mirror of
https://github.com/jomjol/AI-on-the-edge-device.git
synced 2025-12-08 20:46:52 +03:00
compatibitly mit esp-idf pure
This commit is contained in:
@@ -0,0 +1,94 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/micro/all_ops_resolver.h"
|
||||
|
||||
#include "tensorflow/lite/micro/kernels/micro_ops.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace ops {
|
||||
namespace micro {
|
||||
namespace custom {
|
||||
TfLiteRegistration* Register_ETHOSU();
|
||||
const char* GetString_ETHOSU();
|
||||
} // namespace custom
|
||||
} // namespace micro
|
||||
} // namespace ops
|
||||
|
||||
AllOpsResolver::AllOpsResolver() {
|
||||
// Please keep this list of Builtin Operators in alphabetical order.
|
||||
AddAbs();
|
||||
AddAdd();
|
||||
AddArgMax();
|
||||
AddArgMin();
|
||||
AddAveragePool2D();
|
||||
AddCeil();
|
||||
AddConcatenation();
|
||||
AddConv2D();
|
||||
AddCos();
|
||||
AddDepthwiseConv2D();
|
||||
AddDequantize();
|
||||
AddEqual();
|
||||
AddFloor();
|
||||
AddFullyConnected();
|
||||
AddGreater();
|
||||
AddGreaterEqual();
|
||||
AddHardSwish();
|
||||
AddL2Normalization();
|
||||
AddLess();
|
||||
AddLessEqual();
|
||||
AddLog();
|
||||
AddLogicalAnd();
|
||||
AddLogicalNot();
|
||||
AddLogicalOr();
|
||||
AddLogistic();
|
||||
AddMaximum();
|
||||
AddMaxPool2D();
|
||||
AddMean();
|
||||
AddMinimum();
|
||||
AddMul();
|
||||
AddNeg();
|
||||
AddNotEqual();
|
||||
AddPack();
|
||||
AddPad();
|
||||
AddPadV2();
|
||||
AddPrelu();
|
||||
AddQuantize();
|
||||
AddReduceMax();
|
||||
AddRelu();
|
||||
AddRelu6();
|
||||
AddReshape();
|
||||
AddResizeNearestNeighbor();
|
||||
AddRound();
|
||||
AddRsqrt();
|
||||
AddShape();
|
||||
AddSin();
|
||||
AddSoftmax();
|
||||
AddSplit();
|
||||
AddSplitV();
|
||||
AddSqrt();
|
||||
AddSquare();
|
||||
AddStridedSlice();
|
||||
AddSub();
|
||||
AddSvdf();
|
||||
AddTanh();
|
||||
AddUnpack();
|
||||
|
||||
// TODO(b/159644355): Figure out if custom Ops belong in AllOpsResolver.
|
||||
TfLiteRegistration* registration =
|
||||
tflite::ops::micro::custom::Register_ETHOSU();
|
||||
if (registration) {
|
||||
AddCustom(tflite::ops::micro::custom::GetString_ETHOSU(), registration);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace tflite
|
||||
@@ -0,0 +1,35 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#ifndef TENSORFLOW_LITE_MICRO_ALL_OPS_RESOLVER_H_
|
||||
#define TENSORFLOW_LITE_MICRO_ALL_OPS_RESOLVER_H_
|
||||
|
||||
#include "tensorflow/lite/micro/compatibility.h"
|
||||
#include "tensorflow/lite/micro/micro_mutable_op_resolver.h"
|
||||
|
||||
namespace tflite {
|
||||
|
||||
// The magic number in the template parameter is the maximum number of ops that
|
||||
// can be added to AllOpsResolver. It can be increased if needed. And most
|
||||
// applications that care about the memory footprint will want to directly use
|
||||
// MicroMutableOpResolver and have an application specific template parameter.
|
||||
// The examples directory has sample code for this.
|
||||
class AllOpsResolver : public MicroMutableOpResolver<128> {
|
||||
public:
|
||||
AllOpsResolver();
|
||||
|
||||
private:
|
||||
TF_LITE_REMOVE_VIRTUAL_DELETE
|
||||
};
|
||||
|
||||
} // namespace tflite
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_ALL_OPS_RESOLVER_H_
|
||||
File diff suppressed because it is too large
Load Diff
@@ -0,0 +1,22 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef TENSORFLOW_LITE_MICRO_BENCHMARKS_KEYWORD_SCRAMBLED_MODEL_DATA_H_
|
||||
#define TENSORFLOW_LITE_MICRO_BENCHMARKS_KEYWORD_SCRAMBLED_MODEL_DATA_H_
|
||||
|
||||
extern const unsigned char g_keyword_scrambled_model_data[];
|
||||
extern const unsigned int g_keyword_scrambled_model_data_length;
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_BENCHMARKS_KEYWORD_SCRAMBLED_MODEL_DATA_H_
|
||||
@@ -0,0 +1,32 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#ifndef TENSORFLOW_LITE_MICRO_COMPATIBILITY_H_
|
||||
#define TENSORFLOW_LITE_MICRO_COMPATIBILITY_H_
|
||||
|
||||
// C++ will automatically create class-specific delete operators for virtual
|
||||
// objects, which by default call the global delete function. For embedded
|
||||
// applications we want to avoid this, and won't be calling new/delete on these
|
||||
// objects, so we need to override the default implementation with one that does
|
||||
// nothing to avoid linking in ::delete().
|
||||
// This macro needs to be included in all subclasses of a virtual base class in
|
||||
// the private section.
|
||||
#ifdef TF_LITE_STATIC_MEMORY
|
||||
#define TF_LITE_REMOVE_VIRTUAL_DELETE \
|
||||
void operator delete(void* p) {}
|
||||
#else
|
||||
#define TF_LITE_REMOVE_VIRTUAL_DELETE
|
||||
#endif
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_COMPATIBILITY_H_
|
||||
50
code/components/tfmicro/tensorflow/lite/micro/debug_log.cc
Normal file
50
code/components/tfmicro/tensorflow/lite/micro/debug_log.cc
Normal file
@@ -0,0 +1,50 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
// Reference implementation of the DebugLog() function that's required for a
|
||||
// platform to support the TensorFlow Lite for Microcontrollers library. This is
|
||||
// the only function that's absolutely required to be available on a target
|
||||
// device, since it's used for communicating test results back to the host so
|
||||
// that we can verify the implementation is working correctly.
|
||||
// It's designed to be as easy as possible to supply an implementation though.
|
||||
// On platforms that have a POSIX stack or C library, it can be written as a
|
||||
// single call to `fprintf(stderr, "%s", s)` to output a string to the error
|
||||
// stream of the console, but if there's no OS or C library available, there's
|
||||
// almost always an equivalent way to write out a string to some serial
|
||||
// interface that can be used instead. For example on Arm M-series MCUs, calling
|
||||
// the `bkpt #0xAB` assembler instruction will output the string in r1 to
|
||||
// whatever debug serial connection is available. If you're running mbed, you
|
||||
// can do the same by creating `Serial pc(USBTX, USBRX)` and then calling
|
||||
// `pc.printf("%s", s)`.
|
||||
// To add an equivalent function for your own platform, create your own
|
||||
// implementation file, and place it in a subfolder with named after the OS
|
||||
// you're targeting. For example, see the Cortex M bare metal version in
|
||||
// tensorflow/lite/micro/bluepill/debug_log.cc or the mbed one on
|
||||
// tensorflow/lite/micro/mbed/debug_log.cc.
|
||||
|
||||
#include "tensorflow/lite/micro/debug_log.h"
|
||||
|
||||
#ifndef TF_LITE_STRIP_ERROR_STRINGS
|
||||
#include <cstdio>
|
||||
#endif
|
||||
|
||||
extern "C" void DebugLog(const char* s) {
|
||||
#ifndef TF_LITE_STRIP_ERROR_STRINGS
|
||||
// Reusing TF_LITE_STRIP_ERROR_STRINGS to disable DebugLog completely to get
|
||||
// maximum reduction in binary size. This is because we have DebugLog calls
|
||||
// via TF_LITE_CHECK that are not stubbed out by TF_LITE_REPORT_ERROR.
|
||||
fprintf(stderr, "%s", s);
|
||||
#endif
|
||||
}
|
||||
31
code/components/tfmicro/tensorflow/lite/micro/debug_log.h
Normal file
31
code/components/tfmicro/tensorflow/lite/micro/debug_log.h
Normal file
@@ -0,0 +1,31 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#ifndef TENSORFLOW_LITE_MICRO_DEBUG_LOG_H_
|
||||
#define TENSORFLOW_LITE_MICRO_DEBUG_LOG_H_
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif // __cplusplus
|
||||
|
||||
// This function should be implemented by each target platform, and provide a
|
||||
// way for strings to be output to some text stream. For more information, see
|
||||
// tensorflow/lite/micro/debug_log.cc.
|
||||
void DebugLog(const char* s);
|
||||
|
||||
#ifdef __cplusplus
|
||||
} // extern "C"
|
||||
#endif // __cplusplus
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_DEBUG_LOG_H_
|
||||
@@ -0,0 +1,57 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef TENSORFLOW_LITE_MICRO_KERNELS_ACTIVATION_UTILS_H_
|
||||
#define TENSORFLOW_LITE_MICRO_KERNELS_ACTIVATION_UTILS_H_
|
||||
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/kernels/internal/cppmath.h"
|
||||
#include "tensorflow/lite/kernels/internal/max.h"
|
||||
#include "tensorflow/lite/kernels/internal/min.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace ops {
|
||||
namespace micro {
|
||||
|
||||
// Returns the floating point value for a fused activation:
|
||||
inline float ActivationValFloat(TfLiteFusedActivation act, float a) {
|
||||
switch (act) {
|
||||
case kTfLiteActNone:
|
||||
return a;
|
||||
case kTfLiteActRelu:
|
||||
return TfLiteMax(0.0f, a);
|
||||
case kTfLiteActReluN1To1:
|
||||
return TfLiteMax(-1.0f, TfLiteMin(a, 1.0f));
|
||||
case kTfLiteActRelu6:
|
||||
return TfLiteMax(0.0f, TfLiteMin(a, 6.0f));
|
||||
case kTfLiteActTanh:
|
||||
return std::tanh(a);
|
||||
case kTfLiteActSignBit:
|
||||
return std::signbit(a);
|
||||
case kTfLiteActSigmoid:
|
||||
return 1.0f / (1.0f + std::exp(-a));
|
||||
}
|
||||
return 0.0f; // To indicate an unsupported activation (i.e. when a new fused
|
||||
// activation is added to the enum and not handled here).
|
||||
}
|
||||
|
||||
} // namespace micro
|
||||
} // namespace ops
|
||||
} // namespace tflite
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_KERNELS_ACTIVATION_UTILS_H_
|
||||
@@ -0,0 +1,288 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/kernels/internal/types.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/kernels/op_macros.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/micro/micro_utils.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace ops {
|
||||
namespace micro {
|
||||
namespace activations {
|
||||
namespace {
|
||||
|
||||
struct ReluOpData {
|
||||
ReluParams params;
|
||||
};
|
||||
|
||||
struct Relu6OpData {
|
||||
int8_t six_int8;
|
||||
int8_t zero_int8;
|
||||
uint8_t six_uint8;
|
||||
uint8_t zero_uint8;
|
||||
};
|
||||
|
||||
} // namespace
|
||||
|
||||
constexpr int kInputTensor = 0;
|
||||
constexpr int kOutputTensor = 0;
|
||||
|
||||
template <typename T>
|
||||
inline void ReluQuantized(const ReluOpData& data,
|
||||
const RuntimeShape& input_shape,
|
||||
const RuntimeShape& output_shape, const T* input_data,
|
||||
T* output_data) {
|
||||
const int flat_size = MatchingFlatSize(input_shape, output_shape);
|
||||
for (int i = 0; i < flat_size; ++i) {
|
||||
const int32_t val = static_cast<int32_t>(input_data[i]);
|
||||
int32_t clamped =
|
||||
data.params.output_offset +
|
||||
MultiplyByQuantizedMultiplier(val - data.params.input_offset,
|
||||
data.params.output_multiplier,
|
||||
data.params.output_shift);
|
||||
clamped = std::max(data.params.quantized_activation_min, clamped);
|
||||
clamped = std::min(data.params.quantized_activation_max, clamped);
|
||||
output_data[i] = static_cast<T>(clamped);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline void CalculateReluOpData(const TfLiteTensor* input, TfLiteTensor* output,
|
||||
ReluOpData* data) {
|
||||
float act_min = 0.0;
|
||||
float act_max = std::numeric_limits<float>::infinity();
|
||||
double real_multiplier =
|
||||
static_cast<double>(input->params.scale / output->params.scale);
|
||||
|
||||
const RuntimeShape input_shape = GetTensorShape(input);
|
||||
const RuntimeShape output_shape = GetTensorShape(output);
|
||||
|
||||
QuantizeMultiplier(real_multiplier, &data->params.output_multiplier,
|
||||
&data->params.output_shift);
|
||||
|
||||
data->params.quantized_activation_min = std::max(
|
||||
static_cast<int32_t>(std::numeric_limits<T>::min()),
|
||||
output->params.zero_point +
|
||||
static_cast<int32_t>(roundf(act_min / output->params.scale)));
|
||||
data->params.quantized_activation_max =
|
||||
act_max == std::numeric_limits<float>::infinity()
|
||||
? static_cast<int32_t>(std::numeric_limits<T>::max())
|
||||
: std::min(static_cast<int32_t>(std::numeric_limits<T>::max()),
|
||||
output->params.zero_point +
|
||||
static_cast<int32_t>(
|
||||
roundf(act_max / output->params.scale)));
|
||||
data->params.input_offset = input->params.zero_point;
|
||||
data->params.output_offset = output->params.zero_point;
|
||||
}
|
||||
|
||||
inline void ReluFloat(const RuntimeShape& input_shape, const float* input_data,
|
||||
const RuntimeShape& output_shape, float* output_data) {
|
||||
const int flat_size = MatchingFlatSize(input_shape, output_shape);
|
||||
for (int i = 0; i < flat_size; ++i) {
|
||||
const float val = input_data[i];
|
||||
const float lower = 0.0f;
|
||||
const float clamped = val < lower ? lower : val;
|
||||
output_data[i] = clamped;
|
||||
}
|
||||
}
|
||||
|
||||
inline void Relu6Float(const RuntimeShape& input_shape, const float* input_data,
|
||||
const RuntimeShape& output_shape, float* output_data) {
|
||||
const int flat_size = MatchingFlatSize(input_shape, output_shape);
|
||||
for (int i = 0; i < flat_size; ++i) {
|
||||
const float val = input_data[i];
|
||||
const float upper = 6.0f;
|
||||
const float lower = 0.0f;
|
||||
const float clamped = val > upper ? upper : val < lower ? lower : val;
|
||||
output_data[i] = clamped;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Q>
|
||||
inline void Relu6Quantized(Q lower, Q upper, const RuntimeShape& input_shape,
|
||||
const Q* input_data,
|
||||
const RuntimeShape& output_shape, Q* output_data) {
|
||||
const int flat_size = MatchingFlatSize(input_shape, output_shape);
|
||||
for (int i = 0; i < flat_size; ++i) {
|
||||
const Q val = input_data[i];
|
||||
const Q clamped = val > upper ? upper : val < lower ? lower : val;
|
||||
output_data[i] = clamped;
|
||||
}
|
||||
}
|
||||
|
||||
void* ReluInit(TfLiteContext* context, const char* buffer, size_t length) {
|
||||
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
|
||||
return context->AllocatePersistentBuffer(context, sizeof(ReluOpData));
|
||||
}
|
||||
|
||||
TfLiteStatus ReluPrepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
ReluOpData* data = static_cast<ReluOpData*>(node->user_data);
|
||||
|
||||
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
||||
TF_LITE_ENSURE(context, input != nullptr);
|
||||
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
||||
TF_LITE_ENSURE(context, output != nullptr);
|
||||
|
||||
if (input->type == kTfLiteInt8) {
|
||||
CalculateReluOpData<int8_t>(input, output, data);
|
||||
} else if (input->type == kTfLiteUInt8) {
|
||||
CalculateReluOpData<uint8_t>(input, output, data);
|
||||
}
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus ReluEval(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
const ReluOpData& data = *(static_cast<const ReluOpData*>(node->user_data));
|
||||
|
||||
const TfLiteEvalTensor* input =
|
||||
tflite::micro::GetEvalInput(context, node, kInputTensor);
|
||||
TfLiteEvalTensor* output =
|
||||
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
||||
|
||||
switch (input->type) {
|
||||
case kTfLiteFloat32: {
|
||||
ReluFloat(tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<float>(input),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<float>(output));
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
case kTfLiteInt8: {
|
||||
ReluQuantized<int8_t>(data, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<int8_t>(input),
|
||||
tflite::micro::GetTensorData<int8_t>(output));
|
||||
return kTfLiteOk;
|
||||
}
|
||||
case kTfLiteUInt8: {
|
||||
ReluQuantized<uint8_t>(data, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<uint8_t>(input),
|
||||
tflite::micro::GetTensorData<uint8_t>(output));
|
||||
return kTfLiteOk;
|
||||
}
|
||||
default: {
|
||||
TF_LITE_KERNEL_LOG(context, "Only float32 is supported currently, got %s",
|
||||
TfLiteTypeGetName(input->type));
|
||||
return kTfLiteError;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void* Relu6Init(TfLiteContext* context, const char* buffer, size_t length) {
|
||||
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
|
||||
return context->AllocatePersistentBuffer(context, sizeof(Relu6OpData));
|
||||
}
|
||||
|
||||
TfLiteStatus Relu6Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
Relu6OpData* data = static_cast<Relu6OpData*>(node->user_data);
|
||||
|
||||
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
||||
TF_LITE_ENSURE(context, input != nullptr);
|
||||
|
||||
if (input->type == kTfLiteInt8) {
|
||||
data->six_int8 = FloatToQuantizedType<int8_t>(6.0f, input->params.scale,
|
||||
input->params.zero_point);
|
||||
data->zero_int8 = input->params.zero_point;
|
||||
} else if (input->type == kTfLiteUInt8) {
|
||||
data->six_uint8 = FloatToQuantizedType<uint8_t>(6.0f, input->params.scale,
|
||||
input->params.zero_point);
|
||||
data->zero_uint8 = input->params.zero_point;
|
||||
}
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus Relu6Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
const Relu6OpData& data = *(static_cast<const Relu6OpData*>(node->user_data));
|
||||
|
||||
const TfLiteEvalTensor* input =
|
||||
tflite::micro::GetEvalInput(context, node, kInputTensor);
|
||||
TfLiteEvalTensor* output =
|
||||
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
||||
|
||||
switch (input->type) {
|
||||
case kTfLiteFloat32: {
|
||||
Relu6Float(tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<float>(input),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<float>(output));
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
case kTfLiteInt8: {
|
||||
Relu6Quantized<int8_t>(data.zero_int8, data.six_int8,
|
||||
tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<int8_t>(input),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<int8_t>(output));
|
||||
return kTfLiteOk;
|
||||
}
|
||||
case kTfLiteUInt8: {
|
||||
Relu6Quantized<uint8_t>(data.zero_uint8, data.six_uint8,
|
||||
tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<uint8_t>(input),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<uint8_t>(output));
|
||||
return kTfLiteOk;
|
||||
}
|
||||
default: {
|
||||
TF_LITE_KERNEL_LOG(context, "Only float32 is supported currently, got %s",
|
||||
TfLiteTypeGetName(input->type));
|
||||
return kTfLiteError;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace activations
|
||||
|
||||
TfLiteRegistration Register_RELU() {
|
||||
return {/*init=*/activations::ReluInit,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/activations::ReluPrepare,
|
||||
/*invoke=*/activations::ReluEval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
TfLiteRegistration Register_RELU6() {
|
||||
return {/*init=*/activations::Relu6Init,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/activations::Relu6Prepare,
|
||||
/*invoke=*/activations::Relu6Eval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
} // namespace micro
|
||||
} // namespace ops
|
||||
} // namespace tflite
|
||||
261
code/components/tfmicro/tensorflow/lite/micro/kernels/add.cc
Normal file
261
code/components/tfmicro/tensorflow/lite/micro/kernels/add.cc
Normal file
@@ -0,0 +1,261 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/kernels/internal/reference/add.h"
|
||||
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
||||
#include "tensorflow/lite/kernels/internal/reference/integer_ops/add.h"
|
||||
#include "tensorflow/lite/kernels/internal/reference/process_broadcast_shapes.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/kernels/op_macros.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/micro/memory_helpers.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace ops {
|
||||
namespace micro {
|
||||
namespace add {
|
||||
|
||||
constexpr int kInputTensor1 = 0;
|
||||
constexpr int kInputTensor2 = 1;
|
||||
constexpr int kOutputTensor = 0;
|
||||
|
||||
struct OpData {
|
||||
bool requires_broadcast;
|
||||
|
||||
// These fields are used in both the general 8-bit -> 8bit quantized path,
|
||||
// and the special 16-bit -> 16bit quantized path
|
||||
int input1_shift;
|
||||
int input2_shift;
|
||||
int32_t output_activation_min;
|
||||
int32_t output_activation_max;
|
||||
|
||||
// These fields are used only in the general 8-bit -> 8bit quantized path
|
||||
int32_t input1_multiplier;
|
||||
int32_t input2_multiplier;
|
||||
int32_t output_multiplier;
|
||||
int output_shift;
|
||||
int left_shift;
|
||||
int32_t input1_offset;
|
||||
int32_t input2_offset;
|
||||
int32_t output_offset;
|
||||
|
||||
// Used only for float evals:
|
||||
float output_activation_min_f32;
|
||||
float output_activation_max_f32;
|
||||
};
|
||||
|
||||
TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteAddParams* params,
|
||||
const TfLiteTensor* input1,
|
||||
const TfLiteTensor* input2, TfLiteTensor* output,
|
||||
OpData* data) {
|
||||
data->requires_broadcast = !HaveSameShapes(input1, input2);
|
||||
|
||||
if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) {
|
||||
// 8bit -> 8bit general quantized path, with general rescalings
|
||||
data->input1_offset = -input1->params.zero_point;
|
||||
data->input2_offset = -input2->params.zero_point;
|
||||
data->output_offset = output->params.zero_point;
|
||||
data->left_shift = 20;
|
||||
const double twice_max_input_scale =
|
||||
2 * static_cast<double>(
|
||||
std::max(input1->params.scale, input2->params.scale));
|
||||
const double real_input1_multiplier =
|
||||
static_cast<double>(input1->params.scale) / twice_max_input_scale;
|
||||
const double real_input2_multiplier =
|
||||
static_cast<double>(input2->params.scale) / twice_max_input_scale;
|
||||
const double real_output_multiplier =
|
||||
twice_max_input_scale /
|
||||
((1 << data->left_shift) * static_cast<double>(output->params.scale));
|
||||
|
||||
QuantizeMultiplierSmallerThanOneExp(
|
||||
real_input1_multiplier, &data->input1_multiplier, &data->input1_shift);
|
||||
|
||||
QuantizeMultiplierSmallerThanOneExp(
|
||||
real_input2_multiplier, &data->input2_multiplier, &data->input2_shift);
|
||||
|
||||
QuantizeMultiplierSmallerThanOneExp(
|
||||
real_output_multiplier, &data->output_multiplier, &data->output_shift);
|
||||
|
||||
TF_LITE_ENSURE_STATUS(CalculateActivationRangeQuantized(
|
||||
context, params->activation, output, &data->output_activation_min,
|
||||
&data->output_activation_max));
|
||||
} else if (output->type == kTfLiteFloat32) {
|
||||
CalculateActivationRange(params->activation,
|
||||
&data->output_activation_min_f32,
|
||||
&data->output_activation_max_f32);
|
||||
}
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
void EvalAdd(TfLiteContext* context, TfLiteNode* node, TfLiteAddParams* params,
|
||||
const OpData* data, const TfLiteEvalTensor* input1,
|
||||
const TfLiteEvalTensor* input2, TfLiteEvalTensor* output) {
|
||||
tflite::ArithmeticParams op_params;
|
||||
SetActivationParams(data->output_activation_min_f32,
|
||||
data->output_activation_max_f32, &op_params);
|
||||
if (data->requires_broadcast) {
|
||||
reference_ops::BroadcastAdd4DSlow(
|
||||
op_params, tflite::micro::GetTensorShape(input1),
|
||||
tflite::micro::GetTensorData<float>(input1),
|
||||
tflite::micro::GetTensorShape(input2),
|
||||
tflite::micro::GetTensorData<float>(input2),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<float>(output));
|
||||
} else {
|
||||
reference_ops::Add(op_params, tflite::micro::GetTensorShape(input1),
|
||||
tflite::micro::GetTensorData<float>(input1),
|
||||
tflite::micro::GetTensorShape(input2),
|
||||
tflite::micro::GetTensorData<float>(input2),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<float>(output));
|
||||
}
|
||||
}
|
||||
|
||||
TfLiteStatus EvalAddQuantized(TfLiteContext* context, TfLiteNode* node,
|
||||
TfLiteAddParams* params, const OpData* data,
|
||||
const TfLiteEvalTensor* input1,
|
||||
const TfLiteEvalTensor* input2,
|
||||
TfLiteEvalTensor* output) {
|
||||
if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) {
|
||||
tflite::ArithmeticParams op_params;
|
||||
op_params.left_shift = data->left_shift;
|
||||
op_params.input1_offset = data->input1_offset;
|
||||
op_params.input1_multiplier = data->input1_multiplier;
|
||||
op_params.input1_shift = data->input1_shift;
|
||||
op_params.input2_offset = data->input2_offset;
|
||||
op_params.input2_multiplier = data->input2_multiplier;
|
||||
op_params.input2_shift = data->input2_shift;
|
||||
op_params.output_offset = data->output_offset;
|
||||
op_params.output_multiplier = data->output_multiplier;
|
||||
op_params.output_shift = data->output_shift;
|
||||
SetActivationParams(data->output_activation_min,
|
||||
data->output_activation_max, &op_params);
|
||||
bool need_broadcast = reference_ops::ProcessBroadcastShapes(
|
||||
tflite::micro::GetTensorShape(input1),
|
||||
tflite::micro::GetTensorShape(input2), &op_params);
|
||||
if (output->type == kTfLiteInt8) {
|
||||
if (need_broadcast) {
|
||||
reference_integer_ops::BroadcastAdd4DSlow(
|
||||
op_params, tflite::micro::GetTensorShape(input1),
|
||||
tflite::micro::GetTensorData<int8_t>(input1),
|
||||
tflite::micro::GetTensorShape(input2),
|
||||
tflite::micro::GetTensorData<int8_t>(input2),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<int8_t>(output));
|
||||
} else {
|
||||
reference_integer_ops::Add(
|
||||
op_params, tflite::micro::GetTensorShape(input1),
|
||||
tflite::micro::GetTensorData<int8_t>(input1),
|
||||
tflite::micro::GetTensorShape(input2),
|
||||
tflite::micro::GetTensorData<int8_t>(input2),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<int8_t>(output));
|
||||
}
|
||||
} else {
|
||||
if (need_broadcast) {
|
||||
reference_ops::BroadcastAdd4DSlow(
|
||||
op_params, tflite::micro::GetTensorShape(input1),
|
||||
tflite::micro::GetTensorData<uint8_t>(input1),
|
||||
tflite::micro::GetTensorShape(input2),
|
||||
tflite::micro::GetTensorData<uint8_t>(input2),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<uint8_t>(output));
|
||||
} else {
|
||||
reference_ops::Add(op_params, tflite::micro::GetTensorShape(input1),
|
||||
tflite::micro::GetTensorData<uint8_t>(input1),
|
||||
tflite::micro::GetTensorShape(input2),
|
||||
tflite::micro::GetTensorData<uint8_t>(input2),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<uint8_t>(output));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
|
||||
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
|
||||
return context->AllocatePersistentBuffer(context, sizeof(OpData));
|
||||
}
|
||||
|
||||
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
TFLITE_DCHECK(node->builtin_data != nullptr);
|
||||
|
||||
const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
|
||||
TF_LITE_ENSURE(context, input1 != nullptr);
|
||||
const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2);
|
||||
TF_LITE_ENSURE(context, input2 != nullptr);
|
||||
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
||||
TF_LITE_ENSURE(context, output != nullptr);
|
||||
|
||||
OpData* data = static_cast<OpData*>(node->user_data);
|
||||
auto* params = reinterpret_cast<TfLiteAddParams*>(node->builtin_data);
|
||||
|
||||
TF_LITE_ENSURE_STATUS(
|
||||
CalculateOpData(context, params, input1, input2, output, data));
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
auto* params = reinterpret_cast<TfLiteAddParams*>(node->builtin_data);
|
||||
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
const OpData* data = static_cast<const OpData*>(node->user_data);
|
||||
|
||||
const TfLiteEvalTensor* input1 =
|
||||
tflite::micro::GetEvalInput(context, node, kInputTensor1);
|
||||
const TfLiteEvalTensor* input2 =
|
||||
tflite::micro::GetEvalInput(context, node, kInputTensor2);
|
||||
TfLiteEvalTensor* output =
|
||||
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
||||
|
||||
if (output->type == kTfLiteFloat32) {
|
||||
EvalAdd(context, node, params, data, input1, input2, output);
|
||||
} else if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) {
|
||||
TF_LITE_ENSURE_OK(context, EvalAddQuantized(context, node, params, data,
|
||||
input1, input2, output));
|
||||
} else {
|
||||
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
|
||||
TfLiteTypeGetName(output->type), output->type);
|
||||
return kTfLiteError;
|
||||
}
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
} // namespace add
|
||||
|
||||
TfLiteRegistration Register_ADD() {
|
||||
return {/*init=*/add::Init,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/add::Prepare,
|
||||
/*invoke=*/add::Eval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
} // namespace micro
|
||||
} // namespace ops
|
||||
} // namespace tflite
|
||||
@@ -0,0 +1,133 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/kernels/internal/reference/arg_min_max.h"
|
||||
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/micro/kernels/micro_utils.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace ops {
|
||||
namespace micro {
|
||||
namespace arg_min_max {
|
||||
|
||||
constexpr int kInputTensor = 0;
|
||||
constexpr int kAxis = 1;
|
||||
constexpr int kOutputTensor = 0;
|
||||
|
||||
template <typename T1, typename T2, typename T3>
|
||||
inline void ArgMinMaxHelper(const RuntimeShape& input1_shape,
|
||||
const T1* input1_data, const T3* input2_data,
|
||||
const RuntimeShape& output_shape, T2* output_data,
|
||||
bool is_arg_max) {
|
||||
if (is_arg_max) {
|
||||
reference_ops::ArgMinMax(input1_shape, input1_data, input2_data,
|
||||
output_shape, output_data, micro::Greater());
|
||||
} else {
|
||||
reference_ops::ArgMinMax(input1_shape, input1_data, input2_data,
|
||||
output_shape, output_data, micro::Less());
|
||||
}
|
||||
}
|
||||
|
||||
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node, bool is_arg_max) {
|
||||
const TfLiteEvalTensor* input =
|
||||
tflite::micro::GetEvalInput(context, node, kInputTensor);
|
||||
const TfLiteEvalTensor* axis =
|
||||
tflite::micro::GetEvalInput(context, node, kAxis);
|
||||
TfLiteEvalTensor* output =
|
||||
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
||||
|
||||
#define TF_LITE_ARG_MIN_MAX(data_type, axis_type, output_type) \
|
||||
ArgMinMaxHelper(tflite::micro::GetTensorShape(input), \
|
||||
tflite::micro::GetTensorData<data_type>(input), \
|
||||
tflite::micro::GetTensorData<axis_type>(axis), \
|
||||
tflite::micro::GetTensorShape(output), \
|
||||
tflite::micro::GetTensorData<output_type>(output), \
|
||||
is_arg_max)
|
||||
if (axis->type == kTfLiteInt32) {
|
||||
if (output->type == kTfLiteInt32) {
|
||||
switch (input->type) {
|
||||
case kTfLiteFloat32:
|
||||
TF_LITE_ARG_MIN_MAX(float, int32_t, int32_t);
|
||||
break;
|
||||
case kTfLiteUInt8:
|
||||
TF_LITE_ARG_MIN_MAX(uint8_t, int32_t, int32_t);
|
||||
break;
|
||||
case kTfLiteInt8:
|
||||
TF_LITE_ARG_MIN_MAX(int8_t, int32_t, int32_t);
|
||||
break;
|
||||
default:
|
||||
TF_LITE_KERNEL_LOG(context,
|
||||
"Only float32, uint8_t and int8_t are "
|
||||
"supported currently, got %s.",
|
||||
TfLiteTypeGetName(input->type));
|
||||
return kTfLiteError;
|
||||
}
|
||||
} else {
|
||||
TF_LITE_KERNEL_LOG(context,
|
||||
"Only int32_t are supported currently, got %s.",
|
||||
TfLiteTypeGetName(output->type));
|
||||
return kTfLiteError;
|
||||
}
|
||||
} else {
|
||||
TF_LITE_KERNEL_LOG(context, "Only int32_t are supported currently, got %s.",
|
||||
TfLiteTypeGetName(axis->type));
|
||||
return kTfLiteError;
|
||||
}
|
||||
|
||||
#undef TF_LITE_ARG_MIN_MAX
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus ArgMinEval(TfLiteContext* context, TfLiteNode* node) {
|
||||
return Eval(context, node, false);
|
||||
}
|
||||
|
||||
TfLiteStatus ArgMaxEval(TfLiteContext* context, TfLiteNode* node) {
|
||||
return Eval(context, node, true);
|
||||
}
|
||||
|
||||
} // namespace arg_min_max
|
||||
|
||||
TfLiteRegistration Register_ARG_MAX() {
|
||||
return {/*init=*/nullptr,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/nullptr,
|
||||
/*invoke=*/arg_min_max::ArgMaxEval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
TfLiteRegistration Register_ARG_MIN() {
|
||||
return {/*init=*/nullptr,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/nullptr,
|
||||
/*invoke=*/arg_min_max::ArgMinEval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
} // namespace micro
|
||||
} // namespace ops
|
||||
} // namespace tflite
|
||||
@@ -0,0 +1,76 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/kernels/internal/reference/ceil.h"
|
||||
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace ops {
|
||||
namespace micro {
|
||||
namespace ceil {
|
||||
|
||||
constexpr int kInputTensor = 0;
|
||||
constexpr int kOutputTensor = 0;
|
||||
|
||||
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
||||
TF_LITE_ENSURE(context, input != nullptr);
|
||||
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
||||
TF_LITE_ENSURE(context, output != nullptr);
|
||||
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
|
||||
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
||||
TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteFloat32);
|
||||
TF_LITE_ENSURE_TYPES_EQ(context, output->type, input->type);
|
||||
TF_LITE_ENSURE_EQ(context, output->bytes, input->bytes);
|
||||
TF_LITE_ENSURE_EQ(context, output->dims->size, input->dims->size);
|
||||
for (int i = 0; i < output->dims->size; ++i) {
|
||||
TF_LITE_ENSURE_EQ(context, output->dims->data[i], input->dims->data[i]);
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
const TfLiteEvalTensor* input =
|
||||
tflite::micro::GetEvalInput(context, node, kInputTensor);
|
||||
TfLiteEvalTensor* output =
|
||||
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
||||
|
||||
reference_ops::Ceil(tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<float>(input),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<float>(output));
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
} // namespace ceil
|
||||
|
||||
TfLiteRegistration Register_CEIL() {
|
||||
return {/*init=*/nullptr,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/ceil::Prepare,
|
||||
/*invoke=*/ceil::Eval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
} // namespace micro
|
||||
} // namespace ops
|
||||
} // namespace tflite
|
||||
@@ -0,0 +1,178 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/compatibility.h"
|
||||
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/kernels/op_macros.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
|
||||
/*
|
||||
* The circular buffer custom operator is used to implement strided streaming
|
||||
* convolutions on TFLite Micro. Each time this operator is invoked, it checks
|
||||
* whether or not to run, based on a predetermined stride in time. If the op
|
||||
* runs, it inserts the input into the end of the output buffer and shifts the
|
||||
* output values towards the start of the buffer. It discards the oldest value
|
||||
* in the output buffer.
|
||||
*
|
||||
* Input: [<input N+1]
|
||||
* Before shifting:
|
||||
* Output: [<input 1>, <input 2>, <input ...>, <input N>]
|
||||
*
|
||||
* After shifting:
|
||||
* Output: [<input 2>, <input 3>, <input ...>, <input N+1>]
|
||||
*
|
||||
* We make some assumptions in this custom operator:
|
||||
* - Input shape must be [1, 1, 1, depth]
|
||||
* - Output shape must be [1, num_slots, 1, depth]
|
||||
* - Input and output types must match.
|
||||
* - Input and output quantization params must be identical.
|
||||
*/
|
||||
namespace tflite {
|
||||
namespace ops {
|
||||
namespace micro {
|
||||
namespace circular_buffer {
|
||||
|
||||
namespace {
|
||||
|
||||
// The CircularBuffer op has one input and one output tensor.
|
||||
constexpr int kInputTensor = 0;
|
||||
constexpr int kOutputTensor = 0;
|
||||
|
||||
// TODO(b/149795762): Add this to TfLiteStatus enum.
|
||||
constexpr int kTfLiteAbort = -9;
|
||||
|
||||
// These fields control the stride period of a strided streaming model. This op
|
||||
// returns kTfLiteAbort until cycles_until_run-- is zero. At this time,
|
||||
// cycles_until_run is reset to cycles_max.
|
||||
struct OpData {
|
||||
int cycles_until_run;
|
||||
int cycles_max;
|
||||
};
|
||||
|
||||
// These constants represent constants specific to the music detect model.
|
||||
// They exist until (b/132070898) is fixed.
|
||||
constexpr int kMaxOpDataSize = 7;
|
||||
int op_data_counter = 0;
|
||||
OpData op_data_array[kMaxOpDataSize];
|
||||
|
||||
} // namespace
|
||||
|
||||
void Free(TfLiteContext* context, void* buffer) { op_data_counter = 0; }
|
||||
|
||||
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
||||
TF_LITE_ENSURE(context, input != nullptr);
|
||||
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
||||
TF_LITE_ENSURE(context, output != nullptr);
|
||||
|
||||
TF_LITE_ENSURE(context, input != nullptr);
|
||||
TF_LITE_ENSURE(context, output != nullptr);
|
||||
TF_LITE_ENSURE_EQ(context, 1, output->dims->data[0]);
|
||||
TF_LITE_ENSURE_EQ(context, 1, input->dims->data[0]);
|
||||
TF_LITE_ENSURE_EQ(context, 1, input->dims->data[1]);
|
||||
TF_LITE_ENSURE_EQ(context, 1, output->dims->data[2]);
|
||||
TF_LITE_ENSURE_EQ(context, 1, input->dims->data[2]);
|
||||
TF_LITE_ENSURE_EQ(context, output->dims->data[3], input->dims->data[3]);
|
||||
|
||||
TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
|
||||
|
||||
// The circular buffer custom operator currently only supports int8_t.
|
||||
TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteInt8);
|
||||
|
||||
// TODO(b/132070898): Use statically slotted OpData structures until a
|
||||
// scratch memory API is ready.
|
||||
TFLITE_DCHECK_LE(op_data_counter, kMaxOpDataSize);
|
||||
OpData* op_data = &op_data_array[op_data_counter++];
|
||||
// The last circular buffer layer (length 5) simply accumulates outputs, and
|
||||
// does not run periodically.
|
||||
// TODO(b/150001379): Move this special case logic to the tflite flatbuffer.
|
||||
if (output->dims->data[1] == 5) {
|
||||
op_data->cycles_max = 1;
|
||||
} else {
|
||||
op_data->cycles_max = 2;
|
||||
}
|
||||
op_data->cycles_until_run = op_data->cycles_max;
|
||||
node->user_data = op_data;
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
// Shifts buffer over by the output depth, and write new input to end of buffer.
|
||||
// num_slots is the number of samples stored in the output buffer.
|
||||
// depth is the size of each sample.
|
||||
void EvalInt8(const int8_t* input, int num_slots, int depth, int8_t* output) {
|
||||
memmove(output, &output[depth], (num_slots - 1) * depth);
|
||||
memcpy(&output[(num_slots - 1) * depth], input, depth);
|
||||
}
|
||||
|
||||
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
const TfLiteEvalTensor* input =
|
||||
tflite::micro::GetEvalInput(context, node, kInputTensor);
|
||||
TfLiteEvalTensor* output =
|
||||
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
||||
|
||||
OpData* data = reinterpret_cast<OpData*>(node->user_data);
|
||||
|
||||
int num_slots = output->dims->data[1];
|
||||
int depth = output->dims->data[3];
|
||||
|
||||
if (input->type == kTfLiteInt8) {
|
||||
EvalInt8(tflite::micro::GetTensorData<int8_t>(input), num_slots, depth,
|
||||
tflite::micro::GetTensorData<int8_t>(output));
|
||||
} else {
|
||||
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
|
||||
TfLiteTypeGetName(input->type), input->type);
|
||||
return kTfLiteError;
|
||||
}
|
||||
|
||||
if (--data->cycles_until_run != 0) {
|
||||
// Signal the interpreter to end current run if the delay before op invoke
|
||||
// has not been reached.
|
||||
// TODO(b/149795762): Add kTfLiteAbort to TfLiteStatus enum.
|
||||
return static_cast<TfLiteStatus>(kTfLiteAbort);
|
||||
}
|
||||
|
||||
// If prepare is ever called more than one time (for example, when testing the
|
||||
// ambient model, the interpreter is created a few times), this op data
|
||||
// counter needs to be reset so that future instances do not overrun this op
|
||||
// data array.
|
||||
op_data_counter = 0;
|
||||
|
||||
data->cycles_until_run = data->cycles_max;
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
} // namespace circular_buffer
|
||||
|
||||
TfLiteRegistration* Register_CIRCULAR_BUFFER() {
|
||||
static TfLiteRegistration r = {/*init=*/nullptr,
|
||||
/*free=*/circular_buffer::Free,
|
||||
/*prepare=*/circular_buffer::Prepare,
|
||||
/*invoke=*/circular_buffer::Eval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
return &r;
|
||||
}
|
||||
|
||||
} // namespace micro
|
||||
} // namespace ops
|
||||
} // namespace tflite
|
||||
@@ -0,0 +1,724 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#include "tensorflow/lite/kernels/internal/reference/comparisons.h"
|
||||
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace ops {
|
||||
namespace micro {
|
||||
namespace comparisons {
|
||||
namespace {
|
||||
|
||||
struct OpData {
|
||||
ComparisonParams params;
|
||||
};
|
||||
|
||||
constexpr int kInputTensor1 = 0;
|
||||
constexpr int kInputTensor2 = 1;
|
||||
constexpr int kOutputTensor = 0;
|
||||
|
||||
TfLiteStatus EqualEval(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
const OpData* data = static_cast<const OpData*>(node->user_data);
|
||||
|
||||
const TfLiteEvalTensor* input1 =
|
||||
tflite::micro::GetEvalInput(context, node, kInputTensor1);
|
||||
const TfLiteEvalTensor* input2 =
|
||||
tflite::micro::GetEvalInput(context, node, kInputTensor2);
|
||||
TfLiteEvalTensor* output =
|
||||
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
||||
|
||||
RuntimeShape input1_shape = tflite::micro::GetTensorShape(input1);
|
||||
RuntimeShape input2_shape = tflite::micro::GetTensorShape(input2);
|
||||
RuntimeShape output_shape = tflite::micro::GetTensorShape(output);
|
||||
bool* output_data = tflite::micro::GetTensorData<bool>(output);
|
||||
|
||||
bool requires_broadcast = !tflite::micro::HaveSameShapes(input1, input2);
|
||||
switch (input1->type) {
|
||||
case kTfLiteBool:
|
||||
requires_broadcast
|
||||
? reference_ops::Broadcast4DSlowEqualNoScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<bool>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<bool>(input2), output_shape,
|
||||
output_data)
|
||||
: reference_ops::EqualNoScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<bool>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<bool>(input2), output_shape,
|
||||
output_data);
|
||||
break;
|
||||
case kTfLiteFloat32:
|
||||
requires_broadcast
|
||||
? reference_ops::Broadcast4DSlowEqualNoScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<float>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<float>(input2), output_shape,
|
||||
output_data)
|
||||
: reference_ops::EqualNoScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<float>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<float>(input2), output_shape,
|
||||
output_data);
|
||||
break;
|
||||
case kTfLiteInt32:
|
||||
requires_broadcast
|
||||
? reference_ops::Broadcast4DSlowEqualNoScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<int32_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<int32_t>(input2), output_shape,
|
||||
output_data)
|
||||
: reference_ops::EqualNoScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<int32_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<int32_t>(input2), output_shape,
|
||||
output_data);
|
||||
break;
|
||||
case kTfLiteInt64:
|
||||
requires_broadcast
|
||||
? reference_ops::Broadcast4DSlowEqualNoScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<int64_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<int64_t>(input2), output_shape,
|
||||
output_data)
|
||||
: reference_ops::EqualNoScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<int64_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<int64_t>(input2), output_shape,
|
||||
output_data);
|
||||
break;
|
||||
case kTfLiteUInt8:
|
||||
requires_broadcast
|
||||
? reference_ops::Broadcast4DSlowEqualWithScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<uint8_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<uint8_t>(input2), output_shape,
|
||||
output_data)
|
||||
: reference_ops::EqualWithScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<uint8_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<uint8_t>(input2), output_shape,
|
||||
output_data);
|
||||
break;
|
||||
case kTfLiteInt8:
|
||||
requires_broadcast
|
||||
? reference_ops::Broadcast4DSlowEqualWithScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<int8_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<int8_t>(input2), output_shape,
|
||||
output_data)
|
||||
: reference_ops::EqualWithScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<int8_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<int8_t>(input2), output_shape,
|
||||
output_data);
|
||||
break;
|
||||
default:
|
||||
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
|
||||
TfLiteTypeGetName(input1->type), input1->type);
|
||||
return kTfLiteError;
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
// TODO(renjieliu): Refactor the logic to avoid duplications.
|
||||
TfLiteStatus NotEqualEval(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
const OpData* data = static_cast<const OpData*>(node->user_data);
|
||||
|
||||
const TfLiteEvalTensor* input1 =
|
||||
tflite::micro::GetEvalInput(context, node, kInputTensor1);
|
||||
const TfLiteEvalTensor* input2 =
|
||||
tflite::micro::GetEvalInput(context, node, kInputTensor2);
|
||||
TfLiteEvalTensor* output =
|
||||
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
||||
|
||||
RuntimeShape input1_shape = tflite::micro::GetTensorShape(input1);
|
||||
RuntimeShape input2_shape = tflite::micro::GetTensorShape(input2);
|
||||
RuntimeShape output_shape = tflite::micro::GetTensorShape(output);
|
||||
bool* output_data = tflite::micro::GetTensorData<bool>(output);
|
||||
|
||||
bool requires_broadcast = !tflite::micro::HaveSameShapes(input1, input2);
|
||||
switch (input1->type) {
|
||||
case kTfLiteBool:
|
||||
requires_broadcast
|
||||
? reference_ops::Broadcast4DSlowNotEqualNoScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<bool>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<bool>(input2), output_shape,
|
||||
output_data)
|
||||
: reference_ops::NotEqualNoScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<bool>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<bool>(input2), output_shape,
|
||||
output_data);
|
||||
break;
|
||||
case kTfLiteFloat32:
|
||||
requires_broadcast
|
||||
? reference_ops::Broadcast4DSlowNotEqualNoScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<float>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<float>(input2), output_shape,
|
||||
output_data)
|
||||
: reference_ops::NotEqualNoScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<float>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<float>(input2), output_shape,
|
||||
output_data);
|
||||
break;
|
||||
case kTfLiteInt32:
|
||||
requires_broadcast
|
||||
? reference_ops::Broadcast4DSlowNotEqualNoScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<int32_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<int32_t>(input2), output_shape,
|
||||
output_data)
|
||||
: reference_ops::NotEqualNoScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<int32_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<int32_t>(input2), output_shape,
|
||||
output_data);
|
||||
break;
|
||||
case kTfLiteInt64:
|
||||
requires_broadcast
|
||||
? reference_ops::Broadcast4DSlowNotEqualNoScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<int64_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<int64_t>(input2), output_shape,
|
||||
output_data)
|
||||
: reference_ops::NotEqualNoScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<int64_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<int64_t>(input2), output_shape,
|
||||
output_data);
|
||||
break;
|
||||
case kTfLiteUInt8:
|
||||
requires_broadcast
|
||||
? reference_ops::Broadcast4DSlowNotEqualWithScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<uint8_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<uint8_t>(input2), output_shape,
|
||||
output_data)
|
||||
: reference_ops::NotEqualWithScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<uint8_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<uint8_t>(input2), output_shape,
|
||||
output_data);
|
||||
break;
|
||||
case kTfLiteInt8:
|
||||
requires_broadcast
|
||||
? reference_ops::Broadcast4DSlowNotEqualWithScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<int8_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<int8_t>(input2), output_shape,
|
||||
output_data)
|
||||
: reference_ops::NotEqualWithScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<int8_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<int8_t>(input2), output_shape,
|
||||
output_data);
|
||||
break;
|
||||
default:
|
||||
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
|
||||
TfLiteTypeGetName(input1->type), input1->type);
|
||||
return kTfLiteError;
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus GreaterEval(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
const OpData* data = static_cast<const OpData*>(node->user_data);
|
||||
|
||||
const TfLiteEvalTensor* input1 =
|
||||
tflite::micro::GetEvalInput(context, node, kInputTensor1);
|
||||
const TfLiteEvalTensor* input2 =
|
||||
tflite::micro::GetEvalInput(context, node, kInputTensor2);
|
||||
TfLiteEvalTensor* output =
|
||||
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
||||
|
||||
RuntimeShape input1_shape = tflite::micro::GetTensorShape(input1);
|
||||
RuntimeShape input2_shape = tflite::micro::GetTensorShape(input2);
|
||||
RuntimeShape output_shape = tflite::micro::GetTensorShape(output);
|
||||
bool* output_data = tflite::micro::GetTensorData<bool>(output);
|
||||
|
||||
bool requires_broadcast = !tflite::micro::HaveSameShapes(input1, input2);
|
||||
switch (input1->type) {
|
||||
case kTfLiteFloat32:
|
||||
requires_broadcast
|
||||
? reference_ops::Broadcast4DSlowGreaterNoScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<float>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<float>(input2), output_shape,
|
||||
output_data)
|
||||
: reference_ops::GreaterNoScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<float>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<float>(input2), output_shape,
|
||||
output_data);
|
||||
break;
|
||||
case kTfLiteInt32:
|
||||
requires_broadcast
|
||||
? reference_ops::Broadcast4DSlowGreaterNoScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<int32_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<int32_t>(input2), output_shape,
|
||||
output_data)
|
||||
: reference_ops::GreaterNoScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<int32_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<int32_t>(input2), output_shape,
|
||||
output_data);
|
||||
break;
|
||||
case kTfLiteInt64:
|
||||
requires_broadcast
|
||||
? reference_ops::Broadcast4DSlowGreaterNoScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<int64_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<int64_t>(input2), output_shape,
|
||||
output_data)
|
||||
: reference_ops::GreaterNoScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<int64_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<int64_t>(input2), output_shape,
|
||||
output_data);
|
||||
break;
|
||||
case kTfLiteUInt8:
|
||||
requires_broadcast
|
||||
? reference_ops::Broadcast4DSlowGreaterWithScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<uint8_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<uint8_t>(input2), output_shape,
|
||||
output_data)
|
||||
: reference_ops::GreaterWithScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<uint8_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<uint8_t>(input2), output_shape,
|
||||
output_data);
|
||||
break;
|
||||
case kTfLiteInt8:
|
||||
requires_broadcast
|
||||
? reference_ops::Broadcast4DSlowGreaterWithScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<int8_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<int8_t>(input2), output_shape,
|
||||
output_data)
|
||||
: reference_ops::GreaterWithScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<int8_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<int8_t>(input2), output_shape,
|
||||
output_data);
|
||||
break;
|
||||
default:
|
||||
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
|
||||
TfLiteTypeGetName(input1->type), input1->type);
|
||||
return kTfLiteError;
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus GreaterEqualEval(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
const OpData* data = static_cast<const OpData*>(node->user_data);
|
||||
|
||||
const TfLiteEvalTensor* input1 =
|
||||
tflite::micro::GetEvalInput(context, node, kInputTensor1);
|
||||
const TfLiteEvalTensor* input2 =
|
||||
tflite::micro::GetEvalInput(context, node, kInputTensor2);
|
||||
TfLiteEvalTensor* output =
|
||||
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
||||
|
||||
RuntimeShape input1_shape = tflite::micro::GetTensorShape(input1);
|
||||
RuntimeShape input2_shape = tflite::micro::GetTensorShape(input2);
|
||||
RuntimeShape output_shape = tflite::micro::GetTensorShape(output);
|
||||
bool* output_data = tflite::micro::GetTensorData<bool>(output);
|
||||
|
||||
bool requires_broadcast = !tflite::micro::HaveSameShapes(input1, input2);
|
||||
switch (input1->type) {
|
||||
case kTfLiteFloat32:
|
||||
requires_broadcast
|
||||
? reference_ops::Broadcast4DSlowGreaterEqualNoScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<float>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<float>(input2), output_shape,
|
||||
output_data)
|
||||
: reference_ops::GreaterEqualNoScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<float>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<float>(input2), output_shape,
|
||||
output_data);
|
||||
break;
|
||||
case kTfLiteInt32:
|
||||
requires_broadcast
|
||||
? reference_ops::Broadcast4DSlowGreaterEqualNoScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<int32_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<int32_t>(input2), output_shape,
|
||||
output_data)
|
||||
: reference_ops::GreaterEqualNoScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<int32_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<int32_t>(input2), output_shape,
|
||||
output_data);
|
||||
break;
|
||||
case kTfLiteInt64:
|
||||
requires_broadcast
|
||||
? reference_ops::Broadcast4DSlowGreaterEqualNoScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<int64_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<int64_t>(input2), output_shape,
|
||||
output_data)
|
||||
: reference_ops::GreaterEqualNoScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<int64_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<int64_t>(input2), output_shape,
|
||||
output_data);
|
||||
break;
|
||||
case kTfLiteUInt8:
|
||||
requires_broadcast
|
||||
? reference_ops::Broadcast4DSlowGreaterEqualWithScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<uint8_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<uint8_t>(input2), output_shape,
|
||||
output_data)
|
||||
: reference_ops::GreaterEqualWithScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<uint8_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<uint8_t>(input2), output_shape,
|
||||
output_data);
|
||||
break;
|
||||
case kTfLiteInt8:
|
||||
requires_broadcast
|
||||
? reference_ops::Broadcast4DSlowGreaterEqualWithScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<int8_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<int8_t>(input2), output_shape,
|
||||
output_data)
|
||||
: reference_ops::GreaterEqualWithScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<int8_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<int8_t>(input2), output_shape,
|
||||
output_data);
|
||||
break;
|
||||
default:
|
||||
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
|
||||
TfLiteTypeGetName(input1->type), input1->type);
|
||||
return kTfLiteError;
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus LessEval(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
const OpData* data = static_cast<const OpData*>(node->user_data);
|
||||
|
||||
const TfLiteEvalTensor* input1 =
|
||||
tflite::micro::GetEvalInput(context, node, kInputTensor1);
|
||||
const TfLiteEvalTensor* input2 =
|
||||
tflite::micro::GetEvalInput(context, node, kInputTensor2);
|
||||
TfLiteEvalTensor* output =
|
||||
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
||||
|
||||
RuntimeShape input1_shape = tflite::micro::GetTensorShape(input1);
|
||||
RuntimeShape input2_shape = tflite::micro::GetTensorShape(input2);
|
||||
RuntimeShape output_shape = tflite::micro::GetTensorShape(output);
|
||||
bool* output_data = tflite::micro::GetTensorData<bool>(output);
|
||||
|
||||
bool requires_broadcast = !tflite::micro::HaveSameShapes(input1, input2);
|
||||
switch (input1->type) {
|
||||
case kTfLiteFloat32:
|
||||
requires_broadcast
|
||||
? reference_ops::Broadcast4DSlowLessNoScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<float>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<float>(input2), output_shape,
|
||||
output_data)
|
||||
: reference_ops::LessNoScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<float>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<float>(input2), output_shape,
|
||||
output_data);
|
||||
break;
|
||||
case kTfLiteInt32:
|
||||
requires_broadcast
|
||||
? reference_ops::Broadcast4DSlowLessNoScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<int32_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<int32_t>(input2), output_shape,
|
||||
output_data)
|
||||
: reference_ops::LessNoScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<int32_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<int32_t>(input2), output_shape,
|
||||
output_data);
|
||||
break;
|
||||
case kTfLiteInt64:
|
||||
requires_broadcast
|
||||
? reference_ops::Broadcast4DSlowLessNoScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<int64_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<int64_t>(input2), output_shape,
|
||||
output_data)
|
||||
: reference_ops::LessNoScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<int64_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<int64_t>(input2), output_shape,
|
||||
output_data);
|
||||
break;
|
||||
case kTfLiteUInt8:
|
||||
requires_broadcast
|
||||
? reference_ops::Broadcast4DSlowLessWithScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<uint8_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<uint8_t>(input2), output_shape,
|
||||
output_data)
|
||||
: reference_ops::LessWithScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<uint8_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<uint8_t>(input2), output_shape,
|
||||
output_data);
|
||||
break;
|
||||
case kTfLiteInt8:
|
||||
requires_broadcast
|
||||
? reference_ops::Broadcast4DSlowLessWithScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<int8_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<int8_t>(input2), output_shape,
|
||||
output_data)
|
||||
: reference_ops::LessWithScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<int8_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<int8_t>(input2), output_shape,
|
||||
output_data);
|
||||
break;
|
||||
default:
|
||||
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
|
||||
TfLiteTypeGetName(input1->type), input1->type);
|
||||
return kTfLiteError;
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus LessEqualEval(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
const OpData* data = static_cast<const OpData*>(node->user_data);
|
||||
|
||||
const TfLiteEvalTensor* input1 =
|
||||
tflite::micro::GetEvalInput(context, node, kInputTensor1);
|
||||
const TfLiteEvalTensor* input2 =
|
||||
tflite::micro::GetEvalInput(context, node, kInputTensor2);
|
||||
TfLiteEvalTensor* output =
|
||||
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
||||
|
||||
RuntimeShape input1_shape = tflite::micro::GetTensorShape(input1);
|
||||
RuntimeShape input2_shape = tflite::micro::GetTensorShape(input2);
|
||||
RuntimeShape output_shape = tflite::micro::GetTensorShape(output);
|
||||
bool* output_data = tflite::micro::GetTensorData<bool>(output);
|
||||
|
||||
bool requires_broadcast = !tflite::micro::HaveSameShapes(input1, input2);
|
||||
switch (input1->type) {
|
||||
case kTfLiteFloat32:
|
||||
requires_broadcast
|
||||
? reference_ops::Broadcast4DSlowLessEqualNoScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<float>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<float>(input2), output_shape,
|
||||
output_data)
|
||||
: reference_ops::LessEqualNoScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<float>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<float>(input2), output_shape,
|
||||
output_data);
|
||||
break;
|
||||
case kTfLiteInt32:
|
||||
requires_broadcast
|
||||
? reference_ops::Broadcast4DSlowLessEqualNoScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<int32_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<int32_t>(input2), output_shape,
|
||||
output_data)
|
||||
: reference_ops::LessEqualNoScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<int32_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<int32_t>(input2), output_shape,
|
||||
output_data);
|
||||
break;
|
||||
case kTfLiteInt64:
|
||||
requires_broadcast
|
||||
? reference_ops::Broadcast4DSlowLessEqualNoScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<int64_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<int64_t>(input2), output_shape,
|
||||
output_data)
|
||||
: reference_ops::LessEqualNoScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<int64_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<int64_t>(input2), output_shape,
|
||||
output_data);
|
||||
break;
|
||||
case kTfLiteUInt8:
|
||||
requires_broadcast
|
||||
? reference_ops::Broadcast4DSlowLessEqualWithScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<uint8_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<uint8_t>(input2), output_shape,
|
||||
output_data)
|
||||
: reference_ops::LessEqualWithScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<uint8_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<uint8_t>(input2), output_shape,
|
||||
output_data);
|
||||
break;
|
||||
case kTfLiteInt8:
|
||||
requires_broadcast
|
||||
? reference_ops::Broadcast4DSlowLessEqualWithScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<int8_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<int8_t>(input2), output_shape,
|
||||
output_data)
|
||||
: reference_ops::LessEqualWithScaling(
|
||||
data->params, input1_shape,
|
||||
tflite::micro::GetTensorData<int8_t>(input1), input2_shape,
|
||||
tflite::micro::GetTensorData<int8_t>(input2), output_shape,
|
||||
output_data);
|
||||
break;
|
||||
default:
|
||||
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
|
||||
TfLiteTypeGetName(input1->type), input1->type);
|
||||
return kTfLiteError;
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
|
||||
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
|
||||
return context->AllocatePersistentBuffer(context, sizeof(OpData));
|
||||
}
|
||||
|
||||
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
OpData* data = static_cast<OpData*>(node->user_data);
|
||||
|
||||
const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
|
||||
TF_LITE_ENSURE(context, input1 != nullptr);
|
||||
const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2);
|
||||
TF_LITE_ENSURE(context, input2 != nullptr);
|
||||
|
||||
if (input1->type == kTfLiteUInt8 || input1->type == kTfLiteInt8) {
|
||||
auto input1_offset = -input1->params.zero_point;
|
||||
auto input2_offset = -input2->params.zero_point;
|
||||
const int kLeftShift = 8;
|
||||
|
||||
int32_t input1_multiplier;
|
||||
int input1_shift;
|
||||
QuantizeMultiplierSmallerThanOneExp(
|
||||
static_cast<double>(input1->params.scale), &input1_multiplier,
|
||||
&input1_shift);
|
||||
int32_t input2_multiplier;
|
||||
int input2_shift;
|
||||
QuantizeMultiplierSmallerThanOneExp(
|
||||
static_cast<double>(input2->params.scale), &input2_multiplier,
|
||||
&input2_shift);
|
||||
|
||||
data->params.left_shift = kLeftShift;
|
||||
data->params.input1_offset = input1_offset;
|
||||
data->params.input1_multiplier = input1_multiplier;
|
||||
data->params.input1_shift = input1_shift;
|
||||
data->params.input2_offset = input2_offset;
|
||||
data->params.input2_multiplier = input2_multiplier;
|
||||
data->params.input2_shift = input2_shift;
|
||||
}
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
} // namespace comparisons
|
||||
|
||||
TfLiteRegistration Register_EQUAL() {
|
||||
return {/*init=*/comparisons::Init,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/comparisons::Prepare,
|
||||
/*invoke=*/comparisons::EqualEval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
TfLiteRegistration Register_NOT_EQUAL() {
|
||||
return {/*init=*/comparisons::Init,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/comparisons::Prepare,
|
||||
/*invoke=*/comparisons::NotEqualEval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
TfLiteRegistration Register_GREATER() {
|
||||
return {/*init=*/comparisons::Init,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/comparisons::Prepare,
|
||||
/*invoke=*/comparisons::GreaterEval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
TfLiteRegistration Register_GREATER_EQUAL() {
|
||||
return {/*init=*/comparisons::Init,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/comparisons::Prepare,
|
||||
/*invoke=*/comparisons::GreaterEqualEval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
TfLiteRegistration Register_LESS() {
|
||||
return {/*init=*/comparisons::Init,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/comparisons::Prepare,
|
||||
/*invoke=*/comparisons::LessEval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
TfLiteRegistration Register_LESS_EQUAL() {
|
||||
return {/*init=*/comparisons::Init,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/comparisons::Prepare,
|
||||
/*invoke=*/comparisons::LessEqualEval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
} // namespace micro
|
||||
} // namespace ops
|
||||
} // namespace tflite
|
||||
@@ -0,0 +1,276 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#include "tensorflow/lite/kernels/internal/reference/concatenation.h"
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/portable_tensor.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/kernels/internal/types.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace ops {
|
||||
namespace micro {
|
||||
namespace concatenation {
|
||||
|
||||
constexpr int kMaxInputNum = 10; // Maximum number of input tensors
|
||||
constexpr int kOutputTensor = 0;
|
||||
|
||||
struct OpData {
|
||||
ConcatenationParams params;
|
||||
};
|
||||
|
||||
// Handles negative axis index, coerces to positive index value.
|
||||
inline int CalculatePositiveAxis(int axis, const TfLiteTensor* output_tensor) {
|
||||
if (axis >= 0) {
|
||||
return axis;
|
||||
} else {
|
||||
return NumDimensions(output_tensor) + axis;
|
||||
}
|
||||
}
|
||||
|
||||
// The following functions are helpers to get tensor data in the format that the
|
||||
// reference op implementation expects. They provide the same functionality as
|
||||
// class VectorOfTensors and class VectorOfQuantizedTensors in TFLite.
|
||||
|
||||
// Gets shapes from a list of tensors.
|
||||
inline void GetAllInputTensorShapes(const TfLiteContext* context,
|
||||
const TfLiteNode* node,
|
||||
RuntimeShape all_shapes[kMaxInputNum]) {
|
||||
TFLITE_DCHECK(context != nullptr);
|
||||
TFLITE_DCHECK(node != nullptr);
|
||||
for (int i = 0; i < node->inputs->size; ++i) {
|
||||
const TfLiteEvalTensor* t = tflite::micro::GetEvalInput(context, node, i);
|
||||
RuntimeShape shape = tflite::micro::GetTensorShape(t);
|
||||
all_shapes[i].ReplaceWith(shape.DimensionsCount(), shape.DimsData());
|
||||
}
|
||||
}
|
||||
|
||||
// Get shape pointers from a list of shapes.
|
||||
inline void GetShapesPointers(const RuntimeShape* shapes, size_t num,
|
||||
const RuntimeShape* pointers[]) {
|
||||
for (size_t i = 0; i < num; ++i) {
|
||||
pointers[i] = &shapes[i];
|
||||
}
|
||||
}
|
||||
|
||||
// Gets data pointers from a list of tensors.
|
||||
template <typename T>
|
||||
inline void GetAllInputTensorData(const TfLiteContext* context,
|
||||
const TfLiteNode* node,
|
||||
T* all_data[kMaxInputNum]) {
|
||||
TFLITE_DCHECK(context != nullptr);
|
||||
TFLITE_DCHECK(node != nullptr);
|
||||
for (int i = 0; i < node->inputs->size; ++i) {
|
||||
const TfLiteEvalTensor* t = tflite::micro::GetEvalInput(context, node, i);
|
||||
all_data[i] = tflite::micro::GetTensorData<T>(t);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename data_type>
|
||||
void EvalUnquantized(TfLiteContext* context, TfLiteNode* node) {
|
||||
// Collect the shapes and data pointer of input tensors
|
||||
RuntimeShape inputs_shape[kMaxInputNum];
|
||||
const RuntimeShape* inputs_shape_ptr[kMaxInputNum];
|
||||
const data_type* inputs_data[kMaxInputNum];
|
||||
GetAllInputTensorShapes(context, node, inputs_shape);
|
||||
GetShapesPointers(inputs_shape, node->inputs->size, inputs_shape_ptr);
|
||||
GetAllInputTensorData(context, node, inputs_data);
|
||||
|
||||
TfLiteEvalTensor* output =
|
||||
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
||||
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
const OpData* data = static_cast<const OpData*>(node->user_data);
|
||||
|
||||
reference_ops::Concatenation(data->params, inputs_shape_ptr, inputs_data,
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<data_type>(output));
|
||||
}
|
||||
|
||||
void EvalQuantizedUInt8(TfLiteContext* context, TfLiteNode* node) {
|
||||
// Collect the shapes and data pointer of input tensors
|
||||
RuntimeShape inputs_shape[kMaxInputNum];
|
||||
const RuntimeShape* inputs_shape_ptr[kMaxInputNum];
|
||||
const uint8_t* inputs_data[kMaxInputNum];
|
||||
GetAllInputTensorShapes(context, node, inputs_shape);
|
||||
GetShapesPointers(inputs_shape, node->inputs->size, inputs_shape_ptr);
|
||||
GetAllInputTensorData(context, node, inputs_data);
|
||||
|
||||
TfLiteEvalTensor* output =
|
||||
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
||||
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
const OpData* data = static_cast<const OpData*>(node->user_data);
|
||||
|
||||
reference_ops::ConcatenationWithScaling(
|
||||
data->params, inputs_shape_ptr, inputs_data,
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<uint8_t>(output));
|
||||
}
|
||||
|
||||
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
|
||||
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
|
||||
return context->AllocatePersistentBuffer(context, sizeof(OpData));
|
||||
}
|
||||
|
||||
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
// This function only checks the types. Additional shape validations are
|
||||
// performed in the reference implementation called during Eval().
|
||||
const TfLiteConcatenationParams* params =
|
||||
reinterpret_cast<TfLiteConcatenationParams*>(node->builtin_data);
|
||||
|
||||
const TfLiteTensor* input_tensor = GetInput(context, node, 0);
|
||||
TF_LITE_ENSURE(context, input_tensor != nullptr);
|
||||
TfLiteType input_type = input_tensor->type;
|
||||
const TfLiteTensor* output_tensor = GetOutput(context, node, kOutputTensor);
|
||||
TF_LITE_ENSURE(context, output_tensor != nullptr);
|
||||
TfLiteType output_type = output_tensor->type;
|
||||
|
||||
// Check activation and input type
|
||||
TF_LITE_ENSURE_EQ(context, params->activation, kTfLiteActNone);
|
||||
TF_LITE_ENSURE(context,
|
||||
input_type == kTfLiteFloat32 || input_type == kTfLiteUInt8 ||
|
||||
input_type == kTfLiteInt8 || input_type == kTfLiteInt32 ||
|
||||
input_type == kTfLiteInt64);
|
||||
|
||||
// Output type must match input type
|
||||
TF_LITE_ENSURE_EQ(context, output_type, input_type);
|
||||
|
||||
// This implementation does not support large number of input tensors
|
||||
const int num_inputs = NumInputs(node);
|
||||
TF_LITE_ENSURE(context, num_inputs <= kMaxInputNum);
|
||||
|
||||
// Shapes with dimensions >4 are not yet supported with static allocation.
|
||||
for (int i = 0; i < num_inputs; ++i) {
|
||||
const TfLiteTensor* input = GetInput(context, node, i);
|
||||
TF_LITE_ENSURE(context, input != nullptr);
|
||||
int num_dimensions = NumDimensions(input);
|
||||
|
||||
if (num_dimensions > 4) {
|
||||
TF_LITE_KERNEL_LOG(
|
||||
context,
|
||||
"Op Concatenation does not currently support num dimensions >4 "
|
||||
"Tensor has %d dimensions.",
|
||||
num_dimensions);
|
||||
return kTfLiteError;
|
||||
}
|
||||
}
|
||||
|
||||
// Calculate OpData.
