_get_conv_scratch_size_opt(const data_dims_t *input_dims,
|
||||
const data_dims_t *filter_dims,
|
||||
const data_dims_t *output_dims,
|
||||
const conv_params_t *conv_params)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
void esp_nn_set_conv_scratch_buf_opt(const void *buf)
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
__attribute__ ((noinline))
|
||||
static void esp_nn_conv_s8_1x1(const data_dims_t *input_dims,
|
||||
const int8_t *input_data,
|
||||
const int8_t *filter_data,
|
||||
const int32_t *bias,
|
||||
const data_dims_t *output_dims,
|
||||
int8_t *out_data,
|
||||
const conv_params_t *conv_params,
|
||||
const quant_data_t *quant_data)
|
||||
{
|
||||
const uint16_t input_wd = input_dims->width;
|
||||
const uint16_t in_channels = input_dims->channels;
|
||||
const int32_t input_offset = conv_params->in_offset;
|
||||
const int32_t out_offset = conv_params->out_offset;
|
||||
const uint16_t stride_wd = conv_params->stride.width;
|
||||
const uint16_t stride_ht = conv_params->stride.height;
|
||||
const uint16_t out_wd = output_dims->width;
|
||||
const uint16_t out_ht = output_dims->height;
|
||||
const uint16_t out_channels = output_dims->channels;
|
||||
const int32_t activation_min = conv_params->activation.min;
|
||||
const int32_t activation_max = conv_params->activation.max;
|
||||
|
||||
for (int32_t in_row = 0; in_row < out_ht * stride_ht; in_row += stride_ht) {
|
||||
for (int32_t in_col = 0; in_col < out_wd * stride_wd; in_col += stride_wd) {
|
||||
const int32_t *out_mult = quant_data->mult;
|
||||
const int32_t *out_shift = quant_data->shift;
|
||||
const int8_t *filter_ptr = filter_data;
|
||||
const int8_t *input_base_ptr = input_data + (in_row * input_wd + in_col) * in_channels;
|
||||
int32_t out_ch_idx = 0;
|
||||
for (; out_ch_idx < out_channels; out_ch_idx++) {
|
||||
int32_t conv_out = 0;
|
||||
|
||||
const int8_t *input_ptr = input_base_ptr;
|
||||
|
||||
int32_t in_ch_idx = 0;
|
||||
for (; in_ch_idx < in_channels - 3; in_ch_idx += 4) {
|
||||
conv_out += (*input_ptr++ + input_offset) * *filter_ptr++;
|
||||
conv_out += (*input_ptr++ + input_offset) * *filter_ptr++;
|
||||
conv_out += (*input_ptr++ + input_offset) * *filter_ptr++;
|
||||
conv_out += (*input_ptr++ + input_offset) * *filter_ptr++;
|
||||
}
|
||||
for (; in_ch_idx < in_channels; in_ch_idx ++) {
|
||||
conv_out += (*input_ptr++ + input_offset) * *filter_ptr++;
|
||||
}
|
||||
if (bias) {
|
||||
conv_out += bias[out_ch_idx];
|
||||
}
|
||||
conv_out = esp_nn_multiply_by_quantized_mult_fast(conv_out, *out_mult++, *out_shift++);
|
||||
conv_out += out_offset;
|
||||
conv_out = max(conv_out, activation_min);
|
||||
conv_out = min(conv_out, activation_max);
|
||||
*out_data++ = (int8_t) conv_out;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Assumption 1: i/p channels == o/p channels
|
||||
* Assumption 2: Pointers are valid
|
||||
* Assumption 3: dialation width = 1
|
||||
*/
|
||||
void esp_nn_conv_s8_opt(const data_dims_t *input_dims,
|
||||
const int8_t *input_data,
|
||||
const data_dims_t *filter_dims,
|
||||
const int8_t *filter_data,
|
||||
const int32_t *bias,
|
||||
const data_dims_t *output_dims,
|
||||
int8_t *out_data,
|
||||
const conv_params_t *conv_params,
|
||||
const quant_data_t *quant_data)
|
||||
{
|
||||
const uint16_t filter_wd = filter_dims->width;
|
||||
const uint16_t filter_ht = filter_dims->height;
|
||||
|
||||
if (filter_wd == 1 && filter_ht == 1) {
|
||||
esp_nn_conv_s8_1x1(input_dims, input_data, filter_data, bias,
|
||||
output_dims, out_data, conv_params, quant_data);
|
||||
return;
|
||||
}
|
||||
|
||||
const uint16_t input_wd = input_dims->width;
|
||||
const uint16_t input_ht = input_dims->height;
|
||||
const uint16_t in_channels = input_dims->channels;
|
||||
const int32_t input_offset = conv_params->in_offset;
|
||||
const int32_t out_offset = conv_params->out_offset;
|
||||
const uint16_t pad_wd = conv_params->padding.width;
|
||||
const uint16_t pad_ht = conv_params->padding.height;
|
||||
const uint16_t stride_wd = conv_params->stride.width;
|
||||
const uint16_t stride_ht = conv_params->stride.height;
|
||||
const uint16_t out_wd = output_dims->width;
|
||||
const uint16_t out_ht = output_dims->height;
|
||||
const uint16_t out_channels = output_dims->channels;
|
||||
const int32_t activation_min = conv_params->activation.min;
|
||||
const int32_t activation_max = conv_params->activation.max;
|
||||
|
||||
int32_t out_ch_idx, out_y, out_x, filter_y_idx, filter_x_idx;
|
||||
|
||||
for (out_y = 0; out_y < out_ht; out_y++) {
|
||||
for (out_x = 0; out_x < out_wd; out_x++) {
|
||||
const int32_t *out_shift = quant_data->shift;
|
||||
const int32_t *out_mult = quant_data->mult;
|
||||
for (out_ch_idx = 0; out_ch_idx < out_channels; out_ch_idx++) {
|
||||
int32_t conv_out = 0;
|
||||
|
||||
const int32_t base_y = stride_ht * out_y - pad_ht;
|
||||
const int32_t base_x = stride_wd * out_x - pad_wd;
|
||||
|
||||
const int32_t filter_y_start = max(0, -base_y);
|
||||
const int32_t filter_x_start = max(0, -base_x);
|
||||
|
||||
const int32_t filter_y_end = min(filter_ht, input_ht - base_y);
|
||||
const int32_t filter_x_end = min(filter_wd, input_wd - base_x);
|
||||
|
||||
for (filter_y_idx = filter_y_start; filter_y_idx < filter_y_end; filter_y_idx++) {
|
||||
for (filter_x_idx = filter_x_start; filter_x_idx < filter_x_end; filter_x_idx++) {
|
||||
const int32_t in_row = base_y + filter_y_idx;
|
||||
const int32_t in_col = base_x + filter_x_idx;
|
||||
|
||||
const int8_t *input_ptr = input_data +
|
||||
(in_row * input_wd + in_col) * in_channels;
|
||||
const int8_t *filter_ptr = filter_data +
|
||||
out_ch_idx * in_channels * filter_ht * filter_wd +
|
||||
(filter_y_idx * filter_wd + filter_x_idx) * in_channels;
|
||||
int32_t in_ch_idx = 0;
|
||||
for (; in_ch_idx < in_channels - 3; in_ch_idx += 4) {
|
||||
conv_out += (*input_ptr++ + input_offset) * *filter_ptr++;
|
||||
conv_out += (*input_ptr++ + input_offset) * *filter_ptr++;
|
||||
conv_out += (*input_ptr++ + input_offset) * *filter_ptr++;
|
||||
conv_out += (*input_ptr++ + input_offset) * *filter_ptr++;
|
||||
}
|
||||
for (; in_ch_idx < in_channels; in_ch_idx ++) {
|
||||
conv_out += (*input_ptr++ + input_offset) * *filter_ptr++;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (bias) {
|
||||
conv_out += bias[out_ch_idx];
|
||||
}
|
||||
conv_out = esp_nn_multiply_by_quantized_mult_fast(conv_out, *out_mult++, *out_shift++);
|
||||
conv_out += out_offset;
|
||||
conv_out = max(conv_out, activation_min);
|
||||
conv_out = min(conv_out, activation_max);
|
||||
*out_data++ = (int8_t) conv_out;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,100 +0,0 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <esp_nn_defs.h>
|
||||
#include <common_functions.h>
|
||||
|
||||
int esp_nn_get_depthwise_conv_scratch_size_ansi(const data_dims_t *input_dims,
|
||||
const data_dims_t *filter_dims,
|
||||
const data_dims_t *output_dims,
|
||||
const dw_conv_params_t *conv_params)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
void esp_nn_set_depthwise_conv_scratch_buf_ansi(const void *buf)
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
void esp_nn_depthwise_conv_s8_ansi(const data_dims_t *input_dims,
|
||||
const int8_t *input_data,
|
||||
const data_dims_t *filter_dims,
|
||||
const int8_t *filter_data,
|
||||
const int32_t *bias,
|
||||
const data_dims_t *output_dims,
|
||||
int8_t *out_data,
|
||||
const dw_conv_params_t *conv_params,
|
||||
const quant_data_t *quant_data)
|
||||
{
|
||||
const uint16_t input_wd = input_dims->width;
|
||||
const uint16_t input_ht = input_dims->height;
|
||||
const uint16_t channels = input_dims->channels;
|
||||
const int32_t input_offset = conv_params->in_offset;
|
||||
const int32_t out_offset = conv_params->out_offset;
|
||||
const uint16_t pad_wd = conv_params->padding.width;
|
||||
const uint16_t pad_ht = conv_params->padding.height;
|
||||
const uint16_t stride_wd = conv_params->stride.width;
|
||||
const uint16_t stride_ht = conv_params->stride.height;
|
||||
const uint16_t filter_wd = filter_dims->width;
|
||||
const uint16_t filter_ht = filter_dims->height;
|
||||
const uint16_t out_wd = output_dims->width;
|
||||
const uint16_t out_ht = output_dims->height;
|
||||
const int32_t *out_shift = quant_data->shift;
|
||||
const int32_t *out_mult = quant_data->mult;
|
||||
const int32_t activation_min = conv_params->activation.min;
|
||||
const int32_t activation_max = conv_params->activation.max;
|
||||
const uint16_t ch_mult = conv_params->ch_mult;
|
||||
|
||||
int out_idx = 0;
|
||||
for (int out_y = 0; out_y < out_ht; out_y++) { //height loop
|
||||
const int16_t base_y = (out_y * stride_ht) - pad_ht;
|
||||
for (int out_x = 0; out_x < out_wd; out_x++) { //width_loop
|
||||
const int16_t base_x = (out_x * stride_wd) - pad_wd;
|
||||
for (int ch_idx = 0; ch_idx < channels; ch_idx++) {//channel_loop
|
||||
for (int ch_mult_idx = 0; ch_mult_idx < ch_mult; ch_mult_idx++) {
|
||||
int32_t result = 0;
|
||||
const int out_ch_idx = ch_mult_idx + ch_idx * ch_mult;
|
||||
|
||||
/* Select filter so as the point doesn't lie outside block */
|
||||
int filter_y_start = max(0, -base_y);
|
||||
int filter_x_start = max(0, -base_x);
|
||||
int filter_y_end = min(filter_ht, input_ht - base_y);
|
||||
int filter_x_end = min(filter_wd, input_wd - base_x);
|
||||
|
||||
for (int filter_y_idx = filter_y_start; filter_y_idx < filter_y_end; filter_y_idx++) {
|
||||
const int32_t idx_y = base_y + filter_y_idx;
|
||||
for (int filter_x_idx = filter_x_start; filter_x_idx < filter_x_end; filter_x_idx++) {
|
||||
const int32_t idx_x = base_x + filter_x_idx;
|
||||
int32_t input_index = (idx_y * input_wd + idx_x) * channels + ch_idx;
|
||||
int32_t filter_index = (filter_y_idx * filter_wd + filter_x_idx) * (channels * ch_mult) + out_ch_idx;
|
||||
int32_t input_val = input_data[input_index] + input_offset;
|
||||
int32_t filter_val = filter_data[filter_index];
|
||||
result += input_val * filter_val;
|
||||
}
|
||||
}
|
||||
if (bias) {
|
||||
result += bias[out_ch_idx];
|
||||
}
|
||||
result = esp_nn_multiply_by_quantized_mult(result, out_mult[out_ch_idx], out_shift[out_ch_idx]);
|
||||
result += out_offset;
|
||||
result = max(result, activation_min);
|
||||
result = min(result, activation_max);
|
||||
|
||||
out_data[out_idx++] = result;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,291 +0,0 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <esp_nn_defs.h>
|
||||
#include <common_functions.h>
|
||||
|
||||
int esp_nn_get_depthwise_conv_scratch_size_opt(const data_dims_t *input_dims,
|
||||
const data_dims_t *filter_dims,
|
||||
const data_dims_t *output_dims,
|
||||
const dw_conv_params_t *conv_params)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
void esp_nn_set_depthwise_conv_scratch_buf_opt(const void *buf)
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
/* common channel multiplier == 1 case */
|
||||
__attribute__ ((noinline))
|
||||
static void esp_nn_depthwise_conv_s8_ch_mult_1(const data_dims_t *input_dims,
|
||||
const int8_t *input_data,
|
||||
const data_dims_t *filter_dims,
|
||||
const int8_t *filter_data,
|
||||
const int32_t *bias,
|
||||
const data_dims_t *output_dims,
|
||||
int8_t *out_data,
|
||||
const dw_conv_params_t *conv_params,
|
||||
const quant_data_t *quant_data)
|
||||
{
|
||||
const uint16_t input_wd = input_dims->width;
|
||||
const uint16_t input_ht = input_dims->height;
|
||||
const uint16_t channels = input_dims->channels;
|
||||
const int32_t input_offset = conv_params->in_offset;
|
||||
const int32_t out_offset = conv_params->out_offset;
|
||||
const uint16_t pad_wd = conv_params->padding.width;
|
||||
const uint16_t pad_ht = conv_params->padding.height;
|
||||
const uint16_t stride_wd = conv_params->stride.width;
|
||||
const uint16_t stride_ht = conv_params->stride.height;
|
||||
const uint16_t filter_wd = filter_dims->width;
|
||||
const uint16_t filter_ht = filter_dims->height;
|
||||
const uint16_t out_wd = output_dims->width;
|
||||
const uint16_t out_ht = output_dims->height;
|
||||
const int32_t activation_min = conv_params->activation.min;
|
||||
const int32_t activation_max = conv_params->activation.max;
|
||||
|
||||
int out_idx = 0;
|
||||
for (int out_y = 0; out_y < out_ht; out_y++) { //height loop
|
||||
const int16_t base_y = (out_y * stride_ht) - pad_ht;
|
||||
for (int out_x = 0; out_x < out_wd; out_x++) { //width_loop
|
||||
const int16_t base_x = (out_x * stride_wd) - pad_wd;
|
||||
|
||||
const int32_t *out_shift = quant_data->shift;
|
||||
const int32_t *out_mult = quant_data->mult;
|
||||
|
||||
/* Select filter so as the point doesn't lie outside block */
|
||||
int filter_y_start = max(0, -base_y);
|
||||
int filter_x_start = max(0, -base_x);
|
||||
int filter_y_end = min(filter_ht, input_ht - base_y);
|
||||
int filter_x_end = min(filter_wd, input_wd - base_x);
|
||||
|
||||
int ch_idx = 0;
|
||||
for (; ch_idx < channels - 3; ch_idx += 4) {//channel_loop
|
||||
int32_t result0 = 0;
|
||||
int32_t result1 = 0;
|
||||
int32_t result2 = 0;
|
||||
int32_t result3 = 0;
|
||||
|
||||
for (int filter_y_idx = filter_y_start; filter_y_idx < filter_y_end; filter_y_idx++) {
|
||||
const int32_t idx_y = base_y + filter_y_idx;
|
||||
for (int filter_x_idx = filter_x_start; filter_x_idx < filter_x_end; filter_x_idx++) {
|
||||
const int32_t idx_x = base_x + filter_x_idx;
|
||||
int32_t input_index = (idx_y * input_wd + idx_x) * channels + ch_idx;
|
||||
int32_t filter_index = (filter_y_idx * filter_wd + filter_x_idx) * (channels) + ch_idx;
|
||||
int32_t input_val0 = input_data[input_index + 0] + input_offset;
|
||||
int32_t input_val1 = input_data[input_index + 1] + input_offset;
|
||||
int32_t input_val2 = input_data[input_index + 2] + input_offset;
|
||||
int32_t input_val3 = input_data[input_index + 3] + input_offset;
|
||||
int32_t filter_val0 = filter_data[filter_index + 0];
|
||||
int32_t filter_val1 = filter_data[filter_index + 1];
|
||||
int32_t filter_val2 = filter_data[filter_index + 2];
|
||||
int32_t filter_val3 = filter_data[filter_index + 3];
|
||||
result0 += input_val0 * filter_val0;
|
||||
result1 += input_val1 * filter_val1;
|
||||
result2 += input_val2 * filter_val2;
|
||||
result3 += input_val3 * filter_val3;
|
||||
}
|
||||
}
|
||||
if (bias) {
|
||||
result0 += bias[ch_idx + 0];
|
||||
result1 += bias[ch_idx + 1];
|
||||
result2 += bias[ch_idx + 2];
|
||||
result3 += bias[ch_idx + 3];
|
||||
}
|
||||
result0 = esp_nn_multiply_by_quantized_mult_fast(result0, *out_mult++, *out_shift++);
|
||||
result1 = esp_nn_multiply_by_quantized_mult_fast(result1, *out_mult++, *out_shift++);
|
||||
result2 = esp_nn_multiply_by_quantized_mult_fast(result2, *out_mult++, *out_shift++);
|
||||
result3 = esp_nn_multiply_by_quantized_mult_fast(result3, *out_mult++, *out_shift++);
|
||||
|
||||
result0 += out_offset;
|
||||
result1 += out_offset;
|
||||
result2 += out_offset;
|
||||
result3 += out_offset;
|
||||
|
||||
result0 = max(result0, activation_min);
|
||||
result1 = max(result1, activation_min);
|
||||
result2 = max(result2, activation_min);
|
||||
result3 = max(result3, activation_min);
|
||||
|
||||
result0 = min(result0, activation_max);
|
||||
result1 = min(result1, activation_max);
|
||||
result2 = min(result2, activation_max);
|
||||
result3 = min(result3, activation_max);
|
||||
|
||||
out_data[out_idx++] = result0;
|
||||
out_data[out_idx++] = result1;
|
||||
out_data[out_idx++] = result2;
|
||||
out_data[out_idx++] = result3;
|
||||
}
|
||||
for (; ch_idx < channels; ch_idx++) {//channel_loop
|
||||
int32_t result = 0;
|
||||
|
||||
for (int filter_y_idx = filter_y_start; filter_y_idx < filter_y_end; filter_y_idx++) {
|
||||
const int32_t idx_y = base_y + filter_y_idx;
|
||||
for (int filter_x_idx = filter_x_start; filter_x_idx < filter_x_end; filter_x_idx++) {
|
||||
const int32_t idx_x = base_x + filter_x_idx;
|
||||
int32_t input_index = (idx_y * input_wd + idx_x) * channels + ch_idx;
|
||||
int32_t filter_index = (filter_y_idx * filter_wd + filter_x_idx) * (channels) + ch_idx;
|
||||
int32_t input_val = input_data[input_index] + input_offset;
|
||||
int32_t filter_val = filter_data[filter_index];
|
||||
result += input_val * filter_val;
|
||||
}
|
||||
}
|
||||
