diff --git a/README.md b/README.md
index 82b14ee0..5fdd5403 100644
--- a/README.md
+++ b/README.md
@@ -54,8 +54,10 @@ In other cases you can contact the developer via email:
-
+#include "esp_nn_defs.h"
/************************** Basic math functions ****************************/
/**
@@ -81,28 +80,15 @@ void esp_nn_mul_elementwise_s8_ansi(const int8_t *input1_data,
* optimization notes: Though input_offset is int32 type,
* offset values are contained in 8 bits [-128, 127]
*/
-void esp_nn_depthwise_conv_s8_ansi(const int8_t *input_data,
- const uint16_t input_wd,
- const uint16_t input_ht,
- const uint16_t channels,
- const int32_t input_offset,
- const uint16_t pad_wd,
- const uint16_t pad_ht,
- const uint16_t stride_wd,
- const uint16_t stride_ht,
- const uint16_t ch_mult,
+void esp_nn_depthwise_conv_s8_ansi(const data_dims_t *input_dims,
+ const int8_t *input_data,
+ const data_dims_t *filter_dims,
const int8_t *filter_data,
- const uint16_t filter_wd,
- const uint16_t filter_ht,
const int32_t *bias,
+ const data_dims_t *output_dims,
int8_t *out_data,
- const uint16_t out_wd,
- const uint16_t out_ht,
- const int32_t out_offset,
- const int32_t *out_shift,
- const int32_t *out_mult,
- const int32_t activation_min,
- const int32_t activation_max);
+ const dw_conv_params_t *conv_params,
+ const quant_data_t *quant_data);
/**
* @brief 2d-convolution channelwise
@@ -112,43 +98,26 @@ void esp_nn_depthwise_conv_s8_ansi(const int8_t *input_data,
* inputs type: int8_t, output: int8_t
* input offsets: although int32_t, they are contained in 8 bits [-128, 127]
*/
-void esp_nn_conv_s8_ansi(const int8_t *input_data,
- const uint16_t input_wd,
- const uint16_t input_ht,
- const uint16_t in_channels,
- const int32_t input_offset,
- const uint16_t pad_wd,
- const uint16_t pad_ht,
- const uint16_t stride_wd,
- const uint16_t stride_ht,
+void esp_nn_conv_s8_ansi(const data_dims_t *input_dims,
+ const int8_t *input_data,
+ const data_dims_t *filter_dims,
const int8_t *filter_data,
- const uint16_t filter_wd,
- const uint16_t filter_ht,
const int32_t *bias,
+ const data_dims_t *output_dims,
int8_t *out_data,
- const uint16_t out_wd,
- const uint16_t out_ht,
- const uint16_t out_channels,
- const int32_t out_offset,
- const int32_t *out_shift,
- const int32_t *out_mult,
- const int32_t activation_min,
- const int32_t activation_max);
+ const conv_params_t *conv_params,
+ const quant_data_t *quant_data);
-int esp_nn_get_conv_scratch_size_ansi(const uint16_t input_wd,
- const uint16_t input_ht,
- const uint16_t in_ch,
- const uint16_t out_ch,
- const uint16_t filter_wd,
- const uint16_t filter_ht);
+int esp_nn_get_conv_scratch_size_ansi(const data_dims_t *input_dims,
+ const data_dims_t *filter_dims,
+ const data_dims_t *output_dims,
+ const conv_params_t *conv_params);
void esp_nn_set_conv_scratch_buf_ansi(const void *buf);
-int esp_nn_get_depthwise_conv_scratch_size_ansi(const uint16_t input_wd,
- const uint16_t input_ht,
- const uint16_t channels,
- const uint16_t ch_mult,
- const uint16_t filter_wd,
- const uint16_t filter_ht);
+int esp_nn_get_depthwise_conv_scratch_size_ansi(const data_dims_t *input_dims,
+ const data_dims_t *filter_dims,
+ const data_dims_t *output_dims,
+ const dw_conv_params_t *conv_params);
void esp_nn_set_depthwise_conv_scratch_buf_ansi(const void *buf);
/************************** Activation functions *****************************/
@@ -252,9 +221,6 @@ int32_t esp_nn_get_softmax_scratch_size_opt(const int32_t width, const int32_t h
*/
void esp_nn_set_softmax_scratch_buf_ansi(void *buffer);
-/* ANSI C function to be hooked up when optimised version needed */
-void esp_nn_set_softmax_scratch_buf_opt(void *buffer);
-
/**
* @brief reference softmax function
*
@@ -268,6 +234,66 @@ void esp_nn_softmax_s8_ansi(const int8_t *input_data,
const int32_t diff_min,
int8_t *output_data);
+
+//////////////////////////// Generic optimisations /////////////////////////////
+
+/************************** Convolution functions *****************************/
+
+/**
+ * @brief 2d-convolution channelwise optimized version
+ *
+ * @note operation: result += (input + offset) * filter
+ *
+ * inputs type: int8_t, output: int8_t
+ * input offsets: although int32_t, they are contained in 8 bits [-128, 127]
+ */
+void esp_nn_conv_s8_opt(const data_dims_t *input_dims,
+ const int8_t *input_data,
+ const data_dims_t *filter_dims,
+ const int8_t *filter_data,
+ const int32_t *bias,
+ const data_dims_t *output_dims,
+ int8_t *out_data,
+ const conv_params_t *conv_params,
+ const quant_data_t *quant_data);
+
+/**
+ * @brief depthwise convolution per channel optimized version
+ *
+ * @note inputs type: int8_t, output: int8_t
+ * Version used in tflite is per channel.
+ * This version follows the same footsprints.
+ * Meaning, it has per out_channel shift and multiplier for
+ * requantization
+ *
+ * optimization notes: Though input_offset is int32 type,
+ * offset values are contained in 8 bits [-128, 127]
+ */
+void esp_nn_depthwise_conv_s8_opt(const data_dims_t *input_dims,
+ const int8_t *input_data,
+ const data_dims_t *filter_dims,
+ const int8_t *filter_data,
+ const int32_t *bias,
+ const data_dims_t *output_dims,
+ int8_t *out_data,
+ const dw_conv_params_t *conv_params,
+ const quant_data_t *quant_data);
+
+int esp_nn_get_conv_scratch_size_opt(const data_dims_t *input_dims,
+ const data_dims_t *filter_dims,
+ const data_dims_t *output_dims,
+ const conv_params_t *conv_params);
+void esp_nn_set_conv_scratch_buf_opt(const void *buf);
+
+int esp_nn_get_depthwise_conv_scratch_size_opt(const data_dims_t *input_dims,
+ const data_dims_t *filter_dims,
+ const data_dims_t *output_dims,
+ const dw_conv_params_t *conv_params);
+void esp_nn_set_depthwise_conv_scratch_buf_opt(const void *buf);
+
+/* ANSI C function to be hooked up when optimised version needed */
+void esp_nn_set_softmax_scratch_buf_opt(void *buffer);
+
/**
* @brief optimised version of softmax function
*
diff --git a/code/components/esp-nn/include/esp_nn_defs.h b/code/components/esp-nn/include/esp_nn_defs.h
new file mode 100644
index 00000000..756d8e6f
--- /dev/null
+++ b/code/components/esp-nn/include/esp_nn_defs.h
@@ -0,0 +1,83 @@
+// Copyright 2022 Espressif Systems (Shanghai) PTE LTD
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#pragma once
+
+#include
+
+/**
+ * @brief structure to club data dims
+ * this structure can be used for input, output and filter
+ */
+typedef struct data_dims {
+ int32_t width;
+ int32_t height;
+ int32_t channels;
+
+ int32_t extra; // can be used as batch or any other param
+} data_dims_t;
+
+/**
+ * @brief 2d data structure (width, height)
+ *
+ */
+typedef struct data_2d {
+ int32_t width;
+ int32_t height;
+} data_2d_t;
+
+/**
+ * @brief min/max activation
+ */
+typedef struct act_params {
+ int32_t min;
+ int32_t max;
+} act_params_t;
+
+/**
+ * @brief per channel quant data
+ *
+ * @note number of shift and mult elements are equal to output channels
+ */
+typedef struct quant_data {
+ int32_t *shift;
+ int32_t *mult;
+} quant_data_t;
+
+/**
+ * @brief params specific to convolution 2d
+ *
+ */
+typedef struct conv_params {
+ int32_t in_offset;
+ int32_t out_offset;
+ data_2d_t stride;
+ data_2d_t padding;
+ data_2d_t dilation;
+ act_params_t activation;
+} conv_params_t;
+
+/**
+ * @brief params specific to depthwise convolution 2d
+ *
+ */
+typedef struct dw_conv_params {
+ int32_t in_offset;
+ int32_t out_offset;
+ int32_t ch_mult; // channel multiplier. (in_ch * ch_mult = out_ch)
+ data_2d_t stride;
+ data_2d_t padding;
+ data_2d_t dilation;
+ act_params_t activation;
+} dw_conv_params_t;
diff --git a/code/components/esp-nn/include/esp_nn_esp32s3.h b/code/components/esp-nn/include/esp_nn_esp32s3.h
index 58b544e4..0f52c943 100644
--- a/code/components/esp-nn/include/esp_nn_esp32s3.h
+++ b/code/components/esp-nn/include/esp_nn_esp32s3.h
@@ -19,7 +19,7 @@
#pragma once
-#include
+#include "esp_nn_defs.h"
#include "esp_nn_ansi_headers.h"
/************************** Basic math functions *****************************/
@@ -85,28 +85,15 @@ void esp_nn_mul_elementwise_s8_esp32s3(const int8_t *input1_data,
* optimization notes: Though input_offset is int32 type,
* offset values are contained in 8 bits [-128, 127]
*/
-void esp_nn_depthwise_conv_s8_esp32s3(const int8_t *input_data,
- const uint16_t input_wd,
- const uint16_t input_ht,
- const uint16_t channels,
- const int32_t input_offset,
- const uint16_t pad_wd,
- const uint16_t pad_ht,
- const uint16_t stride_wd,
- const uint16_t stride_ht,
- const uint16_t ch_mult,
+void esp_nn_depthwise_conv_s8_esp32s3(const data_dims_t *input_dims,
+ const int8_t *input_data,
+ const data_dims_t *filter_dims,
const int8_t *filter_data,
- const uint16_t filter_wd,
- const uint16_t filter_ht,
const int32_t *bias,
- int8_t *out_data,
- const uint16_t out_wd,
- const uint16_t out_ht,
- const int32_t out_offset,
- const int32_t *out_shift,
- const int32_t *out_mult,
- const int32_t activation_min,
- const int32_t activation_max);
+ const data_dims_t *output_dims,
+ int8_t *output_data,
+ const dw_conv_params_t *conv_params,
+ const quant_data_t *quant_data);
/**
* @brief 2d - convolution channelwise
@@ -116,43 +103,26 @@ void esp_nn_depthwise_conv_s8_esp32s3(const int8_t *input_data,
* inputs type: int8_t, output: int8_t
* input offsets: although int32_t, they are contained in 8 bits [-128, 127]
*/
-void esp_nn_conv_s8_esp32s3(const int8_t *input_data,
- const uint16_t input_wd,
- const uint16_t input_ht,
- const uint16_t in_channels,
- const int32_t input_offset,
- const uint16_t pad_wd,
- const uint16_t pad_ht,
- const uint16_t stride_wd,
- const uint16_t stride_ht,
+void esp_nn_conv_s8_esp32s3(const data_dims_t *input_dims,
+ const int8_t *input_data,
+ const data_dims_t *filter_dims,
const int8_t *filter_data,
- const uint16_t filter_wd,
- const uint16_t filter_ht,
const int32_t *bias,
- int8_t *out_data,
- const uint16_t out_wd,
- const uint16_t out_ht,
- const uint16_t out_channels,
- const int32_t out_offset,
- const int32_t *out_shift,
- const int32_t *out_mult,
- const int32_t activation_min,
- const int32_t activation_max);
+ const data_dims_t *output_dims,
+ int8_t *output_data,
+ const conv_params_t *conv_params,
+ const quant_data_t *quant_data);
-int esp_nn_get_conv_scratch_size_esp32s3(const uint16_t input_wd,
- const uint16_t input_ht,
- const uint16_t in_ch,
- const uint16_t out_ch,
- const uint16_t filter_wd,
- const uint16_t filter_ht);
+int esp_nn_get_conv_scratch_size_esp32s3(const data_dims_t *input_dims,
+ const data_dims_t *filter_dims,
+ const data_dims_t *output_dims,
+ const conv_params_t *conv_params);
void esp_nn_set_conv_scratch_buf_esp32s3(const void *buf);
-int esp_nn_get_depthwise_conv_scratch_size_esp32s3(const uint16_t input_wd,
- const uint16_t input_ht,
- const uint16_t channels,
- const uint16_t ch_mult,
- const uint16_t filter_wd,
- const uint16_t filter_ht);
+int esp_nn_get_depthwise_conv_scratch_size_esp32s3(const data_dims_t *input_dims,
+ const data_dims_t *filter_dims,
+ const data_dims_t *output_dims,
+ const dw_conv_params_t *conv_params);
void esp_nn_set_depthwise_conv_scratch_buf_esp32s3(const void *buf);
/************************** Pooling functions *****************************/
diff --git a/code/components/esp-nn/include/esp_nn_esp32.h b/code/components/esp-nn/include/esp_nn_generic_opt.h
similarity index 77%
rename from code/components/esp-nn/include/esp_nn_esp32.h
rename to code/components/esp-nn/include/esp_nn_generic_opt.h
index 03fd8216..136cba5d 100644
--- a/code/components/esp-nn/include/esp_nn_esp32.h
+++ b/code/components/esp-nn/include/esp_nn_generic_opt.h
@@ -13,28 +13,27 @@
// limitations under the License.
/**
- * @file Header definitions to include for esp_nn optimized functions for
- * the ESP32 platform.
- * We are hooking up just the C versions for now.
- * The file hence is exactly same as `esp_nn_ansi_c.h`
+ * @file Header definitions to include for esp_nn generic optimisations
+ * For functions which not having optimisations, _ansi versions are picked.
*/
#pragma once
+#include "esp_nn_defs.h"
#include "esp_nn_ansi_headers.h"
#define esp_nn_add_elementwise_s8 esp_nn_add_elementwise_s8_ansi
#define esp_nn_mul_elementwise_s8 esp_nn_mul_elementwise_s8_ansi
-#define esp_nn_depthwise_conv_s8 esp_nn_depthwise_conv_s8_ansi
+#define esp_nn_depthwise_conv_s8 esp_nn_depthwise_conv_s8_opt
-#define esp_nn_conv_s8 esp_nn_conv_s8_ansi
+#define esp_nn_conv_s8 esp_nn_conv_s8_opt
-#define esp_nn_get_conv_scratch_size esp_nn_get_conv_scratch_size_ansi
-#define esp_nn_set_conv_scratch_buf esp_nn_set_conv_scratch_buf_ansi
+#define esp_nn_get_conv_scratch_size esp_nn_get_conv_scratch_size_opt
+#define esp_nn_set_conv_scratch_buf esp_nn_set_conv_scratch_buf_opt
-#define esp_nn_get_depthwise_conv_scratch_size esp_nn_get_depthwise_conv_scratch_size_ansi
-#define esp_nn_set_depthwise_conv_scratch_buf esp_nn_set_depthwise_conv_scratch_buf_ansi
+#define esp_nn_get_depthwise_conv_scratch_size esp_nn_get_depthwise_conv_scratch_size_opt
+#define esp_nn_set_depthwise_conv_scratch_buf esp_nn_set_depthwise_conv_scratch_buf_opt
#define esp_nn_relu6_s8 esp_nn_relu6_s8_ansi
diff --git a/code/components/esp-nn/src/common/common_functions.h b/code/components/esp-nn/src/common/common_functions.h
index 9a5f0dcc..0a74eca4 100644
--- a/code/components/esp-nn/src/common/common_functions.h
+++ b/code/components/esp-nn/src/common/common_functions.h
@@ -41,15 +41,39 @@
__NN_FORCE_INLINE__ int32_t esp_nn_clz32(uint32_t in)
{
+#if CONFIG_IDF_TARGET_ARCH_XTENSA
__asm__ volatile("nsau %0, %0" : "+r" (in));
return in;
-}
-
-__NN_FORCE_INLINE__ int32_t esp_nn_pick_sat_high32_of64(int64_t val64)
-{
- int32_t sign = (int32_t) (val64 >> 63);
- int32_t to_add = sign & ((1ul << 31) - 1);
- return (int32_t) ((int64_t) (val64 + to_add) >> 31);
+#elif defined(__GNUC__)
+ return __builtin_clz(in);
+#else
+ int32_t count = 32;
+ uint32_t x = in, y = in >> 16;
+ if (y != 0) {
+ count -= 16;
+ x = y;
+ }
+ y = x >> 8;
+ if (y != 0) {
+ count -= 8;
+ x = y;
+ }
+ y = x >> 4;
+ if (y != 0) {
+ count -= 4;
+ x = y;
+ }
+ y = x >> 2;
+ if (y != 0) {
+ count -= 2;
+ x = y;
+ }
+ y = x >> 1;
+ if (y != 0) {
+ return count - 2;
+ }
+ return count - x;
+#endif
}
/**
@@ -57,8 +81,19 @@ __NN_FORCE_INLINE__ int32_t esp_nn_pick_sat_high32_of64(int64_t val64)
*/
__NN_FORCE_INLINE__ int32_t esp_nn_saturate8(int32_t in)
{
+#if CONFIG_IDF_TARGET_ARCH_XTENSA
__asm__ volatile("clamps %0, %0, 7" : "+a"(in));
return in;
+#else
+ return max(INT8_MIN, min(in, INT8_MAX));
+#endif
+}
+
+__NN_FORCE_INLINE__ int32_t esp_nn_pick_sat_high32_of64(int64_t val64)
+{
+ int32_t sign = (int32_t) (val64 >> 63);
+ int32_t to_add = sign & ((1ul << 31) - 1);
+ return (int32_t) ((int64_t) (val64 + to_add) >> 31);
}
__NN_FORCE_INLINE__ int32_t esp_nn_sat_round_doubling_high_mul(int32_t in0, int32_t in1)
@@ -144,7 +179,7 @@ static void esp_nn_aligned_s8_pad_with_value(const int8_t *src, int8_t *dst,
const uint16_t pad_ht)
{
/* memset with pad_val */
- memset(dst, pad_val, ((input_wd + 2 * pad_wd) * (input_ht + 2 * pad_ht)) * channels * 2);
+ memset(dst, pad_val, ((input_wd + 2 * pad_wd) * (input_ht + 2 * pad_ht)) * channels);
dst += (pad_wd + input_wd + pad_wd) * channels;
for (int i = 0; i < input_ht; i++) {
@@ -156,7 +191,6 @@ static void esp_nn_aligned_s8_pad_with_value(const int8_t *src, int8_t *dst,
}
}
-#if 0
static void esp_nn_aligned_s8_pad_end_with_value(const int8_t *src, int8_t *dst,
const uint16_t input_wd,
const uint16_t input_ht,
@@ -169,13 +203,16 @@ static void esp_nn_aligned_s8_pad_end_with_value(const int8_t *src, int8_t *dst,
for (int j = 0; j < input_wd * channels; j++) {
*dst++ = *src++;
}
- memset(dst, pad_val, pad_wd * channels);
- dst += pad_wd * channels;
+ if (pad_wd) {
+ memset(dst, pad_val, pad_wd * channels);
+ dst += pad_wd * channels;
+ }
}
/* pad end `pad_ht` lines at end */
- memset(dst, pad_val, (input_wd + pad_wd) * pad_ht * channels);
+ if (pad_ht) {
+ memset(dst, pad_val, (input_wd + pad_wd) * pad_ht * channels);
+ }
}
-#endif
/**
* @brief convert 8 bit input data to 16 bit
diff --git a/code/components/esp-nn/src/convolution/esp_nn_conv_ansi.c b/code/components/esp-nn/src/convolution/esp_nn_conv_ansi.c
index d04f78e1..677c0ad8 100644
--- a/code/components/esp-nn/src/convolution/esp_nn_conv_ansi.c
+++ b/code/components/esp-nn/src/convolution/esp_nn_conv_ansi.c
@@ -12,16 +12,14 @@
// See the License for the specific language governing permissions and
// limitations under the License.
-#include
+#include
#include
-int esp_nn_get_conv_scratch_size_ansi(const uint16_t input_wd,
- const uint16_t input_ht,
- const uint16_t in_ch,
- const uint16_t out_ch,
- const uint16_t filter_wd,
- const uint16_t filter_ht)
+int esp_nn_get_conv_scratch_size_ansi(const data_dims_t *input_dims,
+ const data_dims_t *filter_dims,
+ const data_dims_t *output_dims,
+ const conv_params_t *conv_params)
{
return 0;
}
@@ -108,29 +106,35 @@ void esp_nn_conv_u8_ansi(const uint8_t *input_data,
* Assumption 2: Pointers are valid
* Assumption 3: dialation width = 1
*/
-void esp_nn_conv_s8_ansi(const int8_t *input_data,
- const uint16_t input_wd,
- const uint16_t input_ht,
- const uint16_t in_channels,
- const int32_t input_offset,
- const uint16_t pad_wd,
- const uint16_t pad_ht,
- const uint16_t stride_wd,
- const uint16_t stride_ht,
+void esp_nn_conv_s8_ansi(const data_dims_t *input_dims,
+ const int8_t *input_data,
+ const data_dims_t *filter_dims,
const int8_t *filter_data,
- const uint16_t filter_wd,
- const uint16_t filter_ht,
const int32_t *bias,
+ const data_dims_t *output_dims,
int8_t *out_data,
- const uint16_t out_wd,
- const uint16_t out_ht,
- const uint16_t out_channels,
- const int32_t out_offset,
- const int32_t *out_shift,
- const int32_t *out_mult,
- const int32_t activation_min,
- const int32_t activation_max)
+ const conv_params_t *conv_params,
+ const quant_data_t *quant_data)
{
+ const uint16_t input_wd = input_dims->width;
+ const uint16_t input_ht = input_dims->height;
+ const uint16_t in_channels = input_dims->channels;
+ const int32_t input_offset = conv_params->in_offset;
+ const int32_t out_offset = conv_params->out_offset;
+ const uint16_t pad_wd = conv_params->padding.width;
+ const uint16_t pad_ht = conv_params->padding.height;
+ const uint16_t stride_wd = conv_params->stride.width;
+ const uint16_t stride_ht = conv_params->stride.height;
+ const uint16_t filter_wd = filter_dims->width;
+ const uint16_t filter_ht = filter_dims->height;
+ const uint16_t out_wd = output_dims->width;
+ const uint16_t out_ht = output_dims->height;
+ const uint16_t out_channels = output_dims->channels;
+ const int32_t *out_shift = quant_data->shift;
+ const int32_t *out_mult = quant_data->mult;
+ const int32_t activation_min = conv_params->activation.min;
+ const int32_t activation_max = conv_params->activation.max;
+
int32_t out_ch_idx, out_y, out_x, in_ch_idx, filter_y_idx, filter_x_idx;
for (out_y = 0; out_y < out_ht; out_y++) {
diff --git a/code/components/esp-nn/src/convolution/esp_nn_conv_esp32s3.c b/code/components/esp-nn/src/convolution/esp_nn_conv_esp32s3.c
index ea8fdfa5..e13129b2 100644
--- a/code/components/esp-nn/src/convolution/esp_nn_conv_esp32s3.c
+++ b/code/components/esp-nn/src/convolution/esp_nn_conv_esp32s3.c
@@ -12,30 +12,30 @@
// See the License for the specific language governing permissions and
// limitations under the License.
-#include
#include
+#include
#include
static int16_t *scratch_buffer = NULL;
-extern void esp_nn_conv_s16_mult8_1x1_esp32s3(const int8_t *input_data,
- const uint16_t input_wd,
- const uint16_t input_ht,
- const uint16_t in_channels,
- const int32_t input_offset,
- const int16_t *filter_data,
- const int32_t *bias,
- int8_t *out_data,
- const uint16_t out_wd,
- const uint16_t out_ht,
- const uint16_t out_channels,
- const int32_t out_offset,
- const int32_t *out_shift,
- const int32_t *out_mult,
- const int32_t activation_min,
- const int32_t activation_max,
- void *buffer /* scratch buffer */);
+extern void esp_nn_conv_s8_mult8_1x1_esp32s3(const int8_t *input_data,
+ const uint16_t input_wd,
+ const uint16_t input_ht,
+ const uint16_t in_channels,
+ const int32_t input_offset,
+ const int8_t *filter_aligned,
+ const int32_t *bias,
+ int8_t *out_data,
+ const uint16_t out_wd,
+ const uint16_t out_ht,
+ const uint16_t out_channels,
+ const int32_t out_offset,
+ const int32_t *out_shift,
+ const int32_t *out_mult,
+ const int32_t activation_min,
+ const int32_t activation_max,
+ void *buffer /* scratch buffer */);
extern void esp_nn_conv_s16_mult4_1x1_esp32s3(const int16_t *input_data,
const uint16_t input_wd,
@@ -81,34 +81,40 @@ extern void esp_nn_aligned_s8_to_s16_with_offset_esp32s3(const int8_t *src, int1
extern void esp_nn_s8_to_s16_esp32s3(const int8_t *src, int16_t *dst, const int size);
-static void esp_nn_conv_s8_unrolled(const int8_t *input_data,
- const uint16_t input_wd,
- const uint16_t input_ht,
- const uint16_t in_channels,
- const int32_t input_offset,
- const uint16_t pad_wd,
- const uint16_t pad_ht,
- const uint16_t stride_wd,
- const uint16_t stride_ht,
+static void esp_nn_conv_s8_unrolled(const data_dims_t *input_dims,
+ const int8_t *input_data,
+ const data_dims_t *filter_dims,
const int8_t *filter_data,
- const uint16_t filter_wd,
- const uint16_t filter_ht,
const int32_t *bias,
+ const data_dims_t *output_dims,
int8_t *out_data,
- const uint16_t out_wd,
- const uint16_t out_ht,
- const uint16_t out_channels,
- const int32_t out_offset,
- const int32_t *out_shift,
- const int32_t *out_mult,
- const int32_t activation_min,
- const int32_t activation_max)
+ const conv_params_t *conv_params,
+ const quant_data_t *quant_data)
{
+ const uint16_t input_wd = input_dims->width;
+ const uint16_t input_ht = input_dims->height;
+ const uint16_t in_ch = input_dims->channels;
+ const int32_t input_offset = conv_params->in_offset;
+ const int32_t out_offset = conv_params->out_offset;
+ const uint16_t pad_wd = conv_params->padding.width;
+ const uint16_t pad_ht = conv_params->padding.height;
+ const uint16_t stride_wd = conv_params->stride.width;
+ const uint16_t stride_ht = conv_params->stride.height;
+ const uint16_t filter_wd = filter_dims->width;
+ const uint16_t filter_ht = filter_dims->height;
+ const uint16_t out_wd = output_dims->width;
+ const uint16_t out_ht = output_dims->height;
+ const uint16_t out_ch = output_dims->channels;
+ const int32_t *out_shift = quant_data->shift;
+ const int32_t *out_mult = quant_data->mult;
+ const int32_t activation_min = conv_params->activation.min;
+ const int32_t activation_max = conv_params->activation.max;
+
int32_t out_ch_idx, out_y, out_x, in_ch_idx, filter_y_idx, filter_x_idx;
for (out_y = 0; out_y < out_ht; out_y++) {
for (out_x = 0; out_x < out_wd; out_x++) {
- for (out_ch_idx = 0; out_ch_idx < out_channels; out_ch_idx++) {
+ for (out_ch_idx = 0; out_ch_idx < out_ch; out_ch_idx++) {
int32_t conv_out = 0;
const int32_t base_y = stride_ht * out_y - pad_ht;
@@ -124,10 +130,10 @@ static void esp_nn_conv_s8_unrolled(const int8_t *input_data,
for (filter_x_idx = filter_x_start; filter_x_idx < filter_x_end; filter_x_idx++) {
const int32_t in_row = base_y + filter_y_idx;
const int32_t in_col = base_x + filter_x_idx;
- int32_t input_base_offset = (in_row * input_wd + in_col) * in_channels;
- int32_t filter_base_offset = out_ch_idx * in_channels * filter_ht * filter_wd +
- (filter_y_idx * filter_wd + filter_x_idx) * in_channels;
- for (in_ch_idx = 0; in_ch_idx < in_channels; in_ch_idx++) {
+ int32_t input_base_offset = (in_row * input_wd + in_col) * in_ch;
+ int32_t filter_base_offset = out_ch_idx * in_ch * filter_ht * filter_wd +
+ (filter_y_idx * filter_wd + filter_x_idx) * in_ch;
+ for (in_ch_idx = 0; in_ch_idx < in_ch; in_ch_idx++) {
conv_out +=
(input_data[input_base_offset + in_ch_idx] + input_offset) *
filter_data[filter_base_offset + in_ch_idx];
@@ -332,18 +338,35 @@ static void esp_nn_conv_s8_pad_valid_ch3_3x3(const int8_t *input_data,
}
}
-int esp_nn_get_conv_scratch_size_esp32s3(const uint16_t input_wd,
- const uint16_t input_ht,
- const uint16_t in_ch,
- const uint16_t out_ch,
- const uint16_t filter_wd,
- const uint16_t filter_ht)
+int esp_nn_get_conv_scratch_size_esp32s3(const data_dims_t *input_dims,
+ const data_dims_t *filter_dims,
+ const data_dims_t *output_dims,
+ const conv_params_t *conv_params)
{
+ const uint16_t input_wd = input_dims->width;
+ const uint16_t input_ht = input_dims->height;
+ const uint16_t in_ch = input_dims->channels;
+ const uint16_t filter_wd = filter_dims->width;
+ const uint16_t filter_ht = filter_dims->height;
+ const uint16_t out_ch = output_dims->channels;
+ const uint16_t pad_wd = conv_params->padding.width;
+ const uint16_t pad_ht = conv_params->padding.height;
+ const uint16_t stride_wd = conv_params->stride.width;
+ const uint16_t stride_ht = conv_params->stride.height;
+
int filter_size = filter_wd * filter_ht * in_ch * out_ch;
int input_size = input_wd * input_ht * in_ch;
- int transpose_buf_size = 8 * in_ch; /* to store intermediate data */
+
+ int transpose_buf_size = 2 * (8 * in_ch); /* to store intermediate data */
+ if (input_wd * input_ht < 8) {
+ transpose_buf_size = 0; // not using this for leftover
+ }
int align_buf_size = 32; /* extra buffer for alignment */
- return 2 * (filter_size + input_size + transpose_buf_size) + align_buf_size;
+ if (in_ch % 8 == 0 && filter_wd == 1 && filter_ht == 1 &&
+ pad_wd == 0 && pad_ht == 0 && stride_wd == 1 && stride_ht == 1) {
+ return filter_size + transpose_buf_size + align_buf_size;
+ }
+ return 2 * (filter_size + input_size) + transpose_buf_size + align_buf_size;
}
void esp_nn_set_conv_scratch_buf_esp32s3(void *buf)
@@ -351,29 +374,35 @@ void esp_nn_set_conv_scratch_buf_esp32s3(void *buf)
scratch_buffer = (int16_t *) buf;
}
-void esp_nn_conv_s8_esp32s3(const int8_t *input,
- const uint16_t input_wd,
- const uint16_t input_ht,
- const uint16_t channels,
- const int32_t input_offset,
- const uint16_t pad_wd,
- const uint16_t pad_ht,
- const uint16_t stride_wd,
- const uint16_t stride_ht,
+void esp_nn_conv_s8_esp32s3(const data_dims_t *input_dims,
+ const int8_t *input,
+ const data_dims_t *filter_dims,
const int8_t *filter_data,
- const uint16_t filter_wd,
- const uint16_t filter_ht,
const int32_t *bias,
+ const data_dims_t *output_dims,
int8_t *out_data,
- const uint16_t out_wd,
- const uint16_t out_ht,
- const uint16_t out_channels,
- const int32_t out_offset,
- const int32_t *out_shift,
- const int32_t *out_mult,
- const int32_t activation_min,
- const int32_t activation_max)
+ const conv_params_t *conv_params,
+ const quant_data_t *quant_data)
{
+ const uint16_t input_wd = input_dims->width;
+ const uint16_t input_ht = input_dims->height;
+ const uint16_t channels = input_dims->channels;
+ const int32_t input_offset = conv_params->in_offset;
+ const int32_t out_offset = conv_params->out_offset;
+ const uint16_t pad_wd = conv_params->padding.width;
+ const uint16_t pad_ht = conv_params->padding.height;
+ const uint16_t stride_wd = conv_params->stride.width;
+ const uint16_t stride_ht = conv_params->stride.height;
+ const uint16_t filter_wd = filter_dims->width;
+ const uint16_t filter_ht = filter_dims->height;
+ const uint16_t out_wd = output_dims->width;
+ const uint16_t out_ht = output_dims->height;
+ const uint16_t out_channels = output_dims->channels;
+ const int32_t *out_shift = quant_data->shift;
+ const int32_t *out_mult = quant_data->mult;
+ const int32_t activation_min = conv_params->activation.min;
+ const int32_t activation_max = conv_params->activation.max;
+
int filter_size = filter_wd * filter_ht * channels * out_channels;
int input_size = input_wd * input_ht * channels;
int align_len = 16 - (filter_size & 15);
@@ -387,15 +416,16 @@ void esp_nn_conv_s8_esp32s3(const int8_t *input,
if (channels % 8 == 0 && filter_wd == 1 && filter_ht == 1 &&
pad_wd == 0 && pad_ht == 0 && stride_wd == 1 && stride_ht == 1) {
- int scratch_offset = (int) (filter_data16 + filter_size);
+ int8_t *filter_aligned = (int8_t *) scratch_buffer;
+ int scratch_offset = (int) (filter_aligned + filter_size);
void *scratch_buf = (void *) (scratch_offset + 16 - (scratch_offset & 15));
- esp_nn_s8_to_s16_esp32s3(filter_data, filter_data16, filter_size);
- esp_nn_conv_s16_mult8_1x1_esp32s3(
- input, input_wd, input_ht, channels, input_offset, filter_data16,
+ memcpy(filter_aligned, filter_data, filter_size); // copy to aligned address
+ esp_nn_conv_s8_mult8_1x1_esp32s3(
+ input, input_wd, input_ht, channels, input_offset, filter_aligned,
bias, out_data, out_wd, out_ht, out_channels, out_offset,
out_shift, out_mult, activation_min, activation_max, scratch_buf);
} else if (channels % 4 == 0 && filter_wd == 1 && filter_ht == 1 &&
- (input_wd * input_ht) % 16 == 0 && /* TODO: remove this check */
+ (input_wd * input_ht) % 4 == 0 && /* TODO: remove this check */
pad_wd == 0 && pad_ht == 0 && stride_wd == 1 && stride_ht == 1) {
int scratch_offset = (int) (input_data16 + input_size);
void *scratch_buf = (void *) (scratch_offset + 16 - (scratch_offset & 15));
@@ -427,10 +457,7 @@ void esp_nn_conv_s8_esp32s3(const int8_t *input,
}
} else {
/* Basic unrolled version */
- esp_nn_conv_s8_unrolled(input, input_wd, input_ht, channels, input_offset,
- pad_wd, pad_ht, stride_wd, stride_ht,
- filter_data, filter_wd, filter_ht, bias,
- out_data, out_wd, out_ht, out_channels, out_offset, out_shift,
- out_mult, activation_min, activation_max);
+ esp_nn_conv_s8_unrolled(input_dims, input, filter_dims, filter_data,
+ bias, output_dims, out_data, conv_params, quant_data);
}
}
diff --git a/code/components/esp-nn/src/convolution/esp_nn_conv_opt.c b/code/components/esp-nn/src/convolution/esp_nn_conv_opt.c
new file mode 100644
index 00000000..be96430e
--- /dev/null
+++ b/code/components/esp-nn/src/convolution/esp_nn_conv_opt.c
@@ -0,0 +1,179 @@
+// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include
+
+#include
+
+int esp_nn_get_conv_scratch_size_opt(const data_dims_t *input_dims,
+ const data_dims_t *filter_dims,
+ const data_dims_t *output_dims,
+ const conv_params_t *conv_params)
+{
+ return 0;
+}
+
+void esp_nn_set_conv_scratch_buf_opt(const void *buf)
+{
+
+}
+
+__attribute__ ((noinline))
+static void esp_nn_conv_s8_1x1(const data_dims_t *input_dims,
+ const int8_t *input_data,
+ const int8_t *filter_data,
+ const int32_t *bias,
+ const data_dims_t *output_dims,
+ int8_t *out_data,
+ const conv_params_t *conv_params,
+ const quant_data_t *quant_data)
+{
+ const uint16_t input_wd = input_dims->width;
+ const uint16_t in_channels = input_dims->channels;
+ const int32_t input_offset = conv_params->in_offset;
+ const int32_t out_offset = conv_params->out_offset;
+ const uint16_t stride_wd = conv_params->stride.width;
+ const uint16_t stride_ht = conv_params->stride.height;
+ const uint16_t out_wd = output_dims->width;
+ const uint16_t out_ht = output_dims->height;
+ const uint16_t out_channels = output_dims->channels;
+ const int32_t activation_min = conv_params->activation.min;
+ const int32_t activation_max = conv_params->activation.max;
+
+ for (int32_t in_row = 0; in_row < out_ht * stride_ht; in_row += stride_ht) {
+ for (int32_t in_col = 0; in_col < out_wd * stride_wd; in_col += stride_wd) {
+ const int32_t *out_mult = quant_data->mult;
+ const int32_t *out_shift = quant_data->shift;
+ const int8_t *filter_ptr = filter_data;
+ const int8_t *input_base_ptr = input_data + (in_row * input_wd + in_col) * in_channels;
+ int32_t out_ch_idx = 0;
+ for (; out_ch_idx < out_channels; out_ch_idx++) {
+ int32_t conv_out = 0;
+
+ const int8_t *input_ptr = input_base_ptr;
+
+ int32_t in_ch_idx = 0;
+ for (; in_ch_idx < in_channels - 3; in_ch_idx += 4) {
+ conv_out += (*input_ptr++ + input_offset) * *filter_ptr++;
+ conv_out += (*input_ptr++ + input_offset) * *filter_ptr++;
+ conv_out += (*input_ptr++ + input_offset) * *filter_ptr++;
+ conv_out += (*input_ptr++ + input_offset) * *filter_ptr++;
+ }
+ for (; in_ch_idx < in_channels; in_ch_idx ++) {
+ conv_out += (*input_ptr++ + input_offset) * *filter_ptr++;
+ }
+ if (bias) {
+ conv_out += bias[out_ch_idx];
+ }
+ conv_out = esp_nn_multiply_by_quantized_mult_fast(conv_out, *out_mult++, *out_shift++);
+ conv_out += out_offset;
+ conv_out = max(conv_out, activation_min);
+ conv_out = min(conv_out, activation_max);
+ *out_data++ = (int8_t) conv_out;
+ }
+ }
+ }
+}
+
+/**
+ * Assumption 1: i/p channels == o/p channels
+ * Assumption 2: Pointers are valid
+ * Assumption 3: dialation width = 1
+ */
+void esp_nn_conv_s8_opt(const data_dims_t *input_dims,
+ const int8_t *input_data,
+ const data_dims_t *filter_dims,
+ const int8_t *filter_data,
+ const int32_t *bias,
+ const data_dims_t *output_dims,
+ int8_t *out_data,
+ const conv_params_t *conv_params,
+ const quant_data_t *quant_data)
+{
+ const uint16_t filter_wd = filter_dims->width;
+ const uint16_t filter_ht = filter_dims->height;
+
+ if (filter_wd == 1 && filter_ht == 1) {
+ esp_nn_conv_s8_1x1(input_dims, input_data, filter_data, bias,
+ output_dims, out_data, conv_params, quant_data);
+ return;
+ }
+
+ const uint16_t input_wd = input_dims->width;
+ const uint16_t input_ht = input_dims->height;
+ const uint16_t in_channels = input_dims->channels;
+ const int32_t input_offset = conv_params->in_offset;
+ const int32_t out_offset = conv_params->out_offset;
+ const uint16_t pad_wd = conv_params->padding.width;
+ const uint16_t pad_ht = conv_params->padding.height;
+ const uint16_t stride_wd = conv_params->stride.width;
+ const uint16_t stride_ht = conv_params->stride.height;
+ const uint16_t out_wd = output_dims->width;
+ const uint16_t out_ht = output_dims->height;
+ const uint16_t out_channels = output_dims->channels;
+ const int32_t activation_min = conv_params->activation.min;
+ const int32_t activation_max = conv_params->activation.max;
+
+ int32_t out_ch_idx, out_y, out_x, filter_y_idx, filter_x_idx;
+
+ for (out_y = 0; out_y < out_ht; out_y++) {
+ for (out_x = 0; out_x < out_wd; out_x++) {
+ const int32_t *out_shift = quant_data->shift;
+ const int32_t *out_mult = quant_data->mult;
+ for (out_ch_idx = 0; out_ch_idx < out_channels; out_ch_idx++) {
+ int32_t conv_out = 0;
+
+ const int32_t base_y = stride_ht * out_y - pad_ht;
+ const int32_t base_x = stride_wd * out_x - pad_wd;
+
+ const int32_t filter_y_start = max(0, -base_y);
+ const int32_t filter_x_start = max(0, -base_x);
+
+ const int32_t filter_y_end = min(filter_ht, input_ht - base_y);
+ const int32_t filter_x_end = min(filter_wd, input_wd - base_x);
+
+ for (filter_y_idx = filter_y_start; filter_y_idx < filter_y_end; filter_y_idx++) {
+ for (filter_x_idx = filter_x_start; filter_x_idx < filter_x_end; filter_x_idx++) {
+ const int32_t in_row = base_y + filter_y_idx;
+ const int32_t in_col = base_x + filter_x_idx;
+
+ const int8_t *input_ptr = input_data +
+ (in_row * input_wd + in_col) * in_channels;
+ const int8_t *filter_ptr = filter_data +
+ out_ch_idx * in_channels * filter_ht * filter_wd +
+ (filter_y_idx * filter_wd + filter_x_idx) * in_channels;
+ int32_t in_ch_idx = 0;
+ for (; in_ch_idx < in_channels - 3; in_ch_idx += 4) {
+ conv_out += (*input_ptr++ + input_offset) * *filter_ptr++;
+ conv_out += (*input_ptr++ + input_offset) * *filter_ptr++;
+ conv_out += (*input_ptr++ + input_offset) * *filter_ptr++;
+ conv_out += (*input_ptr++ + input_offset) * *filter_ptr++;
+ }
+ for (; in_ch_idx < in_channels; in_ch_idx ++) {
+ conv_out += (*input_ptr++ + input_offset) * *filter_ptr++;
+ }
+ }
+ }
+ if (bias) {
+ conv_out += bias[out_ch_idx];
+ }
+ conv_out = esp_nn_multiply_by_quantized_mult_fast(conv_out, *out_mult++, *out_shift++);
+ conv_out += out_offset;
+ conv_out = max(conv_out, activation_min);
+ conv_out = min(conv_out, activation_max);
+ *out_data++ = (int8_t) conv_out;
+ }
+ }
+ }
+}
diff --git a/code/components/esp-nn/src/convolution/esp_nn_depthwise_conv_ansi.c b/code/components/esp-nn/src/convolution/esp_nn_depthwise_conv_ansi.c
index 9cac6cef..1cd02e0f 100644
--- a/code/components/esp-nn/src/convolution/esp_nn_depthwise_conv_ansi.c
+++ b/code/components/esp-nn/src/convolution/esp_nn_depthwise_conv_ansi.c
@@ -12,16 +12,13 @@
// See the License for the specific language governing permissions and
// limitations under the License.