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
OpData* data = static_cast<OpData*>(node->user_data);
|
||||
|
||||
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
||||
TF_LITE_ENSURE(context, output != nullptr);
|
||||
|
||||
switch (output_type) { // Already know in/outtypes are same.
|
||||
case kTfLiteFloat32:
|
||||
case kTfLiteInt32:
|
||||
case kTfLiteInt64: {
|
||||
data->params.axis = CalculatePositiveAxis(params->axis, output);
|
||||
data->params.inputs_count = node->inputs->size;
|
||||
break;
|
||||
}
|
||||
case kTfLiteUInt8:
|
||||
case kTfLiteInt8: {
|
||||
data->params.axis = CalculatePositiveAxis(params->axis, output);
|
||||
data->params.inputs_count = node->inputs->size;
|
||||
|
||||
float* input_scales =
|
||||
reinterpret_cast<float*>(context->AllocatePersistentBuffer(
|
||||
context, node->inputs->size * sizeof(float)));
|
||||
|
||||
int32_t* input_zero_points =
|
||||
reinterpret_cast<int32_t*>(context->AllocatePersistentBuffer(
|
||||
context, node->inputs->size * sizeof(int32_t)));
|
||||
|
||||
// Allocate persistent scale and zeropoint buffers.
|
||||
// Store input scale and zero point values in OpParams:
|
||||
for (int i = 0; i < node->inputs->size; ++i) {
|
||||
const TfLiteTensor* t = GetInput(context, node, i);
|
||||
TF_LITE_ENSURE(context, t != nullptr);
|
||||
input_scales[i] = t->params.scale;
|
||||
input_zero_points[i] = t->params.zero_point;
|
||||
}
|
||||
|
||||
data->params.input_scale = input_scales;
|
||||
data->params.input_zeropoint = input_zero_points;
|
||||
data->params.output_zeropoint = output->params.zero_point;
|
||||
data->params.output_scale = output->params.scale;
|
||||
break;
|
||||
}
|
||||
default:
|
||||
TF_LITE_KERNEL_LOG(
|
||||
context, "Op Concatenation does not currently support Type '%s'.",
|
||||
TfLiteTypeGetName(output_type));
|
||||
return kTfLiteError;
|
||||
}
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
const TfLiteTensor* output_tensor = GetOutput(context, node, kOutputTensor);
|
||||
TF_LITE_ENSURE(context, output_tensor != nullptr);
|
||||
TfLiteType output_type = output_tensor->type;
|
||||
|
||||
switch (output_type) { // Already know in/outtypes are same.
|
||||
case kTfLiteFloat32:
|
||||
EvalUnquantized<float>(context, node);
|
||||
break;
|
||||
case kTfLiteInt32:
|
||||
EvalUnquantized<int32_t>(context, node);
|
||||
break;
|
||||
case kTfLiteUInt8:
|
||||
EvalQuantizedUInt8(context, node);
|
||||
break;
|
||||
case kTfLiteInt8:
|
||||
EvalUnquantized<int8_t>(context, node);
|
||||
break;
|
||||
case kTfLiteInt64:
|
||||
EvalUnquantized<int64_t>(context, node);
|
||||
break;
|
||||
|
||||
default:
|
||||
TF_LITE_KERNEL_LOG(
|
||||
context, "Op Concatenation does not currently support Type '%s'.",
|
||||
TfLiteTypeGetName(output_type));
|
||||
return kTfLiteError;
|
||||
}
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
} // namespace concatenation
|
||||
|
||||
TfLiteRegistration Register_CONCATENATION() {
|
||||
return {/*init=*/concatenation::Init,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/concatenation::Prepare,
|
||||
/*invoke=*/concatenation::Eval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
} // namespace micro
|
||||
} // namespace ops
|
||||
} // namespace tflite
|
||||
340
code/components/tfmicro/tensorflow/lite/micro/kernels/conv.cc
Normal file
340
code/components/tfmicro/tensorflow/lite/micro/kernels/conv.cc
Normal file
@@ -0,0 +1,340 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/kernels/internal/reference/conv.h"
|
||||
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
||||
#include "tensorflow/lite/kernels/internal/reference/integer_ops/conv.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/kernels/padding.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace {
|
||||
|
||||
constexpr int kInputTensor = 0;
|
||||
constexpr int kFilterTensor = 1;
|
||||
constexpr int kBiasTensor = 2;
|
||||
constexpr int kOutputTensor = 0;
|
||||
|
||||
// Conv is quantized along dimension 0:
|
||||
// https://www.tensorflow.org/lite/performance/quantization_spec
|
||||
constexpr int kConvQuantizedDimension = 0;
|
||||
|
||||
// This file has 2 implementation of Conv.
|
||||
|
||||
struct OpData {
|
||||
TfLitePaddingValues padding;
|
||||
|
||||
// Cached tensor zero point values for quantized operations.
|
||||
int32_t input_zero_point;
|
||||
int32_t filter_zero_point;
|
||||
int32_t output_zero_point;
|
||||
|
||||
// The scaling factor from input to output (aka the 'real multiplier') can
|
||||
// be represented as a fixed point multiplier plus a left shift.
|
||||
int32_t output_multiplier;
|
||||
int output_shift;
|
||||
|
||||
// Per channel output multiplier and shift.
|
||||
int32_t* per_channel_output_multiplier;
|
||||
int32_t* per_channel_output_shift;
|
||||
|
||||
// The range of the fused activation layer. For example for kNone and
|
||||
// uint8_t these would be 0 and 255.
|
||||
int32_t output_activation_min;
|
||||
int32_t output_activation_max;
|
||||
};
|
||||
|
||||
inline PaddingType RuntimePaddingType(TfLitePadding padding) {
|
||||
switch (padding) {
|
||||
case TfLitePadding::kTfLitePaddingSame:
|
||||
return PaddingType::kSame;
|
||||
case TfLitePadding::kTfLitePaddingValid:
|
||||
return PaddingType::kValid;
|
||||
case TfLitePadding::kTfLitePaddingUnknown:
|
||||
default:
|
||||
return PaddingType::kNone;
|
||||
}
|
||||
}
|
||||
|
||||
TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node,
|
||||
const TfLiteConvParams* params, int width,
|
||||
int height, int filter_width, int filter_height,
|
||||
int out_width, int out_height,
|
||||
const TfLiteType data_type, OpData* data) {
|
||||
bool has_bias = node->inputs->size == 3;
|
||||
// Check number of inputs/outputs
|
||||
TF_LITE_ENSURE(context, has_bias || node->inputs->size == 2);
|
||||
TF_LITE_ENSURE_EQ(context, node->outputs->size, 1);
|
||||
|
||||
// Matching GetWindowedOutputSize in TensorFlow.
|
||||
auto padding = params->padding;
|
||||
data->padding = ComputePaddingHeightWidth(
|
||||
params->stride_height, params->stride_width,
|
||||
params->dilation_height_factor, params->dilation_width_factor, height,
|
||||
width, filter_height, filter_width, padding, &out_height, &out_width);
|
||||
|
||||
// Note that quantized inference requires that all tensors have their
|
||||
// parameters set. This is usually done during quantized training.
|
||||
if (data_type != kTfLiteFloat32) {
|
||||
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
||||
TF_LITE_ENSURE(context, input != nullptr);
|
||||
const TfLiteTensor* filter = GetInput(context, node, kFilterTensor);
|
||||
TF_LITE_ENSURE(context, filter != nullptr);
|
||||
const TfLiteTensor* bias =
|
||||
GetOptionalInputTensor(context, node, kBiasTensor);
|
||||
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
||||
TF_LITE_ENSURE(context, output != nullptr);
|
||||
int output_channels = filter->dims->data[kConvQuantizedDimension];
|
||||
|
||||
TF_LITE_ENSURE_STATUS(tflite::PopulateConvolutionQuantizationParams(
|
||||
context, input, filter, bias, output, params->activation,
|
||||
&data->output_multiplier, &data->output_shift,
|
||||
&data->output_activation_min, &data->output_activation_max,
|
||||
data->per_channel_output_multiplier,
|
||||
reinterpret_cast<int*>(data->per_channel_output_shift),
|
||||
output_channels));
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
|
||||
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
|
||||
return context->AllocatePersistentBuffer(context, sizeof(OpData));
|
||||
}
|
||||
|
||||
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
TFLITE_DCHECK(node->builtin_data != nullptr);
|
||||
|
||||
OpData* data = static_cast<OpData*>(node->user_data);
|
||||
const auto params = static_cast<const TfLiteConvParams*>(node->builtin_data);
|
||||
|
||||
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
||||
TF_LITE_ENSURE(context, output != nullptr);
|
||||
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
||||
TF_LITE_ENSURE(context, input != nullptr);
|
||||
const TfLiteTensor* filter = GetInput(context, node, kFilterTensor);
|
||||
TF_LITE_ENSURE(context, filter != nullptr);
|
||||
|
||||
int input_width = input->dims->data[2];
|
||||
int input_height = input->dims->data[1];
|
||||
int filter_width = filter->dims->data[2];
|
||||
int filter_height = filter->dims->data[1];
|
||||
int output_width = output->dims->data[2];
|
||||
int output_height = output->dims->data[1];
|
||||
|
||||
// Dynimically allocate per-channel quantization parameters.
|
||||
const int num_channels = filter->dims->data[kConvQuantizedDimension];
|
||||
data->per_channel_output_multiplier =
|
||||
static_cast<int32_t*>(context->AllocatePersistentBuffer(
|
||||
context, num_channels * sizeof(int32_t)));
|
||||
data->per_channel_output_shift =
|
||||
static_cast<int32_t*>(context->AllocatePersistentBuffer(
|
||||
context, num_channels * sizeof(int32_t)));
|
||||
|
||||
// All per-channel quantized tensors need valid zero point and scale arrays.
|
||||
if (input->type == kTfLiteInt8) {
|
||||
TF_LITE_ENSURE_EQ(context, filter->quantization.type,
|
||||
kTfLiteAffineQuantization);
|
||||
|
||||
const auto* affine_quantization =
|
||||
static_cast<TfLiteAffineQuantization*>(filter->quantization.params);
|
||||
TF_LITE_ENSURE(context, affine_quantization);
|
||||
TF_LITE_ENSURE(context, affine_quantization->scale);
|
||||
TF_LITE_ENSURE(context, affine_quantization->zero_point);
|
||||
|
||||
TF_LITE_ENSURE(context,
|
||||
affine_quantization->scale->size == 1 ||
|
||||
affine_quantization->scale->size ==
|
||||
filter->dims->data[kConvQuantizedDimension]);
|
||||
TF_LITE_ENSURE_EQ(context, affine_quantization->scale->size,
|
||||
affine_quantization->zero_point->size);
|
||||
}
|
||||
|
||||
TF_LITE_ENSURE_STATUS(CalculateOpData(
|
||||
context, node, params, input_width, input_height, filter_width,
|
||||
filter_height, output_width, output_height, input->type, data));
|
||||
|
||||
data->input_zero_point = input->params.zero_point;
|
||||
data->filter_zero_point = filter->params.zero_point;
|
||||
data->output_zero_point = output->params.zero_point;
|
||||
|
||||
return kTfLiteOk;
|
||||
} // namespace conv
|
||||
|
||||
void EvalQuantized(TfLiteContext* context, TfLiteNode* node,
|
||||
TfLiteConvParams* params, const OpData& data,
|
||||
const TfLiteEvalTensor* input,
|
||||
const TfLiteEvalTensor* filter, const TfLiteEvalTensor* bias,
|
||||
TfLiteEvalTensor* im2col, TfLiteEvalTensor* hwcn_weights,
|
||||
TfLiteEvalTensor* output) {
|
||||
const int32_t input_offset = -data.input_zero_point;
|
||||
const int32_t filter_offset = -data.filter_zero_point;
|
||||
const int32_t output_offset = data.output_zero_point;
|
||||
|
||||
// TODO(b/154032858): Investigate removing extra copies.
|
||||
ConvParams op_params;
|
||||
op_params.padding_type = RuntimePaddingType(params->padding);
|
||||
op_params.padding_values.width = data.padding.width;
|
||||
op_params.padding_values.height = data.padding.height;
|
||||
op_params.stride_width = params->stride_width;
|
||||
op_params.stride_height = params->stride_height;
|
||||
op_params.dilation_width_factor = params->dilation_width_factor;
|
||||
op_params.dilation_height_factor = params->dilation_height_factor;
|
||||
op_params.input_offset = input_offset;
|
||||
op_params.weights_offset = filter_offset;
|
||||
op_params.output_offset = output_offset;
|
||||
op_params.output_multiplier = data.output_multiplier;
|
||||
op_params.output_shift = -data.output_shift;
|
||||
op_params.quantized_activation_min = data.output_activation_min;
|
||||
op_params.quantized_activation_max = data.output_activation_max;
|
||||
reference_ops::Conv(op_params, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<uint8_t>(input),
|
||||
tflite::micro::GetTensorShape(filter),
|
||||
tflite::micro::GetTensorData<uint8_t>(filter),
|
||||
tflite::micro::GetTensorShape(bias),
|
||||
tflite::micro::GetTensorData<int32_t>(bias),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<uint8_t>(output),
|
||||
tflite::micro::GetTensorShape(im2col),
|
||||
tflite::micro::GetTensorData<uint8_t>(im2col), nullptr);
|
||||
}
|
||||
|
||||
void EvalQuantizedPerChannel(TfLiteContext* context, TfLiteNode* node,
|
||||
TfLiteConvParams* params, const OpData& data,
|
||||
const TfLiteEvalTensor* input,
|
||||
const TfLiteEvalTensor* filter,
|
||||
const TfLiteEvalTensor* bias,
|
||||
TfLiteEvalTensor* output,
|
||||
TfLiteEvalTensor* im2col) {
|
||||
// TODO(b/154032858): Investigate removing extra copies.
|
||||
ConvParams op_params;
|
||||
op_params.input_offset = -data.input_zero_point;
|
||||
op_params.output_offset = data.output_zero_point;
|
||||
op_params.stride_height = params->stride_height;
|
||||
op_params.stride_width = params->stride_width;
|
||||
op_params.dilation_height_factor = params->dilation_height_factor;
|
||||
op_params.dilation_width_factor = params->dilation_width_factor;
|
||||
op_params.padding_values.height = data.padding.height;
|
||||
op_params.padding_values.width = data.padding.width;
|
||||
op_params.quantized_activation_min = data.output_activation_min;
|
||||
op_params.quantized_activation_max = data.output_activation_max;
|
||||
|
||||
reference_integer_ops::ConvPerChannel(
|
||||
op_params, data.per_channel_output_multiplier,
|
||||
data.per_channel_output_shift, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<int8_t>(input),
|
||||
tflite::micro::GetTensorShape(filter),
|
||||
tflite::micro::GetTensorData<int8_t>(filter),
|
||||
tflite::micro::GetTensorShape(bias),
|
||||
tflite::micro::GetTensorData<int32_t>(bias),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<int8_t>(output));
|
||||
}
|
||||
|
||||
void EvalFloat(TfLiteContext* context, TfLiteNode* node,
|
||||
TfLiteConvParams* params, const OpData& data,
|
||||
const TfLiteEvalTensor* input, const TfLiteEvalTensor* filter,
|
||||
const TfLiteEvalTensor* bias, TfLiteEvalTensor* im2col,
|
||||
TfLiteEvalTensor* hwcn_weights, TfLiteEvalTensor* output) {
|
||||
float output_activation_min, output_activation_max;
|
||||
CalculateActivationRange(params->activation, &output_activation_min,
|
||||
&output_activation_max);
|
||||
// TODO(b/154032858): Investigate removing extra copies.
|
||||
ConvParams op_params;
|
||||
op_params.padding_type = RuntimePaddingType(params->padding);
|
||||
op_params.padding_values.width = data.padding.width;
|
||||
op_params.padding_values.height = data.padding.height;
|
||||
op_params.stride_width = params->stride_width;
|
||||
op_params.stride_height = params->stride_height;
|
||||
op_params.dilation_width_factor = params->dilation_width_factor;
|
||||
op_params.dilation_height_factor = params->dilation_height_factor;
|
||||
op_params.float_activation_min = output_activation_min;
|
||||
op_params.float_activation_max = output_activation_max;
|
||||
|
||||
reference_ops::Conv(op_params, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<float>(input),
|
||||
tflite::micro::GetTensorShape(filter),
|
||||
tflite::micro::GetTensorData<float>(filter),
|
||||
tflite::micro::GetTensorShape(bias),
|
||||
tflite::micro::GetTensorData<float>(bias),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<float>(output),
|
||||
tflite::micro::GetTensorShape(im2col),
|
||||
tflite::micro::GetTensorData<float>(im2col));
|
||||
}
|
||||
|
||||
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
auto* params = reinterpret_cast<TfLiteConvParams*>(node->builtin_data);
|
||||
|
||||
const TfLiteEvalTensor* input =
|
||||
tflite::micro::GetEvalInput(context, node, kInputTensor);
|
||||
const TfLiteEvalTensor* filter =
|
||||
tflite::micro::GetEvalInput(context, node, kFilterTensor);
|
||||
const TfLiteEvalTensor* bias =
|
||||
(NumInputs(node) == 3)
|
||||
? tflite::micro::GetEvalInput(context, node, kBiasTensor)
|
||||
: nullptr;
|
||||
TfLiteEvalTensor* output =
|
||||
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
||||
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
const OpData& data = *(static_cast<const OpData*>(node->user_data));
|
||||
|
||||
TF_LITE_ENSURE_EQ(context, input->type, output->type);
|
||||
TF_LITE_ENSURE_MSG(context, input->type == filter->type,
|
||||
"Hybrid models are not supported on TFLite Micro.");
|
||||
|
||||
switch (input->type) { // Already know in/out types are same.
|
||||
case kTfLiteFloat32:
|
||||
EvalFloat(context, node, params, data, input, filter, bias, nullptr,
|
||||
nullptr, output);
|
||||
break;
|
||||
case kTfLiteInt8:
|
||||
EvalQuantizedPerChannel(context, node, params, data, input, filter, bias,
|
||||
output, nullptr);
|
||||
break;
|
||||
case kTfLiteUInt8:
|
||||
EvalQuantized(context, node, params, data, input, filter, bias, nullptr,
|
||||
nullptr, output);
|
||||
break;
|
||||
default:
|
||||
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
|
||||
TfLiteTypeGetName(input->type), input->type);
|
||||
return kTfLiteError;
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
TfLiteRegistration Register_CONV_2D() {
|
||||
return {/*init=*/Init,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/Prepare,
|
||||
/*invoke=*/Eval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
} // namespace tflite
|
||||
@@ -0,0 +1,326 @@
|
||||
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/kernels/internal/reference/integer_ops/depthwise_conv.h"
|
||||
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
||||
#include "tensorflow/lite/kernels/internal/reference/depthwiseconv_float.h"
|
||||
#include "tensorflow/lite/kernels/internal/reference/depthwiseconv_uint8.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/kernels/padding.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace {
|
||||
|
||||
constexpr int kInputTensor = 0;
|
||||
constexpr int kFilterTensor = 1;
|
||||
constexpr int kBiasTensor = 2;
|
||||
constexpr int kOutputTensor = 0;
|
||||
|
||||
// Depthwise conv is quantized along dimension 3:
|
||||
// https://www.tensorflow.org/lite/performance/quantization_spec
|
||||
constexpr int kDepthwiseConvQuantizedDimension = 3;
|
||||
|
||||
struct OpData {
|
||||
TfLitePaddingValues padding;
|
||||
|
||||
// Cached tensor zero point values for quantized operations.
|
||||
int32_t input_zero_point;
|
||||
int32_t filter_zero_point;
|
||||
int32_t output_zero_point;
|
||||
|
||||
// The scaling factor from input to output (aka the 'real multiplier') can
|
||||
// be represented as a fixed point multiplier plus a left shift.
|
||||
int32_t output_multiplier;
|
||||
int output_shift;
|
||||
|
||||
// Per channel output multiplier and shift.
|
||||
int32_t* per_channel_output_multiplier;
|
||||
int32_t* per_channel_output_shift;
|
||||
// The range of the fused activation layer. For example for kNone and
|
||||
// uint8_t these would be 0 and 255.
|
||||
int32_t output_activation_min;
|
||||
int32_t output_activation_max;
|
||||
};
|
||||
|
||||
TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node,
|
||||
TfLiteDepthwiseConvParams* params, int width,
|
||||
int height, int filter_width, int filter_height,
|
||||
const TfLiteType data_type, OpData* data) {
|
||||
bool has_bias = node->inputs->size == 3;
|
||||
// Check number of inputs/outputs
|
||||
TF_LITE_ENSURE(context, has_bias || node->inputs->size == 2);
|
||||
TF_LITE_ENSURE_EQ(context, node->outputs->size, 1);
|
||||
|
||||
int unused_output_height, unused_output_width;
|
||||
data->padding = ComputePaddingHeightWidth(
|
||||
params->stride_height, params->stride_width, 1, 1, height, width,
|
||||
filter_height, filter_width, params->padding, &unused_output_height,
|
||||
&unused_output_width);
|
||||
|
||||
// Note that quantized inference requires that all tensors have their
|
||||
// parameters set. This is usually done during quantized training.
|
||||
if (data_type != kTfLiteFloat32) {
|
||||
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
||||
TF_LITE_ENSURE(context, input != nullptr);
|
||||
const TfLiteTensor* filter = GetInput(context, node, kFilterTensor);
|
||||
TF_LITE_ENSURE(context, filter != nullptr);
|
||||
const TfLiteTensor* bias =
|
||||
GetOptionalInputTensor(context, node, kBiasTensor);
|
||||
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
||||
TF_LITE_ENSURE(context, output != nullptr);
|
||||
int num_channels = filter->dims->data[kDepthwiseConvQuantizedDimension];
|
||||
|
||||
return tflite::PopulateConvolutionQuantizationParams(
|
||||
context, input, filter, bias, output, params->activation,
|
||||
&data->output_multiplier, &data->output_shift,
|
||||
&data->output_activation_min, &data->output_activation_max,
|
||||
data->per_channel_output_multiplier,
|
||||
reinterpret_cast<int*>(data->per_channel_output_shift), num_channels);
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
|
||||
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
|
||||
return context->AllocatePersistentBuffer(context, sizeof(OpData));
|
||||
}
|
||||
|
||||
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
TFLITE_DCHECK(node->builtin_data != nullptr);
|
||||
|
||||
auto* params =
|
||||
reinterpret_cast<TfLiteDepthwiseConvParams*>(node->builtin_data);
|
||||
OpData* data = static_cast<OpData*>(node->user_data);
|
||||
|
||||
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
||||
TF_LITE_ENSURE(context, output != nullptr);
|
||||
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
||||
TF_LITE_ENSURE(context, input != nullptr);
|
||||
const TfLiteTensor* filter = GetInput(context, node, kFilterTensor);
|
||||
TF_LITE_ENSURE(context, filter != nullptr);
|
||||
|
||||
const TfLiteType data_type = input->type;
|
||||
int width = SizeOfDimension(input, 2);
|
||||
int height = SizeOfDimension(input, 1);
|
||||
int filter_width = SizeOfDimension(filter, 2);
|
||||
int filter_height = SizeOfDimension(filter, 1);
|
||||
|
||||
// Per channel quantization is only needed for int8_t inference. For other
|
||||
// quantized types, only a single scale and zero point is needed.
|
||||
const int num_channels = filter->dims->data[kDepthwiseConvQuantizedDimension];
|
||||
// Dynimically allocate per-channel quantization parameters.
|
||||
data->per_channel_output_multiplier =
|
||||
reinterpret_cast<int32_t*>(context->AllocatePersistentBuffer(
|
||||
context, num_channels * sizeof(int32_t)));
|
||||
data->per_channel_output_shift =
|
||||
reinterpret_cast<int32_t*>(context->AllocatePersistentBuffer(
|
||||
context, num_channels * sizeof(int32_t)));
|
||||
|
||||
// All per-channel quantized tensors need valid zero point and scale arrays.
|
||||
if (input->type == kTfLiteInt8) {
|
||||
TF_LITE_ENSURE_EQ(context, filter->quantization.type,
|
||||
kTfLiteAffineQuantization);
|
||||
|
||||
const auto* affine_quantization =
|
||||
reinterpret_cast<TfLiteAffineQuantization*>(
|
||||
filter->quantization.params);
|
||||
TF_LITE_ENSURE(context, affine_quantization);
|
||||
TF_LITE_ENSURE(context, affine_quantization->scale);
|
||||
TF_LITE_ENSURE(context, affine_quantization->zero_point);
|
||||
TF_LITE_ENSURE(
|
||||
context, affine_quantization->scale->size == 1 ||
|
||||
affine_quantization->scale->size ==
|
||||
filter->dims->data[kDepthwiseConvQuantizedDimension]);
|
||||
TF_LITE_ENSURE_EQ(context, affine_quantization->scale->size,
|
||||
affine_quantization->zero_point->size);
|
||||
}
|
||||
|
||||
TF_LITE_ENSURE_STATUS(CalculateOpData(context, node, params, width, height,
|
||||
filter_width, filter_height, data_type,
|
||||
data));
|
||||
|
||||
data->input_zero_point = input->params.zero_point;
|
||||
data->filter_zero_point = filter->params.zero_point;
|
||||
data->output_zero_point = output->params.zero_point;
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
void EvalFloat(TfLiteContext* context, TfLiteNode* node,
|
||||
TfLiteDepthwiseConvParams* params, const OpData& data,
|
||||
const TfLiteEvalTensor* input, const TfLiteEvalTensor* filter,
|
||||
const TfLiteEvalTensor* bias, TfLiteEvalTensor* output) {
|
||||
float output_activation_min, output_activation_max;
|
||||
CalculateActivationRange(params->activation, &output_activation_min,
|
||||
&output_activation_max);
|
||||
|
||||
tflite::DepthwiseParams op_params;
|
||||
// Padding type is ignored, but still set.
|
||||
op_params.padding_type = PaddingType::kSame;
|
||||
op_params.padding_values.width = data.padding.width;
|
||||
op_params.padding_values.height = data.padding.height;
|
||||
op_params.stride_width = params->stride_width;
|
||||
op_params.stride_height = params->stride_height;
|
||||
op_params.dilation_width_factor = params->dilation_width_factor;
|
||||
op_params.dilation_height_factor = params->dilation_height_factor;
|
||||
op_params.depth_multiplier = params->depth_multiplier;
|
||||
op_params.float_activation_min = output_activation_min;
|
||||
op_params.float_activation_max = output_activation_max;
|
||||
|
||||
tflite::reference_ops::DepthwiseConv(
|
||||
op_params, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<float>(input),
|
||||
tflite::micro::GetTensorShape(filter),
|
||||
tflite::micro::GetTensorData<float>(filter),
|
||||
tflite::micro::GetTensorShape(bias),
|
||||
tflite::micro::GetTensorData<float>(bias),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<float>(output));
|
||||
}
|
||||
|
||||
void EvalQuantizedPerChannel(TfLiteContext* context, TfLiteNode* node,
|
||||
TfLiteDepthwiseConvParams* params,
|
||||
const OpData& data, const TfLiteEvalTensor* input,
|
||||
const TfLiteEvalTensor* filter,
|
||||
const TfLiteEvalTensor* bias,
|
||||
TfLiteEvalTensor* output) {
|
||||
DepthwiseParams op_params;
|
||||
op_params.padding_type = PaddingType::kSame;
|
||||
op_params.padding_values.width = data.padding.width;
|
||||
op_params.padding_values.height = data.padding.height;
|
||||
op_params.stride_width = params->stride_width;
|
||||
op_params.stride_height = params->stride_height;
|
||||
op_params.dilation_width_factor = params->dilation_width_factor;
|
||||
op_params.dilation_height_factor = params->dilation_height_factor;
|
||||
op_params.depth_multiplier = params->depth_multiplier;
|
||||
op_params.input_offset = -data.input_zero_point;
|
||||
op_params.weights_offset = 0;
|
||||
op_params.output_offset = data.output_zero_point;
|
||||
// TODO(b/130439627): Use calculated value for clamping.
|
||||
op_params.quantized_activation_min = std::numeric_limits<int8_t>::min();
|
||||
op_params.quantized_activation_max = std::numeric_limits<int8_t>::max();
|
||||
|
||||
reference_integer_ops::DepthwiseConvPerChannel(
|
||||
op_params, data.per_channel_output_multiplier,
|
||||
data.per_channel_output_shift, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<int8_t>(input),
|
||||
tflite::micro::GetTensorShape(filter),
|
||||
tflite::micro::GetTensorData<int8_t>(filter),
|
||||
tflite::micro::GetTensorShape(bias),
|
||||
tflite::micro::GetTensorData<int32_t>(bias),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<int8_t>(output));
|
||||
}
|
||||
|
||||
void EvalQuantized(TfLiteContext* context, TfLiteNode* node,
|
||||
TfLiteDepthwiseConvParams* params, const OpData& data,
|
||||
const TfLiteEvalTensor* input,
|
||||
const TfLiteEvalTensor* filter, const TfLiteEvalTensor* bias,
|
||||
TfLiteEvalTensor* output) {
|
||||
const int32_t input_offset = -data.input_zero_point;
|
||||
const int32_t filter_offset = -data.filter_zero_point;
|
||||
const int32_t output_offset = data.output_zero_point;
|
||||
|
||||
tflite::DepthwiseParams op_params;
|
||||
// Padding type is ignored, but still set.
|
||||
op_params.padding_type = PaddingType::kSame;
|
||||
op_params.padding_values.width = data.padding.width;
|
||||
op_params.padding_values.height = data.padding.height;
|
||||
op_params.stride_width = params->stride_width;
|
||||
op_params.stride_height = params->stride_height;
|
||||
op_params.dilation_width_factor = params->dilation_width_factor;
|
||||
op_params.dilation_height_factor = params->dilation_height_factor;
|
||||
op_params.depth_multiplier = params->depth_multiplier;
|
||||
op_params.quantized_activation_min = data.output_activation_min;
|
||||
op_params.quantized_activation_max = data.output_activation_max;
|
||||
op_params.input_offset = input_offset;
|
||||
op_params.weights_offset = filter_offset;
|
||||
op_params.output_offset = output_offset;
|
||||
op_params.output_multiplier = data.output_multiplier;
|
||||
// Legacy ops used mixed left and right shifts. Now all are +ve-means-left.
|
||||
op_params.output_shift = -data.output_shift;
|
||||
|
||||
tflite::reference_ops::DepthwiseConv(
|
||||
op_params, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<uint8_t>(input),
|
||||
tflite::micro::GetTensorShape(filter),
|
||||
tflite::micro::GetTensorData<uint8_t>(filter),
|
||||
tflite::micro::GetTensorShape(bias),
|
||||
tflite::micro::GetTensorData<int32_t>(bias),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<uint8_t>(output));
|
||||
}
|
||||
|
||||
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
TFLITE_DCHECK(node->builtin_data != nullptr);
|
||||
|
||||
auto* params =
|
||||
reinterpret_cast<TfLiteDepthwiseConvParams*>(node->builtin_data);
|
||||
const OpData& data = *(static_cast<const OpData*>(node->user_data));
|
||||
|
||||
TfLiteEvalTensor* output =
|
||||
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
||||
const TfLiteEvalTensor* input =
|
||||
tflite::micro::GetEvalInput(context, node, kInputTensor);
|
||||
const TfLiteEvalTensor* filter =
|
||||
tflite::micro::GetEvalInput(context, node, kFilterTensor);
|
||||
const TfLiteEvalTensor* bias =
|
||||
(NumInputs(node) == 3)
|
||||
? tflite::micro::GetEvalInput(context, node, kBiasTensor)
|
||||
: nullptr;
|
||||
|
||||
// TODO(aselle): Consider whether float conv and quantized conv should be
|
||||
// separate ops to avoid dispatch overhead here.
|
||||
switch (input->type) { // Already know in/out types are same.
|
||||
case kTfLiteFloat32:
|
||||
EvalFloat(context, node, params, data, input, filter, bias, output);
|
||||
break;
|
||||
case kTfLiteInt8:
|
||||
EvalQuantizedPerChannel(context, node, params, data, input, filter, bias,
|
||||
output);
|
||||
break;
|
||||
case kTfLiteUInt8:
|
||||
EvalQuantized(context, node, params, data, input, filter, bias, output);
|
||||
break;
|
||||
default:
|
||||
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
|
||||
TfLiteTypeGetName(input->type), input->type);
|
||||
return kTfLiteError;
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
TfLiteRegistration Register_DEPTHWISE_CONV_2D() {
|
||||
return {/*init=*/Init,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/Prepare,
|
||||
/*invoke=*/Eval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
} // namespace tflite
|
||||
@@ -0,0 +1,166 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/kernels/internal/reference/dequantize.h"
|
||||
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
||||
#include "tensorflow/lite/kernels/internal/reference/quantize.h"
|
||||
#include "tensorflow/lite/kernels/internal/reference/requantize.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace ops {
|
||||
namespace micro {
|
||||
namespace dequantize {
|
||||
|
||||
struct OpData {
|
||||
tflite::DequantizationParams quantization_params;
|
||||
// The scaling factor from input to output (aka the 'real multiplier') can
|
||||
// be represented as a fixed point multiplier plus a left shift.
|
||||
int32_t output_multiplier;
|
||||
int output_shift;
|
||||
int32_t output_zero_point;
|
||||
};
|
||||
|
||||
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
|
||||
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
|
||||
return context->AllocatePersistentBuffer(context, sizeof(OpData));
|
||||
}
|
||||
|
||||
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
OpData* data = static_cast<OpData*>(node->user_data);
|
||||
|
||||
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
|
||||
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
||||
|
||||
// TODO(b/140515557): Add cached dequant to improve hybrid model performance.
|
||||
const TfLiteTensor* input = GetInput(context, node, 0);
|
||||
TF_LITE_ENSURE(context, input != nullptr);
|
||||
TfLiteTensor* output = GetOutput(context, node, 0);
|
||||
TF_LITE_ENSURE(context, output != nullptr);
|
||||
|
||||
TF_LITE_ENSURE(context, input->type == kTfLiteUInt8 ||
|
||||
input->type == kTfLiteInt8 ||
|
||||
input->type == kTfLiteInt16);
|
||||
TF_LITE_ENSURE(
|
||||
context, output->type == kTfLiteFloat32 || output->type == kTfLiteInt32);
|
||||
|
||||
if (output->type == kTfLiteInt32) {
|
||||
const double effective_output_scale =
|
||||
static_cast<double>(input->params.scale) /
|
||||
static_cast<double>(output->params.scale);
|
||||
QuantizeMultiplier(effective_output_scale, &data->output_multiplier,
|
||||
&data->output_shift);
|
||||
}
|
||||
|
||||
data->quantization_params.zero_point = input->params.zero_point;
|
||||
data->quantization_params.scale = static_cast<double>(input->params.scale);
|
||||
data->output_zero_point = output->params.zero_point;
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
OpData* data = static_cast<OpData*>(node->user_data);
|
||||
|
||||
const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0);
|
||||
TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0);
|
||||
|
||||
if (output->type == kTfLiteFloat32) {
|
||||
switch (input->type) {
|
||||
case kTfLiteUInt8:
|
||||
reference_ops::Dequantize(data->quantization_params,
|
||||
tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<uint8_t>(input),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<float>(output));
|
||||
break;
|
||||
case kTfLiteInt8:
|
||||
reference_ops::Dequantize(data->quantization_params,
|
||||
tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<int8_t>(input),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<float>(output));
|
||||
break;
|
||||
case kTfLiteInt16:
|
||||
reference_ops::Dequantize(data->quantization_params,
|
||||
tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<int16_t>(input),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<float>(output));
|
||||
break;
|
||||
default:
|
||||
TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
|
||||
TfLiteTypeGetName(input->type),
|
||||
TfLiteTypeGetName(output->type));
|
||||
return kTfLiteError;
|
||||
}
|
||||
} else if (output->type == kTfLiteInt32) {
|
||||
int flat_size = MatchingFlatSize(tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorShape(output));
|
||||
switch (input->type) {
|
||||
case kTfLiteInt16: {
|
||||
reference_ops::Requantize(
|
||||
tflite::micro::GetTensorData<int16_t>(input), flat_size,
|
||||
data->output_multiplier, data->output_shift,
|
||||
data->quantization_params.zero_point, data->output_zero_point,
|
||||
tflite::micro::GetTensorData<int32_t>(output));
|
||||
break;
|
||||
}
|
||||
case kTfLiteInt8: {
|
||||
reference_ops::Requantize(
|
||||
tflite::micro::GetTensorData<int8_t>(input), flat_size,
|
||||
data->output_multiplier, data->output_shift,
|
||||
data->quantization_params.zero_point, data->output_zero_point,
|
||||
tflite::micro::GetTensorData<int32_t>(output));
|
||||
break;
|
||||
}
|
||||
default:
|
||||
TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
|
||||
TfLiteTypeGetName(input->type),
|
||||
TfLiteTypeGetName(output->type));
|
||||
return kTfLiteError;
|
||||
}
|
||||
} else {
|
||||
TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
|
||||
TfLiteTypeGetName(input->type),
|
||||
TfLiteTypeGetName(output->type));
|
||||
return kTfLiteError;
|
||||
}
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
} // namespace dequantize
|
||||
|
||||
TfLiteRegistration Register_DEQUANTIZE() {
|
||||
return {/*init=*/dequantize::Init,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/dequantize::Prepare,
|
||||
/*invoke=*/dequantize::Eval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
} // namespace micro
|
||||
} // namespace ops
|
||||
} // namespace tflite
|
||||
@@ -0,0 +1,214 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include <cmath>
|
||||
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/micro/micro_utils.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace ops {
|
||||
namespace micro {
|
||||
namespace elementwise {
|
||||
namespace {
|
||||
|
||||
bool IsNumericSupportedType(const TfLiteType type) {
|
||||
return type == kTfLiteFloat32;
|
||||
}
|
||||
|
||||
bool IsLogicalSupportedType(const TfLiteType type) {
|
||||
return type == kTfLiteBool;
|
||||
}
|
||||
|
||||
typedef bool (*IsSupportedType)(TfLiteType);
|
||||
template <IsSupportedType>
|
||||
TfLiteStatus GenericPrepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
|
||||
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
||||
const TfLiteTensor* input = GetInput(context, node, 0);
|
||||
TF_LITE_ENSURE(context, input != nullptr);
|
||||
TfLiteTensor* output = GetOutput(context, node, 0);
|
||||
TF_LITE_ENSURE(context, output != nullptr);
|
||||
TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
|
||||
if (!IsSupportedType(input->type)) {
|
||||
TF_LITE_KERNEL_LOG(context, "Input data type %s (%d) is not supported.",
|
||||
TfLiteTypeGetName(input->type), input->type);
|
||||
return kTfLiteError;
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline TfLiteStatus EvalImpl(TfLiteContext* context, TfLiteNode* node,
|
||||
T func(T), TfLiteType expected_type) {
|
||||
const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0);
|
||||
TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0);
|
||||
TF_LITE_ENSURE_TYPES_EQ(context, input->type, expected_type);
|
||||
const size_t num_elements = ElementCount(*input->dims);
|
||||
const T* in_data = tflite::micro::GetTensorData<T>(input);
|
||||
T* out_data = tflite::micro::GetTensorData<T>(output);
|
||||
for (size_t i = 0; i < num_elements; ++i) {
|
||||
out_data[i] = func(in_data[i]);
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
inline TfLiteStatus EvalNumeric(TfLiteContext* context, TfLiteNode* node,
|
||||
float float_func(float)) {
|
||||
return EvalImpl<float>(context, node, float_func, kTfLiteFloat32);
|
||||
}
|
||||
|
||||
inline TfLiteStatus EvalLogical(TfLiteContext* context, TfLiteNode* node,
|
||||
bool bool_func(bool)) {
|
||||
return EvalImpl<bool>(context, node, bool_func, kTfLiteBool);
|
||||
}
|
||||
|
||||
TfLiteStatus AbsEval(TfLiteContext* context, TfLiteNode* node) {
|
||||
return EvalNumeric(context, node, std::abs);
|
||||
}
|
||||
|
||||
TfLiteStatus SinEval(TfLiteContext* context, TfLiteNode* node) {
|
||||
return EvalNumeric(context, node, std::sin);
|
||||
}
|
||||
|
||||
TfLiteStatus CosEval(TfLiteContext* context, TfLiteNode* node) {
|
||||
return EvalNumeric(context, node, std::cos);
|
||||
}
|
||||
|
||||
TfLiteStatus LogEval(TfLiteContext* context, TfLiteNode* node) {
|
||||
return EvalNumeric(context, node, std::log);
|
||||
}
|
||||
|
||||
TfLiteStatus SqrtEval(TfLiteContext* context, TfLiteNode* node) {
|
||||
return EvalNumeric(context, node, std::sqrt);
|
||||
}
|
||||
|
||||
TfLiteStatus RsqrtEval(TfLiteContext* context, TfLiteNode* node) {
|
||||
return EvalNumeric(context, node, [](float f) { return 1.f / std::sqrt(f); });
|
||||
}
|
||||
|
||||
TfLiteStatus SquareEval(TfLiteContext* context, TfLiteNode* node) {
|
||||
return EvalNumeric(context, node, [](float f) { return f * f; });
|
||||
}
|
||||
|
||||
TfLiteStatus LogicalNotEval(TfLiteContext* context, TfLiteNode* node) {
|
||||
return EvalLogical(context, node, [](bool v) { return !v; });
|
||||
}
|
||||
|
||||
} // namespace
|
||||
} // namespace elementwise
|
||||
|
||||
TfLiteRegistration Register_ABS() {
|
||||
return {/*init=*/nullptr,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/
|
||||
elementwise::GenericPrepare<elementwise::IsNumericSupportedType>,
|
||||
/*invoke=*/elementwise::AbsEval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
TfLiteRegistration Register_SIN() {
|
||||
return {/*init=*/nullptr,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/
|
||||
elementwise::GenericPrepare<elementwise::IsNumericSupportedType>,
|
||||
/*invoke=*/elementwise::SinEval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
TfLiteRegistration Register_COS() {
|
||||
return {/*init=*/nullptr,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/
|
||||
elementwise::GenericPrepare<elementwise::IsNumericSupportedType>,
|
||||
/*invoke=*/elementwise::CosEval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
TfLiteRegistration Register_LOG() {
|
||||
return {/*init=*/nullptr,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/
|
||||
elementwise::GenericPrepare<elementwise::IsNumericSupportedType>,
|
||||
/*invoke=*/elementwise::LogEval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
TfLiteRegistration Register_SQRT() {
|
||||
return {/*init=*/nullptr,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/
|
||||
elementwise::GenericPrepare<elementwise::IsNumericSupportedType>,
|
||||
/*invoke=*/elementwise::SqrtEval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
TfLiteRegistration Register_RSQRT() {
|
||||
return {/*init=*/nullptr,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/
|
||||
elementwise::GenericPrepare<elementwise::IsNumericSupportedType>,
|
||||
/*invoke=*/elementwise::RsqrtEval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
TfLiteRegistration Register_SQUARE() {
|
||||
return {/*init=*/nullptr,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/
|
||||
elementwise::GenericPrepare<elementwise::IsNumericSupportedType>,
|
||||
/*invoke=*/elementwise::SquareEval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
TfLiteRegistration Register_LOGICAL_NOT() {
|
||||
return {/*init=*/nullptr,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/
|
||||
elementwise::GenericPrepare<elementwise::IsLogicalSupportedType>,
|
||||
/*invoke=*/elementwise::LogicalNotEval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
} // namespace micro
|
||||
} // namespace ops
|
||||
} // namespace tflite
|
||||
@@ -0,0 +1,32 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
//
|
||||
// This is a stub file for non-Ethos platforms
|
||||
//
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace ops {
|
||||
namespace micro {
|
||||
namespace custom {
|
||||
TfLiteRegistration* Register_ETHOSU() { return nullptr; }
|
||||
|
||||
const char* GetString_ETHOSU() { return ""; }
|
||||
|
||||
} // namespace custom
|
||||
} // namespace micro
|
||||
} // namespace ops
|
||||
} // namespace tflite
|
||||
@@ -0,0 +1,57 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/kernels/internal/reference/floor.h"
|
||||
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace ops {
|
||||
namespace micro {
|
||||
namespace floor {
|
||||
|
||||
constexpr int kInputTensor = 0;
|
||||
constexpr int kOutputTensor = 0;
|
||||
|
||||
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
const TfLiteEvalTensor* input =
|
||||
tflite::micro::GetEvalInput(context, node, kInputTensor);
|
||||
TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteFloat32);
|
||||
TfLiteEvalTensor* output =
|
||||
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
||||
reference_ops::Floor(tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<float>(input),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<float>(output));
|
||||
return kTfLiteOk;
|
||||
}
|
||||
} // namespace floor
|
||||
|
||||
TfLiteRegistration Register_FLOOR() {
|
||||
return {/*init=*/nullptr,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/nullptr,
|
||||
/*invoke=*/floor::Eval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
} // namespace micro
|
||||
} // namespace ops
|
||||
} // namespace tflite
|
||||
@@ -0,0 +1,253 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/micro/kernels/fully_connected.h"
|
||||
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
||||
#include "tensorflow/lite/kernels/internal/reference/fully_connected.h"
|
||||
#include "tensorflow/lite/kernels/internal/reference/integer_ops/fully_connected.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace {
|
||||
|
||||
struct OpData {
|
||||
// The scaling factor from input to output (aka the 'real multiplier') can
|
||||
// be represented as a fixed point multiplier plus a left shift.
|
||||
int32_t output_multiplier;
|
||||
int output_shift;
|
||||
// The range of the fused activation layer. For example for kNone and
|
||||
// uint8_t these would be 0 and 255.
|
||||
int32_t output_activation_min;
|
||||
int32_t output_activation_max;
|
||||
// The index of the temporary tensor where the quantized inputs are cached.
|
||||
int input_quantized_index;
|
||||
// Cached zero point values of tensors.
|
||||
int32_t input_zero_point;
|
||||
int32_t filter_zero_point;
|
||||
int32_t output_zero_point;
|
||||
};
|
||||
|
||||
constexpr int kInputTensor = 0;
|
||||
constexpr int kWeightsTensor = 1;
|
||||
constexpr int kBiasTensor = 2;
|
||||
constexpr int kOutputTensor = 0;
|
||||
|
||||
TfLiteStatus CalculateOpData(TfLiteContext* context,
|
||||
TfLiteFusedActivation activation,
|
||||
TfLiteType data_type, const TfLiteTensor* input,
|
||||
const TfLiteTensor* filter,
|
||||
const TfLiteTensor* bias, TfLiteTensor* output,
|
||||
OpData* data) {
|
||||
TfLiteStatus status = kTfLiteOk;
|
||||
if (data_type != kTfLiteFloat32) {
|
||||
double real_multiplier = 0.0;
|
||||
TF_LITE_ENSURE_STATUS(GetQuantizedConvolutionMultipler(
|
||||
context, input, filter, bias, output, &real_multiplier));
|
||||
int exponent;
|
||||
QuantizeMultiplier(real_multiplier, &data->output_multiplier, &exponent);
|
||||
data->output_shift = -exponent;
|
||||
TF_LITE_ENSURE_STATUS(CalculateActivationRangeQuantized(
|
||||
context, activation, output, &data->output_activation_min,
|
||||
&data->output_activation_max));
|
||||
|
||||
data->input_zero_point = input->params.zero_point;
|
||||
data->filter_zero_point = filter->params.zero_point;
|
||||
data->output_zero_point = output->params.zero_point;
|
||||
}
|
||||
return status;
|
||||
}
|
||||
|
||||
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
|
||||
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
|
||||
return context->AllocatePersistentBuffer(context, sizeof(OpData));
|
||||
}
|
||||
|
||||
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
TFLITE_DCHECK(node->builtin_data != nullptr);
|
||||
|
||||
OpData* data = static_cast<OpData*>(node->user_data);
|
||||
const auto params =
|
||||
static_cast<const TfLiteFullyConnectedParams*>(node->builtin_data);
|
||||
|
||||
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
||||
TF_LITE_ENSURE(context, input != nullptr);
|
||||
const TfLiteTensor* filter = GetInput(context, node, kWeightsTensor);
|
||||
TF_LITE_ENSURE(context, filter != nullptr);
|
||||
const TfLiteTensor* bias = GetOptionalInputTensor(context, node, kBiasTensor);
|
||||
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
||||
TF_LITE_ENSURE(context, output != nullptr);
|
||||
|
||||
TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
|
||||
TF_LITE_ENSURE_MSG(context, input->type == filter->type,
|
||||
"Hybrid models are not supported on TFLite Micro.");
|
||||
|
||||
return CalculateOpData(context, params->activation, input->type, input,
|
||||
filter, bias, output, data);
|
||||
}
|
||||
|
||||
TfLiteStatus EvalQuantizedInt8(TfLiteContext* context, TfLiteNode* node,
|
||||
const OpData& data,
|
||||
const TfLiteEvalTensor* input,
|
||||
const TfLiteEvalTensor* filter,
|
||||
const TfLiteEvalTensor* bias,
|
||||
TfLiteEvalTensor* output) {
|
||||
tflite::FullyConnectedParams op_params;
|
||||
op_params.input_offset = -data.input_zero_point;
|
||||
op_params.weights_offset = -data.filter_zero_point;
|
||||
op_params.output_offset = data.output_zero_point;
|
||||
op_params.output_multiplier = data.output_multiplier;
|
||||
// TODO(b/138810107): Figure out whether output shift should be inverted
|
||||
op_params.output_shift = -data.output_shift;
|
||||
op_params.quantized_activation_min = data.output_activation_min;
|
||||
op_params.quantized_activation_max = data.output_activation_max;
|
||||
|
||||
reference_integer_ops::FullyConnected(
|
||||
op_params, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<int8_t>(input),
|
||||
tflite::micro::GetTensorShape(filter),
|
||||
tflite::micro::GetTensorData<int8_t>(filter),
|
||||
tflite::micro::GetTensorShape(bias),
|
||||
tflite::micro::GetTensorData<int32_t>(bias),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<int8_t>(output));
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus EvalQuantized(TfLiteContext* context, TfLiteNode* node,
|
||||
const OpData& data, const TfLiteEvalTensor* input,
|
||||
const TfLiteEvalTensor* filter,
|
||||
const TfLiteEvalTensor* bias,
|
||||
TfLiteEvalTensor* output) {
|
||||
const int32_t input_offset = -data.input_zero_point;
|
||||
const int32_t filter_offset = -data.filter_zero_point;
|
||||
const int32_t output_offset = data.output_zero_point;
|
||||
|
||||
tflite::FullyConnectedParams op_params;
|
||||
op_params.input_offset = input_offset;
|
||||
op_params.weights_offset = filter_offset;
|
||||
op_params.output_offset = output_offset;
|
||||
op_params.output_multiplier = data.output_multiplier;
|
||||
// Legacy ops used mixed left and right shifts. Now all are +ve-means-left.
|
||||
op_params.output_shift = -data.output_shift;
|
||||
op_params.quantized_activation_min = data.output_activation_min;
|
||||
op_params.quantized_activation_max = data.output_activation_max;
|
||||
|
||||
#define TF_LITE_FULLY_CONNECTED(output_data_type) \
|
||||
reference_ops::FullyConnected( \
|
||||
op_params, tflite::micro::GetTensorShape(input), \
|
||||
tflite::micro::GetTensorData<uint8_t>(input), \
|
||||
tflite::micro::GetTensorShape(filter), \
|
||||
tflite::micro::GetTensorData<uint8_t>(filter), \
|
||||
tflite::micro::GetTensorShape(bias), \
|
||||
tflite::micro::GetTensorData<int32_t>(bias), \
|
||||
tflite::micro::GetTensorShape(output), \
|
||||
tflite::micro::GetTensorData<output_data_type>(output))
|
||||
switch (output->type) {
|
||||
case kTfLiteUInt8:
|
||||
TF_LITE_FULLY_CONNECTED(uint8_t);
|
||||
break;
|
||||
case kTfLiteInt16:
|
||||
TF_LITE_FULLY_CONNECTED(int16_t);
|
||||
break;
|
||||
default:
|
||||
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
|
||||
TfLiteTypeGetName(output->type), output->type);
|
||||
return kTfLiteError;
|
||||
}
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus EvalFloat(TfLiteContext* context, TfLiteNode* node,
|
||||
TfLiteFusedActivation activation,
|
||||
const TfLiteEvalTensor* input,
|
||||
const TfLiteEvalTensor* filter,
|
||||
const TfLiteEvalTensor* bias, TfLiteEvalTensor* output) {
|
||||
float output_activation_min, output_activation_max;
|
||||
CalculateActivationRange(activation, &output_activation_min,
|
||||
&output_activation_max);
|
||||
tflite::FullyConnectedParams op_params;
|
||||
op_params.float_activation_min = output_activation_min;
|
||||
op_params.float_activation_max = output_activation_max;
|
||||
tflite::reference_ops::FullyConnected(
|
||||
op_params, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<float>(input),
|
||||
tflite::micro::GetTensorShape(filter),
|
||||
tflite::micro::GetTensorData<float>(filter),
|
||||
tflite::micro::GetTensorShape(bias),
|
||||
tflite::micro::GetTensorData<float>(bias),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<float>(output));
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->builtin_data != nullptr);
|
||||
const auto* params =
|
||||
static_cast<const TfLiteFullyConnectedParams*>(node->builtin_data);
|
||||
|
||||
const TfLiteEvalTensor* input =
|
||||
tflite::micro::GetEvalInput(context, node, kInputTensor);
|
||||
const TfLiteEvalTensor* filter =
|
||||
tflite::micro::GetEvalInput(context, node, kWeightsTensor);
|
||||
const TfLiteEvalTensor* bias =
|
||||
tflite::micro::GetEvalInput(context, node, kBiasTensor);
|
||||
TfLiteEvalTensor* output =
|
||||
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
||||
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
const OpData& data = *(static_cast<const OpData*>(node->user_data));
|
||||
|
||||
// Checks in Prepare ensure input, output and filter types are all the same.
|
||||
switch (input->type) {
|
||||
case kTfLiteFloat32:
|
||||
return EvalFloat(context, node, params->activation, input, filter, bias,
|
||||
output);
|
||||
case kTfLiteInt8:
|
||||
return EvalQuantizedInt8(context, node, data, input, filter, bias,
|
||||
output);
|
||||
|
||||
case kTfLiteUInt8:
|
||||
return EvalQuantized(context, node, data, input, filter, bias, output);
|
||||
|
||||
default:
|
||||
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
|
||||
TfLiteTypeGetName(input->type), input->type);
|
||||
return kTfLiteError;
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
TfLiteRegistration Register_FULLY_CONNECTED() {
|
||||
return {/*init=*/Init,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/Prepare,
|
||||
/*invoke=*/Eval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
} // namespace tflite
|
||||
@@ -0,0 +1,50 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#ifndef TENSORFLOW_LITE_MICRO_KERNELS_FULLY_CONNECTED_H_
|
||||
#define TENSORFLOW_LITE_MICRO_KERNELS_FULLY_CONNECTED_H_
|
||||
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
|
||||
namespace tflite {
|
||||
|
||||
// This is the most generic TfLiteRegistration. The actual supported types may
|
||||
// still be target dependent. The only requirement is that every implementation
|
||||
// (reference or optimized) must define this function.
|
||||
TfLiteRegistration Register_FULLY_CONNECTED();
|
||||
|
||||
#if defined(CMSIS_NN) || defined(ARDUINO)
|
||||
// The Arduino is a special case where we use the CMSIS kernels, but because of
|
||||
// the current approach to building for Arduino, we do not support -DCMSIS_NN as
|
||||
// part of the build. As a result, we use defined(ARDUINO) as proxy for the
|
||||
// CMSIS kernels for this one special case.
|
||||
|
||||
// Returns a TfLiteRegistration struct for cmsis-nn kernel variant that only
|
||||
// supports int8.
|
||||
TfLiteRegistration Register_FULLY_CONNECTED_INT8();
|
||||
|
||||
#else
|
||||
// Note that while this block gets used for both reference and optimized kernels
|
||||
// that do not have any specialized implementations, the only goal here is to
|
||||
// define fallback implementation that allow reference kernels to still be used
|
||||
// from applications that call a more specific kernel variant.
|
||||
|
||||
inline TfLiteRegistration Register_FULLY_CONNECTED_INT8() {
|
||||
return Register_FULLY_CONNECTED();
|
||||
}
|
||||
|
||||
#endif
|
||||
} // namespace tflite
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_KERNELS_FULLY_CONNECTED_H_
|
||||
@@ -0,0 +1,142 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/kernels/internal/reference/hard_swish.h"
|
||||
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/kernels/internal/types.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/kernels/op_macros.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/micro/micro_utils.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace ops {
|
||||
namespace micro {
|
||||
namespace hard_swish {
|
||||
|
||||
constexpr int kInputTensor = 0;
|
||||
constexpr int kOutputTensor = 0;
|
||||
|
||||
void* HardSwishInit(TfLiteContext* context, const char* buffer, size_t length) {
|
||||
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
|
||||
return context->AllocatePersistentBuffer(context, sizeof(HardSwishParams));
|
||||
}
|
||||
|
||||
TfLiteStatus HardSwishPrepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
|
||||
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
||||
|
||||
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
||||
TF_LITE_ENSURE(context, input != nullptr);
|
||||
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
||||
TF_LITE_ENSURE(context, output != nullptr);
|
||||
|
||||
if (input->type == kTfLiteUInt8 || input->type == kTfLiteInt8) {
|
||||
HardSwishParams* params = static_cast<HardSwishParams*>(node->user_data);
|
||||
|
||||
params->input_zero_point = input->params.zero_point;
|
||||
params->output_zero_point = output->params.zero_point;
|
||||
|
||||
const float input_scale = input->params.scale;
|
||||
const float hires_input_scale = (1.0f / 128.0f) * input_scale;
|
||||
const float reluish_scale = 3.0f / 32768.0f;
|
||||
const float output_scale = output->params.scale;
|
||||
|
||||
const double output_multiplier =
|
||||
static_cast<double>(hires_input_scale / output_scale);
|
||||
int32_t output_multiplier_fixedpoint_int32;
|
||||
QuantizeMultiplier(output_multiplier, &output_multiplier_fixedpoint_int32,
|
||||
¶ms->output_multiplier_exponent);
|
||||
DownScaleInt32ToInt16Multiplier(
|
||||
output_multiplier_fixedpoint_int32,
|
||||
¶ms->output_multiplier_fixedpoint_int16);
|
||||
|
||||
TF_LITE_ENSURE(context, params->output_multiplier_exponent <= 0);
|
||||
|
||||
const double reluish_multiplier =
|
||||
static_cast<double>(hires_input_scale / reluish_scale);
|
||||
int32_t reluish_multiplier_fixedpoint_int32;
|
||||
QuantizeMultiplier(reluish_multiplier, &reluish_multiplier_fixedpoint_int32,
|
||||
¶ms->reluish_multiplier_exponent);
|
||||
DownScaleInt32ToInt16Multiplier(
|
||||
reluish_multiplier_fixedpoint_int32,
|
||||
¶ms->reluish_multiplier_fixedpoint_int16);
|
||||
}
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus HardSwishEval(TfLiteContext* context, TfLiteNode* node) {
|
||||
const TfLiteEvalTensor* input =
|
||||
tflite::micro::GetEvalInput(context, node, kInputTensor);
|
||||
TfLiteEvalTensor* output =
|
||||
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
||||
HardSwishParams* params = static_cast<HardSwishParams*>(node->user_data);
|
||||
|
||||
switch (input->type) {
|
||||
case kTfLiteFloat32: {
|
||||
tflite::reference_ops::HardSwish<float>(
|
||||
tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<float>(input),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<float>(output));
|
||||
} break;
|
||||
case kTfLiteUInt8: {
|
||||
tflite::reference_ops::HardSwish<uint8_t>(
|
||||
*params, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<uint8_t>(input),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<uint8_t>(output));
|
||||
} break;
|
||||
case kTfLiteInt8: {
|
||||
tflite::reference_ops::HardSwish<int8_t>(
|
||||
*params, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<int8_t>(input),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<int8_t>(output));
|
||||
} break;
|
||||
default: {
|
||||
TF_LITE_KERNEL_LOG(
|
||||
context,
|
||||
"Only float32/int8_t/uint8_t are supported currently, got %s",
|
||||
TfLiteTypeGetName(input->type));
|
||||
return kTfLiteError;
|
||||
}
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
} // namespace hard_swish
|
||||
|
||||
TfLiteRegistration Register_HARD_SWISH() {
|
||||
return {/*init=*/hard_swish::HardSwishInit,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/hard_swish::HardSwishPrepare,
|
||||
/*invoke=*/hard_swish::HardSwishEval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
} // namespace micro
|
||||
} // namespace ops
|
||||
} // namespace tflite
|
||||
@@ -0,0 +1,165 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/micro/kernels/kernel_runner.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace micro {
|
||||
|
||||
namespace {
|
||||
constexpr size_t kBufferAlignment = 16;
|
||||
} // namespace
|
||||
|
||||
// TODO(b/161841696): Consider moving away from global arena buffers:
|
||||
constexpr int KernelRunner::kNumScratchBuffers_;
|
||||
constexpr int KernelRunner::kKernelRunnerBufferSize_;
|
||||
uint8_t KernelRunner::kKernelRunnerBuffer_[];
|
||||
|
||||
KernelRunner::KernelRunner(const TfLiteRegistration& registration,
|
||||
TfLiteTensor* tensors, int tensors_size,
|
||||
TfLiteIntArray* inputs, TfLiteIntArray* outputs,
|
||||
void* builtin_data, ErrorReporter* error_reporter)
|
||||
: allocator_(SimpleMemoryAllocator::Create(
|
||||
error_reporter, kKernelRunnerBuffer_, kKernelRunnerBufferSize_)),
|
||||
registration_(registration),
|
||||
tensors_(tensors),
|
||||
error_reporter_(error_reporter) {
|
||||
// Prepare TfLiteContext:
|
||||
context_.impl_ = static_cast<void*>(this);
|
||||
context_.ReportError = ReportOpError;
|
||||
context_.recommended_num_threads = 1;
|
||||
context_.GetTensor = GetTensor;
|
||||
context_.GetEvalTensor = GetEvalTensor;
|
||||
context_.AllocatePersistentBuffer = AllocatePersistentBuffer;
|
||||
context_.RequestScratchBufferInArena = RequestScratchBufferInArena;
|
||||
context_.GetScratchBuffer = GetScratchBuffer;
|
||||
|
||||
// Prepare TfLiteNode:
|
||||
node_.inputs = inputs;
|
||||
node_.outputs = outputs;
|
||||
node_.builtin_data = builtin_data;
|
||||
}
|
||||
|
||||
TfLiteStatus KernelRunner::InitAndPrepare(const char* init_data) {
|
||||
if (registration_.init) {
|
||||
node_.user_data = registration_.init(&context_, init_data, /*length=*/0);
|
||||
}
|
||||
if (registration_.prepare) {
|
||||
TF_LITE_ENSURE_STATUS(registration_.prepare(&context_, &node_));
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus KernelRunner::Invoke() {
|
||||
if (registration_.invoke == nullptr) {
|
||||
TF_LITE_REPORT_ERROR(error_reporter_,
|
||||
"TfLiteRegistration missing invoke function pointer!");
|
||||
return kTfLiteError;
|
||||
}
|
||||
return registration_.invoke(&context_, &node_);
|
||||
}
|
||||
|
||||
TfLiteTensor* KernelRunner::GetTensor(const struct TfLiteContext* context,
|
||||
int tensor_index) {
|
||||
TFLITE_DCHECK(context != nullptr);
|
||||
KernelRunner* runner = reinterpret_cast<KernelRunner*>(context->impl_);
|
||||
TFLITE_DCHECK(runner != nullptr);
|
||||
|
||||
return &runner->tensors_[tensor_index];
|
||||
}
|
||||
|
||||
TfLiteEvalTensor* KernelRunner::GetEvalTensor(
|
||||
const struct TfLiteContext* context, int tensor_index) {
|
||||
TFLITE_DCHECK(context != nullptr);
|
||||
KernelRunner* runner = reinterpret_cast<KernelRunner*>(context->impl_);
|
||||
TFLITE_DCHECK(runner != nullptr);
|
||||
|
||||
TfLiteEvalTensor* eval_tensor =
|
||||
reinterpret_cast<TfLiteEvalTensor*>(runner->allocator_->AllocateTemp(
|
||||
sizeof(TfLiteEvalTensor), alignof(TfLiteEvalTensor)));
|
||||
TFLITE_DCHECK(eval_tensor != nullptr);
|
||||
|
||||
// In unit tests, the TfLiteTensor pointer contains the source of truth for
|
||||
// buffers and values:
|
||||
eval_tensor->data = runner->tensors_[tensor_index].data;
|
||||
eval_tensor->dims = runner->tensors_[tensor_index].dims;
|
||||
eval_tensor->type = runner->tensors_[tensor_index].type;
|
||||
return eval_tensor;
|
||||
}
|
||||
|
||||
void* KernelRunner::AllocatePersistentBuffer(TfLiteContext* context,
|
||||
size_t bytes) {
|
||||
TFLITE_DCHECK(context != nullptr);
|
||||
KernelRunner* runner = reinterpret_cast<KernelRunner*>(context->impl_);
|
||||
TFLITE_DCHECK(runner != nullptr);
|
||||
|
||||
return runner->allocator_->AllocateFromTail(bytes, kBufferAlignment);
|
||||
}
|
||||
|
||||
TfLiteStatus KernelRunner::RequestScratchBufferInArena(TfLiteContext* context,
|
||||
size_t bytes,
|
||||
int* buffer_index) {
|
||||
TFLITE_DCHECK(context != nullptr);
|
||||
TFLITE_DCHECK(buffer_index != nullptr);
|
||||
|
||||
KernelRunner* runner = reinterpret_cast<KernelRunner*>(context->impl_);
|
||||
TFLITE_DCHECK(runner != nullptr);
|
||||
|
||||
if (runner->scratch_buffer_count_ == kNumScratchBuffers_) {
|
||||
TF_LITE_REPORT_ERROR(
|
||||
runner->error_reporter_,
|
||||
"Exceeded the maximum number of scratch tensors allowed (%d).",
|
||||
kNumScratchBuffers_);
|
||||
return kTfLiteError;
|
||||
}
|
||||
|
||||
// For tests, we allocate scratch buffers from the tail and keep them around
|
||||
// for the lifetime of model. This means that the arena size in the tests will
|
||||
// be more than what we would have if the scratch buffers could share memory.