if (bias) {
|
||||
result += bias[ch_idx];
|
||||
}
|
||||
result = esp_nn_multiply_by_quantized_mult_fast(result, *out_mult++, *out_shift++);
|
||||
result += out_offset;
|
||||
result = max(result, activation_min);
|
||||
result = min(result, activation_max);
|
||||
|
||||
out_data[out_idx++] = result;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void esp_nn_depthwise_conv_s8_opt(const data_dims_t *input_dims,
|
||||
const int8_t *input_data,
|
||||
const data_dims_t *filter_dims,
|
||||
const int8_t *filter_data,
|
||||
const int32_t *bias,
|
||||
const data_dims_t *output_dims,
|
||||
int8_t *out_data,
|
||||
const dw_conv_params_t *conv_params,
|
||||
const quant_data_t *quant_data)
|
||||
{
|
||||
const uint16_t ch_mult = conv_params->ch_mult;
|
||||
if (ch_mult == 1) {
|
||||
esp_nn_depthwise_conv_s8_ch_mult_1(input_dims, input_data, filter_dims, filter_data,
|
||||
bias, output_dims, out_data, conv_params, quant_data);
|
||||
return;
|
||||
}
|
||||
const uint16_t input_wd = input_dims->width;
|
||||
const uint16_t input_ht = input_dims->height;
|
||||
const uint16_t channels = input_dims->channels;
|
||||
const int32_t input_offset = conv_params->in_offset;
|
||||
const int32_t out_offset = conv_params->out_offset;
|
||||
const uint16_t pad_wd = conv_params->padding.width;
|
||||
const uint16_t pad_ht = conv_params->padding.height;
|
||||
const uint16_t stride_wd = conv_params->stride.width;
|
||||
const uint16_t stride_ht = conv_params->stride.height;
|
||||
const uint16_t filter_wd = filter_dims->width;
|
||||
const uint16_t filter_ht = filter_dims->height;
|
||||
const uint16_t out_wd = output_dims->width;
|
||||
const uint16_t out_ht = output_dims->height;
|
||||
const int32_t activation_min = conv_params->activation.min;
|
||||
const int32_t activation_max = conv_params->activation.max;
|
||||
|
||||
int out_idx = 0;
|
||||
for (int out_y = 0; out_y < out_ht; out_y++) { //height loop
|
||||
const int16_t base_y = (out_y * stride_ht) - pad_ht;
|
||||
for (int out_x = 0; out_x < out_wd; out_x++) { //width_loop
|
||||
const int16_t base_x = (out_x * stride_wd) - pad_wd;
|
||||
|
||||
const int32_t *out_shift = quant_data->shift;
|
||||
const int32_t *out_mult = quant_data->mult;
|
||||
|
||||
/* Select filter so as the point doesn't lie outside block */
|
||||
int filter_y_start = max(0, -base_y);
|
||||
int filter_x_start = max(0, -base_x);
|
||||
int filter_y_end = min(filter_ht, input_ht - base_y);
|
||||
int filter_x_end = min(filter_wd, input_wd - base_x);
|
||||
|
||||
for (int ch_idx = 0; ch_idx < channels; ch_idx++) {//channel_loop
|
||||
int ch_mult_idx = 0;
|
||||
for (; ch_mult_idx < ch_mult - 3; ch_mult_idx += 4) {
|
||||
int32_t result0 = 0;
|
||||
int32_t result1 = 0;
|
||||
int32_t result2 = 0;
|
||||
int32_t result3 = 0;
|
||||
const int out_ch_idx = ch_idx * ch_mult + ch_mult_idx;
|
||||
|
||||
for (int filter_y_idx = filter_y_start; filter_y_idx < filter_y_end; filter_y_idx++) {
|
||||
const int32_t idx_y = base_y + filter_y_idx;
|
||||
for (int filter_x_idx = filter_x_start; filter_x_idx < filter_x_end; filter_x_idx++) {
|
||||
const int32_t idx_x = base_x + filter_x_idx;
|
||||
int32_t input_index = (idx_y * input_wd + idx_x) * channels + ch_idx;
|
||||
int32_t filter_index = (filter_y_idx * filter_wd + filter_x_idx) * (channels * ch_mult) + out_ch_idx;
|
||||
int32_t input_val = input_data[input_index] + input_offset;
|
||||
int32_t filter_val0 = filter_data[filter_index + 0];
|
||||
int32_t filter_val1 = filter_data[filter_index + 1];
|
||||
int32_t filter_val2 = filter_data[filter_index + 2];
|
||||
int32_t filter_val3 = filter_data[filter_index + 3];
|
||||
result0 += input_val * filter_val0;
|
||||
result1 += input_val * filter_val1;
|
||||
result2 += input_val * filter_val2;
|
||||
result3 += input_val * filter_val3;
|
||||
}
|
||||
}
|
||||
if (bias) {
|
||||
result0 += bias[out_ch_idx + 0];
|
||||
result1 += bias[out_ch_idx + 1];
|
||||
result2 += bias[out_ch_idx + 2];
|
||||
result3 += bias[out_ch_idx + 3];
|
||||
}
|
||||
result0 = esp_nn_multiply_by_quantized_mult_fast(result0, *out_mult++, *out_shift++);
|
||||
result1 = esp_nn_multiply_by_quantized_mult_fast(result1, *out_mult++, *out_shift++);
|
||||
result2 = esp_nn_multiply_by_quantized_mult_fast(result2, *out_mult++, *out_shift++);
|
||||
result3 = esp_nn_multiply_by_quantized_mult_fast(result3, *out_mult++, *out_shift++);
|
||||
|
||||
result0 += out_offset;
|
||||
result1 += out_offset;
|
||||
result2 += out_offset;
|
||||
result3 += out_offset;
|
||||
|
||||
result0 = max(result0, activation_min);
|
||||
result1 = max(result1, activation_min);
|
||||
result2 = max(result2, activation_min);
|
||||
result3 = max(result3, activation_min);
|
||||
result0 = min(result0, activation_max);
|
||||
result1 = min(result1, activation_max);
|
||||
result2 = min(result2, activation_max);
|
||||
result3 = min(result3, activation_max);
|
||||
|
||||
out_data[out_idx++] = result0;
|
||||
out_data[out_idx++] = result1;
|
||||
out_data[out_idx++] = result2;
|
||||
out_data[out_idx++] = result3;
|
||||
}
|
||||
for (; ch_mult_idx < ch_mult; ch_mult_idx++) {
|
||||
int32_t result = 0;
|
||||
const int out_ch_idx = ch_idx * ch_mult + ch_mult_idx;
|
||||
|
||||
for (int filter_y_idx = filter_y_start; filter_y_idx < filter_y_end; filter_y_idx++) {
|
||||
const int32_t idx_y = base_y + filter_y_idx;
|
||||
for (int filter_x_idx = filter_x_start; filter_x_idx < filter_x_end; filter_x_idx++) {
|
||||
const int32_t idx_x = base_x + filter_x_idx;
|
||||
int32_t input_index = (idx_y * input_wd + idx_x) * channels + ch_idx;
|
||||
int32_t filter_index = (filter_y_idx * filter_wd + filter_x_idx) * (channels * ch_mult) + out_ch_idx;
|
||||
int32_t input_val = input_data[input_index] + input_offset;
|
||||
int32_t filter_val = filter_data[filter_index];
|
||||
result += input_val * filter_val;
|
||||
}
|
||||
}
|
||||
if (bias) {
|
||||
result += bias[out_ch_idx];
|
||||
}
|
||||
result = esp_nn_multiply_by_quantized_mult_fast(result, *out_mult++, *out_shift++);
|
||||
result += out_offset;
|
||||
result = max(result, activation_min);
|
||||
result = min(result, activation_max);
|
||||
|
||||
out_data[out_idx++] = result;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,543 +0,0 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdio.h>
|
||||
#include <esp_nn_defs.h>
|
||||
|
||||
#include <common_functions.h>
|
||||
|
||||
static int16_t *scratch_buffer = NULL;
|
||||
|
||||
extern void esp_nn_depthwise_conv_s16_mult8_3x3_esp32s3(const int16_t *input_data,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t channels,
|
||||
const uint16_t pad_wd,
|
||||
const uint16_t pad_ht,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const uint16_t ch_mult,
|
||||
const int16_t *filter_data,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_wd,
|
||||
const uint16_t out_ht,
|
||||
const int32_t out_offset,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max);
|
||||
|
||||
extern void esp_nn_depthwise_conv_s8_mult1_3x3_padded_esp32s3(const int8_t *input_data,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t channels,
|
||||
const int32_t input_offset,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const int8_t *filter_data,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_wd,
|
||||
const uint16_t out_ht,
|
||||
const int32_t out_offset,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max);
|
||||
|
||||
extern void esp_nn_depthwise_conv_s16_mult1_3x3_no_pad_esp32s3(const int16_t *input_data,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t channels,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const int16_t *filter_data,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_wd,
|
||||
const uint16_t out_ht,
|
||||
const int32_t out_offset,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max);
|
||||
|
||||
extern void esp_nn_depthwise_conv_s16_mult8_esp32s3(const int16_t *input_data,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t channels,
|
||||
const uint16_t pad_wd,
|
||||
const uint16_t pad_ht,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const uint16_t ch_mult,
|
||||
const int16_t *filter_data,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_wd,
|
||||
const uint16_t out_ht,
|
||||
const int32_t out_offset,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max);
|
||||
|
||||
extern void esp_nn_depthwise_conv_s16_mult4_esp32s3(const int16_t *input_data,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t channels,
|
||||
const uint16_t pad_wd,
|
||||
const uint16_t pad_ht,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const uint16_t ch_mult,
|
||||
const int16_t *filter_data,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_wd,
|
||||
const uint16_t out_ht,
|
||||
const int32_t out_offset,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max);
|
||||
|
||||
extern void esp_nn_depthwise_conv_s16_mult1_3x3_esp32s3(const int16_t *input_data,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t channels,
|
||||
const uint16_t pad_wd,
|
||||
const uint16_t pad_ht,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const int16_t *filter_data,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_wd,
|
||||
const uint16_t out_ht,
|
||||
const int32_t out_offset,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max);
|
||||
|
||||
extern void esp_nn_depthwise_conv_s16_mult1_esp32s3(const int16_t *input_data,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t channels,
|
||||
const uint16_t pad_wd,
|
||||
const uint16_t pad_ht,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const int16_t *filter_data,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_wd,
|
||||
const uint16_t out_ht,
|
||||
const int32_t out_offset,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max);
|
||||
|
||||
extern void esp_nn_s8_to_s16_esp32s3(const int8_t *src, int16_t *dst, const int size);
|
||||
|
||||
extern void esp_nn_aligned_s8_to_s16_with_offset_esp32s3(const int8_t *src, int16_t *dst,
|
||||
const int size, const int32_t offset);
|
||||
|
||||
static void esp_nn_depthwise_conv_s8_unrolled(const int8_t *input_data,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t channels,
|
||||
const int32_t input_offset,
|
||||
const uint16_t pad_wd,
|
||||
const uint16_t pad_ht,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const uint16_t ch_mult,
|
||||
const int8_t *filter_data,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_wd,
|
||||
const uint16_t out_ht,
|
||||
const int32_t out_offset,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max)
|
||||
{
|
||||
int out_idx = 0;
|
||||
for (int out_y = 0; out_y < out_ht; out_y++) { //height loop
|
||||
const int16_t base_y = (out_y * stride_ht) - pad_ht;
|
||||
for (int out_x = 0; out_x < out_wd; out_x++) { //width_loop
|
||||
const int16_t base_x = (out_x * stride_wd) - pad_wd;
|
||||
for (int ch_idx = 0; ch_idx < channels; ch_idx++) {//channel_loop
|
||||
int ch_mult_idx = 0;
|
||||
for (; ch_mult_idx < ch_mult - 3; ch_mult_idx += 4) {
|
||||
int32_t result0 = 0, result1 = 0, result2 = 0, result3 = 0;
|
||||
const int out_ch_idx = ch_mult_idx + ch_idx * ch_mult;
|
||||
|
||||
/* Select filter so as the point doesn't lie outside block */
|
||||
int filter_y_start = max(0, -base_y);
|
||||
int filter_x_start = max(0, -base_x);
|
||||
int filter_y_end = min(filter_ht, input_ht - base_y);
|
||||
int filter_x_end = min(filter_wd, input_wd - base_x);
|
||||
|
||||
for (int filter_y_idx = filter_y_start; filter_y_idx < filter_y_end; filter_y_idx++) {
|
||||
const int32_t idx_y = base_y + filter_y_idx;
|
||||
for (int filter_x_idx = filter_x_start; filter_x_idx < filter_x_end; filter_x_idx++) {
|
||||
const int32_t idx_x = base_x + filter_x_idx;
|
||||
int32_t input_index = (idx_y * input_wd + idx_x) * channels + ch_idx;
|
||||
int32_t filter_index = (filter_y_idx * filter_wd + filter_x_idx) * (channels * ch_mult) + out_ch_idx;
|
||||
int32_t input_val = input_data[input_index] + input_offset;
|
||||
int32_t filter_val0 = filter_data[filter_index + 0];
|
||||
int32_t filter_val1 = filter_data[filter_index + 1];
|
||||
int32_t filter_val2 = filter_data[filter_index + 2];
|
||||
int32_t filter_val3 = filter_data[filter_index + 3];
|
||||
result0 += input_val * filter_val0;
|
||||
result1 += input_val * filter_val1;
|
||||
result2 += input_val * filter_val2;
|
||||
result3 += input_val * filter_val3;
|
||||
}
|
||||
}
|
||||
if (bias) {
|
||||
result0 += bias[out_ch_idx + 0];
|
||||
result1 += bias[out_ch_idx + 1];
|
||||
result2 += bias[out_ch_idx + 2];
|
||||
result3 += bias[out_ch_idx + 3];
|
||||
}
|
||||
result0 = esp_nn_multiply_by_quantized_mult(result0,
|
||||
out_mult[out_ch_idx + 0], out_shift[out_ch_idx + 0]);
|
||||
result1 = esp_nn_multiply_by_quantized_mult(result1,
|
||||
out_mult[out_ch_idx + 1], out_shift[out_ch_idx + 1]);
|
||||
result2 = esp_nn_multiply_by_quantized_mult(result2,
|
||||
out_mult[out_ch_idx + 2], out_shift[out_ch_idx + 2]);
|
||||
result3 = esp_nn_multiply_by_quantized_mult(result3,
|
||||
out_mult[out_ch_idx + 3], out_shift[out_ch_idx + 3]);
|
||||
|
||||
result0 += out_offset;
|
||||
result1 += out_offset;
|
||||
result2 += out_offset;
|
||||
result3 += out_offset;
|
||||
|
||||
result0 = max(result0, activation_min);
|
||||
result1 = max(result1, activation_min);
|
||||
result2 = max(result2, activation_min);
|
||||
result3 = max(result3, activation_min);
|
||||
|
||||
result0 = min(result0, activation_max);
|
||||
result1 = min(result1, activation_max);
|
||||
result2 = min(result2, activation_max);
|
||||
result3 = min(result3, activation_max);
|
||||
|
||||
out_data[out_idx++] = result0;
|
||||
out_data[out_idx++] = result1;
|
||||
out_data[out_idx++] = result2;
|
||||
out_data[out_idx++] = result3;
|
||||
}
|
||||
|
||||
/* left-over */
|
||||
for (; ch_mult_idx < ch_mult; ch_mult_idx++) {
|
||||
int32_t result = 0;
|
||||
const int out_ch_idx = ch_mult_idx + ch_idx * ch_mult;
|
||||
|
||||
/* Select filter so as the point doesn't lie outside block */
|
||||
int filter_y_start = max(0, -base_y);
|
||||
int filter_x_start = max(0, -base_x);
|
||||
int filter_y_end = min(filter_ht, input_ht - base_y);
|
||||
int filter_x_end = min(filter_wd, input_wd - base_x);
|
||||
|
||||
for (int filter_y_idx = filter_y_start; filter_y_idx < filter_y_end; filter_y_idx++) {
|
||||
const int32_t idx_y = base_y + filter_y_idx;
|
||||
for (int filter_x_idx = filter_x_start; filter_x_idx < filter_x_end; filter_x_idx++) {
|
||||
const int32_t idx_x = base_x + filter_x_idx;
|
||||
int32_t input_index = (idx_y * input_wd + idx_x) * channels + ch_idx;
|
||||
int32_t filter_index = (filter_y_idx * filter_wd + filter_x_idx) * (channels * ch_mult) + out_ch_idx;
|
||||
int32_t input_val = input_data[input_index] + input_offset;
|
||||
int32_t filter_val = filter_data[filter_index];
|
||||
result += input_val * filter_val;
|
||||
}
|
||||
}
|
||||
if (bias) {
|
||||
result += bias[out_ch_idx];
|
||||
}
|
||||
result = esp_nn_multiply_by_quantized_mult(result, out_mult[out_ch_idx], out_shift[out_ch_idx]);
|
||||
result += out_offset;
|
||||
result = max(result, activation_min);
|
||||
result = min(result, activation_max);
|
||||
|
||||
out_data[out_idx++] = result;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void esp_nn_depthwise_conv_s8_ch_mult1(const int8_t *input_data,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t channels,
|
||||
const int32_t input_offset,
|
||||
const uint16_t pad_wd,
|
||||
const uint16_t pad_ht,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const int8_t *filter_data,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_wd,
|
||||
const uint16_t out_ht,
|
||||
const int32_t out_offset,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max)
|
||||
{
|
||||
int out_idx = 0;
|
||||
for (int out_y = 0; out_y < out_ht; out_y++) { //height loop
|
||||
const int16_t base_y = (out_y * stride_ht) - pad_ht;
|
||||
for (int out_x = 0; out_x < out_wd; out_x++) { //width_loop
|
||||
const int16_t base_x = (out_x * stride_wd) - pad_wd;
|
||||
for (int ch_idx = 0; ch_idx < channels; ch_idx++) {//channel_loop
|
||||
int32_t result = 0;
|
||||
/* Select filter so as the point doesn't lie outside block */
|
||||
int filter_y_start = max(0, -base_y);
|