-#include
-
+#include
#include
-int esp_nn_get_depthwise_conv_scratch_size_ansi(const uint16_t input_wd,
- const uint16_t input_ht,
- const uint16_t channels,
- const uint16_t ch_mult,
- const uint16_t filter_wd,
- const uint16_t filter_ht)
+int esp_nn_get_depthwise_conv_scratch_size_ansi(const data_dims_t *input_dims,
+ const data_dims_t *filter_dims,
+ const data_dims_t *output_dims,
+ const dw_conv_params_t *conv_params)
{
return 0;
}
@@ -31,29 +28,35 @@ void esp_nn_set_depthwise_conv_scratch_buf_ansi(const void *buf)
}
-void esp_nn_depthwise_conv_s8_ansi(const int8_t *input_data,
- const uint16_t input_wd,
- const uint16_t input_ht,
- const uint16_t channels,
- const int32_t input_offset,
- const uint16_t pad_wd,
- const uint16_t pad_ht,
- const uint16_t stride_wd,
- const uint16_t stride_ht,
- const uint16_t ch_mult,
+void esp_nn_depthwise_conv_s8_ansi(const data_dims_t *input_dims,
+ const int8_t *input_data,
+ const data_dims_t *filter_dims,
const int8_t *filter_data,
- const uint16_t filter_wd,
- const uint16_t filter_ht,
const int32_t *bias,
+ const data_dims_t *output_dims,
int8_t *out_data,
- const uint16_t out_wd,
- const uint16_t out_ht,
- const int32_t out_offset,
- const int32_t *out_shift,
- const int32_t *out_mult,
- const int32_t activation_min,
- const int32_t activation_max)
+ const dw_conv_params_t *conv_params,
+ const quant_data_t *quant_data)
{
+ const uint16_t input_wd = input_dims->width;
+ const uint16_t input_ht = input_dims->height;
+ const uint16_t channels = input_dims->channels;
+ const int32_t input_offset = conv_params->in_offset;
+ const int32_t out_offset = conv_params->out_offset;
+ const uint16_t pad_wd = conv_params->padding.width;
+ const uint16_t pad_ht = conv_params->padding.height;
+ const uint16_t stride_wd = conv_params->stride.width;
+ const uint16_t stride_ht = conv_params->stride.height;
+ const uint16_t filter_wd = filter_dims->width;
+ const uint16_t filter_ht = filter_dims->height;
+ const uint16_t out_wd = output_dims->width;
+ const uint16_t out_ht = output_dims->height;
+ const int32_t *out_shift = quant_data->shift;
+ const int32_t *out_mult = quant_data->mult;
+ const int32_t activation_min = conv_params->activation.min;
+ const int32_t activation_max = conv_params->activation.max;
+ const uint16_t ch_mult = conv_params->ch_mult;
+
int out_idx = 0;
for (int out_y = 0; out_y < out_ht; out_y++) { //height loop
const int16_t base_y = (out_y * stride_ht) - pad_ht;
diff --git a/code/components/esp-nn/src/convolution/esp_nn_depthwise_conv_opt.c b/code/components/esp-nn/src/convolution/esp_nn_depthwise_conv_opt.c
new file mode 100644
index 00000000..4afea3f3
--- /dev/null
+++ b/code/components/esp-nn/src/convolution/esp_nn_depthwise_conv_opt.c
@@ -0,0 +1,291 @@
+// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include
+#include
+
+int esp_nn_get_depthwise_conv_scratch_size_opt(const data_dims_t *input_dims,
+ const data_dims_t *filter_dims,
+ const data_dims_t *output_dims,
+ const dw_conv_params_t *conv_params)
+{
+ return 0;
+}
+
+void esp_nn_set_depthwise_conv_scratch_buf_opt(const void *buf)
+{
+
+}
+
+/* common channel multiplier == 1 case */
+__attribute__ ((noinline))
+static void esp_nn_depthwise_conv_s8_ch_mult_1(const data_dims_t *input_dims,
+ const int8_t *input_data,
+ const data_dims_t *filter_dims,
+ const int8_t *filter_data,
+ const int32_t *bias,
+ const data_dims_t *output_dims,
+ int8_t *out_data,
+ const dw_conv_params_t *conv_params,
+ const quant_data_t *quant_data)
+{
+ const uint16_t input_wd = input_dims->width;
+ const uint16_t input_ht = input_dims->height;
+ const uint16_t channels = input_dims->channels;
+ const int32_t input_offset = conv_params->in_offset;
+ const int32_t out_offset = conv_params->out_offset;
+ const uint16_t pad_wd = conv_params->padding.width;
+ const uint16_t pad_ht = conv_params->padding.height;
+ const uint16_t stride_wd = conv_params->stride.width;
+ const uint16_t stride_ht = conv_params->stride.height;
+ const uint16_t filter_wd = filter_dims->width;
+ const uint16_t filter_ht = filter_dims->height;
+ const uint16_t out_wd = output_dims->width;
+ const uint16_t out_ht = output_dims->height;
+ const int32_t activation_min = conv_params->activation.min;
+ const int32_t activation_max = conv_params->activation.max;
+
+ int out_idx = 0;
+ for (int out_y = 0; out_y < out_ht; out_y++) { //height loop
+ const int16_t base_y = (out_y * stride_ht) - pad_ht;
+ for (int out_x = 0; out_x < out_wd; out_x++) { //width_loop
+ const int16_t base_x = (out_x * stride_wd) - pad_wd;
+
+ const int32_t *out_shift = quant_data->shift;
+ const int32_t *out_mult = quant_data->mult;
+
+ /* Select filter so as the point doesn't lie outside block */
+ int filter_y_start = max(0, -base_y);
+ int filter_x_start = max(0, -base_x);
+ int filter_y_end = min(filter_ht, input_ht - base_y);
+ int filter_x_end = min(filter_wd, input_wd - base_x);
+
+ int ch_idx = 0;
+ for (; ch_idx < channels - 3; ch_idx += 4) {//channel_loop
+ int32_t result0 = 0;
+ int32_t result1 = 0;
+ int32_t result2 = 0;
+ int32_t result3 = 0;
+
+ for (int filter_y_idx = filter_y_start; filter_y_idx < filter_y_end; filter_y_idx++) {
+ const int32_t idx_y = base_y + filter_y_idx;
+ for (int filter_x_idx = filter_x_start; filter_x_idx < filter_x_end; filter_x_idx++) {
+ const int32_t idx_x = base_x + filter_x_idx;
+ int32_t input_index = (idx_y * input_wd + idx_x) * channels + ch_idx;
+ int32_t filter_index = (filter_y_idx * filter_wd + filter_x_idx) * (channels) + ch_idx;
+ int32_t input_val0 = input_data[input_index + 0] + input_offset;
+ int32_t input_val1 = input_data[input_index + 1] + input_offset;
+ int32_t input_val2 = input_data[input_index + 2] + input_offset;
+ int32_t input_val3 = input_data[input_index + 3] + input_offset;
+ int32_t filter_val0 = filter_data[filter_index + 0];
+ int32_t filter_val1 = filter_data[filter_index + 1];
+ int32_t filter_val2 = filter_data[filter_index + 2];
+ int32_t filter_val3 = filter_data[filter_index + 3];
+ result0 += input_val0 * filter_val0;
+ result1 += input_val1 * filter_val1;
+ result2 += input_val2 * filter_val2;
+ result3 += input_val3 * filter_val3;
+ }
+ }
+ if (bias) {
+ result0 += bias[ch_idx + 0];
+ result1 += bias[ch_idx + 1];
+ result2 += bias[ch_idx + 2];
+ result3 += bias[ch_idx + 3];
+ }
+ result0 = esp_nn_multiply_by_quantized_mult_fast(result0, *out_mult++, *out_shift++);
+ result1 = esp_nn_multiply_by_quantized_mult_fast(result1, *out_mult++, *out_shift++);
+ result2 = esp_nn_multiply_by_quantized_mult_fast(result2, *out_mult++, *out_shift++);
+ result3 = esp_nn_multiply_by_quantized_mult_fast(result3, *out_mult++, *out_shift++);
+
+ result0 += out_offset;
+ result1 += out_offset;
+ result2 += out_offset;
+ result3 += out_offset;
+
+ result0 = max(result0, activation_min);
+ result1 = max(result1, activation_min);
+ result2 = max(result2, activation_min);
+ result3 = max(result3, activation_min);
+
+ result0 = min(result0, activation_max);
+ result1 = min(result1, activation_max);
+ result2 = min(result2, activation_max);
+ result3 = min(result3, activation_max);
+
+ out_data[out_idx++] = result0;
+ out_data[out_idx++] = result1;
+ out_data[out_idx++] = result2;
+ out_data[out_idx++] = result3;
+ }
+ for (; ch_idx < channels; ch_idx++) {//channel_loop
+ int32_t result = 0;
+
+ for (int filter_y_idx = filter_y_start; filter_y_idx < filter_y_end; filter_y_idx++) {
+ const int32_t idx_y = base_y + filter_y_idx;
+ for (int filter_x_idx = filter_x_start; filter_x_idx < filter_x_end; filter_x_idx++) {
+ const int32_t idx_x = base_x + filter_x_idx;
+ int32_t input_index = (idx_y * input_wd + idx_x) * channels + ch_idx;
+ int32_t filter_index = (filter_y_idx * filter_wd + filter_x_idx) * (channels) + ch_idx;
+ int32_t input_val = input_data[input_index] + input_offset;
+ int32_t filter_val = filter_data[filter_index];
+ result += input_val * filter_val;
+ }
+ }
+ if (bias) {
+ result += bias[ch_idx];
+ }
+ result = esp_nn_multiply_by_quantized_mult_fast(result, *out_mult++, *out_shift++);
+ result += out_offset;
+ result = max(result, activation_min);
+ result = min(result, activation_max);
+
+ out_data[out_idx++] = result;
+ }
+ }
+ }
+}
+
+void esp_nn_depthwise_conv_s8_opt(const data_dims_t *input_dims,
+ const int8_t *input_data,
+ const data_dims_t *filter_dims,
+ const int8_t *filter_data,
+ const int32_t *bias,
+ const data_dims_t *output_dims,
+ int8_t *out_data,
+ const dw_conv_params_t *conv_params,
+ const quant_data_t *quant_data)
+{
+ const uint16_t ch_mult = conv_params->ch_mult;
+ if (ch_mult == 1) {
+ esp_nn_depthwise_conv_s8_ch_mult_1(input_dims, input_data, filter_dims, filter_data,
+ bias, output_dims, out_data, conv_params, quant_data);
+ return;
+ }
+ const uint16_t input_wd = input_dims->width;
+ const uint16_t input_ht = input_dims->height;
+ const uint16_t channels = input_dims->channels;
+ const int32_t input_offset = conv_params->in_offset;
+ const int32_t out_offset = conv_params->out_offset;
+ const uint16_t pad_wd = conv_params->padding.width;
+ const uint16_t pad_ht = conv_params->padding.height;
+ const uint16_t stride_wd = conv_params->stride.width;
+ const uint16_t stride_ht = conv_params->stride.height;
+ const uint16_t filter_wd = filter_dims->width;
+ const uint16_t filter_ht = filter_dims->height;
+ const uint16_t out_wd = output_dims->width;
+ const uint16_t out_ht = output_dims->height;
+ const int32_t activation_min = conv_params->activation.min;
+ const int32_t activation_max = conv_params->activation.max;
+
+ int out_idx = 0;
+ for (int out_y = 0; out_y < out_ht; out_y++) { //height loop
+ const int16_t base_y = (out_y * stride_ht) - pad_ht;
+ for (int out_x = 0; out_x < out_wd; out_x++) { //width_loop
+ const int16_t base_x = (out_x * stride_wd) - pad_wd;
+
+ const int32_t *out_shift = quant_data->shift;
+ const int32_t *out_mult = quant_data->mult;
+
+ /* Select filter so as the point doesn't lie outside block */
+ int filter_y_start = max(0, -base_y);
+ int filter_x_start = max(0, -base_x);
+ int filter_y_end = min(filter_ht, input_ht - base_y);
+ int filter_x_end = min(filter_wd, input_wd - base_x);
+
+ for (int ch_idx = 0; ch_idx < channels; ch_idx++) {//channel_loop
+ int ch_mult_idx = 0;
+ for (; ch_mult_idx < ch_mult - 3; ch_mult_idx += 4) {
+ int32_t result0 = 0;
+ int32_t result1 = 0;
+ int32_t result2 = 0;
+ int32_t result3 = 0;
+ const int out_ch_idx = ch_idx * ch_mult + ch_mult_idx;
+
+ for (int filter_y_idx = filter_y_start; filter_y_idx < filter_y_end; filter_y_idx++) {
+ const int32_t idx_y = base_y + filter_y_idx;
+ for (int filter_x_idx = filter_x_start; filter_x_idx < filter_x_end; filter_x_idx++) {
+ const int32_t idx_x = base_x + filter_x_idx;
+ int32_t input_index = (idx_y * input_wd + idx_x) * channels + ch_idx;
+ int32_t filter_index = (filter_y_idx * filter_wd + filter_x_idx) * (channels * ch_mult) + out_ch_idx;
+ int32_t input_val = input_data[input_index] + input_offset;
+ int32_t filter_val0 = filter_data[filter_index + 0];
+ int32_t filter_val1 = filter_data[filter_index + 1];
+ int32_t filter_val2 = filter_data[filter_index + 2];
+ int32_t filter_val3 = filter_data[filter_index + 3];
+ result0 += input_val * filter_val0;
+ result1 += input_val * filter_val1;
+ result2 += input_val * filter_val2;
+ result3 += input_val * filter_val3;
+ }
+ }
+ if (bias) {
+ result0 += bias[out_ch_idx + 0];
+ result1 += bias[out_ch_idx + 1];
+ result2 += bias[out_ch_idx + 2];
+ result3 += bias[out_ch_idx + 3];
+ }
+ result0 = esp_nn_multiply_by_quantized_mult_fast(result0, *out_mult++, *out_shift++);
+ result1 = esp_nn_multiply_by_quantized_mult_fast(result1, *out_mult++, *out_shift++);
+ result2 = esp_nn_multiply_by_quantized_mult_fast(result2, *out_mult++, *out_shift++);
+ result3 = esp_nn_multiply_by_quantized_mult_fast(result3, *out_mult++, *out_shift++);
+
+ result0 += out_offset;
+ result1 += out_offset;
+ result2 += out_offset;
+ result3 += out_offset;
+
+ result0 = max(result0, activation_min);
+ result1 = max(result1, activation_min);
+ result2 = max(result2, activation_min);
+ result3 = max(result3, activation_min);
+ result0 = min(result0, activation_max);
+ result1 = min(result1, activation_max);
+ result2 = min(result2, activation_max);
+ result3 = min(result3, activation_max);
+
+ out_data[out_idx++] = result0;
+ out_data[out_idx++] = result1;
+ out_data[out_idx++] = result2;
+ out_data[out_idx++] = result3;
+ }
+ for (; ch_mult_idx < ch_mult; ch_mult_idx++) {
+ int32_t result = 0;
+ const int out_ch_idx = ch_idx * ch_mult + ch_mult_idx;
+
+ for (int filter_y_idx = filter_y_start; filter_y_idx < filter_y_end; filter_y_idx++) {
+ const int32_t idx_y = base_y + filter_y_idx;
+ for (int filter_x_idx = filter_x_start; filter_x_idx < filter_x_end; filter_x_idx++) {
+ const int32_t idx_x = base_x + filter_x_idx;
+ int32_t input_index = (idx_y * input_wd + idx_x) * channels + ch_idx;
+ int32_t filter_index = (filter_y_idx * filter_wd + filter_x_idx) * (channels * ch_mult) + out_ch_idx;
+ int32_t input_val = input_data[input_index] + input_offset;
+ int32_t filter_val = filter_data[filter_index];
+ result += input_val * filter_val;
+ }
+ }
+ if (bias) {
+ result += bias[out_ch_idx];
+ }
+ result = esp_nn_multiply_by_quantized_mult_fast(result, *out_mult++, *out_shift++);
+ result += out_offset;
+ result = max(result, activation_min);
+ result = min(result, activation_max);
+
+ out_data[out_idx++] = result;
+ }
+ }
+ }
+ }
+}
diff --git a/code/components/esp-nn/src/convolution/esp_nn_depthwise_conv_s8_esp32s3.c b/code/components/esp-nn/src/convolution/esp_nn_depthwise_conv_s8_esp32s3.c
index c588c48f..9167a43f 100644
--- a/code/components/esp-nn/src/convolution/esp_nn_depthwise_conv_s8_esp32s3.c
+++ b/code/components/esp-nn/src/convolution/esp_nn_depthwise_conv_s8_esp32s3.c
@@ -12,8 +12,8 @@
// See the License for the specific language governing permissions and
// limitations under the License.
-#include
#include
+#include
#include
@@ -353,17 +353,59 @@ void esp_nn_depthwise_conv_s8_ch_mult1(const int8_t *input_data,
}
}
-int esp_nn_get_depthwise_conv_scratch_size_esp32s3(const uint16_t input_wd,
- const uint16_t input_ht,
- const uint16_t channels,
- const uint16_t ch_mult,
- const uint16_t filter_wd,
- const uint16_t filter_ht)
+int esp_nn_get_depthwise_conv_scratch_size_esp32s3(const data_dims_t *input_dims,
+ const data_dims_t *filter_dims,
+ const data_dims_t *output_dims,
+ const dw_conv_params_t *conv_params)
{
+ const uint16_t input_wd = input_dims->width;
+ const uint16_t input_ht = input_dims->height;
+ const uint16_t channels = input_dims->channels;
+ const uint16_t filter_wd = filter_dims->width;
+ const uint16_t filter_ht = filter_dims->height;
+ const uint16_t ch_mult = conv_params->ch_mult;
+ const uint16_t out_wd = output_dims->width;
+ const uint16_t out_ht = output_dims->height;
+ const uint16_t pad_wd = conv_params->padding.width;
+ const uint16_t pad_ht = conv_params->padding.height;
+ const uint16_t stride_wd = conv_params->stride.width;
+ const uint16_t stride_ht = conv_params->stride.height;
+
int filter_size = filter_wd * filter_ht * channels * ch_mult;
- int padding_used = ((filter_wd == 3) && (filter_ht == 3)) * 2;
- int input_size = (input_wd + padding_used) * (input_ht + padding_used) * channels;
- return 2 * (filter_size + input_size) + 16; //16 for alignment
+ int pad_width = 0, pad_height = 0;
+
+ if ((ch_mult == 1) && (channels % 8 == 0) && (filter_wd == 3) && (filter_ht == 3)) {
+ if (channels % 16 == 0) {
+ if (pad_wd || pad_ht) {
+ pad_width = pad_wd * 2;
+ pad_height = pad_ht * 2;
+ } else {
+ // check if we need to pad additionally
+ pad_width = (out_wd * stride_wd + filter_wd - 1) - input_wd;
+ pad_height = (out_ht * stride_ht + filter_ht - 1) - input_ht;
+ // printf("in(%d %d %d), out(%d %d), filter (%d %d) stride (%d %d), pad (%d %d)",
+ // input_wd, input_ht, channels, out_wd, out_ht, filter_wd, filter_ht,
+ // stride_wd, stride_ht, pad_wd, pad_ht);
+ }
+ if (pad_width || pad_height) {
+ int input_size = (input_wd + pad_width) * (input_ht + pad_height) * channels;
+ // printf("ask1 %d\n", filter_size + input_size + 16);
+ return filter_size + input_size + 16; // 16 for alignment
+ } else {
+ // printf("ask2 %d\n", filter_size + 16);
+ return filter_size + 16; // 16 for alignment
+ }
+ } else {
+ int input_size = input_wd * input_ht * channels;
+ // printf("ask3 %d\n", 2 * (filter_size + input_size) + 16);
+ return 2 * (filter_size + input_size) + 16; // 16 for alignment
+ }
+ } else if (ch_mult % 4 == 0) {
+ int input_size = input_wd * input_ht * channels;
+ // printf("ask4 %d\n", 2 * (filter_size + input_size) + 16);
+ return 2 * (filter_size + input_size) + 16; // 16 for alignment
+ }
+ return 32; // just few bytes
}
void esp_nn_set_depthwise_conv_scratch_buf_esp32s3(void *buf)
@@ -376,29 +418,38 @@ void esp_nn_set_depthwise_conv_scratch_buf_esp32s3(void *buf)
* Assumption 2: Pointers are valid
* Assumption 3: dialation width = 1
*/
-void esp_nn_depthwise_conv_s8_esp32s3(const int8_t *input_data,
- const uint16_t input_wd,
- const uint16_t input_ht,
- const uint16_t channels,
- const int32_t input_offset,
- const uint16_t pad_wd,
- const uint16_t pad_ht,
- const uint16_t stride_wd,
- const uint16_t stride_ht,
- const uint16_t ch_mult,
+
+
+
+void esp_nn_depthwise_conv_s8_esp32s3(const data_dims_t *input_dims,
+ const int8_t *input_data,
+ const data_dims_t *filter_dims,
const int8_t *filter_data,
- const uint16_t filter_wd,
- const uint16_t filter_ht,
const int32_t *bias,
+ const data_dims_t *output_dims,
int8_t *out_data,
- const uint16_t out_wd,
- const uint16_t out_ht,
- const int32_t out_offset,
- const int32_t *out_shift,
- const int32_t *out_mult,
- const int32_t activation_min,
- const int32_t activation_max)
+ const dw_conv_params_t *conv_params,
+ const quant_data_t *quant_data)
{
+ const uint16_t input_wd = input_dims->width;
+ const uint16_t input_ht = input_dims->height;
+ const uint16_t channels = input_dims->channels;
+ const int32_t input_offset = conv_params->in_offset;
+ const int32_t out_offset = conv_params->out_offset;
+ const uint16_t pad_wd = conv_params->padding.width;
+ const uint16_t pad_ht = conv_params->padding.height;
+ const uint16_t stride_wd = conv_params->stride.width;
+ const uint16_t stride_ht = conv_params->stride.height;
+ const uint16_t filter_wd = filter_dims->width;
+ const uint16_t filter_ht = filter_dims->height;
+ const uint16_t out_wd = output_dims->width;
+ const uint16_t out_ht = output_dims->height;
+ const int32_t *out_shift = quant_data->shift;
+ const int32_t *out_mult = quant_data->mult;
+ const int32_t activation_min = conv_params->activation.min;
+ const int32_t activation_max = conv_params->activation.max;
+ const uint16_t ch_mult = conv_params->ch_mult;
+
int filter_size = filter_wd * filter_ht * channels * ch_mult;
int align_len = 16 - (filter_size & 15);
int input_size = input_wd * input_ht * channels;
@@ -423,18 +474,27 @@ void esp_nn_depthwise_conv_s8_esp32s3(const int8_t *input_data,
stride_wd, stride_ht, filter_aligned, bias,
out_data, out_wd, out_ht, out_offset, out_shift,
out_mult, activation_min, activation_max);
- } else if ((pad_wd == 0) && (pad_ht == 0) &&
- // because this does not handle padding offset cases yet, run just for stride (1, 1).