|
||||
runner->scratch_buffers_[runner->scratch_buffer_count_] =
|
||||
runner->allocator_->AllocateFromTail(bytes, kBufferAlignment);
|
||||
TFLITE_DCHECK(runner->scratch_buffers_[runner->scratch_buffer_count_] !=
|
||||
nullptr);
|
||||
|
||||
*buffer_index = runner->scratch_buffer_count_++;
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
void* KernelRunner::GetScratchBuffer(TfLiteContext* context, int buffer_index) {
|
||||
TFLITE_DCHECK(context != nullptr);
|
||||
KernelRunner* runner = reinterpret_cast<KernelRunner*>(context->impl_);
|
||||
TFLITE_DCHECK(runner != nullptr);
|
||||
|
||||
TFLITE_DCHECK(runner->scratch_buffer_count_ <= kNumScratchBuffers_);
|
||||
if (buffer_index >= runner->scratch_buffer_count_) {
|
||||
return nullptr;
|
||||
}
|
||||
return runner->scratch_buffers_[buffer_index];
|
||||
}
|
||||
|
||||
void KernelRunner::ReportOpError(struct TfLiteContext* context,
|
||||
const char* format, ...) {
|
||||
TFLITE_DCHECK(context != nullptr);
|
||||
KernelRunner* runner = reinterpret_cast<KernelRunner*>(context->impl_);
|
||||
TFLITE_DCHECK(runner != nullptr);
|
||||
|
||||
va_list args;
|
||||
va_start(args, format);
|
||||
TF_LITE_REPORT_ERROR(runner->error_reporter_, format, args);
|
||||
va_end(args);
|
||||
}
|
||||
|
||||
} // namespace micro
|
||||
} // namespace tflite
|
||||
@@ -0,0 +1,83 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef TENSORFLOW_LITE_MICRO_KERNELS_KERNEL_RUNNER_H_
|
||||
#define TENSORFLOW_LITE_MICRO_KERNELS_KERNEL_RUNNER_H_
|
||||
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/compatibility.h"
|
||||
#include "tensorflow/lite/micro/simple_memory_allocator.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace micro {
|
||||
|
||||
// Helper class to perform a simulated kernel (i.e. TfLiteRegistration) lifecyle
|
||||
// (init, prepare, invoke). All internal allocations are handled by this class.
|
||||
// Simply pass in the registration, list of required tensors, inputs array,
|
||||
// outputs array, and any pre-builtin data. Calling Invoke() will automatically
|
||||
// walk the kernl and outputs will be ready on the the TfLiteTensor output
|
||||
// provided during construction.
|
||||
class KernelRunner {
|
||||
public:
|
||||
KernelRunner(const TfLiteRegistration& registration, TfLiteTensor* tensors,
|
||||
int tensors_size, TfLiteIntArray* inputs,
|
||||
TfLiteIntArray* outputs, void* builtin_data,
|
||||
ErrorReporter* error_reporter);
|
||||
|
||||
// Calls init and prepare on the kernel (i.e. TfLiteRegistration) struct. Any
|
||||
// exceptions will be reported through the error_reporter and returned as a
|
||||
// status code here.
|
||||
TfLiteStatus InitAndPrepare(const char* init_data = nullptr);
|
||||
|
||||
// Calls init, prepare, and invoke on a given TfLiteRegistration pointer.
|
||||
// After successful invoke, results will be available in the output tensor as
|
||||
// passed into the constructor of this class.
|
||||
TfLiteStatus Invoke();
|
||||
|
||||
protected:
|
||||
static TfLiteTensor* GetTensor(const struct TfLiteContext* context,
|
||||
int tensor_index);
|
||||
static TfLiteEvalTensor* GetEvalTensor(const struct TfLiteContext* context,
|
||||
int tensor_index);
|
||||
static void* AllocatePersistentBuffer(TfLiteContext* context, size_t bytes);
|
||||
static TfLiteStatus RequestScratchBufferInArena(TfLiteContext* context,
|
||||
size_t bytes,
|
||||
int* buffer_index);
|
||||
static void* GetScratchBuffer(TfLiteContext* context, int buffer_index);
|
||||
static void ReportOpError(struct TfLiteContext* context, const char* format,
|
||||
...);
|
||||
|
||||
private:
|
||||
static constexpr int kNumScratchBuffers_ = 5;
|
||||
|
||||
static constexpr int kKernelRunnerBufferSize_ = 10000;
|
||||
static uint8_t kKernelRunnerBuffer_[kKernelRunnerBufferSize_];
|
||||
|
||||
SimpleMemoryAllocator* allocator_ = nullptr;
|
||||
const TfLiteRegistration& registration_;
|
||||
TfLiteTensor* tensors_ = nullptr;
|
||||
ErrorReporter* error_reporter_ = nullptr;
|
||||
|
||||
TfLiteContext context_ = {};
|
||||
TfLiteNode node_ = {};
|
||||
|
||||
int scratch_buffer_count_ = 0;
|
||||
uint8_t* scratch_buffers_[kNumScratchBuffers_];
|
||||
};
|
||||
|
||||
} // namespace micro
|
||||
} // namespace tflite
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_KERNELS_KERNEL_RUNNER_H_
|
||||
@@ -0,0 +1,41 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace micro {
|
||||
|
||||
bool HaveSameShapes(const TfLiteEvalTensor* input1,
|
||||
const TfLiteEvalTensor* input2) {
|
||||
TFLITE_DCHECK(input1 != nullptr);
|
||||
TFLITE_DCHECK(input2 != nullptr);
|
||||
return TfLiteIntArrayEqual(input1->dims, input2->dims);
|
||||
}
|
||||
|
||||
const RuntimeShape GetTensorShape(const TfLiteEvalTensor* tensor) {
|
||||
if (tensor == nullptr || tensor->dims == nullptr) {
|
||||
return RuntimeShape();
|
||||
}
|
||||
TfLiteIntArray* dims = tensor->dims;
|
||||
const int dims_size = dims->size;
|
||||
const int32_t* dims_data = reinterpret_cast<const int32_t*>(dims->data);
|
||||
return RuntimeShape(dims_size, dims_data);
|
||||
}
|
||||
|
||||
} // namespace micro
|
||||
} // namespace tflite
|
||||
@@ -0,0 +1,75 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef TENSORFLOW_LITE_MICRO_KERNELS_KERNEL_UTIL_H_
|
||||
#define TENSORFLOW_LITE_MICRO_KERNELS_KERNEL_UTIL_H_
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/compatibility.h"
|
||||
#include "tensorflow/lite/kernels/internal/types.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace micro {
|
||||
|
||||
// Returns a mutable tensor for a given input index. is_variable must be checked
|
||||
// during prepare when the full TfLiteTensor is available.
|
||||
inline TfLiteEvalTensor* GetMutableEvalInput(const TfLiteContext* context,
|
||||
const TfLiteNode* node,
|
||||
int index) {
|
||||
TFLITE_DCHECK(context != nullptr);
|
||||
TFLITE_DCHECK(node != nullptr);
|
||||
return context->GetEvalTensor(context, node->inputs->data[index]);
|
||||
}
|
||||
|
||||
// Returns the TfLiteEvalTensor struct for a given input index in a node.
|
||||
inline const TfLiteEvalTensor* GetEvalInput(const TfLiteContext* context,
|
||||
const TfLiteNode* node, int index) {
|
||||
return GetMutableEvalInput(context, node, index);
|
||||
}
|
||||
|
||||
// Returns the TfLiteEvalTensor struct for a given output index in a node.
|
||||
inline TfLiteEvalTensor* GetEvalOutput(const TfLiteContext* context,
|
||||
const TfLiteNode* node, int index) {
|
||||
TFLITE_DCHECK(context != nullptr);
|
||||
TFLITE_DCHECK(node != nullptr);
|
||||
return context->GetEvalTensor(context, node->outputs->data[index]);
|
||||
}
|
||||
|
||||
// Returns data for a TfLiteEvalTensor struct.
|
||||
template <typename T>
|
||||
T* GetTensorData(TfLiteEvalTensor* tensor) {
|
||||
return tensor != nullptr ? reinterpret_cast<T*>(tensor->data.raw) : nullptr;
|
||||
}
|
||||
|
||||
// Returns const data for a TfLiteEvalTensor struct.
|
||||
template <typename T>
|
||||
const T* GetTensorData(const TfLiteEvalTensor* tensor) {
|
||||
TFLITE_DCHECK(tensor != nullptr);
|
||||
return reinterpret_cast<const T*>(tensor->data.raw);
|
||||
}
|
||||
|
||||
// Returns the shape of a TfLiteEvalTensor struct.
|
||||
const RuntimeShape GetTensorShape(const TfLiteEvalTensor* tensor);
|
||||
|
||||
// Return true if the given tensors have the same shape.
|
||||
bool HaveSameShapes(const TfLiteEvalTensor* input1,
|
||||
const TfLiteEvalTensor* input2);
|
||||
|
||||
} // namespace micro
|
||||
} // namespace tflite
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_KERNELS_KERNEL_UTIL_H_
|
||||
157
code/components/tfmicro/tensorflow/lite/micro/kernels/l2norm.cc
Normal file
157
code/components/tfmicro/tensorflow/lite/micro/kernels/l2norm.cc
Normal file
@@ -0,0 +1,157 @@
|
||||
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/portable_tensor.h"
|
||||
#include "tensorflow/lite/kernels/internal/reference/integer_ops/l2normalization.h"
|
||||
#include "tensorflow/lite/kernels/internal/reference/l2normalization.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace ops {
|
||||
namespace micro {
|
||||
namespace l2norm {
|
||||
|
||||
namespace {
|
||||
|
||||
// This file has two implementation of L2Norm.
|
||||
enum KernelType {
|
||||
kReference,
|
||||
kGenericOptimized,
|
||||
};
|
||||
|
||||
constexpr int kInputTensor = 0;
|
||||
constexpr int kOutputTensor = 0;
|
||||
|
||||
} // namespace
|
||||
|
||||
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
TFLITE_DCHECK(node->builtin_data != nullptr);
|
||||
|
||||
auto* params = reinterpret_cast<TfLiteL2NormParams*>(node->builtin_data);
|
||||
L2NormalizationParams* data =
|
||||
static_cast<L2NormalizationParams*>(node->user_data);
|
||||
|
||||
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
|
||||
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
||||
|
||||
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
||||
TF_LITE_ENSURE(context, input != nullptr);
|
||||
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
||||
TF_LITE_ENSURE(context, output != nullptr);
|
||||
|
||||
TF_LITE_ENSURE(context, NumDimensions(input) <= 4);
|
||||
|
||||
TF_LITE_ENSURE(context, output->type == kTfLiteFloat32 ||
|
||||
output->type == kTfLiteUInt8 ||
|
||||
output->type == kTfLiteInt8);
|
||||
TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
|
||||
|
||||
if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) {
|
||||
data->input_zero_point = input->params.zero_point;
|
||||
} else if (output->type == kTfLiteFloat32) {
|
||||
data->input_zero_point = 0;
|
||||
}
|
||||
|
||||
// TODO(ahentz): For some reason our implementations don't support
|
||||
// activations.
|
||||
TF_LITE_ENSURE_EQ(context, params->activation, kTfLiteActNone);
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
|
||||
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
|
||||
return context->AllocatePersistentBuffer(context,
|
||||
sizeof(L2NormalizationParams));
|
||||
}
|
||||
|
||||
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
const L2NormalizationParams& data =
|
||||
*(static_cast<const L2NormalizationParams*>(node->user_data));
|
||||
|
||||
const TfLiteEvalTensor* input =
|
||||
tflite::micro::GetEvalInput(context, node, kInputTensor);
|
||||
TfLiteEvalTensor* output =
|
||||
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
||||
|
||||
// TODO(b/143912164): instead of hardcode the epsilon here, we should read it
|
||||
// from tensorflow, i.e., adding a params.
|
||||
// We don't compute epsilon for quantized kernel:
|
||||
//
|
||||
// epsilon_float = (epsilon_quant - zp) * scale
|
||||
// so
|
||||
// espsilon_quant = epsilon_float / scale + zp
|
||||
// We know epsilon_float is just a very small number to avoid division by
|
||||
// zero error, and scale is > 1, so the integer value of epsilon for quant
|
||||
// is just dominated by the zero point.
|
||||
// Also, GetInvSqrtQuantizedMultiplierExp handles the scenario where the sum
|
||||
// of input value squared is zero case well.
|
||||
// So we don't even need to do handle the epsilon for quantized kernel case.
|
||||
const float epsilon = 1e-6f;
|
||||
if (output->type == kTfLiteFloat32) {
|
||||
reference_ops::L2Normalization(data, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<float>(input),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<float>(output),
|
||||
epsilon);
|
||||
} else if (output->type == kTfLiteUInt8) {
|
||||
reference_ops::L2Normalization(
|
||||
data, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<uint8_t>(input),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<uint8_t>(output));
|
||||
} else if (output->type == kTfLiteInt8) {
|
||||
const auto input_shape = tflite::micro::GetTensorShape(input);
|
||||
const auto output_shape = tflite::micro::GetTensorShape(output);
|
||||
const int trailing_dim = input_shape.DimensionsCount() - 1;
|
||||
const int depth =
|
||||
MatchingDim(input_shape, trailing_dim, output_shape, trailing_dim);
|
||||
const int outer_size =
|
||||
MatchingFlatSizeSkipDim(input_shape, trailing_dim, output_shape);
|
||||
reference_integer_ops::L2Normalization(
|
||||
data.input_zero_point, outer_size, depth,
|
||||
tflite::micro::GetTensorData<int8_t>(input),
|
||||
tflite::micro::GetTensorData<int8_t>(output));
|
||||
} else {
|
||||
TF_LITE_KERNEL_LOG(context, "Output type is %s, requires float.",
|
||||
TfLiteTypeGetName(output->type));
|
||||
return kTfLiteError;
|
||||
}
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
} // namespace l2norm
|
||||
|
||||
TfLiteRegistration Register_L2NORM_REF() {
|
||||
return {/*init=*/l2norm::Init,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/l2norm::Prepare,
|
||||
/*invoke=*/l2norm::Eval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
TfLiteRegistration Register_L2_NORMALIZATION() { return Register_L2NORM_REF(); }
|
||||
|
||||
} // namespace micro
|
||||
} // namespace ops
|
||||
} // namespace tflite
|
||||
105
code/components/tfmicro/tensorflow/lite/micro/kernels/logical.cc
Normal file
105
code/components/tfmicro/tensorflow/lite/micro/kernels/logical.cc
Normal file
@@ -0,0 +1,105 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/reference/binary_function.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/kernels/op_macros.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace ops {
|
||||
namespace micro {
|
||||
namespace logical {
|
||||
namespace {
|
||||
|
||||
// Input/output tensor index.
|
||||
constexpr int kInputTensor1 = 0;
|
||||
constexpr int kInputTensor2 = 1;
|
||||
constexpr int kOutputTensor = 0;
|
||||
|
||||
TfLiteStatus LogicalImpl(TfLiteContext* context, TfLiteNode* node,
|
||||
bool (*func)(bool, bool)) {
|
||||
const TfLiteEvalTensor* input1 =
|
||||
tflite::micro::GetEvalInput(context, node, kInputTensor1);
|
||||
const TfLiteEvalTensor* input2 =
|
||||
tflite::micro::GetEvalInput(context, node, kInputTensor2);
|
||||
TfLiteEvalTensor* output =
|
||||
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
||||
|
||||
if (tflite::micro::HaveSameShapes(input1, input2)) {
|
||||
reference_ops::BinaryFunction<bool, bool, bool>(
|
||||
tflite::micro::GetTensorShape(input1),
|
||||
tflite::micro::GetTensorData<bool>(input1),
|
||||
tflite::micro::GetTensorShape(input2),
|
||||
tflite::micro::GetTensorData<bool>(input2),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<bool>(output), func);
|
||||
} else {
|
||||
reference_ops::BroadcastBinaryFunction4DSlow<bool, bool, bool>(
|
||||
tflite::micro::GetTensorShape(input1),
|
||||
tflite::micro::GetTensorData<bool>(input1),
|
||||
tflite::micro::GetTensorShape(input2),
|
||||
tflite::micro::GetTensorData<bool>(input2),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<bool>(output), func);
|
||||
}
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
bool LogicalOr(bool x, bool y) { return x || y; }
|
||||
|
||||
TfLiteStatus LogicalOrEval(TfLiteContext* context, TfLiteNode* node) {
|
||||
return LogicalImpl(context, node, LogicalOr);
|
||||
}
|
||||
|
||||
bool LogicalAnd(bool x, bool y) { return x && y; }
|
||||
|
||||
TfLiteStatus LogicalAndEval(TfLiteContext* context, TfLiteNode* node) {
|
||||
return LogicalImpl(context, node, LogicalAnd);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
} // namespace logical
|
||||
|
||||
TfLiteRegistration Register_LOGICAL_OR() {
|
||||
// Init, Free, Prepare, Eval are satisfying the Interface required by
|
||||
// TfLiteRegistration.
|
||||
return {/*init=*/nullptr,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/nullptr,
|
||||
/*invoke=*/logical::LogicalOrEval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
TfLiteRegistration Register_LOGICAL_AND() {
|
||||
// Init, Free, Prepare, Eval are satisfying the Interface required by
|
||||
// TfLiteRegistration.
|
||||
return {/*init=*/nullptr,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/nullptr,
|
||||
/*invoke=*/logical::LogicalAndEval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
} // namespace micro
|
||||
} // namespace ops
|
||||
} // namespace tflite
|
||||
@@ -0,0 +1,150 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/kernels/internal/reference/integer_ops/logistic.h"
|
||||
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
||||
#include "tensorflow/lite/kernels/internal/reference/logistic.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/kernels/op_macros.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace ops {
|
||||
namespace micro {
|
||||
namespace activations {
|
||||
namespace {
|
||||
constexpr int kInputTensor = 0;
|
||||
constexpr int kOutputTensor = 0;
|
||||
|
||||
struct OpData {
|
||||
int32_t input_zero_point;
|
||||
int32_t input_range_radius;
|
||||
int32_t input_multiplier;
|
||||
int input_left_shift;
|
||||
};
|
||||
|
||||
TfLiteStatus CalculateArithmeticOpData(TfLiteContext* context, TfLiteNode* node,
|
||||
OpData* data) {
|
||||
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
||||
TF_LITE_ENSURE(context, input != nullptr);
|
||||
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
||||
TF_LITE_ENSURE(context, output != nullptr);
|
||||
|
||||
TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
|
||||
if (input->type == kTfLiteInt8) {
|
||||
TF_LITE_ENSURE_EQ(context, output->params.zero_point,
|
||||
std::numeric_limits<int8_t>::min());
|
||||
|
||||
static constexpr int kInputIntegerBits = 4;
|
||||
const double input_real_multiplier =
|
||||
static_cast<double>(input->params.scale) *
|
||||
static_cast<double>(1 << (31 - kInputIntegerBits));
|
||||
|
||||
data->input_zero_point = input->params.zero_point;
|
||||
|
||||
const double q = std::frexp(input_real_multiplier, &data->input_left_shift);
|
||||
data->input_multiplier = static_cast<int32_t>(TfLiteRound(q * (1ll << 31)));
|
||||
|
||||
data->input_range_radius =
|
||||
CalculateInputRadius(kInputIntegerBits, data->input_left_shift, 31);
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
} // namespace
|
||||
|
||||
void* LogisticInit(TfLiteContext* context, const char* buffer, size_t length) {
|
||||
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
|
||||
return context->AllocatePersistentBuffer(context, sizeof(OpData));
|
||||
}
|
||||
|
||||
TfLiteStatus LogisticPrepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
OpData* data = static_cast<OpData*>(node->user_data);
|
||||
|
||||
return CalculateArithmeticOpData(context, node, data);
|
||||
}
|
||||
|
||||
TfLiteStatus LogisticEval(TfLiteContext* context, TfLiteNode* node) {
|
||||
const TfLiteEvalTensor* input =
|
||||
tflite::micro::GetEvalInput(context, node, kInputTensor);
|
||||
TfLiteEvalTensor* output =
|
||||
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
||||
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
OpData* data = static_cast<OpData*>(node->user_data);
|
||||
|
||||
if (input->type == kTfLiteFloat32) {
|
||||
switch (output->type) {
|
||||
case kTfLiteFloat32: {
|
||||
reference_ops::Logistic(tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<float>(input),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<float>(output));
|
||||
return kTfLiteOk;
|
||||
}
|
||||
default:
|
||||
TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
|
||||
TfLiteTypeGetName(input->type),
|
||||
TfLiteTypeGetName(output->type));
|
||||
return kTfLiteError;
|
||||
}
|
||||
} else if (input->type == kTfLiteInt8) {
|
||||
switch (output->type) {
|
||||
case kTfLiteInt8: {
|
||||
reference_integer_ops::Logistic(
|
||||
data->input_zero_point, data->input_range_radius,
|
||||
data->input_multiplier, data->input_left_shift,
|
||||
NumElements(input->dims),
|
||||
tflite::micro::GetTensorData<int8_t>(input),
|
||||
tflite::micro::GetTensorData<int8_t>(output));
|
||||
return kTfLiteOk;
|
||||
}
|
||||
default:
|
||||
TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
|
||||
TfLiteTypeGetName(input->type),
|
||||
TfLiteTypeGetName(output->type));
|
||||
return kTfLiteError;
|
||||
}
|
||||
} else {
|
||||
// TODO(b/141211002): Also support other data types once we have supported
|
||||
// temporary tensors in TFLM.
|
||||
TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
|
||||
TfLiteTypeGetName(input->type),
|
||||
TfLiteTypeGetName(output->type));
|
||||
return kTfLiteError;
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
} // namespace activations
|
||||
|
||||
TfLiteRegistration Register_LOGISTIC() {
|
||||
return {/*init=*/activations::LogisticInit,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/activations::LogisticPrepare,
|
||||
/*invoke=*/activations::LogisticEval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
} // namespace micro
|
||||
} // namespace ops
|
||||
} // namespace tflite
|
||||
@@ -0,0 +1,148 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/kernels/internal/reference/maximum_minimum.h"
|
||||
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/kernels/op_macros.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace ops {
|
||||
namespace micro {
|
||||
namespace maximum_minimum {
|
||||
namespace {
|
||||
|
||||
// This file has a reference implementation of TFMaximum/TFMinimum.
|
||||
enum KernelType {
|
||||
kReference,
|
||||
};
|
||||
|
||||
constexpr int kInputTensor1 = 0;
|
||||
constexpr int kInputTensor2 = 1;
|
||||
constexpr int kOutputTensor = 0;
|
||||
|
||||
struct OpContext {
|
||||
OpContext(TfLiteContext* context, TfLiteNode* node) {
|
||||
input1 = tflite::micro::GetEvalInput(context, node, kInputTensor1);
|
||||
input2 = tflite::micro::GetEvalInput(context, node, kInputTensor2);
|
||||
output = tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
||||
}
|
||||
const TfLiteEvalTensor* input1;
|
||||
const TfLiteEvalTensor* input2;
|
||||
TfLiteEvalTensor* output;
|
||||
};
|
||||
|
||||
struct MaximumOp {
|
||||
template <typename data_type>
|
||||
static data_type op(data_type el1, data_type el2) {
|
||||
return el1 > el2 ? el1 : el2;
|
||||
}
|
||||
};
|
||||
|
||||
struct MinimumOp {
|
||||
template <typename data_type>
|
||||
static data_type op(data_type el1, data_type el2) {
|
||||
return el1 < el2 ? el1 : el2;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace
|
||||
|
||||
template <typename data_type, typename op_type>
|
||||
void TFLiteOperation(TfLiteContext* context, TfLiteNode* node,
|
||||
const OpContext& op_context) {
|
||||
reference_ops::MaximumMinimumBroadcastSlow(
|
||||
tflite::micro::GetTensorShape(op_context.input1),
|
||||
tflite::micro::GetTensorData<data_type>(op_context.input1),
|
||||
tflite::micro::GetTensorShape(op_context.input2),
|
||||
tflite::micro::GetTensorData<data_type>(op_context.input2),
|
||||
tflite::micro::GetTensorShape(op_context.output),
|
||||
tflite::micro::GetTensorData<data_type>(op_context.output),
|
||||
op_type::template op<data_type>);
|
||||
}
|
||||
|
||||
template <KernelType kernel_type, typename OpType>
|
||||
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
OpContext op_context(context, node);
|
||||
|
||||
if (kernel_type == kReference) {
|
||||
switch (op_context.output->type) {
|
||||
case kTfLiteFloat32:
|
||||
TFLiteOperation<float, OpType>(context, node, op_context);
|
||||
break;
|
||||
case kTfLiteUInt8:
|
||||
TFLiteOperation<uint8_t, OpType>(context, node, op_context);
|
||||
break;
|
||||
case kTfLiteInt8:
|
||||
TFLiteOperation<int8_t, OpType>(context, node, op_context);
|
||||
break;
|
||||
case kTfLiteInt32:
|
||||
TFLiteOperation<int32_t, OpType>(context, node, op_context);
|
||||
break;
|
||||
case kTfLiteInt64:
|
||||
TFLiteOperation<int64_t, OpType>(context, node, op_context);
|
||||
break;
|
||||
default:
|
||||
TF_LITE_KERNEL_LOG(context,
|
||||
"Type %s (%d) is not supported by Maximum/Minimum.",
|
||||
TfLiteTypeGetName(op_context.output->type),
|
||||
op_context.output->type);
|
||||
return kTfLiteError;
|
||||
}
|
||||
} else {
|
||||
TF_LITE_KERNEL_LOG(context,
|
||||
"Kernel type not supported by Maximum/Minimum.");
|
||||
return kTfLiteError;
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
} // namespace maximum_minimum
|
||||
|
||||
TfLiteRegistration Register_MAXIMUM() {
|
||||
return {/*init=*/nullptr,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/nullptr,
|
||||
/*invoke=*/
|
||||
maximum_minimum::Eval<maximum_minimum::kReference,
|
||||
maximum_minimum::MaximumOp>,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
TfLiteRegistration Register_MINIMUM() {
|
||||
return {/*init=*/nullptr,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/nullptr,
|
||||
/*invoke=*/
|
||||
maximum_minimum::Eval<maximum_minimum::kReference,
|
||||
maximum_minimum::MinimumOp>,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
} // namespace micro
|
||||
} // namespace ops
|
||||
} // namespace tflite
|
||||
@@ -0,0 +1,100 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#ifndef TENSORFLOW_LITE_MICRO_KERNELS_MICRO_OPS_H_
|
||||
#define TENSORFLOW_LITE_MICRO_KERNELS_MICRO_OPS_H_
|
||||
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
|
||||
// Forward declaration of all micro op kernel registration methods. These
|
||||
// registrations are included with the standard `BuiltinOpResolver`.
|
||||
//
|
||||
// This header is particularly useful in cases where only a subset of ops are
|
||||
// needed. In such cases, the client can selectively add only the registrations
|
||||
// their model requires, using a custom `(Micro)MutableOpResolver`. Selective
|
||||
// registration in turn allows the linker to strip unused kernels.
|
||||
|
||||
namespace tflite {
|
||||
|
||||
// TFLM is incrementally moving towards a flat tflite namespace
|
||||
// (https://abseil.io/tips/130). Any new ops (or cleanup of existing ops should
|
||||
// have their Register function declarations in the tflite namespace.
|
||||
|
||||
TfLiteRegistration Register_CONV_2D();
|
||||
TfLiteRegistration Register_DEPTHWISE_CONV_2D();
|
||||
TfLiteRegistration Register_QUANTIZE();
|
||||
TfLiteRegistration Register_SHAPE();
|
||||
TfLiteRegistration Register_SOFTMAX();
|
||||
TfLiteRegistration Register_SVDF();
|
||||
|
||||
namespace ops {
|
||||
namespace micro {
|
||||
|
||||
TfLiteRegistration Register_ABS();
|
||||
TfLiteRegistration Register_ADD();
|
||||
TfLiteRegistration Register_ARG_MAX();
|
||||
TfLiteRegistration Register_ARG_MIN();
|
||||
TfLiteRegistration Register_AVERAGE_POOL_2D();
|
||||
TfLiteRegistration Register_CEIL();
|
||||
// TODO(b/160234179): Change custom OPs to also return by value.
|
||||
TfLiteRegistration* Register_CIRCULAR_BUFFER();
|
||||
TfLiteRegistration Register_CONCATENATION();
|
||||
TfLiteRegistration Register_COS();
|
||||
TfLiteRegistration Register_DEQUANTIZE();
|
||||
TfLiteRegistration Register_EQUAL();
|
||||
TfLiteRegistration Register_FLOOR();
|
||||
TfLiteRegistration Register_GREATER();
|
||||
TfLiteRegistration Register_GREATER_EQUAL();
|
||||
TfLiteRegistration Register_HARD_SWISH();
|
||||
TfLiteRegistration Register_LESS();
|
||||
TfLiteRegistration Register_LESS_EQUAL();
|
||||
TfLiteRegistration Register_LOG();
|
||||
TfLiteRegistration Register_LOGICAL_AND();
|
||||
TfLiteRegistration Register_LOGICAL_NOT();
|
||||
TfLiteRegistration Register_LOGICAL_OR();
|
||||
TfLiteRegistration Register_LOGISTIC();
|
||||
TfLiteRegistration Register_MAXIMUM();
|
||||
TfLiteRegistration Register_MAX_POOL_2D();
|
||||
TfLiteRegistration Register_MEAN();
|
||||
TfLiteRegistration Register_MINIMUM();
|
||||
TfLiteRegistration Register_MUL();
|
||||
TfLiteRegistration Register_NEG();
|
||||
TfLiteRegistration Register_NOT_EQUAL();
|
||||
TfLiteRegistration Register_PACK();
|
||||
TfLiteRegistration Register_PAD();
|
||||
TfLiteRegistration Register_PADV2();
|
||||
TfLiteRegistration Register_PRELU();
|
||||
TfLiteRegistration Register_REDUCE_MAX();
|
||||
TfLiteRegistration Register_RELU();
|
||||
TfLiteRegistration Register_RELU6();
|
||||
TfLiteRegistration Register_RESHAPE();
|
||||
TfLiteRegistration Register_RESIZE_NEAREST_NEIGHBOR();
|
||||
TfLiteRegistration Register_ROUND();
|
||||
TfLiteRegistration Register_RSQRT();
|
||||
TfLiteRegistration Register_SIN();
|
||||
TfLiteRegistration Register_SPLIT();
|
||||
TfLiteRegistration Register_SPLIT_V();
|
||||
TfLiteRegistration Register_SQRT();
|
||||
TfLiteRegistration Register_SQUARE();
|
||||
TfLiteRegistration Register_STRIDED_SLICE();
|
||||
TfLiteRegistration Register_SUB();
|
||||
TfLiteRegistration Register_UNPACK();
|
||||
TfLiteRegistration Register_L2_NORMALIZATION();
|
||||
TfLiteRegistration Register_TANH();
|
||||
|
||||
} // namespace micro
|
||||
} // namespace ops
|
||||
} // namespace tflite
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_KERNELS_MICRO_OPS_H_
|
||||
@@ -0,0 +1,37 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#ifndef TENSORFLOW_LITE_MICRO_KERNELS_MICRO_UTILS_H_
|
||||
#define TENSORFLOW_LITE_MICRO_KERNELS_MICRO_UTILS_H_
|
||||
namespace tflite {
|
||||
namespace ops {
|
||||
namespace micro {
|
||||
|
||||
// Same as gtl::Greater but defined here to reduce dependencies and
|
||||
// binary size for micro environment.
|
||||
struct Greater {
|
||||
template <typename T>
|
||||
bool operator()(const T& x, const T& y) const {
|
||||
return x > y;
|
||||
}
|
||||
};
|
||||
|
||||
struct Less {
|
||||
template <typename T>
|
||||
bool operator()(const T& x, const T& y) const {
|
||||
return x < y;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace micro
|
||||
} // namespace ops
|
||||
} // namespace tflite
|
||||
#endif // TENSORFLOW_LITE_MICRO_KERNELS_MICRO_UTILS_H_
|
||||
236
code/components/tfmicro/tensorflow/lite/micro/kernels/mul.cc
Normal file
236
code/components/tfmicro/tensorflow/lite/micro/kernels/mul.cc
Normal file
@@ -0,0 +1,236 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/kernels/internal/reference/mul.h"
|
||||
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
||||
#include "tensorflow/lite/kernels/internal/reference/integer_ops/mul.h"
|
||||
#include "tensorflow/lite/kernels/internal/reference/process_broadcast_shapes.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/micro/memory_helpers.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace ops {
|
||||
namespace micro {
|
||||
namespace mul {
|
||||
namespace {
|
||||
|
||||
constexpr int kInput1Tensor = 0;
|
||||
constexpr int kInput2Tensor = 1;
|
||||
constexpr int kOutputTensor = 0;
|
||||
|
||||
struct OpData {
|
||||
int32_t input1_zero_point;
|
||||
int32_t input2_zero_point;
|
||||
|
||||
int32_t output_activation_min;
|
||||
int32_t output_activation_max;
|
||||
int32_t output_zero_point;
|
||||
int32_t output_multiplier;
|
||||
int output_shift;
|
||||
|
||||
float output_activation_min_f32;
|
||||
float output_activation_max_f32;
|
||||
};
|
||||
|
||||
TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node,
|
||||
TfLiteMulParams* params, OpData* data) {
|
||||
const TfLiteTensor* input1 = GetInput(context, node, kInput1Tensor);
|
||||
TF_LITE_ENSURE(context, input1 != nullptr);
|
||||
const TfLiteTensor* input2 = GetInput(context, node, kInput2Tensor);
|
||||
TF_LITE_ENSURE(context, input2 != nullptr);
|
||||
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
||||
TF_LITE_ENSURE(context, output != nullptr);
|
||||
|
||||
TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
|
||||
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
||||
|
||||
TF_LITE_ENSURE_TYPES_EQ(context, input1->type, input2->type);
|
||||
|
||||
if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) {
|
||||
TF_LITE_ENSURE_STATUS(CalculateActivationRangeQuantized(
|
||||
context, params->activation, output, &data->output_activation_min,
|
||||
&data->output_activation_max));
|
||||
|
||||
double real_multiplier = static_cast<double>(input1->params.scale) *
|
||||
static_cast<double>(input2->params.scale) /
|
||||
static_cast<double>(output->params.scale);
|
||||
QuantizeMultiplier(real_multiplier, &data->output_multiplier,
|
||||
&data->output_shift);
|
||||
|
||||
data->input1_zero_point = input1->params.zero_point;
|
||||
data->input2_zero_point = input2->params.zero_point;
|
||||
data->output_zero_point = output->params.zero_point;
|
||||
} else {
|
||||
CalculateActivationRange(params->activation,
|
||||
&data->output_activation_min_f32,
|
||||
&data->output_activation_max_f32);
|
||||
}
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void EvalQuantized(TfLiteContext* context, TfLiteNode* node, const OpData* data,
|
||||
const TfLiteEvalTensor* input1,
|
||||
const TfLiteEvalTensor* input2, TfLiteEvalTensor* output) {
|
||||
tflite::ArithmeticParams op_params = {};
|
||||
op_params.quantized_activation_min = data->output_activation_min;
|
||||
op_params.quantized_activation_max = data->output_activation_max;
|
||||
op_params.float_activation_max = data->output_activation_max_f32;
|
||||
op_params.input1_offset = -data->input1_zero_point;
|
||||
op_params.input2_offset = -data->input2_zero_point;
|
||||
op_params.output_offset = data->output_zero_point;
|
||||
op_params.output_multiplier = data->output_multiplier;
|
||||
op_params.output_shift = data->output_shift;
|
||||
|
||||
bool need_broadcast = reference_ops::ProcessBroadcastShapes(
|
||||
tflite::micro::GetTensorShape(input1),
|
||||
tflite::micro::GetTensorShape(input2), &op_params);
|
||||
|
||||
if (output->type == kTfLiteInt8) {
|
||||
if (need_broadcast) {
|
||||
reference_integer_ops::BroadcastMul4DSlow(
|
||||
op_params, tflite::micro::GetTensorShape(input1),
|
||||
tflite::micro::GetTensorData<int8_t>(input1),
|
||||
tflite::micro::GetTensorShape(input2),
|
||||
tflite::micro::GetTensorData<int8_t>(input2),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<int8_t>(output));
|
||||
} else {
|
||||
reference_integer_ops::Mul(op_params,
|
||||
tflite::micro::GetTensorShape(input1),
|
||||
tflite::micro::GetTensorData<int8_t>(input1),
|
||||
tflite::micro::GetTensorShape(input2),
|
||||
tflite::micro::GetTensorData<int8_t>(input2),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<int8_t>(output));
|
||||
}
|
||||
} else if (output->type == kTfLiteUInt8) {
|
||||
if (need_broadcast) {
|
||||
reference_integer_ops::BroadcastMul4DSlow(
|
||||
op_params, tflite::micro::GetTensorShape(input1),
|
||||
tflite::micro::GetTensorData<uint8_t>(input1),
|
||||
tflite::micro::GetTensorShape(input2),
|
||||
tflite::micro::GetTensorData<uint8_t>(input2),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<uint8_t>(output));
|
||||
} else {
|
||||
reference_integer_ops::Mul(op_params,
|
||||
tflite::micro::GetTensorShape(input1),
|
||||
tflite::micro::GetTensorData<uint8_t>(input1),
|
||||
tflite::micro::GetTensorShape(input2),
|
||||
tflite::micro::GetTensorData<uint8_t>(input2),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<uint8_t>(output));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void EvalFloat(TfLiteContext* context, TfLiteNode* node,
|
||||
TfLiteMulParams* params, const OpData* data,
|
||||
const TfLiteEvalTensor* input1, const TfLiteEvalTensor* input2,
|
||||
TfLiteEvalTensor* output) {
|
||||
tflite::ArithmeticParams op_params = {};
|
||||
op_params.float_activation_min = data->output_activation_min_f32;
|
||||
op_params.float_activation_max = data->output_activation_max_f32;
|
||||
|
||||
bool need_broadcast = reference_ops::ProcessBroadcastShapes(
|
||||
tflite::micro::GetTensorShape(input1),
|
||||
tflite::micro::GetTensorShape(input2), &op_params);
|
||||
|
||||
if (need_broadcast) {
|
||||
reference_ops::BroadcastMul4DSlow(
|
||||
op_params, tflite::micro::GetTensorShape(input1),
|
||||
tflite::micro::GetTensorData<float>(input1),
|
||||
tflite::micro::GetTensorShape(input2),
|
||||
tflite::micro::GetTensorData<float>(input2),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<float>(output));
|
||||
} else {
|
||||
reference_ops::Mul(op_params, tflite::micro::GetTensorShape(input1),
|
||||
tflite::micro::GetTensorData<float>(input1),
|
||||
tflite::micro::GetTensorShape(input2),
|
||||
tflite::micro::GetTensorData<float>(input2),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<float>(output));
|
||||
}
|
||||
}
|
||||
|
||||
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
|
||||
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
|
||||
return context->AllocatePersistentBuffer(context, sizeof(OpData));
|
||||
}
|
||||
|
||||
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->builtin_data != nullptr);
|
||||
auto* params = reinterpret_cast<TfLiteMulParams*>(node->builtin_data);
|
||||
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
OpData* data = static_cast<OpData*>(node->user_data);
|
||||
|
||||
return CalculateOpData(context, node, params, data);
|
||||
}
|
||||
|
||||
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->builtin_data != nullptr);
|
||||
auto* params = reinterpret_cast<TfLiteMulParams*>(node->builtin_data);
|
||||
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
const OpData* data = static_cast<const OpData*>(node->user_data);
|
||||
|
||||
const TfLiteEvalTensor* input1 =
|
||||
tflite::micro::GetEvalInput(context, node, kInput1Tensor);
|
||||
const TfLiteEvalTensor* input2 =
|
||||
tflite::micro::GetEvalInput(context, node, kInput2Tensor);
|
||||
TfLiteEvalTensor* output =
|
||||
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
||||
|
||||
switch (input1->type) {
|
||||
case kTfLiteUInt8:
|
||||
case kTfLiteInt8:
|
||||
EvalQuantized(context, node, data, input1, input2, output);
|
||||
break;
|
||||
case kTfLiteFloat32:
|
||||
EvalFloat(context, node, params, data, input1, input2, output);
|
||||
break;
|
||||
default:
|
||||
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
|
||||
TfLiteTypeGetName(input1->type), input1->type);
|
||||
return kTfLiteError;
|
||||
}
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
} // namespace mul
|
||||
|
||||
TfLiteRegistration Register_MUL() {
|
||||
return {/*init=*/mul::Init,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/mul::Prepare,
|
||||
/*invoke=*/mul::Eval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
} // namespace micro
|
||||
} // namespace ops
|
||||
} // namespace tflite
|
||||
66
code/components/tfmicro/tensorflow/lite/micro/kernels/neg.cc
Normal file
66
code/components/tfmicro/tensorflow/lite/micro/kernels/neg.cc
Normal file
@@ -0,0 +1,66 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/kernels/internal/reference/neg.h"
|
||||
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace ops {
|
||||
namespace micro {
|
||||
namespace neg {
|
||||
|
||||
constexpr int kInputTensor = 0;
|
||||
constexpr int kOutputTensor = 0;
|
||||
|
||||
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
const TfLiteEvalTensor* input =
|
||||
tflite::micro::GetEvalInput(context, node, kInputTensor);
|
||||
TfLiteEvalTensor* output =
|
||||
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
||||
switch (input->type) {
|
||||
// TODO(wangtz): handle for kTfLiteInt8
|
||||
case kTfLiteFloat32:
|
||||
reference_ops::Negate(tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<float>(input),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<float>(output));
|
||||
break;
|
||||
default:
|
||||
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
|
||||
TfLiteTypeGetName(input->type), input->type);
|
||||
return kTfLiteError;
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
} // namespace neg
|
||||
|
||||
TfLiteRegistration Register_NEG() {
|
||||
return {/*init=*/nullptr,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/nullptr,
|
||||
/*invoke=*/neg::Eval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
} // namespace micro
|
||||
} // namespace ops
|
||||
} // namespace tflite
|
||||
127
code/components/tfmicro/tensorflow/lite/micro/kernels/pack.cc
Normal file
127
code/components/tfmicro/tensorflow/lite/micro/kernels/pack.cc
Normal file
@@ -0,0 +1,127 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace ops {
|
||||
namespace micro {
|
||||
namespace pack {
|
||||
namespace {
|
||||
|
||||
constexpr int kOutputTensor = 0;
|
||||
|
||||
template <typename T>
|
||||
TfLiteStatus PackImpl(TfLiteContext* context, TfLiteNode* node,
|
||||
TfLiteEvalTensor* output, int values_count, int axis) {
|
||||
const TfLiteEvalTensor* input0 =
|
||||
tflite::micro::GetEvalInput(context, node, 0);
|
||||
|
||||
const int dimensions = output->dims->size;
|
||||
const TfLiteIntArray* input_dims = input0->dims;
|
||||
const TfLiteIntArray* output_dims = output->dims;
|
||||
|
||||
if (axis < 0) {
|
||||
axis += dimensions;
|
||||
}
|
||||
|
||||
int outer_size = 1;
|
||||
for (int i = 0; i < axis; ++i) {
|
||||
outer_size *= output_dims->data[i];
|
||||
}
|
||||
int copy_size = 1;
|
||||
for (int i = axis + 1; i < dimensions; ++i) {
|
||||
copy_size *= output_dims->data[i];
|
||||
}
|
||||
int input_size = 1;
|
||||
for (int i = 0; i < input_dims->size; ++i) {
|
||||
input_size *= input_dims->data[i];
|
||||
}
|
||||
TFLITE_DCHECK_EQ(input_size, copy_size * outer_size);
|
||||
|
||||
T* output_data = tflite::micro::GetTensorData<T>(output);
|
||||
|
||||
for (int i = 0; i < values_count; ++i) {
|
||||
const TfLiteEvalTensor* t = tflite::micro::GetEvalInput(context, node, i);
|
||||
const T* input_data = tflite::micro::GetTensorData<T>(t);
|
||||
for (int k = 0; k < outer_size; ++k) {
|
||||
const T* input_ptr = input_data + copy_size * k;
|
||||
int loc = k * values_count * copy_size + i * copy_size;
|
||||
T* output_ptr = output_data + loc;
|
||||
for (int j = 0; j < copy_size; ++j) output_ptr[j] = input_ptr[j];
|
||||
}
|
||||
}
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
const TfLitePackParams* data =
|
||||
reinterpret_cast<TfLitePackParams*>(node->builtin_data);
|
||||
|
||||
TfLiteEvalTensor* output =
|
||||
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
||||
|
||||
switch (output->type) {
|
||||
case kTfLiteFloat32: {
|
||||
return PackImpl<float>(context, node, output, data->values_count,
|
||||
data->axis);
|
||||
}
|
||||
case kTfLiteUInt8: {
|
||||
return PackImpl<uint8_t>(context, node, output, data->values_count,
|
||||
data->axis);
|
||||
}
|
||||
case kTfLiteInt8: {
|
||||
return PackImpl<int8_t>(context, node, output, data->values_count,
|
||||
data->axis);
|
||||
}
|
||||
case kTfLiteInt32: {
|
||||
return PackImpl<int32_t>(context, node, output, data->values_count,
|
||||
data->axis);
|
||||
}
|
||||
case kTfLiteInt64: {
|
||||
return PackImpl<int64_t>(context, node, output, data->values_count,
|
||||
data->axis);
|
||||
}
|
||||
default: {
|
||||
TF_LITE_KERNEL_LOG(context, "Type '%s' is not supported by pack.",
|
||||
TfLiteTypeGetName(output->type));
|
||||
return kTfLiteError;
|
||||
}
|
||||
}
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
} // namespace pack
|
||||
|
||||
TfLiteRegistration Register_PACK() {
|
||||
return {/*init=*/nullptr,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/nullptr,
|
||||
/*invoke=*/pack::Eval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
} // namespace micro
|
||||
} // namespace ops
|
||||
} // namespace tflite
|
||||
254
code/components/tfmicro/tensorflow/lite/micro/kernels/pad.cc
Normal file
254
code/components/tfmicro/tensorflow/lite/micro/kernels/pad.cc
Normal file
@@ -0,0 +1,254 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#include "tensorflow/lite/kernels/internal/reference/pad.h"
|
||||
|
||||
#include <string.h>
|
||||
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/portable_tensor.h"
|
||||
#include "tensorflow/lite/kernels/internal/types.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/kernels/op_macros.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace ops {
|
||||
namespace micro {
|
||||
namespace pad {
|
||||
namespace {
|
||||
|
||||
struct OpData {
|
||||
PadParams params;
|
||||
int32_t output_zero_point;
|
||||
};
|
||||
|
||||
} // namespace
|
||||
|
||||
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
|
||||
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
|
||||
return context->AllocatePersistentBuffer(context, sizeof(OpData));
|
||||
}
|
||||
|
||||
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
OpData* data = static_cast<OpData*>(node->user_data);
|
||||
|
||||
TF_LITE_ENSURE(context, NumInputs(node) == 2 || NumInputs(node) == 3);
|
||||
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
||||
|
||||
const TfLiteTensor* input = GetInput(context, node, /*index=*/0);
|
||||
TF_LITE_ENSURE(context, input != nullptr);
|
||||
const TfLiteTensor* paddings = GetInput(context, node, /*index=*/1);
|
||||
TF_LITE_ENSURE(context, paddings != nullptr);
|
||||
const TfLiteTensor* constant_values =
|
||||
NumInputs(node) == 3 ? GetInput(context, node, /*index=*/2) : nullptr;
|
||||
TfLiteTensor* output = GetOutput(context, node, /*index=*/0);
|
||||
TF_LITE_ENSURE(context, output != nullptr);
|
||||
|
||||
TF_LITE_ENSURE_EQ(context, input->type, output->type);
|
||||
|
||||
// Current implementations rely on the inputs being <= 4D.
|
||||
TF_LITE_ENSURE(context, NumDimensions(input) <=
|
||||
reference_ops::PadKernelMaxDimensionCount());
|
||||
|
||||
if (constant_values != nullptr) {
|
||||
TF_LITE_ENSURE_EQ(context, input->type, constant_values->type);
|
||||
// Ensure that constant_values is a scalar.
|
||||
TF_LITE_ENSURE_EQ(context, NumElements(constant_values), 1);
|
||||
}
|
||||
|
||||
// There must be a pair of paddings for each output dimension.
|
||||
TF_LITE_ENSURE_EQ(context, GetTensorShape(paddings).FlatSize(),
|
||||
output->dims->size * 2);
|
||||
|
||||
// On Micro, outputs must be properly sized by the converter.
|
||||
// NOTE: This data is only available because the paddings buffer is stored in
|
||||
// the flatbuffer:
|
||||
TF_LITE_ENSURE(context, IsConstantTensor(paddings));
|
||||
const int32_t* paddings_data = GetTensorData<int32_t>(paddings);
|
||||
for (int i = 0; i < output->dims->size; i++) {
|
||||
int output_dim = output->dims->data[i];
|
||||
int expected_dim =
|
||||
input->dims->data[i] + paddings_data[i * 2] + paddings_data[i * 2 + 1];
|
||||
TF_LITE_ENSURE_EQ(context, output_dim, expected_dim);
|
||||
}
|
||||
|
||||
// Calculate OpData:
|
||||
data->params.resizing_category = ResizingCategory::kGenericResize;
|
||||
const int paddings_total = GetTensorShape(paddings).FlatSize();
|
||||
if (paddings_total == 8 && (paddings_data[0] == 0 && paddings_data[1] == 0) &&
|
||||
(paddings_data[6] == 0 && paddings_data[7] == 0)) {
|
||||
data->params.resizing_category = ResizingCategory::kImageStyle;
|
||||
}
|
||||
|
||||
const int num_input_dimensions = NumDimensions(input);
|
||||
data->params.left_padding_count = num_input_dimensions;
|
||||
data->params.right_padding_count = num_input_dimensions;
|
||||
|
||||
for (int idx = num_input_dimensions - 1; idx >= 0; --idx) {
|
||||
data->params.left_padding[idx] = paddings_data[idx * 2];
|
||||
data->params.right_padding[idx] = paddings_data[idx * 2 + 1];
|
||||
}
|
||||
|
||||
if (input->type == kTfLiteInt8 || input->type == kTfLiteUInt8) {
|
||||
if (constant_values == nullptr) {
|
||||
// Quantized Pad requires that 0 is represented in the quantized
|
||||
// range.
|
||||
if (input->type == kTfLiteUInt8) {
|
||||
TF_LITE_ENSURE(context, output->params.zero_point >=
|
||||
std::numeric_limits<uint8_t>::min());
|
||||
TF_LITE_ENSURE(context, output->params.zero_point <=
|
||||
std::numeric_limits<uint8_t>::max());
|
||||
} else {
|
||||
TF_LITE_ENSURE(context, output->params.zero_point >=
|
||||
std::numeric_limits<int8_t>::min());
|
||||
TF_LITE_ENSURE(context, output->params.zero_point <=
|
||||
std::numeric_limits<int8_t>::max());
|
||||
}
|
||||
} else {
|
||||
// Quantized Pad requires that 'constant_values' is represented in the
|
||||
// same quantized range as the input and output tensors.
|
||||
TF_LITE_ENSURE_EQ(context, output->params.zero_point,
|
||||
constant_values->params.zero_point);
|
||||
TF_LITE_ENSURE_EQ(context, static_cast<double>(output->params.scale),
|
||||
static_cast<double>(constant_values->params.scale));
|
||||
}
|
||||
data->output_zero_point = output->params.zero_point;
|
||||
}
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
const OpData* data = static_cast<const OpData*>(node->user_data);
|
||||
|
||||
const TfLiteEvalTensor* input =
|
||||
tflite::micro::GetEvalInput(context, node, /*index=*/0);
|
||||
const TfLiteEvalTensor* constant_values =
|
||||
NumInputs(node) == 3
|
||||
? tflite::micro::GetEvalInput(context, node, /*index=*/2)
|
||||
: nullptr;
|
||||
TfLiteEvalTensor* output =
|
||||
tflite::micro::GetEvalOutput(context, node, /*index=*/0);
|
||||
|
||||
switch (input->type) {
|
||||
case kTfLiteFloat32: {
|
||||
float pad_value =
|
||||
constant_values == nullptr
|
||||
? 0.f
|
||||
: *tflite::micro::GetTensorData<float>(constant_values);
|
||||
if (data->params.resizing_category == ResizingCategory::kImageStyle) {
|
||||
reference_ops::PadImageStyle(
|
||||
data->params, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<float>(input), &pad_value,
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<float>(output));
|
||||
} else {
|
||||
reference_ops::Pad(data->params, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<float>(input),
|
||||
&pad_value, tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<float>(output));
|
||||
}
|
||||
} break;
|
||||
case kTfLiteUInt8: {
|
||||
uint8_t pad_value;
|
||||
if (constant_values == nullptr) {
|
||||
pad_value = static_cast<uint8_t>(data->output_zero_point);
|
||||
} else {
|
||||
pad_value = *tflite::micro::GetTensorData<uint8_t>(constant_values);
|
||||
}
|
||||
if (data->params.resizing_category == ResizingCategory::kImageStyle) {
|
||||
reference_ops::PadImageStyle(
|
||||
data->params, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<uint8_t>(input), &pad_value,
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<uint8_t>(output));
|
||||
} else {
|
||||
reference_ops::Pad(data->params, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<uint8_t>(input),
|
||||
&pad_value, tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<uint8_t>(output));
|
||||
}
|
||||
} break;
|
||||
case kTfLiteInt8: {
|
||||
int8_t pad_value;
|
||||
if (constant_values == nullptr) {
|
||||
pad_value = static_cast<uint8_t>(data->output_zero_point);
|
||||
} else {
|
||||
pad_value = *tflite::micro::GetTensorData<int8_t>(constant_values);
|
||||
}
|
||||
if (data->params.resizing_category == ResizingCategory::kImageStyle) {
|
||||
reference_ops::PadImageStyle(
|
||||
data->params, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<int8_t>(input), &pad_value,
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<int8_t>(output));
|
||||
} else {
|
||||
reference_ops::Pad(data->params, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<int8_t>(input),
|
||||
&pad_value, tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<int8_t>(output));
|
||||
}
|
||||
} break;
|
||||
case kTfLiteInt32: {
|
||||
int32_t pad_value =
|
||||
constant_values == nullptr
|
||||
? 0
|
||||
: *tflite::micro::GetTensorData<int32_t>(constant_values);
|
||||
reference_ops::Pad(data->params, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<int32_t>(input),
|
||||
&pad_value, tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<int32_t>(output));
|
||||
} break;
|
||||
default:
|
||||
|
||||
TF_LITE_KERNEL_LOG(context, "Type %s not currently supported by Pad.",
|
||||
TfLiteTypeGetName(input->type));
|
||||
return kTfLiteError;
|
||||
}
|
||||
#undef TF_LITE_PAD
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
} // namespace pad
|
||||
|
||||
TfLiteRegistration Register_PAD() {
|
||||
return {/*init=*/pad::Init,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/pad::Prepare,
|
||||
/*invoke=*/pad::Eval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
// Also register Pad as PadV2.
|
||||
TfLiteRegistration Register_PADV2() {
|
||||
return {/*init=*/pad::Init,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/pad::Prepare,
|
||||
/*invoke=*/pad::Eval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
} // namespace micro
|
||||
} // namespace ops
|
||||
} // namespace tflite
|
||||
269
code/components/tfmicro/tensorflow/lite/micro/kernels/pooling.cc
Normal file
269
code/components/tfmicro/tensorflow/lite/micro/kernels/pooling.cc
Normal file
@@ -0,0 +1,269 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#include "tensorflow/lite/kernels/internal/reference/pooling.h"
|
||||
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/kernels/internal/reference/integer_ops/pooling.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/kernels/padding.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace ops {
|
||||
namespace micro {
|
||||
namespace pooling {
|
||||
|
||||
namespace {
|
||||
|
||||
constexpr int kInputTensor = 0;
|
||||
constexpr int kOutputTensor = 0;
|
||||
|
||||
struct OpData {
|
||||
TfLitePaddingValues padding;
|
||||
int32_t activation_min;
|
||||
int32_t activation_max;
|
||||
float activation_min_f32;
|
||||
float activation_max_f32;
|
||||
};
|
||||
|
||||
TfLiteStatus CalculateOpData(const TfLiteContext* context,
|
||||
const TfLitePoolParams* params,
|
||||
const TfLiteTensor* input,
|
||||
const TfLiteTensor* output, OpData* data) {
|
||||
// input: batch, height, width, channel
|
||||
int height = SizeOfDimension(input, 1);
|
||||
int width = SizeOfDimension(input, 2);
|
||||
|
||||
int out_height, out_width;
|
||||
|
||||
data->padding = ComputePaddingHeightWidth(
|
||||
params->stride_height, params->stride_width,
|
||||
/*dilation_rate_height=*/1,
|
||||
/*dilation_rate_width=*/1, height, width, params->filter_height,
|
||||
params->filter_width, params->padding, &out_height, &out_width);
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
void AverageEvalFloat(const TfLiteContext* context, const TfLiteNode* node,
|
||||
const TfLitePoolParams* params, const OpData* data,
|
||||
const TfLiteEvalTensor* input, TfLiteEvalTensor* output) {
|
||||
PoolParams op_params;
|
||||
op_params.stride_height = params->stride_height;
|
||||
op_params.stride_width = params->stride_width;
|
||||
op_params.filter_height = params->filter_height;
|
||||
op_params.filter_width = params->filter_width;
|
||||
op_params.padding_values.height = data->padding.height;
|
||||
op_params.padding_values.width = data->padding.width;
|
||||
op_params.float_activation_min = data->activation_min_f32;
|
||||
op_params.float_activation_max = data->activation_max_f32;
|
||||
reference_ops::AveragePool(op_params, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<float>(input),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<float>(output));
|
||||
}
|
||||
|
||||
void AverageEvalQuantized(TfLiteContext* context, const TfLiteNode* node,
|
||||
const TfLitePoolParams* params, const OpData* data,
|
||||
const TfLiteEvalTensor* input,
|
||||
TfLiteEvalTensor* output) {
|
||||
TFLITE_DCHECK(input->type == kTfLiteUInt8 || input->type == kTfLiteInt8);
|
||||
|
||||
PoolParams op_params;
|
||||
op_params.stride_height = params->stride_height;
|
||||
op_params.stride_width = params->stride_width;
|
||||
op_params.filter_height = params->filter_height;
|
||||
op_params.filter_width = params->filter_width;
|
||||
op_params.padding_values.height = data->padding.height;
|
||||
op_params.padding_values.width = data->padding.width;
|
||||
op_params.quantized_activation_min = data->activation_min;
|
||||
op_params.quantized_activation_max = data->activation_max;
|
||||
|
||||
if (input->type == kTfLiteUInt8) {
|
||||
reference_ops::AveragePool(op_params, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<uint8_t>(input),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<uint8_t>(output));
|
||||
} else {
|
||||
reference_integer_ops::AveragePool(
|
||||
op_params, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<int8_t>(input),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<int8_t>(output));
|
||||
}
|
||||
}
|
||||
|
||||
void MaxEvalFloat(TfLiteContext* context, TfLiteNode* node,
|
||||
TfLitePoolParams* params, const OpData* data,
|
||||
const TfLiteEvalTensor* input, TfLiteEvalTensor* output) {
|
||||
tflite::PoolParams op_params;
|
||||
op_params.stride_height = params->stride_height;
|
||||
op_params.stride_width = params->stride_width;
|
||||
op_params.filter_height = params->filter_height;
|
||||
op_params.filter_width = params->filter_width;
|
||||
op_params.padding_values.height = data->padding.height;
|
||||
op_params.padding_values.width = data->padding.width;
|
||||
op_params.float_activation_min = data->activation_min_f32;
|
||||
op_params.float_activation_max = data->activation_max_f32;
|
||||
reference_ops::MaxPool(op_params, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<float>(input),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<float>(output));
|
||||
}
|
||||
|
||||
void MaxEvalQuantized(TfLiteContext* context, TfLiteNode* node,
|
||||
TfLitePoolParams* params, const OpData* data,
|
||||
const TfLiteEvalTensor* input, TfLiteEvalTensor* output) {
|
||||
tflite::PoolParams op_params;
|
||||
op_params.stride_height = params->stride_height;
|
||||
op_params.stride_width = params->stride_width;
|
||||
op_params.filter_height = params->filter_height;
|
||||
op_params.filter_width = params->filter_width;
|
||||
op_params.padding_values.height = data->padding.height;
|
||||
op_params.padding_values.width = data->padding.width;
|
||||
op_params.quantized_activation_min = data->activation_min;
|
||||
op_params.quantized_activation_max = data->activation_max;
|
||||
|
||||
if (input->type == kTfLiteUInt8) {
|
||||
reference_ops::MaxPool(op_params, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<uint8_t>(input),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<uint8_t>(output));
|
||||
} else {
|
||||
reference_integer_ops::MaxPool(
|
||||
op_params, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<int8_t>(input),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<int8_t>(output));
|
||||
}
|
||||
}
|
||||
} // namespace
|
||||
|
||||
TfLiteStatus AverageEval(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->builtin_data != nullptr);
|
||||
auto* params = reinterpret_cast<TfLitePoolParams*>(node->builtin_data);
|
||||
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
const OpData* data = static_cast<const OpData*>(node->user_data);
|
||||
|
||||
const TfLiteEvalTensor* input =
|
||||
tflite::micro::GetEvalInput(context, node, kInputTensor);
|
||||
TfLiteEvalTensor* output =
|
||||
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
||||
|
||||
// Inputs and outputs share the same type, guaranteed by the converter.
