mirror of
https://github.com/jomjol/AI-on-the-edge-device.git
synced 2025-12-07 12:06:58 +03:00
Rolling 20220526
This commit is contained in:
@@ -11,6 +11,10 @@
|
||||
|
||||
____
|
||||
|
||||
#### #26 Changes behaviour for "N" replacement
|
||||
|
||||
* in case the higher digits has already increased by minium 1 - don't set the "N" to the last value, but to "0"
|
||||
* https://github.com/jomjol/AI-on-the-edge-device/issues/792
|
||||
|
||||
|
||||
#### #25 Trigger Measurement via MQTT
|
||||
|
||||
10
README.md
10
README.md
@@ -52,7 +52,15 @@ In other cases you can contact the developer via email: <img src="https://raw.gi
|
||||
|
||||
|
||||
|
||||
##### Rolling (2022-04-17)
|
||||
##### Rolling (2022-04-26)
|
||||
|
||||
- Extended MQTT with absolute Change (in addition to rate)
|
||||
- Internal optimization, removal of modelfile from `config.ini` (is now read out of the cnn file directly)
|
||||
|
||||
- TFMicro/Lite: Update (espressif Verision 20220417)
|
||||
- ESP-IDF: Update to 4.3.0
|
||||
|
||||
Rolling (2022-04-17)
|
||||
|
||||
- Internal preparation for new neural network type (digits with subdigit values)
|
||||
|
||||
|
||||
57
code/components/esp-nn/.gitignore
vendored
Normal file
57
code/components/esp-nn/.gitignore
vendored
Normal file
@@ -0,0 +1,57 @@
|
||||
.config
|
||||
*.o
|
||||
*.i
|
||||
*.s
|
||||
*.orig
|
||||
*.pyc
|
||||
|
||||
# gtags
|
||||
GTAGS
|
||||
GRTAGS
|
||||
GPATH
|
||||
|
||||
# emacs
|
||||
.dir-locals.el
|
||||
|
||||
# emacs temp file suffixes
|
||||
*~
|
||||
.#*
|
||||
\#*#
|
||||
|
||||
# eclipse setting
|
||||
.settings
|
||||
|
||||
# MacOS directory files
|
||||
.DS_Store
|
||||
|
||||
# Example project files
|
||||
examples/**/sdkconfig
|
||||
examples/**/sdkconfig.old
|
||||
examples/**/build
|
||||
|
||||
# Test app files
|
||||
test_app/build
|
||||
test_app/sdkconfig
|
||||
test_app/sdkconfig.old
|
||||
|
||||
# Doc build artifacts
|
||||
docs/_build/
|
||||
docs/doxygen-warning-log.txt
|
||||
docs/sphinx-warning-log.txt
|
||||
docs/sphinx-warning-log-sanitized.txt
|
||||
docs/xml/
|
||||
docs/xml_in/
|
||||
docs/man/
|
||||
docs/doxygen_sqlite3.db
|
||||
|
||||
TEST_LOGS
|
||||
|
||||
|
||||
# gcov coverage reports
|
||||
*.gcda
|
||||
*.gcno
|
||||
coverage.info
|
||||
coverage_report/
|
||||
|
||||
# VS Code Settings
|
||||
.vscode/
|
||||
55
code/components/esp-nn/.gitlab-ci.yml
Normal file
55
code/components/esp-nn/.gitlab-ci.yml
Normal file
@@ -0,0 +1,55 @@
|
||||
stages:
|
||||
- build
|
||||
|
||||
variables:
|
||||
BATCH_BUILD: "1"
|
||||
V: "0"
|
||||
MAKEFLAGS: "-j8 --no-keep-going"
|
||||
IDF_PATH: "$CI_PROJECT_DIR/esp-idf"
|
||||
LOG_PATH: "$CI_PROJECT_DIR"
|
||||
|
||||
.set_git_config: &set_git_config
|
||||
# Set git config
|
||||
- git config user.email "test@espressif.com"
|
||||
- git config user.name "Espressif"
|
||||
|
||||
.add_ssh_key: &add_ssh_key
|
||||
# Add gitlab ssh key
|
||||
- mkdir -p ~/.ssh
|
||||
- chmod 700 ~/.ssh
|
||||
- echo -n $GITLAB_KEY > ~/.ssh/id_rsa_base64
|
||||
- base64 --decode --ignore-garbage ~/.ssh/id_rsa_base64 > ~/.ssh/id_rsa
|
||||
- chmod 600 ~/.ssh/id_rsa
|
||||
- echo -e "Host gitlab.espressif.cn\n\tStrictHostKeyChecking no\n" >> ~/.ssh/config
|
||||
|
||||
before_script:
|
||||
# Add gitlab ssh key
|
||||
- *add_ssh_key
|
||||
# Set git config
|
||||
- *set_git_config
|
||||
|
||||
.build_esp32s3: &build_esp32s3
|
||||
- idf.py set-target esp32s3 build
|
||||
|
||||
.build_esp32: &build_esp32
|
||||
- idf.py set-target esp32 build
|
||||
|
||||
build_demo:
|
||||
stage: build
|
||||
image: $CI_DOCKER_REGISTRY/esp32-ci-env:esp-nn
|
||||
tags:
|
||||
- build
|
||||
script:
|
||||
# Clone IDF
|
||||
- git clone --recursive --single-branch -b release/v4.4 --reference-if-able /local_references/gitlab/ https://gitlab-ci-token:${BOT_TOKEN}@gitlab.espressif.cn:6688/espressif/esp-idf.git
|
||||
- cd esp-idf
|
||||
- ./install.sh
|
||||
- . ./export.sh
|
||||
- cd ..
|
||||
# Build examples now
|
||||
- cd test_app
|
||||
# Build esp32s3
|
||||
- *build_esp32s3
|
||||
# Build esp32
|
||||
- *build_esp32
|
||||
- cd -
|
||||
48
code/components/esp-nn/CMakeLists.txt
Normal file
48
code/components/esp-nn/CMakeLists.txt
Normal file
@@ -0,0 +1,48 @@
|
||||
idf_build_get_property(idf_target IDF_TARGET)
|
||||
|
||||
set(c_srcs
|
||||
"src/activation_functions/esp_nn_relu_ansi.c"
|
||||
"src/basic_math/esp_nn_add_ansi.c"
|
||||
"src/basic_math/esp_nn_mul_ansi.c"
|
||||
"src/convolution/esp_nn_conv_ansi.c"
|
||||
"src/convolution/esp_nn_depthwise_conv_ansi.c"
|
||||
"src/fully_connected/esp_nn_fully_connected_ansi.c"
|
||||
"src/softmax/esp_nn_softmax_ansi.c"
|
||||
"src/softmax/esp_nn_softmax_opt.c"
|
||||
"src/pooling/esp_nn_avg_pool_ansi.c"
|
||||
"src/pooling/esp_nn_max_pool_ansi.c")
|
||||
|
||||
if(CONFIG_IDF_TARGET_ESP32S3)
|
||||
set(s3_srcs
|
||||
"src/common/esp_nn_common_functions_esp32s3.S"
|
||||
"src/common/esp_nn_multiply_by_quantized_mult_esp32s3.S"
|
||||
"src/common/esp_nn_multiply_by_quantized_mult_ver1_esp32s3.S"
|
||||
"src/activation_functions/esp_nn_relu_s8_esp32s3.S"
|
||||
"src/basic_math/esp_nn_add_s8_esp32s3.S"
|
||||
"src/basic_math/esp_nn_mul_s8_esp32s3.S"
|
||||
"src/convolution/esp_nn_conv_esp32s3.c"
|
||||
"src/convolution/esp_nn_depthwise_conv_s8_esp32s3.c"
|
||||
"src/convolution/esp_nn_conv_s16_mult8_esp32s3.S"
|
||||
"src/convolution/esp_nn_conv_s16_mult8_1x1_esp32s3.S"
|
||||
"src/convolution/esp_nn_conv_s16_mult4_1x1_esp32s3.S"
|
||||
"src/convolution/esp_nn_depthwise_conv_s8_mult1_3x3_padded_esp32s3.S"
|
||||
"src/convolution/esp_nn_depthwise_conv_s16_mult1_esp32s3.S"
|
||||
"src/convolution/esp_nn_depthwise_conv_s16_mult1_3x3_esp32s3.S"
|
||||
"src/convolution/esp_nn_depthwise_conv_s16_mult1_3x3_no_pad_esp32s3.S"
|
||||
"src/convolution/esp_nn_depthwise_conv_s16_mult8_3x3_esp32s3.S"
|
||||
"src/convolution/esp_nn_depthwise_conv_s16_mult4_esp32s3.S"
|
||||
"src/convolution/esp_nn_depthwise_conv_s16_mult8_esp32s3.S"
|
||||
"src/fully_connected/esp_nn_fully_connected_s8_esp32s3.S"
|
||||
"src/pooling/esp_nn_max_pool_s8_esp32s3.S"
|
||||
"src/pooling/esp_nn_avg_pool_s8_esp32s3.S")
|
||||
endif()
|
||||
|
||||
idf_component_register(SRCS "${c_srcs}"
|
||||
"${s3_srcs}"
|
||||
INCLUDE_DIRS "include" "src/common")
|
||||
|
||||
if(CONFIG_IDF_TARGET_ESP32S3)
|
||||
target_compile_options(${COMPONENT_LIB} PRIVATE -mlongcalls -fno-unroll-loops -O2 -Wno-unused-function)
|
||||
else()
|
||||
target_compile_options(${COMPONENT_LIB} PRIVATE -Wno-unused-function)
|
||||
endif()
|
||||
29
code/components/esp-nn/Kconfig.projbuild
Normal file
29
code/components/esp-nn/Kconfig.projbuild
Normal file
@@ -0,0 +1,29 @@
|
||||
menu "ESP-NN"
|
||||
|
||||
choice NN_OPTIMIZATIONS
|
||||
bool "Optimization for nn functions"
|
||||
default NN_OPTIMIZED
|
||||
help
|
||||
Use ANSI-C versions for verification and debug purpose.
|
||||
Optimisations are automatically picked up for a chipset.
|
||||
For ESP32-S3, assembly Optimisations are selected.
|
||||
For ESP32, just the ANSI C versions are selected for now.
|
||||
|
||||
config NN_ANSI_C
|
||||
bool "ANSI C"
|
||||
help
|
||||
ANSI C versions for verification and debug purposes.
|
||||
config NN_OPTIMIZED
|
||||
bool "Optimized versions"
|
||||
help
|
||||
Optimisations are automatically picked up for a chipset.
|
||||
For ESP32-S3, assembly Optimisations are selected.
|
||||
For ESP32, just the ANSI C versions are selected for now.
|
||||
endchoice
|
||||
|
||||
config NN_OPTIMIZATIONS
|
||||
int
|
||||
default 0 if NN_ANSI_C
|
||||
default 1 if NN_OPTIMIZED
|
||||
|
||||
endmenu
|
||||
202
code/components/esp-nn/LICENSE
Normal file
202
code/components/esp-nn/LICENSE
Normal file
@@ -0,0 +1,202 @@
|
||||
|
||||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
APPENDIX: How to apply the Apache License to your work.
|
||||
|
||||
To apply the Apache License to your work, attach the following
|
||||
boilerplate notice, with the fields enclosed by brackets "[]"
|
||||
replaced with your own identifying information. (Don't include
|
||||
the brackets!) The text should be enclosed in the appropriate
|
||||
comment syntax for the file format. We also recommend that a
|
||||
file or class name and description of purpose be included on the
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright [yyyy] [name of copyright owner]
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
54
code/components/esp-nn/README.md
Normal file
54
code/components/esp-nn/README.md
Normal file
@@ -0,0 +1,54 @@
|
||||
# ESP-NN
|
||||
|
||||
The library contains optimised NN (Neural Network) functions for various Espressif chipsets.
|
||||
|
||||
* Supported platforms:
|
||||
* TensorFlow Lite Micro (TFLite Micro). Repo can be found [here](https://github.com/espressif/tflite-micro-esp-examples)
|
||||
|
||||
* Supported ESP chipsets include:
|
||||
* ESP32-S3 (Assembly versions optimised to benefit from vector instructions of ESP32-S3)
|
||||
* ESP32 (ANSI C versions)
|
||||
|
||||
## Performance
|
||||
|
||||
### Kernelwise performance for s8 versions:
|
||||
|
||||
* Kernelwise performance on ESP32-S3 chip
|
||||
* Numbers are ticks taken for kernel to execute
|
||||
* Chip config: 240MHz, SPI: QPI 80MHz, Data cache: 64KB
|
||||
|
||||
| Function | ANSI C | ESP32-S3 Opt | Opt Ratio | Data info | Memory |
|
||||
| ----------------| --------|---------|---------|-------------|-----------|
|
||||
| elementwise_add | 320397 | 87119 | 3.68 | size = 1615 | External |
|
||||
| elementwise_mul | 125958 | 44239 | 2.85 | size = 1615 | External |
|
||||
| convolution | 4663012 | 428675 | 10.88 | input(10,10), filter(64x1x1x64) | External |
|
||||
| convolution | 301014 | 32433 | 9.28 | input(8,8), filter(16x1x1x16) | External |
|
||||
| convolution | 2115418 | 1020923 | 2.07 | input(10,10), filter(64x3x3x3) | External |
|
||||
| depthwise conv | 1190062 | 203278 | 5.85 | input (18, 18), pad(0,0), stride(1,1) filter: 1x3x3x16 | External |
|
||||
| depthwise conv | 837072 | 182335 | 4.59 | input (12, 12), pad(1,1), stride(1,1) filter: 8x5x5x4 | External |
|
||||
| max pool | 485714 | 76747 | 6.33 | input(16,16), filter (1x3x3x16) | Internal |
|
||||
| avg pool | 541462 | 160580 | 3.37 | input(16,16), filter (1x3x3x16) | Internal |
|
||||
| fully connected | 15853 | 9547 | 1.66 | len: 265, ch = 3 | Internal |
|
||||
| prelu (relu6) | 19472 | 2734 | 7.12 | size, 1615 | Internal |
|
||||
|
||||
|
||||
## Configuration
|
||||
|
||||
* To configure, please use `idf.py menuconfig` and under `ESP-NN` select `NN_OPTIMIZATIONS`
|
||||
* There are two options presented:
|
||||
* Optimized versions
|
||||
* ANSI C
|
||||
|
||||
* Default selection is for `Optimized versions`. For ESP32-S3, assembly versions are automatically selected, whereas for ESP32, ANSI-C versions are selected by default.
|
||||
* For debugging purposes, you may want to select `ANSI C`
|
||||
|
||||
|
||||
## Contributing
|
||||
|
||||
If you encounter an issue with ESP-NN, or wish to submit a feature request, please use the Issues section on the Github.
|
||||
|
||||
For general questions related to this library, please use the esp32.com forum.
|
||||
|
||||
## Copyrights and License
|
||||
|
||||
All original source code in this repository is Copyright (C) 2020-2021 Espressif Systems. This source code is licensed under the Apache License 2.0 as described in the file LICENSE.
|
||||
46
code/components/esp-nn/include/esp_nn.h
Normal file
46
code/components/esp-nn/include/esp_nn.h
Normal file
@@ -0,0 +1,46 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#if defined(CONFIG_NN_OPTIMIZED)
|
||||
#ifdef CONFIG_IDF_TARGET_ESP32S3
|
||||
#define ARCH_ESP32_S3 1
|
||||
#endif
|
||||
#ifdef CONFIG_IDF_TARGET_ESP32
|
||||
#define ARCH_ESP32 1
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/* reference kernels included by default */
|
||||
#include "esp_nn_ansi_headers.h"
|
||||
|
||||
#if defined(CONFIG_NN_OPTIMIZED)
|
||||
#ifdef ARCH_ESP32_S3
|
||||
#include "esp_nn_esp32s3.h"
|
||||
#endif
|
||||
#ifdef ARCH_ESP32
|
||||
#include "esp_nn_esp32.h"
|
||||
#endif
|
||||
#else
|
||||
#include "esp_nn_ansi_c.h"
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
46
code/components/esp-nn/include/esp_nn_ansi_c.h
Normal file
46
code/components/esp-nn/include/esp_nn_ansi_c.h
Normal file
@@ -0,0 +1,46 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
/**
|
||||
* @file Header definitions to include for ANSI C versions.
|
||||
* These are just typedefs to pick up ANSI versions.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "esp_nn_ansi_headers.h"
|
||||
|
||||
#define esp_nn_add_elementwise_s8 esp_nn_add_elementwise_s8_ansi
|
||||
#define esp_nn_mul_elementwise_s8 esp_nn_mul_elementwise_s8_ansi
|
||||
|
||||
#define esp_nn_depthwise_conv_s8 esp_nn_depthwise_conv_s8_ansi
|
||||
|
||||
#define esp_nn_conv_s8 esp_nn_conv_s8_ansi
|
||||
|
||||
#define esp_nn_get_conv_scratch_size esp_nn_get_conv_scratch_size_ansi
|
||||
#define esp_nn_set_conv_scratch_buf esp_nn_set_conv_scratch_buf_ansi
|
||||
|
||||
#define esp_nn_get_depthwise_conv_scratch_size esp_nn_get_depthwise_conv_scratch_size_ansi
|
||||
#define esp_nn_set_depthwise_conv_scratch_buf esp_nn_set_depthwise_conv_scratch_buf_ansi
|
||||
|
||||
#define esp_nn_relu6_s8 esp_nn_relu6_s8_ansi
|
||||
|
||||
#define esp_nn_avg_pool_s8 esp_nn_avg_pool_s8_ansi
|
||||
#define esp_nn_max_pool_s8 esp_nn_max_pool_s8_ansi
|
||||
|
||||
#define esp_nn_fully_connected_s8 esp_nn_fully_connected_s8_ansi
|
||||
|
||||
#define esp_nn_get_softmax_scratch_size esp_nn_get_softmax_scratch_size_ansi
|
||||
#define esp_nn_set_softmax_scratch_buf esp_nn_set_softmax_scratch_buf_ansi
|
||||
#define esp_nn_softmax_s8 esp_nn_softmax_s8_ansi
|
||||
283
code/components/esp-nn/include/esp_nn_ansi_headers.h
Normal file
283
code/components/esp-nn/include/esp_nn_ansi_headers.h
Normal file
@@ -0,0 +1,283 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
/**
|
||||
* @file Header definitions to include for esp_nn reference functions
|
||||
*/
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
/************************** Basic math functions ****************************/
|
||||
|
||||
/**
|
||||
* @brief elementwise addition
|
||||
*
|
||||
* @note inputs type: int8_t, output: int8_t
|
||||
* input offsets: although int32_t, they are contained in 8 bits [-128, 127]
|
||||
*
|
||||
* shift values are expected to be <= 0
|
||||
*/
|
||||
void esp_nn_add_elementwise_s8_ansi(const int8_t *input1_data,
|
||||
const int8_t *input2_data,
|
||||
const int32_t input1_offset,
|
||||
const int32_t input2_offset,
|
||||
const int32_t input1_mult,
|
||||
const int32_t input2_mult,
|
||||
const int32_t input1_shift,
|
||||
const int32_t input2_shift,
|
||||
const int32_t left_shift,
|
||||
int8_t *output,
|
||||
const int32_t out_offset,
|
||||
const int32_t out_mult,
|
||||
const int32_t out_shift,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max,
|
||||
const int32_t size);
|
||||
/**
|
||||
* @brief elementwise multiplication
|
||||
*
|
||||
* @note inputs type: int8_t, output: int8_t
|
||||
* input offsets: although int32_t, they are contained in 8 bits [-128, 127]
|
||||
*
|
||||
* output shift is expected to be <= 0
|
||||
*/
|
||||
void esp_nn_mul_elementwise_s8_ansi(const int8_t *input1_data,
|
||||
const int8_t *input2_data,
|
||||
const int32_t input1_offset,
|
||||
const int32_t input2_offset,
|
||||
int8_t *output,
|
||||
const int32_t out_offset,
|
||||
const int32_t out_mult,
|
||||
const int32_t out_shift,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max,
|
||||
const int32_t size);
|
||||
|
||||
|
||||
/************************** Convolution functions *****************************/
|
||||
|
||||
/**
|
||||
* @brief depthwise convolution per channel
|
||||
*
|
||||
* @note inputs type: int8_t, output: int8_t
|
||||
* Version used in tflite is per channel.
|
||||
* This version follows the same footsprints.
|
||||
* Meaning, it has per out_channel shift and multiplier for
|
||||
* requantization
|
||||
*
|
||||
* optimization notes: Though input_offset is int32 type,
|
||||
* offset values are contained in 8 bits [-128, 127]
|
||||
*/
|
||||
void esp_nn_depthwise_conv_s8_ansi(const int8_t *input_data,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t channels,
|
||||
const int32_t input_offset,
|
||||
const uint16_t pad_wd,
|
||||
const uint16_t pad_ht,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const uint16_t ch_mult,
|
||||
const int8_t *filter_data,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_wd,
|
||||
const uint16_t out_ht,
|
||||
const int32_t out_offset,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max);
|
||||
|
||||
/**
|
||||
* @brief 2d-convolution channelwise
|
||||
*
|
||||
* @note operation: result += (input + offset) * filter
|
||||
*
|
||||
* inputs type: int8_t, output: int8_t
|
||||
* input offsets: although int32_t, they are contained in 8 bits [-128, 127]
|
||||
*/
|
||||
void esp_nn_conv_s8_ansi(const int8_t *input_data,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t in_channels,
|
||||
const int32_t input_offset,
|
||||
const uint16_t pad_wd,
|
||||
const uint16_t pad_ht,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const int8_t *filter_data,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_wd,
|
||||
const uint16_t out_ht,
|
||||
const uint16_t out_channels,
|
||||
const int32_t out_offset,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max);
|
||||
|
||||
int esp_nn_get_conv_scratch_size_ansi(const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t in_ch,
|
||||
const uint16_t out_ch,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht);
|
||||
void esp_nn_set_conv_scratch_buf_ansi(const void *buf);
|
||||
|
||||
int esp_nn_get_depthwise_conv_scratch_size_ansi(const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t channels,
|
||||
const uint16_t ch_mult,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht);
|
||||
void esp_nn_set_depthwise_conv_scratch_buf_ansi(const void *buf);
|
||||
|
||||
/************************** Activation functions *****************************/
|
||||
|
||||
/**
|
||||
* @brief relu6
|
||||
*
|
||||
* @note inout: int8_t
|
||||
*/
|
||||
void esp_nn_relu6_s8_ansi(int8_t *data, uint16_t size);
|
||||
|
||||
/************************** Pooling functions *****************************/
|
||||
|
||||
|
||||
/**
|
||||
* @brief max_pool
|
||||
*
|
||||
* @note inputs type: int8_t, output: int8_t
|
||||
* input offsets: although int32_t, they are contained in 8 bits [-128, 127]
|
||||
*/
|
||||
void esp_nn_max_pool_s8_ansi(const int8_t *input,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
int8_t *output,
|
||||
const uint16_t output_wd,
|
||||
const uint16_t output_ht,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht,
|
||||
const uint16_t pad_wd,
|
||||
const uint16_t pad_ht,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max,
|
||||
const uint16_t channels);
|
||||
|
||||
/**
|
||||
* @brief avg_pool
|
||||
*
|
||||
* @note inputs type: int8_t, output: int8_t
|
||||
* input offsets: although int32_t, they are contained in 8 bits [-128, 127]
|
||||
*/
|
||||
void esp_nn_avg_pool_s8_ansi(const int8_t *input,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
int8_t *output,
|
||||
const uint16_t output_wd,
|
||||
const uint16_t output_ht,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht,
|
||||
const uint16_t pad_wd,
|
||||
const uint16_t pad_ht,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max,
|
||||
const uint16_t channels);
|
||||
|
||||
|
||||
/************************** Fully connected functions ***********************/
|
||||
|
||||
/**
|
||||
* @brief fully connected
|
||||
*
|
||||
* @note inputs type: int8_t, output: int8_t
|
||||
* input offsets: although int32_t, they are contained in 8 bits [-128, 127]
|
||||
*/
|
||||
void esp_nn_fully_connected_s8_ansi(const int8_t *input_data,
|
||||
const int32_t input_offset,
|
||||
const uint16_t row_len,
|
||||
const int8_t *filter_data,
|
||||
const int32_t filter_offset,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_channels,
|
||||
const int32_t out_offset,
|
||||
const int32_t out_shift,
|
||||
const int32_t out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max);
|
||||
|
||||
/**
|
||||
* @brief Get scratch buffer size needed by softmax function
|
||||
*
|
||||
* @param width
|
||||
* @param height
|
||||
* @return size in bytes
|
||||
*
|
||||
* @note buffer must be 4 byte aligned
|
||||
*/
|
||||
int32_t esp_nn_get_softmax_scratch_size_ansi(const int32_t width, const int32_t height);
|
||||
|
||||
/* ANSI C function to be hooked up when optimised version needed */
|
||||
int32_t esp_nn_get_softmax_scratch_size_opt(const int32_t width, const int32_t height);
|
||||
|
||||
/**
|
||||
* @brief Set scratch buffer to be used by softmax function
|
||||
*
|
||||
* @param buffer this can be NULL if one needs to unset it
|
||||
* must be aligned to 4 bytes
|
||||
*/
|
||||
void esp_nn_set_softmax_scratch_buf_ansi(void *buffer);
|
||||
|
||||
/* ANSI C function to be hooked up when optimised version needed */
|
||||
void esp_nn_set_softmax_scratch_buf_opt(void *buffer);
|
||||
|
||||
/**
|
||||
* @brief reference softmax function
|
||||
*
|
||||
* @note inputs type: int8_t, output: int8_t
|
||||
*/
|
||||
void esp_nn_softmax_s8_ansi(const int8_t *input_data,
|
||||
const int32_t height,
|
||||
const int32_t width,
|
||||
const int32_t mult,
|
||||
const int32_t shift,
|
||||
const int32_t diff_min,
|
||||
int8_t *output_data);
|
||||
|
||||
/**
|
||||
* @brief optimised version of softmax function
|
||||
*
|
||||
* @note the function uses extra buffer (4 * width bytes)
|
||||
* hence, scratch buffers must be set before calling this.
|
||||
*/
|
||||
void esp_nn_softmax_s8_opt(const int8_t *input_data,
|
||||
const int32_t height,
|
||||
const int32_t width,
|
||||
const int32_t mult,
|
||||
const int32_t shift,
|
||||
const int32_t diff_min,
|
||||
int8_t *output_data);
|
||||
48
code/components/esp-nn/include/esp_nn_esp32.h
Normal file
48
code/components/esp-nn/include/esp_nn_esp32.h
Normal file
@@ -0,0 +1,48 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
/**
|
||||
* @file Header definitions to include for esp_nn optimized functions for
|
||||
* the ESP32 platform.
|
||||
* We are hooking up just the C versions for now.
|
||||
* The file hence is exactly same as `esp_nn_ansi_c.h`
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "esp_nn_ansi_headers.h"
|
||||
|
||||
#define esp_nn_add_elementwise_s8 esp_nn_add_elementwise_s8_ansi
|
||||
#define esp_nn_mul_elementwise_s8 esp_nn_mul_elementwise_s8_ansi
|
||||
|
||||
#define esp_nn_depthwise_conv_s8 esp_nn_depthwise_conv_s8_ansi
|
||||
|
||||
#define esp_nn_conv_s8 esp_nn_conv_s8_ansi
|
||||
|
||||
#define esp_nn_get_conv_scratch_size esp_nn_get_conv_scratch_size_ansi
|
||||
#define esp_nn_set_conv_scratch_buf esp_nn_set_conv_scratch_buf_ansi
|
||||
|
||||
#define esp_nn_get_depthwise_conv_scratch_size esp_nn_get_depthwise_conv_scratch_size_ansi
|
||||
#define esp_nn_set_depthwise_conv_scratch_buf esp_nn_set_depthwise_conv_scratch_buf_ansi
|
||||
|
||||
#define esp_nn_relu6_s8 esp_nn_relu6_s8_ansi
|
||||
|
||||
#define esp_nn_avg_pool_s8 esp_nn_avg_pool_s8_ansi
|
||||
#define esp_nn_max_pool_s8 esp_nn_max_pool_s8_ansi
|
||||
|
||||
#define esp_nn_fully_connected_s8 esp_nn_fully_connected_s8_ansi
|
||||
|
||||
#define esp_nn_get_softmax_scratch_size esp_nn_get_softmax_scratch_size_opt
|
||||
#define esp_nn_set_softmax_scratch_buf esp_nn_set_softmax_scratch_buf_opt
|
||||
#define esp_nn_softmax_s8 esp_nn_softmax_s8_opt
|
||||
261
code/components/esp-nn/include/esp_nn_esp32s3.h
Normal file
261
code/components/esp-nn/include/esp_nn_esp32s3.h
Normal file
@@ -0,0 +1,261 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
/**
|
||||
* @file Header definitions to include for esp_nn optimized functions for
|
||||
* the ESP32-S3 platform
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <stdint.h>
|
||||
#include "esp_nn_ansi_headers.h"
|
||||
|
||||
/************************** Basic math functions *****************************/
|
||||
|
||||
|
||||
/**
|
||||
* @brief elementwise addition
|
||||
*
|
||||
* @note inputs type: int8_t, output: int8_t
|
||||
* input offsets: although int32_t, they are contained in 8 bits [-128, 127]
|
||||
*
|
||||
* shift values are expected to be <= 0
|
||||
*/
|
||||
void esp_nn_add_elementwise_s8_esp32s3(const int8_t *input1_data,
|
||||
const int8_t *input2_data,
|
||||
const int32_t input1_offset,
|
||||
const int32_t input2_offset,
|
||||
const int32_t input1_mult,
|
||||
const int32_t input2_mult,
|
||||
const int32_t input1_shift,
|
||||
const int32_t input2_shift,
|
||||
const int32_t left_shift,
|
||||
int8_t *output,
|
||||
const int32_t out_offset,
|
||||
const int32_t out_mult,
|
||||
const int32_t out_shift,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max,
|
||||
const int32_t size);
|
||||
|
||||
/**
|
||||
* @brief elementwise multiplication
|
||||
*
|
||||
* @note inputs type: int8_t, output: int8_t
|
||||
* input offsets: although int32_t, they are contained in 8 bits [-128, 127]
|
||||
*
|
||||
* output shift is expected to be <= 0
|
||||
*/
|
||||
void esp_nn_mul_elementwise_s8_esp32s3(const int8_t *input1_data,
|
||||
const int8_t *input2_data,
|
||||
const int32_t input1_offset,
|
||||
const int32_t input2_offset,
|
||||
int8_t *output,
|
||||
const int32_t out_offset,
|
||||
const int32_t out_mult,
|
||||
const int32_t out_shift,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max,
|
||||
const int32_t size);
|
||||
|
||||
|
||||
/************************** Convolution functions *****************************/
|
||||
|
||||
/**
|
||||
* @brief depthwise convolution per channel
|
||||
*
|
||||
* @note inputs type: int8_t, output: int8_t
|
||||
* Version used in tflite is per channel.
|
||||
* This version follows the same footsprints.
|
||||
* Meaning, it has per out_channel shift and multiplier for
|
||||
* requantization
|
||||
*
|
||||
* optimization notes: Though input_offset is int32 type,
|
||||
* offset values are contained in 8 bits [-128, 127]
|
||||
*/
|
||||
void esp_nn_depthwise_conv_s8_esp32s3(const int8_t *input_data,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t channels,
|
||||
const int32_t input_offset,
|
||||
const uint16_t pad_wd,
|
||||
const uint16_t pad_ht,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const uint16_t ch_mult,
|
||||
const int8_t *filter_data,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_wd,
|
||||
const uint16_t out_ht,
|
||||
const int32_t out_offset,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max);
|
||||
|
||||
/**
|
||||
* @brief 2d - convolution channelwise
|
||||
*
|
||||
* @note operation: result += (input + offset) * filter
|
||||
*
|
||||
* inputs type: int8_t, output: int8_t
|
||||
* input offsets: although int32_t, they are contained in 8 bits [-128, 127]
|
||||
*/
|
||||
void esp_nn_conv_s8_esp32s3(const int8_t *input_data,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t in_channels,
|
||||
const int32_t input_offset,
|
||||
const uint16_t pad_wd,
|
||||
const uint16_t pad_ht,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const int8_t *filter_data,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_wd,
|
||||
const uint16_t out_ht,
|
||||
const uint16_t out_channels,
|
||||
const int32_t out_offset,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max);
|
||||
|
||||
int esp_nn_get_conv_scratch_size_esp32s3(const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t in_ch,
|
||||
const uint16_t out_ch,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht);
|
||||
void esp_nn_set_conv_scratch_buf_esp32s3(const void *buf);
|
||||
|
||||
int esp_nn_get_depthwise_conv_scratch_size_esp32s3(const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t channels,
|
||||
const uint16_t ch_mult,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht);
|
||||
void esp_nn_set_depthwise_conv_scratch_buf_esp32s3(const void *buf);
|
||||
|
||||
/************************** Pooling functions *****************************/
|
||||
|
||||
/**
|
||||
* @brief max_pool
|
||||
*
|
||||
* @note inputs type: int8_t, output: int8_t
|
||||
* input offsets: although int32_t, they are contained in 8 bits [-128, 127]
|
||||
*/
|
||||
void esp_nn_max_pool_s8_esp32s3(const int8_t *input,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
int8_t *output,
|
||||
const uint16_t output_wd,
|
||||
const uint16_t output_ht,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht,
|
||||
const uint16_t pad_wd,
|
||||
const uint16_t pad_ht,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max,
|
||||
const uint16_t channels);
|
||||
|
||||
/**
|
||||
* @brief avg_pool
|
||||
*
|
||||
* @note inputs type: int8_t, output: int8_t
|
||||
* input offsets: although int32_t, they are contained in 8 bits [-128, 127]
|
||||
*/
|
||||
void esp_nn_avg_pool_s8_esp32s3(const int8_t *input,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
int8_t *output,
|
||||
const uint16_t output_wd,
|
||||
const uint16_t output_ht,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht,
|
||||
const uint16_t pad_wd,
|
||||
const uint16_t pad_ht,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max,
|
||||
const uint16_t channels);
|
||||
|
||||
|
||||
/************************** Fully connected functions *****************************/
|
||||
|
||||
/**
|
||||
* @brief fully connected
|
||||
*
|
||||
* @note inputs type: int8_t, output: int8_t
|
||||
* input offsets: although int32_t, they are contained in 8 bits [-128, 127]
|
||||
*
|
||||
* Current version works only on aligned input.