- // end padding of input with `-input_offset` should solve this
- (stride_wd == 1) && (stride_ht == 1)) {
+ } else if ((channels % 16 == 0) && (pad_wd == 0) && (pad_ht == 0)) {
/* process in 8 bits */
int8_t *filter_aligned = (int8_t *) scratch_buffer;
+ int8_t *input_padded = (int8_t *) scratch_buffer + filter_size + align_len;
+
+ // check if we need to pad additionally
+ int pad_right = (out_wd * stride_wd + filter_wd - 1) - input_wd;
+ int pad_bottom = (out_ht * stride_ht + filter_ht - 1) - input_ht;
+ if (pad_right || pad_bottom) { // pad right and bottom
+ esp_nn_aligned_s8_pad_end_with_value(input_data, input_padded, input_wd, input_ht,
+ channels, -input_offset, pad_right, pad_bottom);
+ } else {
+ input_padded = (int8_t *) input_data;
+ }
memcpy(filter_aligned, filter_data, filter_size);
- esp_nn_depthwise_conv_s8_mult1_3x3_padded_esp32s3(input_data, input_wd, input_ht, channels, input_offset,
- stride_wd, stride_ht, filter_aligned,
- bias, out_data, out_wd, out_ht, out_offset, out_shift,
+ esp_nn_depthwise_conv_s8_mult1_3x3_padded_esp32s3(input_padded, input_wd + pad_right,
+ input_ht + pad_bottom, channels, input_offset,
+ stride_wd, stride_ht, filter_aligned, bias,
+ out_data, out_wd, out_ht, out_offset, out_shift,
out_mult, activation_min, activation_max);
- } else { /* (channels % 8) == 0 && pad_wd == 1 && pad_ht == 1 */
+ } else { /* (channels % 8) == 0 */
esp_nn_s8_to_s16_esp32s3(filter_data, filter_data16, filter_size);
esp_nn_aligned_s8_to_s16_with_offset_esp32s3(input_data, input_data16, input_size, input_offset);
esp_nn_depthwise_conv_s16_mult1_3x3_esp32s3(input_data16, input_wd, input_ht, channels,
diff --git a/code/components/esp-nn/test_app/sdkconfig.defaults.esp32s3 b/code/components/esp-nn/test_app/sdkconfig.defaults.esp32s3
new file mode 100644
index 00000000..1adc4b01
--- /dev/null
+++ b/code/components/esp-nn/test_app/sdkconfig.defaults.esp32s3
@@ -0,0 +1,8 @@
+# Default configurations for ESP32-S3
+
+CONFIG_ESP32S3_DEFAULT_CPU_FREQ_240=y
+CONFIG_ESP32S3_SPIRAM_SUPPORT=y
+
+CONFIG_ESP32S3_DATA_CACHE_64KB=y
+CONFIG_ESP32S3_DATA_CACHE_8WAYS=y
+CONFIG_ESP32S3_DATA_CACHE_LINE_64B=y
diff --git a/code/components/esp-nn/tests/src/basic_math_test.c b/code/components/esp-nn/tests/src/basic_math_test.c
index 5b96b990..715d7c78 100644
--- a/code/components/esp-nn/tests/src/basic_math_test.c
+++ b/code/components/esp-nn/tests/src/basic_math_test.c
@@ -23,7 +23,9 @@
#include "test_utils.h"
#if CONFIG_IDF_CMAKE
+#if (CONFIG_SPIRAM_SUPPORT && (CONFIG_SPIRAM_USE_CAPS_ALLOC || CONFIG_SPIRAM_USE_MALLOC))
#define IDF_HEAP_CAPS 1
+#endif
#if IDF_HEAP_CAPS
#include "esp_heap_caps.h"
@@ -138,6 +140,11 @@ void esp_nn_add_elementwise_s8_test()
out_c_orig = out_data_c;
out_opt_orig = out_data_opt;
#endif
+ if (input1_orig == NULL || input2_orig == NULL || out_c_orig == NULL ||
+ out_opt_orig == NULL) {
+ printf(ANSI_COLOR_RED"%s error allocating buffers\n"ANSI_COLOR_RESET, __FUNCTION__);
+ goto elementwise_add_test_cleanup;
+ }
for (int i = 0; i < size; ++i) {
input1[i] = rand() % 256 - 128;
@@ -194,10 +201,10 @@ elementwise_add_test_cleanup:
if (input2_orig) {
free(input2_orig);
}
- if (out_data_c) {
+ if (out_c_orig) {
free(out_c_orig);
}
- if (out_data_opt) {
+ if (out_opt_orig) {
free(out_opt_orig);
}
}
@@ -282,6 +289,11 @@ void esp_nn_mul_elementwise_s8_test()
out_c_orig = out_data_c;
out_opt_orig = out_data_opt;
#endif
+ if (input1_orig == NULL || input2_orig == NULL || out_c_orig == NULL ||
+ out_opt_orig == NULL) {
+ printf(ANSI_COLOR_RED"%s error allocating buffers\n"ANSI_COLOR_RESET, __FUNCTION__);
+ goto elementwise_mult_test_cleanup;
+ }
for (int i = 0; i < size; ++i) {
input1[i] = rand() % 256 - 128;
@@ -333,10 +345,10 @@ elementwise_mult_test_cleanup:
if (input2_orig) {
free(input2_orig);
}
- if (out_data_c) {
+ if (out_c_orig) {
free(out_c_orig);
}
- if (out_data_opt) {
+ if (out_opt_orig) {
free(out_opt_orig);
}
}
diff --git a/code/components/esp-nn/tests/src/convolution_test.c b/code/components/esp-nn/tests/src/convolution_test.c
index f3802257..c86bdbab 100644
--- a/code/components/esp-nn/tests/src/convolution_test.c
+++ b/code/components/esp-nn/tests/src/convolution_test.c
@@ -22,8 +22,9 @@
#include "test_utils.h"
#if CONFIG_IDF_CMAKE
+#if (CONFIG_SPIRAM_SUPPORT && (CONFIG_SPIRAM_USE_CAPS_ALLOC || CONFIG_SPIRAM_USE_MALLOC))
#define IDF_HEAP_CAPS 1
-
+#endif
#if IDF_HEAP_CAPS
#include "esp_heap_caps.h"
#endif
@@ -44,8 +45,8 @@ void esp_nn_depthwise_conv_s8_test()
uint16_t filter_ht, filter_wd, ch_mult;
uint16_t pad_wd, pad_ht, stride_wd, stride_ht;
- // run for 10 iterations
- for (int itr = 0; itr < 10; itr++) {
+ // run for 15 iterations
+ for (int itr = 0; itr < 15; itr++) {
/* prepare data */
switch (itr) {
case 0: // (ch_mult 1, (channels % 16) = 0), filter (3,3), pad (0,0)
@@ -144,22 +145,52 @@ void esp_nn_depthwise_conv_s8_test()
stride_wd = 2;
stride_ht = 2;
break;
- default:
- input_wd = 4;
- input_ht = 4;
+ case 8: // same as case 7, with large parameters
+ input_wd = 58;
+ input_ht = 58;
filter_ht = 3;
filter_wd = 3;
- ch_mult = 4;
- channels = 4;
- pad_wd = 1;
- pad_ht = 1;
- stride_wd = 1;
- stride_ht = 1;
+ ch_mult = 1;
+ channels = 128;
+ pad_wd = 0;
+ pad_ht = 0;
+ stride_wd = 2;
+ stride_ht = 2;
+ break;
+ case 9: // (ch_mult 1, (channels % 16) = 0), filter (3,3), pad (0,0) stride (2,2)
+ input_wd = 6;
+ input_ht = 6;
+ filter_ht = 3;
+ filter_wd = 3;
+ ch_mult = 1;
+ channels = 16;
+ pad_wd = 0;
+ pad_ht = 0;
+ stride_wd = 2;
+ stride_ht = 2;
+ break;
+ default:
+ input_wd = 6;
+ input_ht = 6;
+ filter_ht = 3;
+ filter_wd = 3;
+ ch_mult = 1;
+ channels = 16;
+ stride_wd = rand() % 2 + 1;
+ stride_ht = stride_wd;
+ pad_wd = stride_wd == 1 ? 0 : rand() % 2;
+ pad_ht = pad_wd;
+ printf("stride(%d), pad (%d)\t", stride_wd, pad_wd);
break;
}
uint16_t out_wd = (input_wd - filter_wd + 1) / stride_wd;
uint16_t out_ht = (input_ht - filter_ht + 1) / stride_ht;
+ if (itr == 9) {
+ // expect the function to handle this gracefully
+ out_wd += 1;
+ out_ht += 1;
+ }
int in_size = input_wd * input_ht * channels;
int out_size = out_wd * out_ht * channels * ch_mult;
int filter_size = filter_wd * filter_ht * channels * ch_mult + 4;
@@ -210,9 +241,16 @@ void esp_nn_depthwise_conv_s8_test()
out_mult[i] = 0x7eb0e200 + rand() % 50;
}
- int scratch_buf_size = esp_nn_get_depthwise_conv_scratch_size(input_wd, input_ht,
- channels, ch_mult,
- filter_wd, filter_ht);
+ data_dims_t input_dims = {.width = input_wd, .height = input_ht, .channels = channels, 1};
+ data_dims_t output_dims = {.width = out_wd, .height = out_ht, .channels = channels * ch_mult, 1};
+ data_dims_t filter_dims = {.width = filter_wd, .height = filter_ht, 0, 0};
+ dw_conv_params_t conv_params = {.in_offset = input_offset, .out_offset = out_offset, .ch_mult = ch_mult,
+ .stride = {stride_wd, stride_ht}, .padding = {pad_wd, pad_ht},
+ .dilation = {0, 0}, .activation = {activation_min, activation_max}};
+ quant_data_t quant_data = {.shift = out_shift, .mult = out_mult};
+
+ int scratch_buf_size = esp_nn_get_depthwise_conv_scratch_size(&input_dims, &filter_dims,
+ &output_dims, &conv_params);
if (scratch_buf_size > 0) {
#if IDF_HEAP_CAPS
scratch_buf = heap_caps_malloc(scratch_buf_size + 32, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
@@ -234,11 +272,8 @@ void esp_nn_depthwise_conv_s8_test()
}
/* C function */
- esp_nn_depthwise_conv_s8_ansi(input, input_wd, input_ht, channels, input_offset,
- pad_wd, pad_ht, stride_wd, stride_ht, ch_mult,
- filter_data + 4, filter_wd, filter_ht,
- bias + 1, out_data_c, out_wd, out_ht, out_offset, out_shift,
- out_mult, activation_min, activation_max);
+ esp_nn_depthwise_conv_s8_ansi(&input_dims, input, &filter_dims, filter_data + 4,
+ bias + 1, &output_dims, out_data_c, &conv_params, &quant_data);
if (itr == 0) {
profile_c_end();
@@ -246,11 +281,8 @@ void esp_nn_depthwise_conv_s8_test()
}
/* Optimized function */
- esp_nn_depthwise_conv_s8(input, input_wd, input_ht, channels, input_offset,
- pad_wd, pad_ht, stride_wd, stride_ht, ch_mult,
- filter_data + 4, filter_wd, filter_ht,
- bias + 1, out_data_opt, out_wd, out_ht, out_offset, out_shift,
- out_mult, activation_min, activation_max);
+ esp_nn_depthwise_conv_s8(&input_dims, input, &filter_dims, filter_data + 4,
+ bias + 1, &output_dims, out_data_opt, &conv_params, &quant_data);
if (itr == 0) {
/* disable profiler */
@@ -479,8 +511,16 @@ void esp_nn_conv_s8_test()
out_mult[i] = 0x7f67f4f8 + rand() % 50;
}
- int scratch_buf_size = esp_nn_get_conv_scratch_size(in_wd, in_ht, in_channels,
- out_channels, filter_wd, filter_ht);
+ data_dims_t input_dims = {.width = in_wd, .height = in_ht, .channels = in_channels, 1};
+ data_dims_t output_dims = {.width = out_wd, .height = out_ht, .channels = out_channels, 1};
+ data_dims_t filter_dims = {.width = filter_wd, .height = filter_ht, 0, 0};
+ conv_params_t conv_params = {.in_offset = input_offset, .out_offset = out_offset,
+ .stride = {stride_wd, stride_ht}, .padding = {pad_wd, pad_ht},
+ .dilation = {0, 0}, .activation = {activation_min, activation_max}};
+ quant_data_t quant_data = {.shift = out_shift, .mult = out_mult};
+
+ int scratch_buf_size = esp_nn_get_conv_scratch_size(&input_dims, &filter_dims,
+ &output_dims, &conv_params);
if (scratch_buf_size > 0) {
#if IDF_HEAP_CAPS
void *scratch_buf = heap_caps_malloc(scratch_buf_size + 32, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
@@ -502,11 +542,8 @@ void esp_nn_conv_s8_test()
}
/* C function */
- esp_nn_conv_s8_ansi(input, in_wd, in_ht, in_channels, input_offset,
- pad_wd, pad_ht, stride_wd, stride_ht,
- filter_data + 2, filter_wd, filter_ht, bias,
- out_data_c, out_wd, out_ht, out_channels, out_offset, out_shift,
- out_mult, activation_min, activation_max);
+ esp_nn_conv_s8_ansi(&input_dims, input, &filter_dims, filter_data + 2,
+ bias, &output_dims, out_data_c, &conv_params, &quant_data);
if (itr == 0) {
profile_c_end();
@@ -514,11 +551,8 @@ void esp_nn_conv_s8_test()
}
/* Optimized function */
- esp_nn_conv_s8(input, in_wd, in_ht, in_channels, input_offset,
- pad_wd, pad_ht, stride_wd, stride_ht,
- filter_data + 2, filter_wd, filter_ht, bias,
- out_data_opt, out_wd, out_ht, out_channels, out_offset, out_shift,
- out_mult, activation_min, activation_max);
+ esp_nn_conv_s8(&input_dims, input, &filter_dims, filter_data + 2,
+ bias, &output_dims, out_data_opt, &conv_params, &quant_data);
if (itr == 0) {
/* disable profiler */
diff --git a/code/components/esp-nn_20220716.zip b/code/components/esp-nn_20220716.zip
new file mode 100644
index 00000000..53c7bef2
Binary files /dev/null and b/code/components/esp-nn_20220716.zip differ
diff --git a/code/components/jomjol_flowcontroll/ClassFlowCNNGeneral.cpp b/code/components/jomjol_flowcontroll/ClassFlowCNNGeneral.cpp
index 72bcd63b..a3d47753 100644
--- a/code/components/jomjol_flowcontroll/ClassFlowCNNGeneral.cpp
+++ b/code/components/jomjol_flowcontroll/ClassFlowCNNGeneral.cpp
@@ -756,7 +756,7 @@ bool ClassFlowCNNGeneral::doNeuralNetwork(string time)
_fit = _val + _valminus;
}
- if (result > 10)
+ if (result >= 10)
result = result - 10;
if (result < 0)
result = result + 10;
diff --git a/code/components/tflite-lib/CMakeLists.txt b/code/components/tflite-lib/CMakeLists.txt
index eed31a57..ab666ce0 100644
--- a/code/components/tflite-lib/CMakeLists.txt
+++ b/code/components/tflite-lib/CMakeLists.txt
@@ -25,7 +25,8 @@ list(REMOVE_ITEM srcs_kernels
"${tfmicro_kernels_dir}/depthwise_conv.cc"
"${tfmicro_kernels_dir}/fully_connected.cc"
"${tfmicro_kernels_dir}/mul.cc"
- "${tfmicro_kernels_dir}/pooling.cc")
+ "${tfmicro_kernels_dir}/pooling.cc"
+ "${tfmicro_kernels_dir}/softmax.cc")
FILE(GLOB esp_nn_kernels
"${tfmicro_kernels_dir}/esp_nn/*.cc")
@@ -38,6 +39,8 @@ set(lib_srcs
"${tflite_dir}/kernels/kernel_util.cc"
"${tflite_dir}/micro/memory_planner/greedy_memory_planner.cc"
"${tflite_dir}/micro/memory_planner/linear_memory_planner.cc"
+ "${tflite_dir}/micro/arena_allocator/recording_simple_memory_allocator.cc"
+ "${tflite_dir}/micro/arena_allocator/simple_memory_allocator.cc"
"${tflite_dir}/c/common.cc"
"${tflite_dir}/core/api/error_reporter.cc"
"${tflite_dir}/core/api/flatbuffer_conversions.cc"
diff --git a/code/components/tflite-lib/tensorflow/lite/builtin_ops.h b/code/components/tflite-lib/tensorflow/lite/builtin_ops.h
index 19ce3e2c..67014928 100644
--- a/code/components/tflite-lib/tensorflow/lite/builtin_ops.h
+++ b/code/components/tflite-lib/tensorflow/lite/builtin_ops.h
@@ -179,6 +179,8 @@ typedef enum {
kTfLiteBuiltinMultinomial = 149,
kTfLiteBuiltinGelu = 150,
kTfLiteBuiltinDynamicUpdateSlice = 151,
+ kTfLiteBuiltinRelu0To1 = 152,
+ kTfLiteBuiltinUnsortedSegmentProd = 153,
} TfLiteBuiltinOperator;
#ifdef __cplusplus
diff --git a/code/components/tflite-lib/tensorflow/lite/c/builtin_op_data.h b/code/components/tflite-lib/tensorflow/lite/c/builtin_op_data.h
index 7f160972..b8fdb7d1 100644
--- a/code/components/tflite-lib/tensorflow/lite/c/builtin_op_data.h
+++ b/code/components/tflite-lib/tensorflow/lite/c/builtin_op_data.h
@@ -518,6 +518,9 @@ typedef struct {
bool approximate;
} TfLiteGeluParams;
+typedef struct {
+ int num_segments;
+} TfLiteUnsortedSegmentProdParams;
#ifdef __cplusplus
} // extern "C"
#endif // __cplusplus
diff --git a/code/components/tflite-lib/tensorflow/lite/c/c_api_types.h b/code/components/tflite-lib/tensorflow/lite/c/c_api_types.h
index d2524969..d947213b 100644
--- a/code/components/tflite-lib/tensorflow/lite/c/c_api_types.h
+++ b/code/components/tflite-lib/tensorflow/lite/c/c_api_types.h
@@ -113,7 +113,13 @@ typedef struct TfLiteQuantizationParams {
} TfLiteQuantizationParams;
// --------------------------------------------------------------------------
-// Opaque types used by c_api_opaque.h.
+// Opaque types used by c_api.h, c_api_opaque.h and common.h.
+
+// TfLiteOpaqueContext is an opaque version of TfLiteContext;
+typedef struct TfLiteOpaqueContext TfLiteOpaqueContext;
+
+// TfLiteOpaqueNode is an opaque version of TfLiteNode;
+typedef struct TfLiteOpaqueNode TfLiteOpaqueNode;
// TfLiteOpaqueTensor is an opaque version of TfLiteTensor;
typedef struct TfLiteOpaqueTensor TfLiteOpaqueTensor;
diff --git a/code/components/tflite-lib/tensorflow/lite/c/common.cc b/code/components/tflite-lib/tensorflow/lite/c/common.cc
index 956e9d69..8548424d 100644
--- a/code/components/tflite-lib/tensorflow/lite/c/common.cc
+++ b/code/components/tflite-lib/tensorflow/lite/c/common.cc
@@ -14,13 +14,33 @@ limitations under the License.
==============================================================================*/
#include "tensorflow/lite/c/common.h"
+
#include "tensorflow/lite/c/c_api_types.h"
+#ifdef TF_LITE_TENSORFLOW_PROFILER
+#include
+
+#include "tensorflow/lite/core/macros.h"
+#include "tensorflow/lite/tensorflow_profiler_logger.h"
+#endif
#ifndef TF_LITE_STATIC_MEMORY
#include
#include
#endif // TF_LITE_STATIC_MEMORY
+#ifdef TF_LITE_TENSORFLOW_PROFILER
+namespace tflite {
+// Use weak symbols here (even though they are guarded by macros) to avoid
+// build breakage when building a benchmark requires TFLite runs. The main
+// benchmark library should have tensor_profiler_logger dependency.
+TFLITE_ATTRIBUTE_WEAK void OnTfLiteTensorAlloc(TfLiteTensor* tensor,
+ size_t num_bytes);
+
+TFLITE_ATTRIBUTE_WEAK void OnTfLiteTensorDealloc(TfLiteTensor* tensor);
+} // namespace tflite
+
+#endif // TF_LITE_TENSORFLOW_PROFILER
+
extern "C" {
size_t TfLiteIntArrayGetSizeInBytes(int size) {
@@ -99,7 +119,12 @@ void TfLiteFloatArrayFree(TfLiteFloatArray* a) { free(a); }
void TfLiteTensorDataFree(TfLiteTensor* t) {
if (t->allocation_type == kTfLiteDynamic ||
t->allocation_type == kTfLitePersistentRo) {
- free(t->data.raw);
+ if (t->data.raw) {
+#ifdef TF_LITE_TENSORFLOW_PROFILER
+ tflite::OnTfLiteTensorDealloc(t);
+#endif
+ free(t->data.raw);
+ }
}
t->data.raw = nullptr;
}
@@ -161,7 +186,7 @@ void TfLiteTensorFree(TfLiteTensor* t) {
t->dims = nullptr;
if (t->dims_signature) {
- TfLiteIntArrayFree((TfLiteIntArray *) t->dims_signature);
+ TfLiteIntArrayFree((TfLiteIntArray*)t->dims_signature);
}
t->dims_signature = nullptr;
@@ -191,16 +216,12 @@ void TfLiteTensorReset(TfLiteType type, const char* name, TfLiteIntArray* dims,
}
TfLiteStatus TfLiteTensorCopy(const TfLiteTensor* src, TfLiteTensor* dst) {
- if (!src || !dst)
- return kTfLiteOk;
- if (src->bytes != dst->bytes)
- return kTfLiteError;
- if (src == dst)
- return kTfLiteOk;
+ if (!src || !dst) return kTfLiteOk;
+ if (src->bytes != dst->bytes) return kTfLiteError;
+ if (src == dst) return kTfLiteOk;
dst->type = src->type;
- if (dst->dims)
- TfLiteIntArrayFree(dst->dims);
+ if (dst->dims) TfLiteIntArrayFree(dst->dims);
dst->dims = TfLiteIntArrayCopy(src->dims);
memcpy(dst->data.raw, src->data.raw, src->bytes);
dst->buffer_handle = src->buffer_handle;
@@ -218,8 +239,17 @@ void TfLiteTensorRealloc(size_t num_bytes, TfLiteTensor* tensor) {
// TODO(b/145340303): Tensor data should be aligned.
if (!tensor->data.raw) {
tensor->data.raw = (char*)malloc(num_bytes);
+#ifdef TF_LITE_TENSORFLOW_PROFILER
+ tflite::OnTfLiteTensorAlloc(tensor, num_bytes);
+#endif
} else if (num_bytes > tensor->bytes) {
+#ifdef TF_LITE_TENSORFLOW_PROFILER
+ tflite::OnTfLiteTensorDealloc(tensor);
+#endif
tensor->data.raw = (char*)realloc(tensor->data.raw, num_bytes);
+#ifdef TF_LITE_TENSORFLOW_PROFILER
+ tflite::OnTfLiteTensorAlloc(tensor, num_bytes);
+#endif
}
tensor->bytes = num_bytes;
}
diff --git a/code/components/tflite-lib/tensorflow/lite/c/common.h b/code/components/tflite-lib/tensorflow/lite/c/common.h
index 6a109e1e..8b8ffbe8 100644
--- a/code/components/tflite-lib/tensorflow/lite/c/common.h
+++ b/code/components/tflite-lib/tensorflow/lite/c/common.h
@@ -173,9 +173,9 @@ void TfLiteFloatArrayFree(TfLiteFloatArray* a);
} \
} while (false)
#else // TF_LITE_STRIP_ERROR_STRINGS
-#define UNUSED(...) (void)sizeof(#__VA_ARGS__)
-#define TF_LITE_KERNEL_LOG(context, ...) UNUSED(__VA_ARGS__)
-#define TF_LITE_MAYBE_KERNEL_LOG(context, ...) UNUSED(__VA_ARGS__)
+#define ARGS_UNUSED(...) (void)sizeof(#__VA_ARGS__)
+#define TF_LITE_KERNEL_LOG(context, ...) ARGS_UNUSED(__VA_ARGS__)
+#define TF_LITE_MAYBE_KERNEL_LOG(context, ...) ARGS_UNUSED(__VA_ARGS__)
#endif // TF_LITE_STRIP_ERROR_STRINGS
// Check whether value is true, and if not return kTfLiteError from
@@ -842,6 +842,32 @@ typedef struct TfLiteContext {
size_t* bytes);
} TfLiteContext;
+// `TfLiteRegistrationExternal` is an external version of `TfLiteRegistration`
+// for C API which doesn't use internal types (such as `TfLiteContext`) but only
+// uses stable API types (such as `TfLiteOpaqueContext`). The purpose of each
+// field is the exactly the same as with `TfLiteRegistration`.
+typedef struct TfLiteRegistrationExternal {
+ // Custom op name.
+ const char* custom_name;
+
+ // The version of the op. The verion should be higher than 0.
+ const int version;
+
+ // Initializes the op from serialized data.
+ void* (*init)(TfLiteOpaqueContext* context, const char* buffer,
+ size_t length);
+
+ // The pointer `buffer` is the data previously returned by an init invocation.
+ void (*free)(TfLiteOpaqueContext* context, void* buffer);
+
+ // Called when the inputs that this node depends on have been resized.
+ TfLiteStatus (*prepare)(TfLiteOpaqueContext* context, TfLiteOpaqueNode* node);
+
+ // Called when the node is executed. (should read node->inputs and output to
+ // node->outputs).
+ TfLiteStatus (*invoke)(TfLiteOpaqueContext* context, TfLiteOpaqueNode* node);
+} TfLiteRegistrationExternal;
+
typedef struct TfLiteRegistration {
// Initializes the op from serialized data.
// Called only *once* for the lifetime of the op, so any one-time allocations
@@ -903,8 +929,31 @@ typedef struct TfLiteRegistration {
// Note: It is the responsibility of the registration binder to set this
// properly.
int version;
+
+ // The external version of `TfLiteRegistration`. Since we can't use internal
+ // types (such as `TfLiteContext`) for C API to maintain ABI stability.
+ // C API user will provide `TfLiteRegistrationExternal` to implement custom
+ // ops. We keep it inside of `TfLiteRegistration` and use it to route
+ // callbacks properly.
+ TfLiteRegistrationExternal* registration_external;
} TfLiteRegistration;
+// Old version of `TfLiteRegistration` to maintain binary backward
+// compatibility.
+// WARNING: This structure is deprecated / not an official part of the API.
+// It should be only used for binary backward compatibility.
+typedef struct TfLiteRegistration_V1 {
+ void* (*init)(TfLiteContext* context, const char* buffer, size_t length);
+ void (*free)(TfLiteContext* context, void* buffer);
+ TfLiteStatus (*prepare)(TfLiteContext* context, TfLiteNode* node);
+ TfLiteStatus (*invoke)(TfLiteContext* context, TfLiteNode* node);
+ const char* (*profiling_string)(const TfLiteContext* context,
+ const TfLiteNode* node);
+ int32_t builtin_code;
+ const char* custom_name;
+ int version;
+} TfLiteRegistration_V1;
+
// The flags used in `TfLiteDelegate`. Note that this is a bitmask, so the
// values should be 1, 2, 4, 8, ...etc.
typedef enum TfLiteDelegateFlags {
diff --git a/code/components/tflite-lib/tensorflow/lite/core/api/flatbuffer_conversions.cc b/code/components/tflite-lib/tensorflow/lite/core/api/flatbuffer_conversions.cc
index e92d754f..5175d903 100644
--- a/code/components/tflite-lib/tensorflow/lite/core/api/flatbuffer_conversions.cc
+++ b/code/components/tflite-lib/tensorflow/lite/core/api/flatbuffer_conversions.cc
@@ -836,6 +836,16 @@ TfLiteStatus ParseOpDataTfLite(const Operator* op, BuiltinOperator op_type,
*builtin_data = params.release();
return kTfLiteOk;
}
+ case BuiltinOperator_UNSORTED_SEGMENT_PROD: {
+ auto params = safe_allocator.Allocate();
+ TF_LITE_ENSURE(error_reporter, params != nullptr);
+ if (const auto* unsorted_segment_prod_params =
+ op->builtin_options_as_UnsortedSegmentProdOptions()) {
+ params->num_segments = unsorted_segment_prod_params->num_segments();
+ }
+ *builtin_data = params.release();
+ return kTfLiteOk;
+ }
// Below are the ops with no builtin_data structure.
// TODO(aselle): Implement call in BuiltinOptions, but nullptrs are
// ok for now, since there is no call implementation either.
@@ -848,6 +858,7 @@ TfLiteStatus ParseOpDataTfLite(const Operator* op, BuiltinOperator op_type,
case BuiltinOperator_MATRIX_DIAG:
case BuiltinOperator_MATRIX_SET_DIAG:
case BuiltinOperator_RELU_N1_TO_1:
+ case BuiltinOperator_RELU_0_TO_1:
case BuiltinOperator_SELECT:
case BuiltinOperator_SELECT_V2:
case BuiltinOperator_SLICE:
diff --git a/code/components/tflite-lib/tensorflow/lite/core/api/op_resolver.h b/code/components/tflite-lib/tensorflow/lite/core/api/op_resolver.h
index 49ac778e..cec1f2dd 100644
--- a/code/components/tflite-lib/tensorflow/lite/core/api/op_resolver.h
+++ b/code/components/tflite-lib/tensorflow/lite/core/api/op_resolver.h
@@ -23,6 +23,16 @@ limitations under the License.
#include "tensorflow/lite/core/api/error_reporter.h"
#include "tensorflow/lite/schema/schema_generated.h"
+// Opaque type similar to TfLiteDelegate / TfLiteOpaqueDelegate.
+// This is used for cases (e.g. when using "TF Lite with Google Play Services")
+// where the TF Lite runtime might be built using a newer (or older)
+// version of the TF Lite sources than the app, and hence might have a
+// different definition of the TfLiteDelegate type. TF Lite APIs use
+// TfLiteOpaqueDelegate rather than TfLiteDelegate when they want to
+// refer to a delegate defined with that potentially different version
+// of the TfLiteDelegate type.
+struct TfLiteOpaqueDelegateStruct;
+
namespace tflite {
/// Abstract interface that returns TfLiteRegistrations given op codes or custom
@@ -37,8 +47,10 @@ class OpResolver {
virtual const TfLiteRegistration* FindOp(const char* op,
int version) const = 0;
+ // Represents a sequence of delegates.
using TfLiteDelegatePtrVector =
std::vector>;
+
// Returns optional delegates for resolving and handling ops in the flatbuffer
// model. This may be used in addition to the standard TfLiteRegistration
// lookup for graph resolution.
@@ -47,16 +59,55 @@ class OpResolver {
return {};
}
- // Represent a function that creates a TfLite delegate instance.
+ // Represents a function that creates a TfLite delegate instance.
using TfLiteDelegateCreator =
std::function(
int /*num_threads*/)>;
+
+ // Represents a sequence of delegate creator functions.
using TfLiteDelegateCreators = std::vector;
+
// Returns a vector of delegate creators to create optional delegates for
// resolving and handling ops in the flatbuffer model. This may be used in
// addition to the standard TfLiteRegistration lookup for graph resolution.
+ //
+ // Note that this method is not used (will not be called) if you are using
+ // TF Lite in Google Play Services; the GetOpaqueDelegateCreators method
+ // (see below) is used for that case.
virtual TfLiteDelegateCreators GetDelegateCreators() const { return {}; }
+ // TODO(b/202712825): it would be nice if we could avoid the need for separate
+ // "opaque" types & methods for use only with TF Lite in Google Play Services.
+
+ // Represents an opaque delegate instance.
+ // WARNING: Experimental interface, subject to change.
+ using TfLiteOpaqueDelegatePtr =
+ std::unique_ptr;
+
+ // Represents a function that creates an opaque delegate instance.
+ // WARNING: Experimental interface, subject to change.
+ using TfLiteOpaqueDelegateCreator =
+ std::function;
+
+ // Represents a sequence of opaque delegate creator functions.
+ // WARNING: Experimental interface, subject to change.
+ using TfLiteOpaqueDelegateCreators = std::vector;
+
+ // Returns a vector of opaque delegate creators to create optional opaque
+ // delegates for resolving and handling ops in the flatbuffer model. This may
+ // be used in addition to the standard TfLiteRegistration lookup for graph
+ // resolution.
+ //
+ // Note that this method will be called only if you are using TF Lite in
+ // Google Play Services; if you are using regular TF Lite, GetDelegateCreators
+ // (see above) is used instead.
+ //
+ // WARNING: Experimental interface, subject to change.
+ virtual TfLiteOpaqueDelegateCreators GetOpaqueDelegateCreators() const {
+ return {};
+ }
+
virtual ~OpResolver() {}
private:
diff --git a/code/components/tflite-lib/tensorflow/lite/kernels/internal/reference/hard_swish.h b/code/components/tflite-lib/tensorflow/lite/kernels/internal/reference/hard_swish.h
index cda1b5cf..b1204cc5 100644
--- a/code/components/tflite-lib/tensorflow/lite/kernels/internal/reference/hard_swish.h
+++ b/code/components/tflite-lib/tensorflow/lite/kernels/internal/reference/hard_swish.h
@@ -23,9 +23,9 @@ namespace tflite {
namespace reference_ops {
inline int16_t SaturatingLeftShift(int16_t value, int amount) {
- int32_t result = static_cast(value) * (1 << amount);
- result = std::min(result, std::numeric_limits::max());
- result = std::max(result, std::numeric_limits::min());
+ int64_t result = static_cast(value) * (1 << amount);
+ result = std::min(result, std::numeric_limits::max());
+ result = std::max(result, std::numeric_limits::min());
return result;
}
diff --git a/code/components/tflite-lib/tensorflow/lite/kernels/internal/runtime_shape.h b/code/components/tflite-lib/tensorflow/lite/kernels/internal/runtime_shape.h
index 13693643..c2678b57 100644
--- a/code/components/tflite-lib/tensorflow/lite/kernels/internal/runtime_shape.h
+++ b/code/components/tflite-lib/tensorflow/lite/kernels/internal/runtime_shape.h
@@ -27,6 +27,11 @@ class RuntimeShape {
public:
RuntimeShape& operator=(RuntimeShape const&) = delete;
+ // RuntimeShape in TFLM supports up to 5 dimensions.
+ // The name kMaxSmallSize comes from the same file of the upstream
+ // tensorflow lite repo and need to be kept the same for max reuse.
+ static constexpr int kMaxSmallSize = 5;
+
RuntimeShape() : size_(0) {}
explicit RuntimeShape(int dimensions_count) : size_(dimensions_count) {}
@@ -104,11 +109,9 @@ class RuntimeShape {
sizeof(int32_t) * shape.DimensionsCount());
}
- // A maximum of 4 dimensions are supported on TFLM.
- static constexpr int kMaxSize = 5;
int32_t size_;
union {
- int32_t dims_[kMaxSize];
+ int32_t dims_[kMaxSmallSize];
};
};
diff --git a/code/components/tflite-lib/tensorflow/lite/kernels/internal/types.h b/code/components/tflite-lib/tensorflow/lite/kernels/internal/types.h
index 77644bc0..c44ba48e 100644
--- a/code/components/tflite-lib/tensorflow/lite/kernels/internal/types.h
+++ b/code/components/tflite-lib/tensorflow/lite/kernels/internal/types.h
@@ -974,11 +974,11 @@ struct StridedSliceParams {
int8_t strides_count;
int32_t strides[5];
- int16_t begin_mask;
- int16_t ellipsis_mask;
- int16_t end_mask;
- int16_t new_axis_mask;
- int16_t shrink_axis_mask;
+ uint16_t begin_mask;
+ uint16_t ellipsis_mask;
+ uint16_t end_mask;
+ uint16_t new_axis_mask;
+ uint16_t shrink_axis_mask;
};
struct TanhParams {
diff --git a/code/components/tflite-lib/tensorflow/lite/kernels/kernel_util.h b/code/components/tflite-lib/tensorflow/lite/kernels/kernel_util.h
index 22689436..ed3a566f 100644
--- a/code/components/tflite-lib/tensorflow/lite/kernels/kernel_util.h
+++ b/code/components/tflite-lib/tensorflow/lite/kernels/kernel_util.h
@@ -308,7 +308,7 @@ TfLiteStatus CalculateShapeForBroadcast(TfLiteContext* context,
const TfLiteTensor* input3,
TfLiteIntArray** output_shape);
-// Return the size of given type in bytes. Return 0 in in case of string.
+// Return the size of given type in bytes. Return 0 in case of string.
int TfLiteTypeGetSize(TfLiteType type);
// Whether the current platform is mobile (Android or iOS).
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/ibuffer_allocator.h b/code/components/tflite-lib/tensorflow/lite/micro/arena_allocator/ibuffer_allocator.h
similarity index 95%
rename from code/components/tflite-lib/tensorflow/lite/micro/ibuffer_allocator.h
rename to code/components/tflite-lib/tensorflow/lite/micro/arena_allocator/ibuffer_allocator.h
index 3767cb9f..b92d6b2d 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/ibuffer_allocator.h
+++ b/code/components/tflite-lib/tensorflow/lite/micro/arena_allocator/ibuffer_allocator.h
@@ -12,8 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
-#ifndef TENSORFLOW_LITE_MICRO_IBUFFER_ALLOCATOR_H_
-#define TENSORFLOW_LITE_MICRO_IBUFFER_ALLOCATOR_H_
+#ifndef TENSORFLOW_LITE_MICRO_ARENA_ALLOCATOR_IBUFFER_ALLOCATOR_H_
+#define TENSORFLOW_LITE_MICRO_ARENA_ALLOCATOR_IBUFFER_ALLOCATOR_H_
#include
#include
@@ -97,4 +97,4 @@ class INonPersistentBufferAllocator {
} // namespace tflite
-#endif // TENSORFLOW_LITE_MICRO_IBUFFER_ALLOCATOR_H_
+#endif // TENSORFLOW_LITE_MICRO_ARENA_ALLOCATOR_IBUFFER_ALLOCATOR_H_
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/arena_allocator/non_persistent_arena_buffer_allocator.cc b/code/components/tflite-lib/tensorflow/lite/micro/arena_allocator/non_persistent_arena_buffer_allocator.cc
new file mode 100644
index 00000000..0f75d286
--- /dev/null
+++ b/code/components/tflite-lib/tensorflow/lite/micro/arena_allocator/non_persistent_arena_buffer_allocator.cc
@@ -0,0 +1,165 @@
+/* Copyright 2022 The TensorFlow Authors. All Rights Reserved.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+==============================================================================*/
+#include "tensorflow/lite/micro/arena_allocator/non_persistent_arena_buffer_allocator.h"
+
+#include "tensorflow/lite/micro/memory_helpers.h"
+#include "tensorflow/lite/micro/micro_error_reporter.h"
+
+namespace tflite {
+
+NonPersistentArenaBufferAllocator::NonPersistentArenaBufferAllocator(
+ uint8_t* buffer, size_t buffer_size)
+ : buffer_head_(buffer),
+ buffer_tail_(buffer + buffer_size),
+ head_temp_(buffer),
+ next_temp_(buffer) {}
+
+NonPersistentArenaBufferAllocator::~NonPersistentArenaBufferAllocator() {}
+
+// Allocates a temporary buffer. This buffer is not resizable.
+uint8_t* NonPersistentArenaBufferAllocator::AllocateTemp(size_t size,
+ size_t alignment) {
+ uint8_t* const aligned_result = AlignPointerUp(next_temp_, alignment);
+ const size_t available_memory = buffer_tail_ - aligned_result;
+ if (available_memory < size) {
+ MicroPrintf(
+ "Failed to allocate temp memory. Requested: %u, "
+ "available %u, missing: %u",
+ size, available_memory, size - available_memory);
+ return nullptr;
+ }
+ next_temp_ = aligned_result + size;
+ temp_buffer_ptr_check_sum_ ^= reinterpret_cast(aligned_result);
+ temp_buffer_count_++;
+ return aligned_result;
+}
+
+// Signals that a temporary buffer is no longer needed.
+void NonPersistentArenaBufferAllocator::DeallocateTemp(uint8_t* temp_buf) {
+ temp_buffer_ptr_check_sum_ ^= reinterpret_cast(temp_buf);
+ temp_buffer_count_--;
+}
+
+// Returns true if all temporary buffers are already deallocated.
+bool NonPersistentArenaBufferAllocator::IsAllTempDeallocated() {
+ if (temp_buffer_count_ != 0 || temp_buffer_ptr_check_sum_ != 0) {
+ MicroPrintf(
+ "Number of allocated temp buffers: %d. Checksum passing status: %d",
+ temp_buffer_count_, !temp_buffer_ptr_check_sum_);
+ return false;
+ }
+ return true;
+}
+
+// Signals that all temporary allocations can be reclaimed. TFLM calls this
+// API when it knows that all temporary buffers that it requested has been
+// deallocated. The goal of API is to facilitate implementations of
+// INonPersistentBufferAllocator can reuse buffer with some reasonable
+// complexity.
+TfLiteStatus NonPersistentArenaBufferAllocator::ResetTempAllocations() {
+ if (!IsAllTempDeallocated()) {
+ MicroPrintf(
+ "All temp buffers must be freed before calling ResetTempAllocations()");
+ return kTfLiteError;
+ }
+ next_temp_ = head_temp_;
+ return kTfLiteOk;
+}
+
+// Returns a buffer that is resizable viable ResizeBuffer().
+uint8_t* NonPersistentArenaBufferAllocator::AllocateResizableBuffer(
+ size_t size, size_t alignment) {
+ // Only supports one resizable buffer, which starts at the buffer head.
+ uint8_t* expected_resizable_buf = AlignPointerUp(buffer_head_, alignment);
+
+ if (head_temp_ != expected_resizable_buf) {
+ MicroPrintf(
+ "Cannot allocate a new resizable buffer when one is already allocated");
+ return nullptr;
+ }
+
+ if (ResizeBuffer(expected_resizable_buf, size, alignment) == kTfLiteOk) {
+ return expected_resizable_buf;
+ }
+ return nullptr;
+}
+
+// Resizes a buffer that is previously returned by the AllocateResizableBuffer.
+// Note that ResizeBuffer(old_resizable_buf, 0, 1) effectively deallocates
+// a previous allocated resizable buffer.
+TfLiteStatus NonPersistentArenaBufferAllocator::ResizeBuffer(
+ uint8_t* resizable_buf, size_t size, size_t alignment) {
+ // Only supports one resizable buffer, which starts at the buffer head.
+ uint8_t* expect_resizable_buf = AlignPointerUp(buffer_head_, alignment);
+ if (resizable_buf != expect_resizable_buf) {
+ MicroPrintf("Internal error: buffer is not resizable");
+ return kTfLiteError;
+ }
+ if (head_temp_ != next_temp_) {
+ MicroPrintf("ResetTempAllocations() is not called before ResizeBuffer().");
+ return kTfLiteError;
+ }
+
+ const size_t available_memory = buffer_tail_ - expect_resizable_buf;
+ if (available_memory < size) {
+ MicroPrintf(
+ "Failed to resize buffer. Requested: %u, available %u, missing: %u",
+ size, available_memory, size - available_memory);
+ return kTfLiteError;
+ }
+ head_temp_ = expect_resizable_buf + size;
+ next_temp_ = head_temp_;
+
+ return kTfLiteOk;
+}
+
+// Frees up the memory occupied by the resizable buffer.
+TfLiteStatus NonPersistentArenaBufferAllocator::DeallocateResizableBuffer(
+ uint8_t* resizable_buf) {
+ return ResizeBuffer(resizable_buf, 0, 1);
+}
+
+// Returns a pointer pointing to the start of the overlay memory, which is
+// used for activation tensors and scratch buffers by kernels at Invoke stage.
+uint8_t* NonPersistentArenaBufferAllocator::GetOverlayMemoryAddress() const {
+ return buffer_head_;
+}
+
+// Reserves the size of the overlay memory. This overlay is reserved for the
+// kernels at Invoke stage. This is referred to as the overlay because before
+// Invoket state, the same memory can be used for temp buffers. The layout of
+// the memory is planned by the memory planner separately at Invoke stage.
+TfLiteStatus
+NonPersistentArenaBufferAllocator::ReserveNonPersistentOverlayMemory(
+ size_t size, size_t alignment) {
+ uint8_t* expect_resizable_buf = AlignPointerUp(buffer_head_, alignment);
+ return ResizeBuffer(expect_resizable_buf, size, alignment);
+}
+
+// Returns the size of non-persistent buffer in use.
+size_t NonPersistentArenaBufferAllocator::GetNonPersistentUsedBytes() const {
+ return (next_temp_ - buffer_head_);
+}
+
+// Returns the number of bytes available with a given alignment. This number
+// takes in account any temporary allocations.
+size_t NonPersistentArenaBufferAllocator::GetAvailableMemory(
+ size_t alignment) const {
+ uint8_t* const aligned_temp = AlignPointerUp(next_temp_, alignment);
+ uint8_t* const aligned_tail = AlignPointerDown(buffer_tail_, alignment);
+ return aligned_tail - aligned_temp;
+}
+
+} // namespace tflite
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/arena_allocator/non_persistent_arena_buffer_allocator.h b/code/components/tflite-lib/tensorflow/lite/micro/arena_allocator/non_persistent_arena_buffer_allocator.h
new file mode 100644
index 00000000..aad41d3f
--- /dev/null
+++ b/code/components/tflite-lib/tensorflow/lite/micro/arena_allocator/non_persistent_arena_buffer_allocator.h
@@ -0,0 +1,104 @@
+/* Copyright 2022 The TensorFlow Authors. All Rights Reserved.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+==============================================================================*/
+#ifndef TENSORFLOW_LITE_MICRO_ARENA_ALLOCATOR_NON_PERSISTENT_ARENA_BUFFER_ALLOCATOR_H_
+#define TENSORFLOW_LITE_MICRO_ARENA_ALLOCATOR_NON_PERSISTENT_ARENA_BUFFER_ALLOCATOR_H_
+
+#include
+#include
+
+#include "tensorflow/lite/c/common.h"
+#include "tensorflow/lite/core/api/error_reporter.h"
+#include "tensorflow/lite/micro/arena_allocator/ibuffer_allocator.h"
+#include "tensorflow/lite/micro/compatibility.h"
+
+namespace tflite {
+
+// Implement INonPersistentBufferAllocator on an arena that is dedicated for
+// non-persistent buffers.