|
||||
switch (input->type) {
|
||||
case kTfLiteFloat32:
|
||||
AverageEvalFloat(context, node, params, data, input, output);
|
||||
break;
|
||||
case kTfLiteUInt8:
|
||||
case kTfLiteInt8:
|
||||
AverageEvalQuantized(context, node, params, data, input, output);
|
||||
break;
|
||||
default:
|
||||
TF_LITE_KERNEL_LOG(context, "Input type %s is not currently supported",
|
||||
TfLiteTypeGetName(input->type));
|
||||
return kTfLiteError;
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus MaxEval(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->builtin_data != nullptr);
|
||||
auto* params = reinterpret_cast<TfLitePoolParams*>(node->builtin_data);
|
||||
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
const OpData* data = static_cast<const OpData*>(node->user_data);
|
||||
|
||||
const TfLiteEvalTensor* input =
|
||||
tflite::micro::GetEvalInput(context, node, kInputTensor);
|
||||
TfLiteEvalTensor* output =
|
||||
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
||||
|
||||
switch (input->type) {
|
||||
case kTfLiteFloat32:
|
||||
MaxEvalFloat(context, node, params, data, input, output);
|
||||
break;
|
||||
case kTfLiteUInt8:
|
||||
case kTfLiteInt8:
|
||||
MaxEvalQuantized(context, node, params, data, input, output);
|
||||
break;
|
||||
default:
|
||||
TF_LITE_KERNEL_LOG(context, "Type %s not currently supported.",
|
||||
TfLiteTypeGetName(input->type));
|
||||
return kTfLiteError;
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
|
||||
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
|
||||
return context->AllocatePersistentBuffer(context, sizeof(OpData));
|
||||
}
|
||||
|
||||
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->builtin_data != nullptr);
|
||||
auto* params = reinterpret_cast<TfLitePoolParams*>(node->builtin_data);
|
||||
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
OpData* data = static_cast<OpData*>(node->user_data);
|
||||
|
||||
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
||||
TF_LITE_ENSURE(context, input != nullptr);
|
||||
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
||||
TF_LITE_ENSURE(context, output != nullptr);
|
||||
|
||||
TF_LITE_ENSURE_STATUS(CalculateOpData(context, params, input, output, data));
|
||||
|
||||
if (input->type == kTfLiteFloat32) {
|
||||
CalculateActivationRange(params->activation, &data->activation_min_f32,
|
||||
&data->activation_max_f32);
|
||||
} else if (input->type == kTfLiteInt8 || input->type == kTfLiteUInt8) {
|
||||
CalculateActivationRangeQuantized(context, params->activation, output,
|
||||
&data->activation_min,
|
||||
&data->activation_max);
|
||||
}
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
} // namespace pooling
|
||||
|
||||
TfLiteRegistration Register_AVERAGE_POOL_2D() {
|
||||
return {/*init=*/pooling::Init,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/pooling::Prepare,
|
||||
/*invoke=*/pooling::AverageEval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
TfLiteRegistration Register_MAX_POOL_2D() {
|
||||
return {/*init=*/pooling::Init,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/pooling::Prepare,
|
||||
/*invoke=*/pooling::MaxEval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
} // namespace micro
|
||||
} // namespace ops
|
||||
} // namespace tflite
|
||||
169
code/components/tfmicro/tensorflow/lite/micro/kernels/prelu.cc
Normal file
169
code/components/tfmicro/tensorflow/lite/micro/kernels/prelu.cc
Normal file
@@ -0,0 +1,169 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/kernels/internal/reference/prelu.h"
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace ops {
|
||||
namespace micro {
|
||||
namespace activations {
|
||||
namespace {
|
||||
|
||||
TfLiteStatus CalculatePreluParams(const TfLiteTensor* input,
|
||||
const TfLiteTensor* alpha,
|
||||
TfLiteTensor* output, PreluParams* params) {
|
||||
if (output->type == kTfLiteInt8 || output->type == kTfLiteUInt8 ||
|
||||
output->type == kTfLiteInt16) {
|
||||
double real_multiplier_1 = static_cast<double>(input->params.scale) /
|
||||
static_cast<double>(output->params.scale);
|
||||
double real_multiplier_2 = static_cast<double>(input->params.scale) *
|
||||
static_cast<double>(alpha->params.scale) /
|
||||
static_cast<double>(output->params.scale);
|
||||
QuantizeMultiplier(real_multiplier_1, ¶ms->output_multiplier_1,
|
||||
¶ms->output_shift_1);
|
||||
QuantizeMultiplier(real_multiplier_2, ¶ms->output_multiplier_2,
|
||||
¶ms->output_shift_2);
|
||||
|
||||
params->input_offset = -input->params.zero_point;
|
||||
params->alpha_offset = -alpha->params.zero_point;
|
||||
params->output_offset = output->params.zero_point;
|
||||
}
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
inline void BroadcastPrelu4DSlowFloat(
|
||||
const RuntimeShape& unextended_input1_shape, const float* input1_data,
|
||||
const RuntimeShape& unextended_input2_shape, const float* input2_data,
|
||||
const RuntimeShape& unextended_output_shape, float* output_data) {
|
||||
TFLITE_DCHECK_LE(unextended_input1_shape.DimensionsCount(), 4);
|
||||
TFLITE_DCHECK_LE(unextended_input2_shape.DimensionsCount(), 4);
|
||||
TFLITE_DCHECK_LE(unextended_output_shape.DimensionsCount(), 4);
|
||||
const RuntimeShape output_shape =
|
||||
RuntimeShape::ExtendedShape(4, unextended_output_shape);
|
||||
|
||||
NdArrayDesc<4> desc1;
|
||||
NdArrayDesc<4> desc2;
|
||||
NdArrayDescsForElementwiseBroadcast(unextended_input1_shape,
|
||||
unextended_input2_shape, &desc1, &desc2);
|
||||
|
||||
for (int b = 0; b < output_shape.Dims(0); ++b) {
|
||||
for (int y = 0; y < output_shape.Dims(1); ++y) {
|
||||
for (int x = 0; x < output_shape.Dims(2); ++x) {
|
||||
for (int c = 0; c < output_shape.Dims(3); ++c) {
|
||||
auto out_idx = Offset(output_shape, b, y, x, c);
|
||||
auto in1_idx = SubscriptToIndex(desc1, b, y, x, c);
|
||||
auto in2_idx = SubscriptToIndex(desc2, b, y, x, c);
|
||||
auto in1_val = input1_data[in1_idx];
|
||||
auto in2_val = input2_data[in2_idx];
|
||||
output_data[out_idx] = in1_val >= 0.0f ? in1_val : in1_val * in2_val;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void* PreluInit(TfLiteContext* context, const char* buffer, size_t length) {
|
||||
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
|
||||
return context->AllocatePersistentBuffer(context, sizeof(PreluParams));
|
||||
}
|
||||
|
||||
TfLiteStatus PreluPrepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
PreluParams* params = static_cast<PreluParams*>(node->user_data);
|
||||
|
||||
const TfLiteTensor* input = GetInput(context, node, 0);
|
||||
TF_LITE_ENSURE(context, input != nullptr);
|
||||
const TfLiteTensor* alpha = GetInput(context, node, 1);
|
||||
TF_LITE_ENSURE(context, alpha != nullptr);
|
||||
TfLiteTensor* output = GetOutput(context, node, 0);
|
||||
TF_LITE_ENSURE(context, output != nullptr);
|
||||
|
||||
return CalculatePreluParams(input, alpha, output, params);
|
||||
}
|
||||
|
||||
TfLiteStatus PreluEval(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
const PreluParams& params =
|
||||
*(static_cast<const PreluParams*>(node->user_data));
|
||||
|
||||
const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0);
|
||||
const TfLiteEvalTensor* alpha = tflite::micro::GetEvalInput(context, node, 1);
|
||||
TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0);
|
||||
|
||||
switch (input->type) {
|
||||
case kTfLiteFloat32: {
|
||||
BroadcastPrelu4DSlowFloat(tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<float>(input),
|
||||
tflite::micro::GetTensorShape(alpha),
|
||||
tflite::micro::GetTensorData<float>(alpha),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<float>(output));
|
||||
return kTfLiteOk;
|
||||
} break;
|
||||
case kTfLiteUInt8: {
|
||||
reference_ops::BroadcastPrelu4DSlow(
|
||||
params, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<uint8_t>(input),
|
||||
tflite::micro::GetTensorShape(alpha),
|
||||
tflite::micro::GetTensorData<uint8_t>(alpha),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<uint8_t>(output));
|
||||
return kTfLiteOk;
|
||||
} break;
|
||||
case kTfLiteInt8: {
|
||||
reference_ops::BroadcastPrelu4DSlow(
|
||||
params, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<int8_t>(input),
|
||||
tflite::micro::GetTensorShape(alpha),
|
||||
tflite::micro::GetTensorData<int8_t>(alpha),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<int8_t>(output));
|
||||
return kTfLiteOk;
|
||||
} break;
|
||||
default:
|
||||
TF_LITE_KERNEL_LOG(
|
||||
context, "Only float32 and uint8_t are supported currently, got %d.",
|
||||
TfLiteTypeGetName(input->type));
|
||||
return kTfLiteError;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace activations
|
||||
|
||||
TfLiteRegistration Register_PRELU() {
|
||||
return {/*init=*/activations::PreluInit,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/activations::PreluPrepare,
|
||||
/*invoke=*/activations::PreluEval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
} // namespace micro
|
||||
} // namespace ops
|
||||
} // namespace tflite
|
||||
@@ -0,0 +1,197 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#include "tensorflow/lite/kernels/internal/reference/quantize.h"
|
||||
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
||||
#include "tensorflow/lite/kernels/internal/reference/requantize.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/micro/micro_utils.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace {
|
||||
|
||||
struct OpData {
|
||||
tflite::QuantizationParams quantization_params;
|
||||
// The scaling factor from input to output (aka the 'real multiplier') can
|
||||
// be represented as a fixed point multiplier plus a left shift.
|
||||
int32_t output_multiplier;
|
||||
int output_shift;
|
||||
|
||||
int32_t input_zero_point;
|
||||
};
|
||||
|
||||
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
|
||||
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
|
||||
return context->AllocatePersistentBuffer(context, sizeof(OpData));
|
||||
}
|
||||
|
||||
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
OpData* data = static_cast<OpData*>(node->user_data);
|
||||
|
||||
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
|
||||
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
||||
|
||||
const TfLiteTensor* input = GetInput(context, node, 0);
|
||||
TF_LITE_ENSURE(context, input != nullptr);
|
||||
TfLiteTensor* output = GetOutput(context, node, 0);
|
||||
TF_LITE_ENSURE(context, output != nullptr);
|
||||
|
||||
// TODO(b/128934713): Add support for fixed-point per-channel quantization.
|
||||
// Currently this only support affine per-layer quantization.
|
||||
TF_LITE_ENSURE_EQ(context, output->quantization.type,
|
||||
kTfLiteAffineQuantization);
|
||||
const auto* affine_quantization =
|
||||
reinterpret_cast<TfLiteAffineQuantization*>(output->quantization.params);
|
||||
TF_LITE_ENSURE(context, affine_quantization);
|
||||
TF_LITE_ENSURE(context, affine_quantization->scale);
|
||||
TF_LITE_ENSURE(context, affine_quantization->scale->size == 1);
|
||||
|
||||
TF_LITE_ENSURE(context, input->type == kTfLiteFloat32 ||
|
||||
input->type == kTfLiteInt16 ||
|
||||
input->type == kTfLiteInt8);
|
||||
TF_LITE_ENSURE(context, output->type == kTfLiteUInt8 ||
|
||||
output->type == kTfLiteInt8 ||
|
||||
output->type == kTfLiteInt16 ||
|
||||
output->type == kTfLiteInt32);
|
||||
|
||||
if (((input->type == kTfLiteInt16 || input->type == kTfLiteInt8) &&
|
||||
output->type == kTfLiteInt8) ||
|
||||
(input->type == kTfLiteInt16 && output->type == kTfLiteInt16)) {
|
||||
double effective_scale = static_cast<double>(input->params.scale) /
|
||||
static_cast<double>(output->params.scale);
|
||||
|
||||
QuantizeMultiplier(effective_scale, &data->output_multiplier,
|
||||
&data->output_shift);
|
||||
}
|
||||
|
||||
data->quantization_params.zero_point = output->params.zero_point;
|
||||
data->quantization_params.scale = static_cast<double>(output->params.scale);
|
||||
|
||||
data->input_zero_point = input->params.zero_point;
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
OpData* data = static_cast<OpData*>(node->user_data);
|
||||
|
||||
const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0);
|
||||
TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0);
|
||||
|
||||
if (input->type == kTfLiteFloat32) {
|
||||
switch (output->type) {
|
||||
case kTfLiteInt8:
|
||||
reference_ops::AffineQuantize(
|
||||
data->quantization_params, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<float>(input),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<int8_t>(output));
|
||||
break;
|
||||
case kTfLiteUInt8:
|
||||
reference_ops::AffineQuantize(
|
||||
data->quantization_params, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<float>(input),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<uint8_t>(output));
|
||||
break;
|
||||
case kTfLiteInt16:
|
||||
reference_ops::AffineQuantize(
|
||||
data->quantization_params, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<float>(input),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<int16_t>(output));
|
||||
return kTfLiteOk;
|
||||
default:
|
||||
TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
|
||||
TfLiteTypeGetName(input->type),
|
||||
TfLiteTypeGetName(output->type));
|
||||
return kTfLiteError;
|
||||
}
|
||||
} else if (input->type == kTfLiteInt16) {
|
||||
size_t size = ElementCount(*input->dims);
|
||||
switch (output->type) {
|
||||
case kTfLiteInt8:
|
||||
reference_ops::Requantize(tflite::micro::GetTensorData<int16_t>(input),
|
||||
size, data->output_multiplier,
|
||||
data->output_shift, data->input_zero_point,
|
||||
data->quantization_params.zero_point,
|
||||
tflite::micro::GetTensorData<int8_t>(output));
|
||||
break;
|
||||
case kTfLiteInt16:
|
||||
reference_ops::Requantize(
|
||||
tflite::micro::GetTensorData<int16_t>(input), size,
|
||||
data->output_multiplier, data->output_shift, data->input_zero_point,
|
||||
data->quantization_params.zero_point,
|
||||
tflite::micro::GetTensorData<int16_t>(output));
|
||||
return kTfLiteOk;
|
||||
case kTfLiteInt32:
|
||||
reference_ops::Requantize(
|
||||
tflite::micro::GetTensorData<int16_t>(input), size,
|
||||
data->output_multiplier, data->output_shift, data->input_zero_point,
|
||||
data->quantization_params.zero_point,
|
||||
tflite::micro::GetTensorData<int32_t>(output));
|
||||
return kTfLiteOk;
|
||||
default:
|
||||
TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
|
||||
TfLiteTypeGetName(input->type),
|
||||
TfLiteTypeGetName(output->type));
|
||||
return kTfLiteError;
|
||||
}
|
||||
} else if (input->type == kTfLiteInt8) {
|
||||
// Int8 to Int8 requantization, required if the input and output tensors
|
||||
// have different scales and/or zero points.
|
||||
size_t size = ElementCount(*input->dims);
|
||||
switch (output->type) {
|
||||
case kTfLiteInt8:
|
||||
reference_ops::Requantize(tflite::micro::GetTensorData<int8_t>(input),
|
||||
size, data->output_multiplier,
|
||||
data->output_shift, data->input_zero_point,
|
||||
data->quantization_params.zero_point,
|
||||
tflite::micro::GetTensorData<int8_t>(output));
|
||||
break;
|
||||
default:
|
||||
TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
|
||||
TfLiteTypeGetName(input->type),
|
||||
TfLiteTypeGetName(output->type));
|
||||
return kTfLiteError;
|
||||
}
|
||||
} else {
|
||||
TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
|
||||
TfLiteTypeGetName(input->type),
|
||||
TfLiteTypeGetName(output->type));
|
||||
return kTfLiteError;
|
||||
}
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
TfLiteRegistration Register_QUANTIZE() {
|
||||
return {/*init=*/Init,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/Prepare,
|
||||
/*invoke=*/Eval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
} // namespace tflite
|
||||
342
code/components/tfmicro/tensorflow/lite/micro/kernels/reduce.cc
Normal file
342
code/components/tfmicro/tensorflow/lite/micro/kernels/reduce.cc
Normal file
@@ -0,0 +1,342 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/kernels/internal/reference/reduce.h"
|
||||
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
||||
#include "tensorflow/lite/kernels/internal/reference/integer_ops/mean.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/kernels/internal/types.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/micro/micro_utils.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace ops {
|
||||
namespace micro {
|
||||
namespace reduce {
|
||||
|
||||
constexpr int kMaxNumberOfAxis = 4;
|
||||
constexpr int kMaxNumberOfReducedAxis = 2;
|
||||
|
||||
struct OpData {
|
||||
int32_t multiplier;
|
||||
int shift;
|
||||
int temp_buffer_idx;
|
||||
int resolved_axis_idx;
|
||||
int input_zp;
|
||||
float input_scale;
|
||||
int output_zp;
|
||||
float output_scale;
|
||||
int num_output_elements;
|
||||
};
|
||||
|
||||
void* InitReduce(TfLiteContext* context, const char* buffer, size_t length) {
|
||||
return context->AllocatePersistentBuffer(context, sizeof(OpData));
|
||||
}
|
||||
|
||||
TfLiteStatus PrepareSimple(TfLiteContext* context, TfLiteNode* node) {
|
||||
// Inputs Tensor (dtype depends on quantization):
|
||||
// [0] = Input
|
||||
// [1] = Axis
|
||||
const TfLiteTensor* input = GetInput(context, node, 0);
|
||||
|
||||
// Outputs Tensor (dtype depends on quantization):
|
||||
// [0] = Output
|
||||
|
||||
// Validate number of inputs and outputs
|
||||
TF_LITE_ENSURE_EQ(context, node->inputs->size, 2);
|
||||
TF_LITE_ENSURE_EQ(context, node->outputs->size, 1);
|
||||
|
||||
// Validate axis type
|
||||
const TfLiteTensor* axis = GetInput(context, node, 1);
|
||||
TF_LITE_ENSURE(context, axis != nullptr);
|
||||
TF_LITE_ENSURE_TYPES_EQ(context, axis->type, kTfLiteInt32);
|
||||
|
||||
if (input->type == kTfLiteInt8) {
|
||||
OpData* data = static_cast<OpData*>(node->user_data);
|
||||
const TfLiteTensor* output = GetOutput(context, node, 0);
|
||||
const double real_multiplier = static_cast<double>(input->params.scale) /
|
||||
static_cast<double>(output->params.scale);
|
||||
QuantizeMultiplier(real_multiplier, &data->multiplier, &data->shift);
|
||||
}
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus PrepareMax(TfLiteContext* context, TfLiteNode* node) {
|
||||
TF_LITE_ENSURE_OK(context, PrepareSimple(context, node));
|
||||
|
||||
OpData* op_data = static_cast<OpData*>(node->user_data);
|
||||
const TfLiteTensor* input = GetInput(context, node, 0);
|
||||
const TfLiteTensor* output = GetOutput(context, node, 0);
|
||||
const TfLiteTensor* axis = GetInput(context, node, 1);
|
||||
|
||||
op_data->input_scale = input->params.scale;
|
||||
op_data->output_scale = output->params.scale;
|
||||
op_data->num_output_elements = NumElements(output);
|
||||
|
||||
context->RequestScratchBufferInArena(context, sizeof(int) * input->dims->size,
|
||||
&op_data->temp_buffer_idx);
|
||||
context->RequestScratchBufferInArena(
|
||||
context, sizeof(int) * static_cast<int>(ElementCount(*axis->dims)),
|
||||
&op_data->resolved_axis_idx);
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus PrepareMeanOrSum(TfLiteContext* context, TfLiteNode* node) {
|
||||
const TfLiteTensor* input = GetInput(context, node, 0);
|
||||
OpData* op_data = reinterpret_cast<OpData*>(node->user_data);
|
||||
const TfLiteTensor* output = GetOutput(context, node, 0);
|
||||
if (input->type == kTfLiteInt8) {
|
||||
const double real_multiplier = static_cast<double>(input->params.scale) /
|
||||
static_cast<double>(output->params.scale);
|
||||
QuantizeMultiplier(real_multiplier, &op_data->multiplier, &op_data->shift);
|
||||
}
|
||||
|
||||
int output_size = NumElements(output);
|
||||
if (input->type == kTfLiteInt8 || input->type == kTfLiteUInt8) {
|
||||
context->RequestScratchBufferInArena(context, output_size * sizeof(int32_t),
|
||||
&op_data->temp_buffer_idx);
|
||||
op_data->input_zp = input->params.zero_point;
|
||||
op_data->input_scale = input->params.scale;
|
||||
op_data->output_zp = output->params.zero_point;
|
||||
op_data->output_scale = output->params.scale;
|
||||
}
|
||||
|
||||
TF_LITE_ENSURE_OK(context, PrepareSimple(context, node));
|
||||
// TODO(b/144955155): Support uint8_t(b/144955155) and int8_t(b/144955018)
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
void ResolveAxis(const int* axis_data, int axis_count,
|
||||
tflite::MeanParams* op_params) {
|
||||
int i = 0;
|
||||
for (; i < axis_count; ++i) {
|
||||
op_params->axis[i] = static_cast<int16_t>(axis_data[i]);
|
||||
}
|
||||
for (; i < 4; ++i) {
|
||||
op_params->axis[i] = 1;
|
||||
}
|
||||
op_params->axis_count = axis_count;
|
||||
}
|
||||
|
||||
TfLiteStatus EvalMean(TfLiteContext* context, TfLiteNode* node) {
|
||||
const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0);
|
||||
const TfLiteEvalTensor* axis = tflite::micro::GetEvalInput(context, node, 1);
|
||||
TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0);
|
||||
TfLiteReducerParams* params =
|
||||
reinterpret_cast<TfLiteReducerParams*>(node->builtin_data);
|
||||
OpData* op_data = reinterpret_cast<OpData*>(node->user_data);
|
||||
|
||||
int num_axis = static_cast<int>(ElementCount(*axis->dims));
|
||||
int temp_index[kMaxNumberOfAxis];
|
||||
int resolved_axis[kMaxNumberOfReducedAxis];
|
||||
|
||||
tflite::MeanParams op_params;
|
||||
ResolveAxis(tflite::micro::GetTensorData<int>(axis), num_axis, &op_params);
|
||||
|
||||
// Special case mean implementation exists for 4D mean across axes 1 and 2.
|
||||
bool special_case_4d_axes_1_and_2 =
|
||||
input->dims->size == 4 && op_params.axis_count == 2 &&
|
||||
((op_params.axis[0] == 1 && op_params.axis[1] == 2) ||
|
||||
(op_params.axis[0] == 2 && op_params.axis[1] == 1));
|
||||
|
||||
switch (input->type) {
|
||||
case kTfLiteFloat32: {
|
||||
// Defer to specialized implementation for 4D Mean across axes 1 & 2.
|
||||
if (params->keep_dims && special_case_4d_axes_1_and_2) {
|
||||
reference_ops::Mean(op_params, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<float>(input),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<float>(output));
|
||||
} else {
|
||||
TF_LITE_ENSURE(
|
||||
context,
|
||||
reference_ops::Mean(
|
||||
tflite::micro::GetTensorData<float>(input), input->dims->data,
|
||||
input->dims->size, tflite::micro::GetTensorData<float>(output),
|
||||
output->dims->data, output->dims->size,
|
||||
tflite::micro::GetTensorData<int>(axis), num_axis,
|
||||
params->keep_dims, temp_index, resolved_axis,
|
||||
tflite::micro::GetTensorData<float>(output)));
|
||||
}
|
||||
} break;
|
||||
case kTfLiteInt8: {
|
||||
// Defer to specialized implementation for 4D Mean across axes 1 & 2.
|
||||
if (params->keep_dims && special_case_4d_axes_1_and_2) {
|
||||
reference_integer_ops::Mean(
|
||||
op_params, op_data->multiplier, op_data->shift,
|
||||
tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<int8_t>(input), op_data->input_zp,
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<int8_t>(output), op_data->output_zp);
|
||||
} else if (op_data->input_zp == op_data->output_zp &&
|
||||
op_data->input_scale == op_data->output_scale) {
|
||||
int32_t* temp_buffer = static_cast<int32_t*>(
|
||||
context->GetScratchBuffer(context, op_data->temp_buffer_idx));
|
||||
TF_LITE_ENSURE(
|
||||
context,
|
||||
reference_ops::Mean(
|
||||
tflite::micro::GetTensorData<int8_t>(input), input->dims->data,
|
||||
input->dims->size, tflite::micro::GetTensorData<int8_t>(output),
|
||||
output->dims->data, output->dims->size,
|
||||
tflite::micro::GetTensorData<int>(axis), num_axis,
|
||||
params->keep_dims, temp_index, resolved_axis, temp_buffer));
|
||||
} else {
|
||||
int32_t* temp_buffer = static_cast<int32_t*>(
|
||||
context->GetScratchBuffer(context, op_data->temp_buffer_idx));
|
||||
TF_LITE_ENSURE(
|
||||
context,
|
||||
reference_ops::QuantizedMeanOrSum(
|
||||
tflite::micro::GetTensorData<int8_t>(input), op_data->input_zp,
|
||||
op_data->input_scale, input->dims->data, input->dims->size,
|
||||
tflite::micro::GetTensorData<int8_t>(output),
|
||||
op_data->output_zp, op_data->output_scale, output->dims->data,
|
||||
output->dims->size, tflite::micro::GetTensorData<int>(axis),
|
||||
num_axis, params->keep_dims, temp_index, resolved_axis,
|
||||
temp_buffer, false));
|
||||
}
|
||||
} break;
|
||||
case kTfLiteUInt8: {
|
||||
// Defer to specialized implementation for 4D Mean across axes 1 & 2.
|
||||
if (params->keep_dims && special_case_4d_axes_1_and_2) {
|
||||
reference_ops::Mean(op_params, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<uint8_t>(input),
|
||||
op_data->input_zp, op_data->input_scale,
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<uint8_t>(output),
|
||||
op_data->output_zp, op_data->output_scale);
|
||||
} else if (op_data->input_zp == op_data->output_zp &&
|
||||
op_data->input_scale == op_data->output_scale) {
|
||||
uint32_t* temp_buffer = static_cast<uint32_t*>(
|
||||
context->GetScratchBuffer(context, op_data->temp_buffer_idx));
|
||||
TF_LITE_ENSURE(
|
||||
context,
|
||||
reference_ops::Mean(tflite::micro::GetTensorData<uint8_t>(input),
|
||||
input->dims->data, input->dims->size,
|
||||
tflite::micro::GetTensorData<uint8_t>(output),
|
||||
output->dims->data, output->dims->size,
|
||||
tflite::micro::GetTensorData<int>(axis),
|
||||
num_axis, params->keep_dims, temp_index,
|
||||
resolved_axis, temp_buffer));
|
||||
} else {
|
||||
uint32_t* temp_buffer = static_cast<uint32_t*>(
|
||||
context->GetScratchBuffer(context, op_data->temp_buffer_idx));
|
||||
TF_LITE_ENSURE(
|
||||
context,
|
||||
reference_ops::QuantizedMeanOrSum(
|
||||
tflite::micro::GetTensorData<uint8_t>(input), op_data->input_zp,
|
||||
op_data->input_scale, input->dims->data, input->dims->size,
|
||||
tflite::micro::GetTensorData<uint8_t>(output),
|
||||
op_data->output_zp, op_data->output_scale, output->dims->data,
|
||||
output->dims->size, tflite::micro::GetTensorData<int>(axis),
|
||||
num_axis, params->keep_dims, temp_index, resolved_axis,
|
||||
temp_buffer, false));
|
||||
}
|
||||
} break;
|
||||
default:
|
||||
TF_LITE_ENSURE_MSG(context, false,
|
||||
"Currently, only float32, int8 or uint8 input type "
|
||||
"is supported.");
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus EvalMax(TfLiteContext* context, TfLiteNode* node) {
|
||||
const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0);
|
||||
const TfLiteEvalTensor* axis = tflite::micro::GetEvalInput(context, node, 1);
|
||||
TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0);
|
||||
TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
|
||||
TfLiteReducerParams* params =
|
||||
static_cast<TfLiteReducerParams*>(node->builtin_data);
|
||||
OpData* op_data = static_cast<OpData*>(node->user_data);
|
||||
|
||||
// Interpret an axis tensor with null dimensions as a scalar
|
||||
int num_axis = static_cast<int>(ElementCount(*axis->dims));
|
||||
int* temp_buffer = static_cast<int*>(
|
||||
context->GetScratchBuffer(context, op_data->temp_buffer_idx));
|
||||
int* resolved_axis = static_cast<int*>(
|
||||
context->GetScratchBuffer(context, op_data->resolved_axis_idx));
|
||||
switch (input->type) {
|
||||
case kTfLiteFloat32:
|
||||
TF_LITE_ENSURE(
|
||||
context,
|
||||
reference_ops::ReduceGeneric<float>(
|
||||
tflite::micro::GetTensorData<float>(input), input->dims->data,
|
||||
input->dims->size, tflite::micro::GetTensorData<float>(output),
|
||||
output->dims->data, output->dims->size,
|
||||
tflite::micro::GetTensorData<int>(axis), num_axis,
|
||||
params->keep_dims, temp_buffer, resolved_axis,
|
||||
std::numeric_limits<float>::lowest(),
|
||||
[](const float current, const float in) -> float {
|
||||
return (in > current) ? in : current;
|
||||
}));
|
||||
break;
|
||||
case kTfLiteInt8:
|
||||
TF_LITE_ENSURE_EQ(context, static_cast<double>(op_data->input_scale),
|
||||
static_cast<double>(op_data->output_scale));
|
||||
TF_LITE_ENSURE_EQ(context, op_data->input_zp, op_data->output_zp);
|
||||
TF_LITE_ENSURE(
|
||||
context,
|
||||
reference_ops::ReduceGeneric<int8_t>(
|
||||
tflite::micro::GetTensorData<int8_t>(input), input->dims->data,
|
||||
input->dims->size, tflite::micro::GetTensorData<int8_t>(output),
|
||||
output->dims->data, output->dims->size,
|
||||
tflite::micro::GetTensorData<int>(axis), num_axis,
|
||||
params->keep_dims, temp_buffer, resolved_axis,
|
||||
std::numeric_limits<int8_t>::lowest(),
|
||||
[](const int8_t current, const int8_t in) -> int8_t {
|
||||
return (in > current) ? in : current;
|
||||
}));
|
||||
break;
|
||||
default:
|
||||
TF_LITE_KERNEL_LOG(context,
|
||||
"Only float32 and int8 types are supported.\n");
|
||||
return kTfLiteError;
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
} // namespace reduce
|
||||
|
||||
TfLiteRegistration Register_MEAN() {
|
||||
return {/*init=*/reduce::InitReduce,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/reduce::PrepareMeanOrSum,
|
||||
/*invoke=*/reduce::EvalMean,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
TfLiteRegistration Register_REDUCE_MAX() {
|
||||
return {/*init=*/reduce::InitReduce,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/reduce::PrepareMax,
|
||||
/*invoke=*/reduce::EvalMax,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
} // namespace micro
|
||||
} // namespace ops
|
||||
} // namespace tflite
|
||||
118
code/components/tfmicro/tensorflow/lite/micro/kernels/reshape.cc
Normal file
118
code/components/tfmicro/tensorflow/lite/micro/kernels/reshape.cc
Normal file
@@ -0,0 +1,118 @@
|
||||
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/kernels/op_macros.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/micro/memory_helpers.h"
|
||||
#include "tensorflow/lite/micro/micro_utils.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace ops {
|
||||
namespace micro {
|
||||
namespace reshape {
|
||||
|
||||
constexpr int kInputTensor = 0;
|
||||
constexpr int kOutputTensor = 0;
|
||||
|
||||
TfLiteStatus ReshapeOutput(TfLiteContext* context, TfLiteNode* node) {
|
||||
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
||||
TF_LITE_ENSURE(context, input != nullptr);
|
||||
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
||||
TF_LITE_ENSURE(context, output != nullptr);
|
||||
// Tensorflow's Reshape allows one of the shape components to have the
|
||||
// special -1 value, meaning it will be calculated automatically based on the
|
||||
// input. Here we calculate what that dimension should be so that the number
|
||||
// of output elements in the same as the number of input elements.
|
||||
int num_input_elements = NumElements(input);
|
||||
TfLiteIntArray* output_shape = output->dims;
|
||||
|
||||
if (NumInputs(node) == 1 && // Legacy scalar supported with params.
|
||||
output_shape->size == 1 && output_shape->data[0] == 0) {
|
||||
// Legacy tflite models use a shape parameter of [0] to indicate scalars,
|
||||
// so adjust accordingly. TODO(b/111614235): Allow zero-sized buffers during
|
||||
// toco conversion.
|
||||
output_shape->size = 0;
|
||||
}
|
||||
|
||||
int num_output_elements = 1;
|
||||
int stretch_dim = -1;
|
||||
for (int i = 0; i < output_shape->size; ++i) {
|
||||
int value = output_shape->data[i];
|
||||
if (value == -1) {
|
||||
TF_LITE_ENSURE_EQ(context, stretch_dim, -1);
|
||||
stretch_dim = i;
|
||||
} else {
|
||||
num_output_elements *= value;
|
||||
}
|
||||
}
|
||||
if (stretch_dim != -1) {
|
||||
output_shape->data[stretch_dim] = num_input_elements / num_output_elements;
|
||||
num_output_elements *= output_shape->data[stretch_dim];
|
||||
}
|
||||
|
||||
TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
|
||||
TF_LITE_ENSURE_EQ(context, num_input_elements, num_output_elements);
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TF_LITE_ENSURE(context, NumInputs(node) == 1 || NumInputs(node) == 2);
|
||||
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
||||
TF_LITE_ENSURE_EQ(context, ReshapeOutput(context, node), kTfLiteOk);
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
const TfLiteEvalTensor* input =
|
||||
tflite::micro::GetEvalInput(context, node, kInputTensor);
|
||||
TfLiteEvalTensor* output =
|
||||
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
||||
|
||||
// TODO(b/162522304): storing input bytes in OpData increases some models
|
||||
// significantly, possibly due to alignment issues.
|
||||
size_t input_bytes;
|
||||
TF_LITE_ENSURE_STATUS(TfLiteTypeSizeOf(input->type, &input_bytes));
|
||||
input_bytes *= ElementCount(*input->dims);
|
||||
|
||||
// Do nothing for in-place reshape.
|
||||
if (input->data.raw != output->data.raw) {
|
||||
// Otherwise perform reshape with copy.
|
||||
for (size_t i = 0; i < input_bytes; ++i) {
|
||||
output->data.raw[i] = input->data.raw[i];
|
||||
}
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
} // namespace reshape
|
||||
|
||||
TfLiteRegistration Register_RESHAPE() {
|
||||
return {/*init=*/nullptr,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/reshape::Prepare,
|
||||
/*invoke=*/reshape::Eval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
} // namespace micro
|
||||
} // namespace ops
|
||||
} // namespace tflite
|
||||
@@ -0,0 +1,121 @@
|
||||
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/kernels/internal/reference/resize_nearest_neighbor.h"
|
||||
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/kernels/op_macros.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace ops {
|
||||
namespace micro {
|
||||
namespace resize_nearest_neighbor {
|
||||
|
||||
constexpr int kInputTensor = 0;
|
||||
constexpr int kSizeTensor = 1;
|
||||
constexpr int kOutputTensor = 0;
|
||||
|
||||
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
|
||||
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
||||
|
||||
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
||||
const TfLiteTensor* size = GetInput(context, node, kSizeTensor);
|
||||
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
||||
|
||||
// Our current implementations rely on the input being 4D,
|
||||
// and the size being 1D tensor with exactly 2 elements.
|
||||
TF_LITE_ENSURE_EQ(context, NumDimensions(input), 4);
|
||||
TF_LITE_ENSURE_EQ(context, NumDimensions(size), 1);
|
||||
TF_LITE_ENSURE_EQ(context, size->type, kTfLiteInt32);
|
||||
TF_LITE_ENSURE_EQ(context, size->dims->data[0], 2);
|
||||
|
||||
output->type = input->type;
|
||||
|
||||
if (!IsConstantTensor(size)) {
|
||||
TF_LITE_KERNEL_LOG(context, "Dynamic tensors are unsupported in tfmicro.");
|
||||
return kTfLiteError;
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
auto* params =
|
||||
reinterpret_cast<TfLiteResizeNearestNeighborParams*>(node->builtin_data);
|
||||
|
||||
const TfLiteEvalTensor* input =
|
||||
tflite::micro::GetEvalInput(context, node, kInputTensor);
|
||||
const TfLiteEvalTensor* size =
|
||||
tflite::micro::GetEvalInput(context, node, kSizeTensor);
|
||||
TfLiteEvalTensor* output =
|
||||
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
||||
|
||||
tflite::ResizeNearestNeighborParams op_params;
|
||||
op_params.align_corners = params->align_corners;
|
||||
op_params.half_pixel_centers = false;
|
||||
|
||||
if (output->type == kTfLiteFloat32) {
|
||||
reference_ops::ResizeNearestNeighbor(
|
||||
op_params, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<int32_t>(input),
|
||||
tflite::micro::GetTensorShape(size),
|
||||
tflite::micro::GetTensorData<int32_t>(size),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<int32_t>(output));
|
||||
} else if (output->type == kTfLiteUInt8) {
|
||||
reference_ops::ResizeNearestNeighbor(
|
||||
op_params, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<uint8_t>(input),
|
||||
tflite::micro::GetTensorShape(size),
|
||||
tflite::micro::GetTensorData<int32_t>(size),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<uint8_t>(output));
|
||||
} else if (output->type == kTfLiteInt8) {
|
||||
reference_ops::ResizeNearestNeighbor(
|
||||
op_params, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<int8_t>(input),
|
||||
tflite::micro::GetTensorShape(size),
|
||||
tflite::micro::GetTensorData<int32_t>(size),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<int8_t>(output));
|
||||
} else {
|
||||
TF_LITE_KERNEL_LOG(context,
|
||||
"Output type is %d, requires float, uint8_t or int8_t.",
|
||||
output->type);
|
||||
return kTfLiteError;
|
||||
}
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
} // namespace resize_nearest_neighbor
|
||||
|
||||
TfLiteRegistration Register_RESIZE_NEAREST_NEIGHBOR() {
|
||||
return {/*init=*/nullptr,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/resize_nearest_neighbor::Prepare,
|
||||
/*invoke=*/resize_nearest_neighbor::Eval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
} // namespace micro
|
||||
} // namespace ops
|
||||
} // namespace tflite
|
||||
@@ -0,0 +1,76 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/kernels/internal/reference/round.h"
|
||||
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace ops {
|
||||
namespace micro {
|
||||
namespace round {
|
||||
|
||||
constexpr int kInputTensor = 0;
|
||||
constexpr int kOutputTensor = 0;
|
||||
|
||||
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
||||
TF_LITE_ENSURE(context, input != nullptr);
|
||||
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
||||
TF_LITE_ENSURE(context, output != nullptr);
|
||||
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
|
||||
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
||||
TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteFloat32);
|
||||
TF_LITE_ENSURE_TYPES_EQ(context, output->type, input->type);
|
||||
TF_LITE_ENSURE_EQ(context, output->bytes, input->bytes);
|
||||
TF_LITE_ENSURE_EQ(context, output->dims->size, input->dims->size);
|
||||
for (int i = 0; i < output->dims->size; ++i) {
|
||||
TF_LITE_ENSURE_EQ(context, output->dims->data[i], input->dims->data[i]);
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
const TfLiteEvalTensor* input =
|
||||
tflite::micro::GetEvalInput(context, node, kInputTensor);
|
||||
TfLiteEvalTensor* output =
|
||||
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
||||
|
||||
reference_ops::Round(tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<float>(input),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<float>(output));
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
} // namespace round
|
||||
|
||||
TfLiteRegistration Register_ROUND() {
|
||||
return {/*init=*/nullptr,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/round::Prepare,
|
||||
/*invoke=*/round::Eval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
} // namespace micro
|
||||
} // namespace ops
|
||||
} // namespace tflite
|
||||
@@ -0,0 +1,73 @@
|
||||
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/kernels/op_macros.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/micro/memory_helpers.h"
|
||||
#include "tensorflow/lite/micro/micro_utils.h"
|
||||
|
||||
namespace tflite {
|
||||
|
||||
namespace {
|
||||
constexpr int kInputTensor = 0;
|
||||
constexpr int kOutputTensor = 0;
|
||||
|
||||
void ExtractShape(const TfLiteEvalTensor* input, int32_t* output_data) {
|
||||
for (int i = 0; i < input->dims->size; ++i) {
|
||||
output_data[i] = input->dims->data[i];
|
||||
}
|
||||
}
|
||||
|
||||
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
|
||||
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
const TfLiteEvalTensor* input =
|
||||
tflite::micro::GetEvalInput(context, node, kInputTensor);
|
||||
TfLiteEvalTensor* output =
|
||||
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
||||
if (output->type != kTfLiteInt32) {
|
||||
TF_LITE_KERNEL_LOG(context, "Output type %s (%d) not supported.",
|
||||
TfLiteTypeGetName(output->type), output->type);
|
||||
return kTfLiteError;
|
||||
} else {
|
||||
ExtractShape(input, tflite::micro::GetTensorData<int32_t>(output));
|
||||
}
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
TfLiteRegistration Register_SHAPE() {
|
||||
return {/*init=*/nullptr,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/Prepare,
|
||||
/*invoke=*/Eval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
} // namespace tflite
|
||||
223
code/components/tfmicro/tensorflow/lite/micro/kernels/softmax.cc
Normal file
223
code/components/tfmicro/tensorflow/lite/micro/kernels/softmax.cc
Normal file
@@ -0,0 +1,223 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/kernels/internal/reference/softmax.h"
|
||||
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/kernels/op_macros.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace {
|
||||
|
||||
// Softmax parameter data that persists in user_data
|
||||
static constexpr int kInt16LUTArraySize = 513;
|
||||
|
||||
TfLiteStatus CalculateSoftmaxParams(TfLiteContext* context,
|
||||
const TfLiteTensor* input,
|
||||
TfLiteTensor* output,
|
||||
const TfLiteSoftmaxParams* params,
|
||||
SoftmaxParams* op_data) {
|
||||
if (input->type == kTfLiteUInt8 || input->type == kTfLiteInt8 ||
|
||||
input->type == kTfLiteInt16) {
|
||||
if (input->type == kTfLiteUInt8) {
|
||||
TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteUInt8);
|
||||
TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0);
|
||||
} else if (input->type == kTfLiteInt16) {
|
||||
TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0);
|
||||
TF_LITE_ENSURE_NEAR(context, output->params.scale, 1.f / 32768,
|
||||
(0.001f * 1.f / 32768));
|
||||
} else { // input->type == kTfLiteInt8
|
||||
TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteInt8);
|
||||
if (output->type == kTfLiteInt16) {
|
||||
TF_LITE_ENSURE_EQ(context, output->params.zero_point, -32768);
|
||||
TF_LITE_ENSURE_NEAR(context, output->params.scale, 1.f / 65536,
|
||||
(0.001f * 1.f / 65536));
|
||||
} else { // output->type == kTfLiteint8
|
||||
TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteInt8);
|
||||
TF_LITE_ENSURE_EQ(context, output->params.zero_point, -128);
|
||||
TF_LITE_ENSURE(context, output->params.scale == 1.f / 256);
|
||||
}
|
||||
}
|
||||
|
||||
static const int kScaledDiffIntegerBits = 5;
|
||||
|
||||
// Calculate input_multiplier and input_left_shift
|
||||
if (input->type == kTfLiteInt16) {
|
||||
int input_left_shift;
|
||||
double input_scale_beta_rescale =
|
||||
static_cast<double>(input->params.scale) *
|
||||
static_cast<double>(params->beta) /
|
||||
(10.0 / 65535.0); // scale the input_diff such that [-65535, 0]
|
||||
// correspond to [-10.0, 0.0]
|
||||
QuantizeMultiplier(input_scale_beta_rescale, &op_data->input_multiplier,
|
||||
&input_left_shift);
|
||||
op_data->input_left_shift = input_left_shift;
|
||||
} else {
|
||||
int input_left_shift;
|
||||
tflite::PreprocessSoftmaxScaling(
|
||||
static_cast<double>(params->beta),
|
||||
static_cast<double>(input->params.scale), kScaledDiffIntegerBits,
|
||||
&op_data->input_multiplier, &input_left_shift);
|
||||
op_data->input_left_shift = input_left_shift;
|
||||
op_data->diff_min =
|
||||
-1.0 * tflite::CalculateInputRadius(kScaledDiffIntegerBits,
|
||||
op_data->input_left_shift);
|
||||
}
|
||||
} else {
|
||||
TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteFloat32);
|
||||
TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteFloat32);
|
||||
op_data->beta = static_cast<double>(params->beta);
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
// Takes a tensor and performs softmax along the last dimension.
|
||||
void SoftmaxFloat(const TfLiteEvalTensor* input, TfLiteEvalTensor* output,
|
||||
const SoftmaxParams& op_data) {
|
||||
tflite::reference_ops::Softmax(op_data, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<float>(input),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<float>(output));
|
||||
}
|
||||
|
||||
void SoftmaxQuantized(const TfLiteEvalTensor* input, TfLiteEvalTensor* output,
|
||||
const SoftmaxParams& op_data) {
|
||||
if (input->type == kTfLiteUInt8) {
|
||||
tflite::reference_ops::Softmax(
|
||||
op_data, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<uint8_t>(input),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<uint8_t>(output));
|
||||
} else if (input->type == kTfLiteInt8) {
|
||||
if (output->type == kTfLiteInt16) {
|
||||
tflite::reference_ops::Softmax(
|
||||
op_data, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<int8_t>(input),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<int16_t>(output));
|
||||
} else {
|
||||
tflite::reference_ops::Softmax(
|
||||
op_data, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<int8_t>(input),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<int8_t>(output));
|
||||
}
|
||||
} else {
|
||||
tflite::reference_ops::SoftmaxInt16(
|
||||
op_data, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<int16_t>(input),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<int16_t>(output));
|
||||
}
|
||||
}
|
||||
|
||||
void* SoftmaxInit(TfLiteContext* context, const char* buffer, size_t length) {
|
||||
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
|
||||
return context->AllocatePersistentBuffer(context, sizeof(SoftmaxParams));
|
||||
}
|
||||
|
||||
TfLiteStatus SoftmaxPrepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
|
||||
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
||||
const TfLiteTensor* input = GetInput(context, node, 0);
|
||||
TF_LITE_ENSURE(context, input != nullptr);
|
||||
TF_LITE_ENSURE(context, NumDimensions(input) >= 1);
|
||||
TfLiteTensor* output = GetOutput(context, node, 0);
|
||||
TF_LITE_ENSURE(context, output != nullptr);
|
||||
|
||||
TF_LITE_ENSURE(context, node->user_data != nullptr);
|
||||
SoftmaxParams* op_data = static_cast<SoftmaxParams*>(node->user_data);
|
||||
// Only allocate LUTs for KTfLiteInt16 data type
|
||||
if (input->type == kTfLiteInt16) {
|
||||
void* raw_exp_lut = context->AllocatePersistentBuffer(
|
||||
context, sizeof(int16_t) * kInt16LUTArraySize);
|
||||
TF_LITE_ENSURE(context, raw_exp_lut != nullptr);
|
||||
op_data->exp_lut = reinterpret_cast<int16_t*>(raw_exp_lut);
|
||||
void* one_over_one_plus_x_lut = context->AllocatePersistentBuffer(
|
||||
context, sizeof(int16_t) * kInt16LUTArraySize);
|
||||
TF_LITE_ENSURE(context, one_over_one_plus_x_lut != nullptr);
|
||||
op_data->one_over_one_plus_x_lut =
|
||||
reinterpret_cast<int16_t*>(one_over_one_plus_x_lut);
|
||||
}
|
||||
|
||||
if (output->type == kTfLiteInt16) {
|
||||
TF_LITE_ENSURE(context, input->type == kTfLiteInt8 ||
|
||||
input->type == kTfLiteUInt8 ||
|
||||
input->type == kTfLiteInt16);
|
||||
} else {
|
||||
TF_LITE_ENSURE_EQ(context, input->type, output->type);
|
||||
}
|
||||
|
||||
// Populate LUT if required
|
||||
if (input->type == kTfLiteInt16) {
|
||||
TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0);
|
||||
// exp LUT only used on negative values
|
||||
// we consider exp(-10.0) is insignificant to accumulation
|
||||
gen_lut([](float value) { return std::exp(value); }, -10.0f, 0.0f,
|
||||
op_data->exp_lut, kInt16LUTArraySize);
|
||||
gen_lut([](float value) { return 1.0f / (1.0f + value); }, 0.0f, 1.0f,
|
||||
op_data->one_over_one_plus_x_lut, kInt16LUTArraySize);
|
||||
op_data->zero_point = output->params.zero_point;
|
||||
op_data->scale = output->params.scale;
|
||||
}
|
||||
|
||||
auto* params = static_cast<TfLiteSoftmaxParams*>(node->builtin_data);
|
||||
return CalculateSoftmaxParams(context, input, output, params, op_data);
|
||||
}
|
||||
|
||||
TfLiteStatus SoftmaxEval(TfLiteContext* context, TfLiteNode* node) {
|
||||
const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0);
|
||||
TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0);
|
||||
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
SoftmaxParams op_data = *static_cast<SoftmaxParams*>(node->user_data);
|
||||
|
||||
switch (input->type) {
|
||||
case kTfLiteFloat32: {
|
||||
SoftmaxFloat(input, output, op_data);
|
||||
return kTfLiteOk;
|
||||
}
|
||||
case kTfLiteInt8:
|
||||
case kTfLiteUInt8:
|
||||
case kTfLiteInt16: {
|
||||
SoftmaxQuantized(input, output, op_data);
|
||||
return kTfLiteOk;
|
||||
}
|
||||
default:
|
||||
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
|
||||
TfLiteTypeGetName(input->type), input->type);
|
||||
return kTfLiteError;
|
||||
}
|
||||
}
|
||||
} // namespace
|
||||
|
||||
TfLiteRegistration Register_SOFTMAX() {
|
||||
return {/*init=*/SoftmaxInit,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/SoftmaxPrepare,
|
||||
/*invoke=*/SoftmaxEval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
} // namespace tflite
|
||||
135
code/components/tfmicro/tensorflow/lite/micro/kernels/split.cc
Normal file
135
code/components/tfmicro/tensorflow/lite/micro/kernels/split.cc
Normal file
@@ -0,0 +1,135 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace ops {
|
||||
namespace micro {
|
||||
namespace split {
|
||||
|
||||
template <typename T>
|
||||
TfLiteStatus SplitImpl(TfLiteContext* context, TfLiteNode* node,
|
||||
const TfLiteEvalTensor* input, int axis_value) {
|
||||
const int output_count = NumOutputs(node);
|
||||
const TfLiteIntArray* input_dims = input->dims;
|
||||
const TfLiteEvalTensor* output0 =
|
||||
tflite::micro::GetEvalOutput(context, node, 0);
|
||||
const TfLiteIntArray* output_dims = output0->dims;
|
||||
|
||||
const int split_dimensions = input_dims->size;
|
||||
int axis = axis_value < 0 ? axis_value + split_dimensions : axis_value;
|
||||
|
||||
TFLITE_DCHECK_LT(axis, split_dimensions);
|
||||
TFLITE_DCHECK_EQ(output_dims->size, split_dimensions);
|
||||
|
||||
int64_t split_size = output_dims->data[axis] * output_count;
|
||||
|
||||
TFLITE_DCHECK_EQ(split_size, input_dims->data[axis]);
|
||||
int64_t outer_size = 1;
|
||||
for (int i = 0; i < axis; ++i) {
|
||||
outer_size *= input_dims->data[i];
|
||||
}
|
||||
|
||||
int64_t base_inner_size = 1;
|
||||
for (int i = axis + 1; i < split_dimensions; ++i) {
|
||||
base_inner_size *= input_dims->data[i];
|
||||
}
|
||||
|
||||
const T* input_ptr = tflite::micro::GetTensorData<T>(input);
|
||||
for (int k = 0; k < outer_size; ++k) {
|
||||
for (int i = 0; i < output_count; ++i) {
|
||||
TfLiteEvalTensor* t = tflite::micro::GetEvalOutput(context, node, i);
|
||||
T* output_data = tflite::micro::GetTensorData<T>(t);
|
||||
const int copy_size = output_dims->data[axis] * base_inner_size;
|
||||
T* output_ptr = output_data + k * copy_size;
|
||||
for (int j = 0; j < copy_size; ++j) output_ptr[j] = input_ptr[j];
|
||||
input_ptr += copy_size;
|
||||
}
|
||||
}
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
const TfLiteTensor* axis = GetInput(context, node, 0);
|
||||
TF_LITE_ENSURE(context, axis != nullptr);
|
||||
|
||||
// Dynamic output tensors are needed if axis tensor is not constant.
|
||||
// But Micro doesn't support dynamic memory allocation, so we only support
|
||||
// constant axis tensor for now.
|
||||
TF_LITE_ENSURE_MSG(context, IsConstantTensor(axis),
|
||||
"Non constant axis tensor not supported");
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
const TfLiteEvalTensor* axis = tflite::micro::GetEvalInput(context, node, 0);
|
||||
const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 1);
|
||||
|
||||
int axis_value = tflite::micro::GetTensorData<int32_t>(axis)[0];
|
||||
if (axis_value < 0) {
|
||||
axis_value += input->dims->size;
|
||||
}
|
||||
|
||||
TF_LITE_ENSURE(context, axis_value >= 0);
|
||||
TF_LITE_ENSURE(context, axis_value < input->dims->size);
|
||||
|
||||
switch (input->type) {
|
||||
case kTfLiteFloat32: {
|
||||
return SplitImpl<float>(context, node, input, axis_value);
|
||||
}
|
||||
case kTfLiteUInt8: {
|
||||
return SplitImpl<uint8_t>(context, node, input, axis_value);
|
||||
}
|
||||
case kTfLiteInt8: {
|
||||
return SplitImpl<int8_t>(context, node, input, axis_value);
|
||||
}
|
||||
case kTfLiteInt16: {
|
||||
return SplitImpl<int16_t>(context, node, input, axis_value);
|
||||
}
|
||||
case kTfLiteInt32: {
|
||||
return SplitImpl<int32_t>(context, node, input, axis_value);
|
||||
}
|
||||
default:
|
||||
TF_LITE_KERNEL_LOG(context, "Type %s currently not supported.",
|
||||
TfLiteTypeGetName(input->type));
|
||||
return kTfLiteError;
|
||||
}
|
||||
#undef TF_LITE_SPLIT
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
} // namespace split
|
||||
|
||||
TfLiteRegistration Register_SPLIT() {
|
||||
return {/*init=*/nullptr,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/split::Prepare,
|
||||
/*invoke=*/split::Eval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
} // namespace micro
|
||||
} // namespace ops
|
||||
} // namespace tflite
|
||||
135
code/components/tfmicro/tensorflow/lite/micro/kernels/split_v.cc
Normal file
135
code/components/tfmicro/tensorflow/lite/micro/kernels/split_v.cc
Normal file
@@ -0,0 +1,135 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/kernels/op_macros.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace ops {
|
||||
namespace micro {
|
||||
namespace split_v {
|
||||
|
||||
template <typename T>
|
||||
TfLiteStatus SplitImpl(TfLiteContext* context, TfLiteNode* node,
|
||||
const TfLiteEvalTensor* input, int axis_value) {
|
||||
const TfLiteIntArray* input_dims = input->dims;
|
||||
const TfLiteEvalTensor* output0 =
|
||||
tflite::micro::GetEvalOutput(context, node, 0);
|
||||
|
||||
const int split_dimensions = input_dims->size;
|
||||
|
||||
TFLITE_DCHECK_LT(axis_value, split_dimensions);
|
||||
TFLITE_DCHECK_EQ(output0->dims->size, split_dimensions);
|
||||
|
||||
int64_t split_size = 0;
|
||||
const int output_count = NumOutputs(node);
|
||||
for (int i = 0; i < output_count; i++) {
|
||||
split_size +=
|
||||
tflite::micro::GetEvalOutput(context, node, i)->dims->data[axis_value];
|
||||
}
|
||||
TFLITE_DCHECK_EQ(split_size, input_dims->data[axis_value]);
|
||||
int64_t outer_size = 1;
|
||||
for (int i = 0; i < axis_value; ++i) {
|
||||
outer_size *= input_dims->data[i];
|
||||
}
|
||||
|
||||
int64_t base_inner_size = 1;
|
||||
for (int i = axis_value + 1; i < split_dimensions; ++i) {
|
||||
base_inner_size *= input_dims->data[i];
|
||||
}
|
||||
|
||||
const T* input_ptr = tflite::micro::GetTensorData<T>(input);
|
||||
for (int k = 0; k < outer_size; ++k) {
|
||||
for (int i = 0; i < output_count; ++i) {
|
||||
TfLiteEvalTensor* output_tensor =
|
||||
tflite::micro::GetEvalOutput(context, node, i);
|
||||
T* output_data = tflite::micro::GetTensorData<T>(output_tensor);
|
||||
const int copy_size =
|
||||
output_tensor->dims->data[axis_value] * base_inner_size;
|
||||
T* output_ptr = output_data + k * copy_size;
|
||||
for (int j = 0; j < copy_size; ++j) output_ptr[j] = input_ptr[j];
|
||||
input_ptr += copy_size;
|
||||
}
|
||||
}
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TF_LITE_ENSURE_EQ(context, NumInputs(node), 3);
|
||||
|
||||
// Dynamic output tensors are needed if axis tensor is not constant.
|
||||
// But Micro doesn't support dynamic memory allocation, so we only support
|
||||
// constant axis tensor for now.
|
||||
const TfLiteTensor* axis = GetInput(context, node, 2);
|
||||
TF_LITE_ENSURE_MSG(context, IsConstantTensor(axis),
|
||||
"Non constant axis tensor not supported");
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0);
|
||||
const TfLiteEvalTensor* axis = tflite::micro::GetEvalInput(context, node, 2);
|
||||
|
||||
int axis_value = tflite::micro::GetTensorData<int32_t>(axis)[0];
|
||||
if (axis_value < 0) {
|
||||
axis_value += input->dims->size;
|
||||
}
|
||||
|
||||
TF_LITE_ENSURE(context, axis_value >= 0);
|
||||
TF_LITE_ENSURE(context, axis_value < input->dims->size);
|
||||
|
||||
switch (input->type) {
|
||||
case kTfLiteFloat32: {
|
||||
return SplitImpl<float>(context, node, input, axis_value);
|
||||
}
|
||||
case kTfLiteInt8: {
|
||||
return SplitImpl<int8_t>(context, node, input, axis_value);
|
||||
}
|
||||
case kTfLiteInt16: {
|
||||
return SplitImpl<int16_t>(context, node, input, axis_value);
|
||||
}
|
||||
case kTfLiteInt32: {
|
||||
return SplitImpl<int32_t>(context, node, input, axis_value);
|
||||
}
|
||||
default:
|
||||
TF_LITE_KERNEL_LOG(context, "Type %s currently not supported.",
|
||||
TfLiteTypeGetName(input->type));
|
||||
return kTfLiteError;
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
} // namespace split_v
|
||||
|
||||
TfLiteRegistration Register_SPLIT_V() {
|
||||
return {/*init=*/nullptr,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/split_v::Prepare,
|
||||
/*invoke=*/split_v::Eval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
} // namespace micro
|
||||
} // namespace ops
|
||||
} // namespace tflite
|
||||
@@ -0,0 +1,192 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#include "tensorflow/lite/kernels/internal/reference/strided_slice.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <cstring>
|
||||
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/kernels/op_macros.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace ops {
|
||||
namespace micro {
|
||||
namespace strided_slice {
|
||||
|
||||
constexpr int kInputTensor = 0;
|
||||
constexpr int kBeginTensor = 1;
|
||||
constexpr int kEndTensor = 2;
|
||||
constexpr int kStridesTensor = 3;
|
||||
constexpr int kOutputTensor = 0;
|
||||
|
||||
struct StridedSliceContext {
|
||||
StridedSliceContext(TfLiteContext* context, TfLiteNode* node) {
|
||||
params = reinterpret_cast<TfLiteStridedSliceParams*>(node->builtin_data);
|
||||
input = GetInput(context, node, kInputTensor);
|
||||
begin = GetInput(context, node, kBeginTensor);
|
||||
end = GetInput(context, node, kEndTensor);
|
||||
strides = GetInput(context, node, kStridesTensor);
|
||||
output = GetOutput(context, node, kOutputTensor);
|
||||
dims = NumDimensions(input);
|
||||
}
|
||||
const TfLiteStridedSliceParams* params;
|
||||
const TfLiteTensor* input;
|
||||
const TfLiteTensor* begin;
|
||||
const TfLiteTensor* end;
|
||||
const TfLiteTensor* strides;
|
||||
TfLiteTensor* output;
|
||||
int dims;
|
||||
};
|
||||
|
||||
// This Op only supports 1-4D cases and since we use the reference 4D
|
||||
// implementation, the 1-3D tensors are mapped to 4D.
|
||||
const int kMaxDim = 4;
|
||||
|
||||
tflite::StridedSliceParams BuildStridedSliceParams(
|
||||
StridedSliceContext* op_context) {
|
||||
tflite::StridedSliceParams op_params;
|
||||
op_params.start_indices_count = op_context->dims;
|
||||
op_params.stop_indices_count = op_context->dims;
|
||||
op_params.strides_count = op_context->dims;
|
||||
|
||||
for (int i = 0; i < op_context->dims; ++i) {
|
||||
op_params.start_indices[i] = GetTensorData<int32_t>(op_context->begin)[i];
|
||||
op_params.stop_indices[i] = GetTensorData<int32_t>(op_context->end)[i];
|
||||
op_params.strides[i] = GetTensorData<int32_t>(op_context->strides)[i];
|
||||
}
|
||||
|
||||
op_params.begin_mask = op_context->params->begin_mask;
|
||||
op_params.ellipsis_mask = 0;
|
||||
op_params.end_mask = op_context->params->end_mask;
|
||||
op_params.new_axis_mask = 0;
|
||||
op_params.shrink_axis_mask = op_context->params->shrink_axis_mask;
|
||||
return op_params;
|
||||
}
|
||||
|
||||
// Processes the indexing tensors (begin, end and strides) to resize the
|
||||
// output tensor. This function is callable from both Prepare() and Eval() as
|
||||
// long as the caller ensures the indexing tensors are present.
|
||||
TfLiteStatus CheckOutputSize(TfLiteContext* context,
|
||||
StridedSliceContext* op_context) {
|
||||
using ::tflite::strided_slice::StartForAxis;
|
||||
using ::tflite::strided_slice::StopForAxis;
|
||||
TfLiteIntArray* output_shape = op_context->output->dims;
|
||||
int shape_size = 0;
|
||||
auto op_params = BuildStridedSliceParams(op_context);
|
||||
auto input_shape = GetTensorShape(op_context->input);
|
||||
for (int idx = 0; idx < op_context->dims; ++idx) {
|
||||
int32_t stride = GetTensorData<int32_t>(op_context->strides)[idx];
|
||||
TF_LITE_ENSURE_MSG(context, stride != 0, "stride value has to be non-zero");
|
||||
int32_t begin = StartForAxis(op_params, input_shape, idx);
|
||||
int32_t end = StopForAxis(op_params, input_shape, idx, begin);
|
||||
|
||||
// When shrinking an axis, the end position does not matter (and can be
|
||||
// incorrect when negative indexing is used, see Issue #19260). Always use
|
||||
// begin + 1 to generate a length 1 slice, since begin has
|
||||
// already been adjusted for negative indices by StartForAxis.
|
||||
const bool shrink_axis = op_context->params->shrink_axis_mask & (1 << idx);
|
||||
if (shrink_axis) {
|
||||
end = begin + 1;
|
||||
}
|
||||
|
||||
// This is valid for both positive and negative strides
|
||||
int32_t dim_shape = std::ceil((end - begin) / static_cast<float>(stride));
|
||||
dim_shape = dim_shape < 0 ? 0 : dim_shape;
|
||||
if (!shrink_axis) {
|
||||
TF_LITE_ENSURE_EQ(context, output_shape->data[shape_size], dim_shape);
|
||||
shape_size++;
|
||||
}
|
||||
}
|
||||
TF_LITE_ENSURE_EQ(context, output_shape->size, shape_size);
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
|
||||
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
|
||||
return context->AllocatePersistentBuffer(context, sizeof(StridedSliceParams));
|
||||
}
|
||||
|
||||
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
StridedSliceParams* op_params =
|
||||
static_cast<StridedSliceParams*>(node->user_data);
|
||||
TF_LITE_ENSURE_EQ(context, NumInputs(node), 4);
|
||||
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
||||
StridedSliceContext op_context(context, node);
|
||||
TF_LITE_ENSURE_MSG(context, op_context.dims <= kMaxDim,
|
||||
"input dim should not exceed 4");
|
||||
auto params = BuildStridedSliceParams(&op_context);
|
||||
memcpy(op_params, ¶ms, sizeof(StridedSliceParams));
|
||||
return CheckOutputSize(context, &op_context);
|
||||
}
|
||||
|
||||
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
const StridedSliceParams& op_params =
|
||||
*(static_cast<const StridedSliceParams*>(node->user_data));
|
||||
|
||||
const TfLiteEvalTensor* input =
|
||||
tflite::micro::GetEvalInput(context, node, kInputTensor);
|
||||
TfLiteEvalTensor* output =
|
||||
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
||||
switch (output->type) {
|
||||
case kTfLiteFloat32:
|
||||
reference_ops::StridedSlice(op_params,
|
||||
tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<float>(input),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<float>(output));
|
||||
break;
|
||||
case kTfLiteUInt8:
|
||||
reference_ops::StridedSlice(
|
||||
op_params, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<uint8_t>(input),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<uint8_t>(output));
|
||||
break;
|
||||
case kTfLiteInt8:
|
||||
reference_ops::StridedSlice(op_params,
|
||||
tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<int8_t>(input),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<int8_t>(output));
|
||||
break;
|
||||
default:
|
||||
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
|
||||
TfLiteTypeGetName(input->type), input->type);
|
||||
return kTfLiteError;
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
} // namespace strided_slice
|
||||
|
||||
TfLiteRegistration Register_STRIDED_SLICE() {
|
||||
return {/*init=*/strided_slice::Init,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/strided_slice::Prepare,
|
||||
/*invoke=*/strided_slice::Eval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
} // namespace micro
|
||||
} // namespace ops
|
||||
} // namespace tflite
|
||||
256
code/components/tfmicro/tensorflow/lite/micro/kernels/sub.cc
Normal file
256
code/components/tfmicro/tensorflow/lite/micro/kernels/sub.cc
Normal file
@@ -0,0 +1,256 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/kernels/internal/reference/sub.h"
|
||||
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
||||
#include "tensorflow/lite/kernels/internal/reference/process_broadcast_shapes.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/kernels/internal/types.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/kernels/op_macros.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace ops {
|
||||
namespace micro {
|
||||
namespace sub {
|
||||
|
||||
constexpr int kInputTensor1 = 0;
|
||||
constexpr int kInputTensor2 = 1;
|
||||
constexpr int kOutputTensor = 0;
|
||||
|
||||
struct OpData {
|
||||
bool requires_broadcast;
|
||||
|
||||
// These fields are used in both the general 8-bit -> 8bit quantized path,
|
||||
// and the special 16-bit -> 16bit quantized path
|
||||
int input1_shift;
|
||||
int input2_shift;
|
||||
int32_t output_activation_min;
|
||||
int32_t output_activation_max;
|
||||
|
||||
// These fields are used only in the general 8-bit -> 8bit quantized path
|
||||
int32_t input1_multiplier;
|
||||
int32_t input2_multiplier;
|
||||
int32_t output_multiplier;
|
||||
int output_shift;
|
||||
int left_shift;
|
||||
int32_t input1_offset;
|
||||
int32_t input2_offset;
|
||||
int32_t output_offset;
|
||||
};
|
||||
|
||||
TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteSubParams* params,
|
||||
const TfLiteTensor* input1,
|
||||
const TfLiteTensor* input2, TfLiteTensor* output,
|
||||
OpData* data) {
|
||||
data->requires_broadcast = !HaveSameShapes(input1, input2);
|
||||
|
||||
if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) {
|
||||
// 8bit -> 8bit general quantized path, with general rescalings
|
||||
data->input1_offset = -input1->params.zero_point;
|
||||
data->input2_offset = -input2->params.zero_point;
|
||||
data->output_offset = output->params.zero_point;
|
||||
data->left_shift = 20;
|
||||
const float twice_max_input_scale =
|
||||
2 * std::max(input1->params.scale, input2->params.scale);
|
||||
const double real_input1_multiplier =
|
||||
static_cast<double>(input1->params.scale / twice_max_input_scale);
|
||||
const double real_input2_multiplier =
|
||||
static_cast<double>(input2->params.scale / twice_max_input_scale);
|
||||
const double real_output_multiplier =
|
||||
static_cast<double>(twice_max_input_scale /
|
||||
((1 << data->left_shift) * output->params.scale));
|
||||
|
||||
QuantizeMultiplierSmallerThanOneExp(
|
||||
real_input1_multiplier, &data->input1_multiplier, &data->input1_shift);
|
||||
|
||||
QuantizeMultiplierSmallerThanOneExp(
|
||||
real_input2_multiplier, &data->input2_multiplier, &data->input2_shift);
|
||||
|
||||
QuantizeMultiplierSmallerThanOneExp(
|
||||
real_output_multiplier, &data->output_multiplier, &data->output_shift);
|
||||
|
||||
TF_LITE_ENSURE_STATUS(CalculateActivationRangeQuantized(
|
||||
context, params->activation, output, &data->output_activation_min,
|
||||
&data->output_activation_max));
|
||||
}
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
|
||||
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
|
||||
return context->AllocatePersistentBuffer(context, sizeof(OpData));
|
||||
}
|
||||
|
||||
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
TFLITE_DCHECK(node->builtin_data != nullptr);
|
||||
|
||||
OpData* data = static_cast<OpData*>(node->user_data);
|
||||
auto* params = reinterpret_cast<TfLiteSubParams*>(node->builtin_data);
|
||||
|
||||
const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
|
||||
TF_LITE_ENSURE(context, input1 != nullptr);
|
||||
const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2);
|
||||
TF_LITE_ENSURE(context, input2 != nullptr);
|
||||
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
||||
TF_LITE_ENSURE(context, output != nullptr);
|
||||
|
||||
TF_LITE_ENSURE_STATUS(
|
||||
CalculateOpData(context, params, input1, input2, output, data));
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
void EvalSub(TfLiteContext* context, TfLiteNode* node, TfLiteSubParams* params,
|
||||
const OpData* data, const TfLiteEvalTensor* input1,
|
||||
const TfLiteEvalTensor* input2, TfLiteEvalTensor* output) {
|
||||
float output_activation_min, output_activation_max;
|
||||
CalculateActivationRange(params->activation, &output_activation_min,
|
||||
&output_activation_max);
|
||||
tflite::ArithmeticParams op_params;
|
||||
SetActivationParams(output_activation_min, output_activation_max, &op_params);
|
||||
if (data->requires_broadcast) {
|
||||
tflite::reference_ops::BroadcastSubSlow(
|
||||
op_params, tflite::micro::GetTensorShape(input1),
|
||||
tflite::micro::GetTensorData<float>(input1),
|
||||
tflite::micro::GetTensorShape(input2),
|
||||
tflite::micro::GetTensorData<float>(input2),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<float>(output));
|
||||
} else {
|
||||
tflite::reference_ops::SubWithActivation(
|
||||
op_params, tflite::micro::GetTensorShape(input1),
|
||||
tflite::micro::GetTensorData<float>(input1),
|
||||
tflite::micro::GetTensorShape(input2),
|
||||
tflite::micro::GetTensorData<float>(input2),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<float>(output));
|
||||
}
|
||||
}
|
||||
|
||||
TfLiteStatus EvalSubQuantized(TfLiteContext* context, TfLiteNode* node,
|
||||
TfLiteSubParams* params, const OpData* data,
|
||||
const TfLiteEvalTensor* input1,
|
||||
const TfLiteEvalTensor* input2,
|
||||
TfLiteEvalTensor* output) {
|
||||
if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) {
|
||||
tflite::ArithmeticParams op_params;
|
||||
op_params.left_shift = data->left_shift;
|
||||
op_params.input1_offset = data->input1_offset;
|
||||
op_params.input1_multiplier = data->input1_multiplier;
|
||||
op_params.input1_shift = data->input1_shift;
|
||||
op_params.input2_offset = data->input2_offset;
|
||||
op_params.input2_multiplier = data->input2_multiplier;
|
||||
op_params.input2_shift = data->input2_shift;
|
||||
op_params.output_offset = data->output_offset;
|
||||
op_params.output_multiplier = data->output_multiplier;
|
||||
op_params.output_shift = data->output_shift;
|
||||
SetActivationParams(data->output_activation_min,
|
||||
data->output_activation_max, &op_params);
|
||||
bool need_broadcast = reference_ops::ProcessBroadcastShapes(
|
||||
tflite::micro::GetTensorShape(input1),
|
||||
tflite::micro::GetTensorShape(input2), &op_params);
|
||||
|
||||
if (output->type == kTfLiteInt8) {
|
||||
if (need_broadcast) {
|
||||
tflite::reference_ops::BroadcastSubSlow(
|
||||
op_params, tflite::micro::GetTensorShape(input1),
|
||||
tflite::micro::GetTensorData<int8_t>(input1),
|
||||
tflite::micro::GetTensorShape(input2),
|
||||
tflite::micro::GetTensorData<int8_t>(input2),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<int8_t>(output));
|
||||
} else {
|
||||
tflite::reference_ops::Sub(
|
||||
op_params, tflite::micro::GetTensorShape(input1),
|
||||
tflite::micro::GetTensorData<int8_t>(input1),
|
||||
tflite::micro::GetTensorShape(input2),
|
||||
tflite::micro::GetTensorData<int8_t>(input2),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<int8_t>(output));
|
||||
}
|
||||
} else {
|
||||
if (need_broadcast) {
|
||||
tflite::reference_ops::BroadcastSubSlow(
|
||||
op_params, tflite::micro::GetTensorShape(input1),
|
||||
tflite::micro::GetTensorData<uint8_t>(input1),
|
||||
tflite::micro::GetTensorShape(input2),
|
||||
tflite::micro::GetTensorData<uint8_t>(input2),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<uint8_t>(output));
|
||||
} else {
|
||||
tflite::reference_ops::Sub(
|
||||
op_params, tflite::micro::GetTensorShape(input1),
|
||||
tflite::micro::GetTensorData<uint8_t>(input1),
|
||||
tflite::micro::GetTensorShape(input2),
|
||||
tflite::micro::GetTensorData<uint8_t>(input2),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<uint8_t>(output));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
auto* params = reinterpret_cast<TfLiteSubParams*>(node->builtin_data);
|
||||
|
||||
const TfLiteEvalTensor* input1 =
|
||||
tflite::micro::GetEvalInput(context, node, kInputTensor1);
|
||||
const TfLiteEvalTensor* input2 =
|
||||
tflite::micro::GetEvalInput(context, node, kInputTensor2);
|
||||
TfLiteEvalTensor* output =
|
||||
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
||||
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
const OpData& data = *(static_cast<const OpData*>(node->user_data));
|
||||
|
||||
if (output->type == kTfLiteFloat32) {
|
||||
EvalSub(context, node, params, &data, input1, input2, output);
|
||||
} else if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) {
|
||||
TF_LITE_ENSURE_OK(context, EvalSubQuantized(context, node, params, &data,
|
||||
input1, input2, output));
|
||||
} else {
|
||||
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
|
||||
TfLiteTypeGetName(output->type), output->type);
|
||||
return kTfLiteError;
|
||||
}
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
} // namespace sub
|
||||
|
||||
TfLiteRegistration Register_SUB() {
|
||||
return {/*init=*/sub::Init,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/sub::Prepare,
|
||||
/*invoke=*/sub::Eval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
} // namespace micro
|
||||
} // namespace ops
|
||||
} // namespace tflite
|
||||
547
code/components/tfmicro/tensorflow/lite/micro/kernels/svdf.cc
Normal file
547
code/components/tfmicro/tensorflow/lite/micro/kernels/svdf.cc
Normal file
@@ -0,0 +1,547 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include <math.h>
|
||||
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/kernels/op_macros.h"
|
||||
#include "tensorflow/lite/micro/kernels/activation_utils.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/micro/micro_utils.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace {
|
||||
|
||||
struct OpData {
|
||||
int32_t effective_scale_1_a;
|
||||
int32_t effective_scale_2_a;
|
||||
// b versions of each scale are kept at int since the numbers are just the
|
||||
// shift value - typically between [-32, 32].