|
||||
* row_len and channels should both be multiple of 8.
|
||||
*/
|
||||
void esp_nn_fully_connected_s8_esp32s3(const int8_t *input_data,
|
||||
const int32_t input_offset,
|
||||
const uint16_t row_len,
|
||||
const int8_t *filter_data,
|
||||
const int32_t filter_offset,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_channels,
|
||||
const int32_t out_offset,
|
||||
const int32_t out_shift,
|
||||
const int32_t out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max);
|
||||
|
||||
/**
|
||||
* @brief relu6
|
||||
*
|
||||
* @note inout: int8_t
|
||||
*/
|
||||
void esp_nn_relu6_s8_esp32s3(int8_t *data, uint16_t size);
|
||||
|
||||
/********************** function defines ***************************/
|
||||
|
||||
#define esp_nn_add_elementwise_s8 esp_nn_add_elementwise_s8_esp32s3
|
||||
#define esp_nn_mul_elementwise_s8 esp_nn_mul_elementwise_s8_esp32s3
|
||||
|
||||
#define esp_nn_depthwise_conv_s8 esp_nn_depthwise_conv_s8_esp32s3
|
||||
|
||||
#define esp_nn_get_conv_scratch_size esp_nn_get_conv_scratch_size_esp32s3
|
||||
#define esp_nn_set_conv_scratch_buf esp_nn_set_conv_scratch_buf_esp32s3
|
||||
|
||||
#define esp_nn_get_depthwise_conv_scratch_size esp_nn_get_depthwise_conv_scratch_size_esp32s3
|
||||
#define esp_nn_set_depthwise_conv_scratch_buf esp_nn_set_depthwise_conv_scratch_buf_esp32s3
|
||||
|
||||
#define esp_nn_conv_s8 esp_nn_conv_s8_esp32s3
|
||||
|
||||
#define esp_nn_relu6_s8 esp_nn_relu6_s8_esp32s3
|
||||
|
||||
#define esp_nn_avg_pool_s8 esp_nn_avg_pool_s8_esp32s3
|
||||
#define esp_nn_max_pool_s8 esp_nn_max_pool_s8_esp32s3
|
||||
|
||||
#define esp_nn_fully_connected_s8 esp_nn_fully_connected_s8_esp32s3
|
||||
|
||||
#define esp_nn_get_softmax_scratch_size esp_nn_get_softmax_scratch_size_opt
|
||||
#define esp_nn_set_softmax_scratch_buf esp_nn_set_softmax_scratch_buf_opt
|
||||
#define esp_nn_softmax_s8 esp_nn_softmax_s8_opt
|
||||
@@ -0,0 +1,30 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#include <common_functions.h>
|
||||
|
||||
void esp_nn_relu6_s8_ansi(int8_t *data, uint16_t size)
|
||||
{
|
||||
int32_t i;
|
||||
|
||||
for (i = 0; i < size; i++) {
|
||||
int32_t ip = data[i];
|
||||
|
||||
ip = max(ip, 0);
|
||||
data[i] = min(ip, 6);
|
||||
}
|
||||
}
|
||||
97
code/components/esp-nn/src/basic_math/esp_nn_add_ansi.c
Normal file
97
code/components/esp-nn/src/basic_math/esp_nn_add_ansi.c
Normal file
@@ -0,0 +1,97 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#include <common_functions.h>
|
||||
|
||||
void esp_nn_add_elementwise_u8_ansi(const uint8_t *input1_data,
|
||||
const uint8_t *input2_data,
|
||||
const int32_t input1_offset,
|
||||
const int32_t input2_offset,
|
||||
const int32_t input1_mult,
|
||||
const int32_t input2_mult,
|
||||
const int32_t input1_shift,
|
||||
const int32_t input2_shift,
|
||||
const int32_t left_shift,
|
||||
uint8_t *output,
|
||||
const int32_t out_offset,
|
||||
const int32_t out_mult,
|
||||
const int32_t out_shift,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max,
|
||||
const int32_t size)
|
||||
{
|
||||
for (int i = 0; i < size; i++) {
|
||||
int32_t tmp1 = input1_data[i] + input1_offset;
|
||||
int32_t tmp2 = input2_data[i] + input2_offset;
|
||||
|
||||
tmp1 <<= left_shift;
|
||||
tmp2 <<= left_shift;
|
||||
|
||||
tmp1 = esp_nn_sat_round_doubling_high_mul(tmp1, input1_mult);
|
||||
tmp2 = esp_nn_sat_round_doubling_high_mul(tmp2, input2_mult);
|
||||
|
||||
tmp1 = esp_nn_div_by_power_of_two(tmp1, -input1_shift);
|
||||
tmp2 = esp_nn_div_by_power_of_two(tmp2, -input2_shift);
|
||||
|
||||
int32_t out = tmp1 + tmp2;
|
||||
out = esp_nn_sat_round_doubling_high_mul(out, out_mult);
|
||||
out = esp_nn_div_by_power_of_two(out, -out_shift);
|
||||
out = out + out_offset;
|
||||
|
||||
out = max(activation_min, min(out, activation_max));
|
||||
output[i] = (uint8_t) out;
|
||||
}
|
||||
}
|
||||
|
||||
void esp_nn_add_elementwise_s8_ansi(const int8_t *input1_data,
|
||||
const int8_t *input2_data,
|
||||
const int32_t input1_offset,
|
||||
const int32_t input2_offset,
|
||||
const int32_t input1_mult,
|
||||
const int32_t input2_mult,
|
||||
const int32_t input1_shift,
|
||||
const int32_t input2_shift,
|
||||
const int32_t left_shift,
|
||||
int8_t *output,
|
||||
const int32_t out_offset,
|
||||
const int32_t out_mult,
|
||||
const int32_t out_shift,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max,
|
||||
const int32_t size)
|
||||
{
|
||||
for (int i = 0; i < size; i++) {
|
||||
int32_t tmp1 = input1_data[i] + input1_offset;
|
||||
int32_t tmp2 = input2_data[i] + input2_offset;
|
||||
|
||||
tmp1 <<= left_shift;
|
||||
tmp2 <<= left_shift;
|
||||
|
||||
tmp1 = esp_nn_sat_round_doubling_high_mul(tmp1, input1_mult);
|
||||
tmp2 = esp_nn_sat_round_doubling_high_mul(tmp2, input2_mult);
|
||||
|
||||
tmp1 = esp_nn_div_by_power_of_two(tmp1, -input1_shift);
|
||||
tmp2 = esp_nn_div_by_power_of_two(tmp2, -input2_shift);
|
||||
|
||||
int32_t out = tmp1 + tmp2;
|
||||
out = esp_nn_sat_round_doubling_high_mul(out, out_mult);
|
||||
out = esp_nn_div_by_power_of_two(out, -out_shift);
|
||||
out = out + out_offset;
|
||||
|
||||
out = max(activation_min, min(out, activation_max));
|
||||
output[i] = (int8_t) out;
|
||||
}
|
||||
}
|
||||
42
code/components/esp-nn/src/basic_math/esp_nn_mul_ansi.c
Normal file
42
code/components/esp-nn/src/basic_math/esp_nn_mul_ansi.c
Normal file
@@ -0,0 +1,42 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#include <common_functions.h>
|
||||
|
||||
void esp_nn_mul_elementwise_s8_ansi(const int8_t *input1_data,
|
||||
const int8_t *input2_data,
|
||||
const int32_t input1_offset,
|
||||
const int32_t input2_offset,
|
||||
int8_t *output,
|
||||
const int32_t out_offset,
|
||||
const int32_t out_mult,
|
||||
const int32_t out_shift,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max,
|
||||
const int32_t size)
|
||||
{
|
||||
for (int i = 0; i < size; i++) {
|
||||
int32_t tmp1 = input1_data[i] + input1_offset;
|
||||
int32_t tmp2 = input2_data[i] + input2_offset;
|
||||
|
||||
int32_t out = tmp1 * tmp2;
|
||||
out = esp_nn_multiply_by_quantized_mult(out, out_mult, out_shift);
|
||||
out = out + out_offset;
|
||||
|
||||
out = max(activation_min, min(out, activation_max));
|
||||
output[i] = (int8_t) out;
|
||||
}
|
||||
}
|
||||
218
code/components/esp-nn/src/common/common_functions.h
Normal file
218
code/components/esp-nn/src/common/common_functions.h
Normal file
@@ -0,0 +1,218 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
#include <string.h>
|
||||
|
||||
/**
|
||||
* c99 standard still doesn't strictly inline functions
|
||||
* We need to use attribute as well to do this.
|
||||
*/
|
||||
#define __NN_FORCE_INLINE__ __attribute((always_inline)) static inline
|
||||
|
||||
/* min/max macros */
|
||||
#ifndef max
|
||||
#define max(a, b) ({ \
|
||||
__typeof__ (a) _a = (a); \
|
||||
__typeof__ (b) _b = (b); \
|
||||
_a > _b ? _a : _b; \
|
||||
})
|
||||
|
||||
#define min(a, b) ({ \
|
||||
__typeof__ (a) _a = (a); \
|
||||
__typeof__ (b) _b = (b); \
|
||||
_a < _b ? _a : _b; \
|
||||
})
|
||||
#endif
|
||||
|
||||
__NN_FORCE_INLINE__ int32_t esp_nn_clz32(uint32_t in)
|
||||
{
|
||||
__asm__ volatile("nsau %0, %0" : "+r" (in));
|
||||
return in;
|
||||
}
|
||||
|
||||
__NN_FORCE_INLINE__ int32_t esp_nn_pick_sat_high32_of64(int64_t val64)
|
||||
{
|
||||
int32_t sign = (int32_t) (val64 >> 63);
|
||||
int32_t to_add = sign & ((1ul << 31) - 1);
|
||||
return (int32_t) ((int64_t) (val64 + to_add) >> 31);
|
||||
}
|
||||
|
||||
/**
|
||||
* Signed saturate a 32 bit value to 8 bits keeping output in 32 bit variable.
|
||||
*/
|
||||
__NN_FORCE_INLINE__ int32_t esp_nn_saturate8(int32_t in)
|
||||
{
|
||||
__asm__ volatile("clamps %0, %0, 7" : "+a"(in));
|
||||
return in;
|
||||
}
|
||||
|
||||
__NN_FORCE_INLINE__ int32_t esp_nn_sat_round_doubling_high_mul(int32_t in0, int32_t in1)
|
||||
{
|
||||
int32_t result;
|
||||
int64_t in0_64 = (int64_t) in0;
|
||||
bool overflow = (in0 == in1) && (in0 == (int32_t) INT32_MIN);
|
||||
|
||||
/* Nudge value */
|
||||
int64_t nudge_val = 1 << 30;
|
||||
if ((in0 < 0) ^ (in1 < 0)) {
|
||||
nudge_val = 1 - nudge_val;
|
||||
}
|
||||
|
||||
/* Multiply and add nudge */
|
||||
int64_t mult = in0_64 * in1 + nudge_val;
|
||||
|
||||
/* Round and pickup 32 bits */
|
||||
result = esp_nn_pick_sat_high32_of64(mult);
|
||||
|
||||
return overflow ? INT32_MAX : result;
|
||||
}
|
||||
|
||||
/**
|
||||
* fast version
|
||||
* this will fail for values closer to INT32_MAX and INT32_MIN by `1 << (exponent - 1)`.
|
||||
* We can afford to do this because we are at the very last stage of filter.
|
||||
* Also it is pretty rare condition as our output is going to be 8 bit.
|
||||
*/
|
||||
__NN_FORCE_INLINE__ int32_t esp_nn_div_by_power_of_two_fast(int32_t val, int32_t exponent)
|
||||
{
|
||||
int32_t to_add = (1 << (exponent - 1)) - (val < 0);
|
||||
return (int32_t) ((val + to_add) >> exponent);
|
||||
}
|
||||
|
||||
__NN_FORCE_INLINE__ int32_t esp_nn_div_by_power_of_two(int32_t val, int32_t exponent)
|
||||
{
|
||||
int32_t result;
|
||||
|
||||
const int32_t mask = (1 << exponent) - 1;
|
||||
const int32_t remainder = val & mask;
|
||||
|
||||
result = val >> exponent;
|
||||
int32_t threshold = (mask >> 1) + (result < 0);
|
||||
|
||||
if (remainder > threshold) {
|
||||
result += 1;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
__NN_FORCE_INLINE__ int32_t esp_nn_multiply_by_quantized_mult(int32_t x, int32_t mult, int32_t shift)
|
||||
{
|
||||
int32_t left_shift = shift > 0 ? shift : 0;
|
||||
int32_t right_shift = shift > 0 ? 0 : -shift;
|
||||
int32_t result = esp_nn_sat_round_doubling_high_mul(x * (1 << left_shift), mult);
|
||||
return esp_nn_div_by_power_of_two(result, right_shift);
|
||||
}
|
||||
|
||||
__NN_FORCE_INLINE__ int32_t esp_nn_multiply_by_quantized_mult_fast(int32_t x, int32_t mult, int32_t shift)
|
||||
{
|
||||
int32_t left_shift = max(shift, 0);
|
||||
int32_t right_shift = left_shift - shift;
|
||||
|
||||
int64_t nudge_val = 1 << 30;
|
||||
int64_t in0_64 = (int64_t) (x << left_shift);
|
||||
|
||||
/* Multiply and add nudge */
|
||||
int64_t mult_64 = in0_64 * mult + nudge_val;
|
||||
int32_t result = (int32_t) (mult_64 >> 31);
|
||||
if (right_shift) {
|
||||
result = esp_nn_div_by_power_of_two_fast(result, right_shift);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
static void esp_nn_aligned_s8_pad_with_value(const int8_t *src, int8_t *dst,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t channels,
|
||||
const int32_t pad_val,
|
||||
const uint16_t pad_wd,
|
||||
const uint16_t pad_ht)
|
||||
{
|
||||
/* memset with pad_val */
|
||||
memset(dst, pad_val, ((input_wd + 2 * pad_wd) * (input_ht + 2 * pad_ht)) * channels * 2);
|
||||
dst += (pad_wd + input_wd + pad_wd) * channels;
|
||||
|
||||
for (int i = 0; i < input_ht; i++) {
|
||||
dst += pad_wd * channels;
|
||||
for (int j = 0; j < input_wd * channels; j++) {
|
||||
*dst++ = *src++;
|
||||
}
|
||||
dst += pad_wd * channels;
|
||||
}
|
||||
}
|
||||
|
||||
#if 0
|
||||
static void esp_nn_aligned_s8_pad_end_with_value(const int8_t *src, int8_t *dst,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t channels,
|
||||
const int32_t pad_val,
|
||||
const uint16_t pad_wd,
|
||||
const uint16_t pad_ht)
|
||||
{
|
||||
for (int i = 0; i < input_ht; i++) {
|
||||
for (int j = 0; j < input_wd * channels; j++) {
|
||||
*dst++ = *src++;
|
||||
}
|
||||
memset(dst, pad_val, pad_wd * channels);
|
||||
dst += pad_wd * channels;
|
||||
}
|
||||
/* pad end `pad_ht` lines at end */
|
||||
memset(dst, pad_val, (input_wd + pad_wd) * pad_ht * channels);
|
||||
}
|
||||
#endif
|
||||
|
||||
/**
|
||||
* @brief convert 8 bit input data to 16 bit
|
||||
*
|
||||
* @param src int8_t source data
|
||||
* @param dst int16_t dst data
|
||||
* @param size length of data
|
||||
* @param offset offset to be added to src data. Range: [-128, 127]
|
||||
*/
|
||||
__NN_FORCE_INLINE__ void esp_nn_s8_to_s16_with_offset(const int8_t *src, int16_t *dst,
|
||||
const int size, const int32_t offset)
|
||||
{
|
||||
int i = 0;
|
||||
for (; i < size; i += 2) {
|
||||
dst[i + 0] = src[i + 0] + offset;
|
||||
dst[i + 1] = src[i + 1] + offset;
|
||||
}
|
||||
if(i < size) {
|
||||
dst[i] = src[i] + offset;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief convert 8 bit input data to 16 bit
|
||||
*
|
||||
* @param src int8_t source data
|
||||
* @param dst int16_t dst data
|
||||
* @param size length of data
|
||||
*/
|
||||
__NN_FORCE_INLINE__ void esp_nn_s8_to_s16(const int8_t *src, int16_t *dst, const int size)
|
||||
{
|
||||
int i = 0;
|
||||
for (; i < size; i += 2) {
|
||||
dst[i + 0] = src[i + 0];
|
||||
dst[i + 1] = src[i + 1];
|
||||
}
|
||||
if(i < size) {
|
||||
dst[i] = src[i];
|
||||
}
|
||||
}
|
||||
175
code/components/esp-nn/src/convolution/esp_nn_conv_ansi.c
Normal file
175
code/components/esp-nn/src/convolution/esp_nn_conv_ansi.c
Normal file
@@ -0,0 +1,175 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#include <common_functions.h>
|
||||
|
||||
int esp_nn_get_conv_scratch_size_ansi(const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t in_ch,
|
||||
const uint16_t out_ch,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
void esp_nn_set_conv_scratch_buf_ansi(const void *buf)
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Assumption 1: i/p channels == o/p channels
|
||||
* Assumption 2: Pointers are valid
|
||||
* Assumption 3: dialation width = 1
|
||||
*/
|
||||
void esp_nn_conv_u8_ansi(const uint8_t *input_data,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t in_channels,
|
||||
const int32_t input_offset,
|
||||
const uint16_t pad_wd,
|
||||
const uint16_t pad_ht,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const uint8_t *filter_data,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht,
|
||||
const int32_t filter_offset,
|
||||
const int32_t *bias,
|
||||
uint8_t *out_data,
|
||||
const uint16_t out_wd,
|
||||
const uint16_t out_ht,
|
||||
const uint16_t out_channels,
|
||||
const int32_t out_offset,
|
||||
const int32_t out_shift,
|
||||
const int32_t out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max)
|
||||
{
|
||||
for (int out_y = 0; out_y < out_ht; out_y++) { //height loop
|
||||
const int16_t base_y = (out_y * stride_ht) - pad_ht;
|
||||
for (int out_x = 0; out_x < out_wd; out_x++) { //width_loop
|
||||
const int16_t base_x = (out_x * stride_wd) - pad_wd;
|
||||
for (int out_ch_idx = 0; out_ch_idx < out_channels; out_ch_idx++) {//channel_loop
|
||||
int32_t result = 0;
|
||||
|
||||
/* Select filter so as the point doesn't lie outside block */
|
||||
int filter_y_start = max(0, -base_y);
|
||||
int filter_x_start = max(0, -base_x);
|
||||
int filter_y_end = min(filter_ht, input_ht - base_y);
|
||||
int filter_x_end = min(filter_wd, input_wd - base_x);
|
||||
|
||||
for (int filter_y_idx = filter_y_start; filter_y_idx < filter_y_end; filter_y_idx++) {
|
||||
const int32_t idx_y = base_y + filter_y_idx;
|
||||
for (int filter_x_idx = filter_x_start; filter_x_idx < filter_x_end; filter_x_idx++) {
|
||||
const int32_t idx_x = base_x + filter_x_idx;
|
||||
for (int in_ch_idx = 0; in_ch_idx < in_channels; in_ch_idx++) {
|
||||
int32_t input_index = (idx_y * input_wd + idx_x) * in_channels + in_ch_idx;
|
||||
int32_t filter_index = ((out_ch_idx * filter_ht + filter_y_idx)
|
||||
* filter_wd + filter_x_idx) * in_channels
|
||||
+ in_ch_idx;
|
||||
int32_t input_val = input_data[input_index] + input_offset;
|
||||
int32_t filter_val = filter_data[filter_index] + filter_offset;
|
||||
result += input_val * filter_val;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (bias) {
|
||||
result += bias[out_ch_idx];
|
||||
}
|
||||
result = esp_nn_multiply_by_quantized_mult(result, out_mult, out_shift);
|
||||
result += out_offset;
|
||||
result = max(result, activation_min);
|
||||
result = min(result, activation_max);
|
||||
|
||||
int out_index = (out_y * out_wd + out_x) * out_channels + out_ch_idx;
|
||||
out_data[out_index] = (uint8_t) result;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Assumption 1: i/p channels == o/p channels
|
||||
* Assumption 2: Pointers are valid
|
||||
* Assumption 3: dialation width = 1
|
||||
*/
|
||||
void esp_nn_conv_s8_ansi(const int8_t *input_data,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t in_channels,
|
||||
const int32_t input_offset,
|
||||
const uint16_t pad_wd,
|
||||
const uint16_t pad_ht,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const int8_t *filter_data,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_wd,
|
||||
const uint16_t out_ht,
|
||||
const uint16_t out_channels,
|
||||
const int32_t out_offset,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max)
|
||||
{
|
||||
int32_t out_ch_idx, out_y, out_x, in_ch_idx, filter_y_idx, filter_x_idx;
|
||||
|
||||
for (out_y = 0; out_y < out_ht; out_y++) {
|
||||
for (out_x = 0; out_x < out_wd; out_x++) {
|
||||
for (out_ch_idx = 0; out_ch_idx < out_channels; out_ch_idx++) {
|
||||
int32_t conv_out = 0;
|
||||
|
||||
const int32_t base_y = stride_ht * out_y - pad_ht;
|
||||
const int32_t base_x = stride_wd * out_x - pad_wd;
|
||||
|
||||
const int32_t filter_y_start = max(0, -base_y);
|
||||
const int32_t filter_x_start = max(0, -base_x);
|
||||
|
||||
const int32_t filter_y_end = min(filter_ht, input_ht - base_y);
|
||||
const int32_t filter_x_end = min(filter_wd, input_wd - base_x);
|
||||
|
||||
for (filter_y_idx = filter_y_start; filter_y_idx < filter_y_end; filter_y_idx++) {
|
||||
for (filter_x_idx = filter_x_start; filter_x_idx < filter_x_end; filter_x_idx++) {
|
||||
const int32_t in_row = base_y + filter_y_idx;
|
||||
const int32_t in_col = base_x + filter_x_idx;
|
||||
int32_t input_base_offset = (in_row * input_wd + in_col) * in_channels;
|
||||
int32_t filter_base_offset = out_ch_idx * in_channels * filter_ht * filter_wd +
|
||||
(filter_y_idx * filter_wd + filter_x_idx) * in_channels;
|
||||
for (in_ch_idx = 0; in_ch_idx < in_channels; in_ch_idx++) {
|
||||
conv_out +=
|
||||
(input_data[input_base_offset + in_ch_idx] + input_offset) *
|
||||
filter_data[filter_base_offset + in_ch_idx];
|
||||
}
|
||||
}
|
||||
}
|
||||
if (bias) {
|
||||
conv_out += bias[out_ch_idx];
|
||||
}
|
||||
conv_out = esp_nn_multiply_by_quantized_mult(conv_out, out_mult[out_ch_idx], out_shift[out_ch_idx]);
|
||||
conv_out += out_offset;
|
||||
conv_out = max(conv_out, activation_min);
|
||||
conv_out = min(conv_out, activation_max);
|
||||
*out_data++ = (int8_t) conv_out;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
436
code/components/esp-nn/src/convolution/esp_nn_conv_esp32s3.c
Normal file
436
code/components/esp-nn/src/convolution/esp_nn_conv_esp32s3.c
Normal file
@@ -0,0 +1,436 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
|
||||
#include <common_functions.h>
|
||||
|
||||
static int16_t *scratch_buffer = NULL;
|
||||
|
||||
extern void esp_nn_conv_s16_mult8_1x1_esp32s3(const int8_t *input_data,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t in_channels,
|
||||
const int32_t input_offset,
|
||||
const int16_t *filter_data,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_wd,
|
||||
const uint16_t out_ht,
|
||||
const uint16_t out_channels,
|
||||
const int32_t out_offset,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max,
|
||||
void *buffer /* scratch buffer */);
|
||||
|
||||
extern void esp_nn_conv_s16_mult4_1x1_esp32s3(const int16_t *input_data,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t in_channels,
|
||||
const int16_t *filter_data,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_wd,
|
||||
const uint16_t out_ht,
|
||||
const uint16_t out_channels,
|
||||
const int32_t out_offset,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max,
|
||||
void *buffer /* scratch buffer */);
|
||||
|
||||
extern void esp_nn_conv_s16_mult8_esp32s3(const int16_t *input_data,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t in_channels,
|
||||
const uint16_t pad_wd,
|
||||
const uint16_t pad_ht,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const int16_t *filter_data,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_wd,
|
||||
const uint16_t out_ht,
|
||||
const uint16_t out_channels,
|
||||
const int32_t out_offset,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max);
|
||||
|
||||
extern void esp_nn_aligned_s8_to_s16_with_offset_esp32s3(const int8_t *src, int16_t *dst,
|
||||
const int size, const int32_t offset);
|
||||
|
||||
extern void esp_nn_s8_to_s16_esp32s3(const int8_t *src, int16_t *dst, const int size);
|
||||
|
||||
static void esp_nn_conv_s8_unrolled(const int8_t *input_data,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t in_channels,
|
||||
const int32_t input_offset,
|
||||
const uint16_t pad_wd,
|
||||
const uint16_t pad_ht,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const int8_t *filter_data,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_wd,
|
||||
const uint16_t out_ht,
|
||||
const uint16_t out_channels,
|
||||
const int32_t out_offset,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max)
|
||||
{
|
||||
int32_t out_ch_idx, out_y, out_x, in_ch_idx, filter_y_idx, filter_x_idx;
|
||||
|
||||
for (out_y = 0; out_y < out_ht; out_y++) {
|
||||
for (out_x = 0; out_x < out_wd; out_x++) {
|
||||
for (out_ch_idx = 0; out_ch_idx < out_channels; out_ch_idx++) {
|
||||
int32_t conv_out = 0;
|
||||
|
||||
const int32_t base_y = stride_ht * out_y - pad_ht;
|
||||
const int32_t base_x = stride_wd * out_x - pad_wd;
|
||||
|
||||
const int32_t filter_y_start = max(0, -base_y);
|
||||
const int32_t filter_x_start = max(0, -base_x);
|
||||
|
||||
const int32_t filter_y_end = min(filter_ht, input_ht - base_y);
|
||||
const int32_t filter_x_end = min(filter_wd, input_wd - base_x);
|
||||
|
||||
for (filter_y_idx = filter_y_start; filter_y_idx < filter_y_end; filter_y_idx++) {
|
||||
for (filter_x_idx = filter_x_start; filter_x_idx < filter_x_end; filter_x_idx++) {
|
||||
const int32_t in_row = base_y + filter_y_idx;
|
||||
const int32_t in_col = base_x + filter_x_idx;
|
||||
int32_t input_base_offset = (in_row * input_wd + in_col) * in_channels;
|
||||
int32_t filter_base_offset = out_ch_idx * in_channels * filter_ht * filter_wd +
|
||||
(filter_y_idx * filter_wd + filter_x_idx) * in_channels;
|
||||
for (in_ch_idx = 0; in_ch_idx < in_channels; in_ch_idx++) {
|
||||
conv_out +=
|
||||
(input_data[input_base_offset + in_ch_idx] + input_offset) *
|
||||
filter_data[filter_base_offset + in_ch_idx];
|
||||
}
|
||||
}
|
||||
}
|
||||
if (bias) {
|
||||
conv_out += bias[out_ch_idx];
|
||||
}
|
||||
conv_out = esp_nn_multiply_by_quantized_mult_fast(conv_out, out_mult[out_ch_idx], out_shift[out_ch_idx]);
|
||||
conv_out += out_offset;
|
||||
conv_out = max(conv_out, activation_min);
|
||||
conv_out = min(conv_out, activation_max);
|
||||
*out_data++ = (int8_t) conv_out;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void esp_nn_conv_s8_pad_valid(const int8_t *input_data,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t in_channels,
|
||||
const int32_t input_offset,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const int8_t *filter_data,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_wd,
|
||||
const uint16_t out_ht,
|
||||
const uint16_t out_channels,
|
||||
const int32_t out_offset,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max)
|
||||
{
|
||||
int32_t out_ch_idx, out_y, out_x, in_ch_idx, filter_y_idx, filter_x_idx;
|
||||
|
||||
for (out_y = 0; out_y < out_ht; out_y++) {
|
||||
for (out_x = 0; out_x < out_wd; out_x++) {
|
||||
for (out_ch_idx = 0; out_ch_idx < out_channels; out_ch_idx++) {
|
||||
int32_t conv_out = 0;
|
||||
|
||||
const int32_t base_y = stride_ht * out_y;
|
||||
const int32_t base_x = stride_wd * out_x;
|
||||
|
||||
for (filter_y_idx = 0; filter_y_idx < filter_ht; filter_y_idx++) {
|
||||
for (filter_x_idx = 0; filter_x_idx < filter_wd; filter_x_idx++) {
|
||||
const int32_t in_row = base_y + filter_y_idx;
|
||||
const int32_t in_col = base_x + filter_x_idx;
|
||||
int32_t input_base_offset = (in_row * input_wd + in_col) * in_channels;
|
||||
int32_t filter_base_offset = out_ch_idx * in_channels * filter_ht * filter_wd +
|
||||
(filter_y_idx * filter_wd + filter_x_idx) * in_channels;
|
||||
const int8_t *input_data_ptr = input_data + input_base_offset;
|
||||
const int8_t *filter_data_ptr = filter_data + filter_base_offset;
|
||||
for (in_ch_idx = 0; in_ch_idx < in_channels; in_ch_idx++) {
|
||||
conv_out += (*input_data_ptr++ + input_offset) * *filter_data_ptr++;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (bias) {
|
||||
conv_out += bias[out_ch_idx];
|
||||
}
|
||||
conv_out = esp_nn_multiply_by_quantized_mult_fast(conv_out, out_mult[out_ch_idx], out_shift[out_ch_idx]);
|
||||
conv_out += out_offset;
|
||||
conv_out = max(conv_out, activation_min);
|
||||
conv_out = min(conv_out, activation_max);
|
||||
*out_data++ = (int8_t) conv_out;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void esp_nn_conv_s8_pad_valid_3x3(const int8_t *input_data,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t in_channels,
|
||||
const int32_t input_offset,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const int8_t *filter_data,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_wd,
|
||||
const uint16_t out_ht,
|
||||
const uint16_t out_channels,
|
||||
const int32_t out_offset,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max)
|
||||
{
|
||||
int32_t out_ch_idx, out_y, out_x, in_ch_idx, filter_y_idx, filter_x_idx;
|
||||
|
||||
for (out_y = 0; out_y < out_ht; out_y++) {
|
||||
for (out_x = 0; out_x < out_wd; out_x++) {
|
||||
const int32_t base_y = stride_ht * out_y;
|
||||
const int32_t base_x = stride_wd * out_x;
|
||||
for (out_ch_idx = 0; out_ch_idx < out_channels; out_ch_idx++) {
|
||||
int32_t conv_out = 0;
|
||||
for (filter_y_idx = 0; filter_y_idx < 3; filter_y_idx++) {
|
||||
for (filter_x_idx = 0; filter_x_idx < 3; filter_x_idx++) {
|
||||
const int32_t in_row = base_y + filter_y_idx;
|
||||
const int32_t in_col = base_x + filter_x_idx;
|
||||
int32_t input_base_offset = (in_row * input_wd + in_col) * in_channels;
|
||||
int32_t filter_base_offset = out_ch_idx * in_channels * 3 * 3 +
|
||||
(filter_y_idx * 3 + filter_x_idx) * in_channels;
|
||||
const int8_t *input_data_ptr = input_data + input_base_offset;
|
||||
const int8_t *filter_data_ptr = filter_data + filter_base_offset;
|
||||
for (in_ch_idx = 0; in_ch_idx < in_channels; in_ch_idx++) {
|
||||
conv_out += (*input_data_ptr++ + input_offset) * *filter_data_ptr++;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (bias) {
|
||||
conv_out += bias[out_ch_idx];
|
||||
}
|
||||
conv_out = esp_nn_multiply_by_quantized_mult_fast(conv_out, out_mult[out_ch_idx], out_shift[out_ch_idx]);
|
||||
conv_out += out_offset;
|
||||
conv_out = max(conv_out, activation_min);
|
||||
conv_out = min(conv_out, activation_max);
|
||||
*out_data++ = (int8_t) conv_out;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void esp_nn_conv_s8_pad_valid_ch3_3x3(const int8_t *input_data,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const int32_t input_offset,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const int8_t *filter_data,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_wd,
|
||||
const uint16_t out_ht,
|
||||
const uint16_t out_channels,
|
||||
const int32_t out_offset,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max)
|
||||
{
|
||||
int32_t out_ch_idx, out_y, out_x, filter_y_idx;
|
||||
|
||||
/* use scratch_buffer to pre-compute offset factor */
|
||||
int16_t *filter_sum = (int16_t *) scratch_buffer;
|
||||
const int8_t *filter_ptr = filter_data;
|
||||
for (out_ch_idx = 0; out_ch_idx < out_channels; out_ch_idx++) {
|
||||
int16_t sum_val = 0;
|
||||
for (int i = 0; i < 9; i++) {
|
||||
sum_val += *filter_ptr++;
|
||||
sum_val += *filter_ptr++;
|
||||
sum_val += *filter_ptr++;
|
||||
}
|
||||
*filter_sum++ = sum_val;
|
||||
}
|
||||
|
||||
for (out_y = 0; out_y < out_ht; out_y++) {
|
||||
for (out_x = 0; out_x < out_wd; out_x++) {
|
||||
const int8_t *filter_data_ptr = filter_data;
|
||||
const int32_t base_y = stride_ht * out_y;
|
||||
const int32_t base_x = stride_wd * out_x;
|
||||
const int8_t *input_base_ptr = input_data + (base_y * input_wd + base_x) * 3;
|
||||
int16_t *filter_sum = (int16_t *) scratch_buffer;
|
||||
for (out_ch_idx = 0; out_ch_idx < out_channels; out_ch_idx++) {
|
||||
int32_t conv_out = 0;
|
||||
|
||||
for (filter_y_idx = 0; filter_y_idx < 3; filter_y_idx++) {
|
||||
const int8_t *input_data_ptr = input_base_ptr + (filter_y_idx * input_wd) * 3;
|
||||
conv_out += (*input_data_ptr++) * (*filter_data_ptr++);
|
||||
conv_out += (*input_data_ptr++) * (*filter_data_ptr++);
|
||||
conv_out += (*input_data_ptr++) * (*filter_data_ptr++);
|
||||
|
||||
conv_out += (*input_data_ptr++) * (*filter_data_ptr++);
|
||||
conv_out += (*input_data_ptr++) * (*filter_data_ptr++);
|
||||
conv_out += (*input_data_ptr++) * (*filter_data_ptr++);
|
||||
|
||||
conv_out += (*input_data_ptr++) * (*filter_data_ptr++);
|
||||
conv_out += (*input_data_ptr++) * (*filter_data_ptr++);
|
||||
conv_out += (*input_data_ptr++) * (*filter_data_ptr++);
|
||||
}
|
||||
|
||||
conv_out += *filter_sum++ * input_offset;
|
||||
|
||||
if (bias) {
|
||||
conv_out += bias[out_ch_idx];
|
||||
}
|
||||
conv_out = esp_nn_multiply_by_quantized_mult_fast(conv_out, out_mult[out_ch_idx], out_shift[out_ch_idx]);
|
||||
conv_out += out_offset;
|
||||
conv_out = max(conv_out, activation_min);
|
||||
conv_out = min(conv_out, activation_max);
|
||||
*out_data++ = (int8_t) conv_out;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int esp_nn_get_conv_scratch_size_esp32s3(const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t in_ch,
|
||||
const uint16_t out_ch,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht)
|
||||
{
|
||||
int filter_size = filter_wd * filter_ht * in_ch * out_ch;
|
||||
int input_size = input_wd * input_ht * in_ch;
|
||||
int transpose_buf_size = 8 * in_ch; /* to store intermediate data */
|
||||
int align_buf_size = 32; /* extra buffer for alignment */
|
||||
return 2 * (filter_size + input_size + transpose_buf_size) + align_buf_size;
|
||||
}
|
||||
|
||||
void esp_nn_set_conv_scratch_buf_esp32s3(void *buf)
|
||||
{
|
||||
scratch_buffer = (int16_t *) buf;