+class NonPersistentArenaBufferAllocator : public INonPersistentBufferAllocator {
+ public:
+ NonPersistentArenaBufferAllocator(uint8_t* buffer, size_t buffer_size);
+ virtual ~NonPersistentArenaBufferAllocator();
+
+ // Allocates a temporary buffer. This buffer is not resizable.
+ uint8_t* AllocateTemp(size_t size, size_t alignment) override;
+
+ // Signals that a temporary buffer is no longer needed.
+ void DeallocateTemp(uint8_t* buf) override;
+
+ // Returns true if all temporary buffers are already deallocated.
+ bool IsAllTempDeallocated() override;
+
+ // Signals that all temporary allocations can be reclaimed. TFLM calls this
+ // API when it knows that all temporary buffers that it requested has been
+ // deallocated.
+ TfLiteStatus ResetTempAllocations() override;
+
+ // Returns a buffer that is resizable viable ResizeBuffer().
+ uint8_t* AllocateResizableBuffer(size_t size, size_t alignment) override;
+
+ // Resizes a buffer that is previously returned by the
+ // AllocateResizableBuffer.
+ TfLiteStatus ResizeBuffer(uint8_t* resizable_buf, size_t size,
+ size_t alignment) override;
+
+ // Frees up the memory occupied by the resizable buffer.
+ TfLiteStatus DeallocateResizableBuffer(uint8_t* resizable_buf) override;
+
+ // Returns a pointer pointing to the start of the overlay memory, which is
+ // used for activation tensors and scratch buffers by kernels at Invoke stage.
+ uint8_t* GetOverlayMemoryAddress() const override;
+
+ // Reserves the size of the overlay memory. This overlay is reserved for the
+ // kernels at Invoke stage. This is referred to as the overlay because before
+ // Invoket state, the same memory can be used for temp buffers. The layout of
+ // the memory is planned by the memory planner separately at Invoke stage.
+ TfLiteStatus ReserveNonPersistentOverlayMemory(size_t size,
+ size_t alignment) override;
+
+ // Returns the size of non-persistent buffer in use.
+ size_t GetNonPersistentUsedBytes() const override;
+
+ // Returns the number of bytes available with a given alignment. This number
+ // takes in account any temporary allocations.
+ size_t GetAvailableMemory(size_t alignment) const override;
+
+ TF_LITE_REMOVE_VIRTUAL_DELETE
+
+ private:
+ // The memory arena that this allocator manages.
+ uint8_t* const buffer_head_;
+ uint8_t* const buffer_tail_;
+
+ // The whole region is split into two parts:
+ // buffer_head_ to head_temp_ - 1 belongs to the only resizable buffer.
+ // head_temp_ to buffer_tail_ can be used for (non-resizable) temp buffers.
+ uint8_t* head_temp_;
+
+ // next_temp_ points to the next available temp buffer allocation address and
+ // its range is between head_temp_ and buffer_tail_
+ uint8_t* next_temp_;
+
+ // XOR Check sum for outstanding temp buffers.
+ // If all temp buffers are deallocated OR no temp buffers are allocated,
+ // temp_buffer_ptr_check_sum_ == nullptr.
+ intptr_t temp_buffer_ptr_check_sum_ = 0;
+ // Count of outstanding temp buffers.
+ int temp_buffer_count_ = 0;
+};
+
+} // namespace tflite
+
+#endif // TENSORFLOW_LITE_MICRO_ARENA_ALLOCATOR_NON_PERSISTENT_ARENA_BUFFER_ALLOCATOR_H_
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/arena_allocator/persistent_arena_buffer_allocator.cc b/code/components/tflite-lib/tensorflow/lite/micro/arena_allocator/persistent_arena_buffer_allocator.cc
new file mode 100644
index 00000000..0ccc8fb1
--- /dev/null
+++ b/code/components/tflite-lib/tensorflow/lite/micro/arena_allocator/persistent_arena_buffer_allocator.cc
@@ -0,0 +1,52 @@
+/* Copyright 2022 The TensorFlow Authors. All Rights Reserved.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+==============================================================================*/
+#include "tensorflow/lite/micro/arena_allocator/persistent_arena_buffer_allocator.h"
+
+#include "tensorflow/lite/micro/memory_helpers.h"
+#include "tensorflow/lite/micro/micro_error_reporter.h"
+
+namespace tflite {
+
+PersistentArenaBufferAllocator::PersistentArenaBufferAllocator(
+ uint8_t* buffer, size_t buffer_size)
+ : buffer_head_(buffer),
+ buffer_tail_(buffer + buffer_size),
+ tail_temp_(buffer_tail_) {}
+
+PersistentArenaBufferAllocator::~PersistentArenaBufferAllocator() {}
+
+uint8_t* PersistentArenaBufferAllocator::AllocatePersistentBuffer(
+ size_t size, size_t alignment) {
+ uint8_t* const aligned_result =
+ AlignPointerDown(tail_temp_ - size, alignment);
+ if (aligned_result < buffer_head_) {
+#ifndef TF_LITE_STRIP_ERROR_STRINGS
+ const size_t missing_memory = buffer_head_ - aligned_result;
+ MicroPrintf(
+ "Failed to allocate tail memory. Requested: %u, "
+ "available %u, missing: %u",
+ size, size - missing_memory, missing_memory);
+#endif
+ return nullptr;
+ }
+ tail_temp_ = aligned_result;
+ return aligned_result;
+}
+
+size_t PersistentArenaBufferAllocator::GetPersistentUsedBytes() const {
+ return buffer_tail_ - tail_temp_;
+}
+
+} // namespace tflite
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/arena_allocator/persistent_arena_buffer_allocator.h b/code/components/tflite-lib/tensorflow/lite/micro/arena_allocator/persistent_arena_buffer_allocator.h
new file mode 100644
index 00000000..10145d72
--- /dev/null
+++ b/code/components/tflite-lib/tensorflow/lite/micro/arena_allocator/persistent_arena_buffer_allocator.h
@@ -0,0 +1,59 @@
+/* Copyright 2022 The TensorFlow Authors. All Rights Reserved.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+==============================================================================*/
+#ifndef TENSORFLOW_LITE_MICRO_ARENA_ALLOCATOR_PERSISTENT_ARENA_BUFFER_ALLOCATOR_H_
+#define TENSORFLOW_LITE_MICRO_ARENA_ALLOCATOR_PERSISTENT_ARENA_BUFFER_ALLOCATOR_H_
+
+#include
+#include
+
+#include "tensorflow/lite/c/common.h"
+#include "tensorflow/lite/core/api/error_reporter.h"
+#include "tensorflow/lite/micro/arena_allocator/ibuffer_allocator.h"
+#include "tensorflow/lite/micro/compatibility.h"
+
+namespace tflite {
+
+// PersistentArenaBufferAllocator is an implementatation of
+// IPersistentBufferAllocator interface on an arena that is dedicated for
+// persistent buffers.
+class PersistentArenaBufferAllocator : public IPersistentBufferAllocator {
+ public:
+ PersistentArenaBufferAllocator(uint8_t* buffer, size_t buffer_size);
+ virtual ~PersistentArenaBufferAllocator();
+
+ // Allocates persistent memory. The persistent buffer is never freed.
+ // Returns nullptr if errors occured.
+ uint8_t* AllocatePersistentBuffer(size_t size, size_t alignment) override;
+
+ // Returns the size of all persistent allocations in bytes.
+ size_t GetPersistentUsedBytes() const override;
+
+ TF_LITE_REMOVE_VIRTUAL_DELETE
+ private:
+ // The memory arena that this allocator manages.
+ uint8_t* const buffer_head_;
+ uint8_t* const buffer_tail_;
+
+ // The whole region is split into two parts:
+ // tail_temp_ to buffer_tail_ contains allocated buffers;
+ // buffer_head_ to tail_temp_ - 1 belongs to still available spaces.
+ // So in essence, the allocated region grows from the bottom and emulates
+ // SimpleMemoryAllocator's persistent part.
+ uint8_t* tail_temp_;
+};
+
+} // namespace tflite
+
+#endif // TENSORFLOW_LITE_MICRO_ARENA_ALLOCATOR_PERSISTENT_ARENA_BUFFER_ALLOCATOR_H_
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/recording_simple_memory_allocator.cc b/code/components/tflite-lib/tensorflow/lite/micro/arena_allocator/recording_simple_memory_allocator.cc
similarity index 97%
rename from code/components/tflite-lib/tensorflow/lite/micro/recording_simple_memory_allocator.cc
rename to code/components/tflite-lib/tensorflow/lite/micro/arena_allocator/recording_simple_memory_allocator.cc
index 6d3e72bd..0efb6512 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/recording_simple_memory_allocator.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/arena_allocator/recording_simple_memory_allocator.cc
@@ -13,7 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
-#include "tensorflow/lite/micro/recording_simple_memory_allocator.h"
+#include "tensorflow/lite/micro/arena_allocator/recording_simple_memory_allocator.h"
#include
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/recording_simple_memory_allocator.h b/code/components/tflite-lib/tensorflow/lite/micro/arena_allocator/recording_simple_memory_allocator.h
similarity index 87%
rename from code/components/tflite-lib/tensorflow/lite/micro/recording_simple_memory_allocator.h
rename to code/components/tflite-lib/tensorflow/lite/micro/arena_allocator/recording_simple_memory_allocator.h
index a251e940..1abe43dd 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/recording_simple_memory_allocator.h
+++ b/code/components/tflite-lib/tensorflow/lite/micro/arena_allocator/recording_simple_memory_allocator.h
@@ -13,11 +13,11 @@ See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
-#ifndef TENSORFLOW_LITE_MICRO_RECORDING_SIMPLE_MEMORY_ALLOCATOR_H_
-#define TENSORFLOW_LITE_MICRO_RECORDING_SIMPLE_MEMORY_ALLOCATOR_H_
+#ifndef TENSORFLOW_LITE_MICRO_ARENA_ALLOCATOR_RECORDING_SIMPLE_MEMORY_ALLOCATOR_H_
+#define TENSORFLOW_LITE_MICRO_ARENA_ALLOCATOR_RECORDING_SIMPLE_MEMORY_ALLOCATOR_H_
+#include "tensorflow/lite/micro/arena_allocator/simple_memory_allocator.h"
#include "tensorflow/lite/micro/compatibility.h"
-#include "tensorflow/lite/micro/simple_memory_allocator.h"
namespace tflite {
@@ -62,4 +62,4 @@ class RecordingSimpleMemoryAllocator : public SimpleMemoryAllocator {
} // namespace tflite
-#endif // TENSORFLOW_LITE_MICRO_RECORDING_SIMPLE_MEMORY_ALLOCATOR_H_
+#endif // TENSORFLOW_LITE_MICRO_ARENA_ALLOCATOR_RECORDING_SIMPLE_MEMORY_ALLOCATOR_H_
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/simple_memory_allocator.cc b/code/components/tflite-lib/tensorflow/lite/micro/arena_allocator/simple_memory_allocator.cc
similarity index 99%
rename from code/components/tflite-lib/tensorflow/lite/micro/simple_memory_allocator.cc
rename to code/components/tflite-lib/tensorflow/lite/micro/arena_allocator/simple_memory_allocator.cc
index e5d87afb..3e3ea4bd 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/simple_memory_allocator.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/arena_allocator/simple_memory_allocator.cc
@@ -13,7 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
-#include "tensorflow/lite/micro/simple_memory_allocator.h"
+#include "tensorflow/lite/micro/arena_allocator/simple_memory_allocator.h"
#include
#include
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/simple_memory_allocator.h b/code/components/tflite-lib/tensorflow/lite/micro/arena_allocator/simple_memory_allocator.h
similarity index 95%
rename from code/components/tflite-lib/tensorflow/lite/micro/simple_memory_allocator.h
rename to code/components/tflite-lib/tensorflow/lite/micro/arena_allocator/simple_memory_allocator.h
index d88c4a3d..92d0e425 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/simple_memory_allocator.h
+++ b/code/components/tflite-lib/tensorflow/lite/micro/arena_allocator/simple_memory_allocator.h
@@ -13,16 +13,16 @@ See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
-#ifndef TENSORFLOW_LITE_MICRO_SIMPLE_MEMORY_ALLOCATOR_H_
-#define TENSORFLOW_LITE_MICRO_SIMPLE_MEMORY_ALLOCATOR_H_
+#ifndef TENSORFLOW_LITE_MICRO_ARENA_ALLOCATOR_SIMPLE_MEMORY_ALLOCATOR_H_
+#define TENSORFLOW_LITE_MICRO_ARENA_ALLOCATOR_SIMPLE_MEMORY_ALLOCATOR_H_
#include
#include
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/core/api/error_reporter.h"
+#include "tensorflow/lite/micro/arena_allocator/ibuffer_allocator.h"
#include "tensorflow/lite/micro/compatibility.h"
-#include "tensorflow/lite/micro/ibuffer_allocator.h"
namespace tflite {
@@ -147,4 +147,4 @@ class SimpleMemoryAllocator : public INonPersistentBufferAllocator,
} // namespace tflite
-#endif // TENSORFLOW_LITE_MICRO_SIMPLE_MEMORY_ALLOCATOR_H_
+#endif // TENSORFLOW_LITE_MICRO_ARENA_ALLOCATOR_SIMPLE_MEMORY_ALLOCATOR_H_
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/fake_micro_context.cc b/code/components/tflite-lib/tensorflow/lite/micro/fake_micro_context.cc
index 5a5ba9ab..36dd062a 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/fake_micro_context.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/fake_micro_context.cc
@@ -16,10 +16,10 @@ limitations under the License.
#include "tensorflow/lite/micro/fake_micro_context.h"
#include "tensorflow/lite/kernels/internal/compatibility.h"
+#include "tensorflow/lite/micro/arena_allocator/simple_memory_allocator.h"
#include "tensorflow/lite/micro/micro_allocator.h"
#include "tensorflow/lite/micro/micro_arena_constants.h"
#include "tensorflow/lite/micro/micro_error_reporter.h"
-#include "tensorflow/lite/micro/simple_memory_allocator.h"
namespace tflite {
namespace {
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/activations.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/activations.cc
index c556ac64..e0b79631 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/activations.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/activations.cc
@@ -24,6 +24,7 @@ limitations under the License.
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/kernels/op_macros.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
+#include "tensorflow/lite/micro/micro_error_reporter.h"
#include "tensorflow/lite/micro/micro_utils.h"
namespace tflite {
@@ -60,8 +61,8 @@ TfLiteStatus ReluEval(TfLiteContext* context, TfLiteNode* node) {
return kTfLiteOk;
}
default: {
- TF_LITE_KERNEL_LOG(context, "Only float32 is supported currently, got %s",
- TfLiteTypeGetName(input->type));
+ MicroPrintf("Only float32 is supported currently, got %s",
+ TfLiteTypeGetName(input->type));
return kTfLiteError;
}
}
@@ -99,8 +100,8 @@ TfLiteStatus Relu6Eval(TfLiteContext* context, TfLiteNode* node) {
return kTfLiteOk;
}
default: {
- TF_LITE_KERNEL_LOG(context, "Only float32 is supported currently, got %s",
- TfLiteTypeGetName(input->type));
+ MicroPrintf("Only float32 is supported currently, got %s",
+ TfLiteTypeGetName(input->type));
return kTfLiteError;
}
}
@@ -109,25 +110,11 @@ TfLiteStatus Relu6Eval(TfLiteContext* context, TfLiteNode* node) {
} // namespace
TfLiteRegistration Register_RELU() {
- return {/*init=*/ReluInit,
- /*free=*/nullptr,
- /*prepare=*/ReluPrepare,
- /*invoke=*/ReluEval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(ReluInit, ReluPrepare, ReluEval);
}
TfLiteRegistration Register_RELU6() {
- return {/*init=*/Relu6Init,
- /*free=*/nullptr,
- /*prepare=*/Relu6Prepare,
- /*invoke=*/Relu6Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(Relu6Init, Relu6Prepare, Relu6Eval);
}
} // namespace tflite
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/add.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/add.cc
index 75523d14..f75db4e5 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/add.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/add.cc
@@ -159,14 +159,7 @@ TfLiteStatus AddEval(TfLiteContext* context, TfLiteNode* node) {
}
TfLiteRegistration Register_ADD() {
- return {/*init=*/AddInit,
- /*free=*/nullptr,
- /*prepare=*/AddPrepare,
- /*invoke=*/AddEval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(AddInit, AddPrepare, AddEval);
}
} // namespace tflite
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/add_n.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/add_n.cc
index 5d0ab724..ce064687 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/add_n.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/add_n.cc
@@ -208,14 +208,7 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
} // namespace
TfLiteRegistration Register_ADD_N() {
- return {/*init=*/nullptr,
- /*free=*/nullptr,
- /*prepare=*/Prepare,
- /*invoke=*/Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(nullptr, Prepare, Eval);
}
} // namespace tflite
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/arg_min_max.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/arg_min_max.cc
index 8217a4a0..a8aa5a48 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/arg_min_max.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/arg_min_max.cc
@@ -104,25 +104,11 @@ TfLiteStatus ArgMaxEval(TfLiteContext* context, TfLiteNode* node) {
} // namespace arg_min_max
TfLiteRegistration Register_ARG_MAX() {
- return {/*init=*/nullptr,
- /*free=*/nullptr,
- /*prepare=*/nullptr,
- /*invoke=*/arg_min_max::ArgMaxEval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(nullptr, nullptr, arg_min_max::ArgMaxEval);
}
TfLiteRegistration Register_ARG_MIN() {
- return {/*init=*/nullptr,
- /*free=*/nullptr,
- /*prepare=*/nullptr,
- /*invoke=*/arg_min_max::ArgMinEval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(nullptr, nullptr, arg_min_max::ArgMinEval);
}
} // namespace micro
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/assign_variable.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/assign_variable.cc
index e28ebebb..a770d0aa 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/assign_variable.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/assign_variable.cc
@@ -95,14 +95,7 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
} // namespace.
TfLiteRegistration Register_ASSIGN_VARIABLE() {
- return {/*init=*/nullptr,
- /*free=*/nullptr,
- /*prepare=*/Prepare,
- /*invoke=*/Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(nullptr, Prepare, Eval);
}
} // namespace tflite
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/batch_to_space_nd.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/batch_to_space_nd.cc
index 07b680df..be82d942 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/batch_to_space_nd.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/batch_to_space_nd.cc
@@ -105,14 +105,7 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
} // namespace.
TfLiteRegistration Register_BATCH_TO_SPACE_ND() {
- return {/*init=*/nullptr,
- /*free=*/nullptr,
- /*prepare=*/Prepare,
- /*invoke=*/Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(nullptr, Prepare, Eval);
}
} // namespace tflite
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/broadcast_args.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/broadcast_args.cc
index fa333249..be2672ec 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/broadcast_args.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/broadcast_args.cc
@@ -84,14 +84,8 @@ TfLiteStatus BroadcastArgsEval(TfLiteContext* context, TfLiteNode* node) {
} // namespace
TfLiteRegistration Register_BROADCAST_ARGS() {
- return {/*init=*/nullptr,
- /*free=*/nullptr,
- /*prepare=*/BroadcastArgsPrepare,
- /*invoke=*/BroadcastArgsEval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(nullptr, BroadcastArgsPrepare,
+ BroadcastArgsEval);
}
-} // namespace tflite
\ No newline at end of file
+} // namespace tflite
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/broadcast_to.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/broadcast_to.cc
index 5302faf1..63a14db2 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/broadcast_to.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/broadcast_to.cc
@@ -116,14 +116,8 @@ TfLiteStatus BroadcastToEval(TfLiteContext* context, TfLiteNode* node) {
} // namespace
TfLiteRegistration Register_BROADCAST_TO() {
- return {/*init=*/nullptr,
- /*free=*/nullptr,
- /*prepare=*/BroadcastToPrepare,
- /*invoke=*/BroadcastToEval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(nullptr, BroadcastToPrepare,
+ BroadcastToEval);
}
-} // namespace tflite
\ No newline at end of file
+} // namespace tflite
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/call_once.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/call_once.cc
index 4db39f7d..200242b2 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/call_once.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/call_once.cc
@@ -82,14 +82,7 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
} // namespace.
TfLiteRegistration Register_CALL_ONCE() {
- return {/*init=*/Init,
- /*free=*/nullptr,
- /*prepare=*/Prepare,
- /*invoke=*/Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(Init, Prepare, Eval);
}
} // namespace tflite
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/cast.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/cast.cc
index dc651a24..a1f4516b 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/cast.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/cast.cc
@@ -108,14 +108,7 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
} // namespace
TfLiteRegistration Register_CAST() {
- return {/*init=*/nullptr,
- /*free=*/nullptr,
- /*prepare=*/Prepare,
- /*invoke=*/Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(nullptr, Prepare, Eval);
}
} // namespace tflite
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/ceil.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/ceil.cc
index d0a48f91..a390a735 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/ceil.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/ceil.cc
@@ -67,14 +67,7 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
} // namespace ceil
TfLiteRegistration Register_CEIL() {
- return {/*init=*/nullptr,
- /*free=*/nullptr,
- /*prepare=*/ceil::Prepare,
- /*invoke=*/ceil::Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(nullptr, ceil::Prepare, ceil::Eval);
}
} // namespace micro
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/circular_buffer.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/circular_buffer.cc
index bda3e66a..a66a61c5 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/circular_buffer.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/circular_buffer.cc
@@ -108,14 +108,7 @@ TfLiteStatus CircularBufferEval(TfLiteContext* context, TfLiteNode* node) {
}
TfLiteRegistration* Register_CIRCULAR_BUFFER() {
- static TfLiteRegistration r = {/*init=*/CircularBufferInit,
- /*free=*/nullptr,
- /*prepare=*/CircularBufferPrepare,
- /*invoke=*/CircularBufferEval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ static TfLiteRegistration r = tflite::micro::RegisterOp(CircularBufferInit, CircularBufferPrepare, CircularBufferEval);
return &r;
}
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/comparisons.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/comparisons.cc
index 925c3fb5..cff15e4d 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/comparisons.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/comparisons.cc
@@ -583,69 +583,33 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
} // namespace comparisons
TfLiteRegistration Register_EQUAL() {
- return {/*init=*/comparisons::Init,
- /*free=*/nullptr,
- /*prepare=*/comparisons::Prepare,
- /*invoke=*/comparisons::EqualEval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(comparisons::Init, comparisons::Prepare,
+ comparisons::EqualEval);
}
TfLiteRegistration Register_NOT_EQUAL() {
- return {/*init=*/comparisons::Init,
- /*free=*/nullptr,
- /*prepare=*/comparisons::Prepare,
- /*invoke=*/comparisons::NotEqualEval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(comparisons::Init, comparisons::Prepare,
+ comparisons::NotEqualEval);
}
TfLiteRegistration Register_GREATER() {
- return {/*init=*/comparisons::Init,
- /*free=*/nullptr,
- /*prepare=*/comparisons::Prepare,
- /*invoke=*/comparisons::GreaterEval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(comparisons::Init, comparisons::Prepare,
+ comparisons::GreaterEval);
}
TfLiteRegistration Register_GREATER_EQUAL() {
- return {/*init=*/comparisons::Init,
- /*free=*/nullptr,
- /*prepare=*/comparisons::Prepare,
- /*invoke=*/comparisons::GreaterEqualEval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(comparisons::Init, comparisons::Prepare,
+ comparisons::GreaterEqualEval);
}
TfLiteRegistration Register_LESS() {
- return {/*init=*/comparisons::Init,
- /*free=*/nullptr,
- /*prepare=*/comparisons::Prepare,
- /*invoke=*/comparisons::LessEval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(comparisons::Init, comparisons::Prepare,
+ comparisons::LessEval);
}
TfLiteRegistration Register_LESS_EQUAL() {
- return {/*init=*/comparisons::Init,
- /*free=*/nullptr,
- /*prepare=*/comparisons::Prepare,
- /*invoke=*/comparisons::LessEqualEval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(comparisons::Init, comparisons::Prepare,
+ comparisons::LessEqualEval);
}
} // namespace micro
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/concatenation.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/concatenation.cc
index d727a0d5..34622c22 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/concatenation.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/concatenation.cc
@@ -148,12 +148,12 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE(context, input != nullptr);
int num_dimensions = NumDimensions(input);
- if (num_dimensions > 4) {
+ if (num_dimensions > RuntimeShape::kMaxSmallSize) {
TF_LITE_KERNEL_LOG(
context,
- "Op Concatenation does not currently support num dimensions >4 "
+ "Op Concatenation does not currently support num dimensions > %d "
"Tensor has %d dimensions.",
- num_dimensions);
+ RuntimeShape::kMaxSmallSize, num_dimensions);
return kTfLiteError;
}
micro_context->DeallocateTempTfLiteTensor(input);
@@ -252,14 +252,8 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
} // namespace concatenation
TfLiteRegistration Register_CONCATENATION() {
- return {/*init=*/concatenation::Init,
- /*free=*/nullptr,
- /*prepare=*/concatenation::Prepare,
- /*invoke=*/concatenation::Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(concatenation::Init, concatenation::Prepare,
+ concatenation::Eval);
}
} // namespace micro
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/conv.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/conv.cc
index 0fed1223..87ea92e6 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/conv.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/conv.cc
@@ -25,6 +25,7 @@ limitations under the License.
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/kernels/padding.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
+#include "tensorflow/lite/micro/micro_error_reporter.h"
namespace tflite {
namespace {
@@ -67,23 +68,47 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
tflite::micro::GetTensorShape(filter),
tflite::micro::GetTensorData(filter),
tflite::micro::GetTensorShape(bias),
- tflite::micro::GetTensorData(bias),
+ tflite::micro::GetOptionalTensorData(bias),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData(output),
tflite::micro::GetTensorShape(nullptr), nullptr);
break;
}
case kTfLiteInt16: {
- reference_integer_ops::ConvPerChannel(
- ConvParamsQuantized(params, data), data.per_channel_output_multiplier,
- data.per_channel_output_shift, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData(input),
- tflite::micro::GetTensorShape(filter),
- tflite::micro::GetTensorData(filter),
- tflite::micro::GetTensorShape(bias),
- tflite::micro::GetTensorData(bias),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData(output));
+ switch (bias->type) {
+ case kTfLiteInt32: {
+ reference_integer_ops::ConvPerChannel(
+ ConvParamsQuantized(params, data),
+ data.per_channel_output_multiplier, data.per_channel_output_shift,
+ tflite::micro::GetTensorShape(input),
+ tflite::micro::GetTensorData(input),
+ tflite::micro::GetTensorShape(filter),
+ tflite::micro::GetTensorData(filter),
+ tflite::micro::GetTensorShape(bias),
+ tflite::micro::GetOptionalTensorData(bias),
+ tflite::micro::GetTensorShape(output),
+ tflite::micro::GetTensorData(output));
+ break;
+ }
+ case kTfLiteInt64: {
+ reference_integer_ops::ConvPerChannel(
+ ConvParamsQuantized(params, data),
+ data.per_channel_output_multiplier, data.per_channel_output_shift,
+ tflite::micro::GetTensorShape(input),
+ tflite::micro::GetTensorData(input),
+ tflite::micro::GetTensorShape(filter),
+ tflite::micro::GetTensorData(filter),
+ tflite::micro::GetTensorShape(bias),
+ tflite::micro::GetOptionalTensorData(bias),
+ tflite::micro::GetTensorShape(output),
+ tflite::micro::GetTensorData(output));
+ break;
+ }
+ default:
+ MicroPrintf("Bias type %s (%d) not supported.",
+ TfLiteTypeGetName(bias->type), bias->type);
+ return kTfLiteError;
+ }
break;
}
case kTfLiteInt8: {
@@ -94,14 +119,14 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
tflite::micro::GetTensorShape(filter),
tflite::micro::GetTensorData(filter),
tflite::micro::GetTensorShape(bias),
- tflite::micro::GetTensorData(bias),
+ tflite::micro::GetOptionalTensorData(bias),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData(output));
break;
}
default:
- TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
- TfLiteTypeGetName(input->type), input->type);
+ MicroPrintf("Type %s (%d) not supported.", TfLiteTypeGetName(input->type),
+ input->type);
return kTfLiteError;
}
return kTfLiteOk;
@@ -110,14 +135,7 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
} // namespace
TfLiteRegistration Register_CONV_2D() {
- return {/*init=*/Init,
- /*free=*/nullptr,
- /*prepare=*/ConvPrepare,
- /*invoke=*/Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(Init, ConvPrepare, Eval);
}
} // namespace tflite
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/conv_test.h b/code/components/tflite-lib/tensorflow/lite/micro/kernels/conv_test.h
index 38b69525..47ba8ac4 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/conv_test.h
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/conv_test.h
@@ -97,6 +97,16 @@ TfLiteStatus TestConvQuantizedPerChannel(
float output_scale, int output_zero_point, TfLiteConvParams* conv_params,
TfLiteRegistration registration, int16_t* output_data);
+TfLiteStatus TestConvQuantizedPerChannel(
+ int* input_dims_data, const float* input_data, int16_t* input_quantized,
+ float input_scale, int input_zero_point, int* filter_dims_data,
+ const float* filter_data, int8_t* filter_data_quantized,
+ int* bias_dims_data, const float* bias_data, int32_t* bias_data_quantized,
+ float* bias_scales, int* bias_zero_points, int* output_dims_data,
+ const float* expected_output_data, int16_t* expected_output_data_quantized,
+ float output_scale, int output_zero_point, TfLiteConvParams* conv_params,
+ TfLiteRegistration registration, int16_t* output_data);
+
} // namespace testing
} // namespace tflite
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/cumsum.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/cumsum.cc
index 61f7af23..eedc61fd 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/cumsum.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/cumsum.cc
@@ -169,14 +169,7 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
} // namespace
TfLiteRegistration Register_CUMSUM() {
- return {/*init=*/nullptr,
- /*free=*/nullptr,
- /*prepare=*/Prepare,
- /*invoke=*/Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(nullptr, Prepare, Eval);
}
} // namespace tflite
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/depth_to_space.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/depth_to_space.cc
index cce93c9c..ec000540 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/depth_to_space.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/depth_to_space.cc
@@ -136,14 +136,7 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
} // namespace
TfLiteRegistration Register_DEPTH_TO_SPACE() {
- return {/*init=*/nullptr,
- /*free=*/nullptr,
- /*prepare=*/Prepare,
- /*invoke=*/Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(nullptr, Prepare, Eval);
}
} // namespace tflite
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/depthwise_conv.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/depthwise_conv.cc
index 8a58433a..d2468ff9 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/depthwise_conv.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/depthwise_conv.cc
@@ -62,7 +62,7 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
tflite::micro::GetTensorShape(filter),
tflite::micro::GetTensorData(filter),
tflite::micro::GetTensorShape(bias),
- tflite::micro::GetTensorData(bias),
+ tflite::micro::GetOptionalTensorData(bias),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData(output));
break;
@@ -76,7 +76,7 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
tflite::micro::GetTensorShape(filter),
tflite::micro::GetTensorData(filter),
tflite::micro::GetTensorShape(bias),
- tflite::micro::GetTensorData(bias),
+ tflite::micro::GetOptionalTensorData(bias),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData(output));
break;
@@ -92,14 +92,7 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
} // namespace
TfLiteRegistration Register_DEPTHWISE_CONV_2D() {
- return {/*init=*/Init,
- /*free=*/nullptr,
- /*prepare=*/DepthwiseConvPrepare,
- /*invoke=*/Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(Init, DepthwiseConvPrepare, Eval);
}
} // namespace tflite
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/depthwise_conv.h b/code/components/tflite-lib/tensorflow/lite/micro/kernels/depthwise_conv.h
index 7a7eb0ba..562438d7 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/depthwise_conv.h
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/depthwise_conv.h
@@ -1,4 +1,4 @@
-/* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
+/* Copyright 2022 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
@@ -49,6 +49,32 @@ TfLiteStatus CalculateOpDataDepthwiseConv(
TfLiteStatus DepthwiseConvPrepare(TfLiteContext* context, TfLiteNode* node);
+// This is the most generic TfLiteRegistration. The actual supported types may
+// still be target dependent. The only requirement is that every implementation
+// (reference or optimized) must define this function.
+TfLiteRegistration Register_DEPTHWISE_CONV_2D();
+
+#if defined(CMSIS_NN)
+// Returns a TfLiteRegistration struct for kernel variant that only supports
+// int8 activations and int8 weights and uses the latency optimized
+// implementations.
+TfLiteRegistration Register_DEPTHWISE_CONV_2D_INT8();
+
+// Returns a TfLiteRegistration struct for kernel variant that only supports
+// int16 activations and int8 weights and uses the latency optimized
+// implementations.
+TfLiteRegistration Register_DEPTHWISE_CONV_2D_INT16();
+
+#else
+inline TfLiteRegistration Register_DEPTHWISE_CONV_2D_INT8() {
+ return Register_DEPTHWISE_CONV_2D();
+}
+
+inline TfLiteRegistration Register_DEPTHWISE_CONV_2D_INT16() {
+ return Register_DEPTHWISE_CONV_2D();
+}
+#endif
+
} // namespace tflite
#endif // TENSORFLOW_LITE_MICRO_KERNELS_DEPTHWISE_CONV_H_
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/dequantize.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/dequantize.cc
index 4438ea33..1cf7f133 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/dequantize.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/dequantize.cc
@@ -57,6 +57,13 @@ TfLiteStatus DequantizeEval(TfLiteContext* context, TfLiteNode* node) {
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData(output));
break;
+ case kTfLiteUInt8:
+ reference_ops::Dequantize(data->quantization_params,
+ tflite::micro::GetTensorShape(input),
+ tflite::micro::GetTensorData(input),
+ tflite::micro::GetTensorShape(output),
+ tflite::micro::GetTensorData(output));
+ break;
default:
MicroPrintf("Input %s, output %s not supported.",
TfLiteTypeGetName(input->type),
@@ -74,14 +81,8 @@ TfLiteStatus DequantizeEval(TfLiteContext* context, TfLiteNode* node) {
}
TfLiteRegistration Register_DEQUANTIZE() {
- return {/*init=*/DequantizeInit,
- /*free=*/nullptr,
- /*prepare=*/DequantizePrepare,
- /*invoke=*/DequantizeEval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(DequantizeInit, DequantizePrepare,
+ DequantizeEval);
}
} // namespace tflite
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/dequantize_common.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/dequantize_common.cc
index 4be5ad89..438f9cda 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/dequantize_common.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/dequantize_common.cc
@@ -41,8 +41,9 @@ TfLiteStatus DequantizePrepare(TfLiteContext* context, TfLiteNode* node) {
TfLiteTensor* output = micro_context->AllocateTempOutputTensor(node, 0);
TF_LITE_ENSURE(context, output != nullptr);
- TF_LITE_ENSURE(context,
- input->type == kTfLiteInt8 || input->type == kTfLiteInt16);
+ TF_LITE_ENSURE(context, input->type == kTfLiteInt8 ||
+ input->type == kTfLiteInt16 ||
+ input->type == kTfLiteUInt8);
TF_LITE_ENSURE(context, output->type == kTfLiteFloat32);
if (output->type == kTfLiteInt32) {
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/detection_postprocess.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/detection_postprocess.cc
index efe57e2f..326d87b5 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/detection_postprocess.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/detection_postprocess.cc
@@ -149,8 +149,6 @@ void* Init(TfLiteContext* context, const char* buffer, size_t length) {
return op_data;
}
-void Free(TfLiteContext* context, void* buffer) {}
-
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
auto* op_data = static_cast(node->user_data);
@@ -802,14 +800,7 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
} // namespace
TfLiteRegistration* Register_DETECTION_POSTPROCESS() {
- static TfLiteRegistration r = {/*init=*/Init,
- /*free=*/Free,
- /*prepare=*/Prepare,
- /*invoke=*/Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ static TfLiteRegistration r = tflite::micro::RegisterOp(Init, Prepare, Eval);
return &r;
}
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/elementwise.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/elementwise.cc
index 366dd610..b1cb1dcb 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/elementwise.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/elementwise.cc
@@ -1,4 +1,4 @@
-/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
+/* Copyright 2022 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
@@ -16,6 +16,8 @@ limitations under the License.