||||
int filter_x_start = max(0, -base_x);
|
||||
int filter_y_end = min(filter_ht, input_ht - base_y);
|
||||
int filter_x_end = min(filter_wd, input_wd - base_x);
|
||||
|
||||
for (int filter_y_idx = filter_y_start; filter_y_idx < filter_y_end; filter_y_idx++) {
|
||||
const int32_t idx_y = base_y + filter_y_idx;
|
||||
for (int filter_x_idx = filter_x_start; filter_x_idx < filter_x_end; filter_x_idx++) {
|
||||
const int32_t idx_x = base_x + filter_x_idx;
|
||||
int32_t input_index = (idx_y * input_wd + idx_x) * channels + ch_idx;
|
||||
int32_t filter_index = (filter_y_idx * filter_wd + filter_x_idx) * channels + ch_idx;
|
||||
int32_t input_val = input_data[input_index] + input_offset;
|
||||
int32_t filter_val = filter_data[filter_index];
|
||||
result += input_val * filter_val;
|
||||
}
|
||||
}
|
||||
if (bias) {
|
||||
result += bias[ch_idx];
|
||||
}
|
||||
result = esp_nn_multiply_by_quantized_mult(result, out_mult[ch_idx], out_shift[ch_idx]);
|
||||
result += out_offset;
|
||||
result = max(result, activation_min);
|
||||
result = min(result, activation_max);
|
||||
|
||||
out_data[out_idx++] = result;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int esp_nn_get_depthwise_conv_scratch_size_esp32s3(const data_dims_t *input_dims,
|
||||
const data_dims_t *filter_dims,
|
||||
const data_dims_t *output_dims,
|
||||
const dw_conv_params_t *conv_params)
|
||||
{
|
||||
const uint16_t input_wd = input_dims->width;
|
||||
const uint16_t input_ht = input_dims->height;
|
||||
const uint16_t channels = input_dims->channels;
|
||||
const uint16_t filter_wd = filter_dims->width;
|
||||
const uint16_t filter_ht = filter_dims->height;
|
||||
const uint16_t ch_mult = conv_params->ch_mult;
|
||||
const uint16_t out_wd = output_dims->width;
|
||||
const uint16_t out_ht = output_dims->height;
|
||||
const uint16_t pad_wd = conv_params->padding.width;
|
||||
const uint16_t pad_ht = conv_params->padding.height;
|
||||
const uint16_t stride_wd = conv_params->stride.width;
|
||||
const uint16_t stride_ht = conv_params->stride.height;
|
||||
|
||||
int filter_size = filter_wd * filter_ht * channels * ch_mult;
|
||||
int pad_width = 0, pad_height = 0;
|
||||
|
||||
if ((ch_mult == 1) && (channels % 8 == 0) && (filter_wd == 3) && (filter_ht == 3)) {
|
||||
if (channels % 16 == 0) {
|
||||
if (pad_wd || pad_ht) {
|
||||
pad_width = pad_wd * 2;
|
||||
pad_height = pad_ht * 2;
|
||||
} else {
|
||||
// check if we need to pad additionally
|
||||
pad_width = (out_wd * stride_wd + filter_wd - 1) - input_wd;
|
||||
pad_height = (out_ht * stride_ht + filter_ht - 1) - input_ht;
|
||||
// printf("in(%d %d %d), out(%d %d), filter (%d %d) stride (%d %d), pad (%d %d)",
|
||||
// input_wd, input_ht, channels, out_wd, out_ht, filter_wd, filter_ht,
|
||||
// stride_wd, stride_ht, pad_wd, pad_ht);
|
||||
}
|
||||
if (pad_width || pad_height) {
|
||||
int input_size = (input_wd + pad_width) * (input_ht + pad_height) * channels;
|
||||
// printf("ask1 %d\n", filter_size + input_size + 16);
|
||||
return filter_size + input_size + 16; // 16 for alignment
|
||||
} else {
|
||||
// printf("ask2 %d\n", filter_size + 16);
|
||||
return filter_size + 16; // 16 for alignment
|
||||
}
|
||||
} else {
|
||||
int input_size = input_wd * input_ht * channels;
|
||||
// printf("ask3 %d\n", 2 * (filter_size + input_size) + 16);
|
||||
return 2 * (filter_size + input_size) + 16; // 16 for alignment
|
||||
}
|
||||
} else if (ch_mult % 4 == 0) {
|
||||
int input_size = input_wd * input_ht * channels;
|
||||
// printf("ask4 %d\n", 2 * (filter_size + input_size) + 16);
|
||||
return 2 * (filter_size + input_size) + 16; // 16 for alignment
|
||||
}
|
||||
return 32; // just few bytes
|
||||
}
|
||||
|
||||
void esp_nn_set_depthwise_conv_scratch_buf_esp32s3(void *buf)
|
||||
{
|
||||
scratch_buffer = (int16_t *) buf;
|
||||
}
|
||||
|
||||
/**
|
||||
* Assumption 1: i/p channels == o/p channels
|
||||
* Assumption 2: Pointers are valid
|
||||
* Assumption 3: dialation width = 1
|
||||
*/
|
||||
|
||||
|
||||
|
||||
void esp_nn_depthwise_conv_s8_esp32s3(const data_dims_t *input_dims,
|
||||
const int8_t *input_data,
|
||||
const data_dims_t *filter_dims,
|
||||
const int8_t *filter_data,
|
||||
const int32_t *bias,
|
||||
const data_dims_t *output_dims,
|
||||
int8_t *out_data,
|
||||
const dw_conv_params_t *conv_params,
|
||||
const quant_data_t *quant_data)
|
||||
{
|
||||
const uint16_t input_wd = input_dims->width;
|
||||
const uint16_t input_ht = input_dims->height;
|
||||
const uint16_t channels = input_dims->channels;
|
||||
const int32_t input_offset = conv_params->in_offset;
|
||||
const int32_t out_offset = conv_params->out_offset;
|
||||
const uint16_t pad_wd = conv_params->padding.width;
|
||||
const uint16_t pad_ht = conv_params->padding.height;
|
||||
const uint16_t stride_wd = conv_params->stride.width;
|
||||
const uint16_t stride_ht = conv_params->stride.height;
|
||||
const uint16_t filter_wd = filter_dims->width;
|
||||
const uint16_t filter_ht = filter_dims->height;
|
||||
const uint16_t out_wd = output_dims->width;
|
||||
const uint16_t out_ht = output_dims->height;
|
||||
const int32_t *out_shift = quant_data->shift;
|
||||
const int32_t *out_mult = quant_data->mult;
|
||||
const int32_t activation_min = conv_params->activation.min;
|
||||
const int32_t activation_max = conv_params->activation.max;
|
||||
const uint16_t ch_mult = conv_params->ch_mult;
|
||||
|
||||
int filter_size = filter_wd * filter_ht * channels * ch_mult;
|
||||
int align_len = 16 - (filter_size & 15);
|
||||
int input_size = input_wd * input_ht * channels;
|
||||
int16_t *filter_data16 = scratch_buffer;
|
||||
int16_t *input_data16 = scratch_buffer + filter_size + align_len;
|
||||
if (scratch_buffer == NULL) {
|
||||
printf("esp_nn_depthwise_conv error! scratch_buffer not set!\n");
|
||||
return;
|
||||
}
|
||||
|
||||
if ((ch_mult == 1) && (channels % 8 == 0)) {
|
||||
if ((filter_wd == 3) && (filter_ht == 3)) {
|
||||
if ((channels % 16 == 0) && (pad_wd == 1) && (pad_ht == 1)) {
|
||||
/* process in 8 bits */
|
||||
int8_t *filter_aligned = (int8_t *) scratch_buffer;
|
||||
int8_t *input_padded = (int8_t *) scratch_buffer + filter_size + align_len;
|
||||
memcpy(filter_aligned, filter_data, filter_size);
|
||||
esp_nn_aligned_s8_pad_with_value(input_data, input_padded, input_wd, input_ht, channels,
|
||||
-input_offset, pad_wd, pad_ht);
|
||||
esp_nn_depthwise_conv_s8_mult1_3x3_padded_esp32s3(input_padded, input_wd + 2 * pad_wd,
|
||||
input_ht + 2 * pad_ht, channels, input_offset,
|
||||
stride_wd, stride_ht, filter_aligned, bias,
|
||||
out_data, out_wd, out_ht, out_offset, out_shift,
|
||||
out_mult, activation_min, activation_max);
|
||||
} else if ((channels % 16 == 0) && (pad_wd == 0) && (pad_ht == 0)) {
|
||||
/* process in 8 bits */
|
||||
int8_t *filter_aligned = (int8_t *) scratch_buffer;
|
||||
int8_t *input_padded = (int8_t *) scratch_buffer + filter_size + align_len;
|
||||
|
||||
// check if we need to pad additionally
|
||||
int pad_right = (out_wd * stride_wd + filter_wd - 1) - input_wd;
|
||||
int pad_bottom = (out_ht * stride_ht + filter_ht - 1) - input_ht;
|
||||
if (pad_right || pad_bottom) { // pad right and bottom
|
||||
esp_nn_aligned_s8_pad_end_with_value(input_data, input_padded, input_wd, input_ht,
|
||||
channels, -input_offset, pad_right, pad_bottom);
|
||||
} else {
|
||||
input_padded = (int8_t *) input_data;
|
||||
}
|
||||
memcpy(filter_aligned, filter_data, filter_size);
|
||||
esp_nn_depthwise_conv_s8_mult1_3x3_padded_esp32s3(input_padded, input_wd + pad_right,
|
||||
input_ht + pad_bottom, channels, input_offset,
|
||||
stride_wd, stride_ht, filter_aligned, bias,
|
||||
out_data, out_wd, out_ht, out_offset, out_shift,
|
||||
out_mult, activation_min, activation_max);
|
||||
} else { /* (channels % 8) == 0 */
|
||||
esp_nn_s8_to_s16_esp32s3(filter_data, filter_data16, filter_size);
|
||||
esp_nn_aligned_s8_to_s16_with_offset_esp32s3(input_data, input_data16, input_size, input_offset);
|
||||
esp_nn_depthwise_conv_s16_mult1_3x3_esp32s3(input_data16, input_wd, input_ht, channels,
|
||||
pad_wd, pad_ht, stride_wd, stride_ht, filter_data16,
|
||||
bias, out_data, out_wd, out_ht, out_offset, out_shift,
|
||||
out_mult, activation_min, activation_max);
|
||||
}
|
||||
} else { // all other ch_mult == 1, `channels % 8 == 0`
|
||||
esp_nn_depthwise_conv_s8_ch_mult1(input_data, input_wd, input_ht, channels, input_offset,
|
||||
pad_wd, pad_ht, stride_wd, stride_ht,
|
||||
filter_data, filter_wd, filter_ht,
|
||||
bias, out_data, out_wd, out_ht, out_offset, out_shift,
|
||||
out_mult, activation_min, activation_max);
|
||||
}
|
||||
} else if (ch_mult % 8 == 0) {
|
||||
esp_nn_s8_to_s16_esp32s3(filter_data, filter_data16, filter_size);
|
||||
esp_nn_aligned_s8_to_s16_with_offset_esp32s3(input_data, input_data16, input_size, input_offset);
|
||||
if (filter_wd == 3 && filter_ht == 3) {
|
||||
esp_nn_depthwise_conv_s16_mult8_3x3_esp32s3(input_data16, input_wd, input_ht, channels,
|
||||
pad_wd, pad_ht, stride_wd, stride_ht, ch_mult,
|
||||
filter_data16, bias,
|
||||
out_data, out_wd, out_ht, out_offset, out_shift,
|
||||
out_mult, activation_min, activation_max);
|
||||
} else {
|
||||
esp_nn_depthwise_conv_s16_mult8_esp32s3(input_data16, input_wd, input_ht, channels,
|
||||
pad_wd, pad_ht, stride_wd, stride_ht, ch_mult,
|
||||
filter_data16, filter_wd, filter_ht, bias,
|
||||
out_data, out_wd, out_ht, out_offset, out_shift,
|
||||
out_mult, activation_min, activation_max);
|
||||
}
|
||||
} else if (ch_mult % 4 == 0) {
|
||||
esp_nn_s8_to_s16_esp32s3(filter_data, filter_data16, filter_size);
|
||||
esp_nn_aligned_s8_to_s16_with_offset_esp32s3(input_data, input_data16, input_size, input_offset);
|
||||
esp_nn_depthwise_conv_s16_mult4_esp32s3(input_data16, input_wd, input_ht, channels,
|
||||
pad_wd, pad_ht, stride_wd, stride_ht, ch_mult,
|
||||
filter_data16, filter_wd, filter_ht, bias,
|
||||
out_data, out_wd, out_ht, out_offset, out_shift,
|
||||
out_mult, activation_min, activation_max);
|
||||
} else {
|
||||
esp_nn_depthwise_conv_s8_unrolled(input_data, input_wd, input_ht, channels, input_offset,
|
||||
pad_wd, pad_ht, stride_wd, stride_ht, ch_mult,
|
||||
filter_data, filter_wd, filter_ht,
|
||||
bias, out_data, out_wd, out_ht, out_offset, out_shift,
|
||||
out_mult, activation_min, activation_max);
|
||||
}
|
||||
}
|
||||
@@ -1,50 +0,0 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#include <common_functions.h>
|
||||
|
||||
void esp_nn_fully_connected_s8_ansi(const int8_t *input_data,
|
||||
const int32_t input_offset,
|
||||
const uint16_t row_len,
|
||||
const int8_t *filter_data,
|
||||
const int32_t filter_offset,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_channels,
|
||||
const int32_t out_offset,
|
||||
const int32_t out_shift,
|
||||
const int32_t out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max)
|
||||
{
|
||||
for (int32_t out_c = 0; out_c < out_channels; ++out_c) {
|
||||
int32_t result = 0;
|
||||
for (int32_t data_idx = 0; data_idx < row_len; data_idx++) {
|
||||
int32_t filter_index = row_len * out_c + data_idx;
|
||||
int32_t input_val = input_data[data_idx];
|
||||
int32_t filter_val = filter_data[filter_index];
|
||||
result += (filter_val + filter_offset) * (input_val + input_offset);
|
||||
}
|
||||
if (bias) {
|
||||
result += bias[out_c];
|
||||
}
|
||||
result = esp_nn_multiply_by_quantized_mult(result, out_mult, out_shift);
|
||||
result += out_offset;
|
||||
result = max(result, activation_min);
|
||||
result = min(result, activation_max);
|
||||
out_data[out_c] = (int8_t) result;
|
||||
}
|
||||
}
|
||||
@@ -1,72 +0,0 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#include <common_functions.h>
|
||||
|
||||
void esp_nn_avg_pool_s8_ansi(const int8_t *input,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
int8_t *output,
|
||||
const uint16_t output_wd,
|
||||
const uint16_t output_ht,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht,
|
||||
const uint16_t pad_wd,
|
||||
const uint16_t pad_ht,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max,
|
||||
const uint16_t channels)
|
||||
{
|
||||
int32_t base_y = -pad_ht;
|
||||
for (int32_t out_y = 0; out_y < output_ht; out_y++, base_y += stride_ht) {
|
||||
int32_t base_x = -pad_wd;
|
||||
for (int32_t out_x = 0; out_x < output_wd; out_x++, base_x += stride_wd) {
|
||||
for (int32_t ch_idx = 0; ch_idx < channels; ch_idx++) {
|
||||
int32_t result = 0;
|
||||
int32_t filter_cnt = 0;
|
||||
/* Make sure filter does not cross the input box */
|
||||
int32_t filter_y_start = max(0, -base_y);
|
||||
int32_t filter_x_start = max(0, -base_x);
|
||||
|
||||
int32_t filter_y_end = min(filter_ht, input_ht - base_y);
|
||||
int32_t filter_x_end = min(filter_wd, input_wd - base_x);
|
||||
|
||||
for (int32_t filter_y = filter_y_start; filter_y < filter_y_end; filter_y++) {
|
||||
for (int32_t filter_x = filter_x_start; filter_x < filter_x_end; filter_x++) {
|
||||
int32_t in_x_idx = base_x + filter_x;
|
||||
int32_t in_y_idx = base_y + filter_y;
|
||||
int32_t input_index = (in_y_idx * input_wd + in_x_idx) * channels + ch_idx;
|
||||
result += input[input_index];
|
||||
filter_cnt++;
|
||||
}
|
||||
}
|
||||
|
||||
/* Rounded average */
|
||||
result = result > 0 ? (result + filter_cnt / 2) / filter_cnt
|
||||
: (result - filter_cnt / 2) / filter_cnt;
|
||||
|
||||
/* Activation function */
|
||||
result = max(result, activation_min);
|
||||
result = min(result, activation_max);
|
||||
|
||||
int32_t output_index = (out_y * output_wd + out_x) * channels + ch_idx;
|
||||
output[output_index] = (int8_t) result;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,66 +0,0 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#include <common_functions.h>
|
||||
|
||||
void esp_nn_max_pool_s8_ansi(const int8_t *input,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
int8_t *output,
|
||||
const uint16_t output_wd,
|
||||
const uint16_t output_ht,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht,
|
||||
const uint16_t pad_wd,
|
||||
const uint16_t pad_ht,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max,
|
||||
const uint16_t channels)
|
||||
{
|
||||
int32_t base_y = -pad_ht;
|
||||
for (int32_t out_y = 0; out_y < output_ht; out_y++, base_y += stride_ht) {
|
||||
int32_t base_x = -pad_wd;
|
||||
for (int32_t out_x = 0; out_x < output_wd; out_x++, base_x += stride_wd) {
|
||||
/* Make sure filter does not cross the input box */
|
||||
int32_t filter_y_start = max(0, -base_y);
|
||||
int32_t filter_x_start = max(0, -base_x);
|
||||
int32_t filter_y_end = min(filter_ht, input_ht - base_y);
|
||||
int32_t filter_x_end = min(filter_wd, input_wd - base_x);
|
||||
|
||||
for (int32_t ch_idx = 0; ch_idx < channels; ch_idx++) {
|
||||
int8_t result = INT8_MIN;
|
||||
|
||||
for (int32_t filter_y = filter_y_start; filter_y < filter_y_end; filter_y++) {
|
||||
for (int32_t filter_x = filter_x_start; filter_x < filter_x_end; filter_x++) {
|
||||
int32_t in_x_idx = base_x + filter_x;
|
||||
int32_t in_y_idx = base_y + filter_y;
|
||||
int32_t input_index = (in_y_idx * input_wd + in_x_idx) * channels + ch_idx;
|
||||
result = max(input[input_index], result);
|
||||
}
|
||||
}
|
||||
|
||||
/* Activation function */
|
||||
result = max(result, activation_min);
|
||||
result = min(result, activation_max);
|
||||
|
||||
int32_t output_index = (out_y * output_wd + out_x) * channels + ch_idx;
|
||||
output[output_index] = result;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,88 +0,0 @@
|
||||
// Copyright 2022 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "softmax_common.h"
|
||||
|
||||
int32_t esp_nn_get_softmax_scratch_size_ansi(const int32_t width, const int32_t height)
|
||||
{
|
||||
(void) width;
|
||||
(void) height;
|
||||
return 0;
|
||||
}
|
||||
|
||||
void esp_nn_set_softmax_scratch_buf_ansi(void *buffer)
|
||||
{
|
||||
(void) buffer;
|
||||
return;
|
||||
}
|
||||
|
||||
void esp_nn_softmax_s8_ansi(const int8_t *input_data,
|
||||
const int32_t height,
|
||||
const int32_t width,
|
||||
const int32_t mult,
|
||||
const int32_t shift,
|
||||
const int32_t diff_min,
|
||||
int8_t *output_data)
|
||||
{
|
||||
// The representation chosen for the input to the exp() function is Q5.26.