|
||||
}
|
||||
|
||||
void esp_nn_conv_s8_esp32s3(const int8_t *input,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t channels,
|
||||
const int32_t input_offset,
|
||||
const uint16_t pad_wd,
|
||||
const uint16_t pad_ht,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const int8_t *filter_data,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_wd,
|
||||
const uint16_t out_ht,
|
||||
const uint16_t out_channels,
|
||||
const int32_t out_offset,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max)
|
||||
{
|
||||
int filter_size = filter_wd * filter_ht * channels * out_channels;
|
||||
int input_size = input_wd * input_ht * channels;
|
||||
int align_len = 16 - (filter_size & 15);
|
||||
int16_t *filter_data16 = scratch_buffer;
|
||||
int16_t *input_data16 = scratch_buffer + filter_size + align_len;
|
||||
|
||||
if (scratch_buffer == NULL) {
|
||||
printf("esp_nn_conv error! scratch_buffer not set!\n");
|
||||
return;
|
||||
}
|
||||
|
||||
if (channels % 8 == 0 && filter_wd == 1 && filter_ht == 1 &&
|
||||
pad_wd == 0 && pad_ht == 0 && stride_wd == 1 && stride_ht == 1) {
|
||||
int scratch_offset = (int) (filter_data16 + filter_size);
|
||||
void *scratch_buf = (void *) (scratch_offset + 16 - (scratch_offset & 15));
|
||||
esp_nn_s8_to_s16_esp32s3(filter_data, filter_data16, filter_size);
|
||||
esp_nn_conv_s16_mult8_1x1_esp32s3(
|
||||
input, input_wd, input_ht, channels, input_offset, filter_data16,
|
||||
bias, out_data, out_wd, out_ht, out_channels, out_offset,
|
||||
out_shift, out_mult, activation_min, activation_max, scratch_buf);
|
||||
} else if (channels % 4 == 0 && filter_wd == 1 && filter_ht == 1 &&
|
||||
(input_wd * input_ht) % 16 == 0 && /* TODO: remove this check */
|
||||
pad_wd == 0 && pad_ht == 0 && stride_wd == 1 && stride_ht == 1) {
|
||||
int scratch_offset = (int) (input_data16 + input_size);
|
||||
void *scratch_buf = (void *) (scratch_offset + 16 - (scratch_offset & 15));
|
||||
esp_nn_s8_to_s16_esp32s3(filter_data, filter_data16, filter_size);
|
||||
esp_nn_aligned_s8_to_s16_with_offset_esp32s3(input, input_data16, input_size, input_offset);
|
||||
esp_nn_conv_s16_mult4_1x1_esp32s3(
|
||||
input_data16, input_wd, input_ht, channels, filter_data16,
|
||||
bias, out_data, out_wd, out_ht, out_channels, out_offset,
|
||||
out_shift, out_mult, activation_min, activation_max, scratch_buf);
|
||||
} else if (channels % 8 == 0) {
|
||||
esp_nn_s8_to_s16_esp32s3(filter_data, filter_data16, filter_size);
|
||||
esp_nn_aligned_s8_to_s16_with_offset_esp32s3(input, input_data16, input_size, input_offset);
|
||||
esp_nn_conv_s16_mult8_esp32s3(
|
||||
input_data16, input_wd, input_ht, channels, pad_wd, pad_ht,
|
||||
stride_wd, stride_ht, filter_data16, filter_wd, filter_ht, bias,
|
||||
out_data, out_wd, out_ht, out_channels, out_offset, out_shift,
|
||||
out_mult, activation_min, activation_max);
|
||||
} else if (pad_wd == 0 && pad_ht == 0) {
|
||||
if (filter_wd == 3 && filter_ht == 3 && channels == 3) {
|
||||
esp_nn_conv_s8_pad_valid_ch3_3x3(input, input_wd, input_ht, input_offset,
|
||||
stride_wd, stride_ht, filter_data, bias,
|
||||
out_data, out_wd, out_ht, out_channels, out_offset,
|
||||
out_shift, out_mult, activation_min, activation_max);
|
||||
} else {
|
||||
esp_nn_conv_s8_pad_valid(input, input_wd, input_ht, channels, input_offset,
|
||||
stride_wd, stride_ht, filter_data, filter_wd, filter_ht, bias,
|
||||
out_data, out_wd, out_ht, out_channels, out_offset, out_shift,
|
||||
out_mult, activation_min, activation_max);
|
||||
}
|
||||
} else {
|
||||
/* Basic unrolled version */
|
||||
esp_nn_conv_s8_unrolled(input, input_wd, input_ht, channels, input_offset,
|
||||
pad_wd, pad_ht, stride_wd, stride_ht,
|
||||
filter_data, filter_wd, filter_ht, bias,
|
||||
out_data, out_wd, out_ht, out_channels, out_offset, out_shift,
|
||||
out_mult, activation_min, activation_max);
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,97 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#include <common_functions.h>
|
||||
|
||||
int esp_nn_get_depthwise_conv_scratch_size_ansi(const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t channels,
|
||||
const uint16_t ch_mult,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
void esp_nn_set_depthwise_conv_scratch_buf_ansi(const void *buf)
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
void esp_nn_depthwise_conv_s8_ansi(const int8_t *input_data,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t channels,
|
||||
const int32_t input_offset,
|
||||
const uint16_t pad_wd,
|
||||
const uint16_t pad_ht,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const uint16_t ch_mult,
|
||||
const int8_t *filter_data,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_wd,
|
||||
const uint16_t out_ht,
|
||||
const int32_t out_offset,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max)
|
||||
{
|
||||
int out_idx = 0;
|
||||
for (int out_y = 0; out_y < out_ht; out_y++) { //height loop
|
||||
const int16_t base_y = (out_y * stride_ht) - pad_ht;
|
||||
for (int out_x = 0; out_x < out_wd; out_x++) { //width_loop
|
||||
const int16_t base_x = (out_x * stride_wd) - pad_wd;
|
||||
for (int ch_idx = 0; ch_idx < channels; ch_idx++) {//channel_loop
|
||||
for (int ch_mult_idx = 0; ch_mult_idx < ch_mult; ch_mult_idx++) {
|
||||
int32_t result = 0;
|
||||
const int out_ch_idx = ch_mult_idx + ch_idx * ch_mult;
|
||||
|
||||
/* Select filter so as the point doesn't lie outside block */
|
||||
int filter_y_start = max(0, -base_y);
|
||||
int filter_x_start = max(0, -base_x);
|
||||
int filter_y_end = min(filter_ht, input_ht - base_y);
|
||||
int filter_x_end = min(filter_wd, input_wd - base_x);
|
||||
|
||||
for (int filter_y_idx = filter_y_start; filter_y_idx < filter_y_end; filter_y_idx++) {
|
||||
const int32_t idx_y = base_y + filter_y_idx;
|
||||
for (int filter_x_idx = filter_x_start; filter_x_idx < filter_x_end; filter_x_idx++) {
|
||||
const int32_t idx_x = base_x + filter_x_idx;
|
||||
int32_t input_index = (idx_y * input_wd + idx_x) * channels + ch_idx;
|
||||
int32_t filter_index = (filter_y_idx * filter_wd + filter_x_idx) * (channels * ch_mult) + out_ch_idx;
|
||||
int32_t input_val = input_data[input_index] + input_offset;
|
||||
int32_t filter_val = filter_data[filter_index];
|
||||
result += input_val * filter_val;
|
||||
}
|
||||
}
|
||||
if (bias) {
|
||||
result += bias[out_ch_idx];
|
||||
}
|
||||
result = esp_nn_multiply_by_quantized_mult(result, out_mult[out_ch_idx], out_shift[out_ch_idx]);
|
||||
result += out_offset;
|
||||
result = max(result, activation_min);
|
||||
result = min(result, activation_max);
|
||||
|
||||
out_data[out_idx++] = result;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,483 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
|
||||
#include <common_functions.h>
|
||||
|
||||
static int16_t *scratch_buffer = NULL;
|
||||
|
||||
extern void esp_nn_depthwise_conv_s16_mult8_3x3_esp32s3(const int16_t *input_data,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t channels,
|
||||
const uint16_t pad_wd,
|
||||
const uint16_t pad_ht,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const uint16_t ch_mult,
|
||||
const int16_t *filter_data,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_wd,
|
||||
const uint16_t out_ht,
|
||||
const int32_t out_offset,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max);
|
||||
|
||||
extern void esp_nn_depthwise_conv_s8_mult1_3x3_padded_esp32s3(const int8_t *input_data,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t channels,
|
||||
const int32_t input_offset,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const int8_t *filter_data,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_wd,
|
||||
const uint16_t out_ht,
|
||||
const int32_t out_offset,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max);
|
||||
|
||||
extern void esp_nn_depthwise_conv_s16_mult1_3x3_no_pad_esp32s3(const int16_t *input_data,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t channels,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const int16_t *filter_data,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_wd,
|
||||
const uint16_t out_ht,
|
||||
const int32_t out_offset,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max);
|
||||
|
||||
extern void esp_nn_depthwise_conv_s16_mult8_esp32s3(const int16_t *input_data,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t channels,
|
||||
const uint16_t pad_wd,
|
||||
const uint16_t pad_ht,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const uint16_t ch_mult,
|
||||
const int16_t *filter_data,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_wd,
|
||||
const uint16_t out_ht,
|
||||
const int32_t out_offset,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max);
|
||||
|
||||
extern void esp_nn_depthwise_conv_s16_mult4_esp32s3(const int16_t *input_data,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t channels,
|
||||
const uint16_t pad_wd,
|
||||
const uint16_t pad_ht,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const uint16_t ch_mult,
|
||||
const int16_t *filter_data,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_wd,
|
||||
const uint16_t out_ht,
|
||||
const int32_t out_offset,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max);
|
||||
|
||||
extern void esp_nn_depthwise_conv_s16_mult1_3x3_esp32s3(const int16_t *input_data,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t channels,
|
||||
const uint16_t pad_wd,
|
||||
const uint16_t pad_ht,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const int16_t *filter_data,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_wd,
|
||||
const uint16_t out_ht,
|
||||
const int32_t out_offset,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max);
|
||||
|
||||
extern void esp_nn_depthwise_conv_s16_mult1_esp32s3(const int16_t *input_data,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t channels,
|
||||
const uint16_t pad_wd,
|
||||
const uint16_t pad_ht,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const int16_t *filter_data,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_wd,
|
||||
const uint16_t out_ht,
|
||||
const int32_t out_offset,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max);
|
||||
|
||||
extern void esp_nn_s8_to_s16_esp32s3(const int8_t *src, int16_t *dst, const int size);
|
||||
|
||||
extern void esp_nn_aligned_s8_to_s16_with_offset_esp32s3(const int8_t *src, int16_t *dst,
|
||||
const int size, const int32_t offset);
|
||||
|
||||
static void esp_nn_depthwise_conv_s8_unrolled(const int8_t *input_data,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t channels,
|
||||
const int32_t input_offset,
|
||||
const uint16_t pad_wd,
|
||||
const uint16_t pad_ht,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const uint16_t ch_mult,
|
||||
const int8_t *filter_data,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_wd,
|
||||
const uint16_t out_ht,
|
||||
const int32_t out_offset,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max)
|
||||
{
|
||||
int out_idx = 0;
|
||||
for (int out_y = 0; out_y < out_ht; out_y++) { //height loop
|
||||
const int16_t base_y = (out_y * stride_ht) - pad_ht;
|
||||
for (int out_x = 0; out_x < out_wd; out_x++) { //width_loop
|
||||
const int16_t base_x = (out_x * stride_wd) - pad_wd;
|
||||
for (int ch_idx = 0; ch_idx < channels; ch_idx++) {//channel_loop
|
||||
int ch_mult_idx = 0;
|
||||
for (; ch_mult_idx < ch_mult - 3; ch_mult_idx += 4) {
|
||||
int32_t result0 = 0, result1 = 0, result2 = 0, result3 = 0;
|
||||
const int out_ch_idx = ch_mult_idx + ch_idx * ch_mult;
|
||||
|
||||
/* Select filter so as the point doesn't lie outside block */
|
||||
int filter_y_start = max(0, -base_y);
|
||||
int filter_x_start = max(0, -base_x);
|
||||
int filter_y_end = min(filter_ht, input_ht - base_y);
|
||||
int filter_x_end = min(filter_wd, input_wd - base_x);
|
||||
|
||||
for (int filter_y_idx = filter_y_start; filter_y_idx < filter_y_end; filter_y_idx++) {
|
||||
const int32_t idx_y = base_y + filter_y_idx;
|
||||
for (int filter_x_idx = filter_x_start; filter_x_idx < filter_x_end; filter_x_idx++) {
|
||||
const int32_t idx_x = base_x + filter_x_idx;
|
||||
int32_t input_index = (idx_y * input_wd + idx_x) * channels + ch_idx;
|
||||
int32_t filter_index = (filter_y_idx * filter_wd + filter_x_idx) * (channels * ch_mult) + out_ch_idx;
|
||||
int32_t input_val = input_data[input_index] + input_offset;
|
||||
int32_t filter_val0 = filter_data[filter_index + 0];
|
||||
int32_t filter_val1 = filter_data[filter_index + 1];
|
||||
int32_t filter_val2 = filter_data[filter_index + 2];
|
||||
int32_t filter_val3 = filter_data[filter_index + 3];
|
||||
result0 += input_val * filter_val0;
|
||||
result1 += input_val * filter_val1;
|
||||
result2 += input_val * filter_val2;
|
||||
result3 += input_val * filter_val3;
|
||||
}
|
||||
}
|
||||
if (bias) {
|
||||
result0 += bias[out_ch_idx + 0];
|
||||
result1 += bias[out_ch_idx + 1];
|
||||
result2 += bias[out_ch_idx + 2];
|
||||
result3 += bias[out_ch_idx + 3];
|
||||
}
|
||||
result0 = esp_nn_multiply_by_quantized_mult(result0,
|
||||
out_mult[out_ch_idx + 0], out_shift[out_ch_idx + 0]);
|
||||
result1 = esp_nn_multiply_by_quantized_mult(result1,
|
||||
out_mult[out_ch_idx + 1], out_shift[out_ch_idx + 1]);
|
||||
result2 = esp_nn_multiply_by_quantized_mult(result2,
|
||||
out_mult[out_ch_idx + 2], out_shift[out_ch_idx + 2]);
|
||||
result3 = esp_nn_multiply_by_quantized_mult(result3,
|
||||
out_mult[out_ch_idx + 3], out_shift[out_ch_idx + 3]);
|
||||
|
||||
result0 += out_offset;
|
||||
result1 += out_offset;
|
||||
result2 += out_offset;
|
||||
result3 += out_offset;
|
||||
|
||||
result0 = max(result0, activation_min);
|
||||
result1 = max(result1, activation_min);
|
||||
result2 = max(result2, activation_min);
|
||||
result3 = max(result3, activation_min);
|
||||
|
||||
result0 = min(result0, activation_max);
|
||||
result1 = min(result1, activation_max);
|
||||
result2 = min(result2, activation_max);
|
||||
result3 = min(result3, activation_max);
|
||||
|
||||
out_data[out_idx++] = result0;
|
||||
out_data[out_idx++] = result1;
|
||||
out_data[out_idx++] = result2;
|
||||
out_data[out_idx++] = result3;
|
||||
}
|
||||
|
||||
/* left-over */
|
||||
for (; ch_mult_idx < ch_mult; ch_mult_idx++) {
|
||||
int32_t result = 0;
|
||||
const int out_ch_idx = ch_mult_idx + ch_idx * ch_mult;
|
||||
|
||||
/* Select filter so as the point doesn't lie outside block */
|
||||
int filter_y_start = max(0, -base_y);
|
||||
int filter_x_start = max(0, -base_x);
|
||||
int filter_y_end = min(filter_ht, input_ht - base_y);
|
||||
int filter_x_end = min(filter_wd, input_wd - base_x);
|
||||
|
||||
for (int filter_y_idx = filter_y_start; filter_y_idx < filter_y_end; filter_y_idx++) {
|
||||
const int32_t idx_y = base_y + filter_y_idx;
|
||||
for (int filter_x_idx = filter_x_start; filter_x_idx < filter_x_end; filter_x_idx++) {
|
||||
const int32_t idx_x = base_x + filter_x_idx;
|
||||
int32_t input_index = (idx_y * input_wd + idx_x) * channels + ch_idx;
|
||||
int32_t filter_index = (filter_y_idx * filter_wd + filter_x_idx) * (channels * ch_mult) + out_ch_idx;
|
||||
int32_t input_val = input_data[input_index] + input_offset;
|
||||
int32_t filter_val = filter_data[filter_index];
|
||||
result += input_val * filter_val;
|
||||
}
|
||||
}
|
||||
if (bias) {
|
||||
result += bias[out_ch_idx];
|
||||
}
|
||||
result = esp_nn_multiply_by_quantized_mult(result, out_mult[out_ch_idx], out_shift[out_ch_idx]);
|
||||
result += out_offset;
|
||||
result = max(result, activation_min);
|
||||
result = min(result, activation_max);
|
||||
|
||||
out_data[out_idx++] = result;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void esp_nn_depthwise_conv_s8_ch_mult1(const int8_t *input_data,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t channels,
|
||||
const int32_t input_offset,
|
||||
const uint16_t pad_wd,
|
||||
const uint16_t pad_ht,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const int8_t *filter_data,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_wd,
|
||||
const uint16_t out_ht,
|
||||
const int32_t out_offset,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max)
|
||||
{
|
||||
int out_idx = 0;
|
||||
for (int out_y = 0; out_y < out_ht; out_y++) { //height loop
|
||||
const int16_t base_y = (out_y * stride_ht) - pad_ht;
|
||||
for (int out_x = 0; out_x < out_wd; out_x++) { //width_loop
|
||||
const int16_t base_x = (out_x * stride_wd) - pad_wd;
|
||||
for (int ch_idx = 0; ch_idx < channels; ch_idx++) {//channel_loop
|
||||
int32_t result = 0;
|
||||
/* Select filter so as the point doesn't lie outside block */
|
||||
int filter_y_start = max(0, -base_y);
|
||||
int filter_x_start = max(0, -base_x);
|
||||
int filter_y_end = min(filter_ht, input_ht - base_y);
|
||||
int filter_x_end = min(filter_wd, input_wd - base_x);
|
||||
|
||||
for (int filter_y_idx = filter_y_start; filter_y_idx < filter_y_end; filter_y_idx++) {
|
||||
const int32_t idx_y = base_y + filter_y_idx;
|
||||
for (int filter_x_idx = filter_x_start; filter_x_idx < filter_x_end; filter_x_idx++) {
|
||||
const int32_t idx_x = base_x + filter_x_idx;
|
||||
int32_t input_index = (idx_y * input_wd + idx_x) * channels + ch_idx;
|
||||
int32_t filter_index = (filter_y_idx * filter_wd + filter_x_idx) * channels + ch_idx;
|
||||
int32_t input_val = input_data[input_index] + input_offset;
|
||||
int32_t filter_val = filter_data[filter_index];
|
||||
result += input_val * filter_val;
|
||||
}
|
||||
}
|
||||
if (bias) {
|
||||
result += bias[ch_idx];
|
||||
}
|
||||
result = esp_nn_multiply_by_quantized_mult(result, out_mult[ch_idx], out_shift[ch_idx]);
|
||||
result += out_offset;
|
||||
result = max(result, activation_min);
|
||||
result = min(result, activation_max);
|
||||
|
||||
out_data[out_idx++] = result;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int esp_nn_get_depthwise_conv_scratch_size_esp32s3(const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t channels,
|
||||
const uint16_t ch_mult,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht)
|
||||
{
|
||||
int filter_size = filter_wd * filter_ht * channels * ch_mult;
|
||||
int padding_used = ((filter_wd == 3) && (filter_ht == 3)) * 2;
|
||||
int input_size = (input_wd + padding_used) * (input_ht + padding_used) * channels;
|
||||
return 2 * (filter_size + input_size) + 16; //16 for alignment
|
||||
}
|
||||
|
||||
void esp_nn_set_depthwise_conv_scratch_buf_esp32s3(void *buf)
|
||||
{
|
||||
scratch_buffer = (int16_t *) buf;
|
||||
}
|
||||
|
||||
/**
|
||||
* Assumption 1: i/p channels == o/p channels
|
||||
* Assumption 2: Pointers are valid
|
||||
* Assumption 3: dialation width = 1
|
||||
*/
|
||||
void esp_nn_depthwise_conv_s8_esp32s3(const int8_t *input_data,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
const uint16_t channels,
|
||||
const int32_t input_offset,
|
||||
const uint16_t pad_wd,
|
||||
const uint16_t pad_ht,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const uint16_t ch_mult,
|
||||
const int8_t *filter_data,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_wd,
|
||||
const uint16_t out_ht,
|
||||
const int32_t out_offset,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max)
|
||||
{
|
||||
int filter_size = filter_wd * filter_ht * channels * ch_mult;
|
||||
int align_len = 16 - (filter_size & 15);
|
||||
int input_size = input_wd * input_ht * channels;
|
||||
int16_t *filter_data16 = scratch_buffer;
|
||||
int16_t *input_data16 = scratch_buffer + filter_size + align_len;
|
||||
if (scratch_buffer == NULL) {
|
||||
printf("esp_nn_depthwise_conv error! scratch_buffer not set!\n");
|
||||
return;
|
||||
}
|
||||
|
||||
if ((ch_mult == 1) && (channels % 8 == 0)) {
|
||||
if ((filter_wd == 3) && (filter_ht == 3)) {
|
||||
if ((channels % 16 == 0) && (pad_wd == 1) && (pad_ht == 1)) {
|
||||
/* process in 8 bits */
|
||||
int8_t *filter_aligned = (int8_t *) scratch_buffer;
|
||||
int8_t *input_padded = (int8_t *) scratch_buffer + filter_size + align_len;
|
||||
memcpy(filter_aligned, filter_data, filter_size);
|
||||
esp_nn_aligned_s8_pad_with_value(input_data, input_padded, input_wd, input_ht, channels,
|
||||
-input_offset, pad_wd, pad_ht);
|
||||
esp_nn_depthwise_conv_s8_mult1_3x3_padded_esp32s3(input_padded, input_wd + 2 * pad_wd,
|
||||
input_ht + 2 * pad_ht, channels, input_offset,
|
||||
stride_wd, stride_ht, filter_aligned, bias,
|
||||
out_data, out_wd, out_ht, out_offset, out_shift,
|
||||
out_mult, activation_min, activation_max);
|
||||
} else if ((pad_wd == 0) && (pad_ht == 0) &&
|
||||
// because this does not handle padding offset cases yet, run just for stride (1, 1).
|
||||
// end padding of input with `-input_offset` should solve this
|
||||
(stride_wd == 1) && (stride_ht == 1)) {
|
||||
/* process in 8 bits */
|
||||
int8_t *filter_aligned = (int8_t *) scratch_buffer;
|
||||
memcpy(filter_aligned, filter_data, filter_size);
|
||||
esp_nn_depthwise_conv_s8_mult1_3x3_padded_esp32s3(input_data, input_wd, input_ht, channels, input_offset,
|
||||
stride_wd, stride_ht, filter_aligned,
|
||||
bias, out_data, out_wd, out_ht, out_offset, out_shift,
|
||||
out_mult, activation_min, activation_max);
|
||||
} else { /* (channels % 8) == 0 && pad_wd == 1 && pad_ht == 1 */
|
||||
esp_nn_s8_to_s16_esp32s3(filter_data, filter_data16, filter_size);
|
||||
esp_nn_aligned_s8_to_s16_with_offset_esp32s3(input_data, input_data16, input_size, input_offset);
|
||||
esp_nn_depthwise_conv_s16_mult1_3x3_esp32s3(input_data16, input_wd, input_ht, channels,
|
||||
pad_wd, pad_ht, stride_wd, stride_ht, filter_data16,
|
||||
bias, out_data, out_wd, out_ht, out_offset, out_shift,
|
||||
out_mult, activation_min, activation_max);
|
||||
}
|
||||
} else { // all other ch_mult == 1, `channels % 8 == 0`
|
||||
esp_nn_depthwise_conv_s8_ch_mult1(input_data, input_wd, input_ht, channels, input_offset,
|
||||
pad_wd, pad_ht, stride_wd, stride_ht,
|
||||
filter_data, filter_wd, filter_ht,
|
||||
bias, out_data, out_wd, out_ht, out_offset, out_shift,
|
||||
out_mult, activation_min, activation_max);
|
||||
}
|
||||
} else if (ch_mult % 8 == 0) {
|
||||
esp_nn_s8_to_s16_esp32s3(filter_data, filter_data16, filter_size);
|
||||
esp_nn_aligned_s8_to_s16_with_offset_esp32s3(input_data, input_data16, input_size, input_offset);
|
||||
if (filter_wd == 3 && filter_ht == 3) {
|
||||
esp_nn_depthwise_conv_s16_mult8_3x3_esp32s3(input_data16, input_wd, input_ht, channels,
|
||||
pad_wd, pad_ht, stride_wd, stride_ht, ch_mult,
|
||||
filter_data16, bias,
|
||||
out_data, out_wd, out_ht, out_offset, out_shift,
|
||||
out_mult, activation_min, activation_max);
|
||||
} else {
|
||||
esp_nn_depthwise_conv_s16_mult8_esp32s3(input_data16, input_wd, input_ht, channels,
|
||||
pad_wd, pad_ht, stride_wd, stride_ht, ch_mult,
|
||||
filter_data16, filter_wd, filter_ht, bias,
|
||||
out_data, out_wd, out_ht, out_offset, out_shift,
|
||||
out_mult, activation_min, activation_max);
|
||||
}
|
||||
} else if (ch_mult % 4 == 0) {
|
||||
esp_nn_s8_to_s16_esp32s3(filter_data, filter_data16, filter_size);
|
||||
esp_nn_aligned_s8_to_s16_with_offset_esp32s3(input_data, input_data16, input_size, input_offset);
|
||||
esp_nn_depthwise_conv_s16_mult4_esp32s3(input_data16, input_wd, input_ht, channels,
|
||||
pad_wd, pad_ht, stride_wd, stride_ht, ch_mult,
|
||||
filter_data16, filter_wd, filter_ht, bias,
|
||||
out_data, out_wd, out_ht, out_offset, out_shift,
|
||||
out_mult, activation_min, activation_max);
|
||||
} else {
|
||||
esp_nn_depthwise_conv_s8_unrolled(input_data, input_wd, input_ht, channels, input_offset,
|
||||
pad_wd, pad_ht, stride_wd, stride_ht, ch_mult,
|
||||
filter_data, filter_wd, filter_ht,
|
||||
bias, out_data, out_wd, out_ht, out_offset, out_shift,
|
||||
out_mult, activation_min, activation_max);
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,50 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#include <common_functions.h>
|
||||
|
||||
void esp_nn_fully_connected_s8_ansi(const int8_t *input_data,
|
||||
const int32_t input_offset,
|
||||
const uint16_t row_len,
|
||||
const int8_t *filter_data,
|
||||
const int32_t filter_offset,
|
||||
const int32_t *bias,
|
||||
int8_t *out_data,
|
||||
const uint16_t out_channels,
|
||||
const int32_t out_offset,
|
||||
const int32_t out_shift,
|
||||
const int32_t out_mult,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max)
|
||||
{
|
||||
for (int32_t out_c = 0; out_c < out_channels; ++out_c) {
|
||||
int32_t result = 0;
|
||||
for (int32_t data_idx = 0; data_idx < row_len; data_idx++) {
|
||||
int32_t filter_index = row_len * out_c + data_idx;
|
||||
int32_t input_val = input_data[data_idx];
|
||||
int32_t filter_val = filter_data[filter_index];
|
||||
result += (filter_val + filter_offset) * (input_val + input_offset);
|
||||
}
|
||||
if (bias) {
|
||||
result += bias[out_c];
|
||||
}
|
||||
result = esp_nn_multiply_by_quantized_mult(result, out_mult, out_shift);
|
||||
result += out_offset;
|
||||
result = max(result, activation_min);
|
||||
result = min(result, activation_max);
|
||||
out_data[out_c] = (int8_t) result;
|
||||
}
|
||||
}
|
||||
72
code/components/esp-nn/src/pooling/esp_nn_avg_pool_ansi.c
Normal file
72
code/components/esp-nn/src/pooling/esp_nn_avg_pool_ansi.c
Normal file
@@ -0,0 +1,72 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#include <common_functions.h>
|
||||
|
||||
void esp_nn_avg_pool_s8_ansi(const int8_t *input,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
int8_t *output,
|
||||
const uint16_t output_wd,
|
||||
const uint16_t output_ht,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht,
|
||||
const uint16_t pad_wd,
|
||||
const uint16_t pad_ht,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max,
|
||||
const uint16_t channels)
|
||||
{
|
||||
int32_t base_y = -pad_ht;
|
||||
for (int32_t out_y = 0; out_y < output_ht; out_y++, base_y += stride_ht) {
|
||||
int32_t base_x = -pad_wd;
|
||||
for (int32_t out_x = 0; out_x < output_wd; out_x++, base_x += stride_wd) {
|
||||
for (int32_t ch_idx = 0; ch_idx < channels; ch_idx++) {
|
||||
int32_t result = 0;
|
||||
int32_t filter_cnt = 0;
|
||||
/* Make sure filter does not cross the input box */
|
||||
int32_t filter_y_start = max(0, -base_y);
|
||||
int32_t filter_x_start = max(0, -base_x);
|
||||
|
||||
int32_t filter_y_end = min(filter_ht, input_ht - base_y);
|
||||
int32_t filter_x_end = min(filter_wd, input_wd - base_x);
|
||||
|
||||
for (int32_t filter_y = filter_y_start; filter_y < filter_y_end; filter_y++) {
|
||||
for (int32_t filter_x = filter_x_start; filter_x < filter_x_end; filter_x++) {
|
||||
int32_t in_x_idx = base_x + filter_x;
|
||||
int32_t in_y_idx = base_y + filter_y;
|
||||
int32_t input_index = (in_y_idx * input_wd + in_x_idx) * channels + ch_idx;
|
||||
result += input[input_index];
|
||||
filter_cnt++;
|
||||
}
|
||||
}
|
||||
|
||||
/* Rounded average */
|
||||
result = result > 0 ? (result + filter_cnt / 2) / filter_cnt
|
||||
: (result - filter_cnt / 2) / filter_cnt;
|
||||
|
||||
/* Activation function */
|
||||
result = max(result, activation_min);
|
||||
result = min(result, activation_max);
|
||||
|
||||
int32_t output_index = (out_y * output_wd + out_x) * channels + ch_idx;
|
||||
output[output_index] = (int8_t) result;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
66
code/components/esp-nn/src/pooling/esp_nn_max_pool_ansi.c
Normal file
66
code/components/esp-nn/src/pooling/esp_nn_max_pool_ansi.c
Normal file
@@ -0,0 +1,66 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#include <common_functions.h>
|
||||
|
||||
void esp_nn_max_pool_s8_ansi(const int8_t *input,
|
||||
const uint16_t input_wd,
|
||||
const uint16_t input_ht,
|
||||
int8_t *output,
|
||||
const uint16_t output_wd,
|
||||
const uint16_t output_ht,
|
||||
const uint16_t stride_wd,
|
||||
const uint16_t stride_ht,
|
||||
const uint16_t filter_wd,
|
||||
const uint16_t filter_ht,
|
||||
const uint16_t pad_wd,
|
||||
const uint16_t pad_ht,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max,
|
||||
const uint16_t channels)
|
||||
{
|
||||
int32_t base_y = -pad_ht;
|
||||
for (int32_t out_y = 0; out_y < output_ht; out_y++, base_y += stride_ht) {
|
||||
int32_t base_x = -pad_wd;
|
||||
for (int32_t out_x = 0; out_x < output_wd; out_x++, base_x += stride_wd) {
|
||||
/* Make sure filter does not cross the input box */
|
||||
int32_t filter_y_start = max(0, -base_y);
|
||||
int32_t filter_x_start = max(0, -base_x);
|
||||
int32_t filter_y_end = min(filter_ht, input_ht - base_y);
|
||||
int32_t filter_x_end = min(filter_wd, input_wd - base_x);
|
||||
|
||||
for (int32_t ch_idx = 0; ch_idx < channels; ch_idx++) {
|
||||
int8_t result = INT8_MIN;
|
||||
|
||||
for (int32_t filter_y = filter_y_start; filter_y < filter_y_end; filter_y++) {
|
||||
for (int32_t filter_x = filter_x_start; filter_x < filter_x_end; filter_x++) {
|
||||
int32_t in_x_idx = base_x + filter_x;
|
||||
int32_t in_y_idx = base_y + filter_y;
|
||||
int32_t input_index = (in_y_idx * input_wd + in_x_idx) * channels + ch_idx;
|
||||
result = max(input[input_index], result);
|
||||
}
|
||||
}
|
||||
|
||||
/* Activation function */
|
||||
result = max(result, activation_min);
|
||||
result = min(result, activation_max);
|
||||
|
||||
int32_t output_index = (out_y * output_wd + out_x) * channels + ch_idx;
|
||||
output[output_index] = result;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
88
code/components/esp-nn/src/softmax/esp_nn_softmax_ansi.c
Normal file
88
code/components/esp-nn/src/softmax/esp_nn_softmax_ansi.c
Normal file
@@ -0,0 +1,88 @@
|
||||
// Copyright 2022 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "softmax_common.h"
|
||||
|
||||
int32_t esp_nn_get_softmax_scratch_size_ansi(const int32_t width, const int32_t height)
|
||||
{
|
||||
(void) width;
|
||||
(void) height;
|
||||
return 0;
|
||||
}
|
||||
|
||||
void esp_nn_set_softmax_scratch_buf_ansi(void *buffer)
|
||||
{
|
||||
(void) buffer;
|
||||
return;
|
||||
}
|
||||
|
||||
void esp_nn_softmax_s8_ansi(const int8_t *input_data,
|
||||
const int32_t height,
|
||||
const int32_t width,
|
||||
const int32_t mult,
|
||||
const int32_t shift,
|
||||
const int32_t diff_min,
|
||||
int8_t *output_data)
|
||||
{
|
||||
// The representation chosen for the input to the exp() function is Q5.26.