#include
#include "tensorflow/lite/c/common.h"
+#include "tensorflow/lite/kernels/internal/common.h"
+#include "tensorflow/lite/kernels/internal/quantization_util.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
@@ -27,6 +29,22 @@ namespace micro {
namespace elementwise {
namespace {
+constexpr int kAbsNameId = 0;
+constexpr int kRsrqtNameId = 1;
+
+const int kElementwiseInputTensor = 0;
+const int kElementwiseOutputTensor = 0;
+
+struct OpDataAbsRsqrt {
+ int32_t multiplier;
+ int shift;
+ int input_offset;
+ int output_offset;
+ bool needs_rescale;
+ TfLiteQuantizationType input_quantization_type;
+ TfLiteType input_type;
+};
+
bool IsNumericSupportedType(const TfLiteType type) {
return type == kTfLiteFloat32;
}
@@ -35,16 +53,40 @@ bool IsLogicalSupportedType(const TfLiteType type) {
return type == kTfLiteBool;
}
+bool IsAbsSupportedType(const TfLiteType type) {
+ return type == kTfLiteFloat32 || type == kTfLiteInt8 || type == kTfLiteInt16;
+}
+
+bool IsRsqrtSupportedType(const TfLiteType type) {
+ return type == kTfLiteFloat32 || type == kTfLiteInt8;
+}
+
+inline void SetAbsOutputMultiplier(const float input_scale,
+ const float output_scale,
+ int32_t* multiplier, int* shift) {
+ QuantizeMultiplier(static_cast(input_scale / output_scale),
+ multiplier, shift);
+}
+
+inline void SetRsqrtOutputMultiplier(const float input_scale,
+ const float output_scale,
+ int32_t* multiplier, int* shift) {
+ const double scale =
+ 1. / static_cast((std::sqrt(input_scale) * output_scale));
+ QuantizeMultiplier(scale, multiplier, shift);
+}
+
typedef bool (*IsSupportedType)(TfLiteType);
template
TfLiteStatus GenericPrepare(TfLiteContext* context, TfLiteNode* node) {
MicroContext* micro_context = GetMicroContext(context);
-
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
- TfLiteTensor* input = micro_context->AllocateTempInputTensor(node, 0);
+ TfLiteTensor* input =
+ micro_context->AllocateTempInputTensor(node, kElementwiseInputTensor);
TF_LITE_ENSURE(context, input != nullptr);
- TfLiteTensor* output = micro_context->AllocateTempOutputTensor(node, 0);
+ TfLiteTensor* output =
+ micro_context->AllocateTempOutputTensor(node, kElementwiseOutputTensor);
TF_LITE_ENSURE(context, output != nullptr);
TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
if (!IsSupportedType(input->type)) {
@@ -58,9 +100,79 @@ TfLiteStatus GenericPrepare(TfLiteContext* context, TfLiteNode* node) {
return kTfLiteOk;
}
+typedef bool (*IsSupportedType)(TfLiteType);
+template
+TfLiteStatus PrepareAbsRsqrt(TfLiteContext* context, TfLiteNode* node) {
+ MicroContext* micro_context = GetMicroContext(context);
+ TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
+ TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
+ TfLiteTensor* input = micro_context->AllocateTempInputTensor(node, 0);
+ TF_LITE_ENSURE(context, input != nullptr);
+ TfLiteTensor* output = micro_context->AllocateTempOutputTensor(node, 0);
+ TF_LITE_ENSURE(context, output != nullptr);
+ TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
+ if (!IsSupportedType(input->type)) {
+ TF_LITE_KERNEL_LOG(context, "Input data type %s (%d) is not supported.",
+ TfLiteTypeGetName(input->type), input->type);
+ return kTfLiteError;
+ }
+
+ auto* op_data = static_cast(node->user_data);
+ op_data->input_type = input->type;
+
+ // For int16 type input, we support both quantized and non-quantized
+ // evaluation.
+ if (op_nameid == kAbsNameId) {
+ op_data->input_quantization_type = input->quantization.type;
+ }
+
+ if (input->type == kTfLiteInt8 ||
+ (input->type == kTfLiteInt16 &&
+ input->quantization.type != kTfLiteNoQuantization)) {
+ TF_LITE_ENSURE_EQ(context, input->quantization.type,
+ kTfLiteAffineQuantization);
+ TF_LITE_ENSURE_EQ(context, output->quantization.type,
+ kTfLiteAffineQuantization);
+ const auto* input_params =
+ reinterpret_cast(input->quantization.params);
+ const auto* output_params = reinterpret_cast(
+ output->quantization.params);
+ TF_LITE_ENSURE(context, input_params != nullptr);
+ TF_LITE_ENSURE(context, input_params->scale != nullptr);
+ TF_LITE_ENSURE(context, input_params->scale->size > 0);
+ TF_LITE_ENSURE(context, input_params->zero_point->size > 0);
+ TF_LITE_ENSURE(context, output_params != nullptr);
+ TF_LITE_ENSURE(context, output_params->scale != nullptr);
+ TF_LITE_ENSURE(context, output_params->scale->size > 0);
+ TF_LITE_ENSURE(context, output_params->zero_point->size > 0);
+ op_data->input_offset = input_params->zero_point->data[0];
+ op_data->output_offset = output_params->zero_point->data[0];
+ if (input->type == kTfLiteInt16) {
+ TF_LITE_ENSURE_EQ(context, op_data->input_offset, 0);
+ TF_LITE_ENSURE_EQ(context, op_data->output_offset, 0);
+ }
+ const float input_scale = input_params->scale->data[0];
+ const float output_scale = output_params->scale->data[0];
+ op_data->needs_rescale = input_scale != output_scale;
+ if (op_nameid == kAbsNameId && op_data->needs_rescale) {
+ SetAbsOutputMultiplier(input_scale, output_scale, &op_data->multiplier,
+ &op_data->shift);
+ } else if (op_nameid == kRsrqtNameId) {
+ SetRsqrtOutputMultiplier(input_scale, output_scale, &op_data->multiplier,
+ &op_data->shift);
+ }
+ }
+ micro_context->DeallocateTempTfLiteTensor(input);
+ micro_context->DeallocateTempTfLiteTensor(output);
+ return kTfLiteOk;
+}
+
template
-inline TfLiteStatus EvalImpl(TfLiteContext* context, TfLiteNode* node,
- T func(T), TfLiteType expected_type) {
+inline TfLiteStatus EvalImplQuantized(
+ TfLiteContext* context, TfLiteNode* node,
+ T func(TfLiteContext*, TfLiteNode*, T),
+ TfLiteStatus validate_input_func(TfLiteContext*, TfLiteNode*, T),
+ TfLiteType expected_type) {
const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0);
TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0);
TF_LITE_ENSURE_TYPES_EQ(context, input->type, expected_type);
@@ -68,6 +180,34 @@ inline TfLiteStatus EvalImpl(TfLiteContext* context, TfLiteNode* node,
const T* in_data = tflite::micro::GetTensorData(input);
T* out_data = tflite::micro::GetTensorData(output);
for (size_t i = 0; i < num_elements; ++i) {
+ if (validate_input_func) {
+ TF_LITE_ENSURE_OK(context,
+ validate_input_func(context, node, in_data[i]));
+ }
+ out_data[i] = func(context, node, in_data[i]);
+ }
+ return kTfLiteOk;
+}
+
+template
+inline T AbsHelper(T i) {
+ return std::abs(i);
+}
+
+template
+inline TfLiteStatus EvalImpl(TfLiteContext* context, TfLiteNode* node,
+ T func(T), TfLiteStatus validate_input_func(T),
+ TfLiteType expected_type) {
+ const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0);
+ TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0);
+ TF_LITE_ENSURE_TYPES_EQ(context, input->type, expected_type);
+ const size_t num_elements = ElementCount(*input->dims);
+ const T* in_data = tflite::micro::GetTensorData(input);
+ T* out_data = tflite::micro::GetTensorData(output);
+ for (size_t i = 0; i < num_elements; ++i) {
+ if (validate_input_func) {
+ TF_LITE_ENSURE_OK(context, validate_input_func(in_data[i]));
+ }
out_data[i] = func(in_data[i]);
}
return kTfLiteOk;
@@ -75,16 +215,114 @@ inline TfLiteStatus EvalImpl(TfLiteContext* context, TfLiteNode* node,
inline TfLiteStatus EvalNumeric(TfLiteContext* context, TfLiteNode* node,
float float_func(float)) {
- return EvalImpl(context, node, float_func, kTfLiteFloat32);
+ return EvalImpl(context, node, float_func,
+ /*validate_input_func=*/nullptr, kTfLiteFloat32);
}
inline TfLiteStatus EvalLogical(TfLiteContext* context, TfLiteNode* node,
+
bool bool_func(bool)) {
- return EvalImpl(context, node, bool_func, kTfLiteBool);
+ return EvalImpl(context, node, bool_func,
+ /*validate_input_func=*/nullptr, kTfLiteBool);
+}
+
+void* ElementWiseAbsRsqrtInit(TfLiteContext* context, const char* buffer,
+ size_t length) {
+ TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
+ return context->AllocatePersistentBuffer(context, sizeof(OpDataAbsRsqrt));
+}
+
+template
+inline T AbsEvalQuantized(TfLiteContext* context, TfLiteNode* node, T i) {
+ const auto* op_data = static_cast(node->user_data);
+ const int kMin = std::numeric_limits::min();
+ const int kMax = std::numeric_limits::max();
+
+ const int32_t value = std::abs(i - op_data->input_offset);
+ if (!op_data->needs_rescale) {
+ return static_cast(
+ std::min(std::max(static_cast(value + op_data->output_offset),
+ static_cast(kMin)),
+ static_cast(kMax)));
+ }
+
+ const int32_t output = tflite::MultiplyByQuantizedMultiplier(
+ value, op_data->multiplier, op_data->shift) +
+ op_data->output_offset;
+ return static_cast(std::min(
+ std::max(static_cast(output), static_cast(kMin)),
+ static_cast(kMax)));
+}
+
+template
+inline T RsqrtEvalQuantized(TfLiteContext* context, TfLiteNode* node, T i) {
+ const auto* op_data = static_cast(node->user_data);
+ const int kMin = std::numeric_limits::min();
+ const int kMax = std::numeric_limits::max();
+
+ const int32_t value = (i - op_data->input_offset);
+ const int32_t kShift = 20; // Shift to keep value integer.
+ if (value == 0) {
+ // Assume that any value close to 0 represents the max output value.
+ return static_cast(kMax);
+ }
+ int32_t inv_sqrt_multiplier;
+ int inv_sqrt_shift;
+ GetInvSqrtQuantizedMultiplierExp(value, kReverseShift, &inv_sqrt_multiplier,
+ &inv_sqrt_shift);
+ const int32_t data = tflite::MultiplyByQuantizedMultiplier(
+ static_cast(1), inv_sqrt_multiplier, inv_sqrt_shift + kShift);
+ const int32_t output =
+ tflite::MultiplyByQuantizedMultiplier(data, op_data->multiplier,
+ op_data->shift - kShift) +
+ op_data->output_offset;
+ return static_cast(std::min(
+ std::max(static_cast(output), static_cast(kMin)),
+ static_cast(kMax)));
+}
+
+template
+TfLiteStatus validate_input_func(TfLiteContext* context, TfLiteNode* node,
+ T i) {
+ const auto* op_data = static_cast(node->user_data);
+
+ TF_LITE_ENSURE_MSG(context, i >= op_data->input_offset,
+ "Rsqrt is only defined for positive values");
+ return static_cast(kTfLiteOk);
}
TfLiteStatus AbsEval(TfLiteContext* context, TfLiteNode* node) {
- return EvalNumeric(context, node, std::abs);
+ OpDataAbsRsqrt* op_data = reinterpret_cast(node->user_data);
+ TfLiteType type = op_data->input_type;
+ TfLiteQuantizationType input_quantization_type =
+ op_data->input_quantization_type;
+ TfLiteStatus eval_result;
+
+ switch (type) {
+ case kTfLiteFloat32:
+ eval_result = EvalNumeric(context, node, std::abs);
+ break;
+ case kTfLiteInt8:
+ eval_result =
+ EvalImplQuantized(context, node, AbsEvalQuantized,
+ /*validate_input_func=*/nullptr, type);
+ break;
+ case kTfLiteInt16:
+ eval_result =
+ input_quantization_type == kTfLiteNoQuantization
+ ? EvalImpl(context, node, AbsHelper,
+ /*validate_input_func=*/nullptr, type)
+ : EvalImplQuantized(context, node, AbsEvalQuantized,
+ /*validate_input_func=*/nullptr,
+ type);
+ break;
+ default:
+ TF_LITE_KERNEL_LOG(context, "Current data type %s is not supported.",
+ TfLiteTypeGetName(type));
+ return kTfLiteError;
+ break;
+ }
+ return eval_result;
}
TfLiteStatus SinEval(TfLiteContext* context, TfLiteNode* node) {
@@ -104,7 +342,23 @@ TfLiteStatus SqrtEval(TfLiteContext* context, TfLiteNode* node) {
}
TfLiteStatus RsqrtEval(TfLiteContext* context, TfLiteNode* node) {
- return EvalNumeric(context, node, [](float f) { return 1.f / std::sqrt(f); });
+ const auto* op_data = static_cast(node->user_data);
+ TfLiteType type = op_data->input_type;
+ switch (type) {
+ case kTfLiteFloat32:
+ return EvalImpl(
+ context, node, [](float f) { return 1.f / std::sqrt(f); },
+ /*validate_input_func=*/nullptr, type);
+ case kTfLiteInt8:
+ return EvalImplQuantized(context, node,
+ elementwise::RsqrtEvalQuantized,
+ elementwise::validate_input_func, type);
+
+ default:
+ TF_LITE_KERNEL_LOG(context, "Current data type %s is not supported.",
+ TfLiteTypeGetName(type));
+ return kTfLiteError;
+ }
}
TfLiteStatus SquareEval(TfLiteContext* context, TfLiteNode* node) {
@@ -119,101 +373,57 @@ TfLiteStatus LogicalNotEval(TfLiteContext* context, TfLiteNode* node) {
} // namespace elementwise
TfLiteRegistration Register_ABS() {
- return {/*init=*/nullptr,
- /*free=*/nullptr,
- /*prepare=*/
- elementwise::GenericPrepare,
- /*invoke=*/elementwise::AbsEval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(
+ elementwise::ElementWiseAbsRsqrtInit,
+ elementwise::PrepareAbsRsqrt,
+ elementwise::AbsEval);
}
TfLiteRegistration Register_SIN() {
- return {/*init=*/nullptr,
- /*free=*/nullptr,
- /*prepare=*/
- elementwise::GenericPrepare,
- /*invoke=*/elementwise::SinEval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(
+ nullptr, elementwise::GenericPrepare,
+ elementwise::SinEval);
}
TfLiteRegistration Register_COS() {
- return {/*init=*/nullptr,
- /*free=*/nullptr,
- /*prepare=*/
- elementwise::GenericPrepare,
- /*invoke=*/elementwise::CosEval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(
+ nullptr, elementwise::GenericPrepare,
+ elementwise::CosEval);
}
TfLiteRegistration Register_LOG() {
- return {/*init=*/nullptr,
- /*free=*/nullptr,
- /*prepare=*/
- elementwise::GenericPrepare,
- /*invoke=*/elementwise::LogEval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(
+ nullptr, elementwise::GenericPrepare,
+ elementwise::LogEval);
}
TfLiteRegistration Register_SQRT() {
- return {/*init=*/nullptr,
- /*free=*/nullptr,
- /*prepare=*/
- elementwise::GenericPrepare,
- /*invoke=*/elementwise::SqrtEval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(
+ nullptr, elementwise::GenericPrepare,
+ elementwise::SqrtEval);
}
TfLiteRegistration Register_RSQRT() {
- return {/*init=*/nullptr,
- /*free=*/nullptr,
- /*prepare=*/
- elementwise::GenericPrepare,
- /*invoke=*/elementwise::RsqrtEval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(
+ elementwise::ElementWiseAbsRsqrtInit,
+ elementwise::PrepareAbsRsqrt,
+ elementwise::RsqrtEval);
}
TfLiteRegistration Register_SQUARE() {
- return {/*init=*/nullptr,
- /*free=*/nullptr,
- /*prepare=*/
- elementwise::GenericPrepare,
- /*invoke=*/elementwise::SquareEval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(
+ nullptr, elementwise::GenericPrepare,
+ elementwise::SquareEval);
}
TfLiteRegistration Register_LOGICAL_NOT() {
- return {/*init=*/nullptr,
- /*free=*/nullptr,
- /*prepare=*/
- elementwise::GenericPrepare,
- /*invoke=*/elementwise::LogicalNotEval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(
+ nullptr, elementwise::GenericPrepare,
+ elementwise::LogicalNotEval);
}
} // namespace micro
} // namespace ops
-} // namespace tflite
+} // namespace tflite
\ No newline at end of file
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/elu.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/elu.cc
index b2cd19cc..0b64e89d 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/elu.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/elu.cc
@@ -146,14 +146,7 @@ TfLiteStatus EluEval(TfLiteContext* context, TfLiteNode* node) {
} // namespace
TfLiteRegistration Register_ELU() {
- return {/*init=*/EluInit,
- /*free=*/nullptr,
- /*prepare=*/EluPrepare,
- /*invoke=*/EluEval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(EluInit, EluPrepare, EluEval);
}
} // namespace tflite
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/esp_nn/add.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/esp_nn/add.cc
index 47a17d9f..2f1ac58d 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/esp_nn/add.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/esp_nn/add.cc
@@ -196,14 +196,7 @@ TfLiteStatus AddEval(TfLiteContext* context, TfLiteNode* node) {
}
TfLiteRegistration Register_ADD() {
- return {/*init=*/AddInit,
- /*free=*/nullptr,
- /*prepare=*/AddPrepare,
- /*invoke=*/AddEval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(AddInit, AddPrepare, AddEval);
}
} // namespace tflite
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/esp_nn/conv.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/esp_nn/conv.cc
index 09260482..919dd006 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/esp_nn/conv.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/esp_nn/conv.cc
@@ -112,9 +112,24 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
#if ESP_NN
if (input->type == kTfLiteInt8) {
+ data_dims_t input_dims = {
+ .width = input_width, .height = input_height,
+ .channels = input->dims->data[3], 1
+ };
+ data_dims_t output_dims = {
+ .width = output_width, .height = output_height,
+ .channels = output->dims->data[3], 1
+ };
+ data_dims_t filter_dims = {.width = filter_width, .height = filter_height, 0, 0};
+ conv_params_t conv_params = {
+ .in_offset = 0, .out_offset = 0,
+ .stride = {params.stride_width, params.stride_height},
+ .padding = {data->op_data.padding.width, data->op_data.padding.height},
+ .dilation = {0, 0}, .activation = {-128, 127}
+ };
+
int scratch_buf_size = esp_nn_get_conv_scratch_size(
- input_width, input_height, input->dims->data[3],
- output->dims->data[3], filter_width, filter_height);
+ &input_dims, &filter_dims, &output_dims, &conv_params);
if (scratch_buf_size > 0) {
TF_LITE_ENSURE_STATUS(context->RequestScratchBufferInArena(
context, scratch_buf_size, &data->buffer_idx));
@@ -191,18 +206,33 @@ inline void EvalQuantizedPerChannel(
const int input_size = input_width * input_height * input_depth;
const int output_size = output_width * output_height * output_depth;
+ data_dims_t input_dims = {
+ .width = input_width, .height = input_height,
+ .channels = input_depth, 1
+ };
+ data_dims_t output_dims = {
+ .width = output_width, .height = output_height,
+ .channels = output_depth, 1
+ };
+ data_dims_t filter_dims = {.width = filter_width, .height = filter_height, 0, 0};
+ conv_params_t conv_params = {
+ .in_offset = input_offset, .out_offset = output_offset,
+ .stride = {stride_width, stride_height},
+ .padding = {pad_width, pad_height},
+ .dilation = {0, 0},
+ .activation = {activation_min, activation_max}
+ };
+ quant_data_t quant_data = {
+ .shift = data.op_data.per_channel_output_shift,
+ .mult = data.op_data.per_channel_output_multiplier
+ };
+
for (int i_batch = 0; i_batch < batch_size; i_batch++) {
- esp_nn_conv_s8(input_data + i_batch * input_size,
- input_width, input_height, input_depth, input_offset,
- pad_width, pad_height, stride_width, stride_height,
- tflite::micro::GetTensorData(filter),
- filter_width, filter_height,
+ esp_nn_conv_s8(&input_dims, input_data + i_batch * input_size,
+ &filter_dims, tflite::micro::GetTensorData(filter),
tflite::micro::GetTensorData(bias),
- output_data + i_batch * output_size,
- output_width, output_height, output_depth, output_offset,
- data.op_data.per_channel_output_shift,
- data.op_data.per_channel_output_multiplier,
- activation_min, activation_max);
+ &output_dims, output_data + i_batch * output_size,
+ &conv_params, &quant_data);
}
} else {
reference_integer_ops::ConvPerChannel(
@@ -299,21 +329,16 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
TfLiteTypeGetName(input->type), input->type);
return kTfLiteError;
}
- conv_total_time += esp_timer_get_time() - start_time;
+ long long time_this_instance = esp_timer_get_time() - start_time;
+ conv_total_time += time_this_instance;
+ //printf("time this instance: %llu\n", time_this_instance / 1000);
return kTfLiteOk;
}
} // namespace
TfLiteRegistration Register_CONV_2D() {
- return {/*init=*/Init,
- /*free=*/nullptr,
- /*prepare=*/Prepare,
- /*invoke=*/Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(Init, Prepare, Eval);
}
} // namespace tflite
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/esp_nn/depthwise_conv.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/esp_nn/depthwise_conv.cc
index 5f2d9d50..a2460248 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/esp_nn/depthwise_conv.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/esp_nn/depthwise_conv.cc
@@ -112,21 +112,36 @@ inline void EvalQuantizedPerChannel(TfLiteContext* context, TfLiteNode* node,
if (data.buffer_idx > -1) {
scratch_buf = context->GetScratchBuffer(context, data.buffer_idx);
}
+
esp_nn_set_depthwise_conv_scratch_buf(scratch_buf);
+ data_dims_t input_dims = {
+ .width = input_width, .height = input_height,
+ .channels = input_depth, 1
+ };
+ data_dims_t output_dims = {
+ .width = output_width, .height = output_height,
+ .channels = output_depth, 1
+ };
+ data_dims_t filter_dims = {.width = filter_width, .height = filter_height, 0, 0};
+ dw_conv_params_t conv_params = {
+ .in_offset = input_offset, .out_offset = output_offset,
+ .ch_mult = depth_multiplier,
+ .stride = {stride_width, stride_height},
+ .padding = {pad_width, pad_height}, .dilation = {0, 0},
+ .activation = {activation_min, activation_max}
+ };
+ quant_data_t quant_data = {
+ .shift = data.op_data.per_channel_output_shift,
+ .mult = data.op_data.per_channel_output_multiplier
+ };
+
for (int i_batch = 0; i_batch < batch_size; i_batch++) {
- esp_nn_depthwise_conv_s8(input_data + i_batch * input_size, input_width,
- input_height, input_depth, input_offset,
- pad_width, pad_height,
- stride_width, stride_height, depth_multiplier,
- tflite::micro::GetTensorData(filter),
- filter_width, filter_height,
+ esp_nn_depthwise_conv_s8(&input_dims, input_data + i_batch * input_size,
+ &filter_dims, tflite::micro::GetTensorData(filter),
tflite::micro::GetTensorData(bias),
- output_data + i_batch * output_size,
- output_width, output_height, output_offset,
- data.op_data.per_channel_output_shift,
- data.op_data.per_channel_output_multiplier,
- activation_min, activation_max);
+ &output_dims, output_data + i_batch * output_size,
+ &conv_params, &quant_data);
}
} else {
reference_integer_ops::DepthwiseConvPerChannel(
@@ -209,9 +224,25 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
#if ESP_NN
if (input->type == kTfLiteInt8) {
+ data_dims_t input_dims = {
+ .width = input_width, .height = input_height,
+ .channels = input->dims->data[3], 1
+ };
+ data_dims_t output_dims = {
+ .width = output_width, .height = output_height,
+ .channels = output->dims->data[3], 1
+ };
+ data_dims_t filter_dims = {.width = filter_width, .height = filter_height, 0, 0};
+ dw_conv_params_t conv_params = {
+ .in_offset = 0, .out_offset = 0,
+ .ch_mult = params.depth_multiplier,
+ .stride = {params.stride_width, params.stride_height},
+ .padding = {data->op_data.padding.width, data->op_data.padding.height},
+ .dilation = {0, 0}, .activation = {-128, 127}
+ };
+
int scratch_buf_size = esp_nn_get_depthwise_conv_scratch_size(
- input_width, input_height, input->dims->data[3],
- params.depth_multiplier, filter_width, filter_height);
+ &input_dims, &filter_dims, &output_dims, &conv_params);
if (scratch_buf_size > 0) {
TF_LITE_ENSURE_STATUS(context->RequestScratchBufferInArena(
context, scratch_buf_size, &data->buffer_idx));
@@ -299,21 +330,17 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
TfLiteTypeGetName(input->type), input->type);
return kTfLiteError;
}
- dc_total_time += esp_timer_get_time() - start_time;
+ long long time_this_instance = esp_timer_get_time() - start_time;
+ dc_total_time += time_this_instance;
+ // printf("time this instance: %llu\n", time_this_instance / 1000);
+
return kTfLiteOk;
}
} // namespace
TfLiteRegistration Register_DEPTHWISE_CONV_2D() {
- return {/*init=*/Init,
- /*free=*/nullptr,
- /*prepare=*/Prepare,
- /*invoke=*/Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(Init, Prepare, Eval);
}
} // namespace tflite
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/esp_nn/fully_connected.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/esp_nn/fully_connected.cc
index 5e1705da..484cffb6 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/esp_nn/fully_connected.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/esp_nn/fully_connected.cc
@@ -185,14 +185,7 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
} // namespace
TfLiteRegistration Register_FULLY_CONNECTED() {
- return {/*init=*/Init,
- /*free=*/nullptr,
- /*prepare=*/Prepare,
- /*invoke=*/Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(Init, Prepare, Eval);
}
} // namespace tflite
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/esp_nn/mul.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/esp_nn/mul.cc
index 0e8a82f4..02413f5c 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/esp_nn/mul.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/esp_nn/mul.cc
@@ -118,14 +118,7 @@ TfLiteStatus MulEval(TfLiteContext* context, TfLiteNode* node) {
}
TfLiteRegistration Register_MUL() {
- return {/*init=*/MulInit,
- /*free=*/nullptr,
- /*prepare=*/MulPrepare,
- /*invoke=*/MulEval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(MulInit, MulPrepare, MulEval);
}
} // namespace tflite
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/esp_nn/pooling.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/esp_nn/pooling.cc
index d55bab82..b450929e 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/esp_nn/pooling.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/esp_nn/pooling.cc
@@ -221,25 +221,11 @@ void* Init(TfLiteContext* context, const char* buffer, size_t length) {
} // namespace
TfLiteRegistration Register_AVERAGE_POOL_2D() {
- return {/*init=*/Init,
- /*free=*/nullptr,
- /*prepare=*/PoolingPrepare,
- /*invoke=*/AverageEval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(Init, PoolingPrepare, AverageEval);
}
TfLiteRegistration Register_MAX_POOL_2D() {
- return {/*init=*/Init,
- /*free=*/nullptr,
- /*prepare=*/PoolingPrepare,
- /*invoke=*/MaxEval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(Init, PoolingPrepare, MaxEval);
}
} // namespace tflite
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/esp_nn/softmax.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/esp_nn/softmax.cc
new file mode 100644
index 00000000..9a967839
--- /dev/null
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/esp_nn/softmax.cc
@@ -0,0 +1,208 @@
+/* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+==============================================================================*/
+
+#include "tensorflow/lite/micro/kernels/softmax.h"
+
+#include "tensorflow/lite/c/builtin_op_data.h"
+#include "tensorflow/lite/c/common.h"
+#include "tensorflow/lite/kernels/internal/common.h"
+#include "tensorflow/lite/kernels/internal/quantization_util.h"
+#include "tensorflow/lite/kernels/internal/reference/softmax.h"
+#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
+#include "tensorflow/lite/kernels/kernel_util.h"
+#include "tensorflow/lite/kernels/op_macros.h"
+#include "tensorflow/lite/micro/kernels/kernel_util.h"
+
+#include "freertos/FreeRTOS.h"
+#include
+
+#if ESP_NN
+#include
+#endif
+
+long long softmax_total_time = 0;
+
+namespace tflite {
+namespace {
+// Softmax parameter data that persists in user_data
+const int kInt16LUTArraySize = 513;
+
+struct NodeData {
+ SoftmaxParams op_data;
+#if ESP_NN
+ int buffer_idx;
+#endif
+};
+
+static void* Init(TfLiteContext* context, const char* buffer, size_t length) {
+ TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
+ return context->AllocatePersistentBuffer(context, sizeof(NodeData));
+}
+
+void SoftmaxQuantized(TfLiteContext* context, const TfLiteEvalTensor* input,
+ TfLiteEvalTensor* output, const NodeData* data) {
+ if (input->type == kTfLiteInt8) {
+ if (output->type == kTfLiteInt16) {
+ tflite::reference_ops::Softmax(
+ data->op_data, tflite::micro::GetTensorShape(input),
+ tflite::micro::GetTensorData(input),
+ tflite::micro::GetTensorShape(output),
+ tflite::micro::GetTensorData(output));
+ } else {
+#if ESP_NN
+ const int32_t input_beta_multiplier = data->op_data.input_multiplier;
+ const int32_t input_beta_left_shift = data->op_data.input_left_shift;
+ const int diff_min = data->op_data.diff_min;
+ const RuntimeShape input_shape = tflite::micro::GetTensorShape(input);
+ const RuntimeShape output_shape = tflite::micro::GetTensorShape(output);
+ const int trailing_dim = input_shape.DimensionsCount() - 1;
+ const int outer_size =
+ MatchingFlatSizeSkipDim(input_shape, trailing_dim, output_shape);
+ const int depth =
+ MatchingDim(input_shape, trailing_dim, output_shape, trailing_dim);
+ const int8_t *in_ptr = tflite::micro::GetTensorData(input);
+ int8_t *out_ptr = tflite::micro::GetTensorData(output);
+ void *scratch_buf = NULL;
+ if (data->buffer_idx > -1) {
+ scratch_buf = context->GetScratchBuffer(context, data->buffer_idx);
+ }
+ esp_nn_set_softmax_scratch_buf(scratch_buf);
+ esp_nn_softmax_s8(in_ptr, outer_size, depth, input_beta_multiplier,
+ input_beta_left_shift, diff_min, out_ptr);
+#else
+ tflite::reference_ops::Softmax(
+ data->op_data, tflite::micro::GetTensorShape(input),
+ tflite::micro::GetTensorData(input),
+ tflite::micro::GetTensorShape(output),
+ tflite::micro::GetTensorData(output));
+#endif
+ }
+ } else {
+ tflite::reference_ops::SoftmaxInt16(
+ data->op_data, tflite::micro::GetTensorShape(input),
+ tflite::micro::GetTensorData(input),
+ tflite::micro::GetTensorShape(output),
+ tflite::micro::GetTensorData(output));
+ }
+}
+
+static TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
+ const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0);
+ TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0);
+
+ TFLITE_DCHECK(node->user_data != nullptr);
+ NodeData data = *static_cast(node->user_data);
+
+ long long start_time = esp_timer_get_time();
+ switch (input->type) {
+ case kTfLiteFloat32: {
+ tflite::reference_ops::Softmax(
+ data.op_data, tflite::micro::GetTensorShape(input),
+ tflite::micro::GetTensorData(input),
+ tflite::micro::GetTensorShape(output),
+ tflite::micro::GetTensorData(output));
+ }
+ break;
+ case kTfLiteInt8:
+ case kTfLiteInt16: {
+ SoftmaxQuantized(context, input, output, &data);
+ }
+ break;
+ default:
+ TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
+ TfLiteTypeGetName(input->type), input->type);
+ return kTfLiteError;
+ }
+ softmax_total_time += esp_timer_get_time() - start_time;
+ return kTfLiteOk;
+}
+
+static TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
+ MicroContext* micro_context = GetMicroContext(context);
+
+ TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
+ TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
+ TfLiteTensor* input = micro_context->AllocateTempInputTensor(node, 0);
+ TF_LITE_ENSURE(context, input != nullptr);
+ TF_LITE_ENSURE(context, NumDimensions(input) >= 1);
+ TfLiteTensor* output = micro_context->AllocateTempOutputTensor(node, 0);
+ TF_LITE_ENSURE(context, output != nullptr);
+
+ TF_LITE_ENSURE(context, node->user_data != nullptr);
+ NodeData* data = static_cast(node->user_data);
+ // Only allocate LUTs for KTfLiteInt16 data type
+ if (input->type == kTfLiteInt16) {
+ void* raw_exp_lut = context->AllocatePersistentBuffer(
+ context, sizeof(int16_t) * kInt16LUTArraySize);
+ TF_LITE_ENSURE(context, raw_exp_lut != nullptr);
+ data->op_data.exp_lut = reinterpret_cast(raw_exp_lut);
+ void* one_over_one_plus_x_lut = context->AllocatePersistentBuffer(
+ context, sizeof(int16_t) * kInt16LUTArraySize);
+ TF_LITE_ENSURE(context, one_over_one_plus_x_lut != nullptr);
+ data->op_data.one_over_one_plus_x_lut =
+ reinterpret_cast(one_over_one_plus_x_lut);
+ }
+
+ if (output->type == kTfLiteInt16) {
+ TF_LITE_ENSURE(context,
+ input->type == kTfLiteInt8 || input->type == kTfLiteInt16);
+ } else {
+ TF_LITE_ENSURE_EQ(context, input->type, output->type);
+ }
+
+ // Populate LUT if required
+ if (input->type == kTfLiteInt16) {
+ TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0);
+ // exp LUT only used on negative values
+ // we consider exp(-10.0) is insignificant to accumulation
+ gen_lut(
+ [](float value) { return std::exp(value); }, -10.0f, 0.0f, -1.0f, 1.0f,
+ data->op_data.exp_lut);
+ gen_lut(
+ [](float value) { return 1.0f / (1.0f + value); }, 0.0f, 1.0f, -1.0f,
+ 1.0f, data->op_data.one_over_one_plus_x_lut);
+ data->op_data.zero_point = output->params.zero_point;
+ data->op_data.scale = output->params.scale;
+ }
+
+ auto* params = static_cast(node->builtin_data);
+ auto ret_val =
+ CalculateSoftmaxParams(context, input, output, params, &data->op_data);
+
+#if ESP_NN
+ if (output->type == kTfLiteInt8 && input->type == kTfLiteInt8) {
+ const int32_t input_width = input->dims->data[1];
+ const int32_t input_height = input->dims->data[2];
+ int scratch_buf_size = esp_nn_get_softmax_scratch_size(input_width,
+ input_height);
+ if (scratch_buf_size > 0) {
+ TF_LITE_ENSURE_STATUS(context->RequestScratchBufferInArena(
+ context, scratch_buf_size, &data->buffer_idx));
+ }
+ }
+#endif
+
+ micro_context->DeallocateTempTfLiteTensor(input);
+ micro_context->DeallocateTempTfLiteTensor(output);
+ return ret_val;
+}
+
+} // namespace
+
+TfLiteRegistration Register_SOFTMAX() {
+ return tflite::micro::RegisterOp(Init, Prepare, Eval);
+}
+
+} // namespace tflite
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/exp.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/exp.cc
index d1b0f6cb..ae26f636 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/exp.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/exp.cc
@@ -72,14 +72,7 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
} // namespace
TfLiteRegistration Register_EXP() {
- return {/*init=*/nullptr,
- /*free=*/nullptr,
- /*prepare=*/Prepare,
- /*invoke=*/Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(nullptr, Prepare, Eval);
}
} // namespace tflite
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/expand_dims.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/expand_dims.cc
index 6dcba4d5..4b105bf6 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/expand_dims.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/expand_dims.cc
@@ -146,14 +146,7 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
} // namespace
TfLiteRegistration Register_EXPAND_DIMS() {
- return {/*init=*/nullptr,
- /*free=*/nullptr,
- /*prepare=*/Prepare,
- /*invoke=*/Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(nullptr, Prepare, Eval);
}
} // namespace tflite
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/fill.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/fill.cc
index d8a2b09d..9f438b89 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/fill.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/fill.cc
@@ -135,14 +135,7 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
} // namespace
TfLiteRegistration Register_FILL() {
- return {/*init=*/nullptr,
- /*free=*/nullptr,
- /*prepare=*/Prepare,
- /*invoke=*/Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(nullptr, Prepare, Eval);
}
} // namespace tflite
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/floor.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/floor.cc
index b8be1cf0..6b2a4cc2 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/floor.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/floor.cc
@@ -42,14 +42,7 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
} // namespace floor
TfLiteRegistration Register_FLOOR() {
- return {/*init=*/nullptr,
- /*free=*/nullptr,
- /*prepare=*/nullptr,
- /*invoke=*/floor::Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(nullptr, nullptr, floor::Eval);
}
} // namespace micro
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/floor_div.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/floor_div.cc
index d11e4969..333a1eba 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/floor_div.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/floor_div.cc
@@ -123,14 +123,7 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
} // namespace
TfLiteRegistration Register_FLOOR_DIV() {
- return {/*init=*/Init,
- /*free=*/nullptr,
- /*prepare=*/Prepare,
- /*invoke=*/Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(Init, Prepare, Eval);
}
} // namespace tflite
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/floor_mod.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/floor_mod.cc
index 083bd5cb..9bb49497 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/floor_mod.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/floor_mod.cc
@@ -121,14 +121,7 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
} // namespace
TfLiteRegistration Register_FLOOR_MOD() {
- return {/*init=*/Init,
- /*free=*/nullptr,
- /*prepare=*/Prepare,
- /*invoke=*/Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(Init, Prepare, Eval);
}
} // namespace tflite
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/fully_connected.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/fully_connected.cc
index c0be3814..a083edd7 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/fully_connected.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/fully_connected.cc
@@ -1,4 +1,4 @@
-/* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
+/* Copyright 2022 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
@@ -55,10 +55,7 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TfLiteTensor* output = micro_context->AllocateTempOutputTensor(
node, kFullyConnectedOutputTensor);
TF_LITE_ENSURE(context, output != nullptr);
-
TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
- TF_LITE_ENSURE_MSG(context, input->type == filter->type,
- "Hybrid models are not supported on TFLite Micro.");
TF_LITE_ENSURE_OK(context, CalculateOpDataFullyConnected(
context, params->activation, input->type,
@@ -126,6 +123,23 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
break;
}
+ case kTfLiteInt16: {
+ const int64_t* bias_data =
+ nullptr != bias ? tflite::micro::GetTensorData(bias)
+ : nullptr;
+
+ tflite::reference_integer_ops::FullyConnected(
+ FullyConnectedParamsQuantized(data),
+ tflite::micro::GetTensorShape(input),
+ tflite::micro::GetTensorData(input),
+ tflite::micro::GetTensorShape(filter),
+ tflite::micro::GetTensorData(filter),
+ tflite::micro::GetTensorShape(bias), bias_data,
+ tflite::micro::GetTensorShape(output),
+ tflite::micro::GetTensorData(output));
+ break;
+ }
+
default: {
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
TfLiteTypeGetName(input->type), input->type);
@@ -138,14 +152,7 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
} // namespace
TfLiteRegistration Register_FULLY_CONNECTED() {
- return {/*init=*/Init,
- /*free=*/nullptr,
- /*prepare=*/Prepare,
- /*invoke=*/Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(Init, Prepare, Eval);
}
} // namespace tflite
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/fully_connected.h b/code/components/tflite-lib/tensorflow/lite/micro/kernels/fully_connected.h
index e1215da6..93026cd5 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/fully_connected.h
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/fully_connected.h
@@ -1,4 +1,4 @@
-/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
+/* Copyright 2022 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
@@ -81,6 +81,24 @@ inline TfLiteRegistration Register_FULLY_CONNECTED_INT8() {
}
#endif
+
+#if defined(CMSIS_NN)
+// Returns a TfLiteRegistration struct for kernel variant that only supports
+// int16.