|
||||
// We need to leave extra space since values that we skip might be as large as
|
||||
// -32 before multiplying by input mult, and therefore as large as
|
||||
// -16 afterwards. Note that exp(-8) is definitely not insignificant to
|
||||
// accumulation, but exp(-16) definitely is.
|
||||
#define ACCUM_BITS 12
|
||||
#define DIFF_BITS 5
|
||||
|
||||
const int32_t mask = (1 << shift);
|
||||
int32_t col = 0;
|
||||
const int8_t *in_ptr = input_data;
|
||||
int8_t *out_ptr = output_data;
|
||||
|
||||
for (int row_idx = 0; row_idx < height; row_idx++) {
|
||||
int8_t max_in_row = in_ptr[0];
|
||||
for (col = 1; col < width; col++) {
|
||||
max_in_row = max(max_in_row, in_ptr[col]);
|
||||
}
|
||||
|
||||
int32_t input_diff = 0;
|
||||
int32_t sum_of_exps = 0;
|
||||
|
||||
for (col = 0; col < width; col++) {
|
||||
input_diff = in_ptr[col] - max_in_row;
|
||||
if (input_diff >= diff_min) {
|
||||
const int32_t input_diff_rescaled = SAT_HIGH_MUL(input_diff * mask, mult);
|
||||
const int32_t exp_raw = esp_nn_exp_on_negative_values(input_diff_rescaled);
|
||||
sum_of_exps += DIV_POW2(exp_raw, ACCUM_BITS);
|
||||
}
|
||||
}
|
||||
|
||||
const int32_t headroom_plus1 = esp_nn_clz32((uint32_t) sum_of_exps);
|
||||
const int32_t shifted_scale = ONE_OVER_ONE_X((sum_of_exps << headroom_plus1) - (1 << 31));
|
||||
const int32_t bits_over_unit = ACCUM_BITS - headroom_plus1 + 31 - sizeof(int8_t) * 8;
|
||||
|
||||
for (col = 0; col < width; col++) {
|
||||
input_diff = in_ptr[col] - max_in_row;
|
||||
if (input_diff >= diff_min) {
|
||||
const int32_t input_diff_rescaled = SAT_HIGH_MUL(input_diff * mask, mult);
|
||||
const int32_t exp_raw = esp_nn_exp_on_negative_values(input_diff_rescaled);
|
||||
const int32_t shifted_output = SAT_HIGH_MUL(shifted_scale, exp_raw);
|
||||
const int32_t result = DIV_POW2(shifted_output, bits_over_unit) - 128;
|
||||
out_ptr[col] = (int8_t) esp_nn_saturate8(result);
|
||||
} else {
|
||||
out_ptr[col] = -128;
|
||||
}
|
||||
}
|
||||
in_ptr += width;
|
||||
out_ptr += width;
|
||||
}
|
||||
}
|
||||
@@ -1,108 +0,0 @@
|
||||
// Copyright 2022 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "softmax_common.h"
|
||||
#include <stdio.h>
|
||||
|
||||
static int32_t *scratch_buf = NULL;
|
||||
|
||||
/**
|
||||
* @brief Get scratch buffer size needed by softmax function
|
||||
*
|
||||
* @param width
|
||||
* @param height
|
||||
* @return size in bytes
|
||||
*
|
||||
* @note buffer must be 4 byte aligned
|
||||
*/
|
||||
int32_t esp_nn_get_softmax_scratch_size_opt(const int32_t width, const int32_t height)
|
||||
{
|
||||
(void) height;
|
||||
return width * 4;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Set scratch buffer to be used by softmax function
|
||||
*
|
||||
* @param buffer this can be NULL if one needs to unset it
|
||||
* must be aligned to 4 bytes
|
||||
*/
|
||||
void esp_nn_set_softmax_scratch_buf_opt(void *buffer)
|
||||
{
|
||||
scratch_buf = (int32_t *) buffer;
|
||||
}
|
||||
|
||||
void esp_nn_softmax_s8_opt(const int8_t *input_data,
|
||||
const int32_t height,
|
||||
const int32_t width,
|
||||
const int32_t mult,
|
||||
const int32_t shift,
|
||||
const int32_t diff_min,
|
||||
int8_t *output_data)
|
||||
{
|
||||
if (scratch_buf == NULL) {
|
||||
printf("%s error! scratch buffer not set\n", __FUNCTION__);
|
||||
return;
|
||||
}
|
||||
// The representation chosen for the input to the exp() function is Q5.26.
|
||||
// We need to leave extra space since values that we skip might be as large as
|
||||
// -32 before multiplying by input mult, and therefore as large as
|
||||
// -16 afterwards. Note that exp(-8) is definitely not insignificant to
|
||||
// accumulation, but exp(-16) definitely is.
|
||||
#define ACCUM_BITS 12
|
||||
#define DIFF_BITS 5
|
||||
|
||||
const int32_t mask = (1 << shift);
|
||||
int32_t col = 0;
|
||||
const int8_t *in_ptr = input_data;
|
||||
int8_t *out_ptr = output_data;
|
||||
|
||||
for (int row_idx = 0; row_idx < height; row_idx++) {
|
||||
int8_t max_in_row = in_ptr[0];
|
||||
for (col = 1; col < width; col++) {
|
||||
max_in_row = max(max_in_row, in_ptr[col]);
|
||||
}
|
||||
|
||||
int32_t input_diff = 0;
|
||||
int32_t sum_of_exps = 0;
|
||||
|
||||
for (col = 0; col < width; col++) {
|
||||
input_diff = in_ptr[col] - max_in_row;
|
||||
if (input_diff >= diff_min) {
|
||||
const int32_t input_diff_rescaled = SAT_HIGH_MUL(input_diff * mask, mult);
|
||||
const int32_t exp_raw = esp_nn_exp_on_negative_values(input_diff_rescaled);
|
||||
scratch_buf[col] = exp_raw; // store to avoid duplicate calculation later
|
||||
sum_of_exps += DIV_POW2(exp_raw, ACCUM_BITS);
|
||||
}
|
||||
}
|
||||
|
||||
const int32_t headroom_plus1 = esp_nn_clz32((uint32_t) sum_of_exps);
|
||||
const int32_t shifted_scale = ONE_OVER_ONE_X((sum_of_exps << headroom_plus1) - (1 << 31));
|
||||
const int32_t bits_over_unit = ACCUM_BITS - headroom_plus1 + 31 - sizeof(int8_t) * 8;
|
||||
|
||||
for (col = 0; col < width; col++) {
|
||||
input_diff = in_ptr[col] - max_in_row;
|
||||
if (input_diff >= diff_min) {
|
||||
int32_t exp_raw = scratch_buf[col];
|
||||
const int32_t shifted_output = SAT_HIGH_MUL(shifted_scale, exp_raw);
|
||||
const int32_t result = DIV_POW2(shifted_output, bits_over_unit) - 128;
|
||||
out_ptr[col] = (int8_t) esp_nn_saturate8(result);
|
||||
} else {
|
||||
out_ptr[col] = -128;
|
||||
}
|
||||
}
|
||||
in_ptr += width;
|
||||
out_ptr += width;
|
||||
}
|
||||
}
|
||||
@@ -1,104 +0,0 @@
|
||||
// Copyright 2022 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdint.h>
|
||||
#include <common_functions.h>
|
||||
|
||||
#define MASK_IF_ZERO(x) (x) == 0 ? ~0 : 0
|
||||
#define MASK_IF_NON_ZERO(x) (x) != 0 ? ~0 : 0
|
||||
#define SELECT_USING_MASK(mask, a, b) ((mask) & (a)) ^ (~(mask) & (b))
|
||||
#define SAT_HIGH_MUL(x, y) esp_nn_sat_round_doubling_high_mul((x), (y))
|
||||
#define DIV_POW2(x,y) esp_nn_div_by_power_of_two((x), (y))
|
||||
|
||||
__NN_FORCE_INLINE__ int32_t mul_power_of_2(int val, int exp)
|
||||
{
|
||||
const int32_t thresh = ((1 << (31 - exp)) - 1);
|
||||
int32_t result = val << exp;
|
||||
result = SELECT_USING_MASK(MASK_IF_NON_ZERO(val > thresh), INT32_MAX, result);
|
||||
result = SELECT_USING_MASK(MASK_IF_NON_ZERO(val < -thresh), INT32_MIN, result);
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Calculate `1 / (1 + x)` for x in [0, 1]
|
||||
*
|
||||
* @param val input value to calculate `1/(1+x)` for
|
||||
* @return `int32_t` result
|
||||
* @note Newton-Raphson division
|
||||
*
|
||||
* https://en.wikipedia.org/wiki/Division_algorithm#Newton.E2.80.93Raphson_division
|
||||
* Refer to that page for the logic behind the 48/17 and 32/17 constants.
|
||||
* Pseudocode: https://en.wikipedia.org/wiki/Division_algorithm#Pseudocode
|
||||
*/
|
||||
__NN_FORCE_INLINE__ int32_t esp_nn_one_over_one_plus_x_for_x_in_0_1(int32_t val)
|
||||
{
|
||||
const int64_t sum = (int64_t) val + INT32_MAX;
|
||||
const int32_t half_denominator = (int32_t) ((sum + (sum >= 0 ? 1 : -1)) / 2L);
|
||||
int32_t constant_48_over_17 = 1515870810;
|
||||
int32_t constant_neg_32_over_17 = -1010580540;
|
||||
int32_t x = constant_48_over_17 + SAT_HIGH_MUL(half_denominator, constant_neg_32_over_17);
|
||||
const int32_t fixed_2_one = (1 << 29);
|
||||
|
||||
x += mul_power_of_2(SAT_HIGH_MUL(x, fixed_2_one - SAT_HIGH_MUL(half_denominator, x)), 2);
|
||||
x += mul_power_of_2(SAT_HIGH_MUL(x, fixed_2_one - SAT_HIGH_MUL(half_denominator, x)), 2);
|
||||
x += mul_power_of_2(SAT_HIGH_MUL(x, fixed_2_one - SAT_HIGH_MUL(half_denominator, x)), 2);
|
||||
|
||||
return mul_power_of_2(x, 1);
|
||||
}
|
||||
|
||||
#define ONE_OVER_ONE_X(x) esp_nn_one_over_one_plus_x_for_x_in_0_1((x))
|
||||
|
||||
/**
|
||||
* @brief Return exp(x) for x < 0.
|
||||
*
|
||||
*/
|
||||
__NN_FORCE_INLINE__ int32_t esp_nn_exp_on_negative_values(int32_t val)
|
||||
{
|
||||
int32_t shift = 24;
|
||||
|
||||
const int32_t one_quarter = (1 << shift);
|
||||
int32_t mask = one_quarter - 1;
|
||||
const int32_t val_mod_minus_quarter = (val & mask) - one_quarter;
|
||||
const int32_t remainder = val_mod_minus_quarter - val;
|
||||
|
||||
// calculate exponent for x in [-1/4, 0) in `result`
|
||||
const int32_t x = (val_mod_minus_quarter << 5) + (1 << 28);
|
||||
const int32_t x2 = SAT_HIGH_MUL(x, x);
|
||||
const int32_t x3 = SAT_HIGH_MUL(x2, x);
|
||||
const int32_t x4 = SAT_HIGH_MUL(x2, x2);
|
||||
const int32_t one_over_3 = 715827883;
|
||||
const int32_t one_over_8 = 1895147668;
|
||||
|
||||
const int32_t x4_over_4 = DIV_POW2(x4, 2);
|
||||
const int32_t x4_over_4_plus_x3_over_6_plus_x2_over_2 = DIV_POW2(SAT_HIGH_MUL(x4_over_4 + x3, one_over_3) + x2, 1);
|
||||
int32_t result = one_over_8 + SAT_HIGH_MUL(one_over_8, x + x4_over_4_plus_x3_over_6_plus_x2_over_2);
|
||||
|
||||
#define SELECT_IF_NON_ZERO(x) { \
|
||||
mask = MASK_IF_NON_ZERO(remainder & (1 << shift++)); \
|
||||
result = SELECT_USING_MASK(mask, SAT_HIGH_MUL(result, x), result); \
|
||||
}
|
||||
|
||||
SELECT_IF_NON_ZERO(1672461947)
|
||||
SELECT_IF_NON_ZERO(1302514674)
|
||||
SELECT_IF_NON_ZERO(790015084)
|
||||
SELECT_IF_NON_ZERO(290630308)
|
||||
SELECT_IF_NON_ZERO(39332535)
|
||||
SELECT_IF_NON_ZERO(720401)
|
||||
SELECT_IF_NON_ZERO(242)
|
||||
|
||||
#undef SELECT_IF_NON_ZERO
|
||||
|
||||
mask = MASK_IF_ZERO(val);
|
||||
return SELECT_USING_MASK(mask, INT32_MAX, result);
|
||||
}
|
||||
@@ -1,9 +0,0 @@
|
||||
# The following lines of boilerplate have to be in your project's
|
||||
# CMakeLists in this exact order for cmake to work correctly
|
||||
cmake_minimum_required(VERSION 3.5)
|
||||
|
||||
set(EXTRA_COMPONENT_DIRS "../" "../tests/")
|
||||
set(IDF_EXCLUDE_COMPONENTS test test_app)
|
||||
|
||||
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
|
||||
project(test_app)
|
||||
@@ -1,7 +0,0 @@
|
||||
|
||||
set(COMPONENT_SRCS "main.c")
|
||||
set(COMPONENT_ADD_INCLUDEDIRS "")
|
||||
|
||||
set(COMPONENT_PRIV_REQUIRES tests)
|
||||
|
||||
register_component()