|
||||
// We need to leave extra space since values that we skip might be as large as
|
||||
// -32 before multiplying by input mult, and therefore as large as
|
||||
// -16 afterwards. Note that exp(-8) is definitely not insignificant to
|
||||
// accumulation, but exp(-16) definitely is.
|
||||
#define ACCUM_BITS 12
|
||||
#define DIFF_BITS 5
|
||||
|
||||
const int32_t mask = (1 << shift);
|
||||
int32_t col = 0;
|
||||
const int8_t *in_ptr = input_data;
|
||||
int8_t *out_ptr = output_data;
|
||||
|
||||
for (int row_idx = 0; row_idx < height; row_idx++) {
|
||||
int8_t max_in_row = in_ptr[0];
|
||||
for (col = 1; col < width; col++) {
|
||||
max_in_row = max(max_in_row, in_ptr[col]);
|
||||
}
|
||||
|
||||
int32_t input_diff = 0;
|
||||
int32_t sum_of_exps = 0;
|
||||
|
||||
for (col = 0; col < width; col++) {
|
||||
input_diff = in_ptr[col] - max_in_row;
|
||||
if (input_diff >= diff_min) {
|
||||
const int32_t input_diff_rescaled = SAT_HIGH_MUL(input_diff * mask, mult);
|
||||
const int32_t exp_raw = esp_nn_exp_on_negative_values(input_diff_rescaled);
|
||||
sum_of_exps += DIV_POW2(exp_raw, ACCUM_BITS);
|
||||
}
|
||||
}
|
||||
|
||||
const int32_t headroom_plus1 = esp_nn_clz32((uint32_t) sum_of_exps);
|
||||
const int32_t shifted_scale = ONE_OVER_ONE_X((sum_of_exps << headroom_plus1) - (1 << 31));
|
||||
const int32_t bits_over_unit = ACCUM_BITS - headroom_plus1 + 31 - sizeof(int8_t) * 8;
|
||||
|
||||
for (col = 0; col < width; col++) {
|
||||
input_diff = in_ptr[col] - max_in_row;
|
||||
if (input_diff >= diff_min) {
|
||||
const int32_t input_diff_rescaled = SAT_HIGH_MUL(input_diff * mask, mult);
|
||||
const int32_t exp_raw = esp_nn_exp_on_negative_values(input_diff_rescaled);
|
||||
const int32_t shifted_output = SAT_HIGH_MUL(shifted_scale, exp_raw);
|
||||
const int32_t result = DIV_POW2(shifted_output, bits_over_unit) - 128;
|
||||
out_ptr[col] = (int8_t) esp_nn_saturate8(result);
|
||||
} else {
|
||||
out_ptr[col] = -128;
|
||||
}
|
||||
}
|
||||
in_ptr += width;
|
||||
out_ptr += width;
|
||||
}
|
||||
}
|
||||
108
code/components/esp-nn/src/softmax/esp_nn_softmax_opt.c
Normal file
108
code/components/esp-nn/src/softmax/esp_nn_softmax_opt.c
Normal file
@@ -0,0 +1,108 @@
|
||||
// Copyright 2022 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "softmax_common.h"
|
||||
#include <stdio.h>
|
||||
|
||||
static int32_t *scratch_buf = NULL;
|
||||
|
||||
/**
|
||||
* @brief Get scratch buffer size needed by softmax function
|
||||
*
|
||||
* @param width
|
||||
* @param height
|
||||
* @return size in bytes
|
||||
*
|
||||
* @note buffer must be 4 byte aligned
|
||||
*/
|
||||
int32_t esp_nn_get_softmax_scratch_size_opt(const int32_t width, const int32_t height)
|
||||
{
|
||||
(void) height;
|
||||
return width * 4;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Set scratch buffer to be used by softmax function
|
||||
*
|
||||
* @param buffer this can be NULL if one needs to unset it
|
||||
* must be aligned to 4 bytes
|
||||
*/
|
||||
void esp_nn_set_softmax_scratch_buf_opt(void *buffer)
|
||||
{
|
||||
scratch_buf = (int32_t *) buffer;
|
||||
}
|
||||
|
||||
void esp_nn_softmax_s8_opt(const int8_t *input_data,
|
||||
const int32_t height,
|
||||
const int32_t width,
|
||||
const int32_t mult,
|
||||
const int32_t shift,
|
||||
const int32_t diff_min,
|
||||
int8_t *output_data)
|
||||
{
|
||||
if (scratch_buf == NULL) {
|
||||
printf("%s error! scratch buffer not set\n", __FUNCTION__);
|
||||
return;
|
||||
}
|
||||
// The representation chosen for the input to the exp() function is Q5.26.
|
||||
// We need to leave extra space since values that we skip might be as large as
|
||||
// -32 before multiplying by input mult, and therefore as large as
|
||||
// -16 afterwards. Note that exp(-8) is definitely not insignificant to
|
||||
// accumulation, but exp(-16) definitely is.
|
||||
#define ACCUM_BITS 12
|
||||
#define DIFF_BITS 5
|
||||
|
||||
const int32_t mask = (1 << shift);
|
||||
int32_t col = 0;
|
||||
const int8_t *in_ptr = input_data;
|
||||
int8_t *out_ptr = output_data;
|
||||
|
||||
for (int row_idx = 0; row_idx < height; row_idx++) {
|
||||
int8_t max_in_row = in_ptr[0];
|
||||
for (col = 1; col < width; col++) {
|
||||
max_in_row = max(max_in_row, in_ptr[col]);
|
||||
}
|
||||
|
||||
int32_t input_diff = 0;
|
||||
int32_t sum_of_exps = 0;
|
||||
|
||||
for (col = 0; col < width; col++) {
|
||||
input_diff = in_ptr[col] - max_in_row;
|
||||
if (input_diff >= diff_min) {
|
||||
const int32_t input_diff_rescaled = SAT_HIGH_MUL(input_diff * mask, mult);
|
||||
const int32_t exp_raw = esp_nn_exp_on_negative_values(input_diff_rescaled);
|
||||
scratch_buf[col] = exp_raw; // store to avoid duplicate calculation later
|
||||
sum_of_exps += DIV_POW2(exp_raw, ACCUM_BITS);
|
||||
}
|
||||
}
|
||||
|
||||
const int32_t headroom_plus1 = esp_nn_clz32((uint32_t) sum_of_exps);
|
||||
const int32_t shifted_scale = ONE_OVER_ONE_X((sum_of_exps << headroom_plus1) - (1 << 31));
|
||||
const int32_t bits_over_unit = ACCUM_BITS - headroom_plus1 + 31 - sizeof(int8_t) * 8;
|
||||
|
||||
for (col = 0; col < width; col++) {
|
||||
input_diff = in_ptr[col] - max_in_row;
|
||||
if (input_diff >= diff_min) {
|
||||
int32_t exp_raw = scratch_buf[col];
|
||||
const int32_t shifted_output = SAT_HIGH_MUL(shifted_scale, exp_raw);
|
||||
const int32_t result = DIV_POW2(shifted_output, bits_over_unit) - 128;
|
||||
out_ptr[col] = (int8_t) esp_nn_saturate8(result);
|
||||
} else {
|
||||
out_ptr[col] = -128;
|
||||
}
|
||||
}
|
||||
in_ptr += width;
|
||||
out_ptr += width;
|
||||
}
|
||||
}
|
||||
104
code/components/esp-nn/src/softmax/softmax_common.h
Normal file
104
code/components/esp-nn/src/softmax/softmax_common.h
Normal file
@@ -0,0 +1,104 @@
|
||||
// Copyright 2022 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdint.h>
|
||||
#include <common_functions.h>
|
||||
|
||||
#define MASK_IF_ZERO(x) (x) == 0 ? ~0 : 0
|
||||
#define MASK_IF_NON_ZERO(x) (x) != 0 ? ~0 : 0
|
||||
#define SELECT_USING_MASK(mask, a, b) ((mask) & (a)) ^ (~(mask) & (b))
|
||||
#define SAT_HIGH_MUL(x, y) esp_nn_sat_round_doubling_high_mul((x), (y))
|
||||
#define DIV_POW2(x,y) esp_nn_div_by_power_of_two((x), (y))
|
||||
|
||||
__NN_FORCE_INLINE__ int32_t mul_power_of_2(int val, int exp)
|
||||
{
|
||||
const int32_t thresh = ((1 << (31 - exp)) - 1);
|
||||
int32_t result = val << exp;
|
||||
result = SELECT_USING_MASK(MASK_IF_NON_ZERO(val > thresh), INT32_MAX, result);
|
||||
result = SELECT_USING_MASK(MASK_IF_NON_ZERO(val < -thresh), INT32_MIN, result);
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Calculate `1 / (1 + x)` for x in [0, 1]
|
||||
*
|
||||
* @param val input value to calculate `1/(1+x)` for
|
||||
* @return `int32_t` result
|
||||
* @note Newton-Raphson division
|
||||
*
|
||||
* https://en.wikipedia.org/wiki/Division_algorithm#Newton.E2.80.93Raphson_division
|
||||
* Refer to that page for the logic behind the 48/17 and 32/17 constants.
|
||||
* Pseudocode: https://en.wikipedia.org/wiki/Division_algorithm#Pseudocode
|
||||
*/
|
||||
__NN_FORCE_INLINE__ int32_t esp_nn_one_over_one_plus_x_for_x_in_0_1(int32_t val)
|
||||
{
|
||||
const int64_t sum = (int64_t) val + INT32_MAX;
|
||||
const int32_t half_denominator = (int32_t) ((sum + (sum >= 0 ? 1 : -1)) / 2L);
|
||||
int32_t constant_48_over_17 = 1515870810;
|
||||
int32_t constant_neg_32_over_17 = -1010580540;
|
||||
int32_t x = constant_48_over_17 + SAT_HIGH_MUL(half_denominator, constant_neg_32_over_17);
|
||||
const int32_t fixed_2_one = (1 << 29);
|
||||
|
||||
x += mul_power_of_2(SAT_HIGH_MUL(x, fixed_2_one - SAT_HIGH_MUL(half_denominator, x)), 2);
|
||||
x += mul_power_of_2(SAT_HIGH_MUL(x, fixed_2_one - SAT_HIGH_MUL(half_denominator, x)), 2);
|
||||
x += mul_power_of_2(SAT_HIGH_MUL(x, fixed_2_one - SAT_HIGH_MUL(half_denominator, x)), 2);
|
||||
|
||||
return mul_power_of_2(x, 1);
|
||||
}
|
||||
|
||||
#define ONE_OVER_ONE_X(x) esp_nn_one_over_one_plus_x_for_x_in_0_1((x))
|
||||
|
||||
/**
|
||||
* @brief Return exp(x) for x < 0.
|
||||
*
|
||||
*/
|
||||
__NN_FORCE_INLINE__ int32_t esp_nn_exp_on_negative_values(int32_t val)
|
||||
{
|
||||
int32_t shift = 24;
|
||||
|
||||
const int32_t one_quarter = (1 << shift);
|
||||
int32_t mask = one_quarter - 1;
|
||||
const int32_t val_mod_minus_quarter = (val & mask) - one_quarter;
|
||||
const int32_t remainder = val_mod_minus_quarter - val;
|
||||
|
||||
// calculate exponent for x in [-1/4, 0) in `result`
|
||||
const int32_t x = (val_mod_minus_quarter << 5) + (1 << 28);
|
||||
const int32_t x2 = SAT_HIGH_MUL(x, x);
|
||||
const int32_t x3 = SAT_HIGH_MUL(x2, x);
|
||||
const int32_t x4 = SAT_HIGH_MUL(x2, x2);
|
||||
const int32_t one_over_3 = 715827883;
|
||||
const int32_t one_over_8 = 1895147668;
|
||||
|
||||
const int32_t x4_over_4 = DIV_POW2(x4, 2);
|
||||
const int32_t x4_over_4_plus_x3_over_6_plus_x2_over_2 = DIV_POW2(SAT_HIGH_MUL(x4_over_4 + x3, one_over_3) + x2, 1);
|
||||
int32_t result = one_over_8 + SAT_HIGH_MUL(one_over_8, x + x4_over_4_plus_x3_over_6_plus_x2_over_2);
|
||||
|
||||
#define SELECT_IF_NON_ZERO(x) { \
|
||||
mask = MASK_IF_NON_ZERO(remainder & (1 << shift++)); \
|
||||
result = SELECT_USING_MASK(mask, SAT_HIGH_MUL(result, x), result); \
|
||||
}
|
||||
|
||||
SELECT_IF_NON_ZERO(1672461947)
|
||||
SELECT_IF_NON_ZERO(1302514674)
|
||||
SELECT_IF_NON_ZERO(790015084)
|
||||
SELECT_IF_NON_ZERO(290630308)
|
||||
SELECT_IF_NON_ZERO(39332535)
|
||||
SELECT_IF_NON_ZERO(720401)
|
||||
SELECT_IF_NON_ZERO(242)
|
||||
|
||||
#undef SELECT_IF_NON_ZERO
|
||||
|
||||
mask = MASK_IF_ZERO(val);
|
||||
return SELECT_USING_MASK(mask, INT32_MAX, result);
|
||||
}
|
||||
9
code/components/esp-nn/test_app/CMakeLists.txt
Normal file
9
code/components/esp-nn/test_app/CMakeLists.txt
Normal file
@@ -0,0 +1,9 @@
|
||||
# The following lines of boilerplate have to be in your project's
|
||||
# CMakeLists in this exact order for cmake to work correctly
|
||||
cmake_minimum_required(VERSION 3.5)
|
||||
|
||||
set(EXTRA_COMPONENT_DIRS "../" "../tests/")
|
||||
set(IDF_EXCLUDE_COMPONENTS test test_app)
|
||||
|
||||
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
|
||||
project(test_app)
|
||||
7
code/components/esp-nn/test_app/main/CMakeLists.txt
Normal file
7
code/components/esp-nn/test_app/main/CMakeLists.txt
Normal file
@@ -0,0 +1,7 @@
|
||||
|
||||
set(COMPONENT_SRCS "main.c")
|
||||
set(COMPONENT_ADD_INCLUDEDIRS "")
|
||||
|
||||
set(COMPONENT_PRIV_REQUIRES tests)
|
||||
|
||||
register_component()
|
||||
8
code/components/esp-nn/test_app/main/component.mk
Normal file
8
code/components/esp-nn/test_app/main/component.mk
Normal file
@@ -0,0 +1,8 @@
|
||||
#
|
||||
# Main component makefile.
|
||||
#
|
||||
# This Makefile can be left empty. By default, it will take the sources in the
|
||||
# src/ directory, compile them and link them into lib(subdirectory_name).a
|
||||
# in the build directory. This behaviour is entirely configurable,
|
||||
# please read the ESP-IDF documents if you need to do this.
|
||||
#
|
||||
87
code/components/esp-nn/test_app/main/main.c
Normal file
87
code/components/esp-nn/test_app/main/main.c
Normal file
@@ -0,0 +1,87 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <freertos/FreeRTOS.h>
|
||||
#include <freertos/task.h>
|
||||
#include <esp_log.h>
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
#include <test_functions.h>
|
||||
#include <esp_timer.h>
|
||||
|
||||
static const char *TAG = "test_app";
|
||||
static uint32_t start_c, start_opt, total_c, total_opt;
|
||||
|
||||
void profile_c_start()
|
||||
{
|
||||
/* initiate profiling */
|
||||
start_c = esp_cpu_get_ccount();
|
||||
}
|
||||
|
||||
void profile_c_end()
|
||||
{
|
||||
/* record profile number */
|
||||
total_c = esp_cpu_get_ccount() - start_c;
|
||||
}
|
||||
|
||||
void profile_opt_start()
|
||||
{
|
||||
/* initiate profiling */
|
||||
start_opt = esp_cpu_get_ccount();
|
||||
}
|
||||
|
||||
void profile_opt_end()
|
||||
{
|
||||
/* record profile number */
|
||||
total_opt = esp_cpu_get_ccount() - start_opt;
|
||||
}
|
||||
|
||||
void app_main()
|
||||
{
|
||||
/* s8 tests */
|
||||
ESP_LOGI(TAG, "Running s8 tests...");
|
||||
esp_nn_add_elementwise_s8_test();
|
||||
printf("add, c %u opt %u\n", total_c, total_opt);
|
||||
esp_nn_mul_elementwise_s8_test();
|
||||
printf("mul, c %u opt %u\n", total_c, total_opt);
|
||||
esp_nn_depthwise_conv_s8_test();
|
||||
printf("depthwise, c %u opt %u\n", total_c, total_opt);
|
||||
esp_nn_conv_s8_test();
|
||||
printf("conv2d, c %u opt %u\n", total_c, total_opt);
|
||||
|
||||
esp_nn_relu6_s8_test();
|
||||
printf("relu, c %u opt %u\n", total_c, total_opt);
|
||||
esp_nn_avg_pool_s8_test();
|
||||
printf("avg_pool, c %u opt %u\n", total_c, total_opt);
|
||||
esp_nn_max_pool_s8_test();
|
||||
printf("max_pool, c %u opt %u\n", total_c, total_opt);
|
||||
esp_nn_fully_connected_s8_test();
|
||||
printf("fully_connected, c %u opt %u\n", total_c, total_opt);
|
||||
esp_nn_softmax_s8_test();
|
||||
printf("softmax, c %u opt %u\n", total_c, total_opt);
|
||||
ESP_LOGI(TAG, "s8 tests done!\n");
|
||||
|
||||
/* u8 tests */
|
||||
//ESP_LOGI(TAG, "Running u8 tests...");
|
||||
//esp_nn_add_elementwise_u8_test();
|
||||
//esp_nn_depthwise_conv_u8_test();
|
||||
//esp_nn_conv_u8_test();
|
||||
//esp_nn_avg_pool_u8_test();
|
||||
//esp_nn_max_pool_u8_test();
|
||||
//esp_nn_fully_connected_u8_test();
|
||||
//ESP_LOGI(TAG, "u8 tests done!\n");
|
||||
}
|
||||
5
code/components/esp-nn/test_app/sdkconfig.defaults
Normal file
5
code/components/esp-nn/test_app/sdkconfig.defaults
Normal file
@@ -0,0 +1,5 @@
|
||||
|
||||
#
|
||||
# esp-nn
|
||||
#
|
||||
CONFIG_NN_ESP32=y
|
||||
15
code/components/esp-nn/tests/CMakeLists.txt
Normal file
15
code/components/esp-nn/tests/CMakeLists.txt
Normal file
@@ -0,0 +1,15 @@
|
||||
|
||||
set(COMPONENT_ADD_INCLUDEDIRS ./include/)
|
||||
set(COMPONENT_SRCS "src/basic_math_test.c"
|
||||
"src/convolution_test.c"
|
||||
"src/fully_connected_test.c"
|
||||
"src/pooling_test.c"
|
||||
"src/relu_test.c"
|
||||
"src/softmax_test.c")
|
||||
|
||||
set(COMPONENT_REQUIRES )
|
||||
set(COMPONENT_PRIV_REQUIRES esp-nn)
|
||||
|
||||
register_component()
|
||||
|
||||
target_compile_options(${COMPONENT_LIB} PRIVATE -Wno-unused-function)
|
||||
4
code/components/esp-nn/tests/README.md
Normal file
4
code/components/esp-nn/tests/README.md
Normal file
@@ -0,0 +1,4 @@
|
||||
# Tests for esp_nn library
|
||||
|
||||
- Include these in your test framework and run the framework.
|
||||
- For IDF test please refer `test_app`
|
||||
5
code/components/esp-nn/tests/component.mk
Normal file
5
code/components/esp-nn/tests/component.mk
Normal file
@@ -0,0 +1,5 @@
|
||||
#FIXME
|
||||
|
||||
COMPONENT_ADD_INCLUDEDIRS := include/
|
||||
|
||||
COMPONENT_SRCDIRS := src/
|
||||
48
code/components/esp-nn/tests/include/test_functions.h
Normal file
48
code/components/esp-nn/tests/include/test_functions.h
Normal file
@@ -0,0 +1,48 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
|
||||
/* int8_t ops tests */
|
||||
void esp_nn_add_elementwise_s8_test();
|
||||
void esp_nn_mul_elementwise_s8_test();
|
||||
|
||||
void esp_nn_depthwise_conv_s8_test();
|
||||
void esp_nn_conv_s8_test();
|
||||
|
||||
void esp_nn_avg_pool_s8_test();
|
||||
void esp_nn_max_pool_s8_test();
|
||||
|
||||
void esp_nn_fully_connected_s8_test();
|
||||
|
||||
void esp_nn_relu6_s8_test();
|
||||
|
||||
void esp_nn_softmax_s8_test();
|
||||
|
||||
/* uint8_t ops tests */
|
||||
void esp_nn_add_elementwise_u8_test();
|
||||
|
||||
void esp_nn_depthwise_conv_u8_test();
|
||||
void esp_nn_conv_u8_test();
|
||||
|
||||
void esp_nn_avg_pool_u8_test();
|
||||
void esp_nn_max_pool_u8_test();
|
||||
|
||||
void esp_nn_fully_connected_u8_test();
|
||||
|
||||
/* instructions test functions */
|
||||
void compare_instructions_test();
|
||||
void arith_instructions_test();
|
||||
void min_max_instructions_test();
|
||||
void bitwise_instructions_test();
|
||||
void load_store_instructions_test();
|
||||
87
code/components/esp-nn/tests/include/test_utils.h
Normal file
87
code/components/esp-nn/tests/include/test_utils.h
Normal file
@@ -0,0 +1,87 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
#include <common_functions.h>
|
||||
#include <stdio.h>
|
||||
|
||||
/* mult value range */
|
||||
#define MULT_MAX INT32_MAX
|
||||
#define MULT_MIN 0
|
||||
|
||||
/* shift value range */
|
||||
#define SHIFT_MIN -31
|
||||
#define SHIFT_MAX 30
|
||||
|
||||
/**
|
||||
* @brief callback function to run before C function
|
||||
*/
|
||||
void profile_c_start();
|
||||
|
||||
/**
|
||||
* @brief callback function to run after C function
|
||||
*/
|
||||
void profile_c_end();
|
||||
|
||||
/**
|
||||
* @brief callback function to run before optimized function
|
||||
*/
|
||||
void profile_opt_start();
|
||||
|
||||
/**
|
||||
* @brief callback function to run after optimized function
|
||||
*/
|
||||
void profile_opt_end();
|
||||
|
||||
#define ANSI_COLOR_RED "\x1b[31m"
|
||||
#define ANSI_COLOR_GREEN "\x1b[32m"
|
||||
#define ANSI_COLOR_YELLOW "\x1b[33m"
|
||||
#define ANSI_COLOR_BLUE "\x1b[34m"
|
||||
#define ANSI_COLOR_MAGENTA "\x1b[35m"
|
||||
#define ANSI_COLOR_CYAN "\x1b[36m"
|
||||
#define ANSI_COLOR_RESET "\x1b[0m"
|
||||
|
||||
#define CHECK_EQUAL(ARRAY1, ARRAY2, size) ({ \
|
||||
bool res = true; \
|
||||
for (int _i = 0; _i < size; _i++) { \
|
||||
if (ARRAY1[_i] != ARRAY2[_i]) { \
|
||||
res = false; \
|
||||
break; \
|
||||
} \
|
||||
} \
|
||||
res; \
|
||||
})
|
||||
|
||||
#define PRINT_ARRAY_INT(ARRAY, width, height) ({ \
|
||||
int *_array = (int *) ARRAY; \
|
||||
for (int _j = 0; _j < height; _j++) { \
|
||||
for (int _i = 0; _i < width; _i++) { \
|
||||
printf("%d\t", _array[width * _j + _i]); \
|
||||
} \
|
||||
printf("\n"); \
|
||||
} \
|
||||
printf("\n"); \
|
||||
})
|
||||
|
||||
#define PRINT_ARRAY_HEX(ARRAY, width, height) ({ \
|
||||
uint8_t *_array = (uint8_t *) ARRAY; \
|
||||
for (int _j = 0; _j < height; _j++) { \
|
||||
for (int _i = 0; _i < width; _i++) { \
|
||||
printf("%02x\t", _array[width * _j + _i]); \
|
||||
} \
|
||||
printf("\n"); \
|
||||
} \
|
||||
printf("\n"); \
|
||||
})
|
||||
343
code/components/esp-nn/tests/src/basic_math_test.c
Normal file
343
code/components/esp-nn/tests/src/basic_math_test.c
Normal file
@@ -0,0 +1,343 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <malloc.h>
|
||||
|
||||
#include <common_functions.h>
|
||||
#include <esp_nn.h>
|
||||
#include "test_utils.h"
|
||||
|
||||
#if CONFIG_IDF_CMAKE
|
||||
#define IDF_HEAP_CAPS 1
|
||||
|
||||
#if IDF_HEAP_CAPS
|
||||
#include "esp_heap_caps.h"
|
||||
#endif
|
||||
#endif
|
||||
|
||||
void esp_nn_add_elementwise_s8_test()
|
||||
{
|
||||
/* prepare data */
|
||||
const int size = 1600 + 8 + 7; /* odd len to test leftover */
|
||||
int8_t *input1;
|
||||
int8_t *input2;
|
||||
int8_t *out_data_c;
|
||||
int8_t *out_data_opt;
|
||||
int8_t *input1_orig = NULL;
|
||||
int8_t *input2_orig = NULL;
|
||||
int8_t *out_c_orig = NULL;
|
||||
int8_t *out_opt_orig = NULL;
|
||||
int32_t input1_offset = 34;
|
||||
int32_t input2_offset = 35;
|
||||
int32_t output_offset = 36;
|
||||
int32_t input1_shift = -8; // right_shift amt always <= 0
|
||||
int32_t input2_shift = -8; // right_shift amt always <= 0
|
||||
int32_t output_shift = -9; // right_shift amt always <= 0
|
||||
int32_t left_shift = 15; // always +ve
|
||||
int32_t input1_mult = INT32_MAX;
|
||||
int32_t input2_mult = INT32_MAX;
|
||||
int32_t output_mult = INT32_MAX;
|
||||
int32_t activation_min = -128;
|
||||
int32_t activation_max = 127;
|
||||
|
||||
for (int itr = 0; itr < 10; itr++) {
|
||||
switch (itr) {
|
||||
case 0: // all zeros
|
||||
input1_offset = 0;
|
||||
input2_offset = 0;
|
||||
output_offset = 0;
|
||||
input1_mult = 0;
|
||||
input2_mult = 0;
|
||||
output_mult = 0;
|
||||
input1_shift = 0;
|
||||
input2_shift = 0;
|
||||
output_shift = 0;
|
||||
left_shift = 0;
|
||||
break;
|
||||
case 1: // hit min
|
||||
input1_offset = -127;
|
||||
input2_offset = -127;
|
||||
output_offset = -128;
|
||||
input1_mult = MULT_MIN;
|
||||
input2_mult = MULT_MIN;
|
||||
output_mult = MULT_MIN;
|
||||
input1_shift = 0;
|
||||
input2_shift = 0;
|
||||
output_shift = 0;
|
||||
left_shift = 0;
|
||||
break;
|
||||
case 2: // hit max
|
||||
input1_offset = 128;
|
||||
input2_offset = 128;
|
||||
output_offset = -127;
|
||||
input1_mult = MULT_MAX;
|
||||
input2_mult = MULT_MAX;
|
||||
output_mult = MULT_MAX;
|
||||
input1_shift = SHIFT_MIN;
|
||||
input2_shift = SHIFT_MIN;
|
||||
output_shift = SHIFT_MIN;
|
||||
left_shift = 30 - 8; // since input is 8 bits
|
||||
break;
|
||||
case 3: // hit extreme max
|
||||
input1_offset = 128;
|
||||
input2_offset = 128;
|
||||
output_offset = -127;
|
||||
input1_mult = MULT_MAX;
|
||||
input2_mult = MULT_MAX;
|
||||
output_mult = MULT_MAX;
|
||||
input1_shift = 0;
|
||||
input2_shift = 0;
|
||||
output_shift = 0;
|
||||
left_shift = 30 - 8; // -8 since input is 8 bit
|
||||
break;
|
||||
default: // practical random input
|
||||
input1_offset = rand() % 256 - 127; // range [-127, 128]
|
||||
input2_offset = rand() % 256 - 127; // range [-127, 128]
|
||||
output_offset = rand() % 256 - 128; // range [-128, 127]
|
||||
input1_mult = MULT_MAX / 2 + rand() % INT16_MAX;
|
||||
input2_mult = MULT_MAX / 2 + rand() % INT16_MAX;
|
||||
output_mult = MULT_MAX / 2 + rand() % INT16_MAX;
|
||||
input1_shift = -8 + rand() % 4;
|
||||
input2_shift = -8 + rand() % 4;
|
||||
output_shift = -8 + rand() % 4;
|
||||
left_shift = rand() % 15;
|
||||
}
|
||||
#if IDF_HEAP_CAPS
|
||||
input1_orig = (int8_t *) heap_caps_malloc(size + 32, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
|
||||
input2_orig = (int8_t *) heap_caps_malloc(size + 32, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
|
||||
out_c_orig = (int8_t *) heap_caps_malloc(size + 32, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
|
||||
out_opt_orig = (int8_t *) heap_caps_malloc(size + 32, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
|
||||
|
||||
input1 = 16 + input1_orig - ((uint32_t) input1_orig & 0xf);
|
||||
input2 = 16 + input2_orig - ((uint32_t) input2_orig & 0xf);
|
||||
out_data_c = 16 + out_c_orig - ((uint32_t) out_c_orig & 0xf);
|
||||
out_data_opt = 16 + out_opt_orig - ((uint32_t) out_opt_orig & 0xf);
|
||||
#else
|
||||
input1 = memalign(16, size);
|
||||
input2 = memalign(16, size);
|
||||
out_data_c = memalign(16, size);
|
||||
out_data_opt = memalign(16, size);
|
||||
|
||||
input1_orig = input1;
|
||||
input2_orig = input2;
|
||||
out_c_orig = out_data_c;
|
||||
out_opt_orig = out_data_opt;
|
||||
#endif
|
||||
|
||||
for (int i = 0; i < size; ++i) {
|
||||
input1[i] = rand() % 256 - 128;
|
||||
input2[i] = rand() % 256 - 128;
|
||||
}
|
||||
|
||||
if (itr == 0) {
|
||||
/* enable profiler */
|
||||
profile_c_start();
|
||||
}
|
||||
/* C function */
|
||||
esp_nn_add_elementwise_s8_ansi(input1, input2, input1_offset, input2_offset,
|
||||
input1_mult, input2_mult, input1_shift, input2_shift,
|
||||
left_shift, out_data_c, output_offset, output_mult,
|
||||
output_shift, activation_min, activation_max, size);
|
||||
|
||||
if (itr == 0) {
|
||||
profile_c_end();
|
||||
profile_opt_start();
|
||||
}
|
||||
|
||||
/* Optimized function */
|
||||
esp_nn_add_elementwise_s8(input1, input2, input1_offset, input2_offset,
|
||||
input1_mult, input2_mult, input1_shift, input2_shift,
|
||||
left_shift, out_data_opt, output_offset, output_mult,
|
||||
output_shift, activation_min, activation_max, size);
|
||||
if (itr == 0) {
|
||||
/* disable profiler */
|
||||
profile_opt_end();
|
||||
}
|
||||
|
||||
bool ret = CHECK_EQUAL(out_data_c, out_data_opt, size);
|
||||
if (ret == false) {
|
||||
printf(ANSI_COLOR_RED"%s[%d] failed\n"ANSI_COLOR_RESET, __FUNCTION__, itr);
|
||||
printf("Output: \n");
|
||||
PRINT_ARRAY_HEX(out_data_opt, size, 1);
|
||||
printf("Expected: \n");
|
||||
PRINT_ARRAY_HEX(out_data_c, size, 1);
|
||||
printf("Input1:\n");
|
||||
PRINT_ARRAY_HEX(input1, size, 1);
|
||||
printf("Input2:\n");
|
||||
PRINT_ARRAY_HEX(input2, size, 1);
|
||||
printf("in1_shift %d, in2_shift %d, left_shift %d, out_shift %d\n",
|
||||
input1_shift, input2_shift, left_shift, output_shift);
|
||||
printf("in1_mult %d, in2_mult %d, out_mult %d\n", input1_mult, input2_mult, output_mult);
|
||||
goto elementwise_add_test_cleanup;
|
||||
}
|
||||
printf(ANSI_COLOR_GREEN"%s[%d] passed\n"ANSI_COLOR_RESET, __FUNCTION__, itr);
|
||||
|
||||
elementwise_add_test_cleanup:
|
||||
if (input1_orig) {
|
||||
free(input1_orig);
|
||||
}
|
||||
if (input2_orig) {
|
||||
free(input2_orig);
|
||||
}
|
||||
if (out_data_c) {
|
||||
free(out_c_orig);
|
||||
}
|
||||
if (out_data_opt) {
|
||||
free(out_opt_orig);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void esp_nn_mul_elementwise_s8_test()
|
||||
{
|
||||
/* prepare data */
|
||||
const int size = 1600 + 8 + 7; /* odd len to test leftover */
|
||||
int8_t *input1;
|
||||
int8_t *input2;
|
||||
int8_t *out_data_c;
|
||||
int8_t *out_data_opt;
|
||||
int32_t input1_offset = 34;
|
||||
int32_t input2_offset = 35;
|
||||
int32_t output_offset = 36;
|
||||
int32_t output_shift = -7;
|
||||
int32_t output_mult = MULT_MAX; // max out_mult
|
||||
int32_t activation_min = -128;
|
||||
int32_t activation_max = 127;
|
||||
int8_t *input1_orig = NULL;
|
||||
int8_t *input2_orig = NULL;
|
||||
int8_t *out_c_orig = NULL;
|
||||
int8_t *out_opt_orig = NULL;
|
||||
|
||||
for (int itr = 0; itr < 10; itr++) {
|
||||
switch (itr) {
|
||||
case 0: // all zeros
|
||||
input1_offset = 0;
|
||||
input2_offset = 0;
|
||||
output_offset = 0;
|
||||
output_mult = 0;
|
||||
output_shift = 0;
|
||||
break;
|
||||
case 1: // hit min
|
||||
input1_offset = -127;
|
||||
input2_offset = -127;
|
||||
output_offset = -128;
|
||||
output_mult = MULT_MIN;
|
||||
output_shift = 0;
|
||||
break;
|
||||
case 2: // hit max
|
||||
input1_offset = 128;
|
||||
input2_offset = 128;