+TfLiteRegistration Register_FULLY_CONNECTED_INT16();
+
+#else
+// Note that while this block gets used for both reference and optimized kernels
+// that do not have any specialized implementations, the only goal here is to
+// define fallback implementation that allow reference kernels to still be used
+// from applications that call a more specific kernel variant.
+
+inline TfLiteRegistration Register_FULLY_CONNECTED_INT16() {
+ return Register_FULLY_CONNECTED();
+}
+
+#endif
+
} // namespace tflite
#endif // TENSORFLOW_LITE_MICRO_KERNELS_FULLY_CONNECTED_H_
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/gather.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/gather.cc
index 0b7c23f9..6035efa7 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/gather.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/gather.cc
@@ -218,14 +218,7 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
} // namespace
TfLiteRegistration Register_GATHER() {
- return {/*init=*/nullptr,
- /*free=*/nullptr,
- /*prepare=*/Prepare,
- /*invoke=*/Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(nullptr, Prepare, Eval);
}
} // namespace tflite
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/gather_nd.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/gather_nd.cc
index c604ae15..eaa1abca 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/gather_nd.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/gather_nd.cc
@@ -195,14 +195,7 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
} // namespace
TfLiteRegistration Register_GATHER_ND() {
- return {/*init=*/nullptr,
- /*free=*/nullptr,
- /*prepare=*/Prepare,
- /*invoke=*/Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(nullptr, Prepare, Eval);
}
} // namespace tflite
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/hard_swish.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/hard_swish.cc
index 060dfc14..055e12e6 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/hard_swish.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/hard_swish.cc
@@ -68,14 +68,8 @@ TfLiteStatus HardSwishEval(TfLiteContext* context, TfLiteNode* node) {
} // namespace
TfLiteRegistration Register_HARD_SWISH() {
- return {/*init=*/HardSwishInit,
- /*free=*/nullptr,
- /*prepare=*/tflite::HardSwishPrepare,
- /*invoke=*/HardSwishEval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(HardSwishInit, tflite::HardSwishPrepare,
+ HardSwishEval);
}
} // namespace tflite
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/if.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/if.cc
index 050aeac4..39eca8b4 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/if.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/if.cc
@@ -115,14 +115,7 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
} // namespace.
TfLiteRegistration Register_IF() {
- return {/*init=*/Init,
- /*free=*/nullptr,
- /*prepare=*/Prepare,
- /*invoke=*/Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(Init, Prepare, Eval);
}
} // namespace tflite
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/kernel_runner.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/kernel_runner.cc
index fd84dec1..341eec77 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/kernel_runner.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/kernel_runner.cc
@@ -15,9 +15,9 @@ limitations under the License.
#include "tensorflow/lite/micro/kernels/kernel_runner.h"
+#include "tensorflow/lite/micro/arena_allocator/simple_memory_allocator.h"
#include "tensorflow/lite/micro/micro_arena_constants.h"
#include "tensorflow/lite/micro/micro_error_reporter.h"
-#include "tensorflow/lite/micro/simple_memory_allocator.h"
#include "tensorflow/lite/micro/test_helpers.h"
namespace tflite {
@@ -30,7 +30,7 @@ uint8_t KernelRunner::kKernelRunnerBuffer_[];
KernelRunner::KernelRunner(const TfLiteRegistration& registration,
TfLiteTensor* tensors, int tensors_size,
TfLiteIntArray* inputs, TfLiteIntArray* outputs,
- void* builtin_data)
+ void* builtin_data, TfLiteIntArray* intermediates)
: registration_(registration),
allocator_(SimpleMemoryAllocator::Create(GetMicroErrorReporter(),
kKernelRunnerBuffer_,
@@ -54,6 +54,7 @@ KernelRunner::KernelRunner(const TfLiteRegistration& registration,
node_.inputs = inputs;
node_.outputs = outputs;
node_.builtin_data = builtin_data;
+ node_.intermediates = intermediates;
}
bool KernelRunner::ValidateTempBufferDeallocated() {
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/kernel_runner.h b/code/components/tflite-lib/tensorflow/lite/micro/kernels/kernel_runner.h
index 9dddde50..68722edb 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/kernel_runner.h
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/kernel_runner.h
@@ -18,9 +18,9 @@ limitations under the License.
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/compatibility.h"
+#include "tensorflow/lite/micro/arena_allocator/simple_memory_allocator.h"
#include "tensorflow/lite/micro/fake_micro_context.h"
#include "tensorflow/lite/micro/mock_micro_graph.h"
-#include "tensorflow/lite/micro/simple_memory_allocator.h"
namespace tflite {
namespace micro {
@@ -35,7 +35,8 @@ class KernelRunner {
public:
KernelRunner(const TfLiteRegistration& registration, TfLiteTensor* tensors,
int tensors_size, TfLiteIntArray* inputs,
- TfLiteIntArray* outputs, void* builtin_data);
+ TfLiteIntArray* outputs, void* builtin_data,
+ TfLiteIntArray* intermediates = nullptr);
// Calls init and prepare on the kernel (i.e. TfLiteRegistration) struct. Any
// exceptions will be DebugLog'd and returned as a status code.
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/kernel_util.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/kernel_util.cc
index 14664b91..91c0bc91 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/kernel_util.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/kernel_util.cc
@@ -36,6 +36,21 @@ int ValidateTensorIndexing(const TfLiteContext* context, int index,
} // namespace
+TfLiteRegistration RegisterOp(
+ void* (*init)(TfLiteContext* context, const char* buffer, size_t length),
+ TfLiteStatus (*prepare)(TfLiteContext* context, TfLiteNode* node),
+ TfLiteStatus (*invoke)(TfLiteContext* context, TfLiteNode* node)) {
+ return {/*init=*/init,
+ /*free=*/nullptr,
+ /*prepare=*/prepare,
+ /*invoke=*/invoke,
+ /*profiling_string=*/nullptr,
+ /*builtin_code=*/0,
+ /*custom_name=*/nullptr,
+ /*version=*/0,
+ /*registration_external=*/nullptr};
+}
+
// Returns a mutable tensor for a given input index. is_variable must be checked
// during prepare when the full TfLiteTensor is available.
TfLiteEvalTensor* GetMutableEvalInput(const TfLiteContext* context,
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/kernel_util.h b/code/components/tflite-lib/tensorflow/lite/micro/kernels/kernel_util.h
index 6c5d7f18..d6f20c72 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/kernel_util.h
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/kernel_util.h
@@ -27,6 +27,11 @@ limitations under the License.
namespace tflite {
namespace micro {
+TfLiteRegistration RegisterOp(
+ void* (*init)(TfLiteContext* context, const char* buffer, size_t length),
+ TfLiteStatus (*prepare)(TfLiteContext* context, TfLiteNode* node),
+ TfLiteStatus (*invoke)(TfLiteContext* context, TfLiteNode* node));
+
// Returns a mutable tensor for a given input index. is_variable must be checked
// during prepare when the full TfLiteTensor is available.
TfLiteEvalTensor* GetMutableEvalInput(const TfLiteContext* context,
@@ -40,19 +45,33 @@ const TfLiteEvalTensor* GetEvalInput(const TfLiteContext* context,
TfLiteEvalTensor* GetEvalOutput(const TfLiteContext* context,
const TfLiteNode* node, int index);
-// Returns data for a TfLiteEvalTensor struct.
+// Returns data for a TfLiteEvalTensor struct that are expected to exist.
template
T* GetTensorData(TfLiteEvalTensor* tensor) {
- return tensor != nullptr ? reinterpret_cast(tensor->data.raw) : nullptr;
+ TFLITE_DCHECK(tensor != nullptr);
+ return reinterpret_cast(tensor->data.raw);
}
-// Returns const data for a TfLiteEvalTensor struct.
+// Returns const data for a TfLiteEvalTensor struct that are expected to exist.
template
const T* GetTensorData(const TfLiteEvalTensor* tensor) {
TFLITE_DCHECK(tensor != nullptr);
return reinterpret_cast(tensor->data.raw);
}
+// Returns data for a TfLiteEvalTensor struct that could be null.
+template
+T* GetOptionalTensorData(TfLiteEvalTensor* tensor) {
+ return tensor == nullptr ? nullptr : reinterpret_cast(tensor->data.raw);
+}
+
+// Returns const data for a TfLiteEvalTensor struct that could be null.
+template
+const T* GetOptionalTensorData(const TfLiteEvalTensor* tensor) {
+ return tensor == nullptr ? nullptr
+ : reinterpret_cast(tensor->data.raw);
+}
+
// Returns the shape of a TfLiteEvalTensor struct.
const RuntimeShape GetTensorShape(const TfLiteEvalTensor* tensor);
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/l2_pool_2d.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/l2_pool_2d.cc
index 250cd3be..2b2a27bf 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/l2_pool_2d.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/l2_pool_2d.cc
@@ -136,14 +136,7 @@ TfLiteStatus L2Eval(TfLiteContext* context, TfLiteNode* node) {
} // namespace
TfLiteRegistration Register_L2_POOL_2D() {
- return {/*init=*/nullptr,
- /*free=*/nullptr,
- /*prepare=*/L2Prepare,
- /*invoke=*/L2Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(nullptr, L2Prepare, L2Eval);
}
} // namespace tflite
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/l2norm.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/l2norm.cc
index 289e4de5..45858e78 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/l2norm.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/l2norm.cc
@@ -137,14 +137,7 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
} // namespace l2norm
TfLiteRegistration Register_L2NORM_REF() {
- return {/*init=*/l2norm::Init,
- /*free=*/nullptr,
- /*prepare=*/l2norm::Prepare,
- /*invoke=*/l2norm::Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(l2norm::Init, l2norm::Prepare, l2norm::Eval);
}
TfLiteRegistration Register_L2_NORMALIZATION() { return Register_L2NORM_REF(); }
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/leaky_relu.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/leaky_relu.cc
index 70ee3856..96c1b1b1 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/leaky_relu.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/leaky_relu.cc
@@ -88,14 +88,8 @@ TfLiteStatus LeakyReluEval(TfLiteContext* context, TfLiteNode* node) {
}
TfLiteRegistration Register_LEAKY_RELU() {
- return {/*init=*/LeakyReluInit,
- /*free=*/nullptr,
- /*prepare=*/LeakyReluPrepare,
- /*invoke=*/LeakyReluEval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(LeakyReluInit, LeakyReluPrepare,
+ LeakyReluEval);
}
} // namespace tflite
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/log_softmax.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/log_softmax.cc
index 0af74def..5fd87612 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/log_softmax.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/log_softmax.cc
@@ -142,14 +142,7 @@ TfLiteStatus LogSoftmaxEval(TfLiteContext* context, TfLiteNode* node) {
} // namespace
TfLiteRegistration Register_LOG_SOFTMAX() {
- return {/*init=*/nullptr,
- /*free=*/nullptr,
- /*prepare=*/LogSoftmaxPrepare,
- /*invoke=*/LogSoftmaxEval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(nullptr, LogSoftmaxPrepare, LogSoftmaxEval);
}
} // namespace tflite
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/logical.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/logical.cc
index e2d2b5f8..c85e0c5b 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/logical.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/logical.cc
@@ -34,29 +34,11 @@ TfLiteStatus LogicalAndEval(TfLiteContext* context, TfLiteNode* node) {
} // namespace
TfLiteRegistration Register_LOGICAL_OR() {
- // Init, Free, Prepare, Eval are satisfying the Interface required by
- // TfLiteRegistration.
- return {/*init=*/nullptr,
- /*free=*/nullptr,
- /*prepare=*/nullptr,
- /*invoke=*/LogicalOrEval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(nullptr, nullptr, LogicalOrEval);
}
TfLiteRegistration Register_LOGICAL_AND() {
- // Init, Free, Prepare, Eval are satisfying the Interface required by
- // TfLiteRegistration.
- return {/*init=*/nullptr,
- /*free=*/nullptr,
- /*prepare=*/nullptr,
- /*invoke=*/LogicalAndEval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(nullptr, nullptr, LogicalAndEval);
}
} // namespace tflite
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/logistic.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/logistic.cc
index 77f94ec0..f8ac1c23 100644
--- a/code/components/tflite-lib/tensorflow/lite/micro/kernels/logistic.cc
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/logistic.cc
@@ -106,13 +106,6 @@ TfLiteStatus LogisticEval(TfLiteContext* context, TfLiteNode* node) {
} // namespace
TfLiteRegistration Register_LOGISTIC() {
- return {/*init=*/LogisticInit,
- /*free=*/nullptr,
- /*prepare=*/LogisticPrepare,
- /*invoke=*/LogisticEval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
+ return tflite::micro::RegisterOp(LogisticInit, LogisticPrepare, LogisticEval);
}
} // namespace tflite
diff --git a/code/components/tflite-lib/tensorflow/lite/micro/kernels/lstm_eval.cc b/code/components/tflite-lib/tensorflow/lite/micro/kernels/lstm_eval.cc
new file mode 100644
index 00000000..f157a8d0
--- /dev/null
+++ b/code/components/tflite-lib/tensorflow/lite/micro/kernels/lstm_eval.cc
@@ -0,0 +1,2955 @@
+/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+==============================================================================*/
+#include "tensorflow/lite/micro/kernels/lstm_eval.h"
+
+#include
+#include
+#include
+#include
+
+#include "tensorflow/lite/c/builtin_op_data.h"
+#include "tensorflow/lite/c/common.h"
+#include "tensorflow/lite/kernels/internal/compatibility.h"
+#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
+#include "tensorflow/lite/kernels/op_macros.h"
+#include "tensorflow/lite/micro/kernels/kernel_util.h"
+#include "tensorflow/lite/micro/kernels/micro_tensor_utils.h"
+namespace tflite {
+namespace {
+
+void ComputeRowSums(
+ int32_t* input_to_input_row_sums, int32_t* input_to_forget_row_sums,
+ int32_t* input_to_cell_row_sums, int32_t* input_to_output_row_sums,
+ int32_t* aux_input_to_input_row_sums, int32_t* aux_input_to_forget_row_sums,
+ int32_t* aux_input_to_cell_row_sums, int32_t* aux_input_to_output_row_sums,
+ int32_t* recurrent_to_input_row_sums, int32_t* recurrent_to_forget_row_sums,
+ int32_t* recurrent_to_cell_row_sums, int32_t* recurrent_to_output_row_sums,
+ int32_t* projection_weights_row_sums, int32_t* row_sums, int n_cell,
+ int n_input, int n_aux_input, int n_output,
+ const int8_t* input_to_input_weights_ptr,
+ const int8_t* input_to_forget_weights_ptr,
+ const int8_t* input_to_cell_weights_ptr,
+ const int8_t* input_to_output_weights_ptr,
+ const int8_t* aux_input_to_input_weights_ptr,
+ const int8_t* aux_input_to_forget_weights_ptr,
+ const int8_t* aux_input_to_cell_weights_ptr,
+ const int8_t* aux_input_to_output_weights_ptr,
+ const int8_t* recurrent_to_input_weights_ptr,
+ const int8_t* recurrent_to_forget_weights_ptr,
+ const int8_t* recurrent_to_cell_weights_ptr,
+ const int8_t* recurrent_to_output_weights_ptr,
+ const int8_t* projection_weights_ptr, bool use_cifg,
+ const float* aux_input_ptr) {
+ // Compute the row sums for dequantization
+ if (!use_cifg) {
+ micro_tensor_utils::ReductionSumVector(
+ input_to_input_weights_ptr, input_to_input_row_sums, n_cell, n_input);
+ }
+ micro_tensor_utils::ReductionSumVector(
+ input_to_forget_weights_ptr, input_to_forget_row_sums, n_cell, n_input);
+ micro_tensor_utils::ReductionSumVector(
+ input_to_cell_weights_ptr, input_to_cell_row_sums, n_cell, n_input);
+ micro_tensor_utils::ReductionSumVector(
+ input_to_output_weights_ptr, input_to_output_row_sums, n_cell, n_input);
+
+ if (aux_input_ptr) {
+ if (!use_cifg) {
+ micro_tensor_utils::ReductionSumVector(aux_input_to_input_weights_ptr,
+ aux_input_to_input_row_sums,
+ n_cell, n_aux_input);
+ }
+ micro_tensor_utils::ReductionSumVector(aux_input_to_forget_weights_ptr,
+ aux_input_to_forget_row_sums, n_cell,
+ n_aux_input);
+ micro_tensor_utils::ReductionSumVector(aux_input_to_cell_weights_ptr,
+ aux_input_to_cell_row_sums, n_cell,
+ n_aux_input);
+ micro_tensor_utils::ReductionSumVector(aux_input_to_output_weights_ptr,
+ aux_input_to_output_row_sums, n_cell,
+ n_aux_input);
+ }
+ if (!use_cifg) {
+ micro_tensor_utils::ReductionSumVector(recurrent_to_input_weights_ptr,
+ recurrent_to_input_row_sums, n_cell,
+ n_output);
+ }
+ micro_tensor_utils::ReductionSumVector(recurrent_to_forget_weights_ptr,
+ recurrent_to_forget_row_sums, n_cell,
+ n_output);
+ micro_tensor_utils::ReductionSumVector(recurrent_to_cell_weights_ptr,
+ recurrent_to_cell_row_sums, n_cell,
+ n_output);
+ micro_tensor_utils::ReductionSumVector(recurrent_to_output_weights_ptr,
+ recurrent_to_output_row_sums, n_cell,
+ n_output);
+
+ if (projection_weights_ptr != nullptr) {
+ micro_tensor_utils::ReductionSumVector(
+ projection_weights_ptr, projection_weights_row_sums, n_output, n_cell);
+ }
+}
+
+// Calculates a single LSTM gate.
+//
+// Implements the following formula: (* is matrix multiply)
+// gate = activate(W_input * input + W_aux * aux_input +
+// W_peephole * cell + W_recurrent * prev_output + bias)
+// with layer norm:
+// gate = activate(W_norm * normalize(...) + bias) // not adding bias inside
+//
+// Activation is sigmoid except for the "cell" gate (configurable, usually tanh)
+//
+// Parameters:
+// Input vectors (to LSTM): | Size: | Optional?
+// input | n_input |
+// aux_input | n_aux_input | y (bidir LSTM)
+// Input vectors (persistent states):
+// output_state | n_output |
+// cell_state | n_cell |
+// 'Constant' inputs:
+// input_to_gate_weights | n_cell * n_input |
+// aux_input_to_gate_weights | n_cell * n_aux_input | y (bidir LSTM)
+// recurrent_to_gate_weights | n_cell * n_output |
+// cell_to_gate_weights | n_cell | y (peephole)
+// gate_bias | n_cell |
+// layer_norm_coefficients | n_cell | y (layer norm)
+// Output vector:
+// gate | n_cell |
+// Scalar parameters:
+// n_batch - batch size / number of vectors
+// n_input, n_aux_input, n_output, n_cell - size of vectors.
+// activation - activation to use.
+// is_input_all_zeros, is_aux_input_all_zeros - if input vectors are all zero.
+// use_layer_norm - if doing layer norm LSTM.
+inline void CalculateLstmGateFloat(
+ const float* input, const float* input_to_gate_weights,
+ const float* aux_input, const float* aux_input_to_gate_weights,
+ const float* output_state, const float* recurrent_to_gate_weights,
+ const float* cell_state, const float* cell_to_gate_weights,
+ const float* layer_norm_coefficients, const float* gate_bias,
+ const int n_batch, const int n_input, const int n_aux_input,
+ const int n_output, const int n_cell,
+ const TfLiteFusedActivation activation, float* gate,
+ const bool is_input_all_zeros, const bool is_aux_input_all_zeros) {
+ const bool use_peephole = (cell_to_gate_weights != nullptr);
+ const bool use_layer_norm = (layer_norm_coefficients != nullptr);
+
+ // Initialize scratch buffers with bias for regular lstm or initialize with
+ // zero for layer norm lstm.
+ if (use_layer_norm) {
+ memset(gate, 0, n_cell * n_batch * sizeof(float));
+ } else {
+ micro_tensor_utils::VectorBatchVectorAssign(gate_bias, n_cell, n_batch,
+ gate);
+ }
+ // For each batch and cell: compute input_weight * input.
+ // Skip if input is all zeros.
+ if (!is_input_all_zeros) {
+ micro_tensor_utils::MatrixBatchVectorMultiplyAccumulate(
+ input_to_gate_weights, n_cell, n_input, input, n_batch, gate);
+ }
+ // For each batch and cell: compute aux_input_weight * aux_input.
+ // Skip if auxiliary input is not available or all zeros.
+ if (!is_aux_input_all_zeros) {
+ micro_tensor_utils::MatrixBatchVectorMultiplyAccumulate(
+ aux_input_to_gate_weights, n_cell, n_aux_input, aux_input, n_batch,
+ gate);
+ }
+ // For each batch and cell: compute recurrent_weight * output_state.
+ micro_tensor_utils::MatrixBatchVectorMultiplyAccumulate(
+ recurrent_to_gate_weights, n_cell, n_output, output_state, n_batch, gate);
+ // For each batch and cell: compute cell_weight .* cell_state (peephole LSTM)
+ if (use_peephole) {
+ micro_tensor_utils::VectorBatchVectorCwiseProductAccumulate(
+ cell_to_gate_weights, n_cell, cell_state, n_batch, gate);
+ }
+ // Do layer normalization (if layer norm LSTM)
+ if (use_layer_norm) {
+ micro_tensor_utils::MeanStddevNormalization(gate, gate, n_cell, n_batch);
+ micro_tensor_utils::VectorBatchVectorCwiseProduct(
+ layer_norm_coefficients, n_cell, gate, n_batch, gate);
+ micro_tensor_utils::VectorBatchVectorAdd(gate_bias, n_cell, n_batch, gate);
+ }
+ // Apply activation
+ micro_tensor_utils::ApplyActivationToVector(gate, n_batch * n_cell,
+ activation, gate);
+}
+
+// Updates the LSTM cell state, used by both float and hybrid LSTM versions.
+//
+// Implements the following formula:
+// cell_state_new = clip(forget_gate * cell_state + input_gate * cell_gate)
+//
+// With CIFG LSTM, input gate is replaced by (1-forget_gate).
+//
+// Parameters:
+// - n_batch, n_cell: sizes of vectors
+// - cell_state: input/output vector, size n_batch*n_cell
+// - input_gate: input vector, size n_batch*n_cell.
+// - forget_gate: input/scratch vector, size n_batch*n_cell, modified with CIFG
+// - cell_gate: input vector, size n_batch*n_cell.
+// - use_cifg: use 1-forget_gate instead of input_gate.
+// - clip: if > 0, clip the resulting cell state to [-clip, +clip].
+void UpdateLstmCellFloat(int n_batch, int n_cell, float* cell_state,
+ const float* input_gate, float* forget_gate,
+ const float* cell_gate, bool use_cifg, float clip) {
+ micro_tensor_utils::VectorVectorCwiseProduct(forget_gate, cell_state,
+ n_batch * n_cell, cell_state);
+
+ if (use_cifg) {
+ // With CIFG, input_gate = 1-forget_gate. Use the forget_gate array as
+ // scratch, as input_gate array is not allocated in this case. (Be careful
+ // not to write to the scratch before reading the forget gate data.)
+ float* scratch = forget_gate;
+ micro_tensor_utils::Sub1Vector(forget_gate, n_batch * n_cell, scratch);
+ micro_tensor_utils::VectorVectorCwiseProductAccumulate(
+ cell_gate, scratch, n_batch * n_cell, cell_state);
+ } else {
+ micro_tensor_utils::VectorVectorCwiseProductAccumulate(
+ cell_gate, input_gate, n_batch * n_cell, cell_state);
+ }
+ if (clip > 0.0f) {
+ micro_tensor_utils::CwiseClipping(cell_state, n_batch * n_cell, clip);
+ }
+}
+
+// Calculates the output state tensor of an LSTM step.
+//
+// Implements the following formula:
+// output_no_projection = output_gate .* activate(cell_state)
+// (elementwise vector product)
+// If no projection is used:
+// output = output_state = output_no_projection
+// With projection:
+// output = output_state = clip(W*output_no_projection + bias)
+//
+// Output might not have a different 'stride' than n_batch, so we need to copy.
+//
+// Parameters:
+// - n_batch: batches: the number of distinct vectors in each array.
+// - n_cell, n_output: sizes of vectors.
+// - cell_state, output_gate: input vectors, size n_batch*n_cell.
+// - projection_weights, projection_weights_scale, projection_bias:
+// constant inputs, describing projection matrix and bias.
+// - proj_clip: if > 0, clip the output of the projection.
+// - output_state: output vector, size n_batch*n_output. Must be contigous.
+// - scratch: scratch area, size n_batch*n_cell.
+void CalculateLstmOutputFloat(int n_batch, int n_cell, int n_output,
+ const float* cell_state, const float* output_gate,
+ TfLiteFusedActivation activation,
+ const float* projection_weights,
+ const float* projection_bias,
+ const float proj_clip, float* output_state,
+ float* scratch) {
+ micro_tensor_utils::ApplyActivationToVector(cell_state, n_batch * n_cell,
+ activation, scratch);
+ micro_tensor_utils::VectorVectorCwiseProduct(output_gate, scratch,
+ n_batch * n_cell, scratch);
+
+ const bool use_projection = (projection_weights != nullptr);
+ const bool use_projection_bias = (projection_bias != nullptr);
+
+ if (use_projection) {
+ if (use_projection_bias) {
+ micro_tensor_utils::VectorBatchVectorAssign(projection_bias, n_output,
+ n_batch, output_state);
+ } else {
+ memset(output_state, 0, n_batch * n_output * sizeof(float));
+ }
+ micro_tensor_utils::MatrixBatchVectorMultiplyAccumulate(
+ projection_weights, n_output, n_cell, scratch, n_batch, output_state);
+ if (proj_clip > 0.0f) {
+ micro_tensor_utils::CwiseClipping(output_state, n_batch * n_output,
+ proj_clip);
+ }
+ } else {
+ std::memcpy(output_state, scratch, n_batch * n_output * sizeof(float));
+ }
+}
+
+// Calculates a single LSTM gate, hybrid version.
+// Implements the same functionality as CalculateLstmGateFloat.
+void CalculateLstmGateHybrid(
+ // Input and weights
+ const int8_t* input, const float* input_sf, const int32_t* input_zp,
+ const int8_t* input_to_gate_weights,
+ const uint8_t* input_to_gate_weights_ledger,
+ const float input_to_gate_weights_scale, int32_t* input_to_gate_row_sums,
+ // Aux input and weights
+ const int8_t* aux_input, const float* aux_input_sf,
+ const int32_t* aux_input_zp, const int8_t* aux_input_to_gate_weights,
+ const float aux_input_to_gate_weights_scale,
+ int32_t* aux_input_to_gate_row_sums,
+ // Output state and weights
+ const int8_t* output_state, const float* output_state_sf,
+ const int32_t* output_state_zp, const int8_t* recurrent_to_gate_weights,
+ const uint8_t* recurrent_to_gate_weights_ledger,
+ const float recurrent_to_gate_weights_scale,
+ int32_t* recurrent_to_gate_row_sums,
+ // Cell state and weights (peephole LSTM)
+ const float* cell_state, const int8_t* cell_to_gate_weights,
+ const float cell_to_gate_weights_scale,
+ // Layer normalization coefficients (layer norm LSTM) + gate bias
+ const float* layer_norm_coefficients, const float* gate_bias,
+ // Array sizes
+ const int n_batch, const int n_input, const int n_aux_input,
+ const int n_output, const int n_cell,
+ const TfLiteFusedActivation activation,
+ // Output
+ float* gate,
+ // Parameters for performance optimizations
+ const bool is_input_all_zeros, const bool is_aux_input_all_zeros,
+ const bool is_output_state_all_zeros, bool* compute_row_sums,
+ // Scratch arrays
+ float* scratch0, // size: n_batch
+ float* scratch1, // size: n_cell, only used if peephole LSTM
+ float* scales, // size: n_batch
+ int32_t* accum_scratch // For MatrixBatchVectorMultiplyAccumulate
+) {
+ const bool use_peephole = (cell_to_gate_weights != nullptr);
+ const bool use_layer_norm = (layer_norm_coefficients != nullptr);
+
+ // Initialize scratch buffers with bias for regular lstm or initialize with
+ // zero for layer norm lstm.
+ if (use_layer_norm) {
+ memset(gate, 0, n_cell * n_batch * sizeof(float));
+ } else {
+ micro_tensor_utils::VectorBatchVectorAssign(gate_bias, n_cell, n_batch,
+ gate);
+ }
+ // For each batch and cell: compute input_weight * input.
+ // Skip if input is all zeros.
+ if (!is_input_all_zeros) {
+ if (input_to_gate_weights_ledger != nullptr) {
+ for (int i = 0; i < n_batch; i++) {
+ scales[i] = input_to_gate_weights_scale * input_sf[i];
+ }
+ micro_tensor_utils::SparseMatrixBatchVectorMultiplyAccumulate(
+ input_to_gate_weights, input_to_gate_weights_ledger, n_cell, n_input,
+ input, scales, n_batch, gate);
+
+ } else {
+ micro_tensor_utils::MatrixBatchVectorMultiplyAccumulate(
+ input_to_gate_weights, n_cell, n_input, input,
+ input_to_gate_weights_scale, input_sf, n_batch, gate,
+ /*per_channel_scale=*/nullptr, input_zp, accum_scratch,
+ input_to_gate_row_sums, compute_row_sums, scratch0, nullptr);
+ }
+ }
+ // For each batch and cell: compute aux_input_weight * aux_input.
+ // Skip if auxiliary input is not available or all zeros.
+ if (!is_aux_input_all_zeros) {
+ micro_tensor_utils::MatrixBatchVectorMultiplyAccumulate(
+ aux_input_to_gate_weights, n_cell, n_aux_input, aux_input,
+ aux_input_to_gate_weights_scale, aux_input_sf, n_batch, gate,
+ /*per_channel_scale=*/nullptr, aux_input_zp, accum_scratch,
+ aux_input_to_gate_row_sums, compute_row_sums, scratch0, nullptr);
+ }
+ // For each batch and cell: compute recurrent_weight * output_state.
+ // Skip if output state is all zeros.
+ if (!is_output_state_all_zeros) {
+ if (recurrent_to_gate_weights_ledger != nullptr) {
+ for (int i = 0; i < n_batch; i++) {
+ scales[i] = recurrent_to_gate_weights_scale * input_sf[i];
+ }
+ micro_tensor_utils::SparseMatrixBatchVectorMultiplyAccumulate(
+ recurrent_to_gate_weights, recurrent_to_gate_weights_ledger, n_cell,
+ n_output, output_state, scales, n_batch, gate);
+ } else {
+ micro_tensor_utils::MatrixBatchVectorMultiplyAccumulate(
+ recurrent_to_gate_weights, n_cell, n_output, output_state,
+ recurrent_to_gate_weights_scale, output_state_sf, n_batch, gate,
+ /*per_channel_scale=*/nullptr, output_state_zp, accum_scratch,
+ recurrent_to_gate_row_sums, compute_row_sums, scratch0, nullptr);
+ }
+ }
+ // For each batch and cell: compute cell_weight .* cell_state (peephole LSTM)
+ if (use_peephole) {
+ float* recovered_cell_weights = scratch1;
+ micro_tensor_utils::VectorScalarMultiply(cell_to_gate_weights, n_cell,
+ cell_to_gate_weights_scale,
+ recovered_cell_weights);
+ micro_tensor_utils::VectorBatchVectorCwiseProductAccumulate(
+ recovered_cell_weights, n_cell, cell_state, n_batch, gate);
+ }
+ // Do layer normalization (if layer norm LSTM)
+ if (use_layer_norm) {
+ micro_tensor_utils::MeanStddevNormalization(gate, gate, n_cell, n_batch);
+ micro_tensor_utils::VectorBatchVectorCwiseProduct(
+ layer_norm_coefficients, n_cell, gate, n_batch, gate);
+ micro_tensor_utils::VectorBatchVectorAdd(gate_bias, n_cell, n_batch, gate);
+ }
+ // Apply activation
+ micro_tensor_utils::ApplyActivationToVector(gate, n_cell * n_batch,
+ activation, gate);
+}
+
+// Calculates the output state tensor of an LSTM step. See Float version too.
+//
+// Parameters:
+// - n_batch: batches: the number of distinct vectors in each array.
+// - n_cell, n_output: sizes of vectors.
+// - cell_state, output_gate: input vectors, size n_batch*n_cell.
+// - projection_weights, projection_weights_scale, projection_bias:
+// constant inputs, describing projection matrix and bias.
+// - proj_clip: if > 0, clip the output of the projection.
+// - output_state: output vector, size n_batch*n_output. Must be contigous.
+// - asymmetric_quantize_inputs: parameter to control quantization.
+// - projection_weights_row_sums, compute_row_sums: Data for optimized
+// MatrixBatchVectorMultiplyAccumulate.
+// - scratch0: scratch area of size n_batch*n_cell
+// - scratch1: scratch area of size n_batch*n_cell
+// - scratch2: scratch area of size n_batch
+// - scratch3: scratch area of size n_batch
+// - scratch4: scratch area used by MatrixBatchVectorMultiplyAccumulate
+// - scales: scratch area of size n_batch
+void CalculateLstmOutputHybrid(
+ int n_batch, int n_cell, int n_output, const float* cell_state,
+ const float* output_gate, TfLiteFusedActivation activation,
+ const int8_t* projection_weights, const uint8_t* projection_weights_ledger,
+ float projection_weights_scale, const float* projection_bias,
+ const float proj_clip, float* output_state, bool asymmetric_quantize_inputs,
+ int32_t* projection_weights_row_sums, bool* compute_row_sums,
+ float* scratch0, int8_t* scratch1, float* scratch2, int32_t* scratch3,
+ int32_t* scratch4, float* scales) {
+ micro_tensor_utils::ApplyActivationToVector(cell_state, n_batch * n_cell,
+ activation, scratch0);
+ micro_tensor_utils::VectorVectorCwiseProduct(output_gate, scratch0,
+ n_batch * n_cell, scratch0);
+
+ const bool use_projection = (projection_weights != nullptr);
+ const bool use_projection_bias = (projection_bias != nullptr);
+
+ if (use_projection) {
+ if (use_projection_bias) {
+ micro_tensor_utils::VectorBatchVectorAssign(projection_bias, n_output,
+ n_batch, output_state);
+ } else {
+ memset(output_state, 0, n_batch * n_output * sizeof(float));
+ }
+ if (!micro_tensor_utils::IsZeroVector(scratch0, n_batch * n_cell)) {
+ // Save quantization and matmul computation for all zero output.
+ micro_tensor_utils::BatchQuantizeFloats(scratch0, n_batch, n_cell,
+ scratch1, scratch2, scratch3,
+ asymmetric_quantize_inputs);
+ if (projection_weights_ledger != nullptr) {
+ for (int i = 0; i < n_batch; i++) {
+ scales[i] = projection_weights_scale * scratch2[i];
+ }
+ micro_tensor_utils::SparseMatrixBatchVectorMultiplyAccumulate(
+ projection_weights, projection_weights_ledger, n_output, n_cell,
+ scratch1, scales, n_batch, output_state);
+ } else {
+ micro_tensor_utils::MatrixBatchVectorMultiplyAccumulate(
+ projection_weights, n_output, n_cell, scratch1,
+ projection_weights_scale, scratch2, n_batch, output_state,
+ /*per_channel_scale=*/nullptr, scratch3, scratch4,
+ projection_weights_row_sums, compute_row_sums, scratch2, nullptr);
+ }
+ }
+ if (proj_clip > 0.0f) {
+ micro_tensor_utils::CwiseClipping(output_state, n_batch * n_output,
+ proj_clip);
+ }
+ } else {
+ std::memcpy(output_state, scratch0, n_batch * n_output * sizeof(float));
+ }
+}
+
+// Calculates a single LSTM gate, int8x8_16 version.