|
||||
@@ -1,8 +0,0 @@
|
||||
#
|
||||
# Main component makefile.
|
||||
#
|
||||
# This Makefile can be left empty. By default, it will take the sources in the
|
||||
# src/ directory, compile them and link them into lib(subdirectory_name).a
|
||||
# in the build directory. This behaviour is entirely configurable,
|
||||
# please read the ESP-IDF documents if you need to do this.
|
||||
#
|
||||
@@ -1,87 +0,0 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <freertos/FreeRTOS.h>
|
||||
#include <freertos/task.h>
|
||||
#include <esp_log.h>
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
#include <test_functions.h>
|
||||
#include <esp_timer.h>
|
||||
|
||||
static const char *TAG = "test_app";
|
||||
static uint32_t start_c, start_opt, total_c, total_opt;
|
||||
|
||||
void profile_c_start()
|
||||
{
|
||||
/* initiate profiling */
|
||||
start_c = esp_cpu_get_ccount();
|
||||
}
|
||||
|
||||
void profile_c_end()
|
||||
{
|
||||
/* record profile number */
|
||||
total_c = esp_cpu_get_ccount() - start_c;
|
||||
}
|
||||
|
||||
void profile_opt_start()
|
||||
{
|
||||
/* initiate profiling */
|
||||
start_opt = esp_cpu_get_ccount();
|
||||
}
|
||||
|
||||
void profile_opt_end()
|
||||
{
|
||||
/* record profile number */
|
||||
total_opt = esp_cpu_get_ccount() - start_opt;
|
||||
}
|
||||
|
||||
void app_main()
|
||||
{
|
||||
/* s8 tests */
|
||||
ESP_LOGI(TAG, "Running s8 tests...");
|
||||
esp_nn_add_elementwise_s8_test();
|
||||
printf("add, c %u opt %u\n", total_c, total_opt);
|
||||
esp_nn_mul_elementwise_s8_test();
|
||||
printf("mul, c %u opt %u\n", total_c, total_opt);
|
||||
esp_nn_depthwise_conv_s8_test();
|
||||
printf("depthwise, c %u opt %u\n", total_c, total_opt);
|
||||
esp_nn_conv_s8_test();
|
||||
printf("conv2d, c %u opt %u\n", total_c, total_opt);
|
||||
|
||||
esp_nn_relu6_s8_test();
|
||||
printf("relu, c %u opt %u\n", total_c, total_opt);
|
||||
esp_nn_avg_pool_s8_test();
|
||||
printf("avg_pool, c %u opt %u\n", total_c, total_opt);
|
||||
esp_nn_max_pool_s8_test();
|
||||
printf("max_pool, c %u opt %u\n", total_c, total_opt);
|
||||
esp_nn_fully_connected_s8_test();
|
||||
printf("fully_connected, c %u opt %u\n", total_c, total_opt);
|
||||
esp_nn_softmax_s8_test();
|
||||
printf("softmax, c %u opt %u\n", total_c, total_opt);
|
||||
ESP_LOGI(TAG, "s8 tests done!\n");
|
||||
|
||||
/* u8 tests */
|
||||
//ESP_LOGI(TAG, "Running u8 tests...");
|
||||
//esp_nn_add_elementwise_u8_test();
|
||||
//esp_nn_depthwise_conv_u8_test();
|
||||
//esp_nn_conv_u8_test();
|
||||
//esp_nn_avg_pool_u8_test();
|
||||
//esp_nn_max_pool_u8_test();
|
||||
//esp_nn_fully_connected_u8_test();
|
||||
//ESP_LOGI(TAG, "u8 tests done!\n");
|
||||
}
|
||||
@@ -1,5 +0,0 @@
|
||||
|
||||
#
|
||||
# esp-nn
|
||||
#
|
||||
CONFIG_NN_ESP32=y
|
||||
@@ -1,8 +0,0 @@
|
||||
# Default configurations for ESP32-S3
|
||||
|
||||
CONFIG_ESP32S3_DEFAULT_CPU_FREQ_240=y
|
||||
CONFIG_ESP32S3_SPIRAM_SUPPORT=y
|
||||
|
||||
CONFIG_ESP32S3_DATA_CACHE_64KB=y
|
||||
CONFIG_ESP32S3_DATA_CACHE_8WAYS=y
|
||||
CONFIG_ESP32S3_DATA_CACHE_LINE_64B=y
|
||||
@@ -1,15 +0,0 @@
|
||||
|
||||
set(COMPONENT_ADD_INCLUDEDIRS ./include/)
|
||||
set(COMPONENT_SRCS "src/basic_math_test.c"
|
||||
"src/convolution_test.c"
|
||||
"src/fully_connected_test.c"
|
||||
"src/pooling_test.c"
|
||||
"src/relu_test.c"
|
||||
"src/softmax_test.c")
|
||||
|
||||
set(COMPONENT_REQUIRES )
|
||||
set(COMPONENT_PRIV_REQUIRES esp-nn)
|
||||
|
||||
register_component()
|
||||
|
||||
target_compile_options(${COMPONENT_LIB} PRIVATE -Wno-unused-function)
|
||||
@@ -1,4 +0,0 @@
|
||||
# Tests for esp_nn library
|
||||
|
||||
- Include these in your test framework and run the framework.
|
||||
- For IDF test please refer `test_app`
|
||||
@@ -1,5 +0,0 @@
|
||||
#FIXME
|
||||
|
||||
COMPONENT_ADD_INCLUDEDIRS := include/
|
||||
|
||||
COMPONENT_SRCDIRS := src/
|
||||
@@ -1,48 +0,0 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
|
||||
/* int8_t ops tests */
|
||||
void esp_nn_add_elementwise_s8_test();
|
||||
void esp_nn_mul_elementwise_s8_test();
|
||||
|
||||
void esp_nn_depthwise_conv_s8_test();
|
||||
void esp_nn_conv_s8_test();
|
||||
|
||||
void esp_nn_avg_pool_s8_test();
|
||||
void esp_nn_max_pool_s8_test();
|
||||
|
||||
void esp_nn_fully_connected_s8_test();
|
||||
|
||||
void esp_nn_relu6_s8_test();
|
||||
|
||||
void esp_nn_softmax_s8_test();
|
||||
|
||||
/* uint8_t ops tests */
|
||||
void esp_nn_add_elementwise_u8_test();
|
||||
|
||||
void esp_nn_depthwise_conv_u8_test();
|
||||
void esp_nn_conv_u8_test();
|
||||
|
||||
void esp_nn_avg_pool_u8_test();
|
||||
void esp_nn_max_pool_u8_test();
|
||||
|
||||
void esp_nn_fully_connected_u8_test();
|
||||
|
||||
/* instructions test functions */
|
||||
void compare_instructions_test();
|
||||
void arith_instructions_test();
|
||||
void min_max_instructions_test();
|
||||
void bitwise_instructions_test();
|
||||
void load_store_instructions_test();
|
||||
@@ -1,87 +0,0 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
#include <common_functions.h>
|
||||
#include <stdio.h>
|
||||
|
||||
/* mult value range */
|
||||
#define MULT_MAX INT32_MAX
|
||||
#define MULT_MIN 0
|
||||
|
||||
/* shift value range */
|
||||
#define SHIFT_MIN -31
|
||||
#define SHIFT_MAX 30
|
||||
|
||||
/**
|
||||
* @brief callback function to run before C function
|
||||
*/
|
||||
void profile_c_start();
|
||||
|
||||
/**
|
||||
* @brief callback function to run after C function
|
||||
*/
|
||||
void profile_c_end();
|
||||
|
||||
/**
|
||||
* @brief callback function to run before optimized function
|
||||
*/
|
||||
void profile_opt_start();
|
||||
|
||||
/**
|
||||
* @brief callback function to run after optimized function
|
||||
*/
|
||||
void profile_opt_end();
|
||||
|
||||
#define ANSI_COLOR_RED "\x1b[31m"
|
||||
#define ANSI_COLOR_GREEN "\x1b[32m"
|
||||
#define ANSI_COLOR_YELLOW "\x1b[33m"
|
||||
#define ANSI_COLOR_BLUE "\x1b[34m"
|
||||
#define ANSI_COLOR_MAGENTA "\x1b[35m"
|
||||
#define ANSI_COLOR_CYAN "\x1b[36m"
|
||||
#define ANSI_COLOR_RESET "\x1b[0m"
|
||||
|
||||
#define CHECK_EQUAL(ARRAY1, ARRAY2, size) ({ \
|
||||
bool res = true; \
|
||||
for (int _i = 0; _i < size; _i++) { \
|
||||
if (ARRAY1[_i] != ARRAY2[_i]) { \
|
||||
res = false; \
|
||||
break; \
|
||||
} \
|
||||
} \
|
||||
res; \
|
||||
})
|
||||
|
||||
#define PRINT_ARRAY_INT(ARRAY, width, height) ({ \
|
||||
int *_array = (int *) ARRAY; \
|
||||
for (int _j = 0; _j < height; _j++) { \
|
||||
for (int _i = 0; _i < width; _i++) { \
|
||||
printf("%d\t", _array[width * _j + _i]); \
|
||||
} \
|
||||
printf("\n"); \
|
||||
} \
|
||||
printf("\n"); \
|
||||
})
|
||||
|
||||
#define PRINT_ARRAY_HEX(ARRAY, width, height) ({ \
|
||||
uint8_t *_array = (uint8_t *) ARRAY; \
|
||||
for (int _j = 0; _j < height; _j++) { \
|
||||
for (int _i = 0; _i < width; _i++) { \
|
||||
printf("%02x\t", _array[width * _j + _i]); \
|
||||
} \
|
||||
printf("\n"); \
|
||||
} \
|
||||
printf("\n"); \
|
||||
})
|
||||
@@ -1,355 +0,0 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <malloc.h>
|
||||
|
||||
#include <common_functions.h>
|
||||
#include <esp_nn.h>
|
||||
#include "test_utils.h"
|
||||
|
||||
#if CONFIG_IDF_CMAKE
|
||||
#if (CONFIG_SPIRAM_SUPPORT && (CONFIG_SPIRAM_USE_CAPS_ALLOC || CONFIG_SPIRAM_USE_MALLOC))
|
||||
#define IDF_HEAP_CAPS 1
|
||||
#endif
|
||||
|
||||
#if IDF_HEAP_CAPS
|
||||
#include "esp_heap_caps.h"
|
||||
#endif
|
||||
#endif
|
||||
|
||||
void esp_nn_add_elementwise_s8_test()
|
||||
{
|
||||
/* prepare data */
|
||||
const int size = 1600 + 8 + 7; /* odd len to test leftover */
|
||||
int8_t *input1;
|
||||
int8_t *input2;
|
||||
int8_t *out_data_c;
|
||||
int8_t *out_data_opt;
|
||||
int8_t *input1_orig = NULL;
|
||||
int8_t *input2_orig = NULL;
|
||||
int8_t *out_c_orig = NULL;
|
||||
int8_t *out_opt_orig = NULL;
|
||||
int32_t input1_offset = 34;
|
||||
int32_t input2_offset = 35;
|
||||
int32_t output_offset = 36;
|
||||
int32_t input1_shift = -8; // right_shift amt always <= 0
|
||||
int32_t input2_shift = -8; // right_shift amt always <= 0
|
||||
int32_t output_shift = -9; // right_shift amt always <= 0
|
||||
int32_t left_shift = 15; // always +ve
|
||||
int32_t input1_mult = INT32_MAX;
|
||||
int32_t input2_mult = INT32_MAX;
|
||||
int32_t output_mult = INT32_MAX;
|
||||
int32_t activation_min = -128;
|
||||
int32_t activation_max = 127;
|
||||
|
||||
for (int itr = 0; itr < 10; itr++) {
|
||||
switch (itr) {
|
||||
case 0: // all zeros
|
||||
input1_offset = 0;
|
||||
input2_offset = 0;
|
||||
output_offset = 0;
|
||||
input1_mult = 0;
|
||||
input2_mult = 0;
|
||||
output_mult = 0;
|
||||
input1_shift = 0;
|
||||
input2_shift = 0;
|
||||
output_shift = 0;
|
||||
left_shift = 0;
|
||||
break;
|
||||
case 1: // hit min
|
||||
input1_offset = -127;
|
||||
input2_offset = -127;
|
||||
output_offset = -128;
|
||||
input1_mult = MULT_MIN;
|
||||
input2_mult = MULT_MIN;
|
||||
output_mult = MULT_MIN;
|
||||
input1_shift = 0;
|
||||
input2_shift = 0;
|
||||
output_shift = 0;
|
||||
left_shift = 0;
|
||||
break;
|
||||
case 2: // hit max
|
||||
input1_offset = 128;
|
||||
input2_offset = 128;
|
||||
output_offset = -127;
|
||||
input1_mult = MULT_MAX;
|
||||
input2_mult = MULT_MAX;
|
||||
output_mult = MULT_MAX;
|
||||
input1_shift = SHIFT_MIN;
|
||||
input2_shift = SHIFT_MIN;
|
||||
output_shift = SHIFT_MIN;
|
||||
left_shift = 30 - 8; // since input is 8 bits
|
||||
break;
|
||||
case 3: // hit extreme max
|
||||
input1_offset = 128;
|
||||
input2_offset = 128;
|
||||
output_offset = -127;
|
||||
input1_mult = MULT_MAX;
|
||||
input2_mult = MULT_MAX;
|
||||
output_mult = MULT_MAX;
|
||||
input1_shift = 0;
|
||||
input2_shift = 0;
|
||||
output_shift = 0;
|
||||
left_shift = 30 - 8; // -8 since input is 8 bit
|
||||
break;
|
||||
default: // practical random input
|
||||
input1_offset = rand() % 256 - 127; // range [-127, 128]
|
||||
input2_offset = rand() % 256 - 127; // range [-127, 128]
|
||||
output_offset = rand() % 256 - 128; // range [-128, 127]
|
||||
input1_mult = MULT_MAX / 2 + rand() % INT16_MAX;
|
||||
input2_mult = MULT_MAX / 2 + rand() % INT16_MAX;
|
||||
output_mult = MULT_MAX / 2 + rand() % INT16_MAX;
|
||||
input1_shift = -8 + rand() % 4;
|
||||
input2_shift = -8 + rand() % 4;
|
||||
output_shift = -8 + rand() % 4;
|
||||
left_shift = rand() % 15;
|
||||
}
|
||||
#if IDF_HEAP_CAPS
|
||||
input1_orig = (int8_t *) heap_caps_malloc(size + 32, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
|
||||
input2_orig = (int8_t *) heap_caps_malloc(size + 32, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
|
||||
out_c_orig = (int8_t *) heap_caps_malloc(size + 32, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
|
||||
out_opt_orig = (int8_t *) heap_caps_malloc(size + 32, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
|
||||
|
||||
input1 = 16 + input1_orig - ((uint32_t) input1_orig & 0xf);
|
||||
input2 = 16 + input2_orig - ((uint32_t) input2_orig & 0xf);
|
||||
out_data_c = 16 + out_c_orig - ((uint32_t) out_c_orig & 0xf);
|
||||
out_data_opt = 16 + out_opt_orig - ((uint32_t) out_opt_orig & 0xf);
|
||||
#else
|
||||
input1 = memalign(16, size);
|
||||
input2 = memalign(16, size);
|
||||
out_data_c = memalign(16, size);
|
||||
out_data_opt = memalign(16, size);
|
||||
|
||||
input1_orig = input1;
|
||||
input2_orig = input2;
|
||||
out_c_orig = out_data_c;
|
||||
out_opt_orig = out_data_opt;
|
||||
#endif
|
||||
if (input1_orig == NULL || input2_orig == NULL || out_c_orig == NULL ||
|
||||
out_opt_orig == NULL) {
|
||||
printf(ANSI_COLOR_RED"%s error allocating buffers\n"ANSI_COLOR_RESET, __FUNCTION__);
|
||||
goto elementwise_add_test_cleanup;
|
||||
}
|
||||
|
||||
for (int i = 0; i < size; ++i) {
|
||||
input1[i] = rand() % 256 - 128;
|
||||
input2[i] = rand() % 256 - 128;
|
||||
}
|
||||
|
||||
if (itr == 0) {
|
||||
/* enable profiler */
|
||||
profile_c_start();
|
||||
}
|
||||
/* C function */
|
||||
esp_nn_add_elementwise_s8_ansi(input1, input2, input1_offset, input2_offset,
|
||||
input1_mult, input2_mult, input1_shift, input2_shift,
|
||||
left_shift, out_data_c, output_offset, output_mult,
|
||||
output_shift, activation_min, activation_max, size);
|
||||
|
||||
if (itr == 0) {
|
||||
profile_c_end();
|
||||
profile_opt_start();
|
||||
}
|
||||
|
||||
/* Optimized function */
|
||||
esp_nn_add_elementwise_s8(input1, input2, input1_offset, input2_offset,
|
||||
input1_mult, input2_mult, input1_shift, input2_shift,
|
||||
left_shift, out_data_opt, output_offset, output_mult,
|
||||
output_shift, activation_min, activation_max, size);
|
||||
if (itr == 0) {
|
||||
/* disable profiler */
|
||||
profile_opt_end();
|
||||
}
|
||||
|
||||
bool ret = CHECK_EQUAL(out_data_c, out_data_opt, size);
|
||||
if (ret == false) {
|
||||
printf(ANSI_COLOR_RED"%s[%d] failed\n"ANSI_COLOR_RESET, __FUNCTION__, itr);