|
||||
output_offset = -127;
|
||||
output_mult = MULT_MAX;
|
||||
output_shift = SHIFT_MIN;
|
||||
break;
|
||||
case 3: // hit extreme max
|
||||
input1_offset = 128;
|
||||
input2_offset = 128;
|
||||
output_offset = -127;
|
||||
output_mult = MULT_MAX;
|
||||
output_shift = 0;
|
||||
break;
|
||||
default: // practical random input
|
||||
input1_offset = rand() % 256 - 127; // range [-127, 128]
|
||||
input2_offset = rand() % 256 - 127; // range [-127, 128]
|
||||
output_offset = rand() % 256 - 128; // range [-128, 127]
|
||||
output_mult = MULT_MAX / 2 + rand() % INT16_MAX;
|
||||
output_shift = -8 + rand() % 4;
|
||||
}
|
||||
|
||||
#if IDF_HEAP_CAPS
|
||||
input1_orig = (int8_t *) heap_caps_malloc(size + 32, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
|
||||
input2_orig = (int8_t *) heap_caps_malloc(size + 32, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
|
||||
out_c_orig = (int8_t *) heap_caps_malloc(size + 32, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
|
||||
out_opt_orig = (int8_t *) heap_caps_malloc(size + 32, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
|
||||
|
||||
input1 = 16 + input1_orig - ((uint32_t) input1_orig & 0xf);
|
||||
input2 = 16 + input2_orig - ((uint32_t) input2_orig & 0xf);
|
||||
out_data_c = 16 + out_c_orig - ((uint32_t) out_c_orig & 0xf);
|
||||
out_data_opt = 16 + out_opt_orig - ((uint32_t) out_opt_orig & 0xf);
|
||||
#else
|
||||
input1 = memalign(16, size);
|
||||
input2 = memalign(16, size);
|
||||
out_data_c = memalign(16, size);
|
||||
out_data_opt = memalign(16, size);
|
||||
|
||||
input1_orig = input1;
|
||||
input2_orig = input2;
|
||||
out_c_orig = out_data_c;
|
||||
out_opt_orig = out_data_opt;
|
||||
#endif
|
||||
|
||||
for (int i = 0; i < size; ++i) {
|
||||
input1[i] = rand() % 256 - 128;
|
||||
input2[i] = rand() % 256 - 128;
|
||||
}
|
||||
|
||||
if (itr == 0) {
|
||||
/* enable profiler */
|
||||
profile_c_start();
|
||||
}
|
||||
/* C function */
|
||||
esp_nn_mul_elementwise_s8_ansi(input1, input2, input1_offset, input2_offset,
|
||||
out_data_c, output_offset, output_mult, output_shift,
|
||||
activation_min, activation_max, size);
|
||||
|
||||
if (itr == 0) {
|
||||
profile_c_end();
|
||||
profile_opt_start();
|
||||
}
|
||||
/* Optimized function */
|
||||
esp_nn_mul_elementwise_s8(input1, input2, input1_offset, input2_offset,
|
||||
out_data_opt, output_offset, output_mult, output_shift,
|
||||
activation_min, activation_max, size);
|
||||
|
||||
if (itr == 0) {
|
||||
/* disable profiler */
|
||||
profile_opt_end();
|
||||
}
|
||||
|
||||
bool ret = CHECK_EQUAL(out_data_c, out_data_opt, size);
|
||||
if (ret == false) {
|
||||
printf(ANSI_COLOR_RED"%s[%d] failed\n"ANSI_COLOR_RESET, __FUNCTION__, itr);
|
||||
printf("Output: \n");
|
||||
PRINT_ARRAY_HEX(out_data_opt, size, 1);
|
||||
printf("Expected: \n");
|
||||
PRINT_ARRAY_HEX(out_data_c, size, 1);
|
||||
printf("Input1:\n");
|
||||
PRINT_ARRAY_HEX(input1, size, 1);
|
||||
printf("Input2:\n");
|
||||
PRINT_ARRAY_HEX(input2, size, 1);
|
||||
goto elementwise_mult_test_cleanup;
|
||||
}
|
||||
printf(ANSI_COLOR_GREEN"%s[%d] passed\n"ANSI_COLOR_RESET, __FUNCTION__, itr);
|
||||
|
||||
elementwise_mult_test_cleanup:
|
||||
if (input1_orig) {
|
||||
free(input1_orig);
|
||||
}
|
||||
if (input2_orig) {
|
||||
free(input2_orig);
|
||||
}
|
||||
if (out_data_c) {
|
||||
free(out_c_orig);
|
||||
}
|
||||
if (out_data_opt) {
|
||||
free(out_opt_orig);
|
||||
}
|
||||
}
|
||||
}
|
||||
571
code/components/esp-nn/tests/src/convolution_test.c
Normal file
571
code/components/esp-nn/tests/src/convolution_test.c
Normal file
@@ -0,0 +1,571 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <malloc.h>
|
||||
|
||||
#include <esp_nn.h>
|
||||
#include "test_utils.h"
|
||||
|
||||
#if CONFIG_IDF_CMAKE
|
||||
#define IDF_HEAP_CAPS 1
|
||||
|
||||
#if IDF_HEAP_CAPS
|
||||
#include "esp_heap_caps.h"
|
||||
#endif
|
||||
#endif
|
||||
|
||||
void esp_nn_depthwise_conv_s8_test()
|
||||
{
|
||||
int8_t *input = NULL, *filter_data = NULL, *out_data_c = NULL, *out_data_opt = NULL;
|
||||
int32_t *bias = NULL;
|
||||
int32_t input_offset = 5; /* some number in [-128, 127] */
|
||||
int32_t out_offset = 7;
|
||||
int32_t activation_min = -125;
|
||||
int32_t activation_max = 120;
|
||||
void *scratch_buf = NULL;
|
||||
|
||||
/* independent variables */
|
||||
int input_wd, input_ht, channels;
|
||||
uint16_t filter_ht, filter_wd, ch_mult;
|
||||
uint16_t pad_wd, pad_ht, stride_wd, stride_ht;
|
||||
|
||||
// run for 10 iterations
|
||||
for (int itr = 0; itr < 10; itr++) {
|
||||
/* prepare data */
|
||||
switch (itr) {
|
||||
case 0: // (ch_mult 1, (channels % 16) = 0), filter (3,3), pad (0,0)
|
||||
input_wd = 18;
|
||||
input_ht = 18;
|
||||
filter_ht = 3;
|
||||
filter_wd = 3;
|
||||
ch_mult = 1;
|
||||
channels = 16;
|
||||
pad_wd = 0;
|
||||
pad_ht = 0;
|
||||
stride_wd = 1;
|
||||
stride_ht = 1;
|
||||
break;
|
||||
case 1: // (ch_mult 1, (channels % 16) = 0), filter (3,3), pad (1,1)
|
||||
input_wd = 10;
|
||||
input_ht = 10;
|
||||
filter_ht = 3;
|
||||
filter_wd = 3;
|
||||
ch_mult = 1;
|
||||
channels = 16;
|
||||
pad_wd = 1;
|
||||
pad_ht = 1;
|
||||
stride_wd = 1;
|
||||
stride_ht = 1;
|
||||
break;
|
||||
case 2: // (ch_mult 1, (channels % 8) = 0), filter (3,3), pad (1,1)
|
||||
input_wd = 10;
|
||||
input_ht = 10;
|
||||
filter_ht = 3;
|
||||
filter_wd = 3;
|
||||
ch_mult = 1;
|
||||
channels = 24;
|
||||
pad_wd = 1;
|
||||
pad_ht = 1;
|
||||
stride_wd = 1;
|
||||
stride_ht = 1;
|
||||
break;
|
||||
case 3: // other filter sizes (ch_mult 1, (channels % 8) = 0)
|
||||
input_wd = 10;
|
||||
input_ht = 10;
|
||||
filter_ht = 3;
|
||||
filter_wd = 3;
|
||||
ch_mult = 1;
|
||||
channels = 24;
|
||||
pad_wd = 1;
|
||||
pad_ht = 1;
|
||||
stride_wd = 1;
|
||||
stride_ht = 1;
|
||||
break;
|
||||
case 4: // other filter sizes (ch_mult 8 = 0)
|
||||
input_wd = 6;
|
||||
input_ht = 6;
|
||||
filter_ht = 3;
|
||||
filter_wd = 3;
|
||||
ch_mult = 8;
|
||||
channels = 4;
|
||||
pad_wd = 1;
|
||||
pad_ht = 1;
|
||||
stride_wd = 1;
|
||||
stride_ht = 1;
|
||||
break;
|
||||
case 5: // other filter sizes (ch_mult 8 = 0)
|
||||
input_wd = 12;
|
||||
input_ht = 12;
|
||||
filter_ht = 5;
|
||||
filter_wd = 5;
|
||||
ch_mult = 8;
|
||||
channels = 4;
|
||||
pad_wd = 1;
|
||||
pad_ht = 1;
|
||||
stride_wd = 1;
|
||||
stride_ht = 1;
|
||||
break;
|
||||
case 6: // other filter sizes (ch_mult 4 = 0)
|
||||
input_wd = 6;
|
||||
input_ht = 6;
|
||||
filter_ht = 3;
|
||||
filter_wd = 3;
|
||||
ch_mult = 4;
|
||||
channels = 4;
|
||||
pad_wd = 1;
|
||||
pad_ht = 1;
|
||||
stride_wd = 1;
|
||||
stride_ht = 1;
|
||||
break;
|
||||
case 7: // (ch_mult 1, (channels % 16) = 0), filter (3,3), pad (0,0) stride (2,2)
|
||||
input_wd = 6;
|
||||
input_ht = 6;
|
||||
filter_ht = 3;
|
||||
filter_wd = 3;
|
||||
ch_mult = 1;
|
||||
channels = 16;
|
||||
pad_wd = 0;
|
||||
pad_ht = 0;
|
||||
stride_wd = 2;
|
||||
stride_ht = 2;
|
||||
break;
|
||||
default:
|
||||
input_wd = 4;
|
||||
input_ht = 4;
|
||||
filter_ht = 3;
|
||||
filter_wd = 3;
|
||||
ch_mult = 4;
|
||||
channels = 4;
|
||||
pad_wd = 1;
|
||||
pad_ht = 1;
|
||||
stride_wd = 1;
|
||||
stride_ht = 1;
|
||||
break;
|
||||
}
|
||||
|
||||
uint16_t out_wd = (input_wd - filter_wd + 1) / stride_wd;
|
||||
uint16_t out_ht = (input_ht - filter_ht + 1) / stride_ht;
|
||||
int in_size = input_wd * input_ht * channels;
|
||||
int out_size = out_wd * out_ht * channels * ch_mult;
|
||||
int filter_size = filter_wd * filter_ht * channels * ch_mult + 4;
|
||||
int bias_size = channels * ch_mult + 1;
|
||||
int32_t out_shift[channels * ch_mult];
|
||||
int32_t out_mult[channels * ch_mult];
|
||||
|
||||
#if IDF_HEAP_CAPS
|
||||
int8_t *input_orig = (int8_t *) heap_caps_malloc(in_size + 32, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
|
||||
int8_t *out_c_orig = (int8_t *) heap_caps_malloc(out_size + 32, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
|
||||
int8_t *out_opt_orig = (int8_t *) heap_caps_malloc(out_size + 32, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
|
||||
filter_data = (int8_t *) heap_caps_malloc(filter_size, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
|
||||
bias = (int32_t *) heap_caps_malloc(bias_size * 4, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
|
||||
|
||||
input = 16 + input_orig - ((uint32_t) input_orig & 0xf);
|
||||
out_data_c = 16 + out_c_orig - ((uint32_t) out_c_orig & 0xf);
|
||||
out_data_opt = 16 + out_opt_orig - ((uint32_t) out_opt_orig & 0xf);
|
||||
#else
|
||||
input = memalign(16, in_size + 16);
|
||||
filter_data = memalign(16, filter_size);
|
||||
out_data_c = memalign(16, out_size + 16);
|
||||
out_data_opt = memalign(16, out_size + 16);
|
||||
bias = memalign(16, bias_size * 4);
|
||||
int8_t *input_orig = input;
|
||||
int8_t *out_c_orig = out_data_c;
|
||||
int8_t *out_opt_orig = out_data_opt;
|
||||
#endif
|
||||
if (bias == NULL || input == NULL || filter_data == NULL ||
|
||||
out_data_c == NULL || out_data_opt == NULL || bias == NULL) {
|
||||
printf(ANSI_COLOR_RED"%s[%d] allocations failed\n"ANSI_COLOR_RESET, __FUNCTION__, itr);
|
||||
goto dc_s8_cleanup;
|
||||
}
|
||||
|
||||
/* Generate input data */
|
||||
for (int i = 0; i < in_size; ++i) {
|
||||
input[i] = rand() % 128;
|
||||
}
|
||||
|
||||
/* Generate filter data */
|
||||
for (int i = 0; i < filter_size; ++i) {
|
||||
filter_data[i] = rand() % 256 - 128;
|
||||
}
|
||||
|
||||
/* Generate bias data */
|
||||
for (int i = 0; i < channels * ch_mult; ++i) {
|
||||
bias[i + 1] = rand() % INT16_MAX; //0th index left for unalignment
|
||||
out_shift[i] = -8 + rand() % 3;
|
||||
out_mult[i] = 0x7eb0e200 + rand() % 50;
|
||||
}
|
||||
|
||||
int scratch_buf_size = esp_nn_get_depthwise_conv_scratch_size(input_wd, input_ht,
|
||||
channels, ch_mult,
|
||||
filter_wd, filter_ht);
|
||||
if (scratch_buf_size > 0) {
|
||||
#if IDF_HEAP_CAPS
|
||||
scratch_buf = heap_caps_malloc(scratch_buf_size + 32, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
|
||||
int align_sz = 16 - (((int32_t) scratch_buf) & 0xf);
|
||||
#else
|
||||
scratch_buf = memalign(16, scratch_buf_size);
|
||||
int align_sz = 0;
|
||||
#endif
|
||||
if (scratch_buf == NULL) {
|
||||
printf(ANSI_COLOR_RED"%s[%d] scratch_buf alloc failed size %d\n"ANSI_COLOR_RESET,
|
||||
__FUNCTION__, itr, scratch_buf_size);
|
||||
goto dc_s8_cleanup;
|
||||
}
|
||||
esp_nn_set_depthwise_conv_scratch_buf(scratch_buf + align_sz);
|
||||
}
|
||||
if (itr == 0) {
|
||||
/* enable profiler */
|
||||
profile_c_start();
|
||||
}
|
||||
|
||||
/* C function */
|
||||
esp_nn_depthwise_conv_s8_ansi(input, input_wd, input_ht, channels, input_offset,
|
||||
pad_wd, pad_ht, stride_wd, stride_ht, ch_mult,
|
||||
filter_data + 4, filter_wd, filter_ht,
|
||||
bias + 1, out_data_c, out_wd, out_ht, out_offset, out_shift,
|
||||
out_mult, activation_min, activation_max);
|
||||
|
||||
if (itr == 0) {
|
||||
profile_c_end();
|
||||
profile_opt_start();
|
||||
}
|
||||
|
||||
/* Optimized function */
|
||||
esp_nn_depthwise_conv_s8(input, input_wd, input_ht, channels, input_offset,
|
||||
pad_wd, pad_ht, stride_wd, stride_ht, ch_mult,
|
||||
filter_data + 4, filter_wd, filter_ht,
|
||||
bias + 1, out_data_opt, out_wd, out_ht, out_offset, out_shift,
|
||||
out_mult, activation_min, activation_max);
|
||||
|
||||
if (itr == 0) {
|
||||
/* disable profiler */
|
||||
profile_opt_end();
|
||||
}
|
||||
|
||||
bool ret = CHECK_EQUAL(out_data_c, out_data_opt, out_size);
|
||||
if (ret == false) {
|
||||
printf(ANSI_COLOR_RED"%s[%d] failed\n"ANSI_COLOR_RESET, __FUNCTION__, itr);
|
||||
printf("Output: \n");
|
||||
PRINT_ARRAY_HEX(out_data_opt, out_size / out_ht, out_ht);
|
||||
printf("Expected: \n");
|
||||
PRINT_ARRAY_HEX(out_data_c, out_size / out_ht, out_ht);
|
||||
printf("Input:\n");
|
||||
PRINT_ARRAY_HEX(input, in_size / input_ht, input_ht);
|
||||
printf("Filter data:\n");
|
||||
PRINT_ARRAY_HEX(filter_data + 4, (filter_size - 4) / filter_ht, filter_ht);
|
||||
printf("bias data:\n");
|
||||
PRINT_ARRAY_INT(bias + 1, ch_mult * channels, 1);
|
||||
goto dc_s8_cleanup;
|
||||
}
|
||||
printf(ANSI_COLOR_GREEN"%s[%d] passed\n"ANSI_COLOR_RESET, __FUNCTION__, itr);
|
||||
|
||||
dc_s8_cleanup:
|
||||
if (input) {
|
||||
free(input_orig);
|
||||
}
|
||||
if (filter_data) {
|
||||
free(filter_data);
|
||||
}
|
||||
if (out_data_c) {
|
||||
free(out_c_orig);
|
||||
}
|
||||
if (out_data_opt) {
|
||||
free(out_opt_orig);
|
||||
}
|
||||
if (bias) {
|
||||
free(bias);
|
||||
}
|
||||
if (scratch_buf) {
|
||||
free(scratch_buf);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void esp_nn_conv_s8_test()
|
||||
{
|
||||
const int32_t input_offset = 5; /* some number in [-128, 127] */
|
||||
const int32_t activation_min = -125;
|
||||
const int32_t activation_max = 122;
|
||||
const int32_t out_offset = 3;
|
||||
|
||||
void *scratch_buf = NULL;
|
||||
int8_t *input_orig;
|
||||
int8_t *out_c_orig;
|
||||
int8_t *out_opt_orig;
|
||||
int8_t *filter_data;
|
||||
int32_t *bias;
|
||||
|
||||
/* independent variable */
|
||||
int in_wd, in_ht, in_channels, out_channels;
|
||||
uint16_t filter_ht, filter_wd;
|
||||
uint16_t pad_wd, pad_ht, stride_wd, stride_ht;
|
||||
|
||||
// run for 10 iterations
|
||||
for (int itr = 0; itr < 10; itr++) {
|
||||
switch (itr) {
|
||||
case 0: // ch % 8 == 0 && filter (1,1), padding (0,0)
|
||||
in_wd = 10;
|
||||
in_ht = 10;
|
||||
in_channels = 64;
|
||||
out_channels = 64;
|
||||
filter_ht = 1;
|
||||
filter_wd = 1;
|
||||
pad_wd = 0;
|
||||
pad_ht = 0;
|
||||
stride_wd = 1;
|
||||
stride_ht = 1;
|
||||
break;
|
||||
case 1: // ch % 4 == 0 && (in_wd * in_ht) % 16 == 0
|
||||
in_wd = 4;
|
||||
in_ht = 4;
|
||||
in_channels = 20;
|
||||
out_channels = 8;
|
||||
filter_ht = 1;
|
||||
filter_wd = 1;
|
||||
pad_wd = 0;
|
||||
pad_ht = 0;
|
||||
stride_wd = 1;
|
||||
stride_ht = 1;
|
||||
break;
|
||||
case 2: // ch, filter (3x3x3)
|
||||
in_wd = 10;
|
||||
in_ht = 10;
|
||||
in_channels = 3;
|
||||
out_channels = 64;
|
||||
filter_ht = 3;
|
||||
filter_wd = 3;
|
||||
pad_wd = 0;
|
||||
pad_ht = 0;
|
||||
stride_wd = 1;
|
||||
stride_ht = 1;
|
||||
break;
|
||||
case 3: // remaining pad (0, 0)
|
||||
in_wd = 10;
|
||||
in_ht = 10;
|
||||
in_channels = 3;
|
||||
out_channels = 64;
|
||||
filter_ht = 1;
|
||||
filter_wd = 1;
|
||||
pad_wd = 0;
|
||||
pad_ht = 0;
|
||||
stride_wd = 1;
|
||||
stride_ht = 1;
|
||||
break;
|
||||
case 4: // unopt case
|
||||
in_wd = 10;
|
||||
in_ht = 10;
|
||||
in_channels = 12;
|
||||
out_channels = 64;
|
||||
filter_ht = 3;
|
||||
filter_wd = 3;
|
||||
pad_wd = 1;
|
||||
pad_ht = 1;
|
||||
stride_wd = 1;
|
||||
stride_ht = 1;
|
||||
break;
|
||||
case 5: // ch % 8 == 0 & stride (2,2)
|
||||
in_wd = 16;
|
||||
in_ht = 16;
|
||||
in_channels = 16;
|
||||
out_channels = 16;
|
||||
filter_ht = 1;
|
||||
filter_wd = 1;
|
||||
pad_wd = 0;
|
||||
pad_ht = 0;
|
||||
stride_wd = 2;
|
||||
stride_ht = 2;
|
||||
break;
|
||||
case 6: // ch % 8 == 0 && filter (1,1), padding (0,0)
|
||||
in_wd = 2;
|
||||
in_ht = 2;
|
||||
in_channels = 8;
|
||||
out_channels = 8;
|
||||
filter_ht = 1;
|
||||
filter_wd = 1;
|
||||
pad_wd = 0;
|
||||
pad_ht = 0;
|
||||
stride_wd = 1;
|
||||
stride_ht = 1;
|
||||
break;
|
||||
default: // ch % 8 == 0
|
||||
in_wd = 8;
|
||||
in_ht = 8;
|
||||
in_channels = 16;
|
||||
out_channels = 16;
|
||||
filter_ht = 1;
|
||||
filter_wd = 1;
|
||||
pad_wd = 0;
|
||||
pad_ht = 0;
|
||||
stride_wd = 1;
|
||||
stride_ht = 1;
|
||||
break;
|
||||
}
|
||||
|
||||
/* prepare data */
|
||||
uint16_t out_wd = (in_wd - filter_wd + 1) / stride_wd;
|
||||
uint16_t out_ht = (in_ht - filter_ht + 1) / stride_ht;
|
||||
|
||||
int in_size = in_wd * in_ht * in_channels;
|
||||
int filter_size = filter_wd * filter_ht * in_channels * out_channels + 2;
|
||||
int out_size = out_wd * out_ht * out_channels;
|
||||
|
||||
#if IDF_HEAP_CAPS
|
||||
input_orig = (int8_t *) heap_caps_malloc(in_size + 32, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
|
||||
out_c_orig = (int8_t *) heap_caps_malloc(out_size + 32, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
|
||||
out_opt_orig = (int8_t *) heap_caps_malloc(out_size + 32, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
|
||||
filter_data = (int8_t *) heap_caps_malloc(filter_size + 32, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
|
||||
bias = (int32_t *) heap_caps_malloc(128 + sizeof (int32_t) * out_channels, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
|
||||
|
||||
int8_t *input = 16 + input_orig - ((uint32_t) input_orig & 0xf);
|
||||
int8_t *out_data_c = 16 + out_c_orig - ((uint32_t) out_c_orig & 0xf);
|
||||
int8_t *out_data_opt = 16 + out_opt_orig - ((uint32_t) out_opt_orig & 0xf);
|
||||
#else
|
||||
int8_t *input = memalign(16, in_size);
|
||||
int8_t *out_data_c = memalign(16, out_size);
|
||||
int8_t *out_data_opt = memalign(16, out_size);
|
||||
filter_data = memalign(16, filter_size);
|
||||
bias = calloc(1, 128 + sizeof (int32_t) * out_channels);
|
||||
input_orig = input;
|
||||
out_c_orig = out_data_c;
|
||||
out_opt_orig = out_data_opt;
|
||||
#endif
|
||||
int32_t *out_shift = calloc(1, 128 + sizeof (int32_t) * out_channels);
|
||||
int32_t *out_mult = calloc(1, 128 + sizeof (int32_t) * out_channels);
|
||||
|
||||
if (input == NULL || filter_data == NULL ||
|
||||
out_data_c == NULL || out_data_opt == NULL) {
|
||||
printf(ANSI_COLOR_RED"%s allocations failed\n"ANSI_COLOR_RESET, __FUNCTION__);
|
||||
goto conv_s8_cleanup;
|
||||
}
|
||||
|
||||
if (bias == NULL || out_shift == NULL || out_mult == NULL) {
|
||||
printf(ANSI_COLOR_RED"%s allocations failed\n"ANSI_COLOR_RESET, __FUNCTION__);
|
||||
goto conv_s8_cleanup;
|
||||
}
|
||||
|
||||
/* Generate input data between -128 -> +127 */
|
||||
for (int i = 0; i < in_size; ++i) {
|
||||
input[i] = rand() % 255 - 128;
|
||||
}
|
||||
|
||||
/* Generate filter data between -128 -> +127 */
|
||||
for (int i = 0; i < filter_size; ++i) {
|
||||
filter_data[i] = rand() % 256 - 128;
|
||||
}
|
||||
|
||||
/* Generate bias data */
|
||||
for (int i = 0; i < out_channels; ++i) {
|
||||
bias[i] = (int32_t)rand() % UINT16_MAX + UINT8_MAX;
|
||||
}
|
||||
|
||||
/* Shift and multiplier */
|
||||
for (int i = 0; i < out_channels; ++i) {
|
||||
out_shift[i] = -10 + rand() % 2;
|
||||
out_mult[i] = 0x7f67f4f8 + rand() % 50;
|
||||
}
|
||||
|
||||
int scratch_buf_size = esp_nn_get_conv_scratch_size(in_wd, in_ht, in_channels,
|
||||
out_channels, filter_wd, filter_ht);
|
||||
if (scratch_buf_size > 0) {
|
||||
#if IDF_HEAP_CAPS
|
||||
void *scratch_buf = heap_caps_malloc(scratch_buf_size + 32, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
|
||||
int align_sz = 16 - (((int32_t) scratch_buf) & 0xf);
|
||||
#else
|
||||
void *scratch_buf = memalign(16, scratch_buf_size);
|
||||
int align_sz = 0;
|
||||
#endif
|
||||
if (scratch_buf == NULL) {
|
||||
printf(ANSI_COLOR_RED"%s scratch_buf alloc failed size %d\n"ANSI_COLOR_RESET, __FUNCTION__, scratch_buf_size);
|
||||
goto conv_s8_cleanup;
|
||||
}
|
||||
esp_nn_set_conv_scratch_buf(scratch_buf + align_sz);
|
||||
}
|
||||
|
||||
if (itr == 0) {
|
||||
/* enable profiler */
|
||||
profile_c_start();
|
||||
}
|
||||
|
||||
/* C function */
|
||||
esp_nn_conv_s8_ansi(input, in_wd, in_ht, in_channels, input_offset,
|
||||
pad_wd, pad_ht, stride_wd, stride_ht,
|
||||
filter_data + 2, filter_wd, filter_ht, bias,
|
||||
out_data_c, out_wd, out_ht, out_channels, out_offset, out_shift,
|
||||
out_mult, activation_min, activation_max);
|
||||
|
||||
if (itr == 0) {
|
||||
profile_c_end();
|
||||
profile_opt_start();
|
||||
}
|
||||
|
||||
/* Optimized function */
|
||||
esp_nn_conv_s8(input, in_wd, in_ht, in_channels, input_offset,
|
||||
pad_wd, pad_ht, stride_wd, stride_ht,
|
||||
filter_data + 2, filter_wd, filter_ht, bias,
|
||||
out_data_opt, out_wd, out_ht, out_channels, out_offset, out_shift,
|
||||
out_mult, activation_min, activation_max);
|
||||
|
||||
if (itr == 0) {
|
||||
/* disable profiler */
|
||||
profile_opt_end();
|
||||
}
|
||||
|
||||
bool ret = CHECK_EQUAL(out_data_c, out_data_opt, out_size);
|
||||
if (ret == false) {
|
||||
printf(ANSI_COLOR_RED"%s[%d] failed\n"ANSI_COLOR_RESET, __FUNCTION__, itr);
|
||||
printf("Output: \n");
|
||||
PRINT_ARRAY_HEX(out_data_opt, out_size / out_ht, out_ht);
|
||||
printf("Expected: \n");
|
||||
PRINT_ARRAY_HEX(out_data_c, out_size / out_ht, out_ht);
|
||||
printf("Input:\n");
|
||||
PRINT_ARRAY_HEX(input, in_size / in_ht, in_ht);
|
||||
printf("Filter data:\n");
|
||||
PRINT_ARRAY_HEX(filter_data + 2, (filter_size - 2) / filter_ht, filter_ht);
|
||||
printf("bias data:\n");
|
||||
PRINT_ARRAY_INT(bias, out_channels, 1);
|
||||
goto conv_s8_cleanup;
|
||||
}
|
||||
printf(ANSI_COLOR_GREEN"%s[%d] passed\n"ANSI_COLOR_RESET, __FUNCTION__, itr);
|
||||
|
||||
conv_s8_cleanup:
|
||||
if (input) {
|
||||
free(input_orig);
|
||||
}
|
||||
if (filter_data) {
|
||||
free(filter_data);
|
||||
}
|
||||
if (out_data_c) {
|
||||
free(out_c_orig);
|
||||
}
|
||||
if (out_data_opt) {
|
||||
free(out_opt_orig);
|
||||
}
|
||||
if (bias) {
|
||||
free(bias);
|
||||
}
|
||||
if (out_shift) {
|
||||
free(out_shift);
|
||||
}
|
||||
if (out_mult) {
|
||||
free(out_mult);
|
||||
}
|
||||
if (scratch_buf) {
|
||||
free(scratch_buf);
|
||||
}
|
||||
}
|
||||
}
|
||||
111
code/components/esp-nn/tests/src/fully_connected_test.c
Normal file
111
code/components/esp-nn/tests/src/fully_connected_test.c
Normal file
@@ -0,0 +1,111 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#include <esp_nn.h>
|
||||
#include "test_utils.h"
|
||||
|
||||
|
||||
void esp_nn_fully_connected_s8_test()
|
||||
{
|
||||
/* prepare data */
|
||||
static uint16_t row_len = 256 + 8 + 7; /* odd len to test unaligned+left-over */
|
||||
static uint16_t out_channels = 3;
|
||||
int8_t input[row_len];
|
||||
int8_t filter_data[row_len * out_channels];
|
||||
int8_t output_c[out_channels], output_opt[out_channels];
|
||||
static int32_t activation_min = -128;
|
||||
static int32_t activation_max = 127;
|
||||
static int32_t input_offset = 0;
|
||||
static int32_t filter_offset = 0;
|
||||
int32_t out_shift = -10;
|
||||
static int32_t out_offset = 127;
|
||||
int32_t out_mult = 0x59e492c4;
|
||||
for (int itr = 0; itr < 5; itr++) {
|
||||
out_mult = INT32_MAX / row_len + rand() % INT16_MAX;
|
||||
switch (itr) {
|
||||
case 0:
|
||||
out_shift = -10;
|
||||
break;
|
||||
case 1:
|
||||
out_shift = SHIFT_MIN;
|
||||
break;
|
||||
case 2:
|
||||
out_shift = SHIFT_MAX;
|
||||
break;
|
||||
case 3:
|
||||
out_shift = 0;
|
||||
break;
|
||||
default:
|
||||
out_shift = -10 + rand() % 5;
|
||||
break;
|
||||
}
|
||||
if (itr == 0) {
|
||||
out_shift = SHIFT_MAX;
|
||||
}
|
||||
/* Generate input and filter data */
|
||||
for (int i = 0; i < row_len; ++i) {
|
||||
input[i] = rand() % 256 - 128;
|
||||
}
|
||||
for (int i = 0; i < row_len * out_channels; ++i) {
|
||||
filter_data[i] = rand() % 256 - 128;
|
||||
}
|
||||
|
||||
if (itr == 0) {
|
||||
/* enable profiler */
|
||||
profile_c_start();
|
||||
}
|
||||
|
||||
/* C function */
|
||||
esp_nn_fully_connected_s8_ansi(input, input_offset, row_len, filter_data, filter_offset,
|
||||
NULL, output_c, out_channels, out_offset, out_shift, out_mult,
|
||||
activation_min, activation_max);
|
||||
|
||||
if (itr == 0) {
|
||||
profile_c_end();
|
||||
profile_opt_start();
|
||||
}
|
||||
|
||||
/* Optimized function */
|
||||
esp_nn_fully_connected_s8(input, input_offset, row_len, filter_data, filter_offset,
|
||||
NULL, output_opt, out_channels, out_offset, out_shift, out_mult,
|
||||
activation_min, activation_max);
|
||||
|
||||
if (itr == 0) {
|
||||
/* disable profiler */
|
||||
profile_opt_end();
|
||||
}
|
||||
|
||||
bool ret = CHECK_EQUAL(output_c, output_opt, out_channels);
|
||||
if (ret == false) {
|
||||
printf(ANSI_COLOR_RED"%s[%d] failed\n"ANSI_COLOR_RESET, __FUNCTION__, itr);
|
||||
printf("Output: \n");
|
||||
PRINT_ARRAY_HEX(output_opt, out_channels, 1);
|
||||
printf("Expected: \n");
|
||||
PRINT_ARRAY_HEX(output_c, out_channels, 1);
|
||||
printf("Input:\n");
|
||||
PRINT_ARRAY_HEX(input, row_len, 1);
|
||||
printf("Filter data:\n");
|
||||
PRINT_ARRAY_HEX(filter_data, row_len, out_channels);
|
||||
printf("Out shift: %d\n", out_shift);
|
||||
printf("Out mult: %x\n", out_mult);
|
||||
return;
|
||||
}
|
||||
printf(ANSI_COLOR_GREEN"%s[%d] passed\n"ANSI_COLOR_RESET, __FUNCTION__, itr);
|
||||
}
|
||||
}
|
||||
184
code/components/esp-nn/tests/src/pooling_test.c
Normal file
184
code/components/esp-nn/tests/src/pooling_test.c
Normal file
@@ -0,0 +1,184 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <malloc.h>
|
||||
|
||||
#include <esp_nn.h>
|
||||
#include "test_utils.h"
|
||||
|
||||
|
||||
void esp_nn_avg_pool_s8_test()
|
||||
{
|
||||
/* prepare data */
|
||||
const uint16_t input_wd = 16;
|
||||
const uint16_t input_ht = 16;
|
||||
const uint16_t channels = 16; /* With TFLite example, I have seen it 256 */
|
||||
const int size = input_wd * input_ht * channels;
|
||||
int8_t *input, *output_c, *output_opt;
|
||||
const int32_t activation_min = -128;
|
||||
const int32_t activation_max = 127;
|
||||
const uint16_t pad_wd = 1;
|
||||
const uint16_t pad_ht = 1;
|
||||
const uint16_t stride_wd = 1;
|
||||
const uint16_t stride_ht = 1;
|
||||
const uint16_t filter_ht = 3;
|
||||
const uint16_t filter_wd = 3;
|
||||
const uint16_t out_wd = input_wd / stride_wd;
|
||||
const uint16_t out_ht = input_ht / stride_ht;
|
||||
const int out_size = out_wd * out_ht * channels;
|
||||
|
||||
input = memalign(16, size);
|
||||
output_c = memalign(16, out_size);
|
||||
output_opt = memalign(16, out_size);
|
||||
|
||||
if (input == NULL || output_c == NULL || output_opt == NULL) {
|
||||
printf(ANSI_COLOR_RED"%s allocations failed\n"ANSI_COLOR_RESET, __FUNCTION__);
|
||||
goto avg_pool_s8_cleanup;
|
||||
}
|
||||
/**
|
||||
* width/height, channels etc look suspicious but it it true.
