Revert "Implemented late analog / digital transition (#2778)"

This reverts commit b5a4cfed96.
This commit is contained in:
CaCO3
2024-02-12 22:40:22 +01:00
parent bcd07761b6
commit 141aea7fa7
4 changed files with 12 additions and 226 deletions

View File

@@ -5,7 +5,6 @@
#include <iomanip> #include <iomanip>
#include <sstream> #include <sstream>
#include <cassert>
#include <time.h> #include <time.h>
@@ -727,130 +726,6 @@ string ClassFlowPostProcessing::ShiftDecimal(string in, int _decShift){
return zw; return zw;
} }
float wrapAround(float val)
{
return fmod(val, 10.);
}
/**
* @brief Checks whether val is in the range [min, max]
*
* Note, this function also handles the wrap around case,
* in which min could be larger than max in case of
* a circular range
*
* @param val The value to be checked
* @param min Minimal bound of the range
* @param max Maximum bound of the range
* @return True, if val is in the range
*/
bool inRange(float val, float min, float max)
{
assert(min >= 0. && min < 10.0);
assert(max >= 0. && max <= 10.0);
assert(val >= 0. && val < 10.0);
if (min <= max)
{
return min <= val && val <= max;
}
else
{
// e.g. between 8 and 2 (of the next round)
return (min <= val && val < 10.) || (0. <= val && val <= max);
}
}
/**
* @brief Synchronizes a potential misalignment between analog and digital part
*
* @param The current value assembled from digits (pre comma) and analogs (post comma)
* @param digitalPrecision The post-comma value of the last digit ([0...9])
* @param analogDigitalShift The value of the 0.1 analog, when the digital precision == 5 in [0, 9.9]
*
* We define 3 phases:
* - Pre transition: analog post comma < analogDigitalShift && not in transition
* - Transition: Digital Precision in range 1...9
* - Post transition: analog post comma > analogDigitalShift && not in transition
*
* @return The synchronized values as a string
*/
std::string syncDigitalAnalog(const std::string& value, const std::string& digitalPrecision,
double analogDigitalShift)
{
if (digitalPrecision.empty())
{
return value;
}
const auto pos = value.find('.');
if (pos == std::string::npos)
{
return value;
}
// disassemble value into pre and post comma part
const auto preComma = value.substr(0, pos);
// memorize, to be able to assemble right numbers of leading zeros
const size_t nPreComma = preComma.size();
const auto postComma = value.substr(pos+1);
const float digitalPostComma = std::atof(digitalPrecision.c_str());
int digitalPreComma = std::atoi(preComma.c_str());
const float analogPostComma = std::atof(("0." + postComma).c_str());
// Determine phase
const bool inTransition = digitalPostComma > 0. && digitalPostComma < 10.;
const bool postTransition = !inTransition && inRange(analogPostComma*10., analogDigitalShift, wrapAround(analogDigitalShift + 5.));
const bool preTransition = !inTransition && inRange(analogPostComma*10., 0, analogDigitalShift);
if (inRange(analogDigitalShift, 0.5, 5.))
{
// late transition, last digit starts transition, when analog is between [0.5, 5)
if (inTransition || preTransition)
{
ESP_LOGD("syncDigitalAnalog", "Late digital transition. Increase digital value by 1.");
digitalPreComma += 1;
}
}
else if (inRange(analogDigitalShift, 5., 9.5))
{
// early transition
if (postTransition && analogPostComma*10 > analogDigitalShift)
{
ESP_LOGD("syncDigitalAnalog", "Early digital transition. Decrease digital value by 1.");
digitalPreComma -= 1;
}
// transition has not finished, but we are already at the new cycle
// this also should handle hanging digits
if (inTransition && analogPostComma < 0.5) {
digitalPreComma += 1;
}
}
else
{
return value;
}
// assemble result into string again, pad with zeros
auto preCommaNew = std::to_string(digitalPreComma);
for (size_t i = preCommaNew.size(); i < nPreComma; ++i)
preCommaNew = "0" + preCommaNew;
const std::string result = preCommaNew + "." + postComma;
#if debugSync
ESP_LOGD("syncDigitalAnalog", "result: %s", result.c_str());
#endif
return result;
}