|
||||
printf("Output: \n");
|
||||
PRINT_ARRAY_HEX(out_data_opt, size, 1);
|
||||
printf("Expected: \n");
|
||||
PRINT_ARRAY_HEX(out_data_c, size, 1);
|
||||
printf("Input1:\n");
|
||||
PRINT_ARRAY_HEX(input1, size, 1);
|
||||
printf("Input2:\n");
|
||||
PRINT_ARRAY_HEX(input2, size, 1);
|
||||
printf("in1_shift %d, in2_shift %d, left_shift %d, out_shift %d\n",
|
||||
input1_shift, input2_shift, left_shift, output_shift);
|
||||
printf("in1_mult %d, in2_mult %d, out_mult %d\n", input1_mult, input2_mult, output_mult);
|
||||
goto elementwise_add_test_cleanup;
|
||||
}
|
||||
printf(ANSI_COLOR_GREEN"%s[%d] passed\n"ANSI_COLOR_RESET, __FUNCTION__, itr);
|
||||
|
||||
elementwise_add_test_cleanup:
|
||||
if (input1_orig) {
|
||||
free(input1_orig);
|
||||
}
|
||||
if (input2_orig) {
|
||||
free(input2_orig);
|
||||
}
|
||||
if (out_c_orig) {
|
||||
free(out_c_orig);
|
||||
}
|
||||
if (out_opt_orig) {
|
||||
free(out_opt_orig);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void esp_nn_mul_elementwise_s8_test()
|
||||
{
|
||||
/* prepare data */
|
||||
const int size = 1600 + 8 + 7; /* odd len to test leftover */
|
||||
int8_t *input1;
|
||||
int8_t *input2;
|
||||
int8_t *out_data_c;
|
||||
int8_t *out_data_opt;
|
||||
int32_t input1_offset = 34;
|
||||
int32_t input2_offset = 35;
|
||||
int32_t output_offset = 36;
|
||||
int32_t output_shift = -7;
|
||||
int32_t output_mult = MULT_MAX; // max out_mult
|
||||
int32_t activation_min = -128;
|
||||
int32_t activation_max = 127;
|
||||
int8_t *input1_orig = NULL;
|
||||
int8_t *input2_orig = NULL;
|
||||
int8_t *out_c_orig = NULL;
|
||||
int8_t *out_opt_orig = NULL;
|
||||
|
||||
for (int itr = 0; itr < 10; itr++) {
|
||||
switch (itr) {
|
||||
case 0: // all zeros
|
||||
input1_offset = 0;
|
||||
input2_offset = 0;
|
||||
output_offset = 0;
|
||||
output_mult = 0;
|
||||
output_shift = 0;
|
||||
break;
|
||||
case 1: // hit min
|
||||
input1_offset = -127;
|
||||
input2_offset = -127;
|
||||
output_offset = -128;
|
||||
output_mult = MULT_MIN;
|
||||
output_shift = 0;
|
||||
break;
|
||||
case 2: // hit max
|
||||
input1_offset = 128;
|
||||
input2_offset = 128;
|
||||
output_offset = -127;
|
||||
output_mult = MULT_MAX;
|
||||
output_shift = SHIFT_MIN;
|
||||
break;
|
||||
case 3: // hit extreme max
|
||||
input1_offset = 128;
|
||||
input2_offset = 128;
|
||||
output_offset = -127;
|
||||
output_mult = MULT_MAX;
|
||||
output_shift = 0;
|
||||
break;
|
||||
default: // practical random input
|
||||
input1_offset = rand() % 256 - 127; // range [-127, 128]
|
||||
input2_offset = rand() % 256 - 127; // range [-127, 128]
|
||||
output_offset = rand() % 256 - 128; // range [-128, 127]
|
||||
output_mult = MULT_MAX / 2 + rand() % INT16_MAX;
|
||||
output_shift = -8 + rand() % 4;
|
||||
}
|
||||
|
||||
#if IDF_HEAP_CAPS
|
||||
input1_orig = (int8_t *) heap_caps_malloc(size + 32, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
|
||||
input2_orig = (int8_t *) heap_caps_malloc(size + 32, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
|
||||
out_c_orig = (int8_t *) heap_caps_malloc(size + 32, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
|
||||
out_opt_orig = (int8_t *) heap_caps_malloc(size + 32, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
|
||||
|
||||
input1 = 16 + input1_orig - ((uint32_t) input1_orig & 0xf);
|
||||
input2 = 16 + input2_orig - ((uint32_t) input2_orig & 0xf);
|
||||
out_data_c = 16 + out_c_orig - ((uint32_t) out_c_orig & 0xf);
|
||||
out_data_opt = 16 + out_opt_orig - ((uint32_t) out_opt_orig & 0xf);
|
||||
#else
|
||||
input1 = memalign(16, size);
|
||||
input2 = memalign(16, size);
|
||||
out_data_c = memalign(16, size);
|
||||
out_data_opt = memalign(16, size);
|
||||
|
||||
input1_orig = input1;
|
||||
input2_orig = input2;
|
||||
out_c_orig = out_data_c;
|
||||
out_opt_orig = out_data_opt;
|
||||
#endif
|
||||
if (input1_orig == NULL || input2_orig == NULL || out_c_orig == NULL ||
|
||||
out_opt_orig == NULL) {
|
||||
printf(ANSI_COLOR_RED"%s error allocating buffers\n"ANSI_COLOR_RESET, __FUNCTION__);
|
||||
goto elementwise_mult_test_cleanup;
|
||||
}
|
||||
|
||||
for (int i = 0; i < size; ++i) {
|
||||
input1[i] = rand() % 256 - 128;
|
||||
input2[i] = rand() % 256 - 128;
|
||||
}
|
||||
|
||||
if (itr == 0) {
|
||||
/* enable profiler */
|
||||
profile_c_start();
|
||||
}
|
||||
/* C function */
|
||||
esp_nn_mul_elementwise_s8_ansi(input1, input2, input1_offset, input2_offset,
|
||||
out_data_c, output_offset, output_mult, output_shift,
|
||||
activation_min, activation_max, size);
|
||||
|
||||
if (itr == 0) {
|
||||
profile_c_end();
|
||||
profile_opt_start();
|
||||
}
|
||||
/* Optimized function */
|
||||
esp_nn_mul_elementwise_s8(input1, input2, input1_offset, input2_offset,
|
||||
out_data_opt, output_offset, output_mult, output_shift,
|
||||
activation_min, activation_max, size);
|
||||
|
||||
if (itr == 0) {
|
||||
/* disable profiler */
|
||||
profile_opt_end();
|
||||
}
|
||||
|
||||
bool ret = CHECK_EQUAL(out_data_c, out_data_opt, size);
|
||||
if (ret == false) {
|
||||
printf(ANSI_COLOR_RED"%s[%d] failed\n"ANSI_COLOR_RESET, __FUNCTION__, itr);
|
||||
printf("Output: \n");
|
||||
PRINT_ARRAY_HEX(out_data_opt, size, 1);
|
||||
printf("Expected: \n");
|
||||
PRINT_ARRAY_HEX(out_data_c, size, 1);
|
||||
printf("Input1:\n");
|
||||
PRINT_ARRAY_HEX(input1, size, 1);
|
||||
printf("Input2:\n");
|
||||
PRINT_ARRAY_HEX(input2, size, 1);
|
||||
goto elementwise_mult_test_cleanup;
|
||||
}
|
||||
printf(ANSI_COLOR_GREEN"%s[%d] passed\n"ANSI_COLOR_RESET, __FUNCTION__, itr);
|
||||
|
||||
elementwise_mult_test_cleanup:
|
||||
if (input1_orig) {
|
||||
free(input1_orig);
|
||||
}
|
||||
if (input2_orig) {
|
||||
free(input2_orig);
|
||||
}
|
||||
if (out_c_orig) {
|
||||
free(out_c_orig);
|
||||
}
|
||||
if (out_opt_orig) {
|
||||
free(out_opt_orig);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,605 +0,0 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <malloc.h>
|
||||
|
||||
#include <esp_nn.h>
|
||||
#include "test_utils.h"
|
||||
|
||||
#if CONFIG_IDF_CMAKE
|
||||
#if (CONFIG_SPIRAM_SUPPORT && (CONFIG_SPIRAM_USE_CAPS_ALLOC || CONFIG_SPIRAM_USE_MALLOC))
|
||||
#define IDF_HEAP_CAPS 1
|
||||
#endif
|
||||
#if IDF_HEAP_CAPS
|
||||
#include "esp_heap_caps.h"
|
||||
#endif
|
||||
#endif
|
||||
|
||||
void esp_nn_depthwise_conv_s8_test()
|
||||
{
|
||||
int8_t *input = NULL, *filter_data = NULL, *out_data_c = NULL, *out_data_opt = NULL;
|
||||
int32_t *bias = NULL;
|
||||
int32_t input_offset = 5; /* some number in [-128, 127] */
|
||||
int32_t out_offset = 7;
|
||||
int32_t activation_min = -125;
|
||||
int32_t activation_max = 120;
|
||||
void *scratch_buf = NULL;
|
||||
|
||||
/* independent variables */
|
||||
int input_wd, input_ht, channels;
|
||||
uint16_t filter_ht, filter_wd, ch_mult;
|
||||
uint16_t pad_wd, pad_ht, stride_wd, stride_ht;
|
||||
|
||||
// run for 15 iterations
|
||||
for (int itr = 0; itr < 15; itr++) {
|
||||
/* prepare data */
|
||||
switch (itr) {
|
||||
case 0: // (ch_mult 1, (channels % 16) = 0), filter (3,3), pad (0,0)
|
||||
input_wd = 18;
|
||||
input_ht = 18;
|
||||
filter_ht = 3;
|
||||
filter_wd = 3;
|
||||
ch_mult = 1;
|
||||
channels = 16;
|
||||
pad_wd = 0;
|
||||
pad_ht = 0;
|
||||
stride_wd = 1;
|
||||
stride_ht = 1;
|
||||
break;
|
||||
case 1: // (ch_mult 1, (channels % 16) = 0), filter (3,3), pad (1,1)
|
||||
input_wd = 10;
|
||||
input_ht = 10;
|
||||
filter_ht = 3;
|
||||
filter_wd = 3;
|
||||
ch_mult = 1;
|
||||
channels = 16;
|
||||
pad_wd = 1;
|
||||
pad_ht = 1;
|
||||
stride_wd = 1;
|
||||
stride_ht = 1;
|
||||
break;
|
||||
case 2: // (ch_mult 1, (channels % 8) = 0), filter (3,3), pad (1,1)
|
||||
input_wd = 10;
|
||||
input_ht = 10;
|
||||
filter_ht = 3;
|
||||
filter_wd = 3;
|
||||
ch_mult = 1;
|
||||
channels = 24;
|
||||
pad_wd = 1;
|
||||
pad_ht = 1;
|
||||
stride_wd = 1;
|
||||
stride_ht = 1;
|
||||
break;
|
||||
case 3: // other filter sizes (ch_mult 1, (channels % 8) = 0)
|
||||
input_wd = 10;
|
||||
input_ht = 10;
|
||||
filter_ht = 3;
|
||||
filter_wd = 3;
|
||||
ch_mult = 1;
|
||||
channels = 24;
|
||||
pad_wd = 1;
|
||||
pad_ht = 1;
|
||||
stride_wd = 1;
|
||||
stride_ht = 1;
|
||||
break;
|
||||
case 4: // other filter sizes (ch_mult 8 = 0)
|
||||
input_wd = 6;
|
||||
input_ht = 6;
|
||||
filter_ht = 3;
|
||||
filter_wd = 3;
|
||||
ch_mult = 8;
|
||||
channels = 4;
|
||||
pad_wd = 1;
|
||||
pad_ht = 1;
|
||||
stride_wd = 1;
|
||||
stride_ht = 1;
|
||||
break;
|
||||
case 5: // other filter sizes (ch_mult 8 = 0)
|
||||
input_wd = 12;
|
||||
input_ht = 12;
|
||||
filter_ht = 5;
|
||||
filter_wd = 5;
|
||||
ch_mult = 8;
|
||||
channels = 4;
|
||||
pad_wd = 1;
|
||||
pad_ht = 1;
|
||||
stride_wd = 1;
|
||||
stride_ht = 1;
|
||||
break;
|
||||
case 6: // other filter sizes (ch_mult 4 = 0)
|
||||
input_wd = 6;
|
||||
input_ht = 6;
|
||||
filter_ht = 3;
|
||||
filter_wd = 3;
|
||||
ch_mult = 4;
|
||||
channels = 4;
|
||||
pad_wd = 1;
|
||||
pad_ht = 1;
|
||||
stride_wd = 1;
|
||||
stride_ht = 1;
|
||||
break;
|
||||
case 7: // (ch_mult 1, (channels % 16) = 0), filter (3,3), pad (0,0) stride (2,2)
|
||||
input_wd = 6;
|
||||
input_ht = 6;
|
||||
filter_ht = 3;
|
||||
filter_wd = 3;
|
||||
ch_mult = 1;
|
||||
channels = 16;
|
||||
pad_wd = 0;
|
||||
pad_ht = 0;
|
||||
stride_wd = 2;
|
||||
stride_ht = 2;
|
||||
break;
|
||||
case 8: // same as case 7, with large parameters
|
||||
input_wd = 58;
|
||||
input_ht = 58;
|
||||
filter_ht = 3;
|
||||
filter_wd = 3;
|
||||
ch_mult = 1;
|
||||
channels = 128;
|
||||
pad_wd = 0;
|
||||
pad_ht = 0;
|
||||
stride_wd = 2;
|
||||
stride_ht = 2;
|
||||
break;
|
||||
case 9: // (ch_mult 1, (channels % 16) = 0), filter (3,3), pad (0,0) stride (2,2)
|
||||
input_wd = 6;
|
||||
input_ht = 6;
|
||||
filter_ht = 3;
|
||||
filter_wd = 3;
|
||||
ch_mult = 1;
|
||||
channels = 16;
|
||||
pad_wd = 0;
|
||||
pad_ht = 0;
|
||||
stride_wd = 2;
|
||||
stride_ht = 2;
|
||||
break;
|
||||
default:
|
||||
input_wd = 6;
|
||||
input_ht = 6;
|
||||
filter_ht = 3;
|
||||
filter_wd = 3;
|
||||
ch_mult = 1;
|
||||
channels = 16;
|
||||
stride_wd = rand() % 2 + 1;
|
||||
stride_ht = stride_wd;
|
||||
pad_wd = stride_wd == 1 ? 0 : rand() % 2;
|
||||
pad_ht = pad_wd;
|
||||
printf("stride(%d), pad (%d)\t", stride_wd, pad_wd);
|
||||
break;
|
||||
}
|
||||
|
||||
uint16_t out_wd = (input_wd - filter_wd + 1) / stride_wd;
|
||||
uint16_t out_ht = (input_ht - filter_ht + 1) / stride_ht;
|
||||
if (itr == 9) {
|
||||
// expect the function to handle this gracefully
|
||||
out_wd += 1;
|
||||
out_ht += 1;
|
||||
}
|
||||
int in_size = input_wd * input_ht * channels;
|
||||
int out_size = out_wd * out_ht * channels * ch_mult;
|
||||
int filter_size = filter_wd * filter_ht * channels * ch_mult + 4;
|
||||
int bias_size = channels * ch_mult + 1;
|
||||
int32_t out_shift[channels * ch_mult];
|
||||
int32_t out_mult[channels * ch_mult];
|
||||
|
||||
#if IDF_HEAP_CAPS
|
||||
int8_t *input_orig = (int8_t *) heap_caps_malloc(in_size + 32, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
|
||||
int8_t *out_c_orig = (int8_t *) heap_caps_malloc(out_size + 32, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
|
||||
int8_t *out_opt_orig = (int8_t *) heap_caps_malloc(out_size + 32, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
|
||||
filter_data = (int8_t *) heap_caps_malloc(filter_size, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
|
||||
bias = (int32_t *) heap_caps_malloc(bias_size * 4, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
|
||||
|
||||
input = 16 + input_orig - ((uint32_t) input_orig & 0xf);
|
||||
out_data_c = 16 + out_c_orig - ((uint32_t) out_c_orig & 0xf);
|
||||
out_data_opt = 16 + out_opt_orig - ((uint32_t) out_opt_orig & 0xf);
|
||||
#else
|
||||
input = memalign(16, in_size + 16);
|
||||
filter_data = memalign(16, filter_size);
|
||||
out_data_c = memalign(16, out_size + 16);
|
||||
out_data_opt = memalign(16, out_size + 16);
|
||||
bias = memalign(16, bias_size * 4);
|
||||
int8_t *input_orig = input;
|
||||
int8_t *out_c_orig = out_data_c;
|
||||
int8_t *out_opt_orig = out_data_opt;
|
||||
#endif
|
||||
if (bias == NULL || input == NULL || filter_data == NULL ||
|
||||
out_data_c == NULL || out_data_opt == NULL || bias == NULL) {
|
||||
printf(ANSI_COLOR_RED"%s[%d] allocations failed\n"ANSI_COLOR_RESET, __FUNCTION__, itr);
|
||||
goto dc_s8_cleanup;
|
||||
}
|
||||
|
||||
/* Generate input data */
|
||||
for (int i = 0; i < in_size; ++i) {
|
||||
input[i] = rand() % 128;
|
||||
}
|
||||
|
||||
/* Generate filter data */
|
||||
for (int i = 0; i < filter_size; ++i) {
|
||||
filter_data[i] = rand() % 256 - 128;
|
||||
}
|
||||
|
||||
/* Generate bias data */
|
||||
for (int i = 0; i < channels * ch_mult; ++i) {
|
||||