|
||||
* It actually depends upon where in model this is actually placed.
|
||||
* If at the end wd/ht tends to be smaller and depth larger.
|
||||
*/
|
||||
|
||||
for (int i = 0; i < size; ++i) {
|
||||
input[i] = rand() % 256 - 128;
|
||||
}
|
||||
|
||||
/* enable profiler */
|
||||
profile_c_start();
|
||||
|
||||
/* C function */
|
||||
esp_nn_avg_pool_s8_ansi(input, input_wd, input_ht, output_c, out_wd, out_ht,
|
||||
stride_wd, stride_ht, filter_wd, filter_ht, pad_wd, pad_ht,
|
||||
activation_min, activation_max, channels);
|
||||
|
||||
profile_c_end();
|
||||
profile_opt_start();
|
||||
|
||||
/* Optimized function */
|
||||
esp_nn_avg_pool_s8(input, input_wd, input_ht, output_opt, out_wd, out_ht,
|
||||
stride_wd, stride_ht, filter_wd, filter_ht, pad_wd, pad_ht,
|
||||
activation_min, activation_max, channels);
|
||||
|
||||
/* disable profiler */
|
||||
profile_opt_end();
|
||||
|
||||
|
||||
bool ret = CHECK_EQUAL(output_c, output_opt, out_size);
|
||||
if (ret == false) {
|
||||
printf(ANSI_COLOR_RED"%s failed\n"ANSI_COLOR_RESET, __FUNCTION__);
|
||||
printf("Output: \n");
|
||||
PRINT_ARRAY_HEX(output_opt, out_wd * channels, out_ht);
|
||||
printf("Expected: \n");
|
||||
PRINT_ARRAY_HEX(output_c, out_wd * channels, out_ht);
|
||||
printf("Input:\n");
|
||||
PRINT_ARRAY_HEX(input, input_wd * channels, input_ht);
|
||||
goto avg_pool_s8_cleanup;
|
||||
}
|
||||
printf(ANSI_COLOR_GREEN"%s passed\n"ANSI_COLOR_RESET, __FUNCTION__);
|
||||
|
||||
avg_pool_s8_cleanup:
|
||||
if (input) {
|
||||
free(input);
|
||||
}
|
||||
if (output_c) {
|
||||
free(output_c);
|
||||
}
|
||||
if (output_opt) {
|
||||
free(output_opt);
|
||||
}
|
||||
}
|
||||
|
||||
void esp_nn_max_pool_s8_test()
|
||||
{
|
||||
/* prepare data */
|
||||
const uint16_t input_wd = 16;
|
||||
const uint16_t input_ht = 16;
|
||||
const uint16_t channels = 16; /* With TFLite example, I have seen it 256 */
|
||||
int8_t *input, *output_c, *output_opt;
|
||||
const int size = input_wd * input_ht * channels;
|
||||
const int32_t activation_min = -128;
|
||||
const int32_t activation_max = 127;
|
||||
const uint16_t pad_wd = 1;
|
||||
const uint16_t pad_ht = 1;
|
||||
const uint16_t stride_wd = 1;
|
||||
const uint16_t stride_ht = 1;
|
||||
const uint16_t filter_ht = 3;
|
||||
const uint16_t filter_wd = 3;
|
||||
const uint16_t out_wd = input_wd / stride_wd;
|
||||
const uint16_t out_ht = input_ht / stride_ht;
|
||||
const int out_size = out_wd * out_ht * channels;
|
||||
|
||||
input = memalign(16, size);
|
||||
output_c = memalign(16, out_size);
|
||||
output_opt = memalign(16, out_size);
|
||||
|
||||
if (input == NULL || output_c == NULL || output_opt == NULL) {
|
||||
printf(ANSI_COLOR_RED"%s allocations failed\n"ANSI_COLOR_RESET, __FUNCTION__);
|
||||
goto max_pool_s8_cleanup;
|
||||
}
|
||||
|
||||
for (int i = 0; i < size; ++i) {
|
||||
input[i] = rand() % 256 - 128;
|
||||
}
|
||||
|
||||
/* enable profiler */
|
||||
profile_c_start();
|
||||
|
||||
/* C function */
|
||||
esp_nn_max_pool_s8_ansi(input, input_wd, input_ht, output_c, out_wd, out_ht,
|
||||
stride_wd, stride_ht, filter_wd, filter_ht, pad_wd, pad_ht,
|
||||
activation_min, activation_max, channels);
|
||||
|
||||
profile_c_end();
|
||||
profile_opt_start();
|
||||
|
||||
/* Optimized function */
|
||||
esp_nn_max_pool_s8(input, input_wd, input_ht, output_opt, out_wd, out_ht,
|
||||
stride_wd, stride_ht, filter_wd, filter_ht, pad_wd, pad_ht,
|
||||
activation_min, activation_max, channels);
|
||||
|
||||
/* disable profiler */
|
||||
profile_opt_end();
|
||||
|
||||
|
||||
bool ret = CHECK_EQUAL(output_c, output_opt, out_wd * out_ht * channels);
|
||||
if (ret == false) {
|
||||
printf(ANSI_COLOR_RED"%s failed\n"ANSI_COLOR_RESET, __FUNCTION__);
|
||||
printf("Output: \n");
|
||||
PRINT_ARRAY_HEX(output_opt, out_wd * out_ht * channels, 1);
|
||||
printf("Expected: \n");
|
||||
PRINT_ARRAY_HEX(output_c, out_wd * out_ht * channels, 1);
|
||||
printf("Input:\n");
|
||||
PRINT_ARRAY_HEX(input, 8, size / 8);
|
||||
goto max_pool_s8_cleanup;
|
||||
}
|
||||
printf(ANSI_COLOR_GREEN"%s passed\n"ANSI_COLOR_RESET, __FUNCTION__);
|
||||
|
||||
max_pool_s8_cleanup:
|
||||
if (input) {
|
||||
free(input);
|
||||
}
|
||||
if (output_c) {
|
||||
free(output_c);
|
||||
}
|
||||
if (output_opt) {
|
||||
free(output_opt);
|
||||
}
|
||||
}
|
||||
83
code/components/esp-nn/tests/src/relu_test.c
Normal file
83
code/components/esp-nn/tests/src/relu_test.c
Normal file
@@ -0,0 +1,83 @@
|
||||
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <malloc.h>
|
||||
|
||||
#include <esp_nn.h>
|
||||
#include "test_utils.h"
|
||||
|
||||
void esp_nn_relu6_s8_test()
|
||||
{
|
||||
const int size = 1600 + 8 + 7;
|
||||
int8_t *input, *inout_ansi, *inout_opt;
|
||||
|
||||
input = memalign(16, size);
|
||||
inout_ansi = memalign(16, size);
|
||||
inout_opt = memalign(16, size);
|
||||
|
||||
if (input == NULL || inout_ansi == NULL || inout_opt == NULL) {
|
||||
printf(ANSI_COLOR_RED"%s allocations failed\n"ANSI_COLOR_RESET, __FUNCTION__);
|
||||
goto relu6_s8_cleanup;
|
||||
}
|
||||
/* Generate filter data between -128 -> +127 */
|
||||
for (int i = 0; i < size; ++i) {
|
||||
input[i] = rand() % 255 - 128;
|
||||
inout_ansi[i] = input[i];
|
||||
inout_opt[i] = input[i];
|
||||
}
|
||||
|
||||
/* enable profiler */
|
||||
profile_c_start();
|
||||
|
||||
/* C function */
|
||||
esp_nn_relu6_s8_ansi(inout_ansi, size);
|
||||
|
||||
profile_c_end();
|
||||
profile_opt_start();
|
||||
|
||||
/* Optimized function */
|
||||
esp_nn_relu6_s8(inout_opt, size);
|
||||
|
||||
/* disable profiler */
|
||||
profile_opt_end();
|
||||
|
||||
bool ret = CHECK_EQUAL(inout_ansi, inout_opt, size);
|
||||
if (ret == false) {
|
||||
printf(ANSI_COLOR_RED"%s failed\n"ANSI_COLOR_RESET, __FUNCTION__);
|
||||
printf("Output: \n");
|
||||
PRINT_ARRAY_HEX(inout_opt, size, 1);
|
||||
printf("Expected: \n");
|
||||
PRINT_ARRAY_HEX(inout_ansi, size, 1);
|
||||
printf("Input:\n");
|
||||
PRINT_ARRAY_HEX(input, size, 1);
|
||||
goto relu6_s8_cleanup;
|
||||
}
|
||||
printf(ANSI_COLOR_GREEN"%s passed\n"ANSI_COLOR_RESET, __FUNCTION__);
|
||||
|
||||
relu6_s8_cleanup:
|
||||
if (input) {
|
||||
free (input);
|
||||
}
|
||||
if (inout_ansi) {
|
||||
free (inout_ansi);
|
||||
}
|
||||
if (inout_opt) {
|
||||
free (inout_opt);
|
||||
}
|
||||
|
||||
}
|
||||
101
code/components/esp-nn/tests/src/softmax_test.c
Normal file
101
code/components/esp-nn/tests/src/softmax_test.c
Normal file
@@ -0,0 +1,101 @@
|
||||
// Copyright 2022 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <malloc.h>
|
||||
|
||||
#include <esp_nn.h>
|
||||
#include "test_utils.h"
|
||||
|
||||
void esp_nn_softmax_s8_test()
|
||||
{
|
||||
const int32_t height = 8;
|
||||
const int32_t width = 32;
|
||||
const int32_t diff_min = -128;
|
||||
const int32_t mult = INT32_MAX / 2;
|
||||
const int32_t shift = 7;
|
||||
void *scratch_buf = NULL;
|
||||
const int size = width * height;
|
||||
int8_t *input, *out_ansi, *out_opt;
|
||||
|
||||
input = memalign(16, size);
|
||||
out_ansi = memalign(16, size);
|
||||
out_opt = memalign(16, size);
|
||||
|
||||
if (input == NULL || out_ansi == NULL || out_opt == NULL) {
|
||||
printf(ANSI_COLOR_RED"%s buffer allocations failed\n"ANSI_COLOR_RESET, __FUNCTION__);
|
||||
goto softmax_s8_cleanup;
|
||||
}
|
||||
|
||||
/* Generate input data between -128 -> +127 */
|
||||
for (int i = 0; i < size; ++i) {
|
||||
input[i] = rand() % 255 - 128;
|
||||
}
|
||||
|
||||
/* enable profiler */
|
||||
profile_c_start();
|
||||
|
||||
/* C function */
|
||||
esp_nn_softmax_s8_ansi(input, height, width, mult, shift, diff_min, out_ansi);
|
||||
|
||||
profile_c_end();
|
||||
|
||||
int32_t scratch_buf_size = esp_nn_get_softmax_scratch_size(width, height);
|
||||
if (scratch_buf_size) {
|
||||
scratch_buf = memalign(4, scratch_buf_size);
|
||||
if (scratch_buf == NULL) {
|
||||
printf(ANSI_COLOR_RED"%s scratch_buf alloc failed size %d\n"ANSI_COLOR_RESET, __FUNCTION__, scratch_buf_size);
|
||||
goto softmax_s8_cleanup;
|
||||
}
|
||||
esp_nn_set_softmax_scratch_buf(scratch_buf);
|
||||
}
|
||||
|
||||
profile_opt_start();
|
||||
|
||||
/* Optimized function */
|
||||
esp_nn_softmax_s8(input, height, width, mult, shift, diff_min, out_opt);
|
||||
|
||||
/* disable profiler */
|
||||
profile_opt_end();
|
||||
|
||||
bool ret = CHECK_EQUAL(out_ansi, out_opt, size);
|
||||
if (ret == false) {
|
||||
printf(ANSI_COLOR_RED"%s failed\n"ANSI_COLOR_RESET, __FUNCTION__);
|
||||
printf("Output: \n");
|
||||
PRINT_ARRAY_HEX(out_opt, width, height);
|
||||
printf("Expected: \n");
|
||||
PRINT_ARRAY_HEX(out_ansi, width, height);
|
||||
printf("Input:\n");
|
||||
PRINT_ARRAY_HEX(input, width, height);
|
||||
goto softmax_s8_cleanup;
|
||||
}
|
||||
printf(ANSI_COLOR_GREEN"%s passed\n"ANSI_COLOR_RESET, __FUNCTION__);
|
||||
|
||||
softmax_s8_cleanup:
|
||||
if (input) {
|
||||
free (input);
|
||||
}
|
||||
if (out_ansi) {
|
||||
free (out_ansi);
|
||||
}
|
||||
if (out_opt) {
|
||||
free (out_opt);
|
||||
}
|
||||
if (scratch_buf) {
|
||||
free (scratch_buf);
|
||||
}
|
||||
}
|
||||
Binary file not shown.
Binary file not shown.
@@ -19,7 +19,6 @@ void ClassFlow::SetInitialParameter(void)
|
||||
std::vector<string> ClassFlow::ZerlegeZeile(std::string input, std::string delimiter)
|
||||
{
|
||||
std::vector<string> Output;
|
||||
// std::string delimiter = " =,";
|
||||
|
||||
input = trim(input, delimiter);
|
||||
size_t pos = findDelimiterPos(input, delimiter);
|
||||
|
||||
@@ -26,7 +26,6 @@ struct HTMLInfo
|
||||
class ClassFlow
|
||||
{
|
||||
protected:
|
||||
// std::vector<string> ZerlegeZeile(string input);
|
||||
std::vector<string> ZerlegeZeile(string input, string delimiter = " =, \t");
|
||||
bool isNewParagraph(string input);
|
||||
bool GetNextParagraph(FILE* pfile, string& aktparamgraph);
|
||||
|
||||
@@ -197,33 +197,6 @@ int ClassFlowCNNGeneral::ZeigerEvalHybrid(float zahl, float zahl_vorgaenger, int
|
||||
return ((int) trunc(zahl) + 10) % 10;
|
||||
}
|
||||
|
||||
/*
|
||||
int ClassFlowCNNGeneral::ZeigerEvalHybrid_NEU(float zahl, float zahl_vorgaenger)
|
||||
{
|
||||
int ergebnis_nachkomma = ((int) floor(zahl * 10) + 10) % 10;
|
||||
int ergebnis_vorkomma = ((int) floor(zahl) + 10) % 10;
|
||||
int ergebnis, ergebnis_rating;
|
||||
|
||||
|
||||
if (zahl_vorgaenger < 0)
|
||||
return ergebnis_vorkomma % 10;
|
||||
|
||||
ergebnis_rating = ergebnis_nachkomma - zahl_vorgaenger;
|
||||
if (ergebnis_nachkomma >= 5)
|
||||
ergebnis_rating-=5;
|
||||
else
|
||||
ergebnis_rating+=5;
|
||||
ergebnis = (int) round(zahl);
|
||||
if (ergebnis_rating < 0)
|
||||
ergebnis-=1;
|
||||
if (ergebnis == -1)
|
||||
ergebnis+=10;
|
||||
|
||||
ergebnis = (ergebnis + 10) % 10;
|
||||
return ergebnis;
|
||||
|
||||
}
|
||||
*/
|
||||
|
||||
|
||||
int ClassFlowCNNGeneral::ZeigerEval(float zahl, int ziffer_vorgaenger)
|
||||
@@ -309,11 +282,12 @@ bool ClassFlowCNNGeneral::ReadParameter(FILE* pfile, string& aktparamgraph)
|
||||
{
|
||||
CNNGoodThreshold = std::stof(zerlegt[1]);
|
||||
}
|
||||
if ((toUpper(zerlegt[0]) == "MODELINPUTSIZE") && (zerlegt.size() > 2))
|
||||
/* if ((toUpper(zerlegt[0]) == "MODELINPUTSIZE") && (zerlegt.size() > 2))
|
||||
{
|
||||
this->modelxsize = std::stoi(zerlegt[1]);
|
||||
this->modelysize = std::stoi(zerlegt[2]);
|
||||
}
|
||||
*/
|
||||
if (zerlegt.size() >= 5)
|
||||
{
|
||||
general* _analog = GetGENERAL(zerlegt[0], true);
|
||||
@@ -334,11 +308,14 @@ bool ClassFlowCNNGeneral::ReadParameter(FILE* pfile, string& aktparamgraph)
|
||||
}
|
||||
}
|
||||
|
||||
if (!getNetworkParameter())
|
||||
return false;
|
||||
|
||||
|
||||
for (int _ana = 0; _ana < GENERAL.size(); ++_ana)
|
||||
for (int i = 0; i < GENERAL[_ana]->ROI.size(); ++i)
|
||||
{
|
||||
GENERAL[_ana]->ROI[i]->image = new CImageBasis(modelxsize, modelysize, 3);
|
||||
GENERAL[_ana]->ROI[i]->image = new CImageBasis(modelxsize, modelysize, modelchannel);
|
||||
GENERAL[_ana]->ROI[i]->image_org = new CImageBasis(GENERAL[_ana]->ROI[i]->deltax, GENERAL[_ana]->ROI[i]->deltay, 3);
|
||||
}
|
||||
|
||||
@@ -499,13 +476,11 @@ void ClassFlowCNNGeneral::DrawROI(CImageBasis *_zw)
|
||||
}
|
||||
}
|
||||
|
||||
bool ClassFlowCNNGeneral::doNeuralNetwork(string time)
|
||||
bool ClassFlowCNNGeneral::getNetworkParameter()
|
||||
{
|
||||
if (disabled)
|
||||
return true;
|
||||
|
||||
string logPath = CreateLogFolder(time);
|
||||
|
||||
CTfLiteClass *tflite = new CTfLiteClass;
|
||||
string zwcnn = "/sdcard" + cnnmodelfile;
|
||||
zwcnn = FormatFileName(zwcnn);
|
||||
@@ -513,7 +488,6 @@ bool ClassFlowCNNGeneral::doNeuralNetwork(string time)
|
||||
if (!tflite->LoadModel(zwcnn)) {
|
||||
printf("Can't read model file /sdcard%s\n", cnnmodelfile.c_str());
|
||||
LogFile.WriteToFile("Cannot load model");
|
||||
|
||||
delete tflite;
|
||||
return false;
|
||||
}
|
||||
@@ -521,6 +495,11 @@ bool ClassFlowCNNGeneral::doNeuralNetwork(string time)
|
||||
|
||||
if (CNNType == AutoDetect)
|
||||
{
|
||||
tflite->GetInputDimension(false);
|
||||
modelxsize = tflite->ReadInputDimenstion(0);
|
||||
modelysize = tflite->ReadInputDimenstion(1);
|
||||
modelchannel = tflite->ReadInputDimenstion(2);
|
||||
|
||||
int _anzoutputdimensions = tflite->GetAnzOutPut();
|
||||
switch (_anzoutputdimensions)
|
||||
{
|
||||
@@ -549,6 +528,30 @@ bool ClassFlowCNNGeneral::doNeuralNetwork(string time)
|
||||
}
|
||||
}
|
||||
|
||||
delete tflite;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool ClassFlowCNNGeneral::doNeuralNetwork(string time)
|
||||
{
|
||||
if (disabled)
|
||||
return true;
|
||||
|
||||
string logPath = CreateLogFolder(time);
|
||||
|
||||
CTfLiteClass *tflite = new CTfLiteClass;
|
||||
string zwcnn = "/sdcard" + cnnmodelfile;
|
||||
zwcnn = FormatFileName(zwcnn);
|
||||
printf(zwcnn.c_str());printf("\n");
|
||||
if (!tflite->LoadModel(zwcnn)) {
|
||||
printf("Can't read model file /sdcard%s\n", cnnmodelfile.c_str());
|
||||
LogFile.WriteToFile("Cannot load model");
|
||||
|
||||
delete tflite;
|
||||
return false;
|
||||
}
|
||||
tflite->MakeAllocate();
|
||||
|
||||
for (int _ana = 0; _ana < GENERAL.size(); ++_ana)
|
||||
{
|
||||
for (int i = 0; i < GENERAL[_ana]->ROI.size(); ++i)
|
||||
@@ -581,14 +584,15 @@ bool ClassFlowCNNGeneral::doNeuralNetwork(string time)
|
||||
|
||||
if (isLogImage)
|
||||
{
|
||||
string _imagename = GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name;
|
||||
if (isLogImageSelect)
|
||||
{
|
||||
if (LogImageSelect.find(GENERAL[_ana]->ROI[i]->name) != std::string::npos)
|
||||
LogImage(logPath, GENERAL[_ana]->ROI[i]->name, NULL, &GENERAL[_ana]->ROI[i]->result_klasse, time, GENERAL[_ana]->ROI[i]->image_org);
|
||||
LogImage(logPath, _imagename, NULL, &GENERAL[_ana]->ROI[i]->result_klasse, time, GENERAL[_ana]->ROI[i]->image_org);
|
||||
}
|
||||
else
|
||||
{
|
||||
LogImage(logPath, GENERAL[_ana]->ROI[i]->name, NULL, &GENERAL[_ana]->ROI[i]->result_klasse, time, GENERAL[_ana]->ROI[i]->image_org);
|
||||
LogImage(logPath, _imagename, NULL, &GENERAL[_ana]->ROI[i]->result_klasse, time, GENERAL[_ana]->ROI[i]->image_org);
|
||||
}
|
||||
}
|
||||
} break;
|
||||
@@ -617,7 +621,18 @@ bool ClassFlowCNNGeneral::doNeuralNetwork(string time)
|
||||
if (debugdetailgeneral) LogFile.WriteToFile(_zwres);
|
||||
|
||||
if (isLogImage)
|
||||
LogImage(logPath, GENERAL[_ana]->ROI[i]->name, &GENERAL[_ana]->ROI[i]->result_float, NULL, time, GENERAL[_ana]->ROI[i]->image_org);
|
||||
{
|
||||
string _imagename = GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name;
|
||||
if (isLogImageSelect)
|
||||
{
|
||||
if (LogImageSelect.find(GENERAL[_ana]->ROI[i]->name) != std::string::npos)
|
||||
LogImage(logPath, _imagename, NULL, &GENERAL[_ana]->ROI[i]->result_klasse, time, GENERAL[_ana]->ROI[i]->image_org);
|
||||
}
|
||||
else
|
||||
{
|
||||
LogImage(logPath, _imagename, NULL, &GENERAL[_ana]->ROI[i]->result_klasse, time, GENERAL[_ana]->ROI[i]->image_org);
|
||||
}
|
||||
}
|
||||
} break;
|
||||
case DigitalHyprid10:
|
||||
{
|
||||
@@ -641,7 +656,18 @@ bool ClassFlowCNNGeneral::doNeuralNetwork(string time)
|
||||
if (debugdetailgeneral) LogFile.WriteToFile(_zwres);
|
||||
|
||||
if (isLogImage)
|
||||
LogImage(logPath, GENERAL[_ana]->ROI[i]->name, &GENERAL[_ana]->ROI[i]->result_float, NULL, time, GENERAL[_ana]->ROI[i]->image_org);
|
||||
{
|
||||
string _imagename = GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name;
|
||||
if (isLogImageSelect)
|
||||
{
|
||||
if (LogImageSelect.find(GENERAL[_ana]->ROI[i]->name) != std::string::npos)
|
||||
LogImage(logPath, _imagename, NULL, &GENERAL[_ana]->ROI[i]->result_klasse, time, GENERAL[_ana]->ROI[i]->image_org);
|
||||
}
|
||||
else
|
||||
{
|
||||
LogImage(logPath, _imagename, NULL, &GENERAL[_ana]->ROI[i]->result_klasse, time, GENERAL[_ana]->ROI[i]->image_org);
|
||||
}
|
||||
}
|
||||
} break;
|
||||
|
||||
case DoubleHyprid10:
|
||||
@@ -649,6 +675,7 @@ bool ClassFlowCNNGeneral::doNeuralNetwork(string time)
|
||||
int _num, _numplus, _numminus;
|
||||
float _val, _valplus, _valminus;
|
||||
float _fit;
|
||||
float _result_save_file;
|
||||
|
||||
tflite->LoadInputImageBasis(GENERAL[_ana]->ROI[i]->image);
|
||||
tflite->Invoke();
|
||||
@@ -680,10 +707,13 @@ bool ClassFlowCNNGeneral::doNeuralNetwork(string time)
|
||||
if (result < 0)
|
||||
result = result + 10;
|
||||
|
||||
_result_save_file = result;
|
||||
|
||||
if (_fit < CNNGoodThreshold)
|
||||
{
|
||||
GENERAL[_ana]->ROI[i]->isReject = true;
|
||||
result = -1;
|
||||
_result_save_file+= 100; // Für den Fall, dass fit nicht ausreichend, soll trotzdem das Ergebnis mit "-10x.y" abgespeichert werden.