+// Implements the same functionality as CalculateLstmGateFloat.
+void CalculateLstmGateInteger8x8_16(
+ // Input and weights
+ const int8_t* input, const int8_t* input_to_gate_weights,
+ const int32_t* input_to_gate_bias, const int32_t input_to_gate_scale_a,
+ const int32_t input_to_gate_scale_b,
+ // Output state and weights
+ const int8_t* output_state, const int8_t* recurrent_to_gate_weights,
+ const int32_t* recurrent_to_gate_bias,
+ const int32_t recurrent_to_gate_scale_a,
+ const int32_t recurrent_to_gate_scale_b,
+ // Cell state and weights
+ const int16_t* cell_state, const int16_t* cell_to_gate_weights,
+ const int32_t cell_to_gate_scale_a, const int32_t cell_to_gate_scale_b,
+ // Layer normalization parameters (layer norm LSTM)
+ const int16_t* layer_norm_coefficients, const int32_t* layer_norm_bias,
+ const int32_t layer_norm_input_scale_a,
+ const int32_t layer_norm_input_scale_b,
+ const int32_t layer_norm_variance_guard,
+ // Array sizes
+ const int n_batch, const int n_input, const int n_output, const int n_cell,
+ const TfLiteFusedActivation activation,
+ // Output
+ int16_t* gate,
+ // Parameters for performance optimizations
+ // Scratch arrays
+ int32_t* scratch5) {
+ const bool use_peephole = (cell_to_gate_weights != nullptr);
+ const bool use_layer_norm = (layer_norm_coefficients != nullptr);
+
+ // Initialize scratch buffers with zeros. Note that unlike float and hybrid
+ // versions, bias is only used in layer normalization.
+ memset(gate, 0, n_batch * n_cell * sizeof(int16_t));
+ // For each batch and cell: compute input_weight * input.
+ micro_tensor_utils::MatrixBatchVectorMultiplyAccumulate(
+ input, input_to_gate_bias, input_to_gate_weights, input_to_gate_scale_a,
+ input_to_gate_scale_b, n_batch, n_input, n_cell, 0, scratch5, gate,
+ nullptr);
+ // Note: no aux_input.
+
+ // For each batch and cell: compute recurrent_weight * output_state.
+ micro_tensor_utils::MatrixBatchVectorMultiplyAccumulate(
+ output_state, recurrent_to_gate_bias, recurrent_to_gate_weights,
+ recurrent_to_gate_scale_a, recurrent_to_gate_scale_b, n_batch, n_output,
+ n_cell, 0, scratch5, gate, nullptr);
+ // For each batch and cell: compute cell_weight * cell_state (peephole LSTM)
+ if (use_peephole) {
+ micro_tensor_utils::VectorBatchVectorCwiseProductAccumulate(
+ cell_to_gate_weights, n_output, cell_state, n_batch,
+ cell_to_gate_scale_a, cell_to_gate_scale_b, gate);
+ }
+ // Do layer normalization (if layer norm LSTM)
+ if (use_layer_norm) {
+ micro_tensor_utils::ApplyLayerNorm(
+ gate, layer_norm_coefficients, layer_norm_bias,
+ layer_norm_input_scale_a, layer_norm_input_scale_b,
+ layer_norm_variance_guard, n_batch, n_cell, gate);
+ }
+ // Apply activation
+ switch (activation) {
+ case kTfLiteActSigmoid:
+ micro_tensor_utils::ApplySigmoid(gate, n_batch, n_cell, gate);
+ break;
+ case kTfLiteActTanh:
+ micro_tensor_utils::ApplyTanh(3, gate, n_batch, n_cell, gate);
+ break;
+ default:
+ // Only Sigmoid or Tanh is used.
+ TFLITE_ASSERT_FALSE;
+ }
+}
+
+// Updates the LSTM cell state, used by both integer LSTM versions.
+// Also see UpdateLstmCellFloat.
+//
+// Parameters:
+// - n_batch, n_cell: sizes of vectors
+// - cell_state: input/output vector, size n_batch*n_cell
+// - cell_state_scale: scaling factor of cell state.
+// - input_gate: input vector, size n_batch*n_cell.
+// - forget_gate: input/scratch vector, size n_batch*n_cell, always modified.
+// - cell_gate: input vector, size n_batch*n_cell.
+// - use_cifg: use 1-forget_gate instead of input_gate.
+// - clip: if > 0, clip the resulting cell state to [-clip, +clip].
+void UpdateLstmCellInteger(int n_batch, int n_cell, int16_t* cell_state,
+ int32_t cell_state_scale, const int16_t* input_gate,
+ int16_t* forget_gate, const int16_t* cell_gate,
+ bool use_cifg, int16_t clip) {
+ // Use the forget_gate array as scratch, as input_gate array is not allocated
+ // in CIFG case. (Be careful not to write to the scratch before reading the
+ // forget gate data.)
+ int16_t* scratch = forget_gate;
+
+ micro_tensor_utils::CwiseMul(forget_gate, cell_state, n_batch, n_cell, 15,
+ cell_state);
+ if (use_cifg) {
+ micro_tensor_utils::Sub1Vector(forget_gate, n_batch * n_cell, scratch);
+ micro_tensor_utils::CwiseMul(scratch, cell_gate, n_batch, n_cell,
+ 30 + cell_state_scale, scratch);
+ } else {
+ micro_tensor_utils::CwiseMul(input_gate, cell_gate, n_batch, n_cell,
+ 30 + cell_state_scale, scratch);
+ }
+ micro_tensor_utils::CwiseAdd(cell_state, scratch, n_batch, n_cell,
+ cell_state);
+
+ if (clip > 0) {
+ micro_tensor_utils::CwiseClipping(cell_state, n_batch * n_cell, clip);
+ }
+}
+
+// Calculates the output state tensor of an LSTM step. See Float and hybrid
+// versions as well.
+//
+// Parameters:
+// - n_batch: batches: the number of distinct vectors in each array.
+// - n_cell, n_output: sizes of vectors.
+// - cell_state, output_gate: input vectors, size n_batch*n_cell.
+// - cell_state_scale: scaling of cell_state.
+// - hidden_scale_[a|b]: effective scale of cell_state.*output_gate
+// - hidden_zp: zero_point for cell_state.*output_gate
+// - projection_weights, proj_scale_[a|b], projection_bias:
+// constant inputs, describing projection matrix and bias.
+// - output_state_zp: zero point of output_state. (Input, calibrated value.)
+// - quantized_proj_clip: if > 0, clip the output of the projection.
+// - output_state: output vector, size n_batch*n_output. Must be contigous.
+// - scratch0: scratch area of size n_batch*n_cell
+// - scratch1: scratch area of size n_batch*n_cell
+// - scratch2: scratch area used by MatrixBatchVectorMultiplyAccumulate
+void CalculateLstmOutputInteger8x8_16(
+ int n_batch, int n_cell, int n_output, const int16_t* cell_state,
+ int32_t cell_state_scale, const int16_t* output_gate,
+ int32_t hidden_scale_a, int32_t hidden_scale_b, int32_t hidden_zp,
+ const int8_t* projection_weights, int32_t proj_scale_a,
+ int32_t proj_scale_b, const int32_t* projection_bias,
+ int32_t output_state_zp, int8_t quantized_proj_clip, int8_t* output_state,
+ int16_t* scratch0, int8_t* scratch1, int32_t* scratch2) {
+ // Note: unlike float/hybrid, the activation is always Tanh.
+ micro_tensor_utils::ApplyTanh(15 + cell_state_scale, cell_state, n_batch,
+ n_cell, scratch0);
+ micro_tensor_utils::CwiseMul(output_gate, scratch0, hidden_scale_a,
+ hidden_scale_b, n_batch, n_cell, hidden_zp,
+ scratch1);
+
+ const bool use_projection = (projection_weights != nullptr);
+
+ if (use_projection) {
+ // Note: no bias like in float/hybrid
+ memset(output_state, 0, n_batch * n_output * sizeof(int8_t));
+ micro_tensor_utils::MatrixBatchVectorMultiplyAccumulate(
+ scratch1, projection_bias, projection_weights, proj_scale_a,
+ proj_scale_b, n_batch, n_cell, n_output, output_state_zp, scratch2,
+ output_state, nullptr);
+ if (quantized_proj_clip > 0) {
+ micro_tensor_utils::CwiseClipping(output_state, n_batch * n_output,
+ quantized_proj_clip);
+ }
+ } else {
+ std::memcpy(output_state, scratch1, n_batch * n_output * sizeof(int8_t));
+ }
+}
+
+// Calculates a single LSTM gate, int8x8_8 version.
+// Implements the same functionality as CalculateLstmGateFloat.
+void CalculateLstmGateInteger8x8_8(
+ // Inputs and weights
+ const int8_t* input, int32_t input_zp, const int8_t* input_to_gate_weight,
+ const int32_t input_to_gate_scale_a, const int32_t input_to_gate_scale_b,
+ const int32_t input_times_weights_scale_a,
+ const int32_t input_times_weights_scale_b,
+ const int32_t input_times_weights_zp,
+ // Output state and weights
+ const int8_t* output_state, const int32_t output_state_zp,
+ const int8_t* recurrent_to_gate_weight,
+ const int32_t recurrent_to_gate_scale_a,
+ const int32_t recurrent_to_gate_scale_b,
+ const int32_t output_state_times_weights_scale_a,
+ const int32_t output_state_times_weights_scale_b,
+ const int32_t output_state_times_weights_zp,
+ // Layer normalization parameters (layer norm LSTM)
+ const int16_t* layer_norm_gate_weight,
+ const int32_t layer_norm_gate_scale_a,
+ const int32_t layer_norm_gate_scale_b, const int32_t* gate_bias,
+ // Array sizes
+ const int n_batch, const int n_input, const int n_output, const int n_cell,
+ const TfLiteFusedActivation activation,
+ // Output
+ int16_t* gate,
+ // Scratch arrays, both sized n_batch*n_cell
+ int8_t* scratch0, int8_t* scratch1) {
+ // Multiply input * input_weights => scratch0
+ micro_tensor_utils::MatrixBatchVectorMultiply(
+ input, input_zp, input_to_gate_weight, input_to_gate_scale_a,
+ input_to_gate_scale_b, n_batch, n_input, n_cell, scratch0,
+ input_times_weights_zp);
+ // Multiply output_state * recurrent_weights => scratch1
+ micro_tensor_utils::MatrixBatchVectorMultiply(
+ output_state, output_state_zp, recurrent_to_gate_weight,
+ recurrent_to_gate_scale_a, recurrent_to_gate_scale_b, n_batch, n_output,
+ n_cell, scratch1, output_state_times_weights_zp);
+ // Add scratch0 + scratch1 => gate
+ micro_tensor_utils::TwoGateSaturatingAdd(
+ scratch0, input_times_weights_zp, scratch1, output_state_times_weights_zp,
+ input_times_weights_scale_a, input_times_weights_scale_b,
+ output_state_times_weights_scale_a, output_state_times_weights_scale_b,
+ n_batch, n_cell, gate);
+ // Apply layer normalization.
+ micro_tensor_utils::ApplyLayerNormFloat(
+ gate, layer_norm_gate_weight, layer_norm_gate_scale_a,
+ layer_norm_gate_scale_b, gate_bias, n_batch, n_cell, gate);
+ // Apply activation.
+ switch (activation) {
+ case kTfLiteActSigmoid:
+ micro_tensor_utils::ApplySigmoidFloat(gate, n_batch, n_cell, gate);
+ break;
+ case kTfLiteActTanh:
+ micro_tensor_utils::ApplyTanhFloat(gate, n_batch, n_cell, -12, gate);
+ break;
+ default:
+ // Only Sigmoid or Tanh is used.
+ TFLITE_ASSERT_FALSE;
+ }
+}
+
+// Calculates the output state tensor of an LSTM step. See Float and hybrid
+// versions as well.
+//
+// Parameters:
+// - n_batch: batches: the number of distinct vectors in each array.
+// - n_cell, n_output: sizes of vectors.
+// - cell_state, output_gate: input vectors, size n_batch*n_cell.
+// - projection_weights, proj_scale_[a|b], projection_bias:
+// constant inputs, describing projection matrix and bias.
+// - output_state_zp: zero point of the output state.
+// - quantized_proj_clip: if > 0, clip the output of the projection.
+// - output_state: output vector, size n_batch*n_output. Must be contigous.
+// - scratch: scratch area of size n_batch*n_cell
+void CalculateLstmOutputInteger8x8_8(
+ int n_batch, int n_cell, int n_output, const int16_t* cell_state,
+ const int16_t* output_gate, const int8_t* projection_weights,
+ int32_t proj_scale_a, int32_t proj_scale_b, const int32_t* projection_bias,
+ int32_t output_state_zp, int32_t quantized_proj_clip, int8_t* output_state,
+ int16_t* scratch) {
+ // Note: unlike float/hybrid, the activation is always Tanh.
+ micro_tensor_utils::ApplyTanhFloat(cell_state, n_batch, n_cell, -15, scratch);
+ micro_tensor_utils::CwiseMul(output_gate, scratch, n_batch, n_cell,
+ 15 + 15 - 15, scratch);
+ // Note: no bias like in float/hybrid
+ micro_tensor_utils::MatrixBatchVectorMultiply(
+ scratch, projection_weights, proj_scale_a, proj_scale_b, projection_bias,
+ n_batch, n_cell, n_output, output_state_zp, output_state);
+ if (quantized_proj_clip > 0) {
+ micro_tensor_utils::CwiseClipping(output_state, n_batch * n_output,
+ quantized_proj_clip);
+ }
+}
+
+// Performs an LSTM batch inference step for input specified by input_ptr.
+// The LSTM cell is specified by the pointers to its weights (*_weights_ptr) and
+// biases (*_bias_ptr), and buffers (*_scratch), along with additional
+// parameters:
+// - params: various LSTM params including activation, clipping, etc.,
+// - n_batch: size of batch,
+// - n_cell: number of cells (or units),
+// - n_input: the input size,
+// - n_aux_input: the auxiliary input size.
+// - n_output: the output size.
+// - output_batch_leading_dim: the leading dimension of the output buffer.
+//
+// Input of size 'n_batch * n_input':
+// input_ptr
+// Input of size 'n_batch * n_aux_input':
+// aux_input_ptr - optional (can be nullptr)
+//
+// LSTM weights:
+// Input weights of size 'n_cell * n_input':
+// input_to_input_weights - optional
+// input_to_forget_weights
+// input_to_cell_weights
+// input_to_output_weights
+// Auxiliary input weights of size 'n_cell * n_aux_input':
+// aux_input_to_input_weights - optional
+// aux_input_to_forget_weights - optional
+// aux_input_to_cell_weights - optional
+// aux_input_to_output_weights - optional
+// Recurrent weights of size 'n_cell * n_output':
+// recurrent_to_input_weights - optional
+// recurrent_to_forget_weights
+// recurrent_to_cell_weights
+// recurrent_to_input_weights
+// Peephole weights of size 'n_cell', representing diagonal matrices.
+// cell_to_input_weights - optional
+// cell_to_cell_weights - optional
+// cell_to_output_weights - optional
+// Projection weights of size 'n_output * n_cell'
+// projection_weights_ptr - optional
+// Gate biases of size 'n_cell':
+// input_gate_bias_ptr - optional
+// forget_gate_bias_ptr
+// cell_gate_bias_ptr
+// output_gate_bias_ptr
+//
+// Layer norm coefficients of size 'n_cell', representing diagonal matrices.
+// input_layer_norm_coefficients_ptr - optional
+// forget_layer_norm_coefficients_ptr - optional
+// cell_layer_norm_coefficients_ptr - optional
+// output_layer_norm_coefficients_ptr - optional
+//
+// The pointers to the cell and output state and the output are updated.
+//
+// The pointers input_ptr, aux_input_ptr, and output_ptr point to data aligned
+// in batch_major order, and each step processes batch_size many inputs from
+// input_ptr, and updates batch_size many cell and output states.
+//
+// The output_batch_dim is output.shape[-1], i.e. the outermost dimension of the
+// output tensor, and in most cases will be equal to n_output. It is usually not
+// when we want to store the LSTM output into a slice of the output tensor, e.g.
+// for bidirectional LSTMs with merge_outputs. In this case, the batched
+// operations cannot be used since they assume that the batched outputs are
+// contiguous, and we manually loop over the batched outputs.
+inline void LstmStepFloat(
+ const float* input_ptr, const float* input_to_input_weights_ptr,
+ const float* input_to_forget_weights_ptr,
+ const float* input_to_cell_weights_ptr,
+ const float* input_to_output_weights_ptr, const float* aux_input_ptr,
+ const float* aux_input_to_input_weights_ptr,
+ const float* aux_input_to_forget_weights_ptr,
+ const float* aux_input_to_cell_weights_ptr,
+ const float* aux_input_to_output_weights_ptr,
+ const float* recurrent_to_input_weights_ptr,
+ const float* recurrent_to_forget_weights_ptr,
+ const float* recurrent_to_cell_weights_ptr,
+ const float* recurrent_to_output_weights_ptr,
+ const float* cell_to_input_weights_ptr,
+ const float* cell_to_forget_weights_ptr,
+ const float* cell_to_output_weights_ptr,
+ const float* input_layer_norm_coefficients_ptr,
+ const float* forget_layer_norm_coefficients_ptr,
+ const float* cell_layer_norm_coefficients_ptr,
+ const float* output_layer_norm_coefficients_ptr,
+ const float* input_gate_bias_ptr, const float* forget_gate_bias_ptr,
+ const float* cell_gate_bias_ptr, const float* output_gate_bias_ptr,
+ const float* projection_weights_ptr, const float* projection_bias_ptr,
+ const TfLiteLSTMParams* params, int n_batch, int n_cell, int n_input,
+ int n_aux_input, int n_output, int output_batch_leading_dim,
+ float* output_state_ptr, float* cell_state_ptr, float* scratch0,
+ float* scratch1, float* scratch2, float* scratch3, float* output_ptr) {
+ // Since we have already checked that weights are all there or none, we can
+ // check the existence of only one to the get the condition.
+ const bool use_cifg = (input_to_input_weights_ptr == nullptr);
+
+ // Make named scratch buffers.
+ float* input_gate_scratch = scratch0;
+ float* forget_gate_scratch = scratch1;
+ float* cell_gate_scratch = scratch2;
+ float* output_gate_scratch = scratch3;
+
+ // Check if inputs are all zeros so we can skip some computations.
+ const bool is_input_all_zeros =
+ micro_tensor_utils::IsZeroVector(input_ptr, n_batch * n_input);
+ const bool is_aux_input_all_zeros =
+ (aux_input_ptr == nullptr ||
+ micro_tensor_utils::IsZeroVector(aux_input_ptr, n_batch * n_aux_input));
+ if (!use_cifg) {
+ // Calculate the input gate. (If not CIFG.)
+ CalculateLstmGateFloat(
+ input_ptr, input_to_input_weights_ptr, aux_input_ptr,
+ aux_input_to_input_weights_ptr, output_state_ptr,
+ recurrent_to_input_weights_ptr, cell_state_ptr,
+ cell_to_input_weights_ptr, input_layer_norm_coefficients_ptr,
+ input_gate_bias_ptr, n_batch, n_input, n_aux_input, n_output, n_cell,
+ /*activation=*/kTfLiteActSigmoid, input_gate_scratch,
+ is_input_all_zeros, is_aux_input_all_zeros);
+ }
+ // Calculate the forget gate.
+ CalculateLstmGateFloat(
+ input_ptr, input_to_forget_weights_ptr, aux_input_ptr,
+ aux_input_to_forget_weights_ptr, output_state_ptr,
+ recurrent_to_forget_weights_ptr, cell_state_ptr,
+ cell_to_forget_weights_ptr, forget_layer_norm_coefficients_ptr,
+ forget_gate_bias_ptr, n_batch, n_input, n_aux_input, n_output, n_cell,
+ /*activation=*/kTfLiteActSigmoid, forget_gate_scratch, is_input_all_zeros,
+ is_aux_input_all_zeros);
+ // Calculate the cell update gate.
+ CalculateLstmGateFloat(input_ptr, input_to_cell_weights_ptr, aux_input_ptr,
+ aux_input_to_cell_weights_ptr, output_state_ptr,
+ recurrent_to_cell_weights_ptr, /*cell_state=*/nullptr,
+ /*cell_to_gate_weights=*/nullptr,
+ cell_layer_norm_coefficients_ptr, cell_gate_bias_ptr,
+ n_batch, n_input, n_aux_input, n_output, n_cell,
+ params->activation, cell_gate_scratch,
+ is_input_all_zeros, is_aux_input_all_zeros);
+ // Update the cell state.
+ UpdateLstmCellFloat(n_batch, n_cell, cell_state_ptr, input_gate_scratch,
+ forget_gate_scratch, cell_gate_scratch, use_cifg,
+ params->cell_clip);
+ // Calculate output gate.
+ CalculateLstmGateFloat(
+ input_ptr, input_to_output_weights_ptr, aux_input_ptr,
+ aux_input_to_output_weights_ptr, output_state_ptr,
+ recurrent_to_output_weights_ptr, cell_state_ptr,
+ cell_to_output_weights_ptr, output_layer_norm_coefficients_ptr,
+ output_gate_bias_ptr, n_batch, n_input, n_aux_input, n_output, n_cell,
+ /*activation=*/kTfLiteActSigmoid, output_gate_scratch, is_input_all_zeros,
+ is_aux_input_all_zeros);
+ // Update the output state.
+ CalculateLstmOutputFloat(n_batch, n_cell, n_output, cell_state_ptr,
+ output_gate_scratch, params->activation,
+ projection_weights_ptr, projection_bias_ptr,
+ params->proj_clip, output_state_ptr, scratch2);
+ // Copy output state to the output. Note that the output's rows may not be
+ // contiguous (output_batch_leading_dim != n_output).
+ for (int b = 0; b < n_batch; b++) {
+ std::memcpy(output_ptr + b * output_batch_leading_dim,
+ output_state_ptr + b * n_output, n_output * sizeof(float));
+ }
+}
+
+// Same as above but with quantized weight matrices. In detail:
+// Input of size 'n_batch * n_input':
+// input_ptr
+// Input of size 'n_batch * n_aux_input':
+// aux_input_ptr - optional (can be nullptr)
+//
+// LSTM weights:
+// Quantized input weights of size 'n_cell * n_input':
+// input_to_input_weights - optional
+// input_to_forget_weights
+// input_to_cell_weights
+// input_to_input_weights
+// Quantized auxiliary input weights of size 'n_cell * n_aux_input':
+// aux_input_to_input_weights - optional
+// aux_input_to_forget_weights - optional
+// aux_input_to_cell_weights - optional
+// aux_input_to_output_weights - optional
+// Quantized recurrent weights of size 'n_cell * n_output':
+// recurrent_to_input_weights - optional
+// recurrent_to_forget_weights
+// recurrent_to_cell_weights
+// recurrent_to_input_weights
+// Quantized peephole weights of size 'n_cell', representing diagonal matrices.
+// cell_to_input_weights - optional
+// cell_to_cell_weights - optional
+// cell_to_output_weights - optional
+// Quantized projection weights of size 'n_output * n_cell'
+// projection_weights_ptr - optional
+// Weight scales (scalars) for each of the weights above.
+// input_to_input_weights_scale - optional
+// input_to_forget_weights_scale
+// input_to_cell_weights_scale
+// input_to_output_weights_scale
+// aux_input_to_input_weights_scale - optional
+// aux_input_to_forget_weights_scale - optional
+// aux_input_to_cell_weights_scale - optional
+// aux_input_to_output_weights_scale - optional
+// recurrent_to_input_weights_scale - optional
+// recurrent_to_forget_weights_scale
+// recurrent_to_cell_weights_scale
+// recurrent_to_output_weights_scale
+// cell_to_input_weights_scale,
+// cell_to_forget_weights_scale,
+// cell_to_output_weights_scale,
+// projection_weights_scale - optional
+// Gate biases of size 'n_cell':
+// input_gate_bias_ptr - optional
+// forget_gate_bias_ptr
+// cell_gate_bias_ptr
+// output_gate_bias_ptr
+//
+// Layer norm coefficients of size 'n_cell', representing diagonal matrices.
+// input_layer_norm_coefficients_ptr - optional
+// forget_layer_norm_coefficients_ptr - optional
+// cell_layer_norm_coefficients_ptr - optional
+// output_layer_norm_coefficients_ptr - optional
+//
+// Temporary pre-allocated storage for quantized values:
+// quantized_input_ptr (same size as input_ptr)
+// quantized_output_state_ptr (same size as output_state_ptr)
+// quantized_output_scratch (same size as cell_state_ptr)
+// Temporary pre-allocated storage for recovered values:
+// recovered_cell_weights (same size as cell_to_*_weights)
+//
+// Outputs:
+// output_state_ptr - size 'n_batch * n_output'
+// cell_state_ptr - size 'n_batch * n_cell'
+// output_ptr - size 'n_batch * output_batch_leading_dim'
+inline void LstmStepHybrid(
+ const float* input_ptr, const int8_t* input_to_input_weights_ptr,
+ const uint8_t* input_to_input_weights_ledger_ptr,
+ float input_to_input_weights_scale,
+ const int8_t* input_to_forget_weights_ptr,
+ const uint8_t* input_to_forget_weights_ledger_ptr,
+ float input_to_forget_weights_scale,
+ const int8_t* input_to_cell_weights_ptr,
+ const uint8_t* input_to_cell_weights_ledger_ptr,
+ float input_to_cell_weights_scale,
+ const int8_t* input_to_output_weights_ptr,
+ const uint8_t* input_to_output_weights_ledger_ptr,
+ float input_to_output_weights_scale, const float* aux_input_ptr,
+ const int8_t* aux_input_to_input_weights_ptr,
+ float aux_input_to_input_weights_scale,
+ const int8_t* aux_input_to_forget_weights_ptr,
+ float aux_input_to_forget_weights_scale,
+ const int8_t* aux_input_to_cell_weights_ptr,
+ float aux_input_to_cell_weights_scale,
+ const int8_t* aux_input_to_output_weights_ptr,
+ float aux_input_to_output_weights_scale,
+ const int8_t* recurrent_to_input_weights_ptr,
+ const uint8_t* recurrent_to_input_weights_ledger_ptr,
+ float recurrent_to_input_weights_scale,
+ const int8_t* recurrent_to_forget_weights_ptr,
+ const uint8_t* recurrent_to_forget_weights_ledger_ptr,
+ float recurrent_to_forget_weights_scale,
+ const int8_t* recurrent_to_cell_weights_ptr,
+ const uint8_t* recurrent_to_cell_weights_ledger_ptr,
+ float recurrent_to_cell_weights_scale,
+ const int8_t* recurrent_to_output_weights_ptr,
+ const uint8_t* recurrent_to_output_weights_ledger_ptr,
+ float recurrent_to_output_weights_scale,
+ const int8_t* cell_to_input_weights_ptr, float cell_to_input_weights_scale,
+ const int8_t* cell_to_forget_weights_ptr,
+ float cell_to_forget_weights_scale,
+ const int8_t* cell_to_output_weights_ptr,
+ float cell_to_output_weights_scale,
+ const float* input_layer_norm_coefficients_ptr,
+ const float* forget_layer_norm_coefficients_ptr,
+ const float* cell_layer_norm_coefficients_ptr,
+ const float* output_layer_norm_coefficients_ptr,
+ const float* input_gate_bias_ptr, const float* forget_gate_bias_ptr,
+ const float* cell_gate_bias_ptr, const float* output_gate_bias_ptr,
+ const int8_t* projection_weights_ptr,
+ const uint8_t* projection_weights_ledger_ptr,
+ float projection_weights_scale, const float* projection_bias_ptr,
+ const TfLiteLSTMParams* params, int n_batch, int n_cell, int n_input,
+ int n_aux_input, int n_output, int output_batch_leading_dim,
+ float* scratch0, float* scratch1, float* scratch2, float* scratch3,
+ float* scales, float* input_sf, float* aux_input_sf, float* output_state_sf,
+ float* scaling_factors_scratch, float* recovered_cell_weights,
+ int8_t* quantized_input_ptr, int8_t* quantized_aux_input_ptr,
+ int8_t* quantized_output_state_ptr, int8_t* quantized_output_scratch,
+ float* output_state_ptr, float* cell_state_ptr, int32_t* accum_scratch_ptr,
+ float* output_ptr, int32_t* input_zp, int32_t* aux_input_zp,
+ int32_t* output_state_zp, int32_t* row_sums, int row_sums_size,
+ bool* compute_row_sums, bool asymmetric_quantize_inputs) {
+ // Since we have already checked that weights are all there or none, we
+ // can check the existence of only one to the get the condition.
+ const bool use_cifg = (input_to_input_weights_ptr == nullptr);
+ // Make named scratch buffers for the different gates.
+ float* input_gate_scratch = scratch0;
+ float* forget_gate_scratch = scratch1;
+ float* cell_gate_scratch = scratch2;
+ float* output_gate_scratch = scratch3;
+
+ int32_t* input_to_input_row_sums = nullptr;
+ int32_t* input_to_forget_row_sums = nullptr;
+ int32_t* input_to_cell_row_sums = nullptr;
+ int32_t* input_to_output_row_sums = nullptr;
+ int32_t* aux_input_to_input_row_sums = nullptr;
+ int32_t* aux_input_to_forget_row_sums = nullptr;
+ int32_t* aux_input_to_cell_row_sums = nullptr;
+ int32_t* aux_input_to_output_row_sums = nullptr;
+ int32_t* recurrent_to_input_row_sums = nullptr;
+ int32_t* recurrent_to_forget_row_sums = nullptr;
+ int32_t* recurrent_to_cell_row_sums = nullptr;
+ int32_t* recurrent_to_output_row_sums = nullptr;
+ int32_t* projection_weights_row_sums = nullptr;
+
+ if (asymmetric_quantize_inputs) {
+ int num_row_sums = use_cifg ? 6 : 8;
+ if (aux_input_ptr != nullptr) {
+ num_row_sums += use_cifg ? 3 : 4;
+ }
+ if (projection_weights_ptr != nullptr) {
+ num_row_sums += ceil(static_cast(n_output) / n_cell);
+ }
+ TFLITE_DCHECK(row_sums_size == num_row_sums);
+ input_to_input_row_sums = row_sums;
+ input_to_forget_row_sums =
+ use_cifg ? input_to_input_row_sums : input_to_input_row_sums + n_cell;
+ input_to_cell_row_sums = input_to_forget_row_sums + n_cell;
+ input_to_output_row_sums = input_to_cell_row_sums + n_cell;
+ if (aux_input_ptr != nullptr) {
+ aux_input_to_input_row_sums = input_to_output_row_sums + n_cell;
+ aux_input_to_forget_row_sums = use_cifg
+ ? aux_input_to_input_row_sums
+ : aux_input_to_input_row_sums + n_cell;
+ aux_input_to_cell_row_sums = aux_input_to_forget_row_sums + n_cell;
+ aux_input_to_output_row_sums = aux_input_to_cell_row_sums + n_cell;
+ }
+ recurrent_to_input_row_sums = aux_input_ptr
+ ? aux_input_to_output_row_sums + n_cell
+ : input_to_output_row_sums + n_cell;
+ recurrent_to_forget_row_sums = use_cifg
+ ? recurrent_to_input_row_sums
+ : recurrent_to_input_row_sums + n_cell;
+ recurrent_to_cell_row_sums = recurrent_to_forget_row_sums + n_cell;
+ recurrent_to_output_row_sums = recurrent_to_cell_row_sums + n_cell;
+ if (projection_weights_ptr != nullptr) {
+ projection_weights_row_sums = recurrent_to_output_row_sums + n_cell;
+ }
+ if (*compute_row_sums) {
+ ComputeRowSums(
+ input_to_input_row_sums, input_to_forget_row_sums,
+ input_to_cell_row_sums, input_to_output_row_sums,
+ aux_input_to_input_row_sums, aux_input_to_forget_row_sums,
+ aux_input_to_cell_row_sums, aux_input_to_output_row_sums,
+ recurrent_to_input_row_sums, recurrent_to_forget_row_sums,
+ recurrent_to_cell_row_sums, recurrent_to_output_row_sums,
+ projection_weights_row_sums, row_sums, n_cell, n_input, n_aux_input,
+ n_output, input_to_input_weights_ptr, input_to_forget_weights_ptr,
+ input_to_cell_weights_ptr, input_to_output_weights_ptr,
+ aux_input_to_input_weights_ptr, aux_input_to_forget_weights_ptr,
+ aux_input_to_cell_weights_ptr, aux_input_to_output_weights_ptr,
+ recurrent_to_input_weights_ptr, recurrent_to_forget_weights_ptr,
+ recurrent_to_cell_weights_ptr, recurrent_to_output_weights_ptr,
+ projection_weights_ptr, use_cifg, aux_input_ptr);
+ *compute_row_sums = false;
+ }
+ }
+
+ // Check if inputs are all zeros so we can skip some computations.
+ const bool is_input_all_zeros =
+ micro_tensor_utils::IsZeroVector(input_ptr, n_batch * n_input);
+ const bool is_aux_input_all_zeros =
+ (aux_input_ptr == nullptr ||
+ micro_tensor_utils::IsZeroVector(aux_input_ptr, n_batch * n_aux_input));
+ const bool is_output_state_all_zeros =
+ micro_tensor_utils::IsZeroVector(output_state_ptr, n_batch * n_output);
+ // Quantize inputs.
+ if (!is_input_all_zeros) {
+ micro_tensor_utils::BatchQuantizeFloats(
+ input_ptr, n_batch, n_input, quantized_input_ptr, input_sf, input_zp,
+ asymmetric_quantize_inputs);
+ }
+ if (!is_aux_input_all_zeros) {
+ micro_tensor_utils::BatchQuantizeFloats(
+ aux_input_ptr, n_batch, n_aux_input, quantized_aux_input_ptr,
+ aux_input_sf, aux_input_zp, asymmetric_quantize_inputs);
+ }
+ if (!is_output_state_all_zeros) {
+ micro_tensor_utils::BatchQuantizeFloats(
+ output_state_ptr, n_batch, n_output, quantized_output_state_ptr,
+ output_state_sf, output_state_zp, asymmetric_quantize_inputs);
+ }
+ if (!use_cifg) {
+ // Calculate the input gate. (If not CIFG.)
+ CalculateLstmGateHybrid(
+ quantized_input_ptr, input_sf, input_zp, input_to_input_weights_ptr,
+ input_to_input_weights_ledger_ptr, input_to_input_weights_scale,
+ input_to_input_row_sums, quantized_aux_input_ptr, aux_input_sf,
+ aux_input_zp, aux_input_to_input_weights_ptr,
+ aux_input_to_input_weights_scale, aux_input_to_input_row_sums,
+ quantized_output_state_ptr, output_state_sf, output_state_zp,
+ recurrent_to_input_weights_ptr, recurrent_to_input_weights_ledger_ptr,
+ recurrent_to_input_weights_scale, recurrent_to_input_row_sums,
+ cell_state_ptr, cell_to_input_weights_ptr, cell_to_input_weights_scale,
+ input_layer_norm_coefficients_ptr, input_gate_bias_ptr, n_batch,
+ n_input, n_aux_input, n_output, n_cell, kTfLiteActSigmoid,
+ input_gate_scratch, is_input_all_zeros, is_aux_input_all_zeros,
+ is_output_state_all_zeros, compute_row_sums, scaling_factors_scratch,
+ recovered_cell_weights, scales, accum_scratch_ptr);
+ }
+ // Calculate the forget gate.
+ CalculateLstmGateHybrid(
+ quantized_input_ptr, input_sf, input_zp, input_to_forget_weights_ptr,
+ input_to_forget_weights_ledger_ptr, input_to_forget_weights_scale,
+ input_to_forget_row_sums, quantized_aux_input_ptr, aux_input_sf,
+ aux_input_zp, aux_input_to_forget_weights_ptr,
+ aux_input_to_forget_weights_scale, aux_input_to_forget_row_sums,
+ quantized_output_state_ptr, output_state_sf, output_state_zp,
+ recurrent_to_forget_weights_ptr, recurrent_to_forget_weights_ledger_ptr,
+ recurrent_to_forget_weights_scale, recurrent_to_forget_row_sums,
+ cell_state_ptr, cell_to_forget_weights_ptr, cell_to_forget_weights_scale,
+ forget_layer_norm_coefficients_ptr, forget_gate_bias_ptr, n_batch,
+ n_input, n_aux_input, n_output, n_cell, kTfLiteActSigmoid,
+ forget_gate_scratch, is_input_all_zeros, is_aux_input_all_zeros,
+ is_output_state_all_zeros, compute_row_sums, scaling_factors_scratch,
+ recovered_cell_weights, scales, accum_scratch_ptr);
+ // Calculate the cell update gate.
+ CalculateLstmGateHybrid(
+ quantized_input_ptr, input_sf, input_zp, input_to_cell_weights_ptr,
+ input_to_cell_weights_ledger_ptr, input_to_cell_weights_scale,
+ input_to_cell_row_sums, quantized_aux_input_ptr, aux_input_sf,
+ aux_input_zp, aux_input_to_cell_weights_ptr,
+ aux_input_to_cell_weights_scale, aux_input_to_cell_row_sums,
+ quantized_output_state_ptr, output_state_sf, output_state_zp,
+ recurrent_to_cell_weights_ptr, recurrent_to_cell_weights_ledger_ptr,
+ recurrent_to_cell_weights_scale, recurrent_to_cell_row_sums,
+ /*cell_state=*/nullptr, /*cell_to_gate_weights=*/nullptr,
+ /*cell_to_gate_weights_scale=*/0.0f, cell_layer_norm_coefficients_ptr,
+ cell_gate_bias_ptr, n_batch, n_input, n_aux_input, n_output, n_cell,
+ params->activation, cell_gate_scratch, is_input_all_zeros,
+ is_aux_input_all_zeros, is_output_state_all_zeros, compute_row_sums,
+ scaling_factors_scratch, recovered_cell_weights, scales,
+ accum_scratch_ptr);
+ // Update the cell state.