bool ClassFlowPostProcessing::doFlow(string zwtime) bool ClassFlowPostProcessing::doFlow(string zwtime)
{ {
string result = ""; string result = "";
@@ -894,8 +769,6 @@ bool ClassFlowPostProcessing::doFlow(string zwtime)
int previous_value = -1; int previous_value = -1;
// ------------------- start processing analog values --------------------------//
if (NUMBERS[j]->analog_roi) if (NUMBERS[j]->analog_roi)
{ {
NUMBERS[j]->ReturnRawValue = flowAnalog->getReadout(j, NUMBERS[j]->isExtendedResolution); NUMBERS[j]->ReturnRawValue = flowAnalog->getReadout(j, NUMBERS[j]->isExtendedResolution);
@@ -909,38 +782,19 @@ bool ClassFlowPostProcessing::doFlow(string zwtime)
#ifdef SERIAL_DEBUG #ifdef SERIAL_DEBUG
ESP_LOGD(TAG, "After analog->getReadout: ReturnRaw %s", NUMBERS[j]->ReturnRawValue.c_str()); ESP_LOGD(TAG, "After analog->getReadout: ReturnRaw %s", NUMBERS[j]->ReturnRawValue.c_str());
#endif #endif
if (NUMBERS[j]->digit_roi && NUMBERS[j]->analog_roi)
NUMBERS[j]->ReturnRawValue = "." + NUMBERS[j]->ReturnRawValue;
// ----------------- start processing digital values --------------------------// if (NUMBERS[j]->digit_roi)
// we need the precision of the digital values to determine transition phase
std::string digitalPrecision = {"0"};
if (NUMBERS[j]->digit_roi && NUMBERS[j]->analog_roi) {
// we have nachkommad and vorkomman part!
std::string analogValues = NUMBERS[j]->ReturnRawValue;
std::string digitValues = flowDigit->getReadout(j, true, previous_value, NUMBERS[j]->analog_roi->ROI[0]->result_float, 0.);
if (flowDigit->getCNNType() != Digital)
{
// The digital type does not provide an extended resolution, so we cannot extract it
digitalPrecision = digitValues.substr(digitValues.size() - 1);
digitValues = digitValues.substr(0, digitValues.size() - 1);
}
NUMBERS[j]->ReturnRawValue = digitValues + "." + analogValues;
}
if (NUMBERS[j]->digit_roi && !NUMBERS[j]->analog_roi)
{ {
NUMBERS[j]->ReturnRawValue = flowDigit->getReadout(j, NUMBERS[j]->isExtendedResolution, previous_value); // Extended Resolution only if there are no analogue digits if (NUMBERS[j]->analog_roi)
NUMBERS[j]->ReturnRawValue = flowDigit->getReadout(j, false, previous_value, NUMBERS[j]->analog_roi->ROI[0]->result_float, NUMBERS[j]->AnalogDigitalTransitionStart) + NUMBERS[j]->ReturnRawValue;
else
NUMBERS[j]->ReturnRawValue = flowDigit->getReadout(j, NUMBERS[j]->isExtendedResolution, previous_value); // Extended Resolution only if there are no analogue digits
} }
#ifdef SERIAL_DEBUG #ifdef SERIAL_DEBUG
ESP_LOGD(TAG, "After digital->getReadout: ReturnRaw %s", NUMBERS[j]->ReturnRawValue.c_str()); ESP_LOGD(TAG, "After digital->getReadout: ReturnRaw %s", NUMBERS[j]->ReturnRawValue.c_str());
#endif #endif
// ------------------ start corrections --------------------------//
NUMBERS[j]->ReturnRawValue = ShiftDecimal(NUMBERS[j]->ReturnRawValue, NUMBERS[j]->DecimalShift); NUMBERS[j]->ReturnRawValue = ShiftDecimal(NUMBERS[j]->ReturnRawValue, NUMBERS[j]->DecimalShift);
#ifdef SERIAL_DEBUG #ifdef SERIAL_DEBUG
@@ -960,7 +814,7 @@ bool ClassFlowPostProcessing::doFlow(string zwtime)
{ {
if (PreValueUse && NUMBERS[j]->PreValueOkay) if (PreValueUse && NUMBERS[j]->PreValueOkay)
{ {
NUMBERS[j]->ReturnValue = ErsetzteN(NUMBERS[j]->ReturnValue, NUMBERS[j]->PreValue); NUMBERS[j]->ReturnValue = ErsetzteN(NUMBERS[j]->ReturnValue, NUMBERS[j]->PreValue);
} }
else else
{ {
@@ -973,13 +827,6 @@ bool ClassFlowPostProcessing::doFlow(string zwtime)
continue; // there is no number because there is still an N. continue; // there is no number because there is still an N.
} }
} }
if (NUMBERS[j]->digit_roi && NUMBERS[j]->analog_roi)
{
// Synchronize potential misalignment between analog and digital part
NUMBERS[j]->ReturnValue = syncDigitalAnalog(NUMBERS[j]->ReturnValue, digitalPrecision, NUMBERS[j]->AnalogDigitalTransitionStart);
}
#ifdef SERIAL_DEBUG #ifdef SERIAL_DEBUG
ESP_LOGD(TAG, "After findDelimiterPos: ReturnValue %s", NUMBERS[j]->ReturnRawValue.c_str()); ESP_LOGD(TAG, "After findDelimiterPos: ReturnValue %s", NUMBERS[j]->ReturnRawValue.c_str());
#endif #endif