|
||||
string zw = "Value Rejected due to Threshold (Fit: " + to_string(_fit) + "Threshold: " + to_string(CNNGoodThreshold);
|
||||
printf("Value Rejected due to Threshold (Fit: %f, Threshold: %f\n", _fit, CNNGoodThreshold);
|
||||
LogFile.WriteToFile(zw);
|
||||
@@ -693,9 +723,23 @@ bool ClassFlowCNNGeneral::doNeuralNetwork(string time)
|
||||
GENERAL[_ana]->ROI[i]->isReject = false;
|
||||
}
|
||||
|
||||
|
||||
GENERAL[_ana]->ROI[i]->result_float = result;
|
||||
printf("Result General(Analog)%i: %f\n", i, GENERAL[_ana]->ROI[i]->result_float);
|
||||
|
||||
if (isLogImage)
|
||||
{
|
||||
string _imagename = GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name;
|
||||
if (isLogImageSelect)
|
||||
{
|
||||
if (LogImageSelect.find(GENERAL[_ana]->ROI[i]->name) != std::string::npos)
|
||||
LogImage(logPath, _imagename, &_result_save_file, NULL, time, GENERAL[_ana]->ROI[i]->image_org);
|
||||
}
|
||||
else
|
||||
{
|
||||
LogImage(logPath, _imagename, &_result_save_file, NULL, time, GENERAL[_ana]->ROI[i]->image_org);
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
|
||||
@@ -24,7 +24,7 @@ protected:
|
||||
float CNNGoodThreshold;
|
||||
|
||||
string cnnmodelfile;
|
||||
int modelxsize, modelysize;
|
||||
int modelxsize, modelysize, modelchannel;
|
||||
bool isLogImageSelect;
|
||||
string LogImageSelect;
|
||||
ClassFlowAlignment* flowpostalignment;
|
||||
@@ -39,6 +39,8 @@ protected:
|
||||
bool doNeuralNetwork(string time);
|
||||
bool doAlignAndCut(string time);
|
||||
|
||||
bool getNetworkParameter();
|
||||
|
||||
public:
|
||||
ClassFlowCNNGeneral(ClassFlowAlignment *_flowalign, t_CNNType _cnntype = AutoDetect);
|
||||
|
||||
|
||||
@@ -37,6 +37,7 @@ struct NumberPost {
|
||||
float PreValue; // letzter Wert, der gut ausgelesen wurde
|
||||
float Value; // letzer ausgelesener Wert, inkl. Korrekturen
|
||||
string ReturnRateValue; // RückgabewertRate
|
||||
string ReturnChangeAbsolute; // RückgabewertRate
|
||||
string ReturnRawValue; // Rohwert (mit N & führenden 0)
|
||||
string ReturnValue; // korrigierter Rückgabewert, ggf. mit Fehlermeldung
|
||||
string ReturnPreValue; // korrigierter Rückgabewert ohne Fehlermeldung
|
||||
|
||||
@@ -149,6 +149,7 @@ bool ClassFlowMQTT::doFlow(string zwtime)
|
||||
std::string resultraw = "";
|
||||
std::string resultrate = "";
|
||||
std::string resulttimestamp = "";
|
||||
std::string resultchangabs = "";
|
||||
string zw = "";
|
||||
string namenumber = "";
|
||||
|
||||
@@ -180,6 +181,7 @@ bool ClassFlowMQTT::doFlow(string zwtime)
|
||||
resultraw = (*NUMBERS)[i]->ReturnRawValue;
|
||||
resulterror = (*NUMBERS)[i]->ErrorMessageText;
|
||||
resultrate = (*NUMBERS)[i]->ReturnRateValue;
|
||||
resultchangabs = (*NUMBERS)[i]->ReturnChangeAbsolute;
|
||||
resulttimestamp = (*NUMBERS)[i]->timeStamp;
|
||||
|
||||
namenumber = (*NUMBERS)[i]->name;
|
||||
@@ -200,6 +202,10 @@ bool ClassFlowMQTT::doFlow(string zwtime)
|
||||
if (resultrate.length() > 0)
|
||||
MQTTPublish(zw, resultrate, SetRetainFlag);
|
||||
|
||||
zw = namenumber + "changeabsolut";
|
||||
if (resultchangabs.length() > 0)
|
||||
MQTTPublish(zw, resultchangabs, SetRetainFlag);
|
||||
|
||||
zw = namenumber + "raw";
|
||||
if (resultraw.length() > 0)
|
||||
MQTTPublish(zw, resultraw, SetRetainFlag);
|
||||
|
||||
@@ -77,6 +77,8 @@ void ClassFlowPostProcessing::SetPreValue(float zw, string _numbers, bool _exter
|
||||
if (NUMBERS[j]->name == _numbers)
|
||||
{
|
||||
NUMBERS[j]->PreValue = zw;
|
||||
NUMBERS[j]->ReturnPreValue = std::to_string(zw);
|
||||
NUMBERS[j]->PreValueOkay = true;
|
||||
if (_extern)
|
||||
{
|
||||
time(&(NUMBERS[j]->lastvalue));
|
||||
@@ -541,7 +543,6 @@ void ClassFlowPostProcessing::InitNUMBERS()
|
||||
|
||||
_number->ReturnRawValue = ""; // Rohwert (mit N & führenden 0)
|
||||
_number->ReturnValue = ""; // korrigierter Rückgabewert, ggf. mit Fehlermeldung
|
||||
// _number->ReturnValueNoError = ""; // korrigierter Rückgabewert ohne Fehlermeldung
|
||||
_number->ErrorMessageText = ""; // Fehlermeldung bei Consistency Check
|
||||
_number->ReturnPreValue = "";
|
||||
_number->PreValueOkay = false;
|
||||
@@ -560,7 +561,6 @@ void ClassFlowPostProcessing::InitNUMBERS()
|
||||
_number->Value = 0; // letzer ausgelesener Wert, inkl. Korrekturen
|
||||
_number->ReturnRawValue = ""; // Rohwert (mit N & führenden 0)
|
||||
_number->ReturnValue = ""; // korrigierter Rückgabewert, ggf. mit Fehlermeldung
|
||||
// _number->ReturnValueNoError = ""; // korrigierter Rückgabewert ohne Fehlermeldung
|
||||
_number->ErrorMessageText = ""; // Fehlermeldung bei Consistency Check
|
||||
|
||||
_number->Nachkomma = _number->AnzahlAnalog;
|
||||
@@ -745,6 +745,7 @@ bool ClassFlowPostProcessing::doFlow(string zwtime)
|
||||
|
||||
NUMBERS[j]->ReturnValue = RundeOutput(NUMBERS[j]->Value, NUMBERS[j]->Nachkomma);
|
||||
NUMBERS[j]->ReturnPreValue = RundeOutput(NUMBERS[j]->PreValue, NUMBERS[j]->Nachkomma);
|
||||
NUMBERS[j]->ReturnChangeAbsolute = RundeOutput(NUMBERS[j]->Value - NUMBERS[j]->PreValue, NUMBERS[j]->Nachkomma);
|
||||
|
||||
NUMBERS[j]->ErrorMessageText = "no error";
|
||||
UpdatePreValueINI = true;
|
||||
|
||||
@@ -87,6 +87,19 @@ void CTfLiteClass::GetInputDimension(bool silent = false)
|
||||
}
|
||||
}
|
||||
|
||||
int CTfLiteClass::ReadInputDimenstion(int _dim)
|
||||
{
|
||||
if (_dim == 0)
|
||||
return im_width;
|
||||
if (_dim == 1)
|
||||
return im_height;
|
||||
if (_dim == 2)
|
||||
return im_channel;
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
|
||||
|
||||
int CTfLiteClass::GetAnzOutPut(bool silent)
|
||||
{
|
||||
|
||||
@@ -71,5 +71,6 @@ class CTfLiteClass
|
||||
|
||||
float GetOutputValue(int nr);
|
||||
void GetInputDimension(bool silent);
|
||||
int ReadInputDimenstion(int _dim);
|
||||
};
|
||||
|
||||
|
||||
@@ -1,3 +1,5 @@
|
||||
## TODO: GLOB is not a good way to collect files. Use explicit file list instead
|
||||
|
||||
cmake_minimum_required(VERSION 3.5)
|
||||
|
||||
set(tflite_dir "${CMAKE_CURRENT_SOURCE_DIR}/tensorflow/lite")
|
||||
@@ -16,14 +18,27 @@ file(GLOB srcs_kernels
|
||||
"${tfmicro_kernels_dir}/*.c"
|
||||
"${tfmicro_kernels_dir}/*.cc")
|
||||
|
||||
# remove sources which will be provided by esp_nn
|
||||
list(REMOVE_ITEM srcs_kernels
|
||||
"${tfmicro_kernels_dir}/add.cc"
|
||||
"${tfmicro_kernels_dir}/conv.cc"
|
||||
"${tfmicro_kernels_dir}/depthwise_conv.cc"
|
||||
"${tfmicro_kernels_dir}/fully_connected.cc"
|
||||
"${tfmicro_kernels_dir}/mul.cc"
|
||||
"${tfmicro_kernels_dir}/pooling.cc")
|
||||
|
||||
FILE(GLOB esp_nn_kernels
|
||||
"${tfmicro_kernels_dir}/esp_nn/*.cc")
|
||||
|
||||
set(lib_srcs
|
||||
"${srcs_micro}"
|
||||
"${srcs_kernels}"
|
||||
"${esp_nn_kernels}"
|
||||
"${src_micro_frontend}"
|
||||
"${tflite_dir}/kernels/kernel_util.cc"
|
||||
"${tflite_dir}/micro/memory_planner/greedy_memory_planner.cc"
|
||||
"${tflite_dir}/micro/memory_planner/linear_memory_planner.cc"
|
||||
"${tflite_dir}/c/common.c"
|
||||
"${tflite_dir}/c/common.cc"
|
||||
"${tflite_dir}/core/api/error_reporter.cc"
|
||||
"${tflite_dir}/core/api/flatbuffer_conversions.cc"
|
||||
"${tflite_dir}/core/api/op_resolver.cc"
|
||||
@@ -36,15 +51,17 @@ idf_component_register(
|
||||
INCLUDE_DIRS "." "third_party/gemmlowp"
|
||||
"third_party/flatbuffers/include"
|
||||
"third_party/ruy"
|
||||
"third_party/kissfft")
|
||||
"third_party/kissfft"
|
||||
REQUIRES "esp-nn")
|
||||
|
||||
# Reduce the level of paranoia to be able to compile TF sources
|
||||
target_compile_options(${COMPONENT_LIB} PRIVATE
|
||||
-Wno-maybe-uninitialized
|
||||
-Wno-missing-field-initializers
|
||||
-DESP_NN # enables ESP-NN optimizations by Espressif
|
||||
-Wno-type-limits)
|
||||
|
||||
target_compile_options(${COMPONENT_LIB} PRIVATE -fno-unwind-tables -ffunction-sections -fdata-sections -fmessage-length=0 -DTF_LITE_STATIC_MEMORY -DTF_LITE_DISABLE_X86_NEON -O3 -Wsign-compare -Wdouble-promotion -Wshadow -Wunused-variable -Wmissing-field-initializers -Wunused-function -Wswitch -Wvla -Wall -Wextra -Wstrict-aliasing -Wno-unused-parameter -DESP -DESP_NN -Wno-nonnull -Wno-nonnull -Wno-nonnull)
|
||||
target_compile_options(${COMPONENT_LIB} PRIVATE $<$<COMPILE_LANGUAGE:CXX>: -std=c++11 -fno-rtti -fno-exceptions -fno-threadsafe-statics -fno-unwind-tables -ffunction-sections -fdata-sections -fmessage-length=0 -DTF_LITE_STATIC_MEMORY -DTF_LITE_DISABLE_X86_NEON -O3 -Werror -Wsign-compare -Wdouble-promotion -Wshadow -Wunused-variable -Wmissing-field-initializers -Wunused-function -Wswitch -Wvla -Wall -Wextra -Wstrict-aliasing -Wno-unused-parameter -DESP -DESP_NN -Wno-return-type -Wno-strict-aliasing -std=gnu++14 -Wno-return-type -Wno-strict-aliasing -std=gnu++14 -Wno-return-type -Wno-strict-aliasing -std=gnu++14 >)
|
||||
target_compile_options(${COMPONENT_LIB} PRIVATE -fno-unwind-tables -ffunction-sections -fdata-sections -fmessage-length=0 -DTF_LITE_STATIC_MEMORY -DTF_LITE_DISABLE_X86_NEON -O3 -Wsign-compare -Wdouble-promotion -Wshadow -Wunused-variable -Wmissing-field-initializers -Wunused-function -Wswitch -Wvla -Wall -Wextra -Wstrict-aliasing -Wno-unused-parameter -Wno-nonnull)
|
||||
target_compile_options(${COMPONENT_LIB} PRIVATE $<$<COMPILE_LANGUAGE:CXX>: -std=c++11 -fno-rtti -fno-exceptions -fno-threadsafe-statics -fno-unwind-tables -ffunction-sections -fdata-sections -fmessage-length=0 -DTF_LITE_STATIC_MEMORY -DTF_LITE_DISABLE_X86_NEON -O3 -Werror -Wsign-compare -Wdouble-promotion -Wshadow -Wunused-variable -Wmissing-field-initializers -Wunused-function -Wswitch -Wvla -Wall -Wextra -Wstrict-aliasing -Wno-unused-parameter -Wno-return-type -Wno-strict-aliasing -std=gnu++14 >)
|
||||
target_compile_options(${COMPONENT_LIB} INTERFACE $<$<IN_LIST:-DTF_LITE_STATIC_MEMORY,$<TARGET_PROPERTY:${COMPONENT_LIB},COMPILE_OPTIONS>>:-DTF_LITE_STATIC_MEMORY>)
|
||||
target_link_libraries(${COMPONENT_LIB} PRIVATE -lm)
|
||||
|
||||
22
code/components/tflite-lib/tensorflow/lite/builtin_op_data.h
Normal file
22
code/components/tflite-lib/tensorflow/lite/builtin_op_data.h
Normal file
@@ -0,0 +1,22 @@
|
||||
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
// Compatibility shim for new location of interface definitions.
|
||||
|
||||
#ifndef TENSORFLOW_LITE_BUILTIN_OP_DATA_H_
|
||||
#define TENSORFLOW_LITE_BUILTIN_OP_DATA_H_
|
||||
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
|
||||
#endif // TENSORFLOW_LITE_BUILTIN_OP_DATA_H_
|
||||
187
code/components/tflite-lib/tensorflow/lite/builtin_ops.h
Normal file
187
code/components/tflite-lib/tensorflow/lite/builtin_ops.h
Normal file
@@ -0,0 +1,187 @@
|
||||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef TENSORFLOW_LITE_BUILTIN_OPS_H_
|
||||
#define TENSORFLOW_LITE_BUILTIN_OPS_H_
|
||||
|
||||
// DO NOT EDIT MANUALLY: This file is automatically generated by
|
||||
// `schema/builtin_ops_header/generator.cc`.
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif // __cplusplus
|
||||
|
||||
// The enum for builtin operators.
|
||||
// Note: CUSTOM, DELEGATE, and PLACEHOLDER_FOR_GREATER_OP_CODES are 3 special
|
||||
// ops which are not real built-in ops.
|
||||
typedef enum {
|
||||
kTfLiteBuiltinAdd = 0,
|
||||
kTfLiteBuiltinAveragePool2d = 1,
|
||||
kTfLiteBuiltinConcatenation = 2,
|
||||
kTfLiteBuiltinConv2d = 3,
|
||||
kTfLiteBuiltinDepthwiseConv2d = 4,
|
||||
kTfLiteBuiltinDepthToSpace = 5,
|
||||
kTfLiteBuiltinDequantize = 6,
|
||||
kTfLiteBuiltinEmbeddingLookup = 7,
|
||||
kTfLiteBuiltinFloor = 8,
|
||||
kTfLiteBuiltinFullyConnected = 9,
|
||||
kTfLiteBuiltinHashtableLookup = 10,
|
||||
kTfLiteBuiltinL2Normalization = 11,
|
||||
kTfLiteBuiltinL2Pool2d = 12,
|
||||
kTfLiteBuiltinLocalResponseNormalization = 13,
|
||||
kTfLiteBuiltinLogistic = 14,
|
||||
kTfLiteBuiltinLshProjection = 15,
|
||||
kTfLiteBuiltinLstm = 16,
|
||||
kTfLiteBuiltinMaxPool2d = 17,
|
||||
kTfLiteBuiltinMul = 18,
|
||||
kTfLiteBuiltinRelu = 19,
|
||||
kTfLiteBuiltinReluN1To1 = 20,
|
||||
kTfLiteBuiltinRelu6 = 21,
|
||||
kTfLiteBuiltinReshape = 22,
|
||||
kTfLiteBuiltinResizeBilinear = 23,
|
||||
kTfLiteBuiltinRnn = 24,
|
||||
kTfLiteBuiltinSoftmax = 25,
|
||||
kTfLiteBuiltinSpaceToDepth = 26,
|
||||
kTfLiteBuiltinSvdf = 27,
|
||||
kTfLiteBuiltinTanh = 28,
|
||||
kTfLiteBuiltinConcatEmbeddings = 29,
|
||||
kTfLiteBuiltinSkipGram = 30,
|
||||
kTfLiteBuiltinCall = 31,
|
||||
kTfLiteBuiltinCustom = 32,
|
||||
kTfLiteBuiltinEmbeddingLookupSparse = 33,
|
||||
kTfLiteBuiltinPad = 34,
|
||||
kTfLiteBuiltinUnidirectionalSequenceRnn = 35,
|
||||
kTfLiteBuiltinGather = 36,
|
||||
kTfLiteBuiltinBatchToSpaceNd = 37,
|
||||
kTfLiteBuiltinSpaceToBatchNd = 38,
|
||||
kTfLiteBuiltinTranspose = 39,
|
||||
kTfLiteBuiltinMean = 40,
|
||||
kTfLiteBuiltinSub = 41,
|
||||
kTfLiteBuiltinDiv = 42,
|
||||
kTfLiteBuiltinSqueeze = 43,
|
||||
kTfLiteBuiltinUnidirectionalSequenceLstm = 44,
|
||||
kTfLiteBuiltinStridedSlice = 45,
|
||||
kTfLiteBuiltinBidirectionalSequenceRnn = 46,
|
||||
kTfLiteBuiltinExp = 47,
|
||||
kTfLiteBuiltinTopkV2 = 48,
|
||||
kTfLiteBuiltinSplit = 49,
|
||||
kTfLiteBuiltinLogSoftmax = 50,
|
||||
kTfLiteBuiltinDelegate = 51,
|
||||
kTfLiteBuiltinBidirectionalSequenceLstm = 52,
|
||||
kTfLiteBuiltinCast = 53,
|
||||
kTfLiteBuiltinPrelu = 54,
|
||||
kTfLiteBuiltinMaximum = 55,
|
||||
kTfLiteBuiltinArgMax = 56,
|
||||
kTfLiteBuiltinMinimum = 57,
|
||||
kTfLiteBuiltinLess = 58,
|
||||
kTfLiteBuiltinNeg = 59,
|
||||
kTfLiteBuiltinPadv2 = 60,
|
||||
kTfLiteBuiltinGreater = 61,
|
||||
kTfLiteBuiltinGreaterEqual = 62,
|
||||
kTfLiteBuiltinLessEqual = 63,
|
||||
kTfLiteBuiltinSelect = 64,
|
||||
kTfLiteBuiltinSlice = 65,
|
||||
kTfLiteBuiltinSin = 66,
|
||||
kTfLiteBuiltinTransposeConv = 67,
|
||||
kTfLiteBuiltinSparseToDense = 68,
|
||||
kTfLiteBuiltinTile = 69,
|
||||
kTfLiteBuiltinExpandDims = 70,
|
||||
kTfLiteBuiltinEqual = 71,
|
||||
kTfLiteBuiltinNotEqual = 72,
|
||||
kTfLiteBuiltinLog = 73,
|
||||
kTfLiteBuiltinSum = 74,
|
||||
kTfLiteBuiltinSqrt = 75,
|
||||
kTfLiteBuiltinRsqrt = 76,
|
||||
kTfLiteBuiltinShape = 77,
|
||||
kTfLiteBuiltinPow = 78,
|
||||
kTfLiteBuiltinArgMin = 79,
|
||||
kTfLiteBuiltinFakeQuant = 80,
|
||||
kTfLiteBuiltinReduceProd = 81,
|
||||
kTfLiteBuiltinReduceMax = 82,
|
||||
kTfLiteBuiltinPack = 83,
|
||||
kTfLiteBuiltinLogicalOr = 84,
|
||||
kTfLiteBuiltinOneHot = 85,
|
||||
kTfLiteBuiltinLogicalAnd = 86,
|
||||
kTfLiteBuiltinLogicalNot = 87,
|
||||
kTfLiteBuiltinUnpack = 88,
|
||||
kTfLiteBuiltinReduceMin = 89,
|
||||
kTfLiteBuiltinFloorDiv = 90,
|
||||
kTfLiteBuiltinReduceAny = 91,
|
||||
kTfLiteBuiltinSquare = 92,
|
||||
kTfLiteBuiltinZerosLike = 93,
|
||||
kTfLiteBuiltinFill = 94,
|
||||
kTfLiteBuiltinFloorMod = 95,
|
||||
kTfLiteBuiltinRange = 96,
|
||||
kTfLiteBuiltinResizeNearestNeighbor = 97,
|
||||
kTfLiteBuiltinLeakyRelu = 98,
|
||||
kTfLiteBuiltinSquaredDifference = 99,
|
||||
kTfLiteBuiltinMirrorPad = 100,
|
||||
kTfLiteBuiltinAbs = 101,
|
||||
kTfLiteBuiltinSplitV = 102,
|
||||
kTfLiteBuiltinUnique = 103,
|
||||
kTfLiteBuiltinCeil = 104,
|
||||
kTfLiteBuiltinReverseV2 = 105,
|
||||
kTfLiteBuiltinAddN = 106,
|
||||
kTfLiteBuiltinGatherNd = 107,
|
||||
kTfLiteBuiltinCos = 108,
|
||||
kTfLiteBuiltinWhere = 109,
|
||||
kTfLiteBuiltinRank = 110,
|
||||
kTfLiteBuiltinElu = 111,
|
||||
kTfLiteBuiltinReverseSequence = 112,
|
||||
kTfLiteBuiltinMatrixDiag = 113,
|
||||
kTfLiteBuiltinQuantize = 114,
|
||||
kTfLiteBuiltinMatrixSetDiag = 115,
|
||||
kTfLiteBuiltinRound = 116,
|
||||
kTfLiteBuiltinHardSwish = 117,
|
||||
kTfLiteBuiltinIf = 118,
|
||||
kTfLiteBuiltinWhile = 119,
|
||||
kTfLiteBuiltinNonMaxSuppressionV4 = 120,
|
||||
kTfLiteBuiltinNonMaxSuppressionV5 = 121,
|
||||
kTfLiteBuiltinScatterNd = 122,
|
||||
kTfLiteBuiltinSelectV2 = 123,
|
||||
kTfLiteBuiltinDensify = 124,
|
||||
kTfLiteBuiltinSegmentSum = 125,
|
||||
kTfLiteBuiltinBatchMatmul = 126,
|
||||
kTfLiteBuiltinPlaceholderForGreaterOpCodes = 127,
|
||||
kTfLiteBuiltinCumsum = 128,
|
||||
kTfLiteBuiltinCallOnce = 129,
|
||||
kTfLiteBuiltinBroadcastTo = 130,
|
||||
kTfLiteBuiltinRfft2d = 131,
|
||||
kTfLiteBuiltinConv3d = 132,
|
||||
kTfLiteBuiltinImag = 133,
|
||||
kTfLiteBuiltinReal = 134,
|
||||
kTfLiteBuiltinComplexAbs = 135,
|
||||
kTfLiteBuiltinHashtable = 136,
|
||||
kTfLiteBuiltinHashtableFind = 137,
|
||||
kTfLiteBuiltinHashtableImport = 138,
|
||||
kTfLiteBuiltinHashtableSize = 139,
|
||||
kTfLiteBuiltinReduceAll = 140,
|
||||
kTfLiteBuiltinConv3dTranspose = 141,
|
||||
kTfLiteBuiltinVarHandle = 142,
|
||||
kTfLiteBuiltinReadVariable = 143,
|
||||
kTfLiteBuiltinAssignVariable = 144,
|
||||
kTfLiteBuiltinBroadcastArgs = 145,
|
||||
kTfLiteBuiltinRandomStandardNormal = 146,
|
||||
kTfLiteBuiltinBucketize = 147,
|
||||
kTfLiteBuiltinRandomUniform = 148,
|
||||
kTfLiteBuiltinMultinomial = 149,
|
||||
kTfLiteBuiltinGelu = 150,
|
||||
kTfLiteBuiltinDynamicUpdateSlice = 151,
|
||||
} TfLiteBuiltinOperator;
|
||||
|
||||
#ifdef __cplusplus
|
||||
} // extern "C"
|
||||
#endif // __cplusplus
|
||||
#endif // TENSORFLOW_LITE_BUILTIN_OPS_H_
|
||||
@@ -98,6 +98,7 @@ typedef enum {
|
||||
kTfLiteResource = 14,
|
||||
kTfLiteVariant = 15,
|
||||
kTfLiteUInt32 = 16,
|
||||
kTfLiteUInt16 = 17,
|
||||
} TfLiteType;
|
||||
|
||||
// Legacy. Will be deprecated in favor of TfLiteAffineQuantization.
|
||||
@@ -111,6 +112,12 @@ typedef struct TfLiteQuantizationParams {
|
||||
int32_t zero_point;
|
||||
} TfLiteQuantizationParams;
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
// Opaque types used by c_api_opaque.h.
|
||||
|
||||
// TfLiteOpaqueTensor is an opaque version of TfLiteTensor;
|
||||
typedef struct TfLiteOpaqueTensor TfLiteOpaqueTensor;
|
||||
|
||||
#ifdef __cplusplus
|
||||
} // extern C
|
||||
#endif
|
||||
|
||||
@@ -21,6 +21,8 @@ limitations under the License.
|
||||
#include <string.h>
|
||||
#endif // TF_LITE_STATIC_MEMORY
|
||||
|
||||
extern "C" {
|
||||
|
||||
size_t TfLiteIntArrayGetSizeInBytes(int size) {
|
||||
static TfLiteIntArray dummy;
|
||||
|
||||
@@ -34,13 +36,13 @@ size_t TfLiteIntArrayGetSizeInBytes(int size) {
|
||||
|
||||
int TfLiteIntArrayEqual(const TfLiteIntArray* a, const TfLiteIntArray* b) {
|
||||
if (a == b) return 1;
|
||||
if (a == NULL || b == NULL) return 0;
|
||||
if (a == nullptr || b == nullptr) return 0;
|
||||
return TfLiteIntArrayEqualsArray(a, b->size, b->data);
|
||||
}
|
||||
|
||||
int TfLiteIntArrayEqualsArray(const TfLiteIntArray* a, int b_size,
|
||||
const int b_data[]) {
|
||||
if (a == NULL) return (b_size == 0);
|
||||
if (a == nullptr) return (b_size == 0);
|
||||
if (a->size != b_size) return 0;
|
||||
int i = 0;
|
||||
for (; i < a->size; i++)
|
||||
@@ -52,7 +54,7 @@ int TfLiteIntArrayEqualsArray(const TfLiteIntArray* a, int b_size,
|
||||
|
||||
TfLiteIntArray* TfLiteIntArrayCreate(int size) {
|
||||
size_t alloc_size = TfLiteIntArrayGetSizeInBytes(size);
|
||||
if (alloc_size <= 0) return NULL;
|
||||
if (alloc_size <= 0) return nullptr;
|
||||
TfLiteIntArray* ret = (TfLiteIntArray*)malloc(alloc_size);
|
||||
if (!ret) return ret;
|
||||
ret->size = size;
|
||||
@@ -60,7 +62,7 @@ TfLiteIntArray* TfLiteIntArrayCreate(int size) {
|
||||
}
|
||||
|
||||
TfLiteIntArray* TfLiteIntArrayCopy(const TfLiteIntArray* src) {
|
||||
if (!src) return NULL;
|
||||
if (!src) return nullptr;
|
||||
TfLiteIntArray* ret = TfLiteIntArrayCreate(src->size);
|
||||
if (ret) {
|
||||
memcpy(ret->data, src->data, src->size * sizeof(int));
|
||||
@@ -99,7 +101,7 @@ void TfLiteTensorDataFree(TfLiteTensor* t) {
|
||||
t->allocation_type == kTfLitePersistentRo) {
|
||||
free(t->data.raw);
|
||||
}
|
||||
t->data.raw = NULL;
|
||||
t->data.raw = nullptr;
|
||||
}
|
||||
|
||||
void TfLiteQuantizationFree(TfLiteQuantization* quantization) {
|
||||
@@ -108,31 +110,31 @@ void TfLiteQuantizationFree(TfLiteQuantization* quantization) {
|
||||
(TfLiteAffineQuantization*)(quantization->params);
|
||||
if (q_params->scale) {
|
||||
TfLiteFloatArrayFree(q_params->scale);
|
||||
q_params->scale = NULL;
|
||||
q_params->scale = nullptr;
|
||||
}
|
||||
if (q_params->zero_point) {
|
||||
TfLiteIntArrayFree(q_params->zero_point);
|
||||
q_params->zero_point = NULL;
|
||||
q_params->zero_point = nullptr;
|
||||
}
|
||||
free(q_params);
|
||||
}
|
||||
quantization->params = NULL;
|
||||
quantization->params = nullptr;
|
||||
quantization->type = kTfLiteNoQuantization;
|
||||
}
|
||||
|
||||
void TfLiteSparsityFree(TfLiteSparsity* sparsity) {
|
||||
if (sparsity == NULL) {
|
||||
if (sparsity == nullptr) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (sparsity->traversal_order) {
|
||||
TfLiteIntArrayFree(sparsity->traversal_order);
|
||||
sparsity->traversal_order = NULL;
|
||||
sparsity->traversal_order = nullptr;
|
||||
}
|
||||
|
||||
if (sparsity->block_map) {
|
||||
TfLiteIntArrayFree(sparsity->block_map);
|
||||
sparsity->block_map = NULL;
|
||||
sparsity->block_map = nullptr;
|
||||
}
|
||||
|
||||
if (sparsity->dim_metadata) {
|
||||
@@ -141,13 +143,13 @@ void TfLiteSparsityFree(TfLiteSparsity* sparsity) {
|
||||
TfLiteDimensionMetadata metadata = sparsity->dim_metadata[i];
|
||||
if (metadata.format == kTfLiteDimSparseCSR) {
|
||||
TfLiteIntArrayFree(metadata.array_segments);
|
||||
metadata.array_segments = NULL;
|
||||
metadata.array_segments = nullptr;
|
||||
TfLiteIntArrayFree(metadata.array_indices);
|
||||
metadata.array_indices = NULL;
|
||||
metadata.array_indices = nullptr;
|
||||
}
|
||||
}
|
||||
free(sparsity->dim_metadata);
|
||||
sparsity->dim_metadata = NULL;
|
||||
sparsity->dim_metadata = nullptr;
|
||||
}
|
||||
|
||||
free(sparsity);
|
||||
@@ -156,16 +158,16 @@ void TfLiteSparsityFree(TfLiteSparsity* sparsity) {
|
||||
void TfLiteTensorFree(TfLiteTensor* t) {
|
||||
TfLiteTensorDataFree(t);
|
||||
if (t->dims) TfLiteIntArrayFree(t->dims);
|
||||
t->dims = NULL;
|
||||
t->dims = nullptr;
|
||||
|
||||
if (t->dims_signature) {
|
||||
TfLiteIntArrayFree((TfLiteIntArray *) t->dims_signature);
|
||||
}
|
||||
t->dims_signature = NULL;
|
||||
t->dims_signature = nullptr;
|
||||
|
||||
TfLiteQuantizationFree(&t->quantization);
|
||||
TfLiteSparsityFree(t->sparsity);
|
||||
t->sparsity = NULL;
|
||||
t->sparsity = nullptr;
|
||||
}
|
||||
|
||||
void TfLiteTensorReset(TfLiteType type, const char* name, TfLiteIntArray* dims,
|
||||
@@ -185,7 +187,7 @@ void TfLiteTensorReset(TfLiteType type, const char* name, TfLiteIntArray* dims,
|
||||
tensor->is_variable = is_variable;
|
||||
|
||||
tensor->quantization.type = kTfLiteNoQuantization;
|
||||
tensor->quantization.params = NULL;
|
||||
tensor->quantization.params = nullptr;
|
||||
}
|
||||
|
||||
TfLiteStatus TfLiteTensorCopy(const TfLiteTensor* src, TfLiteTensor* dst) {
|
||||
@@ -229,6 +231,8 @@ const char* TfLiteTypeGetName(TfLiteType type) {
|
||||
return "NOTYPE";
|
||||
case kTfLiteFloat32:
|
||||
return "FLOAT32";
|
||||
case kTfLiteUInt16:
|
||||
return "UINT16";
|
||||
case kTfLiteInt16:
|
||||
return "INT16";
|
||||
case kTfLiteInt32:
|
||||
@@ -263,14 +267,6 @@ const char* TfLiteTypeGetName(TfLiteType type) {
|
||||
return "Unknown type";
|
||||
}
|
||||
|
||||
TfLiteDelegate TfLiteDelegateCreate(void) {
|
||||
TfLiteDelegate d = {
|
||||
.data_ = NULL,
|
||||
.Prepare = NULL,
|
||||
.CopyFromBufferHandle = NULL,
|
||||
.CopyToBufferHandle = NULL,
|
||||
.FreeBufferHandle = NULL,
|
||||
.flags = kTfLiteDelegateFlagsNone,
|
||||
};
|
||||
return d;
|
||||
}
|
||||
TfLiteDelegate TfLiteDelegateCreate() { return TfLiteDelegate{}; }
|
||||
|
||||
} // extern "C"
|
||||
@@ -173,8 +173,9 @@ void TfLiteFloatArrayFree(TfLiteFloatArray* a);
|
||||
} \
|
||||
} while (false)
|
||||
#else // TF_LITE_STRIP_ERROR_STRINGS
|
||||
#define TF_LITE_KERNEL_LOG(context, ...)
|
||||
#define TF_LITE_MAYBE_KERNEL_LOG(context, ...)
|
||||
#define UNUSED(...) (void)sizeof(#__VA_ARGS__)
|
||||
#define TF_LITE_KERNEL_LOG(context, ...) UNUSED(__VA_ARGS__)
|
||||
#define TF_LITE_MAYBE_KERNEL_LOG(context, ...) UNUSED(__VA_ARGS__)
|
||||
#endif // TF_LITE_STRIP_ERROR_STRINGS
|
||||
|
||||
// Check whether value is true, and if not return kTfLiteError from
|
||||
@@ -316,6 +317,7 @@ typedef union TfLitePtrUnion {
|
||||
uint8_t* uint8;
|
||||
bool* b;
|
||||
int16_t* i16;
|
||||
uint16_t* ui16;
|
||||
TfLiteComplex64* c64;
|
||||
TfLiteComplex128* c128;
|
||||
int8_t* int8;
|
||||
@@ -459,7 +461,8 @@ typedef struct TfLiteTensor {
|
||||
// Optional. Encodes shapes with unknown dimensions with -1. This field is
|
||||
// only populated when unknown dimensions exist in a read-write tensor (i.e.
|
||||
// an input or output tensor). (e.g. `dims` contains [1, 1, 1, 3] and
|
||||
// `dims_signature` contains [1, -1, -1, 3]).
|
||||
// `dims_signature` contains [1, -1, -1, 3]). Note that this field only
|
||||
// exists when TF_LITE_STATIC_MEMORY is not defined.
|
||||
const TfLiteIntArray* dims_signature;
|
||||
} TfLiteTensor;
|
||||
|
||||
|
||||
51
code/components/tflite-lib/tensorflow/lite/context_util.h
Normal file
51
code/components/tflite-lib/tensorflow/lite/context_util.h
Normal file
@@ -0,0 +1,51 @@
|
||||
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
// This provides a few C++ helpers that are useful for manipulating C structures
|
||||
// in C++.
|
||||
#ifndef TENSORFLOW_LITE_CONTEXT_UTIL_H_
|
||||
#define TENSORFLOW_LITE_CONTEXT_UTIL_H_
|
||||
|
||||
#include <stddef.h>
|
||||
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
|
||||
namespace tflite {
|
||||
|
||||
// Provide a range iterable wrapper for TfLiteIntArray* (C lists that TfLite
|
||||
// C api uses. Can't use the google array_view, since we can't depend on even
|
||||
// absl for embedded device reasons.
|
||||
class TfLiteIntArrayView {
|
||||
public:
|
||||
// Construct a view of a TfLiteIntArray*. Note, `int_array` should be non-null
|
||||
// and this view does not take ownership of it.