+ UpdateLstmCellFloat(n_batch, n_cell, cell_state_ptr, input_gate_scratch,
+ forget_gate_scratch, cell_gate_scratch, use_cifg,
+ params->cell_clip);
+ // Calculate the output gate.
+ CalculateLstmGateHybrid(
+ quantized_input_ptr, input_sf, input_zp, input_to_output_weights_ptr,
+ input_to_output_weights_ledger_ptr, input_to_output_weights_scale,
+ input_to_output_row_sums, quantized_aux_input_ptr, aux_input_sf,
+ aux_input_zp, aux_input_to_output_weights_ptr,
+ aux_input_to_output_weights_scale, aux_input_to_output_row_sums,
+ quantized_output_state_ptr, output_state_sf, output_state_zp,
+ recurrent_to_output_weights_ptr, recurrent_to_output_weights_ledger_ptr,
+ recurrent_to_output_weights_scale, recurrent_to_output_row_sums,
+ cell_state_ptr, cell_to_output_weights_ptr, cell_to_output_weights_scale,
+ output_layer_norm_coefficients_ptr, output_gate_bias_ptr, n_batch,
+ n_input, n_aux_input, n_output, n_cell, kTfLiteActSigmoid,
+ output_gate_scratch, is_input_all_zeros, is_aux_input_all_zeros,
+ is_output_state_all_zeros, compute_row_sums, scaling_factors_scratch,
+ recovered_cell_weights, scales, accum_scratch_ptr);
+ // Update the output state.
+ CalculateLstmOutputHybrid(
+ n_batch, n_cell, n_output, cell_state_ptr, output_gate_scratch,
+ params->activation, projection_weights_ptr, projection_weights_ledger_ptr,
+ projection_weights_scale, projection_bias_ptr, params->proj_clip,
+ output_state_ptr, asymmetric_quantize_inputs, projection_weights_row_sums,
+ compute_row_sums, scratch2, quantized_output_scratch, input_sf, input_zp,
+ accum_scratch_ptr, scales);
+ // Copy output state to the output. Note that the output's rows may not be
+ // contiguous (output_batch_leading_dim != n_output).
+ for (int b = 0; b < n_batch; b++) {
+ std::memcpy(output_ptr + b * output_batch_leading_dim,
+ output_state_ptr + b * n_output, n_output * sizeof(float));
+ }
+}
+
+// Fully quantized lstm kernel for 16 bit gate matmul output.
+//
+// Input tensor of size n_batch * n_input:
+// input_ptr
+//
+// LSTM weights:
+// Quantized input weights of size 'n_cell * n_input':
+// input_to_input_weight_ptr - optional
+// input_to_forget_weight_ptr - optional
+// input_to_cell_weight_ptr - optional
+// input_to_output_weight_ptr - optional
+//
+// Quantized recurrent weights of size 'n_cell * n_output':
+// recurrent_to_input_weight_ptr - optional
+// recurrent_to_forget_weights_ptr
+// recurrent_to_cell_weights_ptr
+// recurrent_to_input_weights_ptr
+//
+// Quantized peephole weights of size 'n_cell', representing diagonal matrices.
+// cell_to_input_weights - optional
+// cell_to_cell_weights - optional
+// cell_to_output_weights - optional
+//
+// Quantized projection weights of size 'n_output * n_cell'
+// projection_weight_ptr - optional
+//
+// Weight scales (scalars) for each of the weights above.
+// effective_input_to_input_scale_a - optional
+// effective_input_to_input_scale_b - optional
+// effective_input_to_forget_scale_a
+// effective_input_to_forget_scale_b
+// effective_input_to_cell_scale_a
+// effective_input_to_cell_scale_b
+// effective_input_to_output_scale_a
+// effective_input_to_output_scale_b
+// effective_recurrent_to_input_scale_a - optional
+// effective_recurrent_to_input_scale_b - optional
+// effective_recurrent_to_forget_scale_a
+// effective_recurrent_to_forget_scale_b
+// effective_recurrent_to_cell_scale_a
+// effective_recurrent_to_cell_scale_b
+// effective_recurrent_to_output_scale_a
+// effective_recurrent_to_output_scale_b
+// effective_proj_scale_a - optional
+// effective_proj_scale_b - optional
+//
+// Gate biases of size 'n_cell':
+// input_gate_bias_ptr - optional
+// forget_gate_bias_ptr
+// cell_gate_bias_ptr
+// output_gate_bias_ptr
+//
+// Layer norm coefficients of size 'n_cell', representing diagonal matrices.
+// layer_norm_input_weight_ptr - optional
+// layer_norm_forget_weight_ptr - optional
+// layer_norm_cell_weight_ptr - optional
+// layer_norm_output_weight_ptr - optional
+//
+// Layer norm scales of size 'n_cell'.
+// layer_norm_input_scale_a - optional
+// layer_norm_input_scale_b - optional
+// layer_norm_forget_scale_a - optional
+// layer_norm_forget_scale_b - optional
+// layer_norm_cell_scale_a - optional
+// layer_norm_cell_scale_b - optional
+// layer_norm_output_scale_a - optional
+// layer_norm_output_scale_b - optional
+//
+// Scalar values:
+// quantized_cell_clip: quantized clip value for cell.
+// quantized_proj_clip: quantized clip value for projection.
+// cell_state_scale: the power of two scale for cell state.
+//
+// Zero points:
+// output_state_zp: zero point of output state
+// hidden_zp: zero point for hidden state.
+//
+// Temporary pre-allocated storage for the calculation. Each is of size n_cell *
+// n_batch.
+// scratch0
+// scratch1
+// scratch2
+// scratch3
+// scratch4
+// scratch5: this scratch buffer is created purely for optimizing the
+// MatrixBatchVectorMultiplyAccumulate.
+//
+// Outputs:
+// output_state_ptr - size 'n_batch * n_output'
+// cell_state_ptr - size 'n_batch * n_cell'
+// output_ptr - size 'n_batch * n_output'
+// TODO(b/159947023): scratch0 is not used if (!cifg). Don't allocate then.
+inline void LstmStepInteger8x8_16(
+ const int8_t* input_ptr, const int8_t* input_to_input_weight_ptr,
+ int32_t effective_input_to_input_scale_a,
+ int32_t effective_input_to_input_scale_b,
+ const int8_t* input_to_forget_weight_ptr,
+ int32_t effective_input_to_forget_scale_a,
+ int32_t effective_input_to_forget_scale_b,
+ const int8_t* input_to_cell_weight_ptr,
+ int32_t effective_input_to_cell_scale_a,
+ int32_t effective_input_to_cell_scale_b,
+ const int8_t* input_to_output_weight_ptr,
+ int32_t effective_input_to_output_scale_a,
+ int32_t effective_input_to_output_scale_b,
+ const int8_t* recurrent_to_input_weight_ptr,
+ int32_t effective_recurrent_to_input_scale_a,
+ int32_t effective_recurrent_to_input_scale_b,
+ const int8_t* recurrent_to_forget_weight_ptr,
+ int32_t effective_recurrent_to_forget_scale_a,
+ int32_t effective_recurrent_to_forget_scale_b,
+ const int8_t* recurrent_to_cell_weight_ptr,
+ int32_t effective_recurrent_to_cell_scale_a,
+ int32_t effective_recurrent_to_cell_scale_b,
+ const int8_t* recurrent_to_output_weight_ptr,
+ int32_t effective_recurrent_to_output_scale_a,
+ int32_t effective_recurrent_to_output_scale_b,
+ const int16_t* cell_to_input_weight_ptr,
+ int32_t effective_cell_to_input_scale_a,
+ int32_t effective_cell_to_input_scale_b,
+ const int16_t* cell_to_forget_weight_ptr,
+ int32_t effective_cell_to_forget_scale_a,
+ int32_t effective_cell_to_forget_scale_b,
+ const int16_t* cell_to_output_weight_ptr,
+ int32_t effective_cell_to_output_scale_a,
+ int32_t effective_cell_to_output_scale_b,
+ const int8_t* projection_weight_ptr, int32_t effective_proj_scale_a,
+ int32_t effective_proj_scale_b, int32_t hidden_zp,
+ int32_t effective_hidden_scale_a, int32_t effective_hidden_scale_b,
+ const int16_t* layer_norm_input_weight_ptr,
+ int32_t layer_norm_input_scale_a, int32_t layer_norm_input_scale_b,
+ const int16_t* layer_norm_forget_weight_ptr,
+ int32_t layer_norm_forget_scale_a, int32_t layer_norm_forget_scale_b,
+ const int16_t* layer_norm_cell_weight_ptr, int32_t layer_norm_cell_scale_a,
+ int32_t layer_norm_cell_scale_b,
+ const int16_t* layer_norm_output_weight_ptr,
+ int32_t layer_norm_output_scale_a, int32_t layer_norm_output_scale_b,
+ const int32_t* input_gate_bias_ptr, const int32_t* forget_gate_bias_ptr,
+ const int32_t* cell_gate_bias_ptr, const int32_t* output_gate_bias_ptr,
+ int16_t quantized_cell_clip, int8_t quantized_proj_clip,
+ int32_t cell_state_scale, int32_t input_variance_guard,
+ int32_t forget_variance_guard, int32_t cell_variance_guard,
+ int32_t output_variance_guard,
+ const int32_t* input_to_forget_effective_bias,
+ const int32_t* recurrent_to_forget_effective_bias,
+ const int32_t* input_to_cell_effective_bias,
+ const int32_t* recurrent_to_cell_effective_bias,
+ const int32_t* input_to_output_effective_bias,
+ const int32_t* recurrent_to_output_effective_bias,
+ const int32_t* input_to_input_effective_bias,
+ const int32_t* recurrent_to_input_effective_bias,
+ const int32_t* projection_effective_bias, int n_batch, int n_cell,
+ int n_input, int n_output, int8_t* output_state_ptr,
+ int32_t output_state_zp, int16_t* cell_state_ptr, int8_t* output_ptr,
+ int16_t* scratch0, int16_t* scratch1, int16_t* scratch2, int16_t* scratch3,
+ int8_t* scratch4, int32_t* scratch5) {
+ // Make named scratch buffers for the different gates.
+ int16_t* input_gate_scratch = scratch0;
+ int16_t* forget_gate_scratch = scratch1;
+ int16_t* cell_gate_scratch = scratch2;
+ int16_t* output_gate_scratch = scratch3;
+
+ // Since we have already checked that weights are all there or none, we
+ // can check the existence of only one to the get the condition.
+ const bool use_cifg = (input_to_input_weight_ptr == nullptr);
+
+ // Check for nullptrs.
+ TFLITE_DCHECK(input_to_forget_effective_bias);
+ TFLITE_DCHECK(recurrent_to_forget_effective_bias);
+ TFLITE_DCHECK(input_to_cell_effective_bias);
+ TFLITE_DCHECK(recurrent_to_cell_effective_bias);
+ TFLITE_DCHECK(input_to_output_effective_bias);
+ TFLITE_DCHECK(recurrent_to_output_effective_bias);
+ if (!use_cifg) {
+ TFLITE_DCHECK(input_to_input_effective_bias);
+ TFLITE_DCHECK(recurrent_to_input_effective_bias);
+ }
+ const bool use_projection = (projection_weight_ptr != nullptr);
+ if (use_projection) {
+ TFLITE_DCHECK(projection_effective_bias);
+ }
+ if (!use_cifg) {
+ // Calculate the input gate. (If not CIFG.)
+ CalculateLstmGateInteger8x8_16(
+ input_ptr, input_to_input_weight_ptr, input_to_input_effective_bias,
+ effective_input_to_input_scale_a, effective_input_to_input_scale_b,
+ output_state_ptr, recurrent_to_input_weight_ptr,
+ recurrent_to_input_effective_bias, effective_recurrent_to_input_scale_a,
+ effective_recurrent_to_input_scale_b, cell_state_ptr,
+ cell_to_input_weight_ptr, effective_cell_to_input_scale_a,
+ effective_cell_to_input_scale_b, layer_norm_input_weight_ptr,
+ input_gate_bias_ptr, layer_norm_input_scale_a, layer_norm_input_scale_b,
+ input_variance_guard, n_batch, n_input, n_output, n_cell,
+ kTfLiteActSigmoid, input_gate_scratch, scratch5);
+ }
+ // Calculate the forget gate.
+ CalculateLstmGateInteger8x8_16(
+ input_ptr, input_to_forget_weight_ptr, input_to_forget_effective_bias,
+ effective_input_to_forget_scale_a, effective_input_to_forget_scale_b,
+ output_state_ptr, recurrent_to_forget_weight_ptr,
+ recurrent_to_forget_effective_bias, effective_recurrent_to_forget_scale_a,
+ effective_recurrent_to_forget_scale_b, cell_state_ptr,
+ cell_to_forget_weight_ptr, effective_cell_to_forget_scale_a,
+ effective_cell_to_forget_scale_b, layer_norm_forget_weight_ptr,
+ forget_gate_bias_ptr, layer_norm_forget_scale_a,
+ layer_norm_forget_scale_b, forget_variance_guard, n_batch, n_input,
+ n_output, n_cell, kTfLiteActSigmoid, forget_gate_scratch, scratch5);
+ // Calculate the cell update gate.
+ CalculateLstmGateInteger8x8_16(
+ input_ptr, input_to_cell_weight_ptr, input_to_cell_effective_bias,
+ effective_input_to_cell_scale_a, effective_input_to_cell_scale_b,
+ output_state_ptr, recurrent_to_cell_weight_ptr,
+ recurrent_to_cell_effective_bias, effective_recurrent_to_cell_scale_a,
+ effective_recurrent_to_cell_scale_b, cell_state_ptr,
+ /*cell_to_gate_weights=*/nullptr, /*cell_to_gate_scale_a=*/0,
+ /*cell_to_gate_scale_b=*/0, layer_norm_cell_weight_ptr,
+ cell_gate_bias_ptr, layer_norm_cell_scale_a, layer_norm_cell_scale_b,
+ cell_variance_guard, n_batch, n_input, n_output, n_cell, kTfLiteActTanh,
+ cell_gate_scratch, scratch5);
+ // Update the cell state.
+ UpdateLstmCellInteger(n_batch, n_cell, cell_state_ptr, cell_state_scale,
+ input_gate_scratch, forget_gate_scratch,
+ cell_gate_scratch, use_cifg, quantized_cell_clip);
+ // Calculate the output gate.
+ CalculateLstmGateInteger8x8_16(
+ input_ptr, input_to_output_weight_ptr, input_to_output_effective_bias,
+ effective_input_to_output_scale_a, effective_input_to_output_scale_b,
+ output_state_ptr, recurrent_to_output_weight_ptr,
+ recurrent_to_output_effective_bias, effective_recurrent_to_output_scale_a,
+ effective_recurrent_to_output_scale_b, cell_state_ptr,
+ cell_to_output_weight_ptr, effective_cell_to_output_scale_a,
+ effective_cell_to_output_scale_b, layer_norm_output_weight_ptr,
+ output_gate_bias_ptr, layer_norm_output_scale_a,
+ layer_norm_output_scale_b, output_variance_guard, n_batch, n_input,
+ n_output, n_cell, kTfLiteActSigmoid, output_gate_scratch, scratch5);
+ // Update the output state.
+ CalculateLstmOutputInteger8x8_16(
+ n_batch, n_cell, n_output, cell_state_ptr, cell_state_scale,
+ output_gate_scratch, effective_hidden_scale_a, effective_hidden_scale_b,
+ hidden_zp, projection_weight_ptr, effective_proj_scale_a,
+ effective_proj_scale_b, projection_effective_bias, output_state_zp,
+ quantized_proj_clip, output_state_ptr, scratch0, scratch4, scratch5);
+ // Copy output state to the output. Note that unlike float or hybrid, output
+ // is always contiguous.
+ std::memcpy(output_ptr, output_state_ptr,
+ n_batch * n_output * sizeof(int8_t));
+}
+
+// Fully quantized lstm kernel for 8 bit gate matmul output.
+//
+// Input tensor of size n_batch * n_input:
+// input_ptr
+//
+// LSTM weights:
+// Quantized input weights of size 'n_cell * n_input':
+// input_to_input_weight_ptr - optional
+// input_to_forget_weight_ptr - optional
+// input_to_cell_weight_ptr - optional
+// input_to_output_weight_ptr - optional
+//
+// Quantized recurrent weights of size 'n_cell * n_output':
+// recurrent_to_input_weight_ptr - optional
+// recurrent_to_forget_weights_ptr
+// recurrent_to_cell_weights_ptr
+// recurrent_to_input_weights_ptr
+//
+// Quantized peephole weights of size 'n_cell', representing diagonal matrices.
+// cell_to_input_weights - optional
+// cell_to_cell_weights - optional
+// cell_to_output_weights - optional
+//
+// Quantized projection weights of size 'n_output * n_cell'
+// projection_weight_ptr - optional
+//
+// Weight scales (scalars) for each of the weights above.
+// effective_input_to_input_scale_a - optional
+// effective_input_to_input_scale_b - optional
+// effective_input_to_forget_scale_a
+// effective_input_to_forget_scale_b
+// effective_input_to_cell_scale_a
+// effective_input_to_cell_scale_b
+// effective_input_to_output_scale_a
+// effective_input_to_output_scale_b
+// effective_recurrent_to_input_scale_a - optional
+// effective_recurrent_to_input_scale_b - optional
+// effective_recurrent_to_forget_scale_a
+// effective_recurrent_to_forget_scale_b
+// effective_recurrent_to_cell_scale_a
+// effective_recurrent_to_cell_scale_b
+// effective_recurrent_to_output_scale_a
+// effective_recurrent_to_output_scale_b
+// effective_proj_scale_a - optional
+// effective_proj_scale_b - optional
+//
+// Gate biases of size 'n_cell':
+// input_gate_bias_ptr - optional
+// forget_gate_bias_ptr
+// cell_gate_bias_ptr
+// output_gate_bias_ptr
+//
+// Layer norm coefficients of size 'n_cell', representing diagonal matrices.
+// layer_norm_input_weight_ptr - optional
+// layer_norm_forget_weight_ptr - optional
+// layer_norm_cell_weight_ptr - optional
+// layer_norm_output_weight_ptr - optional
+//
+// Layer norm scales of size 'n_cell'.
+// layer_norm_input_scale_a - optional
+// layer_norm_input_scale_b - optional
+// layer_norm_forget_scale_a - optional
+// layer_norm_forget_scale_b - optional
+// layer_norm_cell_scale_a - optional
+// layer_norm_cell_scale_b - optional
+// layer_norm_output_scale_a - optional
+// layer_norm_output_scale_b - optional
+//
+// Scalar values:
+// quantized_cell_clip: quantized clip value for cell.
+// quantized_proj_clip: quantized clip value for projection.
+// cell_state_scale: the power of two scale for cell state.
+//
+// Zero points:
+// input_zp: zero point for input tensor.
+// output_state_zp: zero point of output state.
+// hidden_zp: zero point for hidden state.
+//
+// Temporary pre-allocated storage for the calculation. Each is of size n_cell *
+// n_batch.
+// scratch0
+// scratch1
+// scratch2
+// scratch3
+// scratch4
+// scratch5
+// scratch6
+// scratch7
+//
+// Outputs:
+// output_state_ptr - size 'n_batch * n_output'
+// cell_state_ptr - size 'n_batch * n_cell'
+// output_ptr - size 'n_batch * n_output'
+//
+// Can move zero point calculation into Prepare() for better perfomance.
+// TODO(b/159947023): scratch5 is unused, remove.
+inline void LstmStepInteger8x8_8(
+ const int8_t* input_ptr, int32_t input_zp,
+ const int8_t* input_to_input_weight_ptr,
+ int32_t effective_input_to_input_scale_a,
+ int32_t effective_input_to_input_scale_b,
+ const int8_t* input_to_forget_weight_ptr,
+ int32_t effective_input_to_forget_scale_a,
+ int32_t effective_input_to_forget_scale_b,
+ const int8_t* input_to_cell_weight_ptr,
+ int32_t effective_input_to_cell_scale_a,
+ int32_t effective_input_to_cell_scale_b,
+ const int8_t* input_to_output_weight_ptr,
+ int32_t effective_input_to_output_scale_a,
+ int32_t effective_input_to_output_scale_b,
+ const int8_t* recurrent_to_input_weight_ptr,
+ int32_t effective_recurrent_to_input_scale_a,
+ int32_t effective_recurrent_to_input_scale_b,
+ const int8_t* recurrent_to_forget_weight_ptr,
+ int32_t effective_recurrent_to_forget_scale_a,
+ int32_t effective_recurrent_to_forget_scale_b,
+ const int8_t* recurrent_to_cell_weight_ptr,
+ int32_t effective_recurrent_to_cell_scale_a,
+ int32_t effective_recurrent_to_cell_scale_b,
+ const int8_t* recurrent_to_output_weight_ptr,
+ int32_t effective_recurrent_to_output_scale_a,
+ int32_t effective_recurrent_to_output_scale_b,
+ const int8_t* cell_to_input_weight_ptr,
+ int32_t effective_cell_to_input_scale_a,
+ int32_t effective_cell_to_input_scale_b,
+ const int8_t* cell_to_forget_weight_ptr,
+ int32_t effective_cell_to_forget_scale_a,
+ int32_t effective_cell_to_forget_scale_b,
+ const int8_t* cell_to_output_weight_ptr,
+ int32_t effective_cell_to_output_scale_a,
+ int32_t effective_cell_to_output_scale_b,
+ const int8_t* projection_weight_ptr, int32_t effective_proj_scale_a,
+ int32_t effective_proj_scale_b, const int16_t* layer_norm_input_weight_ptr,
+ int32_t layer_norm_input_scale_a, int32_t layer_norm_input_scale_b,
+ const int16_t* layer_norm_forget_weight_ptr,
+ int32_t layer_norm_forget_scale_a, int32_t layer_norm_forget_scale_b,
+ const int16_t* layer_norm_cell_weight_ptr, int32_t layer_norm_cell_scale_a,
+ int32_t layer_norm_cell_scale_b,
+ const int16_t* layer_norm_output_weight_ptr,
+ int32_t layer_norm_output_scale_a, int32_t layer_norm_output_scale_b,
+ const int32_t* input_gate_bias_ptr, const int32_t* forget_gate_bias_ptr,
+ const int32_t* cell_gate_bias_ptr, const int32_t* output_gate_bias_ptr,
+ const int32_t* projection_bias_ptr, const TfLiteLSTMParams* params,
+ const int32_t* intermediate_scale_a, const int32_t* intermediate_scale_b,
+ const int32_t* intermediate_zp, int16_t quantized_cell_clip,
+ int8_t quantized_proj_clip, int n_batch, int n_cell, int n_input,
+ int n_output, int output_batch_leading_dim, int8_t* output_state_ptr,
+ int32_t output_state_zp, int16_t* cell_state_ptr, int8_t* output_ptr,
+ int8_t* scratch0, int8_t* scratch1, int16_t* scratch2, int16_t* scratch3,
+ int16_t* scratch4, int16_t* scratch5, int16_t* scratch6,
+ int16_t* scratch7) {
+ // TODO(b/159066113): scratch5 is unused, remove.
+
+ // Make named scratch buffers for the different gates.
+ int16_t* forget_gate_scratch = scratch2;
+ int16_t* cell_gate_scratch = scratch3;
+ int16_t* output_gate_scratch = scratch4;
+ // no-CIFG is not supported here
+
+ // Calculate the forget gate.
+ CalculateLstmGateInteger8x8_8(
+ input_ptr, input_zp, input_to_forget_weight_ptr,
+ effective_input_to_forget_scale_a, effective_input_to_forget_scale_b,
+ intermediate_scale_a[2], intermediate_scale_b[2], intermediate_zp[4],
+ output_state_ptr, output_state_zp, recurrent_to_forget_weight_ptr,
+ effective_recurrent_to_forget_scale_a,
+ effective_recurrent_to_forget_scale_b, intermediate_scale_a[3],
+ intermediate_scale_b[3], intermediate_zp[5], layer_norm_forget_weight_ptr,
+ layer_norm_forget_scale_a, layer_norm_forget_scale_b,
+ forget_gate_bias_ptr, n_batch, n_input, n_output, n_cell,
+ kTfLiteActSigmoid, forget_gate_scratch, scratch0, scratch1);
+ // Calculate the cell update gate.
+ CalculateLstmGateInteger8x8_8(
+ input_ptr, input_zp, input_to_cell_weight_ptr,
+ effective_input_to_cell_scale_a, effective_input_to_cell_scale_b,
+ intermediate_scale_a[4], intermediate_scale_b[4], intermediate_zp[7],
+ output_state_ptr, output_state_zp, recurrent_to_cell_weight_ptr,
+ effective_recurrent_to_cell_scale_a, effective_recurrent_to_cell_scale_b,
+ intermediate_scale_a[5], intermediate_scale_b[5], intermediate_zp[8],
+ layer_norm_cell_weight_ptr, layer_norm_cell_scale_a,
+ layer_norm_cell_scale_b, cell_gate_bias_ptr, n_batch, n_input, n_output,
+ n_cell, kTfLiteActTanh, cell_gate_scratch, scratch0, scratch1);
+ // Update the cell state.
+ UpdateLstmCellInteger(n_batch, n_cell, cell_state_ptr,
+ /*cell_state_scale=*/-15, /*input_gate=*/nullptr,
+ forget_gate_scratch, cell_gate_scratch,
+ /*use_cifg=*/true, quantized_cell_clip);
+ // Calculate the output gate.
+ CalculateLstmGateInteger8x8_8(
+ input_ptr, input_zp, input_to_output_weight_ptr,
+ effective_input_to_output_scale_a, effective_input_to_output_scale_b,
+ intermediate_scale_a[6], intermediate_scale_b[6], intermediate_zp[10],
+ output_state_ptr, output_state_zp, recurrent_to_output_weight_ptr,
+ effective_recurrent_to_output_scale_a,
+ effective_recurrent_to_output_scale_b, intermediate_scale_a[11],
+ intermediate_scale_b[7], intermediate_zp[7], layer_norm_output_weight_ptr,
+ layer_norm_output_scale_a, layer_norm_output_scale_b,
+ output_gate_bias_ptr, n_batch, n_input, n_output, n_cell,
+ kTfLiteActSigmoid, output_gate_scratch, scratch0, scratch1);
+ // Update the output state.
+ CalculateLstmOutputInteger8x8_8(
+ n_batch, n_cell, n_output, cell_state_ptr, output_gate_scratch,
+ projection_weight_ptr, effective_proj_scale_a, effective_proj_scale_b,
+ projection_bias_ptr, output_state_zp, quantized_proj_clip,
+ output_state_ptr, scratch2);
+ // Copy output state to the output. Note that unlike float or hybrid, output
+ // is always contigous.
+ std::memcpy(output_ptr, output_state_ptr,
+ n_batch * n_output * sizeof(int8_t));
+}
+
+} // namespace
+
+TfLiteStatus EvalFloatLstm(
+ const TfLiteEvalTensor* input,
+ const TfLiteEvalTensor* input_to_input_weights,
+ const TfLiteEvalTensor* input_to_forget_weights,
+ const TfLiteEvalTensor* input_to_cell_weights,
+ const TfLiteEvalTensor* input_to_output_weights,
+ const TfLiteEvalTensor* recurrent_to_input_weights,
+ const TfLiteEvalTensor* recurrent_to_forget_weights,
+ const TfLiteEvalTensor* recurrent_to_cell_weights,
+ const TfLiteEvalTensor* recurrent_to_output_weights,
+ const TfLiteEvalTensor* cell_to_input_weights,
+ const TfLiteEvalTensor* cell_to_forget_weights,
+ const TfLiteEvalTensor* cell_to_output_weights,
+ const TfLiteEvalTensor* input_layer_norm_coefficients,
+ const TfLiteEvalTensor* forget_layer_norm_coefficients,
+ const TfLiteEvalTensor* cell_layer_norm_coefficients,
+ const TfLiteEvalTensor* output_layer_norm_coefficients,
+ const TfLiteEvalTensor* aux_input,
+ const TfLiteEvalTensor* aux_input_to_input_weights,
+ const TfLiteEvalTensor* aux_input_to_forget_weights,
+ const TfLiteEvalTensor* aux_input_to_cell_weights,
+ const TfLiteEvalTensor* aux_input_to_output_weights,
+ const TfLiteEvalTensor* input_gate_bias,
+ const TfLiteEvalTensor* forget_gate_bias,
+ const TfLiteEvalTensor* cell_gate_bias,
+ const TfLiteEvalTensor* output_gate_bias,
+ const TfLiteEvalTensor* projection_weights,
+ const TfLiteEvalTensor* projection_bias, const TfLiteLSTMParams* params,
+ bool forward_sequence, bool time_major, int output_offset,
+ float* scratch_buffer, TfLiteEvalTensor* output_state,
+ TfLiteEvalTensor* cell_state, TfLiteEvalTensor* output) {
+ TFLITE_DCHECK(input->dims->size >= 2 && input->dims->size <= 3);
+ int max_time, n_batch;
+ if (input->dims->size == 3) {
+ max_time = (time_major) ? input->dims->data[0] : input->dims->data[1];
+ n_batch = (time_major) ? input->dims->data[1] : input->dims->data[0];
+ } else {
+ max_time = 1;
+ n_batch = input->dims->data[0];
+ }
+ const int n_input = input->dims->data[input->dims->size - 1];
+ const int aux_input_size =
+ (aux_input) ? aux_input->dims->data[aux_input->dims->size - 1] : 0;
+
+ // n_cell and n_output will be the same size when there is no projection.
+ const int n_cell = input_to_output_weights->dims->data[0];
+ const int n_output = recurrent_to_output_weights->dims->data[1];
+
+ // Since we have already checked that weights are all there or none, we can
+ // check the existence of only one to the get the condition.
+ const bool use_cifg = (input_to_input_weights == nullptr);
+
+ // Index the scratch buffers pointers to the global scratch buffer.
+ float* input_gate_scratch = nullptr;
+ float* cell_gate_scratch = nullptr;
+ float* forget_gate_scratch = nullptr;
+ float* output_gate_scratch = nullptr;
+ if (use_cifg) {
+ cell_gate_scratch = scratch_buffer;
+ forget_gate_scratch = scratch_buffer + n_cell * n_batch;
+ output_gate_scratch = scratch_buffer + 2 * n_cell * n_batch;
+ } else {
+ input_gate_scratch = scratch_buffer;
+ cell_gate_scratch = scratch_buffer + n_cell * n_batch;
+ forget_gate_scratch = scratch_buffer + 2 * n_cell * n_batch;
+ output_gate_scratch = scratch_buffer + 3 * n_cell * n_batch;
+ }
+
+ const int output_batch_leading_dim =
+ output->dims->data[output->dims->size - 1];
+ if (time_major) {
+ // Loop through the sequence.
+ const int input_step = n_batch * n_input;
+ const int output_step = n_batch * output_batch_leading_dim;
+ for (int t = 0; t < max_time; t++) {
+ // If this is the forward_sequence, step forward, otherwise step
+ // backwards.
+ const int t_rel = forward_sequence ? t : max_time - t - 1;
+ const float* input_ptr =
+ tflite::micro::GetTensorData(input) + t_rel * input_step;
+ const float* aux_input_ptr = nullptr;
+ if (aux_input) {
+ aux_input_ptr =
+ tflite::micro::GetTensorData(aux_input) + t_rel * input_step;
+ }
+ float* output_ptr = tflite::micro::GetTensorData(output) +
+ t_rel * output_step + output_offset;
+
+ LstmStepFloat(
+ input_ptr,
+ input_to_input_weights == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(input_to_input_weights),
+ input_to_forget_weights == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(input_to_forget_weights),
+ input_to_cell_weights == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(input_to_cell_weights),
+ input_to_output_weights == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(input_to_output_weights),
+ aux_input_ptr,
+ aux_input_to_input_weights == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(aux_input_to_input_weights),
+ aux_input_to_forget_weights == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(
+ aux_input_to_forget_weights),
+ aux_input_to_cell_weights == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(aux_input_to_cell_weights),
+ aux_input_to_output_weights == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(
+ aux_input_to_output_weights),
+ recurrent_to_input_weights == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(recurrent_to_input_weights),
+ recurrent_to_forget_weights == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(
+ recurrent_to_forget_weights),
+ recurrent_to_cell_weights == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(recurrent_to_cell_weights),
+ recurrent_to_output_weights == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(
+ recurrent_to_output_weights),
+ cell_to_input_weights == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(cell_to_input_weights),
+ cell_to_forget_weights == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(cell_to_forget_weights),
+ cell_to_output_weights == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(cell_to_output_weights),
+ input_layer_norm_coefficients == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(
+ input_layer_norm_coefficients),
+ forget_layer_norm_coefficients == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(
+ forget_layer_norm_coefficients),
+ cell_layer_norm_coefficients == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(
+ cell_layer_norm_coefficients),
+ output_layer_norm_coefficients == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(
+ output_layer_norm_coefficients),
+ input_gate_bias == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(input_gate_bias),
+ forget_gate_bias == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(forget_gate_bias),
+ cell_gate_bias == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(cell_gate_bias),
+ output_gate_bias == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(output_gate_bias),
+ projection_weights == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(projection_weights),
+ projection_bias == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(projection_bias),
+ params, n_batch, n_cell, n_input, aux_input_size, n_output,
+ output_batch_leading_dim,
+ tflite::micro::GetTensorData(output_state),
+ tflite::micro::GetTensorData(cell_state), input_gate_scratch,
+ forget_gate_scratch, cell_gate_scratch, output_gate_scratch,
+ output_ptr);
+ }
+ } else {
+ for (int b = 0; b < n_batch; b++) {
+ const int input_step = n_input;
+ const int output_step = output_batch_leading_dim;
+ for (int t = 0; t < max_time; t++) {
+ // If this is the forward_sequence, step forward, otherwise step
+ // backwards.
+ const int t_rel = forward_sequence ? t : max_time - t - 1;
+ const int time_offset = b * max_time + t_rel;
+ const float* input_ptr = tflite::micro::GetTensorData(input) +
+ time_offset * input_step;
+ const float* aux_input_ptr = nullptr;
+ if (aux_input) {
+ aux_input_ptr = tflite::micro::GetTensorData(aux_input) +
+ time_offset * input_step;
+ }
+ float* output_ptr = tflite::micro::GetTensorData(output) +
+ time_offset * output_step + output_offset;
+
+ // Offset the {output,cell}_state pointers to the right batch.
+ float* output_state_ptr =
+ tflite::micro::GetTensorData(output_state) +
+ b * output_batch_leading_dim;
+ float* cell_state_ptr =
+ tflite::micro::GetTensorData(cell_state) + b * n_cell;
+ // Offset the scratch pointers to the right batch.
+ float* input_gate_scratch_ptr =
+ input_gate_scratch ? input_gate_scratch + b * n_cell : nullptr;
+ float* forget_gate_scratch_ptr = forget_gate_scratch + b * n_cell;
+ float* cell_gate_scratch_ptr = cell_gate_scratch + b * n_cell;
+ float* output_gate_scratch_ptr = output_gate_scratch + b * n_cell;
+
+ LstmStepFloat(
+ input_ptr,
+ input_to_input_weights == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(input_to_input_weights),
+ input_to_forget_weights == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(input_to_forget_weights),
+ input_to_cell_weights == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(input_to_cell_weights),
+ input_to_output_weights == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(input_to_output_weights),
+ aux_input_ptr,
+ aux_input_to_input_weights == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(
+ aux_input_to_input_weights),
+ aux_input_to_forget_weights == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(
+ aux_input_to_forget_weights),
+ aux_input_to_cell_weights == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(
+ aux_input_to_cell_weights),
+ aux_input_to_output_weights == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(
+ aux_input_to_output_weights),
+ recurrent_to_input_weights == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(
+ recurrent_to_input_weights),
+ recurrent_to_forget_weights == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(
+ recurrent_to_forget_weights),
+ recurrent_to_cell_weights == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(
+ recurrent_to_cell_weights),
+ recurrent_to_output_weights == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(
+ recurrent_to_output_weights),
+ cell_to_input_weights == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(cell_to_input_weights),
+ cell_to_forget_weights == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(cell_to_forget_weights),
+ cell_to_output_weights == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(cell_to_output_weights),
+ input_layer_norm_coefficients == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(
+ input_layer_norm_coefficients),
+ forget_layer_norm_coefficients == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(
+ forget_layer_norm_coefficients),
+ cell_layer_norm_coefficients == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(
+ cell_layer_norm_coefficients),
+ output_layer_norm_coefficients == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(
+ output_layer_norm_coefficients),
+ input_gate_bias == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(input_gate_bias),
+ forget_gate_bias == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(forget_gate_bias),
+ cell_gate_bias == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(cell_gate_bias),
+ output_gate_bias == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(output_gate_bias),
+ projection_weights == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData(projection_weights),
+ projection_bias == nullptr
+ ? nullptr
+ : tflite::micro::GetTensorData