|
||||
int effective_scale_1_b;
|
||||
int effective_scale_2_b;
|
||||
int scratch_tensor_index;
|
||||
int scratch_output_tensor_index;
|
||||
|
||||
// Cached tensor zero point values for quantized operations.
|
||||
int input_zero_point;
|
||||
int output_zero_point;
|
||||
};
|
||||
|
||||
// Input tensors.
|
||||
constexpr int kInputTensor = 0;
|
||||
constexpr int kWeightsFeatureTensor = 1;
|
||||
constexpr int kWeightsTimeTensor = 2;
|
||||
constexpr int kBiasTensor = 3;
|
||||
// This is a variable tensor, and will be modified by this op.
|
||||
constexpr int kInputActivationStateTensor = 4;
|
||||
|
||||
// Output tensor.
|
||||
constexpr int kOutputTensor = 0;
|
||||
|
||||
/**
|
||||
* This version of SVDF is specific to TFLite Micro. It contains the following
|
||||
* differences between the TFLite version:
|
||||
*
|
||||
* 1.) Scratch tensor allocation - scratch tensors must be known ahead of time
|
||||
* for the Micro interpreter.
|
||||
* 2.) Output dimensions - the TFLite version determines output size and runtime
|
||||
* and resizes the output tensor. Micro runtime does not support tensor
|
||||
* resizing.
|
||||
*/
|
||||
static inline void ApplyTimeWeightsBiasAndActivation(
|
||||
int batch_size, int memory_size, int num_filters, int num_units, int rank,
|
||||
const float* const __restrict__ weights_time_ptr,
|
||||
const float* const __restrict__ bias_ptr, TfLiteFusedActivation activation,
|
||||
float* const __restrict__ state_ptr, float* const __restrict__ scratch_ptr,
|
||||
float* const __restrict__ output_ptr) {
|
||||
// Compute matmul(activation_state, weights_time).
|
||||
for (int b = 0; b < batch_size; ++b) {
|
||||
// Perform batched vector dot product:
|
||||
float* scratch_ptr_batch = scratch_ptr + b * num_filters;
|
||||
const float* vector1_ptr = weights_time_ptr;
|
||||
const float* vector2_ptr = state_ptr + b * memory_size * num_filters;
|
||||
for (int i = 0; i < num_filters; ++i) {
|
||||
*scratch_ptr_batch = 0.f;
|
||||
for (int j = 0; j < memory_size; ++j) {
|
||||
*scratch_ptr_batch += *vector1_ptr++ * *vector2_ptr++;
|
||||
}
|
||||
scratch_ptr_batch++;
|
||||
}
|
||||
}
|
||||
|
||||
// Initialize output with bias if provided.
|
||||
if (bias_ptr) {
|
||||
// VectorBatchVectorAssign
|
||||
for (int i = 0; i < batch_size; ++i) {
|
||||
float* output_data = output_ptr + i * num_units;
|
||||
const float* bias_data = bias_ptr;
|
||||
for (int j = 0; j < num_units; ++j) {
|
||||
*output_data++ = *bias_data++;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
float* output_data = output_ptr;
|
||||
for (int i = 0; i < batch_size * num_units; ++i) {
|
||||
*output_data++ = 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
// Reduction sum.
|
||||
for (int b = 0; b < batch_size; ++b) {
|
||||
float* output_ptr_batch = output_ptr + b * num_units;
|
||||
float* scratch_ptr_batch = scratch_ptr + b * num_filters;
|
||||
|
||||
// Reduction sum vector
|
||||
for (int i = 0; i < num_units; ++i) {
|
||||
for (int j = 0; j < rank; j++) {
|
||||
output_ptr_batch[i] += *scratch_ptr_batch++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Apply activation.
|
||||
for (int b = 0; b < batch_size; ++b) {
|
||||
float* output_ptr_batch = output_ptr + b * num_units;
|
||||
for (int i = 0; i < num_units; ++i) {
|
||||
*output_ptr_batch =
|
||||
tflite::ops::micro::ActivationValFloat(activation, *output_ptr_batch);
|
||||
++output_ptr_batch;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
inline void EvalFloatSVDF(
|
||||
TfLiteContext* context, TfLiteNode* node, const TfLiteEvalTensor* input,
|
||||
const TfLiteEvalTensor* weights_feature,
|
||||
const TfLiteEvalTensor* weights_time, const TfLiteEvalTensor* bias,
|
||||
const TfLiteSVDFParams* params, int scratch_tensor_index,
|
||||
TfLiteEvalTensor* activation_state, TfLiteEvalTensor* output) {
|
||||
const int rank = params->rank;
|
||||
const int batch_size = input->dims->data[0];
|
||||
const int input_size = input->dims->data[1];
|
||||
const int num_filters = weights_feature->dims->data[0];
|
||||
const int num_units = num_filters / rank;
|
||||
const int memory_size = weights_time->dims->data[1];
|
||||
|
||||
const float* weights_feature_ptr =
|
||||
tflite::micro::GetTensorData<float>(weights_feature);
|
||||
const float* weights_time_ptr =
|
||||
tflite::micro::GetTensorData<float>(weights_time);
|
||||
const float* bias_ptr = tflite::micro::GetTensorData<float>(bias);
|
||||
const float* input_ptr = tflite::micro::GetTensorData<float>(input);
|
||||
|
||||
float* state_ptr = tflite::micro::GetTensorData<float>(activation_state);
|
||||
|
||||
TFLITE_DCHECK(context != nullptr);
|
||||
TFLITE_DCHECK(context->GetScratchBuffer != nullptr);
|
||||
|
||||
float* scratch_ptr = static_cast<float*>(
|
||||
context->GetScratchBuffer(context, scratch_tensor_index));
|
||||
|
||||
float* output_ptr = tflite::micro::GetTensorData<float>(output);
|
||||
|
||||
// Left shift the activation_state.
|
||||
{
|
||||
float* new_state_start = state_ptr;
|
||||
const float* old_state_start = state_ptr + 1;
|
||||
const float* old_state_end =
|
||||
state_ptr + batch_size * num_filters * memory_size;
|
||||
while (old_state_start != old_state_end) {
|
||||
*new_state_start++ = *old_state_start++;
|
||||
}
|
||||
}
|
||||
|
||||
// Note: no need to clear the latest activation, matmul is not accumulative.
|
||||
|
||||
// Compute conv1d(inputs, weights_feature).
|
||||
// The activation_state's rightmost column is used to save current cycle
|
||||
// activation. This is achieved by starting at state_ptr[memory_size - 1] and
|
||||
// having the stride equal to memory_size.
|
||||
|
||||
// Perform batched matrix vector multiply operation:
|
||||
{
|
||||
const float* matrix = weights_feature_ptr;
|
||||
const float* vector = input_ptr;
|
||||
float* result = &state_ptr[memory_size - 1];
|
||||
float* result_in_batch = result;
|
||||
for (int i = 0; i < batch_size; ++i) {
|
||||
const float* matrix_ptr = matrix;
|
||||
for (int j = 0; j < num_filters; ++j) {
|
||||
float dot_prod = 0.0f;
|
||||
const float* vector_in_batch = vector + i * input_size;
|
||||
for (int k = 0; k < input_size; ++k) {
|
||||
dot_prod += *matrix_ptr++ * *vector_in_batch++;
|
||||
}
|
||||
*result_in_batch = dot_prod;
|
||||
result_in_batch += memory_size;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ApplyTimeWeightsBiasAndActivation(
|
||||
batch_size, memory_size, num_filters, num_units, rank, weights_time_ptr,
|
||||
bias_ptr, params->activation, state_ptr, scratch_ptr, output_ptr);
|
||||
}
|
||||
|
||||
void EvalIntegerSVDF(TfLiteContext* context, TfLiteNode* node,
|
||||
const TfLiteEvalTensor* input_tensor,
|
||||
const TfLiteEvalTensor* weights_feature_tensor,
|
||||
const TfLiteEvalTensor* weights_time_tensor,
|
||||
const TfLiteEvalTensor* bias_tensor,
|
||||
const TfLiteSVDFParams* params,
|
||||
TfLiteEvalTensor* activation_state_tensor,
|
||||
TfLiteEvalTensor* output_tensor, const OpData& data) {
|
||||
const int n_rank = params->rank;
|
||||
const int n_batch = input_tensor->dims->data[0];
|
||||
const int n_input = input_tensor->dims->data[1];
|
||||
const int n_filter = weights_feature_tensor->dims->data[0];
|
||||
const int n_unit = n_filter / n_rank;
|
||||
const int n_memory = weights_time_tensor->dims->data[1];
|
||||
|
||||
TFLITE_DCHECK(context != nullptr);
|
||||
TFLITE_DCHECK(context->GetScratchBuffer != nullptr);
|
||||
|
||||
int32_t* scratch_tensor = static_cast<int32_t*>(
|
||||
context->GetScratchBuffer(context, data.scratch_tensor_index));
|
||||
int32_t* scratch_output_tensor = static_cast<int32_t*>(
|
||||
context->GetScratchBuffer(context, data.scratch_output_tensor_index));
|
||||
|
||||
// Shift states.
|
||||
int16_t* const state_ptr =
|
||||
tflite::micro::GetTensorData<int16_t>(activation_state_tensor);
|
||||
|
||||
// Left shift the activation_state.
|
||||
{
|
||||
int16_t* new_state_start = state_ptr;
|
||||
const int16_t* old_state_start = state_ptr + 1;
|
||||
const int16_t* old_state_end = state_ptr + n_batch * n_filter * n_memory;
|
||||
while (old_state_start != old_state_end) {
|
||||
*new_state_start++ = *old_state_start++;
|
||||
}
|
||||
}
|
||||
|
||||
// Note: no need to clear the latest activation, matmul is not accumulative.
|
||||
|
||||
// Feature matmul.
|
||||
{
|
||||
int16_t* state =
|
||||
tflite::micro::GetTensorData<int16_t>(activation_state_tensor);
|
||||
const int8_t* input = tflite::micro::GetTensorData<int8_t>(input_tensor);
|
||||
const int8_t* weight_feature =
|
||||
tflite::micro::GetTensorData<int8_t>(weights_feature_tensor);
|
||||
const int32_t output_max = std::numeric_limits<int16_t>::max();
|
||||
const int32_t output_min = std::numeric_limits<int16_t>::min();
|
||||
int16_t* result_in_batch = state + (n_memory - 1);
|
||||
for (int b = 0; b < n_batch; b++) {
|
||||
const int8_t* matrix_ptr = weight_feature;
|
||||
for (int r = 0; r < n_filter; r++) {
|
||||
int32_t dot_prod = 0;
|
||||
const int8_t* vector_in_batch = input + b * n_input;
|
||||
for (int c = 0; c < n_input; c++) {
|
||||
dot_prod +=
|
||||
*matrix_ptr++ * (*vector_in_batch++ - data.input_zero_point);
|
||||
}
|
||||
dot_prod = MultiplyByQuantizedMultiplier(
|
||||
dot_prod, data.effective_scale_1_a, data.effective_scale_1_b);
|
||||
dot_prod = std::min(std::max(output_min, dot_prod), output_max);
|
||||
// This assumes state is symmetrically quantized. Otherwise last bit of
|
||||
// state should be initialized to its zero point and accumulate the
|
||||
// dot_prod.
|
||||
// Equivalent as the following:
|
||||
// result_in_batch = zero point, which happens to be zero.
|
||||
// result_in_batch += dot_prod_56.
|
||||
*result_in_batch = dot_prod;
|
||||
result_in_batch += n_memory;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Time.
|
||||
{
|
||||
for (int b = 0; b < n_batch; ++b) {
|
||||
int32_t* scratch_ptr_batch = scratch_tensor + b * n_filter;
|
||||
|
||||
// Perform batched vector dot product:
|
||||
const int16_t* vector1_ptr =
|
||||
tflite::micro::GetTensorData<int16_t>(weights_time_tensor);
|
||||
const int16_t* vector2_ptr =
|
||||
tflite::micro::GetTensorData<int16_t>(activation_state_tensor) +
|
||||
b * n_memory * n_filter;
|
||||
|
||||
for (int i = 0; i < n_filter; i++) {
|
||||
*scratch_ptr_batch = 0;
|
||||
for (int j = 0; j < n_memory; j++) {
|
||||
*scratch_ptr_batch += *vector1_ptr++ * *vector2_ptr++;
|
||||
}
|
||||
scratch_ptr_batch++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Reduce, add bias, rescale, activation.
|
||||
{
|
||||
// Add bias.
|
||||
if (bias_tensor) {
|
||||
// Vector batch assign:
|
||||
const int32_t* bias_data =
|
||||
tflite::micro::GetTensorData<int32_t>(bias_tensor);
|
||||
for (int i = 0; i < n_batch; ++i) {
|
||||
int32_t* output_ptr = scratch_output_tensor + i * n_unit;
|
||||
const int32_t* bias_ptr = bias_data;
|
||||
for (int j = 0; j < n_unit; ++j) {
|
||||
*output_ptr++ = *bias_ptr++;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
int32_t* output_ptr = scratch_output_tensor;
|
||||
for (int i = 0; i < n_batch * n_unit; ++i) {
|
||||
*output_ptr++ = 0;
|
||||
}
|
||||
}
|
||||
|
||||
// Reduce.
|
||||
for (int b = 0; b < n_batch; ++b) {
|
||||
int32_t* output_temp_ptr = scratch_output_tensor + b * n_unit;
|
||||
int32_t* scratch_ptr_batch = scratch_tensor + b * n_filter;
|
||||
|
||||
// Reduction sum vector
|
||||
for (int i = 0; i < n_unit; ++i) {
|
||||
for (int j = 0; j < n_rank; ++j) {
|
||||
output_temp_ptr[i] += *scratch_ptr_batch++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Rescale.
|
||||
const int32_t output_max = std::numeric_limits<int8_t>::max();
|
||||
const int32_t output_min = std::numeric_limits<int8_t>::min();
|
||||
for (int i = 0; i < n_batch * n_unit; ++i) {
|
||||
int32_t x1 = scratch_output_tensor[i];
|
||||
int32_t x2 = MultiplyByQuantizedMultiplier(x1, data.effective_scale_2_a,
|
||||
data.effective_scale_2_b);
|
||||
int32_t x3 = x2 + data.output_zero_point;
|
||||
int32_t x4 = std::min(std::max(output_min, x3), output_max);
|
||||
tflite::micro::GetTensorData<int8_t>(output_tensor)[i] =
|
||||
static_cast<int8_t>(x4);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
|
||||
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
|
||||
return context->AllocatePersistentBuffer(context, sizeof(OpData));
|
||||
}
|
||||
|
||||
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->builtin_data != nullptr);
|
||||
|
||||
const auto* params = static_cast<const TfLiteSVDFParams*>(node->builtin_data);
|
||||
|
||||
// Validate Tensor Inputs (dtype depends on quantization):
|
||||
// [0] = Input, {2, batch_size, input_size}
|
||||
// [1] = Weights Feature, {2, num_filters, input_size}
|
||||
// [2] = Weights Time, {2, num_filters, memory_size}
|
||||
// [3] = Bias (optional), {1, num_units}
|
||||
// [4] = Activation State (variable),
|
||||
// {2, batch_size, memory_size * num_filters}
|
||||
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
||||
TF_LITE_ENSURE(context, input != nullptr);
|
||||
const TfLiteTensor* weights_feature =
|
||||
GetInput(context, node, kWeightsFeatureTensor);
|
||||
TF_LITE_ENSURE(context, weights_feature != nullptr);
|
||||
const TfLiteTensor* weights_time =
|
||||
GetInput(context, node, kWeightsTimeTensor);
|
||||
TF_LITE_ENSURE(context, weights_time != nullptr);
|
||||
const TfLiteTensor* bias = GetOptionalInputTensor(context, node, kBiasTensor);
|
||||
const TfLiteTensor* activation_state =
|
||||
GetInput(context, node, kInputActivationStateTensor);
|
||||
TF_LITE_ENSURE(context, activation_state != nullptr);
|
||||
|
||||
// Define input constants based on input tensor definition above:
|
||||
const int rank = params->rank;
|
||||
const int input_size = input->dims->data[1];
|
||||
const int batch_size = input->dims->data[0];
|
||||
const int num_filters = weights_feature->dims->data[0];
|
||||
TF_LITE_ENSURE_EQ(context, num_filters % rank, 0);
|
||||
const int num_units = num_filters / rank;
|
||||
const int memory_size = weights_time->dims->data[1];
|
||||
|
||||
// Validate Input Tensor:
|
||||
TF_LITE_ENSURE(context,
|
||||
input->type == kTfLiteFloat32 || input->type == kTfLiteInt8);
|
||||
TF_LITE_ENSURE_EQ(context, NumDimensions(input), 2);
|
||||
|
||||
// Validate Tensor Output:
|
||||
// [0] = float/int8_t, {2, batch_size, num_units}
|
||||
TF_LITE_ENSURE_EQ(context, node->outputs->size, 1);
|
||||
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
||||
TF_LITE_ENSURE(context, output != nullptr);
|
||||
TF_LITE_ENSURE_EQ(context, NumDimensions(output), 2);
|
||||
TF_LITE_ENSURE_EQ(context, output->dims->data[0], batch_size);
|
||||
TF_LITE_ENSURE_EQ(context, output->dims->data[1], num_units);
|
||||
|
||||
// Validate Weights Feature Input Tensor:
|
||||
TF_LITE_ENSURE_EQ(context, NumDimensions(weights_feature), 2);
|
||||
TF_LITE_ENSURE_EQ(context, weights_feature->dims->data[1], input_size);
|
||||
|
||||
// Validate Weights Time Input Tensor:
|
||||
TF_LITE_ENSURE_EQ(context, NumDimensions(weights_time), 2);
|
||||
TF_LITE_ENSURE_EQ(context, weights_time->dims->data[0], num_filters);
|
||||
TF_LITE_ENSURE_EQ(context, weights_time->dims->data[1], memory_size);
|
||||
|
||||
// Validate Optional Bias Input Tensor:
|
||||
if (bias != nullptr) {
|
||||
TF_LITE_ENSURE_EQ(context, bias->dims->data[0], num_units);
|
||||
}
|
||||
|
||||
// Validate Activation State Input Tensor:
|
||||
TF_LITE_ENSURE_EQ(context, NumDimensions(activation_state), 2);
|
||||
TF_LITE_ENSURE_EQ(context, activation_state->dims->data[0], batch_size);
|
||||
TF_LITE_ENSURE_EQ(context, activation_state->dims->data[1],
|
||||
memory_size * num_filters);
|
||||
// Since is_variable is not part of TFLiteEvalTensor, check is_variable here.
|
||||
TF_LITE_ENSURE_EQ(context, activation_state->is_variable, true);
|
||||
|
||||
TF_LITE_ENSURE_EQ(context, node->inputs->size, 5);
|
||||
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
OpData* data = static_cast<OpData*>(node->user_data);
|
||||
|
||||
if (input->type == kTfLiteInt8) {
|
||||
TF_LITE_ENSURE_EQ(context, weights_feature->type, kTfLiteInt8);
|
||||
TF_LITE_ENSURE_EQ(context, weights_time->type, kTfLiteInt16);
|
||||
TF_LITE_ENSURE_EQ(context, activation_state->type, kTfLiteInt16);
|
||||
if (bias != nullptr) {
|
||||
TF_LITE_ENSURE_EQ(context, bias->type, kTfLiteInt32);
|
||||
}
|
||||
|
||||
TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteInt8);
|
||||
|
||||
const double effective_scale_1 = static_cast<double>(
|
||||
input->params.scale * weights_feature->params.scale /
|
||||
activation_state->params.scale);
|
||||
const double effective_scale_2 =
|
||||
static_cast<double>(activation_state->params.scale *
|
||||
weights_time->params.scale / output->params.scale);
|
||||
|
||||
// TODO(b/162018098): Use TF_LITE_ENSURE_NEAR when it is ready.
|
||||
TF_LITE_ENSURE(
|
||||
context,
|
||||
std::abs(static_cast<double>(bias->params.scale) -
|
||||
static_cast<double>(activation_state->params.scale *
|
||||
weights_time->params.scale)) < 1e-5);
|
||||
|
||||
QuantizeMultiplier(effective_scale_1, &(data->effective_scale_1_a),
|
||||
&(data->effective_scale_1_b));
|
||||
QuantizeMultiplier(effective_scale_2, &(data->effective_scale_2_a),
|
||||
&(data->effective_scale_2_b));
|
||||
|
||||
data->input_zero_point = input->params.zero_point;
|
||||
data->output_zero_point = output->params.zero_point;
|
||||
|
||||
TFLITE_DCHECK(context->RequestScratchBufferInArena != nullptr);
|
||||
|
||||
const TfLiteStatus scratch_status = context->RequestScratchBufferInArena(
|
||||
context, batch_size * num_filters * sizeof(int32_t),
|
||||
&(data->scratch_tensor_index));
|
||||
TF_LITE_ENSURE_OK(context, scratch_status);
|
||||
|
||||
const TfLiteStatus scratch_output_status =
|
||||
context->RequestScratchBufferInArena(
|
||||
context, batch_size * num_units * sizeof(int32_t),
|
||||
&(data->scratch_output_tensor_index));
|
||||
TF_LITE_ENSURE_OK(context, scratch_output_status);
|
||||
} else {
|
||||
TF_LITE_ENSURE_EQ(context, weights_feature->type, kTfLiteFloat32);
|
||||
TF_LITE_ENSURE_EQ(context, weights_time->type, kTfLiteFloat32);
|
||||
TF_LITE_ENSURE_EQ(context, activation_state->type, kTfLiteFloat32);
|
||||
if (bias != nullptr) {
|
||||
TF_LITE_ENSURE_EQ(context, bias->type, kTfLiteFloat32);
|
||||
}
|
||||
TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteFloat32);
|
||||
|
||||
TFLITE_DCHECK(context->RequestScratchBufferInArena != nullptr);
|
||||
const TfLiteStatus scratch_status = context->RequestScratchBufferInArena(
|
||||
context, batch_size * num_filters * sizeof(float),
|
||||
&(data->scratch_tensor_index));
|
||||
TF_LITE_ENSURE_OK(context, scratch_status);
|
||||
}
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
auto* params = reinterpret_cast<TfLiteSVDFParams*>(node->builtin_data);
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
const OpData& data = *(static_cast<const OpData*>(node->user_data));
|
||||
|
||||
const TfLiteEvalTensor* input =
|
||||
tflite::micro::GetEvalInput(context, node, kInputTensor);
|
||||
const TfLiteEvalTensor* weights_feature =
|
||||
tflite::micro::GetEvalInput(context, node, kWeightsFeatureTensor);
|
||||
const TfLiteEvalTensor* weights_time =
|
||||
tflite::micro::GetEvalInput(context, node, kWeightsTimeTensor);
|
||||
const TfLiteEvalTensor* bias =
|
||||
(NumInputs(node) == 5)
|
||||
? tflite::micro::GetEvalInput(context, node, kBiasTensor)
|
||||
: nullptr;
|
||||
TfLiteEvalTensor* activation_state = tflite::micro::GetMutableEvalInput(
|
||||
context, node, kInputActivationStateTensor);
|
||||
TfLiteEvalTensor* output =
|
||||
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
||||
|
||||
switch (weights_feature->type) {
|
||||
case kTfLiteFloat32: {
|
||||
EvalFloatSVDF(context, node, input, weights_feature, weights_time, bias,
|
||||
params, data.scratch_tensor_index, activation_state,
|
||||
output);
|
||||
return kTfLiteOk;
|
||||
break;
|
||||
}
|
||||
|
||||
case kTfLiteInt8: {
|
||||
EvalIntegerSVDF(context, node, input, weights_feature, weights_time, bias,
|
||||
params, activation_state, output, data);
|
||||
return kTfLiteOk;
|
||||
break;
|
||||
}
|
||||
|
||||
default:
|
||||
TF_LITE_KERNEL_LOG(context, "Type %s not currently supported.",
|
||||
TfLiteTypeGetName(weights_feature->type));
|
||||
return kTfLiteError;
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
TfLiteRegistration Register_SVDF() {
|
||||
return {/*init=*/Init,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/Prepare,
|
||||
/*invoke=*/Eval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
} // namespace tflite
|
||||
158
code/components/tfmicro/tensorflow/lite/micro/kernels/tanh.cc
Normal file
158
code/components/tfmicro/tensorflow/lite/micro/kernels/tanh.cc
Normal file
@@ -0,0 +1,158 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/kernels/internal/reference/integer_ops/tanh.h"
|
||||
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
||||
#include "tensorflow/lite/kernels/internal/reference/tanh.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/kernels/op_macros.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/micro/micro_utils.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace ops {
|
||||
namespace micro {
|
||||
namespace activations {
|
||||
namespace {
|
||||
constexpr int kInputTensor = 0;
|
||||
constexpr int kOutputTensor = 0;
|
||||
|
||||
struct OpData {
|
||||
int32_t input_zero_point;
|
||||
int32_t input_range_radius;
|
||||
int32_t input_multiplier;
|
||||
int input_left_shift;
|
||||
};
|
||||
|
||||
void* TanhInit(TfLiteContext* context, const char* buffer, size_t length) {
|
||||
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
|
||||
return context->AllocatePersistentBuffer(context, sizeof(OpData));
|
||||
}
|
||||
|
||||
TfLiteStatus CalculateArithmeticOpData(TfLiteContext* context, TfLiteNode* node,
|
||||
OpData* data) {
|
||||
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
|
||||
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
||||
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
||||
TF_LITE_ENSURE(context, input != nullptr);
|
||||
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
||||
TF_LITE_ENSURE(context, output != nullptr);
|
||||
|
||||
TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
|
||||
|
||||
if (input->type == kTfLiteUInt8 || input->type == kTfLiteInt8) {
|
||||
static constexpr int kInputIntegerBits = 4;
|
||||
const double input_real_multiplier =
|
||||
static_cast<double>(input->params.scale) *
|
||||
static_cast<double>(1 << (31 - kInputIntegerBits));
|
||||
|
||||
const double q = std::frexp(input_real_multiplier, &data->input_left_shift);
|
||||
data->input_multiplier = static_cast<int32_t>(TfLiteRound(q * (1ll << 31)));
|
||||
|
||||
data->input_range_radius =
|
||||
CalculateInputRadius(kInputIntegerBits, data->input_left_shift, 31);
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus TanhPrepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
|
||||
OpData* data = static_cast<OpData*>(node->user_data);
|
||||
|
||||
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
||||
TF_LITE_ENSURE(context, input != nullptr);
|
||||
data->input_zero_point = input->params.zero_point;
|
||||
return CalculateArithmeticOpData(context, node, data);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
TfLiteStatus TanhEval(TfLiteContext* context, TfLiteNode* node) {
|
||||
const TfLiteEvalTensor* input =
|
||||
tflite::micro::GetEvalInput(context, node, kInputTensor);
|
||||
TfLiteEvalTensor* output =
|
||||
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
||||
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
const OpData& data = *(static_cast<const OpData*>(node->user_data));
|
||||
|
||||
switch (input->type) {
|
||||
case kTfLiteFloat32: {
|
||||
reference_ops::Tanh(tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<float>(input),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<float>(output));
|
||||
return kTfLiteOk;
|
||||
} break;
|
||||
case kTfLiteInt16: {
|
||||
TanhParams params;
|
||||
params.input_left_shift = data.input_left_shift;
|
||||
reference_ops::Tanh(params, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<int16_t>(input),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<int16_t>(output));
|
||||
return kTfLiteOk;
|
||||
} break;
|
||||
case kTfLiteUInt8: {
|
||||
TanhParams params;
|
||||
params.input_zero_point = data.input_zero_point;
|
||||
params.input_range_radius = data.input_range_radius;
|
||||
params.input_multiplier = data.input_multiplier;
|
||||
params.input_left_shift = data.input_left_shift;
|
||||
reference_ops::Tanh(params, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<uint8_t>(input),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<uint8_t>(output));
|
||||
|
||||
return kTfLiteOk;
|
||||
} break;
|
||||
case kTfLiteInt8: {
|
||||
reference_integer_ops::Tanh(
|
||||
data.input_zero_point, data.input_range_radius, data.input_multiplier,
|
||||
data.input_left_shift, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<int8_t>(input),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<int8_t>(output));
|
||||
return kTfLiteOk;
|
||||
} break;
|
||||
default:
|
||||
TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
|
||||
TfLiteTypeGetName(input->type),
|
||||
TfLiteTypeGetName(output->type));
|
||||
return kTfLiteError;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace activations
|
||||
|
||||
TfLiteRegistration Register_TANH() {
|
||||
return {/*init=*/activations::TanhInit,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/activations::TanhPrepare,
|
||||
/*invoke=*/activations::TanhEval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
} // namespace micro
|
||||
} // namespace ops
|
||||
} // namespace tflite
|
||||
121
code/components/tfmicro/tensorflow/lite/micro/kernels/unpack.cc
Normal file
121
code/components/tfmicro/tensorflow/lite/micro/kernels/unpack.cc
Normal file
@@ -0,0 +1,121 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace ops {
|
||||
namespace micro {
|
||||
namespace unpack {
|
||||
namespace {
|
||||
|
||||
constexpr int kInputTensor = 0;
|
||||
|
||||
template <typename T>
|
||||
TfLiteStatus UnpackImpl(TfLiteContext* context, TfLiteNode* node,
|
||||
const TfLiteEvalTensor* input, int output_count,
|
||||
int axis) {
|
||||
const TfLiteEvalTensor* output0 =
|
||||
tflite::micro::GetEvalOutput(context, node, 0);
|
||||
const TfLiteIntArray* input_dims = input->dims;
|
||||
const TfLiteIntArray* output_dims = output0->dims;
|
||||
const int dimensions = input_dims->size;
|
||||
|
||||
if (axis < 0) {
|
||||
axis += input->dims->size;
|
||||
}
|
||||
|
||||
TFLITE_DCHECK_LT(axis, dimensions);
|
||||
|
||||
int outer_size = 1;
|
||||
for (int i = 0; i < axis; ++i) {
|
||||
outer_size *= input_dims->data[i];
|
||||
}
|
||||
int copy_size = 1;
|
||||
for (int i = axis + 1; i < dimensions; ++i) {
|
||||
copy_size *= input_dims->data[i];
|
||||
}
|
||||
int output_size = 1;
|
||||
for (int i = 0; i < output_dims->size; ++i) {
|
||||
output_size *= output_dims->data[i];
|
||||
}
|
||||
TFLITE_DCHECK_EQ(output_size, copy_size * outer_size);
|
||||
|
||||
const T* input_data = tflite::micro::GetTensorData<T>(input);
|
||||
|
||||
for (int i = 0; i < output_count; ++i) {
|
||||
TfLiteEvalTensor* t = tflite::micro::GetEvalOutput(context, node, i);
|
||||
T* output_data = tflite::micro::GetTensorData<T>(t);
|
||||
for (int k = 0; k < outer_size; ++k) {
|
||||
T* output_ptr = output_data + copy_size * k;
|
||||
int loc = k * output_count * copy_size + i * copy_size;
|
||||
const T* input_ptr = input_data + loc;
|
||||
for (int j = 0; j < copy_size; ++j) output_ptr[j] = input_ptr[j];
|
||||
}
|
||||
}
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
TfLiteUnpackParams* data =
|
||||
reinterpret_cast<TfLiteUnpackParams*>(node->builtin_data);
|
||||
|
||||
const TfLiteEvalTensor* input =
|
||||
tflite::micro::GetEvalInput(context, node, kInputTensor);
|
||||
|
||||
switch (input->type) {
|
||||
case kTfLiteFloat32: {
|
||||
return UnpackImpl<float>(context, node, input, data->num, data->axis);
|
||||
}
|
||||
case kTfLiteInt32: {
|
||||
return UnpackImpl<int32_t>(context, node, input, data->num, data->axis);
|
||||
}
|
||||
case kTfLiteUInt8: {
|
||||
return UnpackImpl<uint8_t>(context, node, input, data->num, data->axis);
|
||||
}
|
||||
case kTfLiteInt8: {
|
||||
return UnpackImpl<int8_t>(context, node, input, data->num, data->axis);
|
||||
}
|
||||
default: {
|
||||
TF_LITE_KERNEL_LOG(context, "Type '%s' is not supported by unpack.",
|
||||
TfLiteTypeGetName(input->type));
|
||||
return kTfLiteError;
|
||||
}
|
||||
}
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
} // namespace
|
||||
} // namespace unpack
|
||||
|
||||
TfLiteRegistration Register_UNPACK() {
|
||||
return {/*init=*/nullptr,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/nullptr,
|
||||
/*invoke=*/unpack::Eval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
} // namespace micro
|
||||
} // namespace ops
|
||||
} // namespace tflite
|
||||
155
code/components/tfmicro/tensorflow/lite/micro/memory_helpers.cc
Normal file
155
code/components/tfmicro/tensorflow/lite/micro/memory_helpers.cc
Normal file
@@ -0,0 +1,155 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/micro/memory_helpers.h"
|
||||
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
|
||||
#include "flatbuffers/flatbuffers.h" // from @flatbuffers
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/core/api/error_reporter.h"
|
||||
#include "tensorflow/lite/core/api/flatbuffer_conversions.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/schema/schema_generated.h"
|
||||
|
||||
namespace tflite {
|
||||
|
||||
uint8_t* AlignPointerUp(uint8_t* data, size_t alignment) {
|
||||
std::uintptr_t data_as_uintptr_t = reinterpret_cast<std::uintptr_t>(data);
|
||||
uint8_t* aligned_result = reinterpret_cast<uint8_t*>(
|
||||
((data_as_uintptr_t + (alignment - 1)) / alignment) * alignment);
|
||||
return aligned_result;
|
||||
}
|
||||
|
||||
uint8_t* AlignPointerDown(uint8_t* data, size_t alignment) {
|
||||
std::uintptr_t data_as_uintptr_t = reinterpret_cast<std::uintptr_t>(data);
|
||||
uint8_t* aligned_result =
|
||||
reinterpret_cast<uint8_t*>((data_as_uintptr_t / alignment) * alignment);
|
||||
return aligned_result;
|
||||
}
|
||||
|
||||
size_t AlignSizeUp(size_t size, size_t alignment) {
|
||||
size_t aligned_size = (((size + (alignment - 1)) / alignment) * alignment);
|
||||
return aligned_size;
|
||||
}
|
||||
|
||||
TfLiteStatus TfLiteTypeSizeOf(TfLiteType type, size_t* size) {
|
||||
switch (type) {
|
||||
case kTfLiteFloat32:
|
||||
*size = sizeof(float);
|
||||
break;
|
||||
case kTfLiteInt16:
|
||||
*size = sizeof(int16_t);
|
||||
break;
|
||||
case kTfLiteInt32:
|
||||
*size = sizeof(int32_t);
|
||||
break;
|
||||
case kTfLiteUInt8:
|
||||
*size = sizeof(uint8_t);
|
||||
break;
|
||||
case kTfLiteInt8:
|
||||
*size = sizeof(int8_t);
|
||||
break;
|
||||
case kTfLiteInt64:
|
||||
*size = sizeof(int64_t);
|
||||
break;
|
||||
case kTfLiteBool:
|
||||
*size = sizeof(bool);
|
||||
break;
|
||||
case kTfLiteComplex64:
|
||||
*size = sizeof(float) * 2;
|
||||
break;
|
||||
case kTfLiteComplex128:
|
||||
*size = sizeof(double) * 2;
|
||||
break;
|
||||
default:
|
||||
return kTfLiteError;
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus BytesRequiredForTensor(const tflite::Tensor& flatbuffer_tensor,
|
||||
size_t* bytes, size_t* type_size,
|
||||
ErrorReporter* error_reporter) {
|
||||
int element_count = 1;
|
||||
// If flatbuffer_tensor.shape == nullptr, then flatbuffer_tensor is a scalar
|
||||
// so has 1 element.
|
||||
if (flatbuffer_tensor.shape() != nullptr) {
|
||||
for (size_t n = 0; n < flatbuffer_tensor.shape()->Length(); ++n) {
|
||||
element_count *= flatbuffer_tensor.shape()->Get(n);
|
||||
}
|
||||
}
|
||||
|
||||
TfLiteType tf_lite_type;
|
||||
TF_LITE_ENSURE_STATUS(ConvertTensorType(flatbuffer_tensor.type(),
|
||||
&tf_lite_type, error_reporter));
|
||||
TF_LITE_ENSURE_STATUS(TfLiteTypeSizeOf(tf_lite_type, type_size));
|
||||
*bytes = element_count * (*type_size);
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus TfLiteEvalTensorByteLength(const TfLiteEvalTensor* eval_tensor,
|
||||
size_t* out_bytes) {
|
||||
TFLITE_DCHECK(out_bytes != nullptr);
|
||||
|
||||
int element_count = 1;
|
||||
// If eval_tensor->dims == nullptr, then tensor is a scalar so has 1 element.
|
||||
if (eval_tensor->dims != nullptr) {
|
||||
for (int n = 0; n < eval_tensor->dims->size; ++n) {
|
||||
element_count *= eval_tensor->dims->data[n];
|
||||
}
|
||||
}
|
||||
size_t type_size;
|
||||
TF_LITE_ENSURE_STATUS(TfLiteTypeSizeOf(eval_tensor->type, &type_size));
|
||||
*out_bytes = element_count * type_size;
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus AllocateOutputDimensionsFromInput(TfLiteContext* context,
|
||||
const TfLiteTensor* input1,
|
||||
const TfLiteTensor* input2,
|
||||
TfLiteTensor* output) {
|
||||
const TfLiteTensor* input = nullptr;
|
||||
|
||||
TF_LITE_ENSURE(context, input1->dims != nullptr);
|
||||
TF_LITE_ENSURE(context, input2->dims != nullptr);
|
||||
TF_LITE_ENSURE(context, output->dims->size == 0);
|
||||
|
||||
input = input1->dims->size > input2->dims->size ? input1 : input2;
|
||||
TF_LITE_ENSURE(context, output->type == input->type);
|
||||
|
||||
size_t size = 0;
|
||||
TfLiteTypeSizeOf(input->type, &size);
|
||||
const int dimensions_count = tflite::GetTensorShape(input).DimensionsCount();
|
||||
for (int i = 0; i < dimensions_count; i++) {
|
||||
size *= input->dims->data[i];
|
||||
}
|
||||
|
||||
output->bytes = size;
|
||||
|
||||
output->dims =
|
||||
reinterpret_cast<TfLiteIntArray*>(context->AllocatePersistentBuffer(
|
||||
context, TfLiteIntArrayGetSizeInBytes(size)));
|
||||
|
||||
output->dims->size = input->dims->size;
|
||||
for (int i = 0; i < dimensions_count; i++) {
|
||||
output->dims->data[i] = input->dims->data[i];
|
||||
}
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
} // namespace tflite
|
||||
@@ -0,0 +1,59 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#ifndef TENSORFLOW_LITE_MICRO_MEMORY_HELPERS_H_
|
||||
#define TENSORFLOW_LITE_MICRO_MEMORY_HELPERS_H_
|
||||
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/core/api/error_reporter.h"
|
||||
#include "tensorflow/lite/schema/schema_generated.h"
|
||||
|
||||
namespace tflite {
|
||||
|
||||
// Returns the next pointer address aligned to the given alignment.
|
||||
uint8_t* AlignPointerUp(uint8_t* data, size_t alignment);
|
||||
|
||||
// Returns the previous pointer address aligned to the given alignment.
|
||||
uint8_t* AlignPointerDown(uint8_t* data, size_t alignment);
|
||||
|
||||
// Returns an increased size that's a multiple of alignment.
|
||||
size_t AlignSizeUp(size_t size, size_t alignment);
|
||||
|
||||
// Returns size in bytes for a given TfLiteType.
|
||||
TfLiteStatus TfLiteTypeSizeOf(TfLiteType type, size_t* size);
|
||||
|
||||
// How many bytes are needed to hold a tensor's contents.
|
||||
TfLiteStatus BytesRequiredForTensor(const tflite::Tensor& flatbuffer_tensor,
|
||||
size_t* bytes, size_t* type_size,
|
||||
ErrorReporter* error_reporter);
|
||||
|
||||
// How many bytes are used in a TfLiteEvalTensor instance. The byte length is
|
||||
// returned in out_bytes.
|
||||
TfLiteStatus TfLiteEvalTensorByteLength(const TfLiteEvalTensor* eval_tensor,
|
||||
size_t* out_bytes);
|
||||
|
||||
// Deduce output dimensions from input and allocate given size.
|
||||
// Useful for operators with two inputs where the largest input should equal the
|
||||
// output dimension.
|
||||
TfLiteStatus AllocateOutputDimensionsFromInput(TfLiteContext* context,
|
||||
const TfLiteTensor* input1,
|
||||
const TfLiteTensor* input2,
|
||||
TfLiteTensor* output);
|
||||
|
||||
} // namespace tflite
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_MEMORY_HELPERS_H_
|
||||
@@ -0,0 +1,437 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/micro/memory_planner/greedy_memory_planner.h"
|
||||
|
||||
namespace tflite {
|
||||
|
||||
// Simple stable in-place sort function. Not time-efficient for large arrays.
|
||||
// Would normally be in an anonymous namespace to keep it private, but we want
|
||||
// to be able to test it externally.
|
||||
void ReverseSortInPlace(int* values, int* ids, int size) {
|
||||
bool any_swapped;
|
||||
do {
|
||||
any_swapped = false;
|
||||
for (int i = 1; i < size; ++i) {
|
||||
if (values[i - 1] < values[i]) {
|
||||
const int value_temp = values[i - 1];
|
||||
values[i - 1] = values[i];
|
||||
values[i] = value_temp;
|
||||
const int id_temp = ids[i - 1];
|
||||
ids[i - 1] = ids[i];
|
||||
ids[i] = id_temp;
|
||||
any_swapped = true;
|
||||
}
|
||||
}
|
||||
} while (any_swapped);
|
||||
}
|
||||
|
||||
GreedyMemoryPlanner::GreedyMemoryPlanner(unsigned char* scratch_buffer,
|
||||
int scratch_buffer_size)
|
||||
: buffer_count_(0), need_to_calculate_offsets_(true) {
|
||||
// Allocate the arrays we need within the scratch buffer arena.
|
||||
max_buffer_count_ = scratch_buffer_size / per_buffer_size();
|
||||
|
||||
unsigned char* next_free = scratch_buffer;
|
||||
requirements_ = reinterpret_cast<BufferRequirements*>(next_free);
|
||||
next_free += sizeof(BufferRequirements) * max_buffer_count_;
|
||||
|
||||
buffer_sizes_sorted_ = reinterpret_cast<int*>(next_free);
|
||||
next_free += sizeof(int) * max_buffer_count_;
|
||||
|
||||
buffer_ids_sorted_ = reinterpret_cast<int*>(next_free);
|
||||
next_free += sizeof(int) * max_buffer_count_;
|
||||
|
||||
buffers_sorted_by_offset_ = reinterpret_cast<ListEntry*>(next_free);
|
||||
next_free += sizeof(ListEntry) * max_buffer_count_;
|
||||
|
||||
buffer_offsets_ = reinterpret_cast<int*>(next_free);
|
||||
}
|
||||
|
||||
GreedyMemoryPlanner::~GreedyMemoryPlanner() {
|
||||
// We don't own the scratch buffer, so don't deallocate anything.
|
||||
}
|
||||
|
||||
TfLiteStatus GreedyMemoryPlanner::AddBuffer(
|
||||
tflite::ErrorReporter* error_reporter, int size, int first_time_used,
|
||||
int last_time_used) {
|
||||
if (buffer_count_ >= max_buffer_count_) {
|
||||
TF_LITE_REPORT_ERROR(error_reporter, "Too many buffers (max is %d)",
|
||||
max_buffer_count_);
|
||||
return kTfLiteError;
|
||||
}
|
||||
BufferRequirements* current = &requirements_[buffer_count_];
|
||||
current->size = size;
|
||||
current->first_time_used = first_time_used;
|
||||
current->last_time_used = last_time_used;
|
||||
current->offline_offset = kOnlinePlannedBuffer;
|
||||
++buffer_count_;
|
||||
need_to_calculate_offsets_ = true;
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus GreedyMemoryPlanner::AddBuffer(
|
||||
tflite::ErrorReporter* error_reporter, int size, int first_time_used,
|
||||
int last_time_used, int offline_offset) {
|
||||
BufferRequirements* current = &requirements_[buffer_count_];
|
||||
if (AddBuffer(error_reporter, size, first_time_used, last_time_used) !=
|
||||
kTfLiteOk) {
|
||||
return kTfLiteError;
|
||||
}
|
||||
current->offline_offset = offline_offset;
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
bool GreedyMemoryPlanner::DoesEntryOverlapInTime(
|
||||
const GreedyMemoryPlanner::ListEntry* entry, const int first_time_used,
|
||||
const int last_time_used) const {
|
||||
const BufferRequirements* entry_requirements =
|
||||
&requirements_[entry->requirements_index];
|
||||
if (entry_requirements->first_time_used > last_time_used) {
|
||||
return false;
|
||||
}
|
||||
if (first_time_used > entry_requirements->last_time_used) {
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
GreedyMemoryPlanner::ListEntry*
|
||||
GreedyMemoryPlanner::NextSimultaneouslyActiveBuffer(
|
||||
const GreedyMemoryPlanner::ListEntry* start, const int first_time_used,
|
||||
const int last_time_used) {
|
||||
ListEntry* result = nullptr;
|
||||
ListEntry* candidate_next_entry;
|
||||
if (start == nullptr) {
|
||||
candidate_next_entry = &buffers_sorted_by_offset_[first_entry_index_];
|
||||
} else {
|
||||
if (start->next_entry_index == -1) {
|
||||
return nullptr;
|
||||
}
|
||||
candidate_next_entry = &buffers_sorted_by_offset_[start->next_entry_index];
|
||||
}
|
||||
do {
|
||||
if (DoesEntryOverlapInTime(candidate_next_entry, first_time_used,
|
||||
last_time_used)) {
|
||||
result = candidate_next_entry;
|
||||
break;
|
||||
}
|
||||
if (candidate_next_entry->next_entry_index == -1) {
|
||||
break;
|
||||
}
|
||||
candidate_next_entry =
|
||||
&buffers_sorted_by_offset_[candidate_next_entry->next_entry_index];
|
||||
} while (true);
|
||||
return result;
|
||||
}
|
||||
|
||||
void GreedyMemoryPlanner::CalculateOffsetsIfNeeded() {
|
||||
if (!need_to_calculate_offsets_ || (buffer_count_ == 0)) {
|
||||
return;
|
||||
}
|
||||
need_to_calculate_offsets_ = false;
|
||||
|
||||
// Start off by ordering the buffers in descending order of size.
|
||||
// This helps find a more compact layout. Intuitively, you can think
|
||||
// about putting the large buffers in place first, and then the
|
||||
// smaller buffers can fit in the gaps, rather than fragmenting the
|
||||
// gaps with small buffers at the beginning. Add offline planned offsets
|
||||
// first in the list, since they have a predetermined offset.
|
||||
int idx_from_tail = buffer_count_;
|
||||
int idx_from_head = 0;
|
||||
for (int i = 0; i < buffer_count_; ++i) {
|
||||
if (requirements_[i].offline_offset == kOnlinePlannedBuffer) {
|
||||
idx_from_tail--;
|
||||
buffer_sizes_sorted_[idx_from_tail] = requirements_[i].size;
|
||||
buffer_ids_sorted_[idx_from_tail] = i;
|
||||
buffer_offsets_[i] = -1;
|
||||
} else {
|
||||
buffer_sizes_sorted_[idx_from_head] = requirements_[i].size;
|
||||
buffer_ids_sorted_[idx_from_head] = i;
|
||||
buffer_offsets_[i] = requirements_[i].offline_offset;
|
||||
idx_from_head++;
|
||||
}
|
||||
}
|
||||
|
||||
// This sorting algorithm is naive, and may end up taking a very long time
|
||||
// with hundreds of buffers. Do not sort the offline planned offsets.
|
||||
ReverseSortInPlace(&buffer_sizes_sorted_[idx_from_head],
|
||||
&buffer_ids_sorted_[idx_from_head],
|
||||
buffer_count_ - idx_from_head);
|
||||
|
||||
// Initialize the first entry to the first buffer in
|
||||
// buffer_ids_sorted_.
|
||||
// - If there are no offline planned offsets, the largest buffer will be
|
||||
// first, and the buffers will be handled in size order.
|
||||
// - If offline offsets are present, these will be handled first in order
|
||||
// for the greedy algorithm to utilized gaps in the offline plan.
|
||||
first_entry_index_ = 0;
|
||||
next_free_entry_ = 1;
|
||||
ListEntry* first_entry = &buffers_sorted_by_offset_[first_entry_index_];
|
||||
first_entry->next_entry_index = -1; // to mark the entry as end of list
|
||||
int buffer_id = buffer_ids_sorted_[0];
|
||||
first_entry->requirements_index = buffer_id;
|
||||
if (requirements_[buffer_id].offline_offset == kOnlinePlannedBuffer) {
|
||||
buffer_offsets_[buffer_id] = 0;
|
||||
}
|
||||
first_entry->offset = buffer_offsets_[buffer_id];
|
||||
|
||||
// Work through the rest of the buffers to find a good gap to place each one.
|
||||
for (int i = 1; i < buffer_count_; ++i) {
|
||||
// The id is the order the buffer was originally added by the client.
|
||||
buffer_id = buffer_ids_sorted_[i];
|
||||
// Look at what size and time range the buffer needs to be active.
|
||||
BufferRequirements* wanted_requirements = &requirements_[buffer_id];
|
||||
const int wanted_size = wanted_requirements->size;
|
||||
const int wanted_first_time_used = wanted_requirements->first_time_used;
|
||||
const int wanted_last_time_used = wanted_requirements->last_time_used;
|
||||
|
||||
// Find the first buffer that's active in our time range. All placed
|
||||
// buffers are stored in the order of their starting position in the arena
|
||||
// so that it's easy to find the next buffer in memory, and so the gap.
|
||||
// The candidate_entry variable holds the buffer that we're considering
|
||||
// placing the current buffer after.
|
||||
|
||||
int candidate_offset = 0;
|
||||
// Loop through the offset-ordered list of buffers, looking for gaps.
|
||||
if (wanted_requirements->offline_offset == kOnlinePlannedBuffer) {
|
||||
ListEntry* prior_entry = nullptr;
|
||||
while (true) {
|
||||
// Find out what the next active buffer is.
|
||||
ListEntry* next_entry = NextSimultaneouslyActiveBuffer(
|
||||
prior_entry, wanted_first_time_used, wanted_last_time_used);
|
||||
|
||||
if (prior_entry) {
|
||||
BufferRequirements* candidate_requirements =
|
||||
&requirements_[prior_entry->requirements_index];
|
||||
const int prior_entry_offset =
|
||||
prior_entry->offset + candidate_requirements->size;
|
||||
if (prior_entry_offset > candidate_offset) {
|
||||
candidate_offset = prior_entry_offset;
|
||||
}
|
||||
}
|
||||
if (next_entry == nullptr) {
|
||||
// We're at the end of the list, so we can always append the buffer
|
||||
// here.
|
||||
break;
|
||||
}
|
||||
// Find out how much space there is between us and the next buffer.
|
||||
const int gap = next_entry->offset - candidate_offset;
|
||||
if (gap >= wanted_size) {
|
||||
// This entry has a big enough gap between it and the next, so
|
||||
// use it!
|
||||
break;
|
||||
}
|
||||
// The gap wasn't big enough, so move on to another candidate.
|
||||
prior_entry = next_entry;
|
||||
}
|
||||
} else {
|
||||
// Offline planned offset are to be considered constant
|
||||
candidate_offset = wanted_requirements->offline_offset;
|
||||
}
|
||||
// At this point, we've either found a gap (possibly at the end of the
|
||||
// list) and want to place the buffer there, or there are no other active
|
||||
// buffers in this time range and so we can put it at offset zero.
|
||||
// Record the buffer's offset in our plan.
|
||||
buffer_offsets_[buffer_id] = candidate_offset;
|
||||
// Add the newly-placed buffer to our offset-ordered list, so that
|
||||
// subsequent passes can fit in their buffers around it.
|
||||
ListEntry* new_entry = &buffers_sorted_by_offset_[next_free_entry_];
|
||||
new_entry->offset = candidate_offset;
|
||||
new_entry->requirements_index = buffer_id;
|
||||
const int new_entry_index = next_free_entry_;
|
||||
++next_free_entry_;
|
||||
|
||||
if (first_entry->offset > candidate_offset) {
|
||||
// The new entry offset is smaller than the first entry offset =>
|
||||
// replace the first entry
|
||||
first_entry = new_entry;
|
||||
first_entry->next_entry_index = first_entry_index_;
|
||||
first_entry_index_ = new_entry_index;
|
||||
} else {
|
||||
ListEntry* current_entry = first_entry;
|
||||
// Make sure that we insert the buffer at the correct place in the
|
||||
// buffer-offset-ordered list
|
||||
while (true) {
|
||||
const int next_entry_index = current_entry->next_entry_index;
|
||||
if (next_entry_index == -1) {
|
||||
// We're at the end of the list, so just add the new entry here.
|
||||
current_entry->next_entry_index = new_entry_index;
|
||||
new_entry->next_entry_index = -1;
|
||||
break;
|
||||
}
|
||||
// not at the end of the list -> take a look at next entry
|
||||
ListEntry* next_entry = &buffers_sorted_by_offset_[next_entry_index];
|
||||
if (next_entry->offset > candidate_offset) {
|
||||
// We're at the right spot to do an insertion and retain the sorting
|
||||
// order, so place the new entry here.
|
||||
new_entry->next_entry_index = current_entry->next_entry_index;
|
||||
current_entry->next_entry_index = new_entry_index;
|
||||
break;
|
||||
}
|
||||
current_entry = next_entry;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
size_t GreedyMemoryPlanner::GetMaximumMemorySize() {
|
||||
CalculateOffsetsIfNeeded();
|
||||
if (buffer_count_ == 0) {
|
||||
return 0;
|
||||
}
|
||||
ListEntry* entry = &buffers_sorted_by_offset_[first_entry_index_];
|
||||
size_t max_size = 0;
|
||||
while (entry) {
|
||||
BufferRequirements* requirements =
|
||||
&requirements_[entry->requirements_index];
|
||||
// TODO(b/148246793): Update all size and offset variables types from
|
||||
// int to size_t
|
||||
const size_t current_size = entry->offset + requirements->size;
|
||||
if (current_size > max_size) {
|
||||
max_size = current_size;
|
||||
}
|
||||
if (entry->next_entry_index == -1) {
|
||||
break;
|
||||
}
|
||||
entry = &buffers_sorted_by_offset_[entry->next_entry_index];
|
||||
}
|
||||
return max_size;
|
||||
}
|
||||
|
||||
void GreedyMemoryPlanner::PrintMemoryPlan(ErrorReporter* error_reporter) {
|
||||
CalculateOffsetsIfNeeded();
|
||||
|
||||
for (int i = 0; i < buffer_count_; ++i) {
|
||||
TF_LITE_REPORT_ERROR(
|
||||
error_reporter,
|
||||
"Planner buffer ID: %d, calculated offset: %d, size required: %d, "
|
||||
"first_time_created: %d, "
|
||||
"last_time_used: %d",
|
||||
i, buffer_offsets_[i], requirements_[i].size,
|
||||
requirements_[i].first_time_used, requirements_[i].last_time_used);
|
||||
}
|
||||
|
||||
constexpr int kLineWidth = 80;
|
||||
int max_size = kLineWidth;
|
||||
int max_time = 0;
|
||||
for (int i = 0; i < buffer_count_; ++i) {
|
||||
BufferRequirements* requirements = &requirements_[i];
|
||||
const int offset = buffer_offsets_[i];
|
||||
const int last_time_used = requirements->last_time_used;
|
||||
const int size = offset + requirements->size;
|
||||
if (size > max_size) {
|
||||
max_size = size;
|
||||
}
|
||||
if (last_time_used > max_time) {
|
||||
max_time = last_time_used;
|
||||
}
|
||||
}
|
||||
|
||||
char line[kLineWidth + 1];
|
||||
for (int t = 0; t <= max_time; ++t) {
|
||||
for (int c = 0; c < kLineWidth; ++c) {
|
||||
line[c] = '.';
|
||||
}
|
||||
for (int i = 0; i < buffer_count_; ++i) {
|
||||
BufferRequirements* requirements = &requirements_[i];
|
||||
if ((t < requirements->first_time_used) ||
|
||||
(t > requirements->last_time_used)) {
|
||||
continue;
|
||||
}
|
||||
const int offset = buffer_offsets_[i];
|
||||
if (offset == -1) {
|
||||
continue;
|
||||
}
|
||||
const int size = requirements->size;
|
||||
const int line_start = (offset * kLineWidth) / max_size;
|
||||
const int line_end = ((offset + size) * kLineWidth) / max_size;
|
||||
for (int n = line_start; n < line_end; ++n) {
|
||||
if (line[n] == '.') {
|
||||
char display;
|
||||
if (i < 10) {
|
||||
display = '0' + i;
|
||||
} else if (i < 36) {
|
||||
display = 'a' + (i - 10);
|
||||
} else if (i < 62) {
|
||||
display = 'A' + (i - 36);
|
||||
} else {
|
||||
display = '*';
|
||||
}
|
||||
line[n] = display;
|
||||
} else {
|
||||
line[n] = '!';
|
||||
}
|
||||
}
|
||||
}
|
||||
line[kLineWidth] = 0;
|
||||
TF_LITE_REPORT_ERROR(error_reporter, "%s", (const char*)line);
|
||||
}
|
||||
}
|
||||
|
||||
int GreedyMemoryPlanner::GetBufferCount() { return buffer_count_; }
|
||||
|
||||
TfLiteStatus GreedyMemoryPlanner::GetOffsetForBuffer(
|
||||
tflite::ErrorReporter* error_reporter, int buffer_index, int* offset) {
|
||||
CalculateOffsetsIfNeeded();
|
||||
if ((buffer_index < 0) || (buffer_index >= buffer_count_)) {
|
||||
TF_LITE_REPORT_ERROR(error_reporter,
|
||||
"buffer index %d is outside range 0 to %d",
|
||||
buffer_index, buffer_count_);
|
||||
return kTfLiteError;
|
||||
}
|
||||
*offset = buffer_offsets_[buffer_index];
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
bool GreedyMemoryPlanner::DoAnyBuffersOverlap(ErrorReporter* error_reporter) {
|
||||
CalculateOffsetsIfNeeded();
|
||||
bool were_overlaps_found = false;
|
||||
for (int i = 0; i < buffer_count_; ++i) {
|
||||
BufferRequirements* a_requirements = &requirements_[i];
|
||||
const int a_start_offset = buffer_offsets_[i];
|
||||
const int a_first_time_used = a_requirements->first_time_used;
|
||||
const int a_last_time_used = a_requirements->last_time_used;
|
||||
const int a_end_offset = a_start_offset + a_requirements->size;
|
||||
for (int j = 0; j < buffer_count_; ++j) {
|
||||
if (i == j) {
|
||||
continue;
|
||||
}
|
||||
BufferRequirements* b_requirements = &requirements_[j];
|
||||
const int b_start_offset = buffer_offsets_[j];
|
||||
const int b_first_time_used = b_requirements->first_time_used;
|
||||
const int b_last_time_used = b_requirements->last_time_used;
|
||||
const int b_end_offset = b_start_offset + b_requirements->size;
|
||||
if ((a_first_time_used > b_last_time_used) ||
|
||||
(b_first_time_used > a_last_time_used)) {
|
||||
// Buffers don't overlap in time.
|
||||
continue;
|
||||
}
|
||||
if ((a_start_offset >= b_end_offset) ||
|
||||
(b_start_offset >= a_end_offset)) {
|
||||
// No overlap in memory.
|
||||
continue;
|
||||
}
|
||||
were_overlaps_found = true;
|
||||
TF_LITE_REPORT_ERROR(
|
||||
error_reporter, "Overlap: %d (%d=>%d, %d->%d) vs %d (%d=>%d, %d->%d)",
|
||||
i, a_first_time_used, a_last_time_used, a_start_offset, a_end_offset,
|
||||
j, b_first_time_used, b_last_time_used, b_start_offset, b_end_offset);
|
||||
}
|
||||
}
|
||||
return were_overlaps_found;
|
||||
}
|
||||
|
||||
} // namespace tflite
|
||||
@@ -0,0 +1,163 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef TENSORFLOW_LITE_MICRO_MEMORY_PLANNER_GREEDY_MEMORY_PLANNER_H_
|
||||
#define TENSORFLOW_LITE_MICRO_MEMORY_PLANNER_GREEDY_MEMORY_PLANNER_H_
|
||||
|
||||
#include "tensorflow/lite/micro/compatibility.h"
|
||||
#include "tensorflow/lite/micro/memory_planner/memory_planner.h"
|
||||
|
||||
namespace tflite {
|
||||
|
||||
constexpr int kOnlinePlannedBuffer = -1;
|
||||
|
||||
// A memory planner that uses a greedy algorithm to arrange buffers in memory
|
||||
// to minimize the overall arena size needed.
|
||||
//
|
||||
// The algorithm works like this:
|
||||
// - The client enters the buffer information through AddBuffer().
|
||||
// - When a function like GetOffsetForBuffer() is called, the
|
||||
// CalculateOffsetsIfNeeded() method is invoked.
|
||||
// - If an up to date plan is not already present, one will be calculated.
|
||||
// - The buffers are sorted in descending order of size.
|
||||
// - The largest buffer is placed at offset zero.
|
||||
// - The rest of the buffers are looped through in descending size order.
|
||||
// - The other buffers that need to be in memory at the same time are found.
|
||||
// - The first gap between simultaneously active buffers that the current
|
||||
// buffer fits into will be used.
|
||||
// - If no large-enough gap is found, the current buffer is placed after the
|
||||
// last buffer that's simultaneously active.
|
||||
// - This continues until all buffers are placed, and the offsets stored.
|
||||
//
|
||||
// This is not guaranteed to produce the best placement, since that's an
|
||||
// NP-Complete problem, but in practice it should produce one that's decent.