bias[i + 1] = rand() % INT16_MAX; //0th index left for unalignment
|
||||
out_shift[i] = -8 + rand() % 3;
|
||||
out_mult[i] = 0x7eb0e200 + rand() % 50;
|
||||
}
|
||||
|
||||
data_dims_t input_dims = {.width = input_wd, .height = input_ht, .channels = channels, 1};
|
||||
data_dims_t output_dims = {.width = out_wd, .height = out_ht, .channels = channels * ch_mult, 1};
|
||||
data_dims_t filter_dims = {.width = filter_wd, .height = filter_ht, 0, 0};
|
||||
dw_conv_params_t conv_params = {.in_offset = input_offset, .out_offset = out_offset, .ch_mult = ch_mult,
|
||||
.stride = {stride_wd, stride_ht}, .padding = {pad_wd, pad_ht},
|
||||
.dilation = {0, 0}, .activation = {activation_min, activation_max}};
|
||||
quant_data_t quant_data = {.shift = out_shift, .mult = out_mult};
|
||||
|
||||
int scratch_buf_size = esp_nn_get_depthwise_conv_scratch_size(&input_dims, &filter_dims,
|
||||
&output_dims, &conv_params);
|
||||
if (scratch_buf_size > 0) {
|
||||
#if IDF_HEAP_CAPS
|
||||
scratch_buf = heap_caps_malloc(scratch_buf_size + 32, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
|
||||
int align_sz = 16 - (((int32_t) scratch_buf) & 0xf);
|
||||
#else
|
||||
scratch_buf = memalign(16, scratch_buf_size);
|
||||
int align_sz = 0;
|
||||
#endif
|
||||
if (scratch_buf == NULL) {
|
||||
printf(ANSI_COLOR_RED"%s[%d] scratch_buf alloc failed size %d\n"ANSI_COLOR_RESET,
|
||||
__FUNCTION__, itr, scratch_buf_size);
|
||||
goto dc_s8_cleanup;
|
||||
}
|
||||
esp_nn_set_depthwise_conv_scratch_buf(scratch_buf + align_sz);
|
||||
}
|
||||
if (itr == 0) {
|
||||
/* enable profiler */
|
||||
profile_c_start();
|
||||
}
|
||||
|
||||
/* C function */
|
||||
esp_nn_depthwise_conv_s8_ansi(&input_dims, input, &filter_dims, filter_data + 4,
|
||||
bias + 1, &output_dims, out_data_c, &conv_params, &quant_data);
|
||||
|
||||
if (itr == 0) {
|
||||
profile_c_end();
|
||||
profile_opt_start();
|
||||
}
|
||||
|
||||
/* Optimized function */
|
||||
esp_nn_depthwise_conv_s8(&input_dims, input, &filter_dims, filter_data + 4,
|
||||
bias + 1, &output_dims, out_data_opt, &conv_params, &quant_data);
|
||||
|
||||
if (itr == 0) {
|
||||
/* disable profiler */
|
||||
profile_opt_end();
|
||||
}
|
||||
|
||||
bool ret = CHECK_EQUAL(out_data_c, out_data_opt, out_size);
|
||||
if (ret == false) {
|
||||
printf(ANSI_COLOR_RED"%s[%d] failed\n"ANSI_COLOR_RESET, __FUNCTION__, itr);
|
||||
printf("Output: \n");
|
||||
PRINT_ARRAY_HEX(out_data_opt, out_size / out_ht, out_ht);
|
||||
printf("Expected: \n");
|
||||
PRINT_ARRAY_HEX(out_data_c, out_size / out_ht, out_ht);
|
||||
printf("Input:\n");
|
||||
PRINT_ARRAY_HEX(input, in_size / input_ht, input_ht);
|
||||
printf("Filter data:\n");
|
||||
PRINT_ARRAY_HEX(filter_data + 4, (filter_size - 4) / filter_ht, filter_ht);
|
||||
printf("bias data:\n");
|
||||
PRINT_ARRAY_INT(bias + 1, ch_mult * channels, 1);
|
||||
goto dc_s8_cleanup;
|
||||
}
|
||||
printf(ANSI_COLOR_GREEN"%s[%d] passed\n"ANSI_COLOR_RESET, __FUNCTION__, itr);
|
||||
|
||||
dc_s8_cleanup:
|
||||
if (input) {
|
||||
free(input_orig);
|
||||
}
|
||||
if (filter_data) {
|
||||
free(filter_data);
|
||||
}
|
||||
if (out_data_c) {
|
||||
free(out_c_orig);
|
||||
}
|
||||
if (out_data_opt) {
|
||||
free(out_opt_orig);
|
||||
}
|
||||
if (bias) {
|
||||
free(bias);
|
||||
}
|
||||
if (scratch_buf) {
|
||||
free(scratch_buf);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void esp_nn_conv_s8_test()
|
||||
{
|
||||
const int32_t input_offset = 5; /* some number in [-128, 127] */
|
||||
const int32_t activation_min = -125;
|
||||
const int32_t activation_max = 122;
|
||||
const int32_t out_offset = 3;
|
||||
|
||||
void *scratch_buf = NULL;
|
||||
int8_t *input_orig;
|
||||
int8_t *out_c_orig;
|
||||
int8_t *out_opt_orig;
|
||||
int8_t *filter_data;
|
||||
int32_t *bias;
|
||||
|
||||
/* independent variable */
|
||||
int in_wd, in_ht, in_channels, out_channels;
|
||||
uint16_t filter_ht, filter_wd;
|
||||
uint16_t pad_wd, pad_ht, stride_wd, stride_ht;
|
||||
|
||||
// run for 10 iterations
|
||||
for (int itr = 0; itr < 10; itr++) {
|
||||
switch (itr) {
|
||||
case 0: // ch % 8 == 0 && filter (1,1), padding (0,0)
|
||||
in_wd = 10;
|
||||
in_ht = 10;
|
||||
in_channels = 64;
|
||||
out_channels = 64;
|
||||
filter_ht = 1;
|
||||
filter_wd = 1;
|
||||
pad_wd = 0;
|
||||
pad_ht = 0;
|
||||
stride_wd = 1;
|
||||
stride_ht = 1;
|
||||
break;
|
||||
case 1: // ch % 4 == 0 && (in_wd * in_ht) % 16 == 0
|
||||
in_wd = 4;
|
||||
in_ht = 4;
|
||||
in_channels = 20;
|
||||
out_channels = 8;
|
||||
filter_ht = 1;
|
||||
filter_wd = 1;
|
||||
pad_wd = 0;
|
||||
pad_ht = 0;
|
||||
stride_wd = 1;
|
||||
stride_ht = 1;
|
||||
break;
|
||||
case 2: // ch, filter (3x3x3)
|
||||
in_wd = 10;
|
||||
in_ht = 10;
|
||||
in_channels = 3;
|
||||
out_channels = 64;
|
||||
filter_ht = 3;
|
||||
filter_wd = 3;
|
||||
pad_wd = 0;
|
||||
pad_ht = 0;
|
||||
stride_wd = 1;
|
||||
stride_ht = 1;
|
||||
break;
|
||||
case 3: // remaining pad (0, 0)
|
||||
in_wd = 10;
|
||||
in_ht = 10;
|
||||
in_channels = 3;
|
||||
out_channels = 64;
|
||||
filter_ht = 1;
|
||||
filter_wd = 1;
|
||||
pad_wd = 0;
|
||||
pad_ht = 0;
|
||||
stride_wd = 1;
|
||||
stride_ht = 1;
|
||||
break;
|
||||
case 4: // unopt case
|
||||
in_wd = 10;
|
||||
in_ht = 10;
|
||||
in_channels = 12;
|
||||
out_channels = 64;
|
||||
filter_ht = 3;
|
||||
filter_wd = 3;
|
||||
pad_wd = 1;
|
||||
pad_ht = 1;
|
||||
stride_wd = 1;
|
||||
stride_ht = 1;
|
||||
break;
|
||||
case 5: // ch % 8 == 0 & stride (2,2)
|
||||
in_wd = 16;
|
||||
in_ht = 16;
|
||||
in_channels = 16;
|
||||
out_channels = 16;
|
||||
filter_ht = 1;
|
||||
filter_wd = 1;
|
||||
pad_wd = 0;
|
||||
pad_ht = 0;
|
||||
stride_wd = 2;
|
||||
stride_ht = 2;
|
||||
break;
|
||||
case 6: // ch % 8 == 0 && filter (1,1), padding (0,0)
|
||||
in_wd = 2;
|
||||
in_ht = 2;
|
||||
in_channels = 8;
|
||||
out_channels = 8;
|
||||
filter_ht = 1;
|
||||
filter_wd = 1;
|
||||
pad_wd = 0;
|
||||
pad_ht = 0;
|
||||
stride_wd = 1;
|
||||
stride_ht = 1;
|
||||
break;
|
||||
default: // ch % 8 == 0
|
||||
in_wd = 8;
|
||||
in_ht = 8;
|
||||
in_channels = 16;
|
||||
out_channels = 16;
|
||||
filter_ht = 1;
|
||||
filter_wd = 1;
|
||||
pad_wd = 0;
|
||||
pad_ht = 0;
|
||||
stride_wd = 1;
|
||||
stride_ht = 1;
|
||||
break;
|
||||
}
|
||||
|
||||
/* prepare data */
|
||||
uint16_t out_wd = (in_wd - filter_wd + 1) / stride_wd;
|
||||
uint16_t out_ht = (in_ht - filter_ht + 1) / stride_ht;
|
||||
|
||||
int in_size = in_wd * in_ht * in_channels;
|
||||
int filter_size = filter_wd * filter_ht * in_channels * out_channels + 2;
|
||||
int out_size = out_wd * out_ht * out_channels;
|
||||
|
||||
#if IDF_HEAP_CAPS
|
||||
input_orig = (int8_t *) heap_caps_malloc(in_size + 32, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
|
||||
out_c_orig = (int8_t *) heap_caps_malloc(out_size + 32, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
|
||||
out_opt_orig = (int8_t *) heap_caps_malloc(out_size + 32, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
|
||||
filter_data = (int8_t *) heap_caps_malloc(filter_size + 32, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
|
||||
bias = (int32_t *) heap_caps_malloc(128 + sizeof (int32_t) * out_channels, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
|
||||
|
||||
int8_t *input = 16 + input_orig - ((uint32_t) input_orig & 0xf);
|
||||
int8_t *out_data_c = 16 + out_c_orig - ((uint32_t) out_c_orig & 0xf);
|
||||
int8_t *out_data_opt = 16 + out_opt_orig - ((uint32_t) out_opt_orig & 0xf);
|
||||
#else
|
||||
int8_t *input = memalign(16, in_size);
|
||||
int8_t *out_data_c = memalign(16, out_size);
|
||||
int8_t *out_data_opt = memalign(16, out_size);
|
||||
filter_data = memalign(16, filter_size);
|
||||
bias = calloc(1, 128 + sizeof (int32_t) * out_channels);
|
||||
input_orig = input;
|
||||
out_c_orig = out_data_c;
|
||||
out_opt_orig = out_data_opt;
|
||||
#endif
|
||||
int32_t *out_shift = calloc(1, 128 + sizeof (int32_t) * out_channels);
|
||||
int32_t *out_mult = calloc(1, 128 + sizeof (int32_t) * out_channels);
|
||||
|
||||
if (input == NULL || filter_data == NULL ||
|
||||
out_data_c == NULL || out_data_opt == NULL) {
|
||||
printf(ANSI_COLOR_RED"%s allocations failed\n"ANSI_COLOR_RESET, __FUNCTION__);
|
||||
goto conv_s8_cleanup;
|
||||
}
|
||||
|
||||
if (bias == NULL || out_shift == NULL || out_mult == NULL) {
|
||||
printf(ANSI_COLOR_RED"%s allocations failed\n"ANSI_COLOR_RESET, __FUNCTION__);
|
||||
goto conv_s8_cleanup;
|
||||
}
|
||||
|
||||
/* Generate input data between -128 -> +127 */
|
||||
for (int i = 0; i < in_size; ++i) {
|
||||
input[i] = rand() % 255 - 128;
|
||||
}
|
||||
|
||||
/* Generate filter data between -128 -> +127 */
|
||||
for (int i = 0; i < filter_size; ++i) {
|
||||
filter_data[i] = rand() % 256 - 128;
|
||||
}
|
||||
|
||||
/* Generate bias data */
|
||||
for (int i = 0; i < out_channels; ++i) {
|
||||
bias[i] = (int32_t)rand() % UINT16_MAX + UINT8_MAX;
|
||||
}
|
||||
|
||||
/* Shift and multiplier */
|
||||
for (int i = 0; i < out_channels; ++i) {
|
||||
out_shift[i] = -10 + rand() % 2;
|
||||
out_mult[i] = 0x7f67f4f8 + rand() % 50;
|
||||
}
|
||||
|
||||
data_dims_t input_dims = {.width = in_wd, .height = in_ht, .channels = in_channels, 1};
|
||||
data_dims_t output_dims = {.width = out_wd, .height = out_ht, .channels = out_channels, 1};
|
||||
data_dims_t filter_dims = {.width = filter_wd, .height = filter_ht, 0, 0};
|
||||
conv_params_t conv_params = {.in_offset = input_offset, .out_offset = out_offset,
|
||||
.stride = {stride_wd, stride_ht}, .padding = {pad_wd, pad_ht},
|
||||
.dilation = {0, 0}, .activation = {activation_min, activation_max}};
|
||||
quant_data_t quant_data = {.shift = out_shift, .mult = out_mult};
|
||||
|
||||
int scratch_buf_size = esp_nn_get_conv_scratch_size(&input_dims, &filter_dims,
|
||||
&output_dims, &conv_params);
|
||||
if (scratch_buf_size > 0) {
|
||||
#if IDF_HEAP_CAPS
|
||||
void *scratch_buf = heap_caps_malloc(scratch_buf_size + 32, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
|
||||
int align_sz = 16 - (((int32_t) scratch_buf) & 0xf);
|
||||
#else
|
||||
void *scratch_buf = memalign(16, scratch_buf_size);
|
||||
int align_sz = 0;
|
||||
#endif
|
||||
if (scratch_buf == NULL) {
|
||||
printf(ANSI_COLOR_RED"%s scratch_buf alloc failed size %d\n"ANSI_COLOR_RESET, __FUNCTION__, scratch_buf_size);
|
||||
goto conv_s8_cleanup;
|
||||
}
|
||||
esp_nn_set_conv_scratch_buf(scratch_buf + align_sz);
|
||||
}
|
||||
|
||||
if (itr == 0) {
|
||||
/* enable profiler */
|
||||
profile_c_start();
|
||||
}
|
||||
|
||||
/* C function */
|
||||
esp_nn_conv_s8_ansi(&input_dims, input, &filter_dims, filter_data + 2,
|
||||
bias, &output_dims, out_data_c, &conv_params, &quant_data);
|
||||
|
||||
if (itr == 0) {
|
||||
profile_c_end();
|
||||
profile_opt_start();
|
||||
}
|
||||
|
||||
/* Optimized function */
|
||||
esp_nn_conv_s8(&input_dims, input, &filter_dims, filter_data + 2,
|
||||
bias, &output_dims, out_data_opt, &conv_params, &quant_data);
|
||||
|
||||
if (itr == 0) {
|
||||
/* disable profiler */
|
||||
profile_opt_end();
|
||||
}
|
||||
|
||||
bool ret = CHECK_EQUAL(out_data_c, out_data_opt, out_size);
|
||||
if (ret == false) {
|
||||
printf(ANSI_COLOR_RED"%s[%d] failed\n"ANSI_COLOR_RESET, __FUNCTION__, itr);
|
||||
printf("Output: \n");
|
||||
PRINT_ARRAY_HEX(out_data_opt, out_size / out_ht, out_ht);
|
||||
printf("Expected: \n");
|
||||
PRINT_ARRAY_HEX(out_data_c, out_size / out_ht, out_ht);
|
||||
printf("Input:\n");
|
||||
PRINT_ARRAY_HEX(input, in_size / in_ht, in_ht);
|
||||
printf("Filter data:\n");
|
||||
PRINT_ARRAY_HEX(filter_data + 2, (filter_size - 2) / filter_ht, filter_ht);
|
||||
printf("bias data:\n");
|
||||
PRINT_ARRAY_INT(bias, out_channels, 1);
|
||||
goto conv_s8_cleanup;
|
||||
}
|
||||
printf(ANSI_COLOR_GREEN"%s[%d] passed\n"ANSI_COLOR_RESET, __FUNCTION__, itr);
|
||||
|
||||
conv_s8_cleanup:
|
||||
if (input) {
|
||||
free(input_orig);
|
||||
}
|
||||
if (filter_data) {
|
||||
free(filter_data);
|
||||
}
|
||||
if (out_data_c) {
|
||||
free(out_c_orig);
|
||||
}
|
||||
if (out_data_opt) {
|
||||
free(out_opt_orig);
|
||||
}
|
||||
if (bias) {
|
||||
free(bias);
|
||||
}
|
||||
if (out_shift) {
|
||||
free(out_shift);
|
||||
}
|
||||
if (out_mult) {
|
||||
free(out_mult);
|
||||
}
|
||||
if (scratch_buf) {
|
||||
free(scratch_buf);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,111 +0,0 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#include <esp_nn.h>
|
||||
#include "test_utils.h"
|
||||
|
||||
|
||||
void esp_nn_fully_connected_s8_test()
|
||||
{
|
||||
/* prepare data */
|
||||
static uint16_t row_len = 256 + 8 + 7; /* odd len to test unaligned+left-over */
|
||||
static uint16_t out_channels = 3;
|
||||
int8_t input[row_len];
|
||||
int8_t filter_data[row_len * out_channels];
|