View File

@@ -1,6 +1,7 @@
#include "test_flow_postrocess_helper.h" #include "test_flow_postrocess_helper.h"
#include <memory>
/** /**
* ACHTUNG! Die Test laufen aktuell nur mit ausgeschaltetem Debug in ClassFlowCNNGeneral * ACHTUNG! Die Test laufen aktuell nur mit ausgeschaltetem Debug in ClassFlowCNNGeneral
@@ -541,64 +542,4 @@ void test_doFlowPP4() {
} }
std::string postProcess(std::vector<float> digits,
std::vector<float> analogs,
float analog2DigitalTransition=0.0)
{
std::unique_ptr<UnderTestPost> undertestPost(init_do_flow(std::move(analogs),
std::move(digits),
Digital100,
false, false));
setAnalogdigitTransistionStart(undertestPost.get(), analog2DigitalTransition);
return process_doFlow(undertestPost.get());
}
void test_doFlowLateTransition()
{
// in these test cases, the last digit before comma turns 3.6 too late
float a2dt = 3.6;
// meter shows 011.0210 but it already needs to be 012.0210, before transition
TEST_ASSERT_EQUAL_STRING("12.0210", postProcess({0.0, 1.0, 1.0}, {0.2, 2.2, 1.0, 0.0}, a2dt).c_str());
// meter shows 011.3210 but it already needs to be 012.3210, just before transition
TEST_ASSERT_EQUAL_STRING("12.3210", postProcess({0.0, 1.0, 1.2}, {3.3, 2.2, 1.0, 0.0}, a2dt).c_str());
// meter shows 012.4210 , this is after transition
TEST_ASSERT_EQUAL_STRING("12.4210", postProcess({0.0, 1.0, 2.0}, {4.3, 2.2, 1.0, 0.0}, a2dt).c_str());
// meter shows 012.987
TEST_ASSERT_EQUAL_STRING("12.9870", postProcess({0.0, 1.0, 2.0}, {9.8, 8.7, 7.0, 0.0}, a2dt).c_str());
// meter shows 0012.003
TEST_ASSERT_EQUAL_STRING("13.003", postProcess({0.0, 0.0, 1.0, 2.0}, {0.1, 0.3, 3.1}, a2dt).c_str());
// meter shows 0012.351
TEST_ASSERT_EQUAL_STRING("13.351", postProcess({0.0, 0.0, 1.0, 2.8}, {3.5, 5.2, 1.1}, a2dt).c_str());
// meter shows 0013.421
TEST_ASSERT_EQUAL_STRING("13.421", postProcess({0.0, 0.0, 1.0, 3.0}, {4.1, 2.2, 1.1}, a2dt).c_str());
}
void test_doFlowEarlyTransition()
{
// in these test cases, the last digit before comma turns at around 7.5
// start transition 7.0 end transition 8.0
float a2dt = 7.5;
// meter shows 011.0210 but it already needs to be 012.0210, before transition
TEST_ASSERT_EQUAL_STRING("12.6789", postProcess({0.0, 1.0, 2.0}, {6.7, 7.8, 8.9, 9.0}, a2dt).c_str());
TEST_ASSERT_EQUAL_STRING("12.7234", postProcess({0.0, 1.0, 2.4}, {7.2, 2.3, 3.4, 4.0}, a2dt).c_str());
TEST_ASSERT_EQUAL_STRING("12.7789", postProcess({0.0, 1.0, 2.7}, {7.7, 7.8, 8.9, 9.0}, a2dt).c_str());
TEST_ASSERT_EQUAL_STRING("12.8123", postProcess({0.0, 1.0, 3.0}, {8.1, 1.2, 2.3, 3.0}, a2dt).c_str());
TEST_ASSERT_EQUAL_STRING("13.1234", postProcess({0.0, 1.0, 3.0}, {1.2, 2.3, 3.4, 4.0}, a2dt).c_str());
}