|
||||
class GreedyMemoryPlanner : public MemoryPlanner {
|
||||
public:
|
||||
// You need to pass in an area of memory to be used for planning. This memory
|
||||
// needs to have a lifetime as long as the planner, but isn't owned by this
|
||||
// object, so management should be handled by the client. This is so it can be
|
||||
// stack or globally allocated if necessary on devices without dynamic memory
|
||||
// allocation. How many buffers can be planned for will depend on the size of
|
||||
// this scratch memory, so you should enlarge it if you see an error when
|
||||
// calling AddBuffer(). The memory can be reused once you're done with the
|
||||
// planner, as long as you copy the calculated offsets to another location.
|
||||
// Each buffer requires about 36 bytes of scratch.
|
||||
GreedyMemoryPlanner(unsigned char* scratch_buffer, int scratch_buffer_size);
|
||||
~GreedyMemoryPlanner() override;
|
||||
|
||||
// Record details of a buffer we want to place.
|
||||
TfLiteStatus AddBuffer(ErrorReporter* error_reporter, int size,
|
||||
int first_time_used, int last_time_used) override;
|
||||
|
||||
// Record details of an offline planned buffer offset we want to place.
|
||||
// offline_offset is the buffer offset from the start of the arena.
|
||||
TfLiteStatus AddBuffer(ErrorReporter* error_reporter, int size,
|
||||
int first_time_used, int last_time_used,
|
||||
int offline_offset);
|
||||
|
||||
// Returns the high-water mark of used memory. This is the minimum size of a
|
||||
// memory arena you'd need to allocate to hold these buffers.
|
||||
size_t GetMaximumMemorySize() override;
|
||||
|
||||
// How many buffers have been recorded.
|
||||
int GetBufferCount() override;
|
||||
|
||||
// Where a given buffer should be placed in the memory arena.
|
||||
// This information is stored in the memory arena itself, so once the arena
|
||||
// is used for inference, it will be overwritten.
|
||||
TfLiteStatus GetOffsetForBuffer(ErrorReporter* error_reporter,
|
||||
int buffer_index, int* offset) override;
|
||||
|
||||
// Prints an ascii-art diagram of the buffer layout plan.
|
||||
void PrintMemoryPlan(ErrorReporter* error_reporter);
|
||||
|
||||
// Debug method to check whether any buffer allocations are overlapping. This
|
||||
// is an O(N^2) complexity operation, so only use for testing.
|
||||
bool DoAnyBuffersOverlap(ErrorReporter* error_reporter);
|
||||
|
||||
// Used to store a list of buffers ordered by their offset.
|
||||
struct ListEntry {
|
||||
int offset;
|
||||
int requirements_index;
|
||||
int next_entry_index;
|
||||
};
|
||||
|
||||
// Number of bytes required in order to plan a buffer.
|
||||
static size_t per_buffer_size() {
|
||||
const int per_buffer_size =
|
||||
sizeof(BufferRequirements) + // requirements_
|
||||
sizeof(int) + // buffer_sizes_sorted_
|
||||
sizeof(int) + // buffer_ids_sorted_
|
||||
sizeof(ListEntry) + // buffers_sorted_by_offset_
|
||||
sizeof(int); // buffer_offsets_;
|
||||
return per_buffer_size;
|
||||
}
|
||||
|
||||
private:
|
||||
// Whether a buffer is active in a given time range.
|
||||
bool DoesEntryOverlapInTime(const ListEntry* entry, const int first_time_used,
|
||||
const int last_time_used) const;
|
||||
|
||||
// Walks the list to return the next buffer that is active in a given time
|
||||
// range, or a null pointer if there are none.
|
||||
ListEntry* NextSimultaneouslyActiveBuffer(const ListEntry* start,
|
||||
const int first_time_used,
|
||||
const int last_time_used);
|
||||
|
||||
// If there isn't an up to date plan, calculate a new one.
|
||||
void CalculateOffsetsIfNeeded();
|
||||
|
||||
// How many buffers we can plan for, based on the arena size we're given in
|
||||
// the constructor.
|
||||
int max_buffer_count_;
|
||||
|
||||
// The number of buffers added so far.
|
||||
int buffer_count_;
|
||||
|
||||
// Records the client-provided information about each buffer.
|
||||
struct BufferRequirements {
|
||||
int size;
|
||||
int offline_offset;
|
||||
int first_time_used;
|
||||
int last_time_used;
|
||||
};
|
||||
|
||||
// Working arrays used during the layout algorithm.
|
||||
BufferRequirements* requirements_;
|
||||
// buffer_sizes_sorted_ and buffer_ids_sorted_ are sorted according to:
|
||||
// {
|
||||
// offline planned buffers,
|
||||
// online planned buffers sorted by size
|
||||
// }
|
||||
int* buffer_sizes_sorted_;
|
||||
int* buffer_ids_sorted_;
|
||||
ListEntry* buffers_sorted_by_offset_;
|
||||
int next_free_entry_; // Index of the next free entry of
|
||||
// buffers_sorted_by_offset_
|
||||
int first_entry_index_; // Index of the first entry (smallest offset) of
|
||||
// buffers_sorted_by_offset_
|
||||
|
||||
// Stores the outcome of the plan, the location of each buffer in the arena.
|
||||
int* buffer_offsets_;
|
||||
|
||||
// Whether buffers have been added since the last plan was calculated.
|
||||
bool need_to_calculate_offsets_;
|
||||
|
||||
TF_LITE_REMOVE_VIRTUAL_DELETE
|
||||
};
|
||||
|
||||
} // namespace tflite
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_MEMORY_PLANNER_GREEDY_MEMORY_PLANNER_H_
|
||||
@@ -0,0 +1,54 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/micro/memory_planner/linear_memory_planner.h"
|
||||
|
||||
namespace tflite {
|
||||
|
||||
LinearMemoryPlanner::LinearMemoryPlanner()
|
||||
: current_buffer_count_(0), next_free_offset_(0) {}
|
||||
LinearMemoryPlanner::~LinearMemoryPlanner() {}
|
||||
|
||||
TfLiteStatus LinearMemoryPlanner::AddBuffer(
|
||||
tflite::ErrorReporter* error_reporter, int size, int first_time_used,
|
||||
int last_time_used) {
|
||||
if (current_buffer_count_ >= kMaxBufferCount) {
|
||||
TF_LITE_REPORT_ERROR(error_reporter, "Too many buffers (max is %d)",
|
||||
kMaxBufferCount);
|
||||
return kTfLiteError;
|
||||
}
|
||||
buffer_offsets_[current_buffer_count_] = next_free_offset_;
|
||||
next_free_offset_ += size;
|
||||
++current_buffer_count_;
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
size_t LinearMemoryPlanner::GetMaximumMemorySize() { return next_free_offset_; }
|
||||
|
||||
int LinearMemoryPlanner::GetBufferCount() { return current_buffer_count_; }
|
||||
|
||||
TfLiteStatus LinearMemoryPlanner::GetOffsetForBuffer(
|
||||
tflite::ErrorReporter* error_reporter, int buffer_index, int* offset) {
|
||||
if ((buffer_index < 0) || (buffer_index >= current_buffer_count_)) {
|
||||
TF_LITE_REPORT_ERROR(error_reporter,
|
||||
"buffer index %d is outside range 0 to %d",
|
||||
buffer_index, current_buffer_count_);
|
||||
return kTfLiteError;
|
||||
}
|
||||
*offset = buffer_offsets_[buffer_index];
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
} // namespace tflite
|
||||
@@ -0,0 +1,50 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef TENSORFLOW_LITE_MICRO_MEMORY_PLANNER_LINEAR_MEMORY_PLANNER_H_
|
||||
#define TENSORFLOW_LITE_MICRO_MEMORY_PLANNER_LINEAR_MEMORY_PLANNER_H_
|
||||
|
||||
#include "tensorflow/lite/micro/compatibility.h"
|
||||
#include "tensorflow/lite/micro/memory_planner/memory_planner.h"
|
||||
|
||||
namespace tflite {
|
||||
|
||||
// The simplest possible memory planner that just lays out all buffers at
|
||||
// increasing offsets without trying to reuse memory.
|
||||
class LinearMemoryPlanner : public MemoryPlanner {
|
||||
public:
|
||||
LinearMemoryPlanner();
|
||||
~LinearMemoryPlanner() override;
|
||||
|
||||
TfLiteStatus AddBuffer(tflite::ErrorReporter* error_reporter, int size,
|
||||
int first_time_used, int last_time_used) override;
|
||||
|
||||
size_t GetMaximumMemorySize() override;
|
||||
int GetBufferCount() override;
|
||||
TfLiteStatus GetOffsetForBuffer(tflite::ErrorReporter* error_reporter,
|
||||
int buffer_index, int* offset) override;
|
||||
|
||||
private:
|
||||
static constexpr int kMaxBufferCount = 1024;
|
||||
size_t buffer_offsets_[kMaxBufferCount];
|
||||
int current_buffer_count_;
|
||||
size_t next_free_offset_;
|
||||
|
||||
TF_LITE_REMOVE_VIRTUAL_DELETE
|
||||
};
|
||||
|
||||
} // namespace tflite
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_MEMORY_PLANNER_LINEAR_MEMORY_PLANNER_H_
|
||||
@@ -0,0 +1,71 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef TENSORFLOW_LITE_MICRO_MEMORY_PLANNER_MEMORY_PLANNER_H_
|
||||
#define TENSORFLOW_LITE_MICRO_MEMORY_PLANNER_MEMORY_PLANNER_H_
|
||||
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/core/api/error_reporter.h"
|
||||
|
||||
namespace tflite {
|
||||
|
||||
// Interface class for planning the layout of memory buffers during the
|
||||
// execution of a graph.
|
||||
// It's designed to be used by a client that iterates in any order through the
|
||||
// buffers it wants to lay out, and then calls the getter functions for
|
||||
// information about the calculated layout. For example:
|
||||
//
|
||||
// SomeMemoryPlanner planner;
|
||||
// planner.AddBuffer(reporter, 100, 0, 1); // Buffer 0
|
||||
// planner.AddBuffer(reporter, 50, 2, 3); // Buffer 1
|
||||
// planner.AddBuffer(reporter, 50, 2, 3); // Buffer 2
|
||||
//
|
||||
// int offset0;
|
||||
// TF_EXPECT_OK(planner.GetOffsetForBuffer(reporter, 0, &offset0));
|
||||
// int offset1;
|
||||
// TF_EXPECT_OK(planner.GetOffsetForBuffer(reporter, 1, &offset1));
|
||||
// int offset2;
|
||||
// TF_EXPECT_OK(planner.GetOffsetForBuffer(reporter, 2, &offset2));
|
||||
// const int arena_size_needed = planner.GetMaximumMemorySize();
|
||||
//
|
||||
// The goal is for applications to be able to experiment with different layout
|
||||
// strategies without changing their client code, by swapping out classes that
|
||||
// implement this interface.=
|
||||
class MemoryPlanner {
|
||||
public:
|
||||
MemoryPlanner() {}
|
||||
virtual ~MemoryPlanner() {}
|
||||
|
||||
// Pass information about a buffer's size and lifetime to the layout
|
||||
// algorithm. The order this is called implicitly assigns an index to the
|
||||
// result, so the buffer information that's passed into the N-th call of
|
||||
// this method will be used as the buffer_index argument to
|
||||
// GetOffsetForBuffer().
|
||||
virtual TfLiteStatus AddBuffer(tflite::ErrorReporter* error_reporter,
|
||||
int size, int first_time_used,
|
||||
int last_time_used) = 0;
|
||||
|
||||
// The largest contiguous block of memory that's needed to hold the layout.
|
||||
virtual size_t GetMaximumMemorySize() = 0;
|
||||
// How many buffers have been added to the planner.
|
||||
virtual int GetBufferCount() = 0;
|
||||
// Calculated layout offset for the N-th buffer added to the planner.
|
||||
virtual TfLiteStatus GetOffsetForBuffer(tflite::ErrorReporter* error_reporter,
|
||||
int buffer_index, int* offset) = 0;
|
||||
};
|
||||
|
||||
} // namespace tflite
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_MEMORY_PLANNER_MEMORY_PLANNER_H_
|
||||
1158
code/components/tfmicro/tensorflow/lite/micro/micro_allocator.cc
Normal file
1158
code/components/tfmicro/tensorflow/lite/micro/micro_allocator.cc
Normal file
File diff suppressed because it is too large
Load Diff
279
code/components/tfmicro/tensorflow/lite/micro/micro_allocator.h
Normal file
279
code/components/tfmicro/tensorflow/lite/micro/micro_allocator.h
Normal file
@@ -0,0 +1,279 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#ifndef TENSORFLOW_LITE_MICRO_MICRO_ALLOCATOR_H_
|
||||
#define TENSORFLOW_LITE_MICRO_MICRO_ALLOCATOR_H_
|
||||
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
|
||||
#include "flatbuffers/flatbuffers.h" // from @flatbuffers
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/core/api/error_reporter.h"
|
||||
#include "tensorflow/lite/micro/compatibility.h"
|
||||
#include "tensorflow/lite/micro/micro_op_resolver.h"
|
||||
#include "tensorflow/lite/micro/simple_memory_allocator.h"
|
||||
#include "tensorflow/lite/schema/schema_generated.h"
|
||||
|
||||
namespace tflite {
|
||||
|
||||
namespace internal {
|
||||
|
||||
// Sets up all of the data structure members for a TfLiteTensor based on the
|
||||
// contents of a serialized tensor in the flatbuffer.
|
||||
// TODO(b/162311891): Drop this method when the interpreter has an API for
|
||||
// returning buffers on TfLiteEvalTensor.
|
||||
TfLiteStatus InitializeTfLiteTensorFromFlatbuffer(
|
||||
SimpleMemoryAllocator* allocator, bool allocate_temp,
|
||||
const tflite::Tensor& flatbuffer_tensor,
|
||||
const flatbuffers::Vector<flatbuffers::Offset<Buffer>>* buffers,
|
||||
ErrorReporter* error_reporter, TfLiteTensor* result);
|
||||
|
||||
// Holds placeholder information for a scratch buffer request from a kernel.
|
||||
// This struct is only used during the model prepare stage. Each request from a
|
||||
// kernel is stored in the head section. During the prepare stage, the head
|
||||
// section will at least hold kMaxScratchBuffersPerOp number of requests plus
|
||||
// any requests from previous kernel requests.
|
||||
//
|
||||
// When the memory plan is finalized, these structs are no longer used in favor
|
||||
// of a sequential, array of ScratchBufferHandle allocations in the tail
|
||||
// section. These allocations are indexed by the request API defined in the
|
||||
// TfLiteContext struct.
|
||||
typedef struct {
|
||||
// Number of bytes required by the buffer. The actual allocated size might be
|
||||
// greater than `bytes` due to buffer alignment.
|
||||
size_t bytes;
|
||||
// Node where the buffer is allocated for. This provides useful information to
|
||||
// determine the lifetime of the buffer. In AllocationInfo, this buffer will
|
||||
// have `before` = node_idx and `after` = node_idx.
|
||||
int node_idx;
|
||||
} ScratchBufferRequest;
|
||||
|
||||
} // namespace internal
|
||||
|
||||
typedef struct {
|
||||
TfLiteNode node;
|
||||
const TfLiteRegistration* registration;
|
||||
} NodeAndRegistration;
|
||||
|
||||
// Holds a pointer to a buffer for a scratch buffer requested by a kernel during
|
||||
// the model prepare stage. This struct is allocated in-place and allows for
|
||||
// quick pointer-indexed lookup for speed during model inference.
|
||||
typedef struct {
|
||||
// Pointer to location of the scratch buffer:
|
||||
uint8_t* data;
|
||||
} ScratchBufferHandle;
|
||||
|
||||
// Allocator responsible for allocating memory for all intermediate tensors
|
||||
// necessary to invoke a model.
|
||||
//
|
||||
// The lifetime of the model, tensor arena and error reporter must be at
|
||||
// least as long as that of the allocator object, since the allocator needs
|
||||
// them to be accessible during its entire lifetime.
|
||||
//
|
||||
// The MicroAllocator simply plans out additional allocations that are required
|
||||
// to standup a model for inference in TF Micro. This class currently relies on
|
||||
// an additional allocator - SimpleMemoryAllocator - for all allocations from an
|
||||
// arena. These allocations are divided into head (non-persistent) and tail
|
||||
// (persistent) regions:
|
||||
//
|
||||
// Memory layout to help understand how it works
|
||||
// This information could change in the future version.
|
||||
// ************** .memory_allocator->GetBuffer()
|
||||
// Tensors/Scratch buffers (head)
|
||||
// ************** .head_watermark
|
||||
// unused memory
|
||||
// ************** .memory_allocator->GetBuffer() + ->GetMaxBufferSize()
|
||||
// - ->GetDataSize()
|
||||
// persistent area (tail)
|
||||
// ************** .memory_allocator->GetBuffer() + ->GetMaxBufferSize()
|
||||
class MicroAllocator {
|
||||
public:
|
||||
// Creates a MicroAllocator instance from a given tensor arena. This arena
|
||||
// will be managed by the created instance.
|
||||
// Note: Please use __declspec(align(16)) to make sure tensor_arena is 16
|
||||
// bytes aligned, otherwise some head room will be wasted.
|
||||
// TODO(b/157615197): Cleanup constructor + factory usage.
|
||||
static MicroAllocator* Create(uint8_t* tensor_arena, size_t arena_size,
|
||||
ErrorReporter* error_reporter);
|
||||
|
||||
// Creates a MicroAllocator instance using the provided SimpleMemoryAllocator
|
||||
// intance. This allocator instance will use the SimpleMemoryAllocator
|
||||
// instance to manage allocations internally.
|
||||
static MicroAllocator* Create(SimpleMemoryAllocator* memory_allocator,
|
||||
ErrorReporter* error_reporter);
|
||||
|
||||
// Begin allocating internal resources required for model inference.
|
||||
// This method will run through the flatbuffer data supplied in the model to
|
||||
// properly allocate tensor, node, and op registration data. This method is
|
||||
// expected to be followed with a call to FinishModelAllocation() before
|
||||
// resuming allocation with another model. All persistent tensor buffers are
|
||||
// stored in the out-param eval_tensors. This value is allocated from the
|
||||
// persistent memory arena and will be used to host runtime tensor buffers.
|
||||
TfLiteStatus StartModelAllocation(
|
||||
const Model* model, const MicroOpResolver& op_resolver,
|
||||
NodeAndRegistration** node_and_registrations,
|
||||
TfLiteEvalTensor** eval_tensors);
|
||||
|
||||
// Finish allocating internal resources required for model inference.
|
||||
// This method will plan non-persistent buffers and commit a memory plan to
|
||||
// the 'head' section of the memory arena. All variable tensor data will also
|
||||
// be allocated. This method should be called after assigning model resources
|
||||
// in StartModelAllocation(). The eval_tensors pointer should be the value
|
||||
// passed into this class during StartModelAllocation(). Scratch buffer
|
||||
// handles are stored in the out-param `scratch_buffer_handles`. This value
|
||||
// will be used in `GetScratchBuffer` call to retrieve scratch buffers.
|
||||
TfLiteStatus FinishModelAllocation(
|
||||
const Model* model, TfLiteEvalTensor* eval_tensors,
|
||||
ScratchBufferHandle** scratch_buffer_handles);
|
||||
|
||||
// Allocates a TfLiteTensor struct and populates the returned value with
|
||||
// properties from the model flatbuffer. This struct is allocated from
|
||||
// persistent arena memory is only guaranteed for the lifetime of the
|
||||
// application. The eval_tensors pointer should be the value passed into this
|
||||
// class during StartModelAllocation() and contains the source-of-truth for
|
||||
// buffers.
|
||||
virtual TfLiteTensor* AllocatePersistentTfLiteTensor(
|
||||
const Model* model, TfLiteEvalTensor* eval_tensors, int tensor_index);
|
||||
|
||||
// Allocates a TfLiteTensor struct and populates the returned value with
|
||||
// properties from the model flatbuffer. This struct is allocated from
|
||||
// temporary arena memory is only guaranteed until a call is made to
|
||||
// ResetTempAllocations(). The eval_tensors pointer should be the value passed
|
||||
// into this class during StartModelAllocation() and contains the
|
||||
// source-of-truth for buffers.
|
||||
virtual TfLiteTensor* AllocateTempTfLiteTensor(const Model* model,
|
||||
TfLiteEvalTensor* eval_tensors,
|
||||
int tensor_index);
|
||||
|
||||
// Resets all temporary allocations. This method should be called after a
|
||||
// chain of temp allocations (e.g. chain of TfLiteTensor objects via
|
||||
// AllocateTfLiteTensor()).
|
||||
virtual void ResetTempAllocations();
|
||||
|
||||
// Allocates persistent buffer which has the same life time as the allocator.
|
||||
// The memory is immediately available and is allocated from the tail of the
|
||||
// arena.
|
||||
virtual void* AllocatePersistentBuffer(size_t bytes);
|
||||
|
||||
// Register a scratch buffer of size `bytes` for Node with `node_id`.
|
||||
// This method only requests a buffer with a given size to be used after a
|
||||
// model has finished allocation via FinishModelAllocation(). All requested
|
||||
// buffers will be accessible by the out-param in that method.
|
||||
TfLiteStatus RequestScratchBufferInArena(size_t bytes, int* buffer_idx);
|
||||
|
||||
// Finish allocating a specific NodeAndRegistration prepare block (kernel
|
||||
// entry for a model) with a given node ID. This call ensures that any scratch
|
||||
// buffer requests and temporary allocations are handled and ready for the
|
||||
// next node prepare block.
|
||||
TfLiteStatus FinishPrepareNodeAllocations(int node_id);
|
||||
|
||||
// Returns the arena usage in bytes, only available after
|
||||
// `FinishModelAllocation`. Otherwise, it will return 0.
|
||||
size_t used_bytes() const;
|
||||
|
||||
protected:
|
||||
MicroAllocator(SimpleMemoryAllocator* memory_allocator,
|
||||
ErrorReporter* error_reporter);
|
||||
virtual ~MicroAllocator();
|
||||
|
||||
// Allocates an array in the arena to hold pointers to the node and
|
||||
// registration pointers required to represent the inference graph of the
|
||||
// model.
|
||||
virtual TfLiteStatus AllocateNodeAndRegistrations(
|
||||
const Model* model, NodeAndRegistration** node_and_registrations);
|
||||
|
||||
// Populates node and registration pointers representing the inference graph
|
||||
// of the model from values inside the flatbuffer (loaded from the TfLiteModel
|
||||
// instance). Persistent data (e.g. operator data) is allocated from the
|
||||
// arena.
|
||||
virtual TfLiteStatus PrepareNodeAndRegistrationDataFromFlatbuffer(
|
||||
const Model* model, const MicroOpResolver& op_resolver,
|
||||
NodeAndRegistration* node_and_registrations);
|
||||
|
||||
// Allocates the list of persistent TfLiteEvalTensors that are used for the
|
||||
// "eval" phase of model inference. These structs will be the source of truth
|
||||
// for all tensor buffers. Allocation results are stored in the out-param
|
||||
// eval_tensors.
|
||||
virtual TfLiteStatus AllocateTfLiteEvalTensors(
|
||||
const Model* model, TfLiteEvalTensor** eval_tensors);
|
||||
|
||||
// Allocates persistent tensor buffers for variable tensors in the subgraph.
|
||||
virtual TfLiteStatus AllocateVariables(const SubGraph* subgraph,
|
||||
TfLiteEvalTensor* eval_tensors);
|
||||
|
||||
// Allocate and return a persistent TfLiteTensor.
|
||||
// TODO(b/162311891): Drop this method when the interpreter has an API for
|
||||
// accessing TfLiteEvalTensor structs.
|
||||
virtual TfLiteTensor* AllocatePersistentTfLiteTensorInternal(
|
||||
const Model* model, TfLiteEvalTensor* eval_tensors, int tensor_index);
|
||||
|
||||
// Populates a TfLiteTensor struct with data from the model flatbuffer. Any
|
||||
// quantization data is allocated from either the tail (persistent) or temp
|
||||
// sections of the arena based on the allocation flag.
|
||||
virtual TfLiteStatus PopulateTfLiteTensorFromFlatbuffer(
|
||||
const Model* model, const SubGraph* subgraph, TfLiteTensor* tensor,
|
||||
int tensor_index, bool allocate_temp);
|
||||
|
||||
ErrorReporter* error_reporter() const;
|
||||
|
||||
// Returns the first subgraph from the model.
|
||||
const SubGraph* GetSubGraphFromModel(const Model* model);
|
||||
|
||||
private:
|
||||
// Commits a memory plan for all non-persistent buffer allocations in the
|
||||
// 'head' section of the memory arena. The eval_tensors pointer is the list of
|
||||
// pre-allocated TfLiteEvalTensor structs that will point to the buffers that
|
||||
// will be allocated into the head section in this function call. The
|
||||
// scratch_buffer_handles pointer is the array of pre-allocated
|
||||
// ScratchBufferHandle structs that will point to allocated buffers also in
|
||||
// the head section.
|
||||
virtual TfLiteStatus CommitStaticMemoryPlan(
|
||||
const Model* model, const SubGraph* subgraph,
|
||||
TfLiteEvalTensor* eval_tensors,
|
||||
ScratchBufferHandle* scratch_buffer_handles);
|
||||
|
||||
// Allocates an array of ScratchBufferHandle structs in the tail section for a
|
||||
// given number of handles.
|
||||
virtual TfLiteStatus AllocateScratchBufferHandles(
|
||||
ScratchBufferHandle** scratch_buffer_handles, size_t handle_count);
|
||||
|
||||
// Clears all internal scratch buffer request counts and resets the head to
|
||||
// prepare for kernels to request scratch buffer data when a model is
|
||||
// preparing.
|
||||
TfLiteStatus InitScratchBufferData();
|
||||
|
||||
// Returns the pointer for the array of ScratchBufferRequest allocations in
|
||||
// the head section.
|
||||
internal::ScratchBufferRequest* GetScratchBufferRequests();
|
||||
|
||||
// A simple memory allocator that always allocate from the arena tail or head.
|
||||
SimpleMemoryAllocator* memory_allocator_;
|
||||
|
||||
ErrorReporter* error_reporter_;
|
||||
bool model_is_allocating_;
|
||||
|
||||
// Holds the number of ScratchBufferRequest instances stored in the head
|
||||
// section when a model is allocating.
|
||||
size_t scratch_buffer_request_count_ = 0;
|
||||
|
||||
// Holds the byte length of the memory plan with the largest head usage. Used
|
||||
// to ensure that multi-tenant allocations can share the head for buffers.
|
||||
size_t max_head_buffer_usage_ = 0;
|
||||
|
||||
TF_LITE_REMOVE_VIRTUAL_DELETE
|
||||
};
|
||||
|
||||
} // namespace tflite
|
||||
#endif // TENSORFLOW_LITE_MICRO_MICRO_ALLOCATOR_H_
|
||||
@@ -0,0 +1,41 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/micro/micro_error_reporter.h"
|
||||
|
||||
#include <cstdarg>
|
||||
|
||||
#ifndef TF_LITE_STRIP_ERROR_STRINGS
|
||||
#include "tensorflow/lite/micro/debug_log.h"
|
||||
#include "tensorflow/lite/micro/micro_string.h"
|
||||
#endif
|
||||
|
||||
namespace tflite {
|
||||
|
||||
int MicroErrorReporter::Report(const char* format, va_list args) {
|
||||
#ifndef TF_LITE_STRIP_ERROR_STRINGS
|
||||
// Only pulling in the implementation of this function for builds where we
|
||||
// expect to make use of it to be extra cautious about not increasing the code
|
||||
// size.
|
||||
static constexpr int kMaxLogLen = 256;
|
||||
char log_buffer[kMaxLogLen];
|
||||
MicroVsnprintf(log_buffer, kMaxLogLen, format, args);
|
||||
DebugLog(log_buffer);
|
||||
DebugLog("\r\n");
|
||||
#endif
|
||||
return 0;
|
||||
}
|
||||
|
||||
} // namespace tflite
|
||||
@@ -0,0 +1,36 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#ifndef TENSORFLOW_LITE_MICRO_MICRO_ERROR_REPORTER_H_
|
||||
#define TENSORFLOW_LITE_MICRO_MICRO_ERROR_REPORTER_H_
|
||||
|
||||
#include <cstdarg>
|
||||
|
||||
#include "tensorflow/lite/core/api/error_reporter.h"
|
||||
#include "tensorflow/lite/micro/compatibility.h"
|
||||
|
||||
namespace tflite {
|
||||
|
||||
class MicroErrorReporter : public ErrorReporter {
|
||||
public:
|
||||
~MicroErrorReporter() override {}
|
||||
int Report(const char* format, va_list args) override;
|
||||
|
||||
private:
|
||||
TF_LITE_REMOVE_VIRTUAL_DELETE
|
||||
};
|
||||
|
||||
} // namespace tflite
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_MICRO_ERROR_REPORTER_H_
|
||||
@@ -0,0 +1,450 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#include "tensorflow/lite/micro/micro_interpreter.h"
|
||||
|
||||
#include <cstdarg>
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
|
||||
#include "flatbuffers/flatbuffers.h" // from @flatbuffers
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/core/api/error_reporter.h"
|
||||
#include "tensorflow/lite/core/api/tensor_utils.h"
|
||||
#include "tensorflow/lite/micro/memory_helpers.h"
|
||||
#include "tensorflow/lite/micro/micro_allocator.h"
|
||||
#include "tensorflow/lite/micro/micro_op_resolver.h"
|
||||
#include "tensorflow/lite/micro/micro_profiler.h"
|
||||
#include "tensorflow/lite/schema/schema_generated.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace {
|
||||
|
||||
#ifndef TF_LITE_STRIP_ERROR_STRINGS
|
||||
const char* OpNameFromRegistration(const TfLiteRegistration* registration) {
|
||||
if (registration->builtin_code == BuiltinOperator_CUSTOM) {
|
||||
return registration->custom_name;
|
||||
} else {
|
||||
return EnumNameBuiltinOperator(BuiltinOperator(registration->builtin_code));
|
||||
}
|
||||
}
|
||||
#endif // !defined(TF_LITE_STRIP_ERROR_STRINGS)
|
||||
|
||||
} // namespace
|
||||
|
||||
namespace internal {
|
||||
|
||||
ContextHelper::ContextHelper(ErrorReporter* error_reporter,
|
||||
MicroAllocator* allocator, const Model* model)
|
||||
: allocator_(allocator), error_reporter_(error_reporter), model_(model) {}
|
||||
|
||||
void* ContextHelper::AllocatePersistentBuffer(TfLiteContext* ctx,
|
||||
size_t bytes) {
|
||||
return reinterpret_cast<ContextHelper*>(ctx->impl_)
|
||||
->allocator_->AllocatePersistentBuffer(bytes);
|
||||
}
|
||||
|
||||
TfLiteStatus ContextHelper::RequestScratchBufferInArena(TfLiteContext* ctx,
|
||||
size_t bytes,
|
||||
int* buffer_idx) {
|
||||
ContextHelper* helper = reinterpret_cast<ContextHelper*>(ctx->impl_);
|
||||
return helper->allocator_->RequestScratchBufferInArena(bytes, buffer_idx);
|
||||
}
|
||||
|
||||
void* ContextHelper::GetScratchBuffer(TfLiteContext* ctx, int buffer_idx) {
|
||||
ContextHelper* helper = reinterpret_cast<ContextHelper*>(ctx->impl_);
|
||||
ScratchBufferHandle* handle = helper->scratch_buffer_handles_ + buffer_idx;
|
||||
return handle->data;
|
||||
}
|
||||
|
||||
void ContextHelper::ReportOpError(struct TfLiteContext* context,
|
||||
const char* format, ...) {
|
||||
#ifndef TF_LITE_STRIP_ERROR_STRINGS
|
||||
ContextHelper* helper = static_cast<ContextHelper*>(context->impl_);
|
||||
va_list args;
|
||||
va_start(args, format);
|
||||
TF_LITE_REPORT_ERROR(helper->error_reporter_, format, args);
|
||||
va_end(args);
|
||||
#endif
|
||||
}
|
||||
|
||||
TfLiteTensor* ContextHelper::GetTensor(const struct TfLiteContext* context,
|
||||
int tensor_idx) {
|
||||
ContextHelper* helper = static_cast<ContextHelper*>(context->impl_);
|
||||
return helper->allocator_->AllocateTempTfLiteTensor(
|
||||
helper->model_, helper->eval_tensors_, tensor_idx);
|
||||
}
|
||||
|
||||
TfLiteEvalTensor* ContextHelper::GetEvalTensor(
|
||||
const struct TfLiteContext* context, int tensor_idx) {
|
||||
ContextHelper* helper = reinterpret_cast<ContextHelper*>(context->impl_);
|
||||
return &helper->eval_tensors_[tensor_idx];
|
||||
}
|
||||
|
||||
void ContextHelper::SetTfLiteEvalTensors(TfLiteEvalTensor* eval_tensors) {
|
||||
eval_tensors_ = eval_tensors;
|
||||
}
|
||||
|
||||
void ContextHelper::SetScratchBufferHandles(
|
||||
ScratchBufferHandle* scratch_buffer_handles) {
|
||||
scratch_buffer_handles_ = scratch_buffer_handles;
|
||||
}
|
||||
|
||||
} // namespace internal
|
||||
|
||||
MicroInterpreter::MicroInterpreter(const Model* model,
|
||||
const MicroOpResolver& op_resolver,
|
||||
uint8_t* tensor_arena,
|
||||
size_t tensor_arena_size,
|
||||
ErrorReporter* error_reporter,
|
||||
tflite::Profiler* profiler)
|
||||
: model_(model),
|
||||
op_resolver_(op_resolver),
|
||||
error_reporter_(error_reporter),
|
||||
allocator_(*MicroAllocator::Create(tensor_arena, tensor_arena_size,
|
||||
error_reporter)),
|
||||
tensors_allocated_(false),
|
||||
initialization_status_(kTfLiteError),
|
||||
eval_tensors_(nullptr),
|
||||
context_helper_(error_reporter_, &allocator_, model),
|
||||
input_tensor_(nullptr),
|
||||
output_tensor_(nullptr) {
|
||||
Init(profiler);
|
||||
}
|
||||
|
||||
MicroInterpreter::MicroInterpreter(const Model* model,
|
||||
const MicroOpResolver& op_resolver,
|
||||
MicroAllocator* allocator,
|
||||
ErrorReporter* error_reporter,
|
||||
tflite::Profiler* profiler)
|
||||
: model_(model),
|
||||
op_resolver_(op_resolver),
|
||||
error_reporter_(error_reporter),
|
||||
allocator_(*allocator),
|
||||
tensors_allocated_(false),
|
||||
initialization_status_(kTfLiteError),
|
||||
eval_tensors_(nullptr),
|
||||
context_helper_(error_reporter_, &allocator_, model),
|
||||
input_tensor_(nullptr),
|
||||
output_tensor_(nullptr) {
|
||||
Init(profiler);
|
||||
}
|
||||
|
||||
MicroInterpreter::~MicroInterpreter() {
|
||||
if (node_and_registrations_ != nullptr) {
|
||||
for (size_t i = 0; i < subgraph_->operators()->size(); ++i) {
|
||||
TfLiteNode* node = &(node_and_registrations_[i].node);
|
||||
const TfLiteRegistration* registration =
|
||||
node_and_registrations_[i].registration;
|
||||
// registration is allocated outside the interpreter, so double check to
|
||||
// make sure it's not nullptr;
|
||||
if (registration != nullptr && registration->free != nullptr) {
|
||||
registration->free(&context_, node->user_data);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void MicroInterpreter::Init(tflite::Profiler* profiler) {
|
||||
const flatbuffers::Vector<flatbuffers::Offset<SubGraph>>* subgraphs =
|
||||
model_->subgraphs();
|
||||
if (subgraphs->size() != 1) {
|
||||
TF_LITE_REPORT_ERROR(error_reporter_,
|
||||
"Only 1 subgraph is currently supported.\n");
|
||||
initialization_status_ = kTfLiteError;
|
||||
return;
|
||||
}
|
||||
subgraph_ = (*subgraphs)[0];
|
||||
|
||||
context_.impl_ = static_cast<void*>(&context_helper_);
|
||||
context_.ReportError = context_helper_.ReportOpError;
|
||||
context_.GetTensor = context_helper_.GetTensor;
|
||||
context_.GetEvalTensor = context_helper_.GetEvalTensor;
|
||||
context_.recommended_num_threads = 1;
|
||||
context_.profiler = profiler;
|
||||
|
||||
initialization_status_ = kTfLiteOk;
|
||||
}
|
||||
|
||||
void MicroInterpreter::CorrectTensorEndianness(TfLiteEvalTensor* tensorCorr) {
|
||||
int32_t tensorSize = 1;
|
||||
for (int d = 0; d < tensorCorr->dims->size; ++d)
|
||||
tensorSize *= reinterpret_cast<const int32_t*>(tensorCorr->dims->data)[d];
|
||||
|
||||
switch (tensorCorr->type) {
|
||||
case TfLiteType::kTfLiteFloat32:
|
||||
CorrectTensorDataEndianness(tensorCorr->data.f, tensorSize);
|
||||
break;
|
||||
case TfLiteType::kTfLiteFloat16:
|
||||
CorrectTensorDataEndianness(tensorCorr->data.f16, tensorSize);
|
||||
break;
|
||||
case TfLiteType::kTfLiteInt64:
|
||||
CorrectTensorDataEndianness(tensorCorr->data.i64, tensorSize);
|
||||
break;
|
||||
case TfLiteType::kTfLiteInt32:
|
||||
CorrectTensorDataEndianness(tensorCorr->data.i32, tensorSize);
|
||||
break;
|
||||
case TfLiteType::kTfLiteInt16:
|
||||
CorrectTensorDataEndianness(tensorCorr->data.i16, tensorSize);
|
||||
break;
|
||||
case TfLiteType::kTfLiteComplex64:
|
||||
CorrectTensorDataEndianness(tensorCorr->data.c64, tensorSize);
|
||||
break;
|
||||
case TfLiteType::kTfLiteComplex128:
|
||||
CorrectTensorDataEndianness(tensorCorr->data.c128, tensorSize);
|
||||
break;
|
||||
default:
|
||||
// Do nothing for other data types.
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void MicroInterpreter::CorrectTensorDataEndianness(T* data, int32_t size) {
|
||||
for (int32_t i = 0; i < size; ++i) {
|
||||
data[i] = flatbuffers::EndianScalar(data[i]);
|
||||
}
|
||||
}
|
||||
|
||||
TfLiteStatus MicroInterpreter::AllocateTensors() {
|
||||
if (allocator_.StartModelAllocation(model_, op_resolver_,
|
||||
&node_and_registrations_,
|
||||
&eval_tensors_) != kTfLiteOk) {
|
||||
TF_LITE_REPORT_ERROR(error_reporter_,
|
||||
"Failed starting model allocation.\n");
|
||||
initialization_status_ = kTfLiteError;
|
||||
return kTfLiteError;
|
||||
}
|
||||
|
||||
// Update the pointer now that TfLiteEvalTensor allocation has completed on
|
||||
// the context helper.
|
||||
// TODO(b/16157777): This call would not be needed if ContextHelper rolled
|
||||
// into the interpreter.
|
||||
context_helper_.SetTfLiteEvalTensors(eval_tensors_);
|
||||
context_.tensors_size = subgraph_->tensors()->size();
|
||||
|
||||
// If the system is big endian then convert weights from the flatbuffer from
|
||||
// little to big endian on startup so that it does not need to be done during
|
||||
// inference.
|
||||
// NOTE: This requires that the flatbuffer is held in memory which can be
|
||||
// modified by this process.
|
||||
if (!FLATBUFFERS_LITTLEENDIAN) {
|
||||
for (size_t t = 0; t < subgraph_->tensors()->size(); ++t) {
|
||||
if (auto* buffer =
|
||||
(*model_->buffers())[subgraph_->tensors()->Get(t)->buffer()]) {
|
||||
// If we've found a buffer, does it have any data?
|
||||
if (auto* array = buffer->data()) {
|
||||
// If it has any data, is the data size larger than zero?
|
||||
if (array->size()) {
|
||||
// Update the endianness of the corresponding eval tensor since that
|
||||
// struct holds the buffer used at inference time.
|
||||
CorrectTensorEndianness(&eval_tensors_[t]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Only allow AllocatePersistentBuffer in Init stage.
|
||||
context_.AllocatePersistentBuffer = context_helper_.AllocatePersistentBuffer;
|
||||
context_.RequestScratchBufferInArena = nullptr;
|
||||
context_.GetScratchBuffer = nullptr;
|
||||
|
||||
for (size_t i = 0; i < subgraph_->operators()->size(); ++i) {
|
||||
auto* node = &(node_and_registrations_[i].node);
|
||||
auto* registration = node_and_registrations_[i].registration;
|
||||
size_t init_data_size;
|
||||
const char* init_data;
|
||||
if (registration->builtin_code == BuiltinOperator_CUSTOM) {
|
||||
init_data = reinterpret_cast<const char*>(node->custom_initial_data);
|
||||
init_data_size = node->custom_initial_data_size;
|
||||
} else {
|
||||
init_data = reinterpret_cast<const char*>(node->builtin_data);
|
||||
init_data_size = 0;
|
||||
}
|
||||
if (registration->init) {
|
||||
node->user_data =
|
||||
registration->init(&context_, init_data, init_data_size);
|
||||
}
|
||||
}
|
||||
|
||||
// Both AllocatePersistentBuffer and RequestScratchBufferInArena is
|
||||
// available in Prepare stage.
|
||||
context_.RequestScratchBufferInArena =
|
||||
context_helper_.RequestScratchBufferInArena;
|
||||
for (size_t i = 0; i < subgraph_->operators()->size(); ++i) {
|
||||
auto* node = &(node_and_registrations_[i].node);
|
||||
auto* registration = node_and_registrations_[i].registration;
|
||||
if (registration->prepare) {
|
||||
TfLiteStatus prepare_status = registration->prepare(&context_, node);
|
||||
if (prepare_status != kTfLiteOk) {
|
||||
TF_LITE_REPORT_ERROR(
|
||||
error_reporter_,
|
||||
"Node %s (number %df) failed to prepare with status %d",
|
||||
OpNameFromRegistration(registration), i, prepare_status);
|
||||
return kTfLiteError;
|
||||
}
|
||||
}
|
||||
allocator_.FinishPrepareNodeAllocations(/*node_id=*/i);
|
||||
}
|
||||
|
||||
// Prepare is done, we're ready for Invoke. Memory allocation is no longer
|
||||
// allowed. Kernels can only fetch scratch buffers via GetScratchBuffer.
|
||||
context_.AllocatePersistentBuffer = nullptr;
|
||||
context_.RequestScratchBufferInArena = nullptr;
|
||||
context_.GetScratchBuffer = context_helper_.GetScratchBuffer;
|
||||
|
||||
TF_LITE_ENSURE_OK(&context_,
|
||||
allocator_.FinishModelAllocation(model_, eval_tensors_,
|
||||
&scratch_buffer_handles_));
|
||||
// TODO(b/16157777): Remove this when ContextHelper is rolled into this class.
|
||||
context_helper_.SetScratchBufferHandles(scratch_buffer_handles_);
|
||||
|
||||
TF_LITE_ENSURE_STATUS(ResetVariableTensors());
|
||||
|
||||
tensors_allocated_ = true;
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus MicroInterpreter::Invoke() {
|
||||
if (initialization_status_ != kTfLiteOk) {
|
||||
TF_LITE_REPORT_ERROR(error_reporter_,
|
||||
"Invoke() called after initialization failed\n");
|
||||
return kTfLiteError;
|
||||
}
|
||||
|
||||
// Ensure tensors are allocated before the interpreter is invoked to avoid
|
||||
// difficult to debug segfaults.
|
||||
if (!tensors_allocated_) {
|
||||
TF_LITE_ENSURE_OK(&context_, AllocateTensors());
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < subgraph_->operators()->size(); ++i) {
|
||||
auto* node = &(node_and_registrations_[i].node);
|
||||
auto* registration = node_and_registrations_[i].registration;
|
||||
|
||||
if (registration->invoke) {
|
||||
TfLiteStatus invoke_status;
|
||||
#ifndef NDEBUG // Omit profiler overhead from release builds.
|
||||
// The case where profiler == nullptr is handled by
|
||||
// ScopedOperatorProfile.
|
||||
tflite::Profiler* profiler =
|
||||
reinterpret_cast<tflite::Profiler*>(context_.profiler);
|
||||
ScopedOperatorProfile scoped_profiler(
|
||||
profiler, OpNameFromRegistration(registration), i);
|
||||
#endif
|
||||
invoke_status = registration->invoke(&context_, node);
|
||||
|
||||
// All TfLiteTensor structs used in the kernel are allocated from temp
|
||||
// memory in the allocator. This creates a chain of allocations in the
|
||||
// temp section. The call below resets the chain of allocations to
|
||||
// prepare for the next call.
|
||||
allocator_.ResetTempAllocations();
|
||||
|
||||
if (invoke_status == kTfLiteError) {
|
||||
TF_LITE_REPORT_ERROR(
|
||||
error_reporter_,
|
||||
"Node %s (number %d) failed to invoke with status %d",
|
||||
OpNameFromRegistration(registration), i, invoke_status);
|
||||
return kTfLiteError;
|
||||
} else if (invoke_status != kTfLiteOk) {
|
||||
return invoke_status;
|
||||
}
|
||||
}
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteTensor* MicroInterpreter::input(size_t index) {
|
||||
const size_t length = inputs_size();
|
||||
if (index >= length) {
|
||||
TF_LITE_REPORT_ERROR(error_reporter_,
|
||||
"Input index %d out of range (length is %d)", index,
|
||||
length);
|
||||
return nullptr;
|
||||
}
|
||||
if (index != 0) {
|
||||
TF_LITE_REPORT_ERROR(
|
||||
error_reporter_,
|
||||
"Input tensors not at index 0 are allocated from the "
|
||||
"persistent memory arena. Repeat calls will cause excess "
|
||||
"allocation!");
|
||||
return allocator_.AllocatePersistentTfLiteTensor(model_, eval_tensors_,
|
||||
inputs().Get(index));
|
||||
}
|
||||
if (input_tensor_ == nullptr) {
|
||||
input_tensor_ = allocator_.AllocatePersistentTfLiteTensor(
|
||||
model_, eval_tensors_, inputs().Get(index));
|
||||
}
|
||||
return input_tensor_;
|
||||
}
|
||||
|
||||
TfLiteTensor* MicroInterpreter::output(size_t index) {
|
||||
const size_t length = outputs_size();
|
||||
if (index >= length) {
|
||||
TF_LITE_REPORT_ERROR(error_reporter_,
|
||||
"Output index %d out of range (length is %d)", index,
|
||||
length);
|
||||
return nullptr;
|
||||
}
|
||||
if (index != 0) {
|
||||
TF_LITE_REPORT_ERROR(
|
||||
error_reporter_,
|
||||
"Output tensors not at index 0 are allocated from the "
|
||||
"persistent memory arena. Repeat calls will cause excess "
|
||||
"allocation!");
|
||||
return allocator_.AllocatePersistentTfLiteTensor(model_, eval_tensors_,
|
||||
outputs().Get(index));
|
||||
}
|
||||
if (output_tensor_ == nullptr) {
|
||||
// TODO(b/162311891): Drop these allocations when the interpreter supports
|
||||
// handling buffers from TfLiteEvalTensor.
|
||||
output_tensor_ = allocator_.AllocatePersistentTfLiteTensor(
|
||||
model_, eval_tensors_, outputs().Get(index));
|
||||
}
|
||||
return output_tensor_;
|
||||
}
|
||||
|
||||
TfLiteTensor* MicroInterpreter::tensor(size_t index) {
|
||||
const size_t length = tensors_size();
|
||||
if (index >= length) {
|
||||
TF_LITE_REPORT_ERROR(error_reporter_,
|
||||
"Tensor index %d out of range (length is %d)", index,
|
||||
length);
|
||||
return nullptr;
|
||||
}
|
||||
return allocator_.AllocatePersistentTfLiteTensor(model_, eval_tensors_,
|
||||
index);
|
||||
}
|
||||
|
||||
TfLiteStatus MicroInterpreter::ResetVariableTensors() {
|
||||
for (size_t i = 0; i < subgraph_->tensors()->size(); ++i) {
|
||||
auto* tensor = subgraph_->tensors()->Get(i);
|
||||
if (tensor->is_variable()) {
|
||||
size_t buffer_size;
|
||||
TF_LITE_ENSURE_STATUS(
|
||||
TfLiteEvalTensorByteLength(&eval_tensors_[i], &buffer_size));
|
||||
|
||||
int value = 0;
|
||||
if (tensor->type() == tflite::TensorType_INT8) {
|
||||
value = tensor->quantization()->zero_point()->Get(0);
|
||||
}
|
||||
memset(eval_tensors_[i].data.raw, value, buffer_size);
|
||||
}
|
||||
}
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
} // namespace tflite
|
||||
@@ -0,0 +1,211 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#ifndef TENSORFLOW_LITE_MICRO_MICRO_INTERPRETER_H_
|
||||
#define TENSORFLOW_LITE_MICRO_MICRO_INTERPRETER_H_
|
||||
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
|
||||
#include "flatbuffers/flatbuffers.h" // from @flatbuffers
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/core/api/error_reporter.h"
|
||||
#include "tensorflow/lite/core/api/profiler.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/micro/micro_allocator.h"
|
||||
#include "tensorflow/lite/micro/micro_op_resolver.h"
|
||||
#include "tensorflow/lite/portable_type_to_tflitetype.h"
|
||||
#include "tensorflow/lite/schema/schema_generated.h"
|
||||
|
||||
namespace tflite {
|
||||
|
||||
namespace internal {
|
||||
|
||||
// A helper class to encapsulate the implementation of APIs in Context.
|
||||
// context->impl_ points to an instance of this class.
|
||||
// Check tensorflow/lite/c/common.h for detailed descriptions.
|
||||
// TODO(b/16157777): Consider rolling this class into MicroInterpreter.
|
||||
class ContextHelper {
|
||||
public:
|
||||
explicit ContextHelper(ErrorReporter* error_reporter,
|
||||
MicroAllocator* allocator, const Model* model);
|
||||
|
||||
// Functions that will be assigned to function pointers on TfLiteContext:
|
||||
static void* AllocatePersistentBuffer(TfLiteContext* ctx, size_t bytes);
|
||||
static TfLiteStatus RequestScratchBufferInArena(TfLiteContext* ctx,
|
||||
size_t bytes,
|
||||
int* buffer_idx);
|
||||
static void* GetScratchBuffer(TfLiteContext* ctx, int buffer_idx);
|
||||
static void ReportOpError(struct TfLiteContext* context, const char* format,
|
||||
...);
|
||||
static TfLiteTensor* GetTensor(const struct TfLiteContext* context,
|
||||
int tensor_idx);
|
||||
static TfLiteEvalTensor* GetEvalTensor(const struct TfLiteContext* context,
|
||||
int tensor_idx);
|
||||
|
||||
// Sets the pointer to a list of TfLiteEvalTensor instances.
|
||||
void SetTfLiteEvalTensors(TfLiteEvalTensor* eval_tensors);
|
||||
|
||||
// Sets the pointer to a list of ScratchBufferHandle instances.
|
||||
void SetScratchBufferHandles(ScratchBufferHandle* scratch_buffer_handles);
|
||||
|
||||
private:
|
||||
MicroAllocator* allocator_ = nullptr;
|
||||
ErrorReporter* error_reporter_ = nullptr;
|
||||
const Model* model_ = nullptr;
|
||||
TfLiteEvalTensor* eval_tensors_ = nullptr;
|
||||
ScratchBufferHandle* scratch_buffer_handles_ = nullptr;
|
||||
};
|
||||
|
||||
} // namespace internal
|
||||
|
||||
class MicroInterpreter {
|
||||
public:
|
||||
// The lifetime of the model, op resolver, tensor arena, error reporter and
|
||||
// profiler must be at least as long as that of the interpreter object, since
|
||||
// the interpreter may need to access them at any time. This means that you
|
||||
// should usually create them with the same scope as each other, for example
|
||||
// having them all allocated on the stack as local variables through a
|
||||
// top-level function. The interpreter doesn't do any deallocation of any of
|
||||
// the pointed-to objects, ownership remains with the caller.
|
||||
MicroInterpreter(const Model* model, const MicroOpResolver& op_resolver,
|
||||
uint8_t* tensor_arena, size_t tensor_arena_size,
|
||||
ErrorReporter* error_reporter,
|
||||
tflite::Profiler* profiler = nullptr);
|
||||
|
||||
// Create an interpreter instance using an existing MicroAllocator instance.
|
||||
// This constructor should be used when creating an allocator that needs to
|
||||
// have allocation handled in more than one interpreter or for recording
|
||||
// allocations inside the interpreter. The lifetime of the allocator must be
|
||||
// as long as that of the interpreter object.
|
||||
MicroInterpreter(const Model* model, const MicroOpResolver& op_resolver,
|
||||
MicroAllocator* allocator, ErrorReporter* error_reporter,
|
||||
tflite::Profiler* profiler = nullptr);
|
||||
|
||||
~MicroInterpreter();
|
||||
|
||||
// Runs through the model and allocates all necessary input, output and
|
||||
// intermediate tensors.
|
||||
TfLiteStatus AllocateTensors();
|
||||
|
||||
// In order to support partial graph runs for strided models, this can return
|
||||
// values other than kTfLiteOk and kTfLiteError.
|
||||
// TODO(b/149795762): Add this to the TfLiteStatus enum.
|
||||
TfLiteStatus Invoke();
|
||||
|
||||
size_t tensors_size() const { return context_.tensors_size; }
|
||||
TfLiteTensor* tensor(size_t tensor_index);
|
||||
template <class T>
|
||||
T* typed_tensor(int tensor_index) {
|
||||
if (TfLiteTensor* tensor_ptr = tensor(tensor_index)) {
|
||||
if (tensor_ptr->type == typeToTfLiteType<T>()) {
|
||||
return GetTensorData<T>(tensor_ptr);
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
TfLiteTensor* input(size_t index);
|
||||
size_t inputs_size() const { return subgraph_->inputs()->Length(); }
|
||||
const flatbuffers::Vector<int32_t>& inputs() const {
|
||||
return *subgraph_->inputs();
|
||||
}
|
||||
TfLiteTensor* input_tensor(size_t index) { return input(index); }
|
||||
template <class T>
|
||||
T* typed_input_tensor(int tensor_index) {
|
||||
if (TfLiteTensor* tensor_ptr = input_tensor(tensor_index)) {
|
||||
if (tensor_ptr->type == typeToTfLiteType<T>()) {
|
||||
return GetTensorData<T>(tensor_ptr);
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
TfLiteTensor* output(size_t index);
|
||||
size_t outputs_size() const { return subgraph_->outputs()->Length(); }
|
||||
const flatbuffers::Vector<int32_t>& outputs() const {
|
||||
return *subgraph_->outputs();
|
||||
}
|
||||
TfLiteTensor* output_tensor(size_t index) { return output(index); }
|
||||
template <class T>
|
||||
T* typed_output_tensor(int tensor_index) {
|
||||
if (TfLiteTensor* tensor_ptr = output_tensor(tensor_index)) {
|
||||
if (tensor_ptr->type == typeToTfLiteType<T>()) {
|
||||
return GetTensorData<T>(tensor_ptr);
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// Reset all variable tensors to the default value.
|
||||
TfLiteStatus ResetVariableTensors();
|
||||
|
||||
TfLiteStatus initialization_status() const { return initialization_status_; }
|
||||
|
||||
size_t operators_size() const { return subgraph_->operators()->size(); }
|
||||
|
||||
// For debugging only.
|
||||
const NodeAndRegistration node_and_registration(int node_index) const {
|
||||
return node_and_registrations_[node_index];
|
||||
}
|
||||
|
||||
// For debugging only.
|
||||
// Returns the actual used arena in bytes. This method gives the optimal arena
|
||||
// size. It's only available after `AllocateTensors` has been called.
|
||||
// Note that normally `tensor_arena` requires 16 bytes alignment to fully
|
||||
// utilize the space. If it's not the case, the optimial arena size would be
|
||||
// arena_used_bytes() + 16.
|
||||
size_t arena_used_bytes() const { return allocator_.used_bytes(); }
|
||||
|
||||
protected:
|
||||
const MicroAllocator& allocator() const { return allocator_; }
|
||||
const TfLiteContext& context() const { return context_; }
|
||||
|
||||
private:
|
||||
// TODO(b/158263161): Consider switching to Create() function to enable better
|
||||
// error reporting during initialization.
|
||||
void Init(tflite::Profiler* profiler);
|
||||
|
||||
void CorrectTensorEndianness(TfLiteEvalTensor* tensorCorr);
|
||||
|
||||
template <class T>
|
||||
void CorrectTensorDataEndianness(T* data, int32_t size);
|
||||
|
||||
NodeAndRegistration* node_and_registrations_ = nullptr;
|
||||
|
||||
const Model* model_;
|
||||
const MicroOpResolver& op_resolver_;
|
||||
ErrorReporter* error_reporter_;
|
||||
TfLiteContext context_ = {};
|
||||
MicroAllocator& allocator_;
|
||||
bool tensors_allocated_;
|
||||
|
||||
TfLiteStatus initialization_status_;
|
||||
|
||||
const SubGraph* subgraph_ = nullptr;
|
||||
TfLiteEvalTensor* eval_tensors_ = nullptr;
|
||||
ScratchBufferHandle* scratch_buffer_handles_ = nullptr;
|
||||
|
||||
// TODO(b/16157777): Drop this reference:
|
||||
internal::ContextHelper context_helper_;
|
||||
|
||||
// TODO(b/162311891): Clean these pointers up when this class supports buffers
|
||||
// from TfLiteEvalTensor.
|
||||
TfLiteTensor* input_tensor_;
|
||||
TfLiteTensor* output_tensor_;
|
||||
};
|
||||
|
||||
} // namespace tflite
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_MICRO_INTERPRETER_H_
|
||||
@@ -0,0 +1,470 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#ifndef TENSORFLOW_LITE_MICRO_MICRO_MUTABLE_OP_RESOLVER_H_
|
||||
#define TENSORFLOW_LITE_MICRO_MICRO_MUTABLE_OP_RESOLVER_H_
|
||||
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/core/api/error_reporter.h"
|
||||
#include "tensorflow/lite/core/api/flatbuffer_conversions.h"
|
||||
#include "tensorflow/lite/kernels/internal/compatibility.h"
|
||||
#include "tensorflow/lite/kernels/op_macros.h"
|
||||
#include "tensorflow/lite/micro/compatibility.h"
|
||||
#include "tensorflow/lite/micro/kernels/fully_connected.h"
|
||||
#include "tensorflow/lite/micro/kernels/micro_ops.h"
|
||||
#include "tensorflow/lite/micro/micro_op_resolver.h"
|
||||
#include "tensorflow/lite/schema/schema_generated.h"
|
||||
|
||||
namespace tflite {
|
||||
|
||||
template <unsigned int tOpCount>
|
||||
class MicroMutableOpResolver : public MicroOpResolver {
|
||||
public:
|
||||
explicit MicroMutableOpResolver(ErrorReporter* error_reporter = nullptr)
|
||||
: error_reporter_(error_reporter) {}
|
||||
|
||||
const TfLiteRegistration* FindOp(tflite::BuiltinOperator op) const override {
|
||||
if (op == BuiltinOperator_CUSTOM) return nullptr;
|
||||
|
||||
for (unsigned int i = 0; i < registrations_len_; ++i) {
|
||||
const TfLiteRegistration& registration = registrations_[i];
|
||||
if (registration.builtin_code == op) {
|
||||
return ®istration;
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
const TfLiteRegistration* FindOp(const char* op) const override {
|
||||
for (unsigned int i = 0; i < registrations_len_; ++i) {
|
||||
const TfLiteRegistration& registration = registrations_[i];
|
||||
if ((registration.builtin_code == BuiltinOperator_CUSTOM) &&
|
||||
(strcmp(registration.custom_name, op) == 0)) {
|
||||
return ®istration;
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
MicroOpResolver::BuiltinParseFunction GetOpDataParser(
|
||||
BuiltinOperator op) const override {
|
||||
TFLITE_DCHECK(num_buitin_ops_ <= tOpCount);
|
||||
for (unsigned int i = 0; i < num_buitin_ops_; ++i) {
|
||||
if (builtin_codes_[i] == op) return builtin_parsers_[i];
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// Registers a Custom Operator with the MicroOpResolver.
|
||||
//
|
||||
// Only the first call for a given name will be successful. i.e. if this
|
||||
// function is called again for a previously added Custom Operator, the
|
||||
// MicroOpResolver will be unchanged and this function will return
|
||||
// kTfLiteError.
|
||||
TfLiteStatus AddCustom(const char* name, TfLiteRegistration* registration) {
|
||||
if (registrations_len_ >= tOpCount) {
|
||||
if (error_reporter_) {
|
||||
TF_LITE_REPORT_ERROR(
|
||||
error_reporter_,
|
||||
"Couldn't register custom op '%s', resolver size is too small (%d)",
|
||||
name, tOpCount);
|
||||
}
|
||||
return kTfLiteError;
|
||||
}
|
||||
|
||||
if (FindOp(name) != nullptr) {
|
||||
if (error_reporter_ != nullptr) {
|
||||
TF_LITE_REPORT_ERROR(error_reporter_,
|
||||
"Calling AddCustom for the same op more than once "
|
||||
"is not supported (Op: %s).",
|
||||
name);
|
||||
}
|
||||
return kTfLiteError;
|
||||
}
|
||||
|
||||
TfLiteRegistration* new_registration = ®istrations_[registrations_len_];
|
||||
registrations_len_ += 1;
|
||||
|
||||
*new_registration = *registration;
|
||||
new_registration->builtin_code = BuiltinOperator_CUSTOM;
|
||||
new_registration->custom_name = name;
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
// The Add* functions below add the various Builtin operators to the
|
||||
// MicroMutableOpResolver object.