||||
int8_t output_c[out_channels], output_opt[out_channels];
|
||||
static int32_t activation_min = -128;
|
||||
static int32_t activation_max = 127;
|
||||
static int32_t input_offset = 0;
|
||||
static int32_t filter_offset = 0;
|
||||
int32_t out_shift = -10;
|
||||
static int32_t out_offset = 127;
|
||||
int32_t out_mult = 0x59e492c4;
|
||||
for (int itr = 0; itr < 5; itr++) {
|
||||
out_mult = INT32_MAX / row_len + rand() % INT16_MAX;
|
||||
switch (itr) {
|
||||
case 0:
|
||||
out_shift = -10;
|
||||
break;
|
||||
case 1:
|
||||
out_shift = SHIFT_MIN;
|
||||
break;
|
||||
case 2:
|
||||
out_shift = SHIFT_MAX;
|
||||
break;
|
||||
case 3:
|
||||
out_shift = 0;
|
||||
break;
|
||||
default:
|
||||
out_shift = -10 + rand() % 5;
|
||||
break;
|
||||
}
|
||||
if (itr == 0) {
|
||||
out_shift = SHIFT_MAX;
|
||||
}
|
||||
/* Generate input and filter data */
|
||||
for (int i = 0; i < row_len; ++i) {
|
||||
input[i] = rand() % 256 - 128;
|
||||
}
|
||||
for (int i = 0; i < row_len * out_channels; ++i) {
|
||||
filter_data[i] = rand() % 256 - 128;
|
||||
}
|
||||
|
||||
if (itr == 0) {
|
||||
/* enable profiler */
|
||||
profile_c_start();
|
||||
}
|
||||
|
||||
/* C function */
|
||||
esp_nn_fully_connected_s8_ansi(input, input_offset, row_len, filter_data, filter_offset,
|
||||
NULL, output_c, out_channels, out_offset, out_shift, out_mult,
|
||||
activation_min, activation_max);
|
||||
|
||||
if (itr == 0) {
|
||||
profile_c_end();
|
||||
profile_opt_start();
|
||||
}
|
||||
|
||||
/* Optimized function */
|
||||
esp_nn_fully_connected_s8(input, input_offset, row_len, filter_data, filter_offset,
|
||||
NULL, output_opt, out_channels, out_offset, out_shift, out_mult,
|
||||
activation_min, activation_max);
|
||||
|
||||
if (itr == 0) {
|
||||
/* disable profiler */
|
||||
profile_opt_end();
|
||||
}
|
||||
|
||||
bool ret = CHECK_EQUAL(output_c, output_opt, out_channels);
|
||||
if (ret == false) {
|
||||
printf(ANSI_COLOR_RED"%s[%d] failed\n"ANSI_COLOR_RESET, __FUNCTION__, itr);
|
||||
printf("Output: \n");
|
||||
PRINT_ARRAY_HEX(output_opt, out_channels, 1);
|
||||
printf("Expected: \n");
|
||||
PRINT_ARRAY_HEX(output_c, out_channels, 1);
|
||||
printf("Input:\n");
|
||||
PRINT_ARRAY_HEX(input, row_len, 1);
|
||||
printf("Filter data:\n");
|
||||
PRINT_ARRAY_HEX(filter_data, row_len, out_channels);
|
||||
printf("Out shift: %d\n", out_shift);
|
||||
printf("Out mult: %x\n", out_mult);
|
||||
return;
|
||||
}
|
||||
printf(ANSI_COLOR_GREEN"%s[%d] passed\n"ANSI_COLOR_RESET, __FUNCTION__, itr);
|
||||
}
|
||||
}
|
||||
@@ -1,184 +0,0 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <malloc.h>
|
||||
|
||||
#include <esp_nn.h>
|
||||
#include "test_utils.h"
|
||||
|
||||
|
||||
void esp_nn_avg_pool_s8_test()
|
||||
{
|
||||
/* prepare data */
|
||||
const uint16_t input_wd = 16;
|
||||
const uint16_t input_ht = 16;
|
||||
const uint16_t channels = 16; /* With TFLite example, I have seen it 256 */
|
||||
const int size = input_wd * input_ht * channels;
|
||||
int8_t *input, *output_c, *output_opt;
|
||||
const int32_t activation_min = -128;
|
||||
const int32_t activation_max = 127;
|
||||
const uint16_t pad_wd = 1;
|
||||
const uint16_t pad_ht = 1;
|
||||
const uint16_t stride_wd = 1;
|
||||
const uint16_t stride_ht = 1;
|
||||
const uint16_t filter_ht = 3;
|
||||
const uint16_t filter_wd = 3;
|
||||
const uint16_t out_wd = input_wd / stride_wd;
|
||||
const uint16_t out_ht = input_ht / stride_ht;
|
||||
const int out_size = out_wd * out_ht * channels;
|
||||
|
||||
input = memalign(16, size);
|
||||
output_c = memalign(16, out_size);
|
||||
output_opt = memalign(16, out_size);
|
||||
|
||||
if (input == NULL || output_c == NULL || output_opt == NULL) {
|
||||
printf(ANSI_COLOR_RED"%s allocations failed\n"ANSI_COLOR_RESET, __FUNCTION__);
|
||||
goto avg_pool_s8_cleanup;
|
||||
}
|
||||
/**
|
||||
* width/height, channels etc look suspicious but it it true.
|
||||
* It actually depends upon where in model this is actually placed.
|
||||
* If at the end wd/ht tends to be smaller and depth larger.
|
||||
*/
|
||||
|
||||
for (int i = 0; i < size; ++i) {
|
||||
input[i] = rand() % 256 - 128;
|
||||
}
|
||||
|
||||
/* enable profiler */
|
||||
profile_c_start();
|
||||
|
||||
/* C function */
|
||||
esp_nn_avg_pool_s8_ansi(input, input_wd, input_ht, output_c, out_wd, out_ht,
|
||||
stride_wd, stride_ht, filter_wd, filter_ht, pad_wd, pad_ht,
|
||||
activation_min, activation_max, channels);
|
||||
|
||||
profile_c_end();
|
||||
profile_opt_start();
|
||||
|
||||
/* Optimized function */
|
||||
esp_nn_avg_pool_s8(input, input_wd, input_ht, output_opt, out_wd, out_ht,
|
||||
stride_wd, stride_ht, filter_wd, filter_ht, pad_wd, pad_ht,
|
||||
activation_min, activation_max, channels);
|
||||
|
||||
/* disable profiler */
|
||||
profile_opt_end();
|
||||
|
||||
|
||||
bool ret = CHECK_EQUAL(output_c, output_opt, out_size);
|
||||
if (ret == false) {
|
||||
printf(ANSI_COLOR_RED"%s failed\n"ANSI_COLOR_RESET, __FUNCTION__);
|
||||
printf("Output: \n");
|
||||
PRINT_ARRAY_HEX(output_opt, out_wd * channels, out_ht);
|
||||
printf("Expected: \n");
|
||||
PRINT_ARRAY_HEX(output_c, out_wd * channels, out_ht);
|
||||
printf("Input:\n");
|
||||
PRINT_ARRAY_HEX(input, input_wd * channels, input_ht);
|
||||
goto avg_pool_s8_cleanup;
|
||||
}
|
||||
printf(ANSI_COLOR_GREEN"%s passed\n"ANSI_COLOR_RESET, __FUNCTION__);
|
||||
|
||||
avg_pool_s8_cleanup:
|
||||
if (input) {
|
||||
free(input);
|
||||
}
|
||||
if (output_c) {
|
||||
free(output_c);
|
||||
}
|
||||
if (output_opt) {
|
||||
free(output_opt);
|
||||
}
|
||||
}
|
||||
|
||||
void esp_nn_max_pool_s8_test()
|
||||
{
|
||||
/* prepare data */
|
||||
const uint16_t input_wd = 16;
|
||||
const uint16_t input_ht = 16;
|
||||
const uint16_t channels = 16; /* With TFLite example, I have seen it 256 */
|
||||
int8_t *input, *output_c, *output_opt;
|
||||
const int size = input_wd * input_ht * channels;
|
||||
const int32_t activation_min = -128;
|
||||
const int32_t activation_max = 127;
|
||||
const uint16_t pad_wd = 1;
|
||||
const uint16_t pad_ht = 1;
|
||||
const uint16_t stride_wd = 1;
|
||||
const uint16_t stride_ht = 1;
|
||||
const uint16_t filter_ht = 3;
|
||||
const uint16_t filter_wd = 3;
|
||||
const uint16_t out_wd = input_wd / stride_wd;
|
||||
const uint16_t out_ht = input_ht / stride_ht;
|
||||
const int out_size = out_wd * out_ht * channels;
|
||||
|
||||
input = memalign(16, size);
|
||||
output_c = memalign(16, out_size);
|
||||
output_opt = memalign(16, out_size);
|
||||
|
||||
if (input == NULL || output_c == NULL || output_opt == NULL) {
|
||||
printf(ANSI_COLOR_RED"%s allocations failed\n"ANSI_COLOR_RESET, __FUNCTION__);
|
||||
goto max_pool_s8_cleanup;
|
||||
}
|
||||
|
||||
for (int i = 0; i < size; ++i) {
|
||||
input[i] = rand() % 256 - 128;
|
||||
}
|
||||
|
||||
/* enable profiler */
|
||||
profile_c_start();
|
||||
|
||||
/* C function */
|
||||
esp_nn_max_pool_s8_ansi(input, input_wd, input_ht, output_c, out_wd, out_ht,
|
||||
stride_wd, stride_ht, filter_wd, filter_ht, pad_wd, pad_ht,
|
||||
activation_min, activation_max, channels);
|
||||
|
||||
profile_c_end();
|
||||
profile_opt_start();
|
||||
|
||||
/* Optimized function */
|
||||
esp_nn_max_pool_s8(input, input_wd, input_ht, output_opt, out_wd, out_ht,
|
||||
stride_wd, stride_ht, filter_wd, filter_ht, pad_wd, pad_ht,
|
||||
activation_min, activation_max, channels);
|
||||
|
||||
/* disable profiler */
|
||||
profile_opt_end();
|
||||
|
||||
|
||||
bool ret = CHECK_EQUAL(output_c, output_opt, out_wd * out_ht * channels);
|
||||
if (ret == false) {
|
||||
printf(ANSI_COLOR_RED"%s failed\n"ANSI_COLOR_RESET, __FUNCTION__);
|
||||
printf("Output: \n");
|
||||
PRINT_ARRAY_HEX(output_opt, out_wd * out_ht * channels, 1);
|
||||
printf("Expected: \n");
|
||||
PRINT_ARRAY_HEX(output_c, out_wd * out_ht * channels, 1);
|
||||
printf("Input:\n");
|
||||
PRINT_ARRAY_HEX(input, 8, size / 8);
|
||||
goto max_pool_s8_cleanup;
|
||||
}
|
||||
printf(ANSI_COLOR_GREEN"%s passed\n"ANSI_COLOR_RESET, __FUNCTION__);
|
||||
|
||||
max_pool_s8_cleanup:
|
||||
if (input) {
|
||||
free(input);
|
||||
}
|
||||
if (output_c) {
|
||||
free(output_c);
|
||||
}
|
||||
if (output_opt) {
|
||||
free(output_opt);
|
||||
}
|
||||
}
|
||||
@@ -1,83 +0,0 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <malloc.h>
|
||||
|
||||
#include <esp_nn.h>
|
||||
#include "test_utils.h"
|
||||
|
||||
void esp_nn_relu6_s8_test()
|
||||
{
|
||||
const int size = 1600 + 8 + 7;
|
||||
int8_t *input, *inout_ansi, *inout_opt;
|
||||
|
||||
input = memalign(16, size);
|
||||
inout_ansi = memalign(16, size);
|
||||
inout_opt = memalign(16, size);
|
||||
|
||||
if (input == NULL || inout_ansi == NULL || inout_opt == NULL) {
|
||||
printf(ANSI_COLOR_RED"%s allocations failed\n"ANSI_COLOR_RESET, __FUNCTION__);
|
||||
goto relu6_s8_cleanup;
|
||||
}
|
||||
/* Generate filter data between -128 -> +127 */
|
||||
for (int i = 0; i < size; ++i) {
|
||||
input[i] = rand() % 255 - 128;
|
||||
inout_ansi[i] = input[i];
|
||||
inout_opt[i] = input[i];
|
||||
}
|
||||
|
||||
/* enable profiler */
|
||||
profile_c_start();
|
||||
|
||||
/* C function */
|
||||
esp_nn_relu6_s8_ansi(inout_ansi, size);
|
||||
|
||||
profile_c_end();
|
||||
profile_opt_start();
|
||||
|
||||
/* Optimized function */
|
||||
esp_nn_relu6_s8(inout_opt, size);
|
||||
|
||||
/* disable profiler */
|
||||
profile_opt_end();
|
||||
|
||||
bool ret = CHECK_EQUAL(inout_ansi, inout_opt, size);
|
||||
if (ret == false) {
|
||||
printf(ANSI_COLOR_RED"%s failed\n"ANSI_COLOR_RESET, __FUNCTION__);
|
||||
printf("Output: \n");
|
||||
PRINT_ARRAY_HEX(inout_opt, size, 1);
|
||||
printf("Expected: \n");
|
||||
PRINT_ARRAY_HEX(inout_ansi, size, 1);
|
||||
printf("Input:\n");
|
||||
PRINT_ARRAY_HEX(input, size, 1);
|
||||
goto relu6_s8_cleanup;
|
||||
}
|
||||
printf(ANSI_COLOR_GREEN"%s passed\n"ANSI_COLOR_RESET, __FUNCTION__);
|
||||
|
||||
relu6_s8_cleanup:
|
||||
if (input) {
|
||||
free (input);
|
||||
}
|
||||
if (inout_ansi) {
|
||||
free (inout_ansi);
|
||||
}
|
||||
if (inout_opt) {
|
||||
free (inout_opt);
|
||||
}
|
||||
|
||||
}
|
||||
@@ -1,101 +0,0 @@
|
||||
// Copyright 2022 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <malloc.h>
|
||||
|
||||
#include <esp_nn.h>
|
||||
#include "test_utils.h"
|
||||
|
||||
void esp_nn_softmax_s8_test()
|
||||
{
|
||||
const int32_t height = 8;
|
||||
const int32_t width = 32;
|
||||
const int32_t diff_min = -128;
|
||||
const int32_t mult = INT32_MAX / 2;
|
||||
const int32_t shift = 7;
|
||||
void *scratch_buf = NULL;
|
||||
const int size = width * height;
|
||||
int8_t *input, *out_ansi, *out_opt;
|
||||
|
||||
input = memalign(16, size);
|
||||
out_ansi = memalign(16, size);
|
||||
out_opt = memalign(16, size);
|
||||
|
||||
if (input == NULL || out_ansi == NULL || out_opt == NULL) {
|
||||
printf(ANSI_COLOR_RED"%s buffer allocations failed\n"ANSI_COLOR_RESET, __FUNCTION__);
|
||||
goto softmax_s8_cleanup;
|
||||
}
|
||||
|
||||
/* Generate input data between -128 -> +127 */
|
||||
for (int i = 0; i < size; ++i) {
|
||||
input[i] = rand() % 255 - 128;
|
||||
}
|
||||
|
||||
/* enable profiler */
|
||||
profile_c_start();
|
||||
|
||||
/* C function */
|
||||
esp_nn_softmax_s8_ansi(input, height, width, mult, shift, diff_min, out_ansi);
|
||||
|
||||
profile_c_end();
|
||||
|
||||
int32_t scratch_buf_size = esp_nn_get_softmax_scratch_size(width, height);
|
||||
if (scratch_buf_size) {
|
||||
scratch_buf = memalign(4, scratch_buf_size);
|
||||
if (scratch_buf == NULL) {
|
||||
printf(ANSI_COLOR_RED"%s scratch_buf alloc failed size %d\n"ANSI_COLOR_RESET, __FUNCTION__, scratch_buf_size);
|
||||
goto softmax_s8_cleanup;
|
||||
}
|
||||
esp_nn_set_softmax_scratch_buf(scratch_buf);
|
||||
}
|
||||
|
||||
profile_opt_start();
|
||||
|
||||
/* Optimized function */
|
||||
esp_nn_softmax_s8(input, height, width, mult, shift, diff_min, out_opt);
|
||||
|
||||
/* disable profiler */
|
||||
profile_opt_end();
|
||||
|
||||
bool ret = CHECK_EQUAL(out_ansi, out_opt, size);
|
||||
if (ret == false) {
|
||||
printf(ANSI_COLOR_RED"%s failed\n"ANSI_COLOR_RESET, __FUNCTION__);
|
||||
printf("Output: \n");
|
||||
PRINT_ARRAY_HEX(out_opt, width, height);
|
||||
printf("Expected: \n");
|
||||
PRINT_ARRAY_HEX(out_ansi, width, height);
|
||||
printf("Input:\n");
|
||||
PRINT_ARRAY_HEX(input, width, height);
|
||||
goto softmax_s8_cleanup;
|
||||
}
|
||||
printf(ANSI_COLOR_GREEN"%s passed\n"ANSI_COLOR_RESET, __FUNCTION__);
|
||||
|
||||
softmax_s8_cleanup:
|
||||
if (input) {
|
||||
free (input);
|
||||
}
|
||||
if (out_ansi) {
|
||||
free (out_ansi);
|
||||
}
|
||||
if (out_opt) {
|
||||
free (out_opt);
|
||||
}
|
||||
if (scratch_buf) {
|
||||
free (scratch_buf);
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user