View File

@@ -164,8 +164,6 @@ extern "C" void app_main()
RUN_TEST(test_doFlowPP2); RUN_TEST(test_doFlowPP2);
RUN_TEST(test_doFlowPP3); RUN_TEST(test_doFlowPP3);
RUN_TEST(test_doFlowPP4); RUN_TEST(test_doFlowPP4);
RUN_TEST(test_doFlowLateTransition);
RUN_TEST(test_doFlowEarlyTransition);
// getReadoutRawString test // getReadoutRawString test
RUN_TEST(test_getReadoutRawString); RUN_TEST(test_getReadoutRawString);

View File

@@ -750,8 +750,8 @@
<label for=PostProcessing_AnalogDigitalTransitionStart_enabled><class id="PostProcessing_AnalogDigitalTransitionStart_text" style="color:black;">Analog/Digital Transition Start</class></label> <label for=PostProcessing_AnalogDigitalTransitionStart_enabled><class id="PostProcessing_AnalogDigitalTransitionStart_text" style="color:black;">Analog/Digital Transition Start</class></label>
</td> </td>
<td> <td>
<input required type="number" id="PostProcessing_AnalogDigitalTransitionStart_value1" step="0.1" min="0.1" max="9.9" value="9.2" <input required type="number" id="PostProcessing_AnalogDigitalTransitionStart_value1" step="0.1" min="6.0" max="9.9" value="9.2"
oninput="(!validity.rangeUnderflow||(value=0.1)) && (!validity.rangeOverflow||(value=9.9)) && oninput="(!validity.rangeUnderflow||(value=6.0)) && (!validity.rangeOverflow||(value=9.9)) &&
(!validity.stepMismatch||(value=parseInt(this.value)));"> (!validity.stepMismatch||(value=parseInt(this.value)));">
</td> </td>
<td>$TOOLTIP_PostProcessing_NUMBER.AnalogDigitalTransitionStart</td> <td>$TOOLTIP_PostProcessing_NUMBER.AnalogDigitalTransitionStart</td>