|
||||
|
||||
TfLiteStatus AddAbs() {
|
||||
return AddBuiltin(BuiltinOperator_ABS, tflite::ops::micro::Register_ABS(),
|
||||
ParseAbs);
|
||||
}
|
||||
|
||||
TfLiteStatus AddAdd() {
|
||||
return AddBuiltin(BuiltinOperator_ADD, tflite::ops::micro::Register_ADD(),
|
||||
ParseAdd);
|
||||
}
|
||||
|
||||
TfLiteStatus AddArgMax() {
|
||||
return AddBuiltin(BuiltinOperator_ARG_MAX,
|
||||
tflite::ops::micro::Register_ARG_MAX(), ParseArgMax);
|
||||
}
|
||||
|
||||
TfLiteStatus AddArgMin() {
|
||||
return AddBuiltin(BuiltinOperator_ARG_MIN,
|
||||
tflite::ops::micro::Register_ARG_MIN(), ParseArgMin);
|
||||
}
|
||||
|
||||
TfLiteStatus AddAveragePool2D() {
|
||||
return AddBuiltin(BuiltinOperator_AVERAGE_POOL_2D,
|
||||
tflite::ops::micro::Register_AVERAGE_POOL_2D(),
|
||||
ParsePool);
|
||||
}
|
||||
|
||||
TfLiteStatus AddCeil() {
|
||||
return AddBuiltin(BuiltinOperator_CEIL, tflite::ops::micro::Register_CEIL(),
|
||||
ParseCeil);
|
||||
}
|
||||
|
||||
TfLiteStatus AddCircularBuffer() {
|
||||
return AddCustom("CIRCULAR_BUFFER",
|
||||
tflite::ops::micro::Register_CIRCULAR_BUFFER());
|
||||
}
|
||||
|
||||
TfLiteStatus AddConcatenation() {
|
||||
return AddBuiltin(BuiltinOperator_CONCATENATION,
|
||||
tflite::ops::micro::Register_CONCATENATION(),
|
||||
ParseConcatenation);
|
||||
}
|
||||
|
||||
TfLiteStatus AddConv2D() {
|
||||
return AddBuiltin(BuiltinOperator_CONV_2D, Register_CONV_2D(), ParseConv2D);
|
||||
}
|
||||
|
||||
TfLiteStatus AddCos() {
|
||||
return AddBuiltin(BuiltinOperator_COS, tflite::ops::micro::Register_COS(),
|
||||
ParseCos);
|
||||
}
|
||||
|
||||
TfLiteStatus AddDepthwiseConv2D() {
|
||||
return AddBuiltin(BuiltinOperator_DEPTHWISE_CONV_2D,
|
||||
Register_DEPTHWISE_CONV_2D(), ParseDepthwiseConv2D);
|
||||
}
|
||||
|
||||
TfLiteStatus AddDequantize() {
|
||||
return AddBuiltin(BuiltinOperator_DEQUANTIZE,
|
||||
tflite::ops::micro::Register_DEQUANTIZE(),
|
||||
ParseDequantize);
|
||||
}
|
||||
|
||||
TfLiteStatus AddEqual() {
|
||||
return AddBuiltin(BuiltinOperator_EQUAL,
|
||||
tflite::ops::micro::Register_EQUAL(), ParseEqual);
|
||||
}
|
||||
|
||||
TfLiteStatus AddFloor() {
|
||||
return AddBuiltin(BuiltinOperator_FLOOR,
|
||||
tflite::ops::micro::Register_FLOOR(), ParseFloor);
|
||||
}
|
||||
|
||||
TfLiteStatus AddFullyConnected(
|
||||
const TfLiteRegistration& registration = Register_FULLY_CONNECTED()) {
|
||||
return AddBuiltin(BuiltinOperator_FULLY_CONNECTED, registration,
|
||||
ParseFullyConnected);
|
||||
}
|
||||
|
||||
TfLiteStatus AddGreater() {
|
||||
return AddBuiltin(BuiltinOperator_GREATER,
|
||||
tflite::ops::micro::Register_GREATER(), ParseGreater);
|
||||
}
|
||||
|
||||
TfLiteStatus AddGreaterEqual() {
|
||||
return AddBuiltin(BuiltinOperator_GREATER_EQUAL,
|
||||
tflite::ops::micro::Register_GREATER_EQUAL(),
|
||||
ParseGreaterEqual);
|
||||
}
|
||||
|
||||
TfLiteStatus AddHardSwish() {
|
||||
return AddBuiltin(BuiltinOperator_HARD_SWISH,
|
||||
tflite::ops::micro::Register_HARD_SWISH(),
|
||||
ParseHardSwish);
|
||||
}
|
||||
|
||||
TfLiteStatus AddL2Normalization() {
|
||||
return AddBuiltin(BuiltinOperator_L2_NORMALIZATION,
|
||||
tflite::ops::micro::Register_L2_NORMALIZATION(),
|
||||
ParseL2Normalization);
|
||||
}
|
||||
|
||||
TfLiteStatus AddLess() {
|
||||
return AddBuiltin(BuiltinOperator_LESS, tflite::ops::micro::Register_LESS(),
|
||||
ParseLess);
|
||||
}
|
||||
|
||||
TfLiteStatus AddLessEqual() {
|
||||
return AddBuiltin(BuiltinOperator_LESS_EQUAL,
|
||||
tflite::ops::micro::Register_LESS_EQUAL(),
|
||||
ParseLessEqual);
|
||||
}
|
||||
|
||||
TfLiteStatus AddLog() {
|
||||
return AddBuiltin(BuiltinOperator_LOG, tflite::ops::micro::Register_LOG(),
|
||||
ParseLog);
|
||||
}
|
||||
|
||||
TfLiteStatus AddLogicalAnd() {
|
||||
return AddBuiltin(BuiltinOperator_LOGICAL_AND,
|
||||
tflite::ops::micro::Register_LOGICAL_AND(),
|
||||
ParseLogicalAnd);
|
||||
}
|
||||
|
||||
TfLiteStatus AddLogicalNot() {
|
||||
return AddBuiltin(BuiltinOperator_LOGICAL_NOT,
|
||||
tflite::ops::micro::Register_LOGICAL_NOT(),
|
||||
ParseLogicalNot);
|
||||
}
|
||||
|
||||
TfLiteStatus AddLogicalOr() {
|
||||
return AddBuiltin(BuiltinOperator_LOGICAL_OR,
|
||||
tflite::ops::micro::Register_LOGICAL_OR(),
|
||||
ParseLogicalOr);
|
||||
}
|
||||
|
||||
TfLiteStatus AddLogistic() {
|
||||
return AddBuiltin(BuiltinOperator_LOGISTIC,
|
||||
tflite::ops::micro::Register_LOGISTIC(), ParseLogistic);
|
||||
}
|
||||
|
||||
TfLiteStatus AddMaximum() {
|
||||
return AddBuiltin(BuiltinOperator_MAXIMUM,
|
||||
tflite::ops::micro::Register_MAXIMUM(), ParseMaximum);
|
||||
}
|
||||
|
||||
TfLiteStatus AddMaxPool2D() {
|
||||
return AddBuiltin(BuiltinOperator_MAX_POOL_2D,
|
||||
tflite::ops::micro::Register_MAX_POOL_2D(), ParsePool);
|
||||
}
|
||||
|
||||
TfLiteStatus AddMean() {
|
||||
return AddBuiltin(BuiltinOperator_MEAN, tflite::ops::micro::Register_MEAN(),
|
||||
ParseReducer);
|
||||
}
|
||||
|
||||
TfLiteStatus AddMinimum() {
|
||||
return AddBuiltin(BuiltinOperator_MINIMUM,
|
||||
tflite::ops::micro::Register_MINIMUM(), ParseMinimum);
|
||||
}
|
||||
|
||||
TfLiteStatus AddMul() {
|
||||
return AddBuiltin(BuiltinOperator_MUL, tflite::ops::micro::Register_MUL(),
|
||||
ParseMul);
|
||||
}
|
||||
|
||||
TfLiteStatus AddNeg() {
|
||||
return AddBuiltin(BuiltinOperator_NEG, tflite::ops::micro::Register_NEG(),
|
||||
ParseNeg);
|
||||
}
|
||||
|
||||
TfLiteStatus AddNotEqual() {
|
||||
return AddBuiltin(BuiltinOperator_NOT_EQUAL,
|
||||
tflite::ops::micro::Register_NOT_EQUAL(), ParseNotEqual);
|
||||
}
|
||||
|
||||
TfLiteStatus AddPack() {
|
||||
return AddBuiltin(BuiltinOperator_PACK, tflite::ops::micro::Register_PACK(),
|
||||
ParsePack);
|
||||
}
|
||||
|
||||
TfLiteStatus AddPad() {
|
||||
return AddBuiltin(BuiltinOperator_PAD, tflite::ops::micro::Register_PAD(),
|
||||
ParsePad);
|
||||
}
|
||||
|
||||
TfLiteStatus AddPadV2() {
|
||||
return AddBuiltin(BuiltinOperator_PADV2,
|
||||
tflite::ops::micro::Register_PADV2(), ParsePadV2);
|
||||
}
|
||||
|
||||
TfLiteStatus AddPrelu() {
|
||||
return AddBuiltin(BuiltinOperator_PRELU,
|
||||
tflite::ops::micro::Register_PRELU(), ParsePrelu);
|
||||
}
|
||||
|
||||
TfLiteStatus AddQuantize() {
|
||||
return AddBuiltin(BuiltinOperator_QUANTIZE, Register_QUANTIZE(),
|
||||
ParseQuantize);
|
||||
}
|
||||
|
||||
TfLiteStatus AddReduceMax() {
|
||||
return AddBuiltin(BuiltinOperator_REDUCE_MAX,
|
||||
tflite::ops::micro::Register_REDUCE_MAX(), ParseReducer);
|
||||
}
|
||||
|
||||
TfLiteStatus AddRelu() {
|
||||
return AddBuiltin(BuiltinOperator_RELU, tflite::ops::micro::Register_RELU(),
|
||||
ParseRelu);
|
||||
}
|
||||
|
||||
TfLiteStatus AddRelu6() {
|
||||
return AddBuiltin(BuiltinOperator_RELU6,
|
||||
tflite::ops::micro::Register_RELU6(), ParseRelu6);
|
||||
}
|
||||
|
||||
TfLiteStatus AddReshape() {
|
||||
return AddBuiltin(BuiltinOperator_RESHAPE,
|
||||
tflite::ops::micro::Register_RESHAPE(), ParseReshape);
|
||||
}
|
||||
|
||||
TfLiteStatus AddResizeNearestNeighbor() {
|
||||
return AddBuiltin(BuiltinOperator_RESIZE_NEAREST_NEIGHBOR,
|
||||
tflite::ops::micro::Register_RESIZE_NEAREST_NEIGHBOR(),
|
||||
ParseResizeNearestNeighbor);
|
||||
}
|
||||
|
||||
TfLiteStatus AddRound() {
|
||||
return AddBuiltin(BuiltinOperator_ROUND,
|
||||
tflite::ops::micro::Register_ROUND(), ParseRound);
|
||||
}
|
||||
|
||||
TfLiteStatus AddRsqrt() {
|
||||
return AddBuiltin(BuiltinOperator_RSQRT,
|
||||
tflite::ops::micro::Register_RSQRT(), ParseRsqrt);
|
||||
}
|
||||
|
||||
TfLiteStatus AddShape() {
|
||||
return AddBuiltin(BuiltinOperator_SHAPE, Register_SHAPE(), ParseShape);
|
||||
}
|
||||
|
||||
TfLiteStatus AddSin() {
|
||||
return AddBuiltin(BuiltinOperator_SIN, tflite::ops::micro::Register_SIN(),
|
||||
ParseSin);
|
||||
}
|
||||
|
||||
TfLiteStatus AddSoftmax() {
|
||||
return AddBuiltin(BuiltinOperator_SOFTMAX, Register_SOFTMAX(),
|
||||
ParseSoftmax);
|
||||
}
|
||||
|
||||
TfLiteStatus AddSplit() {
|
||||
return AddBuiltin(BuiltinOperator_SPLIT,
|
||||
tflite::ops::micro::Register_SPLIT(), ParseSplit);
|
||||
}
|
||||
|
||||
TfLiteStatus AddSplitV() {
|
||||
return AddBuiltin(BuiltinOperator_SPLIT_V,
|
||||
tflite::ops::micro::Register_SPLIT_V(), ParseSplitV);
|
||||
}
|
||||
|
||||
TfLiteStatus AddSqrt() {
|
||||
return AddBuiltin(BuiltinOperator_SQRT, tflite::ops::micro::Register_SQRT(),
|
||||
ParseSqrt);
|
||||
}
|
||||
|
||||
TfLiteStatus AddSquare() {
|
||||
return AddBuiltin(BuiltinOperator_SQUARE,
|
||||
tflite::ops::micro::Register_SQUARE(), ParseSquare);
|
||||
}
|
||||
|
||||
TfLiteStatus AddStridedSlice() {
|
||||
return AddBuiltin(BuiltinOperator_STRIDED_SLICE,
|
||||
tflite::ops::micro::Register_STRIDED_SLICE(),
|
||||
ParseStridedSlice);
|
||||
}
|
||||
|
||||
TfLiteStatus AddSub() {
|
||||
return AddBuiltin(BuiltinOperator_SUB, tflite::ops::micro::Register_SUB(),
|
||||
ParseSub);
|
||||
}
|
||||
|
||||
TfLiteStatus AddSvdf() {
|
||||
return AddBuiltin(BuiltinOperator_SVDF, Register_SVDF(), ParseSvdf);
|
||||
}
|
||||
|
||||
TfLiteStatus AddTanh() {
|
||||
return AddBuiltin(BuiltinOperator_TANH, tflite::ops::micro::Register_TANH(),
|
||||
ParseTanh);
|
||||
}
|
||||
|
||||
TfLiteStatus AddUnpack() {
|
||||
return AddBuiltin(BuiltinOperator_UNPACK,
|
||||
tflite::ops::micro::Register_UNPACK(), ParseUnpack);
|
||||
}
|
||||
|
||||
unsigned int GetRegistrationLength() { return registrations_len_; }
|
||||
|
||||
private:
|
||||
TF_LITE_REMOVE_VIRTUAL_DELETE
|
||||
|
||||
TfLiteStatus AddBuiltin(tflite::BuiltinOperator op,
|
||||
const TfLiteRegistration& registration,
|
||||
MicroOpResolver::BuiltinParseFunction parser) {
|
||||
if (op == BuiltinOperator_CUSTOM) {
|
||||
if (error_reporter_ != nullptr) {
|
||||
TF_LITE_REPORT_ERROR(error_reporter_,
|
||||
"Invalid parameter BuiltinOperator_CUSTOM to the "
|
||||
"AddBuiltin function.");
|
||||
}
|
||||
return kTfLiteError;
|
||||
}
|
||||
|
||||
if (FindOp(op) != nullptr) {
|
||||
if (error_reporter_ != nullptr) {
|
||||
TF_LITE_REPORT_ERROR(error_reporter_,
|
||||
"Calling AddBuiltin with the same op more than "
|
||||
"once is not supported (Op: #%d).",
|
||||
op);
|
||||
}
|
||||
return kTfLiteError;
|
||||
}
|
||||
|
||||
if (registrations_len_ >= tOpCount) {
|
||||
if (error_reporter_) {
|
||||
TF_LITE_REPORT_ERROR(error_reporter_,
|
||||
"Couldn't register builtin op #%d, resolver size "
|
||||
"is too small (%d).",
|
||||
op, tOpCount);
|
||||
}
|
||||
return kTfLiteError;
|
||||
}
|
||||
|
||||
registrations_[registrations_len_] = registration;
|
||||
// Strictly speaking, the builtin_code is not necessary for TFLM but filling
|
||||
// it in regardless.
|
||||
registrations_[registrations_len_].builtin_code = op;
|
||||
registrations_len_++;
|
||||
|
||||
builtin_codes_[num_buitin_ops_] = op;
|
||||
builtin_parsers_[num_buitin_ops_] = parser;
|
||||
num_buitin_ops_++;
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteRegistration registrations_[tOpCount];
|
||||
unsigned int registrations_len_ = 0;
|
||||
|
||||
// Arrays (and counter) to store the builtin codes and their corresponding
|
||||
// parse functions as these are registered with the Op Resolver.
|
||||
BuiltinOperator builtin_codes_[tOpCount];
|
||||
MicroOpResolver::BuiltinParseFunction builtin_parsers_[tOpCount];
|
||||
unsigned int num_buitin_ops_ = 0;
|
||||
|
||||
ErrorReporter* error_reporter_;
|
||||
};
|
||||
|
||||
}; // namespace tflite
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_MICRO_MUTABLE_OP_RESOLVER_H_
|
||||
@@ -0,0 +1,73 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#ifndef TENSORFLOW_LITE_MICRO_MICRO_OP_RESOLVER_H_
|
||||
#define TENSORFLOW_LITE_MICRO_MICRO_OP_RESOLVER_H_
|
||||
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/core/api/error_reporter.h"
|
||||
#include "tensorflow/lite/core/api/flatbuffer_conversions.h"
|
||||
#include "tensorflow/lite/core/api/op_resolver.h"
|
||||
#include "tensorflow/lite/schema/schema_generated.h"
|
||||
|
||||
namespace tflite {
|
||||
|
||||
// This is an interface for the OpResolver for TFLiteMicro. The differences from
|
||||
// the TFLite OpResolver base class are to:
|
||||
// * explicitly remove support for Op versions
|
||||
// * allow for finer grained registration of the Builtin Ops to reduce code
|
||||
// size for TFLiteMicro.
|
||||
//
|
||||
// We need an interface class instead of directly using MicroMutableOpResolver
|
||||
// because MicroMutableOpResolver is a class template with the number of
|
||||
// registered Ops as the template parameter.
|
||||
class MicroOpResolver : public OpResolver {
|
||||
public:
|
||||
typedef TfLiteStatus (*BuiltinParseFunction)(const Operator* op,
|
||||
ErrorReporter* error_reporter,
|
||||
BuiltinDataAllocator* allocator,
|
||||
void** builtin_data);
|
||||
|
||||
// Returns the Op registration struct corresponding to the enum code from the
|
||||
// flatbuffer schema. Returns nullptr if the op is not found or if op ==
|
||||
// BuiltinOperator_CUSTOM.
|
||||
virtual const TfLiteRegistration* FindOp(BuiltinOperator op) const = 0;
|
||||
|
||||
// Returns the Op registration struct corresponding to the custom operator by
|
||||
// name.
|
||||
virtual const TfLiteRegistration* FindOp(const char* op) const = 0;
|
||||
|
||||
// This implementation exists for compatibility with the OpResolver base class
|
||||
// and disregards the version parameter.
|
||||
const TfLiteRegistration* FindOp(BuiltinOperator op,
|
||||
int version) const final {
|
||||
return FindOp(op);
|
||||
}
|
||||
|
||||
// This implementation exists for compatibility with the OpResolver base class
|
||||
// and disregards the version parameter.
|
||||
const TfLiteRegistration* FindOp(const char* op, int version) const final {
|
||||
return FindOp(op);
|
||||
}
|
||||
|
||||
// Returns the operator specific parsing function for the OpData for a
|
||||
// BuiltinOperator (if registered), else nullptr.
|
||||
virtual BuiltinParseFunction GetOpDataParser(BuiltinOperator op) const = 0;
|
||||
|
||||
~MicroOpResolver() override {}
|
||||
};
|
||||
|
||||
} // namespace tflite
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_MICRO_OP_RESOLVER_H_
|
||||
@@ -0,0 +1,42 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/micro/micro_profiler.h"
|
||||
|
||||
#include "tensorflow/lite/kernels/internal/compatibility.h"
|
||||
#include "tensorflow/lite/micro/micro_time.h"
|
||||
|
||||
namespace tflite {
|
||||
|
||||
MicroProfiler::MicroProfiler(tflite::ErrorReporter* reporter)
|
||||
: reporter_(reporter) {}
|
||||
|
||||
uint32_t MicroProfiler::BeginEvent(const char* tag, EventType event_type,
|
||||
int64_t event_metadata1,
|
||||
int64_t event_metadata2) {
|
||||
start_time_ = GetCurrentTimeTicks();
|
||||
TFLITE_DCHECK(tag != nullptr);
|
||||
event_tag_ = tag;
|
||||
return 0;
|
||||
}
|
||||
|
||||
void MicroProfiler::EndEvent(uint32_t event_handle) {
|
||||
#ifndef TF_LITE_STRIP_ERROR_STRINGS
|
||||
int32_t end_time = GetCurrentTimeTicks();
|
||||
TF_LITE_REPORT_ERROR(reporter_, "%s took %d cycles\n", event_tag_,
|
||||
end_time - start_time_);
|
||||
#endif
|
||||
}
|
||||
} // namespace tflite
|
||||
@@ -0,0 +1,71 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef TENSORFLOW_LITE_MICRO_MICRO_PROFILER_H_
|
||||
#define TENSORFLOW_LITE_MICRO_MICRO_PROFILER_H_
|
||||
|
||||
#include "tensorflow/lite/core/api/error_reporter.h"
|
||||
#include "tensorflow/lite/core/api/profiler.h"
|
||||
#include "tensorflow/lite/micro/compatibility.h"
|
||||
|
||||
namespace tflite {
|
||||
|
||||
// MicroProfiler creates a common way to gain fine-grained insight into runtime
|
||||
// performance. Bottleck operators can be identified along with slow code
|
||||
// sections. This can be used in conjunction with running the relevant micro
|
||||
// benchmark to evaluate end-to-end performance.
|
||||
//
|
||||
// Usage example:
|
||||
// MicroProfiler profiler(error_reporter);
|
||||
// {
|
||||
// ScopedProfile scoped_profile(profiler, tag);
|
||||
// work_to_profile();
|
||||
// }
|
||||
//
|
||||
// This will call the following methods in order:
|
||||
// int event_handle = profiler->BeginEvent(op_name, EventType::DEFAULT, 0)
|
||||
// work_to_profile();
|
||||
// profiler->EndEvent(event_handle)
|
||||
class MicroProfiler : public tflite::Profiler {
|
||||
public:
|
||||
explicit MicroProfiler(tflite::ErrorReporter* reporter);
|
||||
~MicroProfiler() override = default;
|
||||
|
||||
// AddEvent is unused for Tf Micro.
|
||||
void AddEvent(const char* tag, EventType event_type, uint64_t start,
|
||||
uint64_t end, int64_t event_metadata1,
|
||||
int64_t event_metadata2) override{};
|
||||
|
||||
// BeginEvent followed by code followed by EndEvent will profile the code
|
||||
// enclosed. Multiple concurrent events are unsupported, so the return value
|
||||
// is always 0. Event_metadata1 and event_metadata2 are unused. The tag
|
||||
// pointer must be valid until EndEvent is called.
|
||||
uint32_t BeginEvent(const char* tag, EventType event_type,
|
||||
int64_t event_metadata1,
|
||||
int64_t event_metadata2) override;
|
||||
|
||||
// Event_handle is ignored since TF Micro does not support concurrent events.
|
||||
void EndEvent(uint32_t event_handle) override;
|
||||
|
||||
private:
|
||||
tflite::ErrorReporter* reporter_;
|
||||
int32_t start_time_;
|
||||
const char* event_tag_;
|
||||
TF_LITE_REMOVE_VIRTUAL_DELETE
|
||||
};
|
||||
|
||||
} // namespace tflite
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_MICRO_PROFILER_H_
|
||||
309
code/components/tfmicro/tensorflow/lite/micro/micro_string.cc
Normal file
309
code/components/tfmicro/tensorflow/lite/micro/micro_string.cc
Normal file
@@ -0,0 +1,309 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
// Implements debug logging for numbers by converting them into strings and then
|
||||
// calling the main DebugLog(char*) function. These are separated into a
|
||||
// different file so that platforms can just implement the string output version
|
||||
// of DebugLog() and then get the numerical variations without requiring any
|
||||
// more code.
|
||||
|
||||
#include "tensorflow/lite/micro/micro_string.h"
|
||||
|
||||
#include <cstdarg>
|
||||
#include <cstdint>
|
||||
#include <cstring>
|
||||
|
||||
namespace {
|
||||
|
||||
// Int formats can need up to 10 bytes for the value plus a single byte for the
|
||||
// sign.
|
||||
constexpr int kMaxIntCharsNeeded = 10 + 1;
|
||||
// Hex formats can need up to 8 bytes for the value plus two bytes for the "0x".
|
||||
constexpr int kMaxHexCharsNeeded = 8 + 2;
|
||||
|
||||
// Float formats can need up to 7 bytes for the fraction plus 3 bytes for "x2^"
|
||||
// plus 3 bytes for the exponent and a single sign bit.
|
||||
constexpr float kMaxFloatCharsNeeded = 7 + 3 + 3 + 1;
|
||||
|
||||
// All input buffers to the number conversion functions must be this long.
|
||||
const int kFastToBufferSize = 48;
|
||||
|
||||
// Reverses a zero-terminated string in-place.
|
||||
char* ReverseStringInPlace(char* start, char* end) {
|
||||
char* p1 = start;
|
||||
char* p2 = end - 1;
|
||||
while (p1 < p2) {
|
||||
char tmp = *p1;
|
||||
*p1++ = *p2;
|
||||
*p2-- = tmp;
|
||||
}
|
||||
return start;
|
||||
}
|
||||
|
||||
// Appends a string to a string, in-place. You need to pass in the maximum
|
||||
// string length as the second argument.
|
||||
char* StrCatStr(char* main, int main_max_length, const char* to_append) {
|
||||
char* current = main;
|
||||
while (*current != 0) {
|
||||
++current;
|
||||
}
|
||||
char* current_end = main + (main_max_length - 1);
|
||||
while ((*to_append != 0) && (current < current_end)) {
|
||||
*current = *to_append;
|
||||
++current;
|
||||
++to_append;
|
||||
}
|
||||
*current = 0;
|
||||
return current;
|
||||
}
|
||||
|
||||
// Populates the provided buffer with an ASCII representation of the number.
|
||||
char* FastUInt32ToBufferLeft(uint32_t i, char* buffer, int base) {
|
||||
char* start = buffer;
|
||||
do {
|
||||
int32_t digit = i % base;
|
||||
char character;
|
||||
if (digit < 10) {
|
||||
character = '0' + digit;
|
||||
} else {
|
||||
character = 'a' + (digit - 10);
|
||||
}
|
||||
*buffer++ = character;
|
||||
i /= base;
|
||||
} while (i > 0);
|
||||
*buffer = 0;
|
||||
ReverseStringInPlace(start, buffer);
|
||||
return buffer;
|
||||
}
|
||||
|
||||
// Populates the provided buffer with an ASCII representation of the number.
|
||||
char* FastInt32ToBufferLeft(int32_t i, char* buffer) {
|
||||
uint32_t u = i;
|
||||
if (i < 0) {
|
||||
*buffer++ = '-';
|
||||
u = -u;
|
||||
}
|
||||
return FastUInt32ToBufferLeft(u, buffer, 10);
|
||||
}
|
||||
|
||||
// Converts a number to a string and appends it to another.
|
||||
char* StrCatInt32(char* main, int main_max_length, int32_t number) {
|
||||
char number_string[kFastToBufferSize];
|
||||
FastInt32ToBufferLeft(number, number_string);
|
||||
return StrCatStr(main, main_max_length, number_string);
|
||||
}
|
||||
|
||||
// Converts a number to a string and appends it to another.
|
||||
char* StrCatUInt32(char* main, int main_max_length, uint32_t number, int base) {
|
||||
char number_string[kFastToBufferSize];
|
||||
FastUInt32ToBufferLeft(number, number_string, base);
|
||||
return StrCatStr(main, main_max_length, number_string);
|
||||
}
|
||||
|
||||
// Populates the provided buffer with ASCII representation of the float number.
|
||||
// Avoids the use of any floating point instructions (since these aren't
|
||||
// supported on many microcontrollers) and as a consequence prints values with
|
||||
// power-of-two exponents.
|
||||
char* FastFloatToBufferLeft(float f, char* buffer) {
|
||||
char* current = buffer;
|
||||
char* current_end = buffer + (kFastToBufferSize - 1);
|
||||
// Access the bit fields of the floating point value to avoid requiring any
|
||||
// float instructions. These constants are derived from IEEE 754.
|
||||
const uint32_t sign_mask = 0x80000000;
|
||||
const uint32_t exponent_mask = 0x7f800000;
|
||||
const int32_t exponent_shift = 23;
|
||||
const int32_t exponent_bias = 127;
|
||||
const uint32_t fraction_mask = 0x007fffff;
|
||||
uint32_t u;
|
||||
memcpy(&u, &f, sizeof(int32_t));
|
||||
const int32_t exponent =
|
||||
((u & exponent_mask) >> exponent_shift) - exponent_bias;
|
||||
const uint32_t fraction = (u & fraction_mask);
|
||||
// Expect ~0x2B1B9D3 for fraction.
|
||||
if (u & sign_mask) {
|
||||
*current = '-';
|
||||
current += 1;
|
||||
}
|
||||
*current = 0;
|
||||
// These are special cases for infinities and not-a-numbers.
|
||||
if (exponent == 128) {
|
||||
if (fraction == 0) {
|
||||
current = StrCatStr(current, (current_end - current), "Inf");
|
||||
return current;
|
||||
} else {
|
||||
current = StrCatStr(current, (current_end - current), "NaN");
|
||||
return current;
|
||||
}
|
||||
}
|
||||
// 0x007fffff (8388607) represents 0.99... for the fraction, so to print the
|
||||
// correct decimal digits we need to scale our value before passing it to the
|
||||
// conversion function. This scale should be 10000000/8388608 = 1.1920928955.
|
||||
// We can approximate this using multiply-adds and right-shifts using the
|
||||
// values in this array. The 1. portion of the number string is printed out
|
||||
// in a fixed way before the fraction, below.
|
||||
const int32_t scale_shifts_size = 13;
|
||||
const int8_t scale_shifts[13] = {3, 4, 8, 11, 13, 14, 17,
|
||||
18, 19, 20, 21, 22, 23};
|
||||
uint32_t scaled_fraction = fraction;
|
||||
for (int i = 0; i < scale_shifts_size; ++i) {
|
||||
scaled_fraction += (fraction >> scale_shifts[i]);
|
||||
}
|
||||
*current = '1';
|
||||
current += 1;
|
||||
*current = '.';
|
||||
current += 1;
|
||||
*current = 0;
|
||||
|
||||
// Prepend leading zeros to fill in all 7 bytes of the fraction. Truncate
|
||||
// zeros off the end of the fraction. Every fractional value takes 7 bytes.
|
||||
// For example, 2500 would be written into the buffer as 0002500 since it
|
||||
// represents .00025.
|
||||
constexpr int kMaxFractionalDigits = 7;
|
||||
|
||||
// Abort early if there is not enough space in the buffer.
|
||||
if (current_end - current <= kMaxFractionalDigits) {
|
||||
return current;
|
||||
}
|
||||
|
||||
// Pre-fill buffer with zeros to ensure zero-truncation works properly.
|
||||
for (int i = 1; i < kMaxFractionalDigits; i++) {
|
||||
*(current + i) = '0';
|
||||
}
|
||||
|
||||
// Track how large the fraction is to add leading zeros.
|
||||
char* previous = current;
|
||||
current = StrCatUInt32(current, (current_end - current), scaled_fraction, 10);
|
||||
int fraction_digits = current - previous;
|
||||
int leading_zeros = kMaxFractionalDigits - fraction_digits;
|
||||
|
||||
// Overwrite the null terminator from StrCatUInt32 to ensure zero-trunctaion
|
||||
// works properly.
|
||||
*current = '0';
|
||||
|
||||
// Shift fraction values and prepend zeros if necessary.
|
||||
if (leading_zeros != 0) {
|
||||
for (int i = 0; i < fraction_digits; i++) {
|
||||
current--;
|
||||
*(current + leading_zeros) = *current;
|
||||
*current = '0';
|
||||
}
|
||||
current += kMaxFractionalDigits;
|
||||
}
|
||||
|
||||
// Truncate trailing zeros for cleaner logs. Ensure we leave at least one
|
||||
// fractional character for the case when scaled_fraction is 0.
|
||||
while (*(current - 1) == '0' && (current - 1) > previous) {
|
||||
current--;
|
||||
}
|
||||
*current = 0;
|
||||
current = StrCatStr(current, (current_end - current), "*2^");
|
||||
current = StrCatInt32(current, (current_end - current), exponent);
|
||||
return current;
|
||||
}
|
||||
|
||||
int FormatInt32(char* output, int32_t i) {
|
||||
return static_cast<int>(FastInt32ToBufferLeft(i, output) - output);
|
||||
}
|
||||
|
||||
int FormatUInt32(char* output, uint32_t i) {
|
||||
return static_cast<int>(FastUInt32ToBufferLeft(i, output, 10) - output);
|
||||
}
|
||||
|
||||
int FormatHex(char* output, uint32_t i) {
|
||||
return static_cast<int>(FastUInt32ToBufferLeft(i, output, 16) - output);
|
||||
}
|
||||
|
||||
int FormatFloat(char* output, float i) {
|
||||
return static_cast<int>(FastFloatToBufferLeft(i, output) - output);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
extern "C" int MicroVsnprintf(char* output, int len, const char* format,
|
||||
va_list args) {
|
||||
int output_index = 0;
|
||||
const char* current = format;
|
||||
// One extra character must be left for the null terminator.
|
||||
const int usable_length = len - 1;
|
||||
while (*current != '\0' && output_index < usable_length) {
|
||||
if (*current == '%') {
|
||||
current++;
|
||||
switch (*current) {
|
||||
case 'd':
|
||||
// Cut off log message if format could exceed log buffer length.
|
||||
if (usable_length - output_index < kMaxIntCharsNeeded) {
|
||||
output[output_index++] = '\0';
|
||||
return output_index;
|
||||
}
|
||||
output_index +=
|
||||
FormatInt32(&output[output_index], va_arg(args, int32_t));
|
||||
current++;
|
||||
break;
|
||||
case 'u':
|
||||
if (usable_length - output_index < kMaxIntCharsNeeded) {
|
||||
output[output_index++] = '\0';
|
||||
return output_index;
|
||||
}
|
||||
output_index +=
|
||||
FormatUInt32(&output[output_index], va_arg(args, uint32_t));
|
||||
current++;
|
||||
break;
|
||||
case 'x':
|
||||
if (usable_length - output_index < kMaxHexCharsNeeded) {
|
||||
output[output_index++] = '\0';
|
||||
return output_index;
|
||||
}
|
||||
output[output_index++] = '0';
|
||||
output[output_index++] = 'x';
|
||||
output_index +=
|
||||
FormatHex(&output[output_index], va_arg(args, uint32_t));
|
||||
current++;
|
||||
break;
|
||||
case 'f':
|
||||
if (usable_length - output_index < kMaxFloatCharsNeeded) {
|
||||
output[output_index++] = '\0';
|
||||
return output_index;
|
||||
}
|
||||
output_index +=
|
||||
FormatFloat(&output[output_index], va_arg(args, double));
|
||||
current++;
|
||||
break;
|
||||
case '%':
|
||||
output[output_index++] = *current++;
|
||||
break;
|
||||
case 's':
|
||||
char* string = va_arg(args, char*);
|
||||
int string_idx = 0;
|
||||
while (string_idx + output_index < usable_length &&
|
||||
string[string_idx] != '\0') {
|
||||
output[output_index++] = string[string_idx++];
|
||||
}
|
||||
current++;
|
||||
}
|
||||
} else {
|
||||
output[output_index++] = *current++;
|
||||
}
|
||||
}
|
||||
output[output_index++] = '\0';
|
||||
return output_index;
|
||||
}
|
||||
|
||||
extern "C" int MicroSnprintf(char* output, int len, const char* format, ...) {
|
||||
va_list args;
|
||||
va_start(args, format);
|
||||
int bytes_written = MicroVsnprintf(output, len, format, args);
|
||||
va_end(args);
|
||||
return bytes_written;
|
||||
}
|
||||
33
code/components/tfmicro/tensorflow/lite/micro/micro_string.h
Normal file
33
code/components/tfmicro/tensorflow/lite/micro/micro_string.h
Normal file
@@ -0,0 +1,33 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#ifndef TENSORFLOW_LITE_MICRO_MICRO_STRING_H_
|
||||
#define TENSORFLOW_LITE_MICRO_MICRO_STRING_H_
|
||||
|
||||
#include <cstdarg>
|
||||
|
||||
// Implements simple string formatting for numeric types. Returns the number of
|
||||
// bytes written to output.
|
||||
extern "C" {
|
||||
// Functionally equivalent to vsnprintf, trimmed down for TFLite Micro.
|
||||
// MicroSnprintf() is implemented using MicroVsnprintf().
|
||||
int MicroVsnprintf(char* output, int len, const char* format, va_list args);
|
||||
// Functionally equavalent to snprintf, trimmed down for TFLite Micro.
|
||||
// For example, MicroSnprintf(buffer, 10, "int %d", 10) will put the string
|
||||
// "int 10" in the buffer.
|
||||
// Floating point values are logged in exponent notation (1.XXX*2^N).
|
||||
int MicroSnprintf(char* output, int len, const char* format, ...);
|
||||
}
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_MICRO_STRING_H_
|
||||
44
code/components/tfmicro/tensorflow/lite/micro/micro_time.cc
Normal file
44
code/components/tfmicro/tensorflow/lite/micro/micro_time.cc
Normal file
@@ -0,0 +1,44 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
// Reference implementation of timer functions. Platforms are not required to
|
||||
// implement these timer methods, but they are required to enable profiling.
|
||||
|
||||
// On platforms that have a POSIX stack or C library, it can be written using
|
||||
// methods from <sys/time.h> or clock() from <time.h>.
|
||||
|
||||
// To add an equivalent function for your own platform, create your own
|
||||
// implementation file, and place it in a subfolder with named after the OS
|
||||
// you're targeting. For example, see the Cortex M bare metal version in
|
||||
// tensorflow/lite/micro/bluepill/micro_time.cc or the mbed one on
|
||||
// tensorflow/lite/micro/mbed/micro_time.cc.
|
||||
|
||||
#include "tensorflow/lite/micro/micro_time.h"
|
||||
|
||||
namespace tflite {
|
||||
|
||||
// Reference implementation of the ticks_per_second() function that's required
|
||||
// for a platform to support Tensorflow Lite for Microcontrollers profiling.
|
||||
// This returns 0 by default because timing is an optional feature that builds
|
||||
// without errors on platforms that do not need it.
|
||||
int32_t ticks_per_second() { return 0; }
|
||||
|
||||
// Reference implementation of the GetCurrentTimeTicks() function that's
|
||||
// required for a platform to support Tensorflow Lite for Microcontrollers
|
||||
// profiling. This returns 0 by default because timing is an optional feature
|
||||
// that builds without errors on platforms that do not need it.
|
||||
int32_t GetCurrentTimeTicks() { return 0; }
|
||||
|
||||
} // namespace tflite
|
||||
31
code/components/tfmicro/tensorflow/lite/micro/micro_time.h
Normal file
31
code/components/tfmicro/tensorflow/lite/micro/micro_time.h
Normal file
@@ -0,0 +1,31 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#ifndef TENSORFLOW_LITE_MICRO_MICRO_TIME_H_
|
||||
#define TENSORFLOW_LITE_MICRO_MICRO_TIME_H_
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
namespace tflite {
|
||||
|
||||
// These functions should be implemented by each target platform, and provide an
|
||||
// accurate tick count along with how many ticks there are per second.
|
||||
int32_t ticks_per_second();
|
||||
|
||||
// Return time in ticks. The meaning of a tick varies per platform.
|
||||
int32_t GetCurrentTimeTicks();
|
||||
|
||||
} // namespace tflite
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_MICRO_TIME_H_
|
||||
80
code/components/tfmicro/tensorflow/lite/micro/micro_utils.cc
Normal file
80
code/components/tfmicro/tensorflow/lite/micro/micro_utils.cc
Normal file
@@ -0,0 +1,80 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/micro/micro_utils.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <cstdint>
|
||||
#include <limits>
|
||||
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/op_macros.h"
|
||||
|
||||
namespace tflite {
|
||||
|
||||
int ElementCount(const TfLiteIntArray& dims) {
|
||||
int result = 1;
|
||||
for (int i = 0; i < dims.size; ++i) {
|
||||
result *= dims.data[i];
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
void SignedSymmetricPerChannelQuantize(const float* values,
|
||||
TfLiteIntArray* dims,
|
||||
int quantized_dimension,
|
||||
int8_t* quantized_values,
|
||||
float* scaling_factors) {
|
||||
int input_size = ElementCount(*dims);
|
||||
int channel_count = dims->data[quantized_dimension];
|
||||
int per_channel_size = input_size / channel_count;
|
||||
|
||||
int stride;
|
||||
int channel_stride;
|
||||
if (quantized_dimension == 0) {
|
||||
stride = 1;
|
||||
channel_stride = per_channel_size;
|
||||
} else if (quantized_dimension == 3) {
|
||||
stride = channel_count;
|
||||
channel_stride = 1;
|
||||
} else {
|
||||
TF_LITE_FATAL("quantized dimension must be 0 or 3");
|
||||
}
|
||||
|
||||
// Calculate scales for each channel.
|
||||
for (int channel = 0; channel < channel_count; channel++) {
|
||||
float min = 0;
|
||||
float max = 0;
|
||||
|
||||
for (int i = 0; i < per_channel_size; i++) {
|
||||
int idx = channel * channel_stride + i * stride;
|
||||
min = fminf(min, values[idx]);
|
||||
max = fmaxf(max, values[idx]);
|
||||
}
|
||||
scaling_factors[channel] =
|
||||
fmaxf(fabs(min), fabs(max)) / std::numeric_limits<int8_t>::max();
|
||||
for (int i = 0; i < per_channel_size; i++) {
|
||||
int idx = channel * channel_stride + i * stride;
|
||||
const int32_t quantized_value =
|
||||
static_cast<int32_t>(roundf(values[idx] / scaling_factors[channel]));
|
||||
// Clamp: just in case some odd numeric offset.
|
||||
quantized_values[idx] =
|
||||
fminf(std::numeric_limits<int8_t>::max(),
|
||||
fmaxf(std::numeric_limits<int8_t>::min() + 1, quantized_value));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace tflite
|
||||
134
code/components/tfmicro/tensorflow/lite/micro/micro_utils.h
Normal file
134
code/components/tfmicro/tensorflow/lite/micro/micro_utils.h
Normal file
@@ -0,0 +1,134 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef TENSORFLOW_LITE_MICRO_MICRO_UTILS_H_
|
||||
#define TENSORFLOW_LITE_MICRO_MICRO_UTILS_H_
|
||||
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <cstdint>
|
||||
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
|
||||
namespace tflite {
|
||||
|
||||
// Returns number of elements in the shape array.
|
||||
|
||||
int ElementCount(const TfLiteIntArray& dims);
|
||||
|
||||
// Converts a float value into a quantized value. Note that large values (close
|
||||
// to max int and min int) may see significant error due to a lack of floating
|
||||
// point granularity for large values.
|
||||
template <typename T>
|
||||
T FloatToQuantizedType(const float value, const float scale, int zero_point) {
|
||||
int32_t result = round(value / scale) + zero_point;
|
||||
result =
|
||||
std::max(static_cast<int32_t>(std::numeric_limits<T>::min()), result);
|
||||
result =
|
||||
std::min(static_cast<int32_t>(std::numeric_limits<T>::max()), result);
|
||||
return result;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
T FloatToSymmetricQuantizedType(const float value, const float scale) {
|
||||
int32_t result = round(value / scale);
|
||||
result =
|
||||
std::max(static_cast<int32_t>(std::numeric_limits<T>::min() + 1), result);
|
||||
result =
|
||||
std::min(static_cast<int32_t>(std::numeric_limits<T>::max()), result);
|
||||
return result;
|
||||
}
|
||||
|
||||
// Helper methods to quantize arrays of floats to the desired format.
|
||||
//
|
||||
// There are several key flavors of quantization in TfLite:
|
||||
// asymmetric symmetric per channel
|
||||
// int8_t | X | X | X |
|
||||
// uint8_t | X | X | |
|
||||
// int16_t | X | | |
|
||||
// int32_t | | X | X |
|
||||
//
|
||||
// The per-op quantization spec can be found here:
|
||||
// https://www.tensorflow.org/lite/performance/quantization_spec
|
||||
template <typename T>
|
||||
void Quantize(const float* input, T* output, int num_elements, float scale,
|
||||
int zero_point) {
|
||||
for (int i = 0; i < num_elements; i++) {
|
||||
output[i] = FloatToQuantizedType<T>(input[i], scale, zero_point);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void SymmetricQuantize(const float* input, T* output, int num_elements,
|
||||
float scale) {
|
||||
for (int i = 0; i < num_elements; i++) {
|
||||
output[i] = FloatToSymmetricQuantizedType<T>(input[i], scale);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void SymmetricPerChannelQuantize(const float* input, T* output,
|
||||
int num_elements, int num_channels,
|
||||
float* scales) {
|
||||
int elements_per_channel = num_elements / num_channels;
|
||||
for (int i = 0; i < num_channels; i++) {
|
||||
for (int j = 0; j < elements_per_channel; j++) {
|
||||
output[i * elements_per_channel + j] = FloatToSymmetricQuantizedType<T>(
|
||||
input[i * elements_per_channel + j], scales[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void SignedSymmetricPerChannelQuantize(const float* values,
|
||||
TfLiteIntArray* dims,
|
||||
int quantized_dimension,
|
||||
int8_t* quantized_values,
|
||||
float* scaling_factor);
|
||||
|
||||
// Quantizes inputs based on the values provided, choosing the smallest range
|
||||
// which includes all input values.
|
||||
template <typename T>
|
||||
void SymmetricQuantizeCalculateScales(const float* values, TfLiteIntArray* dims,
|
||||
T* output, float* scale) {
|
||||
int input_size = ElementCount(*dims);
|
||||
|
||||
float min = 0;
|
||||
float max = 0;
|
||||
for (int i = 0; i < input_size; i++) {
|
||||
min = fminf(min, values[i]);
|
||||
max = fmaxf(max, values[i]);
|
||||
}
|
||||
*scale = fmaxf(std::abs(min), std::abs(max)) / std::numeric_limits<T>::max();
|
||||
for (int i = 0; i < input_size; i++) {
|
||||
const int32_t quantized_value =
|
||||
static_cast<int32_t>(roundf(values[i] / *scale));
|
||||
// Clamp: just in case some odd numeric offset.
|
||||
quantized_value = fminf(std::numeric_limits<T>::max(), quantized_value);
|
||||
quantized_value = fmaxf(std::numeric_limits<T>::min() + 1, quantized_value);
|
||||
output[i] = quantized_value;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void Dequantize(const T* values, const int size, const float scale,
|
||||
int zero_point, float* dequantized_values) {
|
||||
for (int i = 0; i < size; ++i) {
|
||||
dequantized_values[i] = (values[i] - zero_point) * scale;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace tflite
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_MICRO_UTILS_H_
|
||||
@@ -0,0 +1,244 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/micro/recording_micro_allocator.h"
|
||||
|
||||
#include "tensorflow/lite/core/api/error_reporter.h"
|
||||
#include "tensorflow/lite/kernels/internal/compatibility.h"
|
||||
#include "tensorflow/lite/micro/compatibility.h"
|
||||
#include "tensorflow/lite/micro/micro_allocator.h"
|
||||
#include "tensorflow/lite/micro/recording_simple_memory_allocator.h"
|
||||
|
||||
namespace tflite {
|
||||
|
||||
RecordingMicroAllocator::RecordingMicroAllocator(
|
||||
RecordingSimpleMemoryAllocator* recording_memory_allocator,
|
||||
ErrorReporter* error_reporter)
|
||||
: MicroAllocator(recording_memory_allocator, error_reporter),
|
||||
recording_memory_allocator_(recording_memory_allocator) {}
|
||||
|
||||
RecordingMicroAllocator* RecordingMicroAllocator::Create(
|
||||
uint8_t* tensor_arena, size_t arena_size, ErrorReporter* error_reporter) {
|
||||
TFLITE_DCHECK(error_reporter != nullptr);
|
||||
|
||||
RecordingSimpleMemoryAllocator* simple_memory_allocator =
|
||||
RecordingSimpleMemoryAllocator::Create(error_reporter, tensor_arena,
|
||||
arena_size);
|
||||
TFLITE_DCHECK(simple_memory_allocator != nullptr);
|
||||
|
||||
uint8_t* allocator_buffer = simple_memory_allocator->AllocateFromTail(
|
||||
sizeof(RecordingMicroAllocator), alignof(RecordingMicroAllocator));
|
||||
RecordingMicroAllocator* allocator = new (allocator_buffer)
|
||||
RecordingMicroAllocator(simple_memory_allocator, error_reporter);
|
||||
return allocator;
|
||||
}
|
||||
|
||||
RecordedAllocation RecordingMicroAllocator::GetRecordedAllocation(
|
||||
RecordedAllocationType allocation_type) const {
|
||||
switch (allocation_type) {
|
||||
case RecordedAllocationType::kTfLiteEvalTensorData:
|
||||
return recorded_tflite_eval_tensor_data_;
|
||||
case RecordedAllocationType::kPersistentTfLiteTensorData:
|
||||
return recorded_persistent_tflite_tensor_data_;
|
||||
case RecordedAllocationType::kPersistentTfLiteTensorQuantizationData:
|
||||
return recorded_persistent_tflite_tensor_quantization_data_;
|
||||
case RecordedAllocationType::kPersistentBufferData:
|
||||
return recorded_persistent_buffer_data_;
|
||||
case RecordedAllocationType::kTfLiteTensorVariableBufferData:
|
||||
return recorded_tflite_tensor_variable_buffer_data_;
|
||||
case RecordedAllocationType::kNodeAndRegistrationArray:
|
||||
return recorded_node_and_registration_array_data_;
|
||||
case RecordedAllocationType::kOpData:
|
||||
return recorded_op_data_;
|
||||
}
|
||||
TF_LITE_REPORT_ERROR(error_reporter(), "Invalid allocation type supplied: %d",
|
||||
allocation_type);
|
||||
return RecordedAllocation();
|
||||
}
|
||||
|
||||
const RecordingSimpleMemoryAllocator*
|
||||
RecordingMicroAllocator::GetSimpleMemoryAllocator() const {
|
||||
return recording_memory_allocator_;
|
||||
}
|
||||
|
||||
void RecordingMicroAllocator::PrintAllocations() const {
|
||||
TF_LITE_REPORT_ERROR(
|
||||
error_reporter(),
|
||||
"[RecordingMicroAllocator] Arena allocation total %d bytes",
|
||||
recording_memory_allocator_->GetUsedBytes());
|
||||
TF_LITE_REPORT_ERROR(
|
||||
error_reporter(),
|
||||
"[RecordingMicroAllocator] Arena allocation head %d bytes",
|
||||
recording_memory_allocator_->GetHeadUsedBytes());
|
||||
TF_LITE_REPORT_ERROR(
|
||||
error_reporter(),
|
||||
"[RecordingMicroAllocator] Arena allocation tail %d bytes",
|
||||
recording_memory_allocator_->GetTailUsedBytes());
|
||||
PrintRecordedAllocation(RecordedAllocationType::kTfLiteEvalTensorData,
|
||||
"TfLiteEvalTensor data", "allocations");
|
||||
PrintRecordedAllocation(RecordedAllocationType::kPersistentTfLiteTensorData,
|
||||
"Persistent TfLiteTensor data", "tensors");
|
||||
PrintRecordedAllocation(
|
||||
RecordedAllocationType::kPersistentTfLiteTensorQuantizationData,
|
||||
"Persistent TfLiteTensor quantization data", "allocations");
|
||||
PrintRecordedAllocation(RecordedAllocationType::kPersistentBufferData,
|
||||
"Persistent buffer data", "allocations");
|
||||
PrintRecordedAllocation(
|
||||
RecordedAllocationType::kTfLiteTensorVariableBufferData,
|
||||
"TfLiteTensor variable buffer data", "allocations");
|
||||
PrintRecordedAllocation(RecordedAllocationType::kNodeAndRegistrationArray,
|
||||
"NodeAndRegistration struct",
|
||||
"NodeAndRegistration structs");
|
||||
PrintRecordedAllocation(RecordedAllocationType::kOpData,
|
||||
"Operator runtime data", "OpData structs");
|
||||
}
|
||||
|
||||
void* RecordingMicroAllocator::AllocatePersistentBuffer(size_t bytes) {
|
||||
RecordedAllocation allocations = SnapshotAllocationUsage();
|
||||
void* buffer = MicroAllocator::AllocatePersistentBuffer(bytes);
|
||||
RecordAllocationUsage(allocations, recorded_persistent_buffer_data_);
|
||||
|
||||
return buffer;
|
||||
}
|
||||
|
||||
void RecordingMicroAllocator::PrintRecordedAllocation(
|
||||
RecordedAllocationType allocation_type, const char* allocation_name,
|
||||
const char* allocation_description) const {
|
||||
#ifndef TF_LITE_STRIP_ERROR_STRINGS
|
||||
RecordedAllocation allocation = GetRecordedAllocation(allocation_type);
|
||||
if (allocation.used_bytes > 0 || allocation.requested_bytes > 0) {
|
||||
TF_LITE_REPORT_ERROR(
|
||||
error_reporter(),
|
||||
"[RecordingMicroAllocator] '%s' used %d bytes with alignment overhead "
|
||||
"(requested %d bytes for %d %s)",
|
||||
allocation_name, allocation.used_bytes, allocation.requested_bytes,
|
||||
allocation.count, allocation_description);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
TfLiteStatus RecordingMicroAllocator::AllocateNodeAndRegistrations(
|
||||
const Model* model, NodeAndRegistration** node_and_registrations) {
|
||||
RecordedAllocation allocations = SnapshotAllocationUsage();
|
||||
|
||||
TfLiteStatus status = MicroAllocator::AllocateNodeAndRegistrations(
|
||||
model, node_and_registrations);
|
||||
|
||||
RecordAllocationUsage(allocations,
|
||||
recorded_node_and_registration_array_data_);
|
||||
// The allocation count in SimpleMemoryAllocator will only be 1. To provide
|
||||
// better logging, decrement by 1 and add in the actual number of operators
|
||||
// used in the graph:
|
||||
// The allocation for this recording will always be 1. This is because the
|
||||
// parent class mallocs one large allocation for the number of nodes in the
|
||||
// graph (e.g. sizeof(NodeAndRegistration) * num_nodes).
|
||||
// To prevent extra overhead and potential for fragmentation, manually adjust
|
||||
// the accounting by decrementing by 1 and adding the actual number of nodes
|
||||
// used in the graph:
|
||||
recorded_node_and_registration_array_data_.count +=
|
||||
GetSubGraphFromModel(model)->operators()->size() - 1;
|
||||
return status;
|
||||
}
|
||||
|
||||
TfLiteStatus
|
||||
RecordingMicroAllocator::PrepareNodeAndRegistrationDataFromFlatbuffer(
|
||||
const Model* model, const MicroOpResolver& op_resolver,
|
||||
NodeAndRegistration* node_and_registrations) {
|
||||
RecordedAllocation allocations = SnapshotAllocationUsage();
|
||||
|
||||
TfLiteStatus status =
|
||||
MicroAllocator::PrepareNodeAndRegistrationDataFromFlatbuffer(
|
||||
model, op_resolver, node_and_registrations);
|
||||
|
||||
RecordAllocationUsage(allocations, recorded_op_data_);
|
||||
return status;
|
||||
}
|
||||
|
||||
TfLiteStatus RecordingMicroAllocator::AllocateTfLiteEvalTensors(
|
||||
const Model* model, TfLiteEvalTensor** eval_tensors) {
|
||||
RecordedAllocation allocations = SnapshotAllocationUsage();
|
||||
|
||||
TfLiteStatus status =
|
||||
MicroAllocator::AllocateTfLiteEvalTensors(model, eval_tensors);
|
||||
|
||||
RecordAllocationUsage(allocations, recorded_tflite_eval_tensor_data_);
|
||||
// The allocation for this recording will always be 1. This is because the
|
||||
// parent class mallocs one large allocation for the number of tensors in the
|
||||
// graph (e.g. sizeof(TfLiteEvalTensor) * num_tensors).
|
||||
// To prevent extra overhead and potential for fragmentation, manually adjust
|
||||
// the accounting by decrementing by 1 and adding the actual number of tensors
|
||||
// used in the graph:
|
||||
recorded_tflite_eval_tensor_data_.count +=
|
||||
GetSubGraphFromModel(model)->tensors()->size() - 1;
|
||||
return status;
|
||||
}
|
||||
|
||||
TfLiteStatus RecordingMicroAllocator::AllocateVariables(
|
||||
const SubGraph* subgraph, TfLiteEvalTensor* eval_tensors) {
|
||||
RecordedAllocation allocations = SnapshotAllocationUsage();
|
||||
|
||||
TfLiteStatus status =
|
||||
MicroAllocator::AllocateVariables(subgraph, eval_tensors);
|
||||
|
||||
RecordAllocationUsage(allocations,
|
||||
recorded_tflite_tensor_variable_buffer_data_);
|
||||
return status;
|
||||
}
|
||||
|
||||
TfLiteTensor* RecordingMicroAllocator::AllocatePersistentTfLiteTensorInternal(
|
||||
const Model* model, TfLiteEvalTensor* eval_tensors, int tensor_index) {
|
||||
RecordedAllocation allocations = SnapshotAllocationUsage();
|
||||
|
||||
TfLiteTensor* result = MicroAllocator::AllocatePersistentTfLiteTensorInternal(
|
||||
model, eval_tensors, tensor_index);
|
||||
|
||||
RecordAllocationUsage(allocations, recorded_persistent_tflite_tensor_data_);
|
||||
return result;
|
||||
}
|
||||
|
||||
TfLiteStatus RecordingMicroAllocator::PopulateTfLiteTensorFromFlatbuffer(
|
||||
const Model* model, const SubGraph* subgraph, TfLiteTensor* tensor,
|
||||
int tensor_index, bool allocate_temp) {
|
||||
RecordedAllocation allocations = SnapshotAllocationUsage();
|
||||
|
||||
TfLiteStatus status = MicroAllocator::PopulateTfLiteTensorFromFlatbuffer(
|
||||
model, subgraph, tensor, tensor_index, allocate_temp);
|
||||
|
||||
RecordAllocationUsage(allocations,
|
||||
recorded_persistent_tflite_tensor_quantization_data_);
|
||||
return status;
|
||||
}
|
||||
|
||||
RecordedAllocation RecordingMicroAllocator::SnapshotAllocationUsage() const {
|
||||
return {/*requested_bytes=*/recording_memory_allocator_->GetRequestedBytes(),
|
||||
/*used_bytes=*/recording_memory_allocator_->GetUsedBytes(),
|
||||
/*count=*/recording_memory_allocator_->GetAllocatedCount()};
|
||||
}
|
||||
|
||||
void RecordingMicroAllocator::RecordAllocationUsage(
|
||||
const RecordedAllocation& snapshotted_allocation,
|
||||
RecordedAllocation& recorded_allocation) {
|
||||
recorded_allocation.requested_bytes +=
|
||||
recording_memory_allocator_->GetRequestedBytes() -
|
||||
snapshotted_allocation.requested_bytes;
|
||||
recorded_allocation.used_bytes +=
|
||||
recording_memory_allocator_->GetUsedBytes() -
|
||||
snapshotted_allocation.used_bytes;
|
||||
recorded_allocation.count +=
|
||||
recording_memory_allocator_->GetAllocatedCount() -
|
||||
snapshotted_allocation.count;
|
||||
}
|
||||
|
||||
} // namespace tflite
|
||||
@@ -0,0 +1,125 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef TENSORFLOW_LITE_MICRO_RECORDING_MICRO_ALLOCATOR_H_
|
||||
#define TENSORFLOW_LITE_MICRO_RECORDING_MICRO_ALLOCATOR_H_
|
||||
|
||||
#include "tensorflow/lite/micro/compatibility.h"
|
||||
#include "tensorflow/lite/micro/micro_allocator.h"
|
||||
#include "tensorflow/lite/micro/recording_simple_memory_allocator.h"
|
||||
|
||||
namespace tflite {
|
||||
|
||||
// List of buckets currently recorded by this class. Each type keeps a list of
|
||||
// allocated information during model initialization.
|
||||
// TODO(b/169834511): Add tracking for scratch buffer allocations.
|
||||
enum class RecordedAllocationType {
|
||||
kTfLiteEvalTensorData,
|
||||
kPersistentTfLiteTensorData,
|
||||
kPersistentTfLiteTensorQuantizationData,
|
||||
kPersistentBufferData,
|
||||
kTfLiteTensorVariableBufferData,
|
||||
kNodeAndRegistrationArray,
|
||||
kOpData,
|
||||
};
|
||||
|
||||
// Container for holding information about allocation recordings by a given
|
||||
// type. Each recording contains the number of bytes requested, the actual bytes
|
||||
// allocated (can defer from requested by alignment), and the number of items
|
||||
// allocated.
|
||||
struct RecordedAllocation {
|
||||
size_t requested_bytes;
|
||||
size_t used_bytes;
|
||||
size_t count;
|
||||
};
|
||||
|
||||
// Utility subclass of MicroAllocator that records all allocations
|
||||
// inside the arena. A summary of allocations can be logged through the
|
||||
// ErrorReporter by invoking LogAllocations(). This special allocator requires
|
||||
// an instance of RecordingSimpleMemoryAllocator to capture allocations in the
|
||||
// head and tail. Arena allocation recording can be retrieved by type through
|
||||
// the GetRecordedAllocation() function. This class should only be used for
|
||||
// auditing memory usage or integration testing.
|
||||
class RecordingMicroAllocator : public MicroAllocator {
|
||||
public:
|
||||
static RecordingMicroAllocator* Create(uint8_t* tensor_arena,
|
||||
size_t arena_size,
|
||||
ErrorReporter* error_reporter);
|
||||
|
||||
// Returns the recorded allocations information for a given allocation type.
|
||||
RecordedAllocation GetRecordedAllocation(
|
||||
RecordedAllocationType allocation_type) const;
|
||||
|
||||
const RecordingSimpleMemoryAllocator* GetSimpleMemoryAllocator() const;
|
||||
|
||||
// Logs out through the ErrorReporter all allocation recordings by type
|
||||
// defined in RecordedAllocationType.
|
||||
void PrintAllocations() const;
|
||||
|
||||
void* AllocatePersistentBuffer(size_t bytes) override;
|
||||
|
||||
protected:
|
||||
TfLiteStatus AllocateNodeAndRegistrations(
|
||||
const Model* model,
|
||||
NodeAndRegistration** node_and_registrations) override;
|
||||
TfLiteStatus PrepareNodeAndRegistrationDataFromFlatbuffer(
|
||||
const Model* model, const MicroOpResolver& op_resolver,
|
||||
NodeAndRegistration* node_and_registrations) override;
|
||||
TfLiteStatus AllocateTfLiteEvalTensors(
|
||||
const Model* model, TfLiteEvalTensor** eval_tensors) override;
|
||||
TfLiteStatus AllocateVariables(const SubGraph* subgraph,
|
||||
TfLiteEvalTensor* eval_tensors) override;
|
||||
// TODO(b/162311891): Once all kernels have been updated to the new API drop
|
||||
// this method. It is only used to record TfLiteTensor persistent allocations.
|
||||
TfLiteTensor* AllocatePersistentTfLiteTensorInternal(
|
||||
const Model* model, TfLiteEvalTensor* eval_tensors,
|
||||
int tensor_index) override;
|
||||
// TODO(b/162311891): Once all kernels have been updated to the new API drop
|
||||
// this function since all allocations for quantized data will take place in
|
||||
// the temp section.
|
||||
TfLiteStatus PopulateTfLiteTensorFromFlatbuffer(const Model* model,
|
||||
const SubGraph* subgraph,
|
||||
TfLiteTensor* tensor,
|
||||
int tensor_index,
|
||||
bool allocate_temp) override;
|
||||
|
||||
private:
|
||||
RecordingMicroAllocator(RecordingSimpleMemoryAllocator* memory_allocator,
|
||||
ErrorReporter* error_reporter);
|
||||
|
||||
void PrintRecordedAllocation(RecordedAllocationType allocation_type,
|
||||
const char* allocation_name,
|
||||
const char* allocation_description) const;
|
||||
|
||||
RecordedAllocation SnapshotAllocationUsage() const;
|
||||
void RecordAllocationUsage(const RecordedAllocation& snapshotted_allocation,
|
||||
RecordedAllocation& recorded_allocation);
|
||||
|
||||
const RecordingSimpleMemoryAllocator* recording_memory_allocator_;
|
||||
|
||||
RecordedAllocation recorded_tflite_eval_tensor_data_ = {};
|
||||
RecordedAllocation recorded_persistent_tflite_tensor_data_ = {};
|
||||
RecordedAllocation recorded_persistent_tflite_tensor_quantization_data_ = {};
|
||||
RecordedAllocation recorded_persistent_buffer_data_ = {};
|
||||
RecordedAllocation recorded_tflite_tensor_variable_buffer_data_ = {};
|
||||
RecordedAllocation recorded_node_and_registration_array_data_ = {};
|
||||
RecordedAllocation recorded_op_data_ = {};
|
||||
|
||||
TF_LITE_REMOVE_VIRTUAL_DELETE
|
||||
};
|
||||
|
||||
} // namespace tflite
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_RECORDING_MICRO_ALLOCATOR_H_
|
||||
@@ -0,0 +1,65 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef TENSORFLOW_LITE_MICRO_RECORDING_MICRO_INTERPRETER_H_
|
||||
#define TENSORFLOW_LITE_MICRO_RECORDING_MICRO_INTERPRETER_H_
|
||||
|
||||
#include "tensorflow/lite/micro/micro_interpreter.h"
|
||||
#include "tensorflow/lite/micro/recording_micro_allocator.h"
|
||||
|
||||
namespace tflite {
|
||||
|
||||
// Utility subclass that enables internal recordings of the MicroInterpreter.
|
||||
// This class should be used to audit and analyze memory arena usage for a given
|
||||
// model and interpreter.
|
||||
//
|
||||
// After construction and the first Invoke() or AllocateTensors() call - the
|
||||
// memory usage is recorded and available through the GetMicroAllocator()
|
||||
// function. See RecordingMicroAlloctor for more details on what is currently
|
||||
// recorded from arena allocations.
|
||||
//
|
||||
// It is recommended for users to increase the tensor arena size by at least 1kb
|
||||
// to ensure enough additional memory is available for internal recordings.
|
||||
class RecordingMicroInterpreter : public MicroInterpreter {
|
||||
public:
|
||||
RecordingMicroInterpreter(const Model* model,
|
||||
const MicroOpResolver& op_resolver,
|
||||
uint8_t* tensor_arena, size_t tensor_arena_size,
|
||||
ErrorReporter* error_reporter)
|
||||
: MicroInterpreter(model, op_resolver,
|
||||
RecordingMicroAllocator::Create(
|
||||
tensor_arena, tensor_arena_size, error_reporter),
|
||||
error_reporter),
|
||||
recording_micro_allocator_(
|
||||
static_cast<const RecordingMicroAllocator&>(allocator())) {}
|
||||
|
||||
RecordingMicroInterpreter(const Model* model,
|
||||
const MicroOpResolver& op_resolver,
|
||||
RecordingMicroAllocator* allocator,
|
||||
ErrorReporter* error_reporter)
|
||||
: MicroInterpreter(model, op_resolver, allocator, error_reporter),
|
||||
recording_micro_allocator_(*allocator) {}
|
||||
|
||||
const RecordingMicroAllocator& GetMicroAllocator() const {
|
||||
return recording_micro_allocator_;
|
||||
}
|
||||
|
||||
private:
|
||||
const RecordingMicroAllocator& recording_micro_allocator_;
|
||||
};
|
||||
|
||||
} // namespace tflite
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_RECORDING_MICRO_INTERPRETER_H_
|
||||
@@ -0,0 +1,84 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/micro/recording_simple_memory_allocator.h"
|
||||
|
||||
#include <new>
|
||||
|
||||
#include "tensorflow/lite/kernels/internal/compatibility.h"
|
||||
|
||||
namespace tflite {
|
||||
|
||||
RecordingSimpleMemoryAllocator::RecordingSimpleMemoryAllocator(
|
||||
ErrorReporter* error_reporter, uint8_t* buffer_head, size_t buffer_size)
|
||||
: SimpleMemoryAllocator(error_reporter, buffer_head, buffer_size),
|
||||
requested_head_bytes_(0),
|
||||
requested_tail_bytes_(0),
|
||||
used_bytes_(0),
|
||||
alloc_count_(0) {}
|
||||
|
||||
RecordingSimpleMemoryAllocator::~RecordingSimpleMemoryAllocator() {}
|
||||
|
||||
RecordingSimpleMemoryAllocator* RecordingSimpleMemoryAllocator::Create(
|
||||
ErrorReporter* error_reporter, uint8_t* buffer_head, size_t buffer_size) {
|
||||
TFLITE_DCHECK(error_reporter != nullptr);
|
||||
TFLITE_DCHECK(buffer_head != nullptr);
|
||||
RecordingSimpleMemoryAllocator tmp =
|
||||
RecordingSimpleMemoryAllocator(error_reporter, buffer_head, buffer_size);
|
||||
|
||||
uint8_t* allocator_buffer =
|
||||
tmp.AllocateFromTail(sizeof(RecordingSimpleMemoryAllocator),
|
||||
alignof(RecordingSimpleMemoryAllocator));
|
||||
// Use the default copy constructor to populate internal states.
|
||||
return new (allocator_buffer) RecordingSimpleMemoryAllocator(tmp);
|
||||
}
|
||||
|
||||
size_t RecordingSimpleMemoryAllocator::GetRequestedBytes() const {
|
||||
return requested_head_bytes_ + requested_tail_bytes_;
|
||||
}
|
||||
|
||||
size_t RecordingSimpleMemoryAllocator::GetUsedBytes() const {
|
||||
return used_bytes_;
|
||||
}
|
||||
|
||||
size_t RecordingSimpleMemoryAllocator::GetAllocatedCount() const {
|
||||
return alloc_count_;
|
||||
}
|
||||
|
||||
TfLiteStatus RecordingSimpleMemoryAllocator::SetHeadBufferSize(
|
||||
size_t size, size_t alignment) {
|
||||
const uint8_t* previous_head = head();
|
||||
TfLiteStatus status =
|
||||
SimpleMemoryAllocator::SetHeadBufferSize(size, alignment);
|
||||
if (status == kTfLiteOk) {
|
||||
used_bytes_ += head() - previous_head;
|
||||
requested_head_bytes_ = size;
|
||||
}
|
||||
return status;
|
||||
}
|
||||
|
||||
uint8_t* RecordingSimpleMemoryAllocator::AllocateFromTail(size_t size,
|
||||
size_t alignment) {
|
||||
const uint8_t* previous_tail = tail();
|
||||
uint8_t* result = SimpleMemoryAllocator::AllocateFromTail(size, alignment);
|
||||
if (result != nullptr) {
|
||||
used_bytes_ += previous_tail - tail();
|
||||
requested_tail_bytes_ += size;
|
||||
alloc_count_++;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
} // namespace tflite
|
||||
@@ -0,0 +1,64 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef TENSORFLOW_LITE_MICRO_RECORDING_SIMPLE_MEMORY_ALLOCATOR_H_
|
||||
#define TENSORFLOW_LITE_MICRO_RECORDING_SIMPLE_MEMORY_ALLOCATOR_H_
|
||||
|
||||
#include "tensorflow/lite/micro/compatibility.h"
|
||||
#include "tensorflow/lite/micro/simple_memory_allocator.h"
|
||||
|
||||
namespace tflite {
|
||||
|
||||
// Utility class used to log allocations of a SimpleMemoryAllocator. Should only
|
||||
// be used in debug/evaluation settings or unit tests to evaluate allocation
|
||||
// usage.
|
||||
class RecordingSimpleMemoryAllocator : public SimpleMemoryAllocator {
|
||||
public:
|
||||
RecordingSimpleMemoryAllocator(ErrorReporter* error_reporter,
|
||||
uint8_t* buffer_head, size_t buffer_size);
|
||||
// TODO(b/157615197): Cleanup constructors/destructor and use factory
|
||||
// functions.
|
||||
~RecordingSimpleMemoryAllocator() override;
|
||||
|
||||
static RecordingSimpleMemoryAllocator* Create(ErrorReporter* error_reporter,
|
||||
uint8_t* buffer_head,
|
||||
size_t buffer_size);
|
||||
|
||||
// Returns the number of bytes requested from the head or tail.
|
||||
size_t GetRequestedBytes() const;
|
||||
|
||||
// Returns the number of bytes actually allocated from the head or tail. This
|
||||
// value will be >= to the number of requested bytes due to padding and
|
||||
// alignment.
|
||||
size_t GetUsedBytes() const;
|
||||
|
||||
// Returns the number of alloc calls from the head or tail.
|
||||
size_t GetAllocatedCount() const;
|
||||
|
||||
TfLiteStatus SetHeadBufferSize(size_t size, size_t alignment) override;
|
||||
uint8_t* AllocateFromTail(size_t size, size_t alignment) override;
|
||||
|
||||
private:
|
||||
size_t requested_head_bytes_;
|
||||
size_t requested_tail_bytes_;
|
||||
size_t used_bytes_;
|
||||
size_t alloc_count_;
|
||||
|
||||
TF_LITE_REMOVE_VIRTUAL_DELETE
|
||||
};
|
||||
|
||||
} // namespace tflite
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_RECORDING_SIMPLE_MEMORY_ALLOCATOR_H_
|
||||
@@ -0,0 +1,149 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/micro/simple_memory_allocator.h"
|
||||
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
#include <new>
|
||||
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/core/api/error_reporter.h"
|
||||
#include "tensorflow/lite/kernels/internal/compatibility.h"
|
||||
#include "tensorflow/lite/micro/memory_helpers.h"
|
||||
|
||||
namespace tflite {
|
||||
|
||||
SimpleMemoryAllocator::SimpleMemoryAllocator(ErrorReporter* error_reporter,
|
||||
uint8_t* buffer_head,
|
||||
uint8_t* buffer_tail)
|
||||
: error_reporter_(error_reporter),
|
||||
buffer_head_(buffer_head),
|
||||
buffer_tail_(buffer_tail),
|
||||
head_(buffer_head),
|
||||
tail_(buffer_tail),
|
||||
temp_(buffer_head_) {}
|
||||
|
||||
SimpleMemoryAllocator::SimpleMemoryAllocator(ErrorReporter* error_reporter,
|
||||
uint8_t* buffer,
|
||||
size_t buffer_size)
|
||||
: SimpleMemoryAllocator(error_reporter, buffer, buffer + buffer_size) {}
|
||||
|
||||
/* static */
|
||||
SimpleMemoryAllocator* SimpleMemoryAllocator::Create(
|
||||
ErrorReporter* error_reporter, uint8_t* buffer_head, size_t buffer_size) {
|
||||
TFLITE_DCHECK(error_reporter != nullptr);
|
||||
TFLITE_DCHECK(buffer_head != nullptr);
|
||||
SimpleMemoryAllocator tmp =
|
||||
SimpleMemoryAllocator(error_reporter, buffer_head, buffer_size);
|
||||
|
||||
// Allocate enough bytes from the buffer to create a SimpleMemoryAllocator.
|
||||
// The new instance will use the current adjusted tail buffer from the tmp
|
||||
// allocator instance.
|
||||
uint8_t* allocator_buffer = tmp.AllocateFromTail(
|
||||
sizeof(SimpleMemoryAllocator), alignof(SimpleMemoryAllocator));
|
||||
// Use the default copy constructor to populate internal states.
|
||||
return new (allocator_buffer) SimpleMemoryAllocator(tmp);
|
||||
}
|
||||
|
||||
SimpleMemoryAllocator::~SimpleMemoryAllocator() {}
|
||||
|
||||
TfLiteStatus SimpleMemoryAllocator::SetHeadBufferSize(size_t size,
|
||||
size_t alignment) {
|
||||
if (head_ != temp_) {
|
||||
TF_LITE_REPORT_ERROR(
|
||||
error_reporter_,
|
||||
"Internal error: SetHeadBufferSize() needs to be called "
|
||||
"after ResetTempAllocations().");
|
||||
return kTfLiteError;
|
||||
}
|
||||
|
||||
uint8_t* const aligned_result = AlignPointerUp(buffer_head_, alignment);
|
||||
const size_t available_memory = tail_ - aligned_result;
|
||||
if (available_memory < size) {
|
||||
TF_LITE_REPORT_ERROR(
|
||||
error_reporter_,
|
||||
"Failed to set head size. Requested: %u, available %u, missing: %u",
|
||||
size, available_memory, size - available_memory);
|
||||
return kTfLiteError;
|
||||
}
|
||||
head_ = aligned_result + size;
|
||||
temp_ = head_;
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
uint8_t* SimpleMemoryAllocator::AllocateFromTail(size_t size,
|
||||
size_t alignment) {
|
||||
uint8_t* const aligned_result = AlignPointerDown(tail_ - size, alignment);
|
||||
if (aligned_result < head_) {
|
||||
#ifndef TF_LITE_STRIP_ERROR_STRINGS
|
||||
const size_t missing_memory = head_ - aligned_result;
|
||||
TF_LITE_REPORT_ERROR(error_reporter_,
|
||||
"Failed to allocate tail memory. Requested: %u, "
|
||||
"available %u, missing: %u",
|
||||
size, size - missing_memory, missing_memory);
|
||||
#endif
|
||||
return nullptr;
|
||||
}
|
||||
tail_ = aligned_result;
|
||||
return aligned_result;
|
||||
}
|
||||
|
||||
uint8_t* SimpleMemoryAllocator::AllocateTemp(size_t size, size_t alignment) {
|
||||
uint8_t* const aligned_result = AlignPointerUp(temp_, alignment);
|
||||
const size_t available_memory = tail_ - aligned_result;
|
||||
if (available_memory < size) {
|
||||
TF_LITE_REPORT_ERROR(error_reporter_,
|
||||
"Failed to allocate temp memory. Requested: %u, "
|
||||
"available %u, missing: %u",
|
||||
size, available_memory, size - available_memory);
|
||||
return nullptr;
|
||||
}
|
||||
temp_ = aligned_result + size;
|
||||
return aligned_result;
|
||||
}
|
||||
|
||||
void SimpleMemoryAllocator::ResetTempAllocations() { temp_ = head_; }
|
||||
|
||||
uint8_t* SimpleMemoryAllocator::GetHeadBuffer() const { return buffer_head_; }
|
||||
|
||||
size_t SimpleMemoryAllocator::GetHeadUsedBytes() const {
|
||||
return head_ - buffer_head_;
|
||||
}
|
||||
|
||||
size_t SimpleMemoryAllocator::GetTailUsedBytes() const {
|
||||
return buffer_tail_ - tail_;
|
||||
}
|
||||
|
||||
size_t SimpleMemoryAllocator::GetAvailableMemory(size_t alignment) const {
|
||||
uint8_t* const aligned_temp = AlignPointerUp(temp_, alignment);
|
||||
uint8_t* const aligned_tail = AlignPointerDown(tail_, alignment);
|
||||
return aligned_tail - aligned_temp;
|
||||
}
|
||||
|
||||
size_t SimpleMemoryAllocator::GetUsedBytes() const {
|
||||
return GetBufferSize() - (tail_ - temp_);
|
||||
}
|
||||
|
||||
size_t SimpleMemoryAllocator::GetBufferSize() const {
|
||||
return buffer_tail_ - buffer_head_;
|
||||
}
|
||||
|
||||
uint8_t* SimpleMemoryAllocator::head() const { return head_; }
|
||||
|
||||
uint8_t* SimpleMemoryAllocator::tail() const { return tail_; }
|
||||
|
||||
} // namespace tflite
|
||||
@@ -0,0 +1,112 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef TENSORFLOW_LITE_MICRO_SIMPLE_MEMORY_ALLOCATOR_H_
|
||||
#define TENSORFLOW_LITE_MICRO_SIMPLE_MEMORY_ALLOCATOR_H_
|
||||
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/core/api/error_reporter.h"
|
||||
#include "tensorflow/lite/micro/compatibility.h"
|
||||
|
||||
namespace tflite {
|
||||
|
||||
// TODO(petewarden): This allocator never frees up or reuses any memory, even
|
||||
// though we have enough information about lifetimes of the tensors to do so.
|
||||
// This makes it pretty wasteful, so we should use a more intelligent method.
|
||||
class SimpleMemoryAllocator {
|
||||
public:
|
||||
// TODO(b/157615197): Cleanup constructors/destructor and use factory
|
||||
// functions.
|
||||
SimpleMemoryAllocator(ErrorReporter* error_reporter, uint8_t* buffer_head,
|
||||
uint8_t* buffer_tail);
|
||||
SimpleMemoryAllocator(ErrorReporter* error_reporter, uint8_t* buffer,
|
||||
size_t buffer_size);
|
||||
virtual ~SimpleMemoryAllocator();
|
||||
|
||||
// Creates a new SimpleMemoryAllocator from a given buffer head and size.
|
||||
static SimpleMemoryAllocator* Create(ErrorReporter* error_reporter,
|
||||
uint8_t* buffer_head,
|
||||
size_t buffer_size);
|
||||
|
||||
// Adjusts the head (lowest address and moving upwards) memory allocation to a
|
||||
// given size. Calls to this method will also invalidate all temporary
|
||||
// allocation values (it sets the location of temp space at the end of the
|
||||
// head section). This call will fail if a chain of allocations through
|
||||
// AllocateTemp() have not been cleaned up with a call to
|
||||
// ResetTempAllocations().
|
||||
virtual TfLiteStatus SetHeadBufferSize(size_t size, size_t alignment);
|
||||
|
||||
// Allocates memory starting at the tail of the arena (highest address and
|
||||
// moving downwards).
|
||||
virtual uint8_t* AllocateFromTail(size_t size, size_t alignment);
|
||||
|
||||
// Allocates a temporary buffer from the head of the arena (lowest address and
|
||||
// moving upwards) but does not update the actual head allocation size or
|
||||
// position. The returned buffer is guaranteed until either
|
||||
// ResetTempAllocations() is called or another call to AllocateFromHead().
|
||||
// Repeat calls to this function will create a chain of temp allocations. All
|
||||
// calls to AllocateTemp() must end with a call to ResetTempAllocations(). If
|
||||
// AllocateFromHead() is called before a call to ResetTempAllocations(), it
|
||||
// will fail with an error message.
|
||||
virtual uint8_t* AllocateTemp(size_t size, size_t alignment);
|
||||
|
||||
// Resets a chain of temporary allocations back to the current head of the
|
||||
// arena (lowest address).
|
||||
virtual void ResetTempAllocations();
|
||||
|
||||
// Returns a pointer to the buffer currently assigned to the head section.
|
||||
// This buffer is set by calling SetHeadSize().
|
||||
uint8_t* GetHeadBuffer() const;
|
||||
|
||||
// Returns the size of the head section in bytes.
|
||||
size_t GetHeadUsedBytes() const;
|
||||
|
||||
// Returns the size of all allocations in the tail section in bytes.
|
||||
size_t GetTailUsedBytes() const;
|
||||
|
||||
// Returns the number of bytes available with a given alignment. This number
|
||||
// takes in account any temporary allocations.
|
||||
size_t GetAvailableMemory(size_t alignment) const;
|
||||
|
||||
// Returns the number of used bytes in the allocator. This number takes in
|
||||
// account any temporary allocations.
|
||||
size_t GetUsedBytes() const;
|
||||
|
||||
protected:
|
||||
// Returns a pointer to the current end of the head buffer.
|
||||
uint8_t* head() const;
|
||||
|
||||
// Returns a pointer to the current end of the tail buffer.
|
||||
uint8_t* tail() const;
|
||||
|
||||
private:
|
||||
size_t GetBufferSize() const;
|
||||
|
||||
ErrorReporter* error_reporter_;
|
||||
uint8_t* buffer_head_;
|
||||
uint8_t* buffer_tail_;
|
||||
uint8_t* head_;
|
||||
uint8_t* tail_;
|
||||
uint8_t* temp_;
|
||||
|
||||
TF_LITE_REMOVE_VIRTUAL_DELETE
|
||||
};
|
||||
|
||||
} // namespace tflite
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_SIMPLE_MEMORY_ALLOCATOR_H_
|
||||
949
code/components/tfmicro/tensorflow/lite/micro/test_helpers.cc
Normal file
949
code/components/tfmicro/tensorflow/lite/micro/test_helpers.cc
Normal file
@@ -0,0 +1,949 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/micro/test_helpers.h"
|
||||
|
||||
#include <cstdarg>
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
#include <initializer_list>
|
||||
#include <new>
|
||||
|
||||
#include "flatbuffers/flatbuffers.h" // from @flatbuffers
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/core/api/error_reporter.h"
|
||||
#include "tensorflow/lite/kernels/internal/compatibility.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/micro/all_ops_resolver.h"
|
||||
#include "tensorflow/lite/micro/micro_utils.h"
|
||||
#include "tensorflow/lite/schema/schema_generated.h"
|
||||
|
||||
// TODO(b/170464050): Use TFLM test only version of schema_utils.
|
||||
|
||||
namespace tflite {
|
||||
namespace testing {
|
||||
namespace {
|
||||
|
||||
class StackAllocator : public flatbuffers::Allocator {
|
||||
public:
|
||||
StackAllocator() : data_(data_backing_), data_size_(0) {}
|
||||
|
||||
uint8_t* allocate(size_t size) override {
|
||||
TFLITE_DCHECK((data_size_ + size) <= kStackAllocatorSize);
|
||||
uint8_t* result = data_;
|
||||
data_ += size;
|
||||
data_size_ += size;
|
||||
return result;
|
||||
}
|
||||
|
||||
void deallocate(uint8_t* p, size_t) override {}
|
||||
|
||||
static StackAllocator& instance() {
|
||||
// Avoid using true dynamic memory allocation to be portable to bare metal.
|
||||
static char inst_memory[sizeof(StackAllocator)];
|
||||
static StackAllocator* inst = new (inst_memory) StackAllocator;
|
||||
return *inst;
|
||||
}
|
||||
|
||||
static constexpr size_t kStackAllocatorSize = 8192;
|
||||
|
||||
private:
|
||||
uint8_t data_backing_[kStackAllocatorSize];
|
||||
uint8_t* data_;
|
||||
int data_size_;
|
||||
};
|
||||
|
||||
flatbuffers::FlatBufferBuilder* BuilderInstance() {
|
||||
static char inst_memory[sizeof(flatbuffers::FlatBufferBuilder)];
|
||||
static flatbuffers::FlatBufferBuilder* inst =
|
||||
new (inst_memory) flatbuffers::FlatBufferBuilder(
|
||||
StackAllocator::kStackAllocatorSize, &StackAllocator::instance());
|
||||
return inst;
|
||||
}
|
||||
|
||||
// A wrapper around FlatBuffer API to help build model easily.
|
||||
class ModelBuilder {
|
||||
public:
|
||||
typedef int32_t Tensor;
|
||||
typedef int Operator;
|
||||
typedef int Node;
|
||||
|
||||
// `builder` needs to be available until BuildModel is called.
|
||||
explicit ModelBuilder(flatbuffers::FlatBufferBuilder* builder)
|
||||
: builder_(builder) {}
|
||||
|
||||
// Registers an operator that will be used in the model.
|
||||
Operator RegisterOp(BuiltinOperator op, const char* custom_code);
|
||||
|
||||
// Adds a tensor to the model.
|
||||
Tensor AddTensor(TensorType type, std::initializer_list<int32_t> shape) {
|
||||
return AddTensorImpl(type, /* is_variable */ false, shape);
|
||||
}
|
||||
|
||||
// Adds a variable tensor to the model.
|
||||
Tensor AddVariableTensor(TensorType type,
|
||||
std::initializer_list<int32_t> shape) {
|
||||
return AddTensorImpl(type, /* is_variable */ true, shape);
|
||||
}
|
||||
|
||||
// Adds a node to the model with given input and output Tensors.
|
||||
Node AddNode(Operator op, std::initializer_list<Tensor> inputs,
|
||||
std::initializer_list<Tensor> outputs);
|
||||
|
||||
void AddMetadata(const char* description_string,
|
||||
const int32_t* metadata_buffer_data, size_t num_elements);
|
||||
|
||||
// Constructs the flatbuffer model using `builder_` and return a pointer to
|
||||
// it. The returned model has the same lifetime as `builder_`.
|
||||
// Note the default value of 0 for num_subgraph_inputs means all tensor inputs
|
||||
// are in subgraph input list.
|
||||
const Model* BuildModel(std::initializer_list<Tensor> inputs,
|
||||
std::initializer_list<Tensor> outputs,
|
||||
size_t num_subgraph_inputs = 0);
|
||||
|
||||
private:
|
||||
// Adds a tensor to the model.
|
||||
Tensor AddTensorImpl(TensorType type, bool is_variable,
|
||||
std::initializer_list<int32_t> shape);
|
||||
|
||||
flatbuffers::FlatBufferBuilder* builder_;
|
||||
|
||||
static constexpr int kMaxOperatorCodes = 10;
|
||||
flatbuffers::Offset<tflite::OperatorCode> operator_codes_[kMaxOperatorCodes];
|
||||
int next_operator_code_id_ = 0;
|
||||
|
||||
static constexpr int kMaxOperators = 50;
|
||||
flatbuffers::Offset<tflite::Operator> operators_[kMaxOperators];
|
||||
int next_operator_id_ = 0;
|
||||
|
||||
static constexpr int kMaxTensors = 50;
|
||||
flatbuffers::Offset<tflite::Tensor> tensors_[kMaxTensors];
|
||||
|
||||
static constexpr int kMaxMetadataBuffers = 10;
|
||||
|
||||
static constexpr int kMaxMetadatas = 10;
|
||||
flatbuffers::Offset<Metadata> metadata_[kMaxMetadatas];
|
||||
|
||||
flatbuffers::Offset<Buffer> metadata_buffers_[kMaxMetadataBuffers];
|
||||
|
||||
int nbr_of_metadata_buffers_ = 0;
|
||||
|
||||
int next_tensor_id_ = 0;
|
||||
};
|
||||
|
||||
ModelBuilder::Operator ModelBuilder::RegisterOp(BuiltinOperator op,
|
||||
const char* custom_code) {
|
||||
TFLITE_DCHECK(next_operator_code_id_ <= kMaxOperatorCodes);
|
||||
operator_codes_[next_operator_code_id_] = tflite::CreateOperatorCodeDirect(
|
||||
*builder_, /*deprecated_builtin_code=*/0, custom_code, /*version=*/0, op);
|
||||
next_operator_code_id_++;
|
||||
return next_operator_code_id_ - 1;
|
||||
}
|
||||
|
||||
ModelBuilder::Node ModelBuilder::AddNode(
|
||||
ModelBuilder::Operator op,
|
||||
std::initializer_list<ModelBuilder::Tensor> inputs,
|
||||
std::initializer_list<ModelBuilder::Tensor> outputs) {
|
||||
TFLITE_DCHECK(next_operator_id_ <= kMaxOperators);
|
||||
operators_[next_operator_id_] = tflite::CreateOperator(
|
||||
*builder_, op, builder_->CreateVector(inputs.begin(), inputs.size()),
|
||||
builder_->CreateVector(outputs.begin(), outputs.size()),
|
||||
BuiltinOptions_NONE);
|
||||
next_operator_id_++;
|
||||
return next_operator_id_ - 1;
|
||||
}
|
||||
|
||||
void ModelBuilder::AddMetadata(const char* description_string,
|
||||
const int32_t* metadata_buffer_data,
|
||||
size_t num_elements) {
|
||||
metadata_[ModelBuilder::nbr_of_metadata_buffers_] =
|
||||
CreateMetadata(*builder_, builder_->CreateString(description_string),
|
||||
1 + ModelBuilder::nbr_of_metadata_buffers_);
|
||||
|
||||
metadata_buffers_[nbr_of_metadata_buffers_] = tflite::CreateBuffer(
|
||||
*builder_, builder_->CreateVector((uint8_t*)metadata_buffer_data,
|
||||
sizeof(uint32_t) * num_elements));
|
||||
|
||||
ModelBuilder::nbr_of_metadata_buffers_++;
|
||||
}
|
||||
|
||||
const Model* ModelBuilder::BuildModel(
|
||||
std::initializer_list<ModelBuilder::Tensor> inputs,
|
||||
std::initializer_list<ModelBuilder::Tensor> outputs,
|
||||
size_t num_subgraph_inputs) {
|
||||
// Model schema requires an empty buffer at idx 0.
|
||||
size_t buffer_size = 1 + ModelBuilder::nbr_of_metadata_buffers_;
|
||||
flatbuffers::Offset<Buffer> buffers[kMaxMetadataBuffers];
|
||||
buffers[0] = tflite::CreateBuffer(*builder_);
|
||||
|
||||
// Place the metadata buffers first in the buffer since the indices for them
|
||||
// have already been set in AddMetadata()
|
||||
for (int i = 1; i < ModelBuilder::nbr_of_metadata_buffers_ + 1; ++i) {
|
||||
buffers[i] = metadata_buffers_[i - 1];
|
||||
}
|
||||
|
||||
// TFLM only supports single subgraph.
|
||||
constexpr size_t subgraphs_size = 1;
|
||||
|
||||
// Find out number of subgraph inputs.
|
||||
if (num_subgraph_inputs == 0) {
|
||||
// This is the default case.
|
||||
num_subgraph_inputs = inputs.size();
|
||||
} else {
|
||||
// A non-zero value of num_subgraph_inputs means that some of
|
||||
// the operator input tensors are not subgraph inputs.
|
||||
TFLITE_DCHECK(num_subgraph_inputs <= inputs.size());
|
||||
}
|
||||
|
||||
const flatbuffers::Offset<SubGraph> subgraphs[subgraphs_size] = {
|
||||
tflite::CreateSubGraph(
|
||||
*builder_, builder_->CreateVector(tensors_, next_tensor_id_),
|
||||
builder_->CreateVector(inputs.begin(), num_subgraph_inputs),
|
||||
builder_->CreateVector(outputs.begin(), outputs.size()),
|
||||
builder_->CreateVector(operators_, next_operator_id_),
|
||||
builder_->CreateString("test_subgraph"))};
|
||||
|
||||
flatbuffers::Offset<Model> model_offset;
|
||||
if (ModelBuilder::nbr_of_metadata_buffers_ > 0) {
|
||||
model_offset = tflite::CreateModel(
|
||||
*builder_, 0,
|
||||
builder_->CreateVector(operator_codes_, next_operator_code_id_),
|
||||
builder_->CreateVector(subgraphs, subgraphs_size),
|
||||
builder_->CreateString("teset_model"),
|
||||
builder_->CreateVector(buffers, buffer_size), 0,
|
||||
builder_->CreateVector(metadata_,
|
||||
ModelBuilder::nbr_of_metadata_buffers_));
|
||||
} else {
|
||||
model_offset = tflite::CreateModel(
|
||||
*builder_, 0,
|
||||
builder_->CreateVector(operator_codes_, next_operator_code_id_),
|
||||
builder_->CreateVector(subgraphs, subgraphs_size),
|
||||
builder_->CreateString("teset_model"),
|
||||
builder_->CreateVector(buffers, buffer_size));
|
||||
}
|
||||
|
||||
tflite::FinishModelBuffer(*builder_, model_offset);
|
||||
void* model_pointer = builder_->GetBufferPointer();
|
||||
const Model* model = flatbuffers::GetRoot<Model>(model_pointer);
|
||||
return model;
|
||||
}
|
||||
|
||||
ModelBuilder::Tensor ModelBuilder::AddTensorImpl(
|
||||
TensorType type, bool is_variable, std::initializer_list<int32_t> shape) {
|
||||
TFLITE_DCHECK(next_tensor_id_ <= kMaxTensors);
|
||||
tensors_[next_tensor_id_] = tflite::CreateTensor(
|
||||
*builder_, builder_->CreateVector(shape.begin(), shape.size()), type,
|
||||
/* buffer */ 0, /* name */ 0, /* quantization */ 0,
|
||||
/* is_variable */ is_variable,
|
||||
/* sparsity */ 0);
|
||||
next_tensor_id_++;
|
||||
return next_tensor_id_ - 1;
|
||||
}
|
||||
|
||||
const Model* BuildSimpleStatefulModel() {
|
||||
using flatbuffers::Offset;
|
||||
flatbuffers::FlatBufferBuilder* fb_builder = BuilderInstance();
|
||||
|
||||
ModelBuilder model_builder(fb_builder);
|
||||
|
||||
const int op_id =
|
||||
model_builder.RegisterOp(BuiltinOperator_CUSTOM, "simple_stateful_op");
|
||||
const int input_tensor = model_builder.AddTensor(TensorType_UINT8, {3});
|
||||
const int median_tensor = model_builder.AddTensor(TensorType_UINT8, {3});
|
||||
const int invoke_count_tensor =
|
||||
model_builder.AddTensor(TensorType_INT32, {1});
|
||||
|
||||
model_builder.AddNode(op_id, {input_tensor},
|
||||
{median_tensor, invoke_count_tensor});
|
||||
return model_builder.BuildModel({input_tensor},
|
||||
{median_tensor, invoke_count_tensor});
|
||||
}
|
||||
|
||||
const Model* BuildSimpleModelWithBranch() {
|
||||
using flatbuffers::Offset;
|
||||
flatbuffers::FlatBufferBuilder* fb_builder = BuilderInstance();
|
||||
|
||||
ModelBuilder model_builder(fb_builder);
|
||||
/* Model structure
|
||||
| t0
|
||||
+------|
|
||||
| v
|
||||
| +---------+
|
||||
| | n0 |
|
||||
| | |
|
||||
| +---------+
|
||||
v +
|
||||
|
|
||||
+---------+ | t1
|
||||
| n1 | |
|
||||
| | |
|
||||
+---------+ |
|
||||
| |
|
||||
t2 | v
|
||||
| +---------+
|
||||
+-->| n2 |
|
||||
| |
|
||||
+-------|-+
|
||||
|t3
|
||||
v
|
||||
*/
|
||||
const int op_id =
|
||||
model_builder.RegisterOp(BuiltinOperator_CUSTOM, "mock_custom");
|
||||
const int t0 = model_builder.AddTensor(TensorType_FLOAT32, {2, 2, 3});
|
||||
const int t1 = model_builder.AddTensor(TensorType_FLOAT32, {2, 2, 3});
|
||||
const int t2 = model_builder.AddTensor(TensorType_FLOAT32, {2, 2, 3});
|
||||
const int t3 = model_builder.AddTensor(TensorType_FLOAT32, {2, 2, 3});
|
||||
model_builder.AddNode(op_id, {t0}, {t1}); // n0
|
||||
model_builder.AddNode(op_id, {t0}, {t2}); // n1
|
||||
model_builder.AddNode(op_id, {t1, t2}, {t3}); // n2
|
||||
return model_builder.BuildModel({t0}, {t3});
|
||||
}
|
||||
|
||||
const Model* BuildModelWithOfflinePlanning(int number_of_tensors,
|
||||
const int32_t* metadata_buffer,
|
||||
NodeConnection* node_conn,
|
||||
int num_conns,
|
||||
int num_subgraph_inputs) {
|
||||
using flatbuffers::Offset;
|
||||
flatbuffers::FlatBufferBuilder* fb_builder = BuilderInstance();
|
||||
|
||||
ModelBuilder model_builder(fb_builder);
|
||||
|
||||
const int op_id =
|
||||
model_builder.RegisterOp(BuiltinOperator_CUSTOM, "mock_custom");
|
||||
|
||||
for (int i = 0; i < number_of_tensors; ++i) {
|
||||
model_builder.AddTensor(TensorType_FLOAT32, {2, 2, 3});
|
||||
}
|
||||
|
||||
for (int i = 0; i < num_conns; ++i) {
|
||||
model_builder.AddNode(op_id, node_conn[i].input, node_conn[i].output);
|
||||
}
|
||||
|
||||
model_builder.AddMetadata(
|
||||
"OfflineMemoryAllocation", metadata_buffer,
|
||||
number_of_tensors + tflite::testing::kOfflinePlannerHeaderSize);
|
||||
|
||||
return model_builder.BuildModel(
|
||||
node_conn[0].input, node_conn[num_conns - 1].output, num_subgraph_inputs);
|
||||
}
|
||||
|
||||
const Model* BuildSimpleMockModel() {
|
||||
using flatbuffers::Offset;
|
||||
flatbuffers::FlatBufferBuilder* builder = BuilderInstance();
|
||||
|
||||
constexpr size_t buffer_data_size = 1;
|
||||
const uint8_t buffer_data[buffer_data_size] = {21};
|
||||
constexpr size_t buffers_size = 2;
|
||||
const Offset<Buffer> buffers[buffers_size] = {
|
||||
CreateBuffer(*builder),
|
||||
CreateBuffer(*builder,
|
||||
builder->CreateVector(buffer_data, buffer_data_size))};
|
||||
constexpr size_t tensor_shape_size = 1;
|
||||
const int32_t tensor_shape[tensor_shape_size] = {1};
|
||||
constexpr size_t tensors_size = 4;
|
||||
const Offset<Tensor> tensors[tensors_size] = {
|
||||
CreateTensor(*builder,
|
||||
builder->CreateVector(tensor_shape, tensor_shape_size),
|
||||
TensorType_INT32, 0,
|
||||
builder->CreateString("test_input_tensor"), 0, false),
|
||||
CreateTensor(*builder,
|
||||
builder->CreateVector(tensor_shape, tensor_shape_size),
|
||||
TensorType_UINT8, 1,
|
||||
builder->CreateString("test_weight_tensor"), 0, false),
|
||||
CreateTensor(*builder,
|
||||
builder->CreateVector(tensor_shape, tensor_shape_size),
|
||||
TensorType_INT32, 0,
|
||||
builder->CreateString("test_output_tensor"), 0, false),
|
||||
CreateTensor(*builder,
|
||||
builder->CreateVector(tensor_shape, tensor_shape_size),
|
||||
TensorType_INT32, 0,
|
||||
builder->CreateString("test_output2_tensor"), 0, false),
|
||||
};
|
||||
constexpr size_t inputs_size = 1;
|
||||
const int32_t inputs[inputs_size] = {0};
|
||||
constexpr size_t outputs_size = 2;
|
||||
const int32_t outputs[outputs_size] = {2, 3};
|
||||
constexpr size_t operator_inputs_size = 2;
|
||||
const int32_t operator_inputs[operator_inputs_size] = {0, 1};
|
||||
constexpr size_t operator_outputs_size = 1;
|
||||
const int32_t operator_outputs[operator_outputs_size] = {2};
|
||||
const int32_t operator2_outputs[operator_outputs_size] = {3};
|
||||
constexpr size_t operators_size = 2;
|
||||
const Offset<Operator> operators[operators_size] = {
|
||||
CreateOperator(
|
||||
*builder, 0,
|
||||
builder->CreateVector(operator_inputs, operator_inputs_size),
|
||||
builder->CreateVector(operator_outputs, operator_outputs_size),
|
||||
BuiltinOptions_NONE),
|
||||
CreateOperator(
|
||||
*builder, 0,
|
||||
builder->CreateVector(operator_inputs, operator_inputs_size),
|
||||
builder->CreateVector(operator2_outputs, operator_outputs_size),
|
||||
BuiltinOptions_NONE),
|
||||
};
|
||||
constexpr size_t subgraphs_size = 1;
|
||||
const Offset<SubGraph> subgraphs[subgraphs_size] = {
|
||||
CreateSubGraph(*builder, builder->CreateVector(tensors, tensors_size),
|
||||
builder->CreateVector(inputs, inputs_size),
|
||||
builder->CreateVector(outputs, outputs_size),
|
||||
builder->CreateVector(operators, operators_size),
|
||||
builder->CreateString("test_subgraph"))};
|
||||
constexpr size_t operator_codes_size = 1;
|
||||
const Offset<OperatorCode> operator_codes[operator_codes_size] = {
|
||||
CreateOperatorCodeDirect(*builder, /*deprecated_builtin_code=*/0,
|
||||
"mock_custom",
|
||||
/*version=*/0, BuiltinOperator_CUSTOM)};
|
||||
const Offset<Model> model_offset = CreateModel(
|
||||
*builder, 0, builder->CreateVector(operator_codes, operator_codes_size),
|
||||
builder->CreateVector(subgraphs, subgraphs_size),
|
||||
builder->CreateString("test_model"),
|
||||
builder->CreateVector(buffers, buffers_size));
|
||||
FinishModelBuffer(*builder, model_offset);
|
||||
void* model_pointer = builder->GetBufferPointer();
|
||||
const Model* model = flatbuffers::GetRoot<Model>(model_pointer);
|
||||
return model;
|
||||
}
|
||||
|
||||
const Model* BuildComplexMockModel() {
|
||||
using flatbuffers::Offset;
|
||||
flatbuffers::FlatBufferBuilder* builder = BuilderInstance();
|
||||
|
||||
constexpr size_t buffer_data_size = 1;
|
||||
const uint8_t buffer_data_1[buffer_data_size] = {21};
|
||||
const uint8_t buffer_data_2[buffer_data_size] = {21};
|
||||
const uint8_t buffer_data_3[buffer_data_size] = {21};
|
||||
constexpr size_t buffers_size = 7;
|
||||
const Offset<Buffer> buffers[buffers_size] = {
|
||||
// Op 1 buffers:
|
||||
CreateBuffer(*builder),
|
||||
CreateBuffer(*builder),
|
||||
CreateBuffer(*builder,
|
||||
builder->CreateVector(buffer_data_1, buffer_data_size)),
|
||||
// Op 2 buffers:
|
||||
CreateBuffer(*builder),
|
||||
CreateBuffer(*builder,
|
||||
builder->CreateVector(buffer_data_2, buffer_data_size)),
|
||||
// Op 3 buffers:
|
||||
CreateBuffer(*builder),
|
||||
CreateBuffer(*builder,
|
||||
builder->CreateVector(buffer_data_3, buffer_data_size)),
|
||||
};
|
||||
constexpr size_t tensor_shape_size = 1;
|
||||
const int32_t tensor_shape[tensor_shape_size] = {1};
|
||||
|
||||
constexpr size_t tensors_size = 10;
|
||||
const Offset<Tensor> tensors[tensors_size] = {
|
||||
// Op 1 inputs:
|
||||
CreateTensor(
|
||||
*builder, builder->CreateVector(tensor_shape, tensor_shape_size),
|
||||
TensorType_INT32, 0, builder->CreateString("test_input_tensor_1"), 0,
|
||||
false /* is_variable */),
|
||||
CreateTensor(
|
||||
*builder, builder->CreateVector(tensor_shape, tensor_shape_size),
|
||||
TensorType_INT32, 1, builder->CreateString("test_variable_tensor_1"),
|
||||
0, true /* is_variable */),
|
||||
CreateTensor(
|
||||
*builder, builder->CreateVector(tensor_shape, tensor_shape_size),
|
||||
TensorType_UINT8, 2, builder->CreateString("test_weight_tensor_1"), 0,
|
||||
false /* is_variable */),
|
||||
// Op 1 output / Op 2 input:
|
||||
CreateTensor(
|
||||
*builder, builder->CreateVector(tensor_shape, tensor_shape_size),
|
||||
TensorType_INT32, 0, builder->CreateString("test_output_tensor_1"), 0,
|
||||
false /* is_variable */),
|
||||
// Op 2 inputs:
|
||||
CreateTensor(
|
||||
*builder, builder->CreateVector(tensor_shape, tensor_shape_size),
|
||||
TensorType_INT32, 1, builder->CreateString("test_variable_tensor_2"),
|
||||
0, true /* is_variable */),
|
||||
CreateTensor(
|
||||
*builder, builder->CreateVector(tensor_shape, tensor_shape_size),
|
||||
TensorType_UINT8, 2, builder->CreateString("test_weight_tensor_2"), 0,
|
||||
false /* is_variable */),
|
||||
// Op 2 output / Op 3 input:
|
||||
CreateTensor(
|
||||
*builder, builder->CreateVector(tensor_shape, tensor_shape_size),
|
||||
TensorType_INT32, 0, builder->CreateString("test_output_tensor_2"), 0,
|
||||
false /* is_variable */),
|
||||
// Op 3 inputs:
|
||||
CreateTensor(
|
||||
*builder, builder->CreateVector(tensor_shape, tensor_shape_size),
|
||||
TensorType_INT32, 1, builder->CreateString("test_variable_tensor_3"),
|
||||
0, true /* is_variable */),
|
||||
CreateTensor(
|
||||
*builder, builder->CreateVector(tensor_shape, tensor_shape_size),
|
||||
TensorType_UINT8, 2, builder->CreateString("test_weight_tensor_3"), 0,
|
||||
false /* is_variable */),
|
||||
// Op 3 output:
|
||||
CreateTensor(
|
||||
*builder, builder->CreateVector(tensor_shape, tensor_shape_size),
|
||||
TensorType_INT32, 0, builder->CreateString("test_output_tensor_3"), 0,
|
||||
false /* is_variable */),
|
||||
};
|
||||
|
||||
constexpr size_t operators_size = 3;
|
||||
Offset<Operator> operators[operators_size];
|
||||
{
|
||||
// Set Op 1 attributes:
|
||||
constexpr size_t operator_inputs_size = 3;
|
||||
const int32_t operator_inputs[operator_inputs_size] = {0, 1, 2};
|
||||
constexpr size_t operator_outputs_size = 1;
|
||||
const int32_t operator_outputs[operator_outputs_size] = {3};
|
||||
|
||||
operators[0] = {CreateOperator(
|
||||
*builder, 0,
|
||||
builder->CreateVector(operator_inputs, operator_inputs_size),
|
||||
builder->CreateVector(operator_outputs, operator_outputs_size),
|
||||
BuiltinOptions_NONE)};
|
||||
}
|
||||
|
||||
{
|
||||
// Set Op 2 attributes
|
||||
constexpr size_t operator_inputs_size = 3;
|
||||
const int32_t operator_inputs[operator_inputs_size] = {3, 4, 5};
|
||||
constexpr size_t operator_outputs_size = 1;
|
||||
const int32_t operator_outputs[operator_outputs_size] = {6};
|
||||
|
||||
operators[1] = {CreateOperator(
|
||||
*builder, 0,
|
||||
builder->CreateVector(operator_inputs, operator_inputs_size),
|
||||
builder->CreateVector(operator_outputs, operator_outputs_size),
|
||||
BuiltinOptions_NONE)};
|
||||
}
|
||||
|
||||
{
|
||||
// Set Op 3 attributes
|
||||
constexpr size_t operator_inputs_size = 3;
|
||||
const int32_t operator_inputs[operator_inputs_size] = {6, 7, 8};
|
||||
constexpr size_t operator_outputs_size = 1;
|
||||
const int32_t operator_outputs[operator_outputs_size] = {9};
|
||||
|
||||
operators[2] = {CreateOperator(
|
||||
*builder, 0,
|
||||
builder->CreateVector(operator_inputs, operator_inputs_size),
|
||||
builder->CreateVector(operator_outputs, operator_outputs_size),
|
||||
BuiltinOptions_NONE)};
|
||||
}
|
||||
|
||||
constexpr size_t inputs_size = 1;
|
||||
const int32_t inputs[inputs_size] = {0};
|
||||
constexpr size_t outputs_size = 1;
|
||||
const int32_t outputs[outputs_size] = {9};
|
||||
|
||||
constexpr size_t subgraphs_size = 1;
|
||||
const Offset<SubGraph> subgraphs[subgraphs_size] = {
|
||||
CreateSubGraph(*builder, builder->CreateVector(tensors, tensors_size),
|
||||
builder->CreateVector(inputs, inputs_size),
|
||||
builder->CreateVector(outputs, outputs_size),
|
||||
builder->CreateVector(operators, operators_size),
|
||||
builder->CreateString("test_subgraph"))};
|
||||
|
||||
constexpr size_t operator_codes_size = 1;
|
||||
const Offset<OperatorCode> operator_codes[operator_codes_size] = {
|
||||
CreateOperatorCodeDirect(*builder, /*deprecated_builtin_code=*/0,
|
||||
"mock_custom",
|
||||
/*version=*/0, BuiltinOperator_CUSTOM)};
|
||||
|
||||
const Offset<Model> model_offset = CreateModel(
|
||||
*builder, 0, builder->CreateVector(operator_codes, operator_codes_size),
|
||||
builder->CreateVector(subgraphs, subgraphs_size),
|
||||
builder->CreateString("test_model"),
|
||||
builder->CreateVector(buffers, buffers_size));
|
||||
|
||||
FinishModelBuffer(*builder, model_offset);
|
||||
void* model_pointer = builder->GetBufferPointer();
|
||||
const Model* model = flatbuffers::GetRoot<Model>(model_pointer);
|
||||
return model;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
const TfLiteRegistration* SimpleStatefulOp::getRegistration() {
|
||||
return GetMutableRegistration();
|
||||
}
|
||||
|
||||
TfLiteRegistration* SimpleStatefulOp::GetMutableRegistration() {
|
||||
static TfLiteRegistration r;
|
||||
r.init = Init;
|
||||
r.prepare = Prepare;
|
||||
r.invoke = Invoke;
|
||||
return &r;
|
||||
}
|
||||
|
||||
void* SimpleStatefulOp::Init(TfLiteContext* context, const char* buffer,
|
||||
size_t length) {
|
||||
TFLITE_DCHECK(context->AllocateBufferForEval == nullptr);
|
||||
TFLITE_DCHECK(context->GetScratchBuffer == nullptr);
|
||||
TFLITE_DCHECK(context->RequestScratchBufferInArena == nullptr);
|
||||
|
||||
void* raw = context->AllocatePersistentBuffer(context, sizeof(OpData));
|
||||
OpData* data = reinterpret_cast<OpData*>(raw);
|
||||
*data = {};
|
||||
return raw;
|
||||
}
|
||||
|
||||
TfLiteStatus SimpleStatefulOp::Prepare(TfLiteContext* context,
|
||||
TfLiteNode* node) {
|
||||
OpData* data = reinterpret_cast<OpData*>(node->user_data);
|
||||
|
||||
// Make sure that the input is in uint8_t with at least 1 data entry.
|
||||
const TfLiteTensor* input;
|
||||
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input));
|
||||
if (input->type != kTfLiteUInt8) return kTfLiteError;
|
||||
if (NumElements(input->dims) == 0) return kTfLiteError;
|
||||
|
||||
// Allocate a temporary buffer with the same size of input for sorting.
|
||||
TF_LITE_ENSURE_STATUS(context->RequestScratchBufferInArena(
|
||||
context, sizeof(uint8_t) * NumElements(input->dims),
|
||||
&data->sorting_buffer));
|
||||
// We can interleave scratch / persistent buffer allocation.
|
||||
data->invoke_count = reinterpret_cast<int*>(
|
||||
context->AllocatePersistentBuffer(context, sizeof(int)));
|
||||
*data->invoke_count = 0;
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus SimpleStatefulOp::Invoke(TfLiteContext* context,
|
||||
TfLiteNode* node) {
|
||||
OpData* data = reinterpret_cast<OpData*>(node->user_data);
|
||||
*data->invoke_count += 1;
|
||||
|
||||
const TfLiteTensor* input;
|
||||
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input));
|
||||
const uint8_t* input_data = GetTensorData<uint8_t>(input);
|
||||
int size = NumElements(input->dims);
|
||||
|
||||
uint8_t* sorting_buffer = reinterpret_cast<uint8_t*>(
|
||||
context->GetScratchBuffer(context, data->sorting_buffer));
|
||||
// Copy inputs data to the sorting buffer. We don't want to mutate the input
|
||||
// tensor as it might be used by a another node.
|
||||
for (int i = 0; i < size; i++) {
|
||||
sorting_buffer[i] = input_data[i];
|
||||
}
|
||||
|
||||
// In place insertion sort on `sorting_buffer`.
|
||||
for (int i = 1; i < size; i++) {
|
||||
for (int j = i; j > 0 && sorting_buffer[j] < sorting_buffer[j - 1]; j--) {
|
||||
std::swap(sorting_buffer[j], sorting_buffer[j - 1]);
|
||||
}
|
||||
}
|
||||
|
||||
TfLiteTensor* median;
|
||||
TF_LITE_ENSURE_OK(context,
|
||||
GetOutputSafe(context, node, kMedianTensor, &median));
|
||||
uint8_t* median_data = GetTensorData<uint8_t>(median);
|
||||
TfLiteTensor* invoke_count;
|
||||
TF_LITE_ENSURE_OK(context,
|
||||
GetOutputSafe(context, node, kInvokeCount, &invoke_count));
|
||||
int32_t* invoke_count_data = GetTensorData<int32_t>(invoke_count);
|
||||
|
||||
median_data[0] = sorting_buffer[size / 2];
|
||||
invoke_count_data[0] = *data->invoke_count;
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
const TfLiteRegistration* MockCustom::getRegistration() {
|
||||
return GetMutableRegistration();
|
||||
}
|
||||
|
||||
TfLiteRegistration* MockCustom::GetMutableRegistration() {
|
||||
static TfLiteRegistration r;
|
||||
r.init = Init;
|
||||
r.prepare = Prepare;
|
||||
r.invoke = Invoke;
|
||||
r.free = Free;
|
||||
return &r;
|
||||
}
|
||||
|
||||
void* MockCustom::Init(TfLiteContext* context, const char* buffer,
|
||||
size_t length) {
|
||||
// We don't support delegate in TFL micro. This is a weak check to test if
|
||||
// context struct being zero-initialized.
|
||||
TFLITE_DCHECK(context->ReplaceNodeSubsetsWithDelegateKernels == nullptr);
|
||||
freed_ = false;
|
||||
// Do nothing.
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
void MockCustom::Free(TfLiteContext* context, void* buffer) { freed_ = true; }
|
||||
|
||||
TfLiteStatus MockCustom::Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus MockCustom::Invoke(TfLiteContext* context, TfLiteNode* node) {
|
||||
const TfLiteTensor* input;
|
||||
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input));
|
||||
const int32_t* input_data = input->data.i32;
|
||||
const TfLiteTensor* weight;
|
||||
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 1, &weight));
|
||||
const uint8_t* weight_data = weight->data.uint8;
|
||||
TfLiteTensor* output;
|
||||
TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output));
|
||||
int32_t* output_data = output->data.i32;
|
||||
output_data[0] =
|
||||
0; // Catch output tensor sharing memory with an input tensor
|
||||
output_data[0] = input_data[0] + weight_data[0];
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
bool MockCustom::freed_ = false;
|
||||
|
||||
AllOpsResolver GetOpResolver() {
|
||||
AllOpsResolver op_resolver;
|
||||
op_resolver.AddCustom("mock_custom", MockCustom::GetMutableRegistration());
|
||||
op_resolver.AddCustom("simple_stateful_op",
|
||||
SimpleStatefulOp::GetMutableRegistration());
|
||||
|
||||
return op_resolver;
|
||||
}
|
||||
|
||||
const Model* GetSimpleMockModel() {
|
||||
static Model* model = nullptr;
|
||||
if (!model) {
|
||||
model = const_cast<Model*>(BuildSimpleMockModel());
|
||||
}
|
||||
return model;
|
||||
}
|
||||
|
||||
const Model* GetComplexMockModel() {
|
||||
static Model* model = nullptr;
|
||||
if (!model) {
|
||||
model = const_cast<Model*>(BuildComplexMockModel());
|
||||
}
|
||||
return model;
|
||||
}
|
||||
|
||||
const Model* GetSimpleModelWithBranch() {
|
||||
static Model* model = nullptr;
|
||||
if (!model) {
|
||||
model = const_cast<Model*>(BuildSimpleModelWithBranch());
|
||||
}
|
||||
return model;
|
||||
}
|
||||
|
||||
const Model* GetModelWithOfflinePlanning(int num_tensors,
|
||||
const int32_t* metadata_buffer,
|
||||
NodeConnection* node_conn,
|
||||
int num_conns,
|
||||
int num_subgraph_inputs) {
|
||||
const Model* model = BuildModelWithOfflinePlanning(
|
||||
num_tensors, metadata_buffer, node_conn, num_conns, num_subgraph_inputs);
|
||||
return model;
|
||||
}
|
||||
|
||||
const Model* GetSimpleStatefulModel() {
|
||||
static Model* model = nullptr;
|
||||
if (!model) {
|
||||
model = const_cast<Model*>(BuildSimpleStatefulModel());
|
||||
}
|
||||
return model;
|
||||
}
|
||||
|
||||
const Tensor* Create1dFlatbufferTensor(int size, bool is_variable) {
|
||||
using flatbuffers::Offset;
|
||||
flatbuffers::FlatBufferBuilder* builder = BuilderInstance();
|
||||
constexpr size_t tensor_shape_size = 1;
|
||||
const int32_t tensor_shape[tensor_shape_size] = {size};
|
||||
const Offset<Tensor> tensor_offset = CreateTensor(
|
||||
*builder, builder->CreateVector(tensor_shape, tensor_shape_size),
|
||||
TensorType_INT32, 0, builder->CreateString("test_tensor"), 0,
|
||||
is_variable);
|
||||
builder->Finish(tensor_offset);
|
||||
void* tensor_pointer = builder->GetBufferPointer();
|
||||
const Tensor* tensor = flatbuffers::GetRoot<Tensor>(tensor_pointer);
|
||||
return tensor;
|
||||
}
|
||||
|
||||
const Tensor* CreateQuantizedFlatbufferTensor(int size) {
|
||||
using flatbuffers::Offset;
|
||||
flatbuffers::FlatBufferBuilder* builder = BuilderInstance();
|
||||
const Offset<QuantizationParameters> quant_params =
|
||||
CreateQuantizationParameters(
|
||||
*builder,
|
||||
/*min=*/builder->CreateVector<float>({0.1f}),
|
||||
/*max=*/builder->CreateVector<float>({0.2f}),
|
||||
/*scale=*/builder->CreateVector<float>({0.3f}),
|
||||
/*zero_point=*/builder->CreateVector<int64_t>({100ll}));
|
||||
|
||||
constexpr size_t tensor_shape_size = 1;
|
||||
const int32_t tensor_shape[tensor_shape_size] = {size};
|
||||
const Offset<Tensor> tensor_offset = CreateTensor(
|
||||
*builder, builder->CreateVector(tensor_shape, tensor_shape_size),
|
||||
TensorType_INT32, 0, builder->CreateString("test_tensor"), quant_params,
|
||||
false);
|
||||
builder->Finish(tensor_offset);
|
||||
void* tensor_pointer = builder->GetBufferPointer();
|
||||
const Tensor* tensor = flatbuffers::GetRoot<Tensor>(tensor_pointer);
|
||||
return tensor;
|
||||
}
|
||||
|
||||
const Tensor* CreateMissingQuantizationFlatbufferTensor(int size) {
|
||||
using flatbuffers::Offset;
|
||||
flatbuffers::FlatBufferBuilder* builder = BuilderInstance();
|
||||
const Offset<QuantizationParameters> quant_params =
|
||||
CreateQuantizationParameters(*builder, 0, 0, 0, 0,
|
||||
QuantizationDetails_NONE, 0, 0);
|
||||
constexpr size_t tensor_shape_size = 1;
|
||||
const int32_t tensor_shape[tensor_shape_size] = {size};
|
||||
const Offset<Tensor> tensor_offset = CreateTensor(
|
||||
*builder, builder->CreateVector(tensor_shape, tensor_shape_size),
|
||||
TensorType_INT32, 0, builder->CreateString("test_tensor"), quant_params,
|
||||
false);
|
||||
builder->Finish(tensor_offset);
|
||||
void* tensor_pointer = builder->GetBufferPointer();
|
||||
const Tensor* tensor = flatbuffers::GetRoot<Tensor>(tensor_pointer);
|
||||
return tensor;
|
||||
}
|
||||
|
||||
const flatbuffers::Vector<flatbuffers::Offset<Buffer>>*
|
||||
CreateFlatbufferBuffers() {
|
||||
using flatbuffers::Offset;
|
||||
flatbuffers::FlatBufferBuilder* builder = BuilderInstance();
|
||||
constexpr size_t buffers_size = 1;
|
||||
const Offset<Buffer> buffers[buffers_size] = {
|
||||
CreateBuffer(*builder),
|
||||
};
|
||||
const flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<Buffer>>>
|
||||
buffers_offset = builder->CreateVector(buffers, buffers_size);
|
||||
builder->Finish(buffers_offset);
|
||||
void* buffers_pointer = builder->GetBufferPointer();
|
||||
const flatbuffers::Vector<flatbuffers::Offset<Buffer>>* result =
|
||||
flatbuffers::GetRoot<flatbuffers::Vector<flatbuffers::Offset<Buffer>>>(
|
||||
buffers_pointer);
|
||||
return result;
|
||||
}
|
||||
|
||||
int TestStrcmp(const char* a, const char* b) {
|
||||
if ((a == nullptr) || (b == nullptr)) {
|
||||
return -1;
|
||||
}
|
||||
while ((*a != 0) && (*a == *b)) {
|
||||
a++;
|
||||
b++;
|
||||
}
|
||||
return *reinterpret_cast<const unsigned char*>(a) -
|
||||
*reinterpret_cast<const unsigned char*>(b);
|
||||
}
|
||||
|
||||
// Wrapper to forward kernel errors to the interpreter's error reporter.
|
||||
void ReportOpError(struct TfLiteContext* context, const char* format, ...) {
|
||||
#ifndef TF_LITE_STRIP_ERROR_STRINGS
|
||||
ErrorReporter* error_reporter = static_cast<ErrorReporter*>(context->impl_);
|
||||
va_list args;
|
||||
va_start(args, format);
|
||||
TF_LITE_REPORT_ERROR(error_reporter, format, args);
|
||||
va_end(args);
|
||||
#endif
|
||||
}
|
||||
|
||||
// Create a TfLiteIntArray from an array of ints. The first element in the
|
||||
// supplied array must be the size of the array expressed as an int.
|
||||
TfLiteIntArray* IntArrayFromInts(const int* int_array) {
|
||||
return const_cast<TfLiteIntArray*>(
|
||||
reinterpret_cast<const TfLiteIntArray*>(int_array));
|
||||
}
|
||||
|
||||
// Create a TfLiteFloatArray from an array of floats. The first element in the
|
||||
// supplied array must be the size of the array expressed as a float.
|
||||
TfLiteFloatArray* FloatArrayFromFloats(const float* floats) {
|
||||
static_assert(sizeof(float) == sizeof(int),
|
||||
"assumes sizeof(float) == sizeof(int) to perform casting");
|
||||
int size = static_cast<int>(floats[0]);
|
||||
*reinterpret_cast<int32_t*>(const_cast<float*>(floats)) = size;
|
||||
return reinterpret_cast<TfLiteFloatArray*>(const_cast<float*>(floats));
|
||||
}
|
||||
|
||||
TfLiteTensor CreateQuantizedBiasTensor(const float* data, int32_t* quantized,
|
||||
TfLiteIntArray* dims, float input_scale,
|
||||
float weights_scale, bool is_variable) {
|
||||
float bias_scale = input_scale * weights_scale;
|
||||
tflite::SymmetricQuantize(data, quantized, ElementCount(*dims), bias_scale);
|
||||
|
||||
// Quantized int32_t tensors always have a zero point of 0, since the range of
|
||||
// int32_t values is large, and because zero point costs extra cycles during
|
||||
// processing.
|
||||
TfLiteTensor result =
|
||||
CreateQuantizedTensor(quantized, dims, bias_scale, 0, is_variable);
|
||||
return result;
|
||||
}
|
||||
|
||||
// Quantizes int32_t bias tensor with per-channel weights determined by input
|
||||
// scale multiplied by weight scale for each channel.
|
||||
TfLiteTensor CreatePerChannelQuantizedBiasTensor(
|
||||
const float* input, int32_t* quantized, TfLiteIntArray* dims,
|
||||
float input_scale, float* weight_scales, float* scales, int* zero_points,
|
||||
TfLiteAffineQuantization* affine_quant, int quantized_dimension,
|
||||
bool is_variable) {
|
||||
int input_size = ElementCount(*dims);
|
||||
int num_channels = dims->data[quantized_dimension];
|
||||
// First element is reserved for array length
|
||||
zero_points[0] = num_channels;
|
||||
scales[0] = static_cast<float>(num_channels);
|
||||
float* scales_array = &scales[1];
|
||||
for (int i = 0; i < num_channels; i++) {
|
||||
scales_array[i] = input_scale * weight_scales[i];
|
||||
zero_points[i + 1] = 0;
|
||||
}
|
||||
|
||||
SymmetricPerChannelQuantize<int32_t>(input, quantized, input_size,
|
||||
num_channels, scales_array);
|
||||
|
||||
affine_quant->scale = FloatArrayFromFloats(scales);
|
||||
affine_quant->zero_point = IntArrayFromInts(zero_points);
|
||||
affine_quant->quantized_dimension = quantized_dimension;
|
||||
|
||||
TfLiteTensor result = CreateTensor(quantized, dims, is_variable);
|
||||
result.quantization = {kTfLiteAffineQuantization, affine_quant};
|
||||
return result;
|
||||
}
|
||||
|
||||
TfLiteTensor CreateSymmetricPerChannelQuantizedTensor(
|
||||
const float* input, int8_t* quantized, TfLiteIntArray* dims, float* scales,
|
||||
int* zero_points, TfLiteAffineQuantization* affine_quant,
|
||||
int quantized_dimension, bool is_variable) {
|
||||
int channel_count = dims->data[quantized_dimension];
|
||||
scales[0] = static_cast<float>(channel_count);
|
||||
zero_points[0] = channel_count;
|
||||
|
||||
SignedSymmetricPerChannelQuantize(input, dims, quantized_dimension, quantized,
|
||||
&scales[1]);
|
||||
|
||||
for (int i = 0; i < channel_count; i++) {
|
||||
zero_points[i + 1] = 0;
|
||||
}
|
||||
|
||||
affine_quant->scale = FloatArrayFromFloats(scales);
|
||||
affine_quant->zero_point = IntArrayFromInts(zero_points);
|
||||
affine_quant->quantized_dimension = quantized_dimension;
|
||||
|
||||
TfLiteTensor result = CreateTensor(quantized, dims, is_variable);
|
||||
result.quantization = {kTfLiteAffineQuantization, affine_quant};
|
||||
return result;
|
||||
}
|
||||
|
||||
size_t GetModelTensorCount(const Model* model) {
|
||||
auto* subgraphs = model->subgraphs();
|
||||
if (subgraphs) {
|
||||
return (*subgraphs)[0]->tensors()->size();
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
} // namespace testing
|
||||
} // namespace tflite
|
||||
223
code/components/tfmicro/tensorflow/lite/micro/test_helpers.h
Normal file
223
code/components/tfmicro/tensorflow/lite/micro/test_helpers.h
Normal file
@@ -0,0 +1,223 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef TENSORFLOW_LITE_MICRO_TEST_HELPERS_H_
|
||||
#define TENSORFLOW_LITE_MICRO_TEST_HELPERS_H_
|
||||
|
||||
// Useful functions for writing tests.
|
||||
|
||||
#include <cstdint>
|
||||
#include <limits>
|
||||
|
||||
#include "flatbuffers/flatbuffers.h" // from @flatbuffers
|
||||
#include "tensorflow/lite//kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/compatibility.h"
|
||||
#include "tensorflow/lite/micro/all_ops_resolver.h"
|
||||
#include "tensorflow/lite/micro/micro_utils.h"
|
||||
#include "tensorflow/lite/portable_type_to_tflitetype.h"
|
||||
#include "tensorflow/lite/schema/schema_generated.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace testing {
|
||||
|
||||
constexpr int kOfflinePlannerHeaderSize = 3;
|
||||
|
||||
struct NodeConnection_ {
|
||||
std::initializer_list<int32_t> input;
|
||||
std::initializer_list<int32_t> output;
|
||||
};
|
||||
typedef struct NodeConnection_ NodeConnection;
|
||||
|
||||
// A simple operator that returns the median of the input with the number of
|
||||
// times the kernel was invoked. The implementation below is deliberately
|
||||
// complicated, just to demonstrate how kernel memory planning works.
|
||||
class SimpleStatefulOp {
|
||||
static constexpr int kBufferNotAllocated = 0;
|
||||
// Inputs:
|
||||
static constexpr int kInputTensor = 0;
|
||||
// Outputs:
|
||||
static constexpr int kMedianTensor = 0;
|
||||
static constexpr int kInvokeCount = 1;
|
||||
struct OpData {
|
||||
int* invoke_count = nullptr;
|
||||
int sorting_buffer = kBufferNotAllocated;
|
||||
};
|
||||
|
||||
public:
|
||||
static const TfLiteRegistration* getRegistration();
|
||||
static TfLiteRegistration* GetMutableRegistration();
|
||||
static void* Init(TfLiteContext* context, const char* buffer, size_t length);
|
||||
static TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node);
|
||||
static TfLiteStatus Invoke(TfLiteContext* context, TfLiteNode* node);
|
||||
};
|
||||
|
||||
class MockCustom {
|
||||
public:
|
||||
static const TfLiteRegistration* getRegistration();
|
||||
static TfLiteRegistration* GetMutableRegistration();
|
||||
static void* Init(TfLiteContext* context, const char* buffer, size_t length);
|
||||
static void Free(TfLiteContext* context, void* buffer);
|
||||
static TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node);
|
||||
static TfLiteStatus Invoke(TfLiteContext* context, TfLiteNode* node);
|
||||
|
||||
static bool freed_;
|
||||
};
|
||||
|
||||
// Returns an Op Resolver that can be used in the testing code.
|
||||
AllOpsResolver GetOpResolver();
|
||||
|
||||
// Returns a simple example flatbuffer TensorFlow Lite model. Contains 1 input,
|
||||
// 1 layer of weights, 1 output Tensor, and 1 operator.
|
||||
const Model* GetSimpleMockModel();
|
||||
|
||||
// Returns a flatbuffer TensorFlow Lite model with more inputs, variable
|
||||
// tensors, and operators.
|
||||
const Model* GetComplexMockModel();
|
||||
|
||||
// Returns a simple flatbuffer model with two branches.
|
||||
const Model* GetSimpleModelWithBranch();
|
||||
|
||||
// Returns a simple flatbuffer model with offline planned tensors
|
||||
// @param[in] num_tensors Number of tensors in the model.
|
||||
// @param[in] metadata_buffer Metadata for offline planner.
|
||||
// @param[in] node_con List of connections, i.e. operators
|
||||
// in the model.
|
||||
// @param[in] num_conns Number of connections.
|
||||
// @param[in] num_subgraph_inputs How many of the input tensors are in
|
||||
// the subgraph inputs. The default value
|
||||
// of 0 means all of the input tensors
|
||||
// are in the subgraph input list. There
|
||||
// must be at least 1 input tensor in the
|
||||
// subgraph input list.
|
||||
const Model* GetModelWithOfflinePlanning(int num_tensors,
|
||||
const int32_t* metadata_buffer,
|
||||
NodeConnection* node_conn,
|
||||
int num_conns,
|
||||
int num_subgraph_inputs = 0);
|
||||
|
||||
// Returns a flatbuffer model with `simple_stateful_op`
|
||||
const Model* GetSimpleStatefulModel();
|
||||
|
||||
// Builds a one-dimensional flatbuffer tensor of the given size.
|
||||
const Tensor* Create1dFlatbufferTensor(int size, bool is_variable = false);
|
||||
|
||||
// Builds a one-dimensional flatbuffer tensor of the given size with
|
||||
// quantization metadata.
|
||||
const Tensor* CreateQuantizedFlatbufferTensor(int size);
|
||||
|
||||
// Creates a one-dimensional tensor with no quantization metadata.
|
||||
const Tensor* CreateMissingQuantizationFlatbufferTensor(int size);
|
||||
|
||||
// Creates a vector of flatbuffer buffers.
|
||||
const flatbuffers::Vector<flatbuffers::Offset<Buffer>>*
|
||||
CreateFlatbufferBuffers();
|
||||
|
||||
// Performs a simple string comparison without requiring standard C library.
|
||||
int TestStrcmp(const char* a, const char* b);
|
||||
|
||||
// Wrapper to forward kernel errors to the interpreter's error reporter.
|
||||
void ReportOpError(struct TfLiteContext* context, const char* format, ...);
|
||||
|
||||
void PopulateContext(TfLiteTensor* tensors, int tensors_size,
|
||||
TfLiteContext* context);
|
||||
|
||||
// Create a TfLiteIntArray from an array of ints. The first element in the
|
||||
// supplied array must be the size of the array expressed as an int.
|
||||
TfLiteIntArray* IntArrayFromInts(const int* int_array);
|
||||
|
||||
// Create a TfLiteFloatArray from an array of floats. The first element in the
|
||||
// supplied array must be the size of the array expressed as a float.
|
||||
TfLiteFloatArray* FloatArrayFromFloats(const float* floats);
|
||||
|
||||
template <typename T>
|
||||
TfLiteTensor CreateTensor(const T* data, TfLiteIntArray* dims,
|
||||
const bool is_variable = false) {
|
||||
TfLiteTensor result;
|
||||
result.dims = dims;
|
||||
result.params = {};
|
||||
result.quantization = {kTfLiteNoQuantization, nullptr};
|
||||
result.is_variable = is_variable;
|
||||
result.allocation_type = kTfLiteMemNone;
|
||||
result.type = typeToTfLiteType<T>();
|
||||
// Const cast is used to allow passing in const and non-const arrays within a
|
||||
// single CreateTensor method. A Const array should be used for immutable
|
||||
// input tensors and non-const array should be used for mutable and output
|
||||
// tensors.
|
||||
result.data.data = const_cast<T*>(data);
|
||||
result.quantization = {kTfLiteAffineQuantization, nullptr};
|
||||
result.bytes = ElementCount(*dims) * sizeof(T);
|
||||
return result;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
TfLiteTensor CreateQuantizedTensor(const T* data, TfLiteIntArray* dims,
|
||||
const float scale, const int zero_point = 0,
|
||||
const bool is_variable = false) {
|
||||
TfLiteTensor result = CreateTensor(data, dims, is_variable);
|
||||
result.params = {scale, zero_point};
|
||||
result.quantization = {kTfLiteAffineQuantization, nullptr};
|
||||
return result;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
TfLiteTensor CreateQuantizedTensor(const float* input, T* quantized,
|
||||
TfLiteIntArray* dims, float scale,
|
||||
int zero_point, bool is_variable = false) {
|
||||
int input_size = ElementCount(*dims);
|
||||
tflite::Quantize(input, quantized, input_size, scale, zero_point);
|
||||
return CreateQuantizedTensor(quantized, dims, scale, zero_point, is_variable);
|
||||
}
|
||||
|
||||
TfLiteTensor CreateQuantizedBiasTensor(const float* data, int32_t* quantized,
|
||||
TfLiteIntArray* dims, float input_scale,
|
||||
float weights_scale,
|
||||
bool is_variable = false);
|
||||
|
||||
// Quantizes int32_t bias tensor with per-channel weights determined by input
|
||||
// scale multiplied by weight scale for each channel.
|
||||
TfLiteTensor CreatePerChannelQuantizedBiasTensor(
|
||||
const float* input, int32_t* quantized, TfLiteIntArray* dims,
|
||||
float input_scale, float* weight_scales, float* scales, int* zero_points,
|
||||
TfLiteAffineQuantization* affine_quant, int quantized_dimension,
|
||||
bool is_variable = false);
|
||||
|
||||
TfLiteTensor CreateSymmetricPerChannelQuantizedTensor(
|
||||
const float* input, int8_t* quantized, TfLiteIntArray* dims, float* scales,
|
||||
int* zero_points, TfLiteAffineQuantization* affine_quant,
|
||||
int quantized_dimension, bool is_variable = false);
|
||||
|
||||
// Returns the number of tensors in the default subgraph for a tflite::Model.
|
||||
size_t GetModelTensorCount(const Model* model);
|
||||
|
||||
// Derives the quantization scaling factor from a min and max range.
|
||||
template <typename T>
|
||||
inline float ScaleFromMinMax(const float min, const float max) {
|
||||
return (max - min) /
|
||||
static_cast<float>((std::numeric_limits<T>::max() * 1.0) -
|
||||
std::numeric_limits<T>::min());
|
||||
}
|
||||
|
||||
// Derives the quantization zero point from a min and max range.
|
||||
template <typename T>
|
||||
inline int ZeroPointFromMinMax(const float min, const float max) {
|
||||
return static_cast<int>(std::numeric_limits<T>::min()) +
|
||||
static_cast<int>(-min / ScaleFromMinMax<T>(min, max) + 0.5f);
|
||||
}
|
||||
|
||||
} // namespace testing
|
||||
} // namespace tflite
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_TEST_HELPERS_H_
|
||||
Reference in New Issue
Block a user