|
||||
explicit TfLiteIntArrayView(const TfLiteIntArray* int_array)
|
||||
: int_array_(int_array) {}
|
||||
|
||||
TfLiteIntArrayView(const TfLiteIntArrayView&) = default;
|
||||
TfLiteIntArrayView& operator=(const TfLiteIntArrayView& rhs) = default;
|
||||
|
||||
typedef const int* const_iterator;
|
||||
const_iterator begin() const { return int_array_->data; }
|
||||
const_iterator end() const { return &int_array_->data[int_array_->size]; }
|
||||
size_t size() const { return end() - begin(); }
|
||||
int operator[](size_t pos) const { return int_array_->data[pos]; }
|
||||
|
||||
private:
|
||||
const TfLiteIntArray* int_array_;
|
||||
};
|
||||
|
||||
} // namespace tflite
|
||||
|
||||
#endif // TENSORFLOW_LITE_CONTEXT_UTIL_H_
|
||||
@@ -208,6 +208,14 @@ TfLiteStatus ParseOpDataTfLite(const Operator* op, BuiltinOperator op_type,
|
||||
return ParseBatchToSpaceNd(op, error_reporter, allocator, builtin_data);
|
||||
}
|
||||
|
||||
case BuiltinOperator_BROADCAST_ARGS: {
|
||||
return ParseBroadcastArgs(op, error_reporter, allocator, builtin_data);
|
||||
}
|
||||
|
||||
case BuiltinOperator_BROADCAST_TO: {
|
||||
return ParseBroadcastTo(op, error_reporter, allocator, builtin_data);
|
||||
}
|
||||
|
||||
case BuiltinOperator_CALL_ONCE: {
|
||||
return ParseCallOnce(op, error_reporter, allocator, builtin_data);
|
||||
}
|
||||
@@ -336,6 +344,10 @@ TfLiteStatus ParseOpDataTfLite(const Operator* op, BuiltinOperator op_type,
|
||||
return ParseLogSoftmax(op, error_reporter, allocator, builtin_data);
|
||||
}
|
||||
|
||||
case BuiltinOperator_LSTM: {
|
||||
return ParseLSTM(op, error_reporter, allocator, builtin_data);
|
||||
}
|
||||
|
||||
case BuiltinOperator_MAXIMUM: {
|
||||
return ParseMaximum(op, error_reporter, allocator, builtin_data);
|
||||
}
|
||||
@@ -605,37 +617,6 @@ TfLiteStatus ParseOpDataTfLite(const Operator* op, BuiltinOperator op_type,
|
||||
*builtin_data = params.release();
|
||||
return kTfLiteOk;
|
||||
}
|
||||
case BuiltinOperator_LSTM: {
|
||||
auto params = safe_allocator.Allocate<TfLiteLSTMParams>();
|
||||
TF_LITE_ENSURE(error_reporter, params != nullptr);
|
||||
if (const auto* lstm_params = op->builtin_options_as_LSTMOptions()) {
|
||||
params->activation =
|
||||
ConvertActivation(lstm_params->fused_activation_function());
|
||||
params->cell_clip = lstm_params->cell_clip();
|
||||
params->proj_clip = lstm_params->proj_clip();
|
||||
switch (lstm_params->kernel_type()) {
|
||||
case LSTMKernelType_FULL:
|
||||
params->kernel_type = kTfLiteLSTMFullKernel;
|
||||
break;
|
||||
case LSTMKernelType_BASIC:
|
||||
params->kernel_type = kTfLiteLSTMBasicKernel;
|
||||
break;
|
||||
default:
|
||||
TF_LITE_REPORT_ERROR(error_reporter,
|
||||
"Unhandled LSTM kernel type: %d",
|
||||
lstm_params->kernel_type());
|
||||
return kTfLiteError;
|
||||
}
|
||||
params->asymmetric_quantize_inputs =
|
||||
lstm_params->asymmetric_quantize_inputs();
|
||||
} else {
|
||||
TF_LITE_REPORT_ERROR(error_reporter,
|
||||
"No valid LSTM builtin options exist");
|
||||
return kTfLiteError;
|
||||
}
|
||||
*builtin_data = params.release();
|
||||
return kTfLiteOk;
|
||||
}
|
||||
case BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_LSTM: {
|
||||
return ParseUnidirectionalSequenceLSTM(op, error_reporter, allocator,
|
||||
builtin_data);
|
||||
@@ -883,7 +864,6 @@ TfLiteStatus ParseOpDataTfLite(const Operator* op, BuiltinOperator op_type,
|
||||
case BuiltinOperator_SCATTER_ND:
|
||||
case BuiltinOperator_DENSIFY:
|
||||
case BuiltinOperator_SEGMENT_SUM:
|
||||
case BuiltinOperator_BROADCAST_TO:
|
||||
case BuiltinOperator_RFFT2D:
|
||||
case BuiltinOperator_IMAG:
|
||||
case BuiltinOperator_REAL:
|
||||
@@ -891,7 +871,7 @@ TfLiteStatus ParseOpDataTfLite(const Operator* op, BuiltinOperator op_type,
|
||||
case BuiltinOperator_HASHTABLE_FIND:
|
||||
case BuiltinOperator_HASHTABLE_IMPORT:
|
||||
case BuiltinOperator_HASHTABLE_SIZE:
|
||||
case BuiltinOperator_BROADCAST_ARGS:
|
||||
case BuiltinOperator_DYNAMIC_UPDATE_SLICE:
|
||||
return kTfLiteOk;
|
||||
case BuiltinOperator_PLACEHOLDER_FOR_GREATER_OP_CODES:
|
||||
return kTfLiteError;
|
||||
@@ -916,6 +896,9 @@ TfLiteStatus ConvertTensorType(TensorType tensor_type, TfLiteType* type,
|
||||
case TensorType_INT16:
|
||||
*type = kTfLiteInt16;
|
||||
return kTfLiteOk;
|
||||
case TensorType_UINT16:
|
||||
*type = kTfLiteUInt16;
|
||||
return kTfLiteOk;
|
||||
case TensorType_INT32:
|
||||
*type = kTfLiteInt32;
|
||||
return kTfLiteOk;
|
||||
@@ -1085,6 +1068,22 @@ TfLiteStatus ParseBatchToSpaceNd(const Operator*, ErrorReporter*,
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
// We have this parse function instead of directly returning kTfLiteOk from the
|
||||
// switch-case in ParseOpData because this function is used as part of the
|
||||
// selective registration for the OpResolver implementation in micro.
|
||||
TfLiteStatus ParseBroadcastArgs(const Operator*, ErrorReporter*,
|
||||
BuiltinDataAllocator*, void**) {
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
// We have this parse function instead of directly returning kTfLiteOk from the
|
||||
// switch-case in ParseOpData because this function is used as part of the
|
||||
// selective registration for the OpResolver implementation in micro.
|
||||
TfLiteStatus ParseBroadcastTo(const Operator*, ErrorReporter*,
|
||||
BuiltinDataAllocator*, void**) {
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus ParseCallOnce(const Operator* op, ErrorReporter* error_reporter,
|
||||
BuiltinDataAllocator* allocator,
|
||||
void** builtin_data) {
|
||||
@@ -1605,6 +1604,40 @@ TfLiteStatus ParseLogSoftmax(const Operator*, ErrorReporter*,
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus ParseLSTM(const Operator* op, ErrorReporter* error_reporter,
|
||||
BuiltinDataAllocator* allocator, void** builtin_data) {
|
||||
CheckParsePointerParams(op, error_reporter, allocator, builtin_data);
|
||||
|
||||
SafeBuiltinDataAllocator safe_allocator(allocator);
|
||||
auto params = safe_allocator.Allocate<TfLiteLSTMParams>();
|
||||
TF_LITE_ENSURE(error_reporter, params != nullptr);
|
||||
if (const auto* lstm_params = op->builtin_options_as_LSTMOptions()) {
|
||||
params->activation =
|
||||
ConvertActivation(lstm_params->fused_activation_function());
|
||||
params->cell_clip = lstm_params->cell_clip();
|
||||
params->proj_clip = lstm_params->proj_clip();
|
||||
switch (lstm_params->kernel_type()) {
|
||||
case LSTMKernelType_FULL:
|
||||
params->kernel_type = kTfLiteLSTMFullKernel;
|
||||
break;
|
||||
case LSTMKernelType_BASIC:
|
||||
params->kernel_type = kTfLiteLSTMBasicKernel;
|
||||
break;
|
||||
default:
|
||||
TF_LITE_REPORT_ERROR(error_reporter, "Unhandled LSTM kernel type: %d",
|
||||
lstm_params->kernel_type());
|
||||
return kTfLiteError;
|
||||
}
|
||||
params->asymmetric_quantize_inputs =
|
||||
lstm_params->asymmetric_quantize_inputs();
|
||||
} else {
|
||||
TF_LITE_REPORT_ERROR(error_reporter, "No valid LSTM builtin options exist");
|
||||
return kTfLiteError;
|
||||
}
|
||||
*builtin_data = params.release();
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
// We have this parse function instead of directly returning kTfLiteOk from the
|
||||
// switch-case in ParseOpData because this function is used as part of the
|
||||
// selective registration for the OpResolver implementation in micro.
|
||||
@@ -2337,6 +2370,31 @@ TfLiteStatus ParseVarHandle(const Operator* op, ErrorReporter* error_reporter,
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus ParseWhile(const Operator* op, ErrorReporter* error_reporter,
|
||||
BuiltinDataAllocator* allocator, void** builtin_data) {
|
||||
CheckParsePointerParams(op, error_reporter, allocator, builtin_data);
|
||||
|
||||
SafeBuiltinDataAllocator safe_allocator(allocator);
|
||||
std::unique_ptr<TfLiteWhileParams,
|
||||
SafeBuiltinDataAllocator::BuiltinDataDeleter>
|
||||
params = safe_allocator.Allocate<TfLiteWhileParams>();
|
||||
TF_LITE_ENSURE(error_reporter, params != nullptr);
|
||||
|
||||
const WhileOptions* schema_params = op->builtin_options_as_WhileOptions();
|
||||
|
||||
if (schema_params != nullptr) {
|
||||
params->cond_subgraph_index = schema_params->cond_subgraph_index();
|
||||
params->body_subgraph_index = schema_params->body_subgraph_index();
|
||||
} else {
|
||||
// TODO(b/157480169): We should either return kTfLiteError or fill in some
|
||||
// reasonable defaults in the params struct. We are not doing so until we
|
||||
// better undertand the ramifications of changing the legacy behavior.
|
||||
}
|
||||
|
||||
*builtin_data = params.release();
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
// We have this parse function instead of directly returning kTfLiteOk from the
|
||||
// switch-case in ParseOpData because this function is used as part of the
|
||||
// selective registration for the OpResolver implementation in micro.
|
||||
|
||||
@@ -98,6 +98,15 @@ TfLiteStatus ParseBatchToSpaceNd(const Operator* op,
|
||||
BuiltinDataAllocator* allocator,
|
||||
void** builtin_data);
|
||||
|
||||
TfLiteStatus ParseBroadcastArgs(const Operator* op,
|
||||
ErrorReporter* error_reporter,
|
||||
BuiltinDataAllocator* allocator,
|
||||
void** builtin_data);
|
||||
|
||||
TfLiteStatus ParseBroadcastTo(const Operator* op, ErrorReporter* error_reporter,
|
||||
BuiltinDataAllocator* allocator,
|
||||
void** builtin_data);
|
||||
|
||||
TfLiteStatus ParseCallOnce(const Operator* op, ErrorReporter* error_reporter,
|
||||
BuiltinDataAllocator* allocator,
|
||||
void** builtin_data);
|
||||
@@ -232,6 +241,9 @@ TfLiteStatus ParseLogSoftmax(const Operator* op, ErrorReporter* error_reporter,
|
||||
BuiltinDataAllocator* allocator,
|
||||
void** builtin_data);
|
||||
|
||||
TfLiteStatus ParseLSTM(const Operator* op, ErrorReporter* error_reporter,
|
||||
BuiltinDataAllocator* allocator, void** builtin_data);
|
||||
|
||||
TfLiteStatus ParseMaximum(const Operator* op, ErrorReporter* error_reporter,
|
||||
BuiltinDataAllocator* allocator, void** builtin_data);
|
||||
|
||||
@@ -379,6 +391,9 @@ TfLiteStatus ParseVarHandle(const Operator* op, ErrorReporter* error_reporter,
|
||||
BuiltinDataAllocator* allocator,
|
||||
void** builtin_data);
|
||||
|
||||
TfLiteStatus ParseWhile(const Operator* op, ErrorReporter* error_reporter,
|
||||
BuiltinDataAllocator* allocator, void** builtin_data);
|
||||
|
||||
TfLiteStatus ParseZerosLike(const Operator* op, ErrorReporter* error_reporter,
|
||||
BuiltinDataAllocator* allocator,
|
||||
void** builtin_data);
|
||||
|
||||
@@ -60,9 +60,8 @@ void VectorBatchVectorAdd(const T* vector, int v_size, int n_batch,
|
||||
|
||||
// Cwise product of two vectors.
|
||||
template <typename T>
|
||||
inline void VectorVectorCwiseProduct(const T* __restrict__ vector1,
|
||||
const T* __restrict__ vector2, int v_size,
|
||||
T* __restrict__ result) {
|
||||
inline void VectorVectorCwiseProduct(const T* vector1, const T* vector2,
|
||||
int v_size, T* result) {
|
||||
for (int v = 0; v < v_size; v++) {
|
||||
*result++ = *vector1++ * *vector2++;
|
||||
}
|
||||
@@ -117,6 +116,367 @@ void VectorBatchVectorAssign(const T* vector, int v_size, int n_batch,
|
||||
}
|
||||
}
|
||||
|
||||
// Checks if all entries of vector are zero for float.
|
||||
bool IsZeroVector(const float* vector, int v_size);
|
||||
|
||||
// Checks if all entries of vector are zero for int8.
|
||||
bool IsZeroVector(const int8_t* vector, int v_size);
|
||||
|
||||
// Quantizes a buffer of floating point values using a symmetric quantization
|
||||
// (i.e. linear quantization without an offset) to 8-bit signed integers.
|
||||
// It also outputs the range (min, max) of the floating point buffer, and the
|
||||
// scaling factor used to quantize the values.
|
||||
void SymmetricQuantizeFloats(const float* values, const int size,
|
||||
int8_t* quantized_values, float* min_value,
|
||||
float* max_value, float* scaling_factor);
|
||||
|
||||
// Quantizes a buffer of floating point values using a symmetric quantization
|
||||
// (i.e. linear quantization without an offset) to 8-bit signed integers.
|
||||
// It uses the range (min, max) provided to the function to calculate the
|
||||
// appropriate scaling factor to quantize the values.
|
||||
void SymmetricQuantizeFloats(const float* values, const int size,
|
||||
int8_t* quantized_values, float min_value,
|
||||
float max_value, float* scaling_factor);
|
||||
|
||||
void AsymmetricQuantizeFloats(const float* values, const int size,
|
||||
int8_t* quantized_values, float* scaling_factor,
|
||||
int32_t* offset);
|
||||
|
||||
// Helper function to quantize floats.
|
||||
// float_data_ptr input float vectors
|
||||
// n_batch number of input vectors
|
||||
// n_data size of a single input vector
|
||||
// quantized_data_ptr (out) vector with quantized data
|
||||
// scaling_factors (out) scaling factors (one per vector)
|
||||
// zero_points (out) zero points (one per vector)
|
||||
// do_asymmetric controls if the quantization should be asymmetric.
|
||||
inline void BatchQuantizeFloats(const float* float_data_ptr, int n_batch,
|
||||
int n_data, int8_t* quantized_data_ptr,
|
||||
float* scaling_factors, int32_t* zero_points,
|
||||
bool do_asymmetric) {
|
||||
for (int b = 0; b < n_batch; ++b) {
|
||||
const int offset = b * n_data;
|
||||
if (do_asymmetric) {
|
||||
tensor_utils::AsymmetricQuantizeFloats(
|
||||
float_data_ptr + offset, n_data, quantized_data_ptr + offset,
|
||||
&scaling_factors[b], &zero_points[b]);
|
||||
} else {
|
||||
float unused_min, unused_max;
|
||||
tensor_utils::SymmetricQuantizeFloats(
|
||||
float_data_ptr + offset, n_data, quantized_data_ptr + offset,
|
||||
&unused_min, &unused_max, &scaling_factors[b]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Multiplies a matrix by a "batched" vector (i.e. a matrix with a batch
|
||||
// dimension composed by input vectors independent from each other). The result
|
||||
// of the multiplication is accumulated to the passed result buffer.
|
||||
// More specifically, for a matrix M of shape [n, i] and a batched-vector
|
||||
// of shape [i, batch] it will first compute the product of shape [n, batch].
|
||||
// This product will be accumulated to the result buffer.
|
||||
void MatrixBatchVectorMultiplyAccumulate(const float* matrix, int m_rows,
|
||||
int m_cols, const float* vector,
|
||||
int n_batch, float* result);
|
||||
|
||||
// Same as the function above, but the matrix is a sparse tensor with block
|
||||
// pattern 1x4.
|
||||
// This function assumes that m_cols is a multiple of the block size (4 in this
|
||||
// case) so that there's no incomplete block.
|
||||
void SparseMatrixBatchVectorMultiplyAccumulate1x4(
|
||||
const float* __restrict__ matrix, const int32_t* __restrict__ segments,
|
||||
const int32_t* __restrict__ indices, int m_rows, int m_cols,
|
||||
const float* __restrict__ vector, int n_batch, float* __restrict__ result);
|
||||
|
||||
// Same as the function above, but the matrix is stored in block compressed
|
||||
// sparse row format with block pattern 1x16 which consists of two arrays:
|
||||
// 1. A matrix array stores non-zero blocks of the matrix in row major.
|
||||
// 2. A ledger array stores nrows groups, one group per row. Each group starts
|
||||
// with an integer representing the number of non-zero blocks for the
|
||||
// corresponding row and follows with column indexes of the first element
|
||||
// of each non-zero block.
|
||||
// This function assumes that
|
||||
// 1. m_cols is a multiple of 16 so that all blocks are full blocks.
|
||||
// 2. m_cols < 254 * 16 so that block index can be represented by uint8.
|
||||
void SparseMatrixBatchVectorMultiplyAccumulate(
|
||||
const float* __restrict__ matrix, const uint8_t* __restrict__ ledger,
|
||||
int m_rows, int m_cols, const float* __restrict__ vector, int n_batch,
|
||||
float* __restrict__ result);
|
||||
|
||||
// Same as the function above, but for values quantized using symmetric
|
||||
// quantization (e.g. by calling SymmetricQuantizeFloats).
|
||||
// The passed scaling factors is a buffer of the quantization scaling factors
|
||||
// that will be used to dequentize the products into the final result buffer.
|
||||
// These scaling factors are the multiplication of the matrix scaling factor
|
||||
// by the vector's scaling factor, one per batch (i.e. this allows quantizing
|
||||
// each batch in the batch-vector matrix independently).
|
||||
void MatrixBatchVectorMultiplyAccumulate(
|
||||
const int8_t* __restrict__ matrix, const int m_rows, const int m_cols,
|
||||
const int8_t* __restrict__ vectors,
|
||||
const float* __restrict__ scaling_factors, int n_batch,
|
||||
float* __restrict__ result);
|
||||
|
||||
// Same as the function above except that vector values
|
||||
// are quantized with asymmetric quantization per-batch and the matrix
|
||||
// is quantized per row.
|
||||
void MatrixBatchVectorMultiplyAccumulate(
|
||||
const int8_t* __restrict__ matrix, const int m_rows, const int m_cols,
|
||||
const int8_t* __restrict__ vectors,
|
||||
const float* __restrict__ scaling_factors, int n_batch,
|
||||
float* __restrict__ result, const float* __restrict__ per_channel_scale,
|
||||
const int32_t* __restrict__ input_offset);
|
||||
|
||||
// Same as the function above, but the matrix is a sparse tensor with block
|
||||
// pattern 1x16.
|
||||
// This function assumes that m_cols is a multiple of the block size (16 in this
|
||||
// case) so that there's no incomplete block. Also, it assumes all offsets of
|
||||
// input, output and filter are zero.
|
||||
void SparseMatrixBatchVectorMultiplyAccumulate1x16(
|
||||
const int8_t* __restrict__ matrix, const int32_t* __restrict__ segments,
|
||||
const int32_t* __restrict__ indices, int m_rows, int m_cols,
|
||||
const int8_t* __restrict__ vector, const int32_t* __restrict__ bias_vector,
|
||||
int n_batch, const int32_t input_offset, const int32_t output_multiplier,
|
||||
const int32_t output_shift, const int32_t output_offset,
|
||||
const int32_t output_activation_min, const int32_t output_activation_max,
|
||||
int8_t* __restrict__ result);
|
||||
|
||||
// Same as the function above, but the matrix is stored in block compressed
|
||||
// sparse row format with block pattern 1x16 which consists of two arrays:
|
||||
// 1. A matrix array stores non-zero blocks of the matrix in row major.
|
||||
// 2. A ledger array stores nrows groups, one group per row. Each group starts
|
||||
// with an integer representing the number of non-zero blocks for the
|
||||
// corresponding row followed by column index of the first element of
|
||||
// each non-zero block.
|
||||
// This function assumes that
|
||||
// 1. m_cols is a multiple of 16 so that all blocks are full blocks.
|
||||
// 2. m_cols < 254 * 16 so that block index can be represented by uint8.
|
||||
void SparseMatrixBatchVectorMultiplyAccumulate(
|
||||
const int8_t* __restrict__ matrix, const uint8_t* __restrict__ ledger,
|
||||
const int m_rows, const int m_cols, const int8_t* __restrict__ vectors,
|
||||
const float* __restrict__ scaling_factors, int n_batch,
|
||||
float* __restrict__ result);
|
||||
|
||||
// Same as the above 8, 8, 8 integer matmul except for the presence of zero
|
||||
// point and non-accumulative.
|
||||
// TODO(b/148688698): remove this function by folding zero point calculation in
|
||||
// prepare() function.
|
||||
void MatrixBatchVectorMultiply(const int8_t* input, int32_t input_zeropoint,
|
||||
const int8_t* input_to_gate_weights,
|
||||
int32_t input_to_gate_effective_scale_a,
|
||||
int32_t input_to_gate_effective_scale_b,
|
||||
int32_t n_batch, int32_t n_input, int32_t n_cell,
|
||||
int8_t* gate_output, int8_t gate_output_zp);
|
||||
|
||||
// Same as above but has 16 bit and 8 bit input and 8 bit output.
|
||||
// Used in projection when hidden is 16bit.
|
||||
void MatrixBatchVectorMultiply(const int16_t* hidden,
|
||||
const int8_t* hidden_to_output_weights,
|
||||
int32_t proj_effective_scale_a,
|
||||
int32_t proj_effective_scale_b,
|
||||
const int32_t* gate_bias, int32_t n_batch,
|
||||
int32_t n_hidden, int32_t n_output,
|
||||
int32_t output_zp, int8_t* proj_output);
|
||||
|
||||
// Apply Layer Normalization (https://arxiv.org/abs/1607.06450) to a Quantized
|
||||
// vector.
|
||||
// Parameters:
|
||||
// - input: batch vector of size n_batch * n_input; 16 bit.
|
||||
// - layer_norm_weights: the quantized layer normalization weights.
|
||||
// - bias: the bias for the layer normalization.
|
||||
// - layer_norm_scale_a: multiplier for scale factor.
|
||||
// - layer_norm_scale_b: shift for scale factor.
|
||||
// - variance_limit: the guard to make sure the inverse does not overflow.
|
||||
// - n_batch: the number of batches.
|
||||
// - n_input: the size for input and output.
|
||||
// - output: the 16 bit output
|
||||
void ApplyLayerNorm(const int16_t* input, const int16_t* layer_norm_weights,
|
||||
const int32_t* bias, int32_t layer_norm_scale_a,
|
||||
int32_t layer_norm_scale_b, int32_t variance_limit,
|
||||
int n_batch, int n_input, int16_t* output);
|
||||
|
||||
// Same as above but the internal calculation is done in float.
|
||||
void ApplyLayerNormFloat(const int16_t* input,
|
||||
const int16_t* layer_norm_weights,
|
||||
int32_t layer_norm_scale_a, int32_t layer_norm_scale_b,
|
||||
const int32_t* bias, int n_batch, int n_input,
|
||||
int16_t* output);
|
||||
|
||||
// Apply Sigmoid to a quantized vector.
|
||||
// Parameters:
|
||||
// - input: batch vector of size n_batch * n_input; 16 bit.
|
||||
// - n_batch: the number of batches.
|
||||
// - n_input: the size for input and output.
|
||||
// - output: the 16 bit output
|
||||
// The input is in Q3.12 format and the output is in Q0.15 format.
|
||||
void ApplySigmoid(const int16_t* input, int32_t n_batch, int32_t n_input,
|
||||
int16_t* output);
|
||||
|
||||
// Same as above but the internal calcualtion is float.
|
||||
void ApplySigmoidFloat(const int16_t* input, int32_t n_batch, int32_t n_input,
|
||||
int16_t* output);
|
||||
|
||||
// Apply Tanh to a quantized vector.
|
||||
// Parameters:
|
||||
// - integer_bits: the integer bits of the input.
|
||||
// Currently supports 0, 1, 2, 3, 4, 5, 6.
|
||||
// - input: batch vector of size n_batch * n_input; 16 bit.
|
||||
// - n_batch: the number of batches.
|
||||
// - n_input: the size for input and output.
|
||||
// - output: the 16 bit output
|
||||
// The input is in Qm.15-m format and the output is in Q0.15 format.
|
||||
void ApplyTanh(int32_t integer_bits, const int16_t* input, int32_t n_batch,
|
||||
int32_t n_input, int16_t* output);
|
||||
|
||||
// Apply Tanh to a quantized vector. Tbe internal calculation is in float.
|
||||
// - Input has 2^(integer_bits) as scale.
|
||||
// - Output has Q0.15 as scale.
|
||||
void ApplyTanhFloat(const int16_t* input, int32_t n_batch, int32_t n_input,
|
||||
int32_t integer_bits, int16_t* output);
|
||||
|
||||
// Element-wise multiplication of two quantized vectors.
|
||||
// Parameters:
|
||||
// - input_1: batch vector of size n_batch * n_input; 16 bit.
|
||||
// - input_2: batch vector of size n_batch * n_input; 16 bit.
|
||||
// - n_batch: the number of batches.
|
||||
// - n_input: the size for input and output.
|
||||
// - shift: the shift needed to produce the output.
|
||||
// - output: the 16 bit output of size n_batch * n_input.
|
||||
// Output does not need to be initialized.
|
||||
void CwiseMul(const int16_t* input_1, const int16_t* input_2, int n_batch,
|
||||
int n_input, int shift, int16_t* output);
|
||||
|
||||
// Element-wise multiplication of two quantized vectors.
|
||||
// Parameters:
|
||||
// - input_1: batch vector of size n_batch * n_input; 16 bit.
|
||||
// - input_2: batch vector of size n_batch * n_input; 16 bit.
|
||||
// - n_batch: the number of batches.
|
||||
// - n_input: the size for input and output.
|
||||
// - shift: the shift needed to produce the output.
|
||||
// - output: the 8 bit output of size n_batch * n_input.
|
||||
// Output does not need to be initialized.
|
||||
void CwiseMul(const int16_t* input_1, const int16_t* input_2, int n_batch,
|
||||
int n_input, int shift, int8_t* output);
|
||||
|
||||
// Element-wise multiplication of two quantized vectors with rescaling.
|
||||
// Parameters:
|
||||
// - input_1: batch vector of size n_batch * n_input; 16 bit.
|
||||
// - input_2: batch vector of size n_batch * n_input; 16 bit.
|
||||
// - multiplier: the multiplier part of scale.
|
||||
// - shift: the shift part of scale.
|
||||
// - n_batch: the number of batches.
|
||||
// - n_input: the size for input and output.
|
||||
// - output: the 8 bit output of size n_batch * n_input.
|
||||
// - output_zp: the zero point of output.
|
||||
// Output does not need to be initialized.
|
||||
// Multiplier ("m") and shift ("s") are connected to scale ("s") with s = m *
|
||||
// 2^(s - 31).
|
||||
void CwiseMul(const int16_t* input_1, const int16_t* input_2,
|
||||
int32_t multiplier, int32_t shift, int32_t n_batch,
|
||||
int32_t n_input, int32_t output_zp, int8_t* output);
|
||||
|
||||
// Element-wise saturating addition of two quantized vectors without rescaling.
|
||||
// Parameters:
|
||||
// - input_1: batch vector of size n_batch * n_input; 16 bit.
|
||||
// - input_2: batch vector of size n_batch * n_input; 16 bit.
|
||||
// - n_batch: the number of batches.
|
||||
// - n_input: the size for input and output.
|
||||
// - output: the 8 bit output of size n_batch * n_input.
|
||||
// Output does not need to be initialized.
|
||||
void CwiseAdd(const int16_t* input_1, const int16_t* input_2, int n_batch,
|
||||
int n_input, int16_t* output);
|
||||
|
||||
// Element-wise in-place clipping of a vector. Overloaded for float, int16_t,
|
||||
// int8_t. Parameters:
|
||||
// - vector: vector of size v_size.
|
||||
// - v_size: the size of the vector.
|
||||
// - clipping_value: the value used for clipping.
|
||||
void CwiseClipping(float* vector, const int v_size, const float clipping_value);
|
||||
void CwiseClipping(int16_t* vector, const int v_size,
|
||||
const int16_t clipping_value);
|
||||
void CwiseClipping(int8_t* vector, const int v_size,
|
||||
const int8_t clipping_value);
|
||||
|
||||
// Dot product of two vectors.
|
||||
float VectorVectorDotProduct(const float* vector1, const float* vector2,
|
||||
int v_size);
|
||||
|
||||
// Dot product of two batch vectors of size n_batch * v_size:
|
||||
// vector1 = [x_1_1, x_1_2, ..., x_1_vsize,
|
||||
// x_2_1, x_2_2, ..., x_2_vsize,
|
||||
// ...
|
||||
// x_nbatch_1,..., x_nbatch_vsize]
|
||||
// vector2 = [y_1_1, y_1_2, ..., y_1_vsize,
|
||||
// y_2_1, y_2_2, ..., y_2_vsize,
|
||||
// ...
|
||||
// y_nbatch_1,..., y_nbatch_vsize]
|
||||
// Then result will be a vector of n_batch size starting from 'result':
|
||||
// [x_1_1 * y_1_1 + x_1_2 * y_1_2 + ... + x_1_vsize * y_1_vsize,
|
||||
// x_2_1 * y_2_1 + x_2_2 * y_2_2 + ... + x_2_vsize * y_2_vsize,
|
||||
// ...
|
||||
// x_nbatch_1 * y_nbatch_1 + ... + x_nbatch_vsize * y_nbatch_vsize]
|
||||
template <typename T>
|
||||
inline void BatchVectorBatchVectorDotProduct(const T* vector1, const T* vector2,
|
||||
int v_size, int n_batch,
|
||||
T* result) {
|
||||
for (int b = 0; b < n_batch; b++) {
|
||||
result[b] = VectorVectorDotProduct(vector1, vector2, v_size);
|
||||
vector1 += v_size;
|
||||
vector2 += v_size;
|
||||
}
|
||||
}
|
||||
|
||||
// Same as above but input is 16bit and output is 32bit.
|
||||
void BatchVectorBatchVectorDotProduct(const int16_t* vector1,
|
||||
const int16_t* vector2, int v_size,
|
||||
int n_batch, int32_t* result);
|
||||
|
||||
// Same as above, but inputs are 16bit integer and output is 16bit integer.
|
||||
void VectorBatchVectorCwiseProductAccumulate(const int16_t* vector, int v_size,
|
||||
const int16_t* batch_vector,
|
||||
int n_batch, int32_t multiplier,
|
||||
int shift, int16_t* result);
|
||||
|
||||
// Compute "1.0f - elements of vector" (used in CIFG).
|
||||
void Sub1Vector(const float* vector, int v_size, float* result);
|
||||
|
||||
// Compute "1.0f - elements of vector" (used in CIFG) for int16 input.
|
||||
// "vector" has range [0, 32767] because it is the output of sigmoid function.
|
||||
void Sub1Vector(const int16_t* vector, int v_size, int16_t* result);
|
||||
|
||||
// Multiply all elements of vector with a scalar.
|
||||
void VectorScalarMultiply(const int8_t* vector, int v_size, float scale,
|
||||
float* result);
|
||||
|
||||
// Reduce-sum on a float input vector:
|
||||
// input_vector: float pointer to input vector.
|
||||
// output_vector: float pointer to vector.
|
||||
// output_size: output vector size.
|
||||
// reduction_size: number of consecutive elements from input vector which are
|
||||
// added to get one element of output.
|
||||
void ReductionSumVector(const float* input_vector, float* output_vector,
|
||||
int output_size, int reduction_size);
|
||||
|
||||
// Same as above but input/output is 32 bit integer.
|
||||
void ReductionSumVector(const int32_t* input_vector, int32_t* output_vector,
|
||||
int output_size, int reduction_size);
|
||||
|
||||
// Same as above but input is 8 bit integer.
|
||||
void ReductionSumVector(const int8_t* input_vector, int32_t* output_vector,
|
||||
int output_size, int reduction_size);
|
||||
|
||||
// Layer norm for each batch.
|
||||
void MeanStddevNormalization(const float* input_vector, float* output_vector,
|
||||
int v_size, int n_batch);
|
||||
|
||||
// Saturate Add with rescale on both inputs.
|
||||
void TwoGateSaturatingAdd(const int8_t* input, int8_t input_zp,
|
||||
const int8_t* recurrent, int8_t recurrent_zp,
|
||||
int32_t input_effective_scale_a,
|
||||
int32_t input_effective_scale_b,
|
||||
int32_t recurrent_effective_scale_a,
|
||||
int32_t recurrent_effective_scale_b, int32_t n_batch,
|
||||
int32_t n_cell, int16_t* output);
|
||||
|
||||
} // namespace tensor_utils
|
||||
|
||||
} // namespace tflite
|
||||
|
||||
@@ -20,7 +20,7 @@ limitations under the License.
|
||||
|
||||
#include "tensorflow/lite/kernels/internal/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/compatibility.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_utils_common.h"
|
||||
#include "tensorflow/lite/kernels/internal/portable_tensor_utils.h"
|
||||
#include "tensorflow/lite/kernels/internal/types.h"
|
||||
|
||||
namespace tflite {
|
||||
|
||||
@@ -0,0 +1,56 @@
|
||||
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_BROADCAST_ARGS_H_
|
||||
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_BROADCAST_ARGS_H_
|
||||
|
||||
#include "tensorflow/lite/kernels/internal/compatibility.h"
|
||||
#include "tensorflow/lite/kernels/internal/types.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace reference_ops {
|
||||
|
||||
template <typename T>
|
||||
void BroadcastArgs(const RuntimeShape& input1_shape, const T* input1_data,
|
||||
const RuntimeShape& input2_shape, const T* input2_data,
|
||||
const RuntimeShape& output_shape, T* output_data) {
|
||||
// Gets data at the backward index i of the shape tensor. Returns 1 if the
|
||||
// index is out of range.
|
||||
auto get_shape_data = [](const RuntimeShape& shape, const T* data,
|
||||
int backward_idx) -> T {
|
||||
int forward_idx = shape.FlatSize() - 1 - backward_idx;
|
||||
if (forward_idx < 0) return 1;
|
||||
return data[forward_idx];
|
||||
};
|
||||
|
||||
int output_num_elements = output_shape.FlatSize();
|
||||
for (int i = 0; i < output_num_elements; ++i) {
|
||||
int backward_i = output_num_elements - 1 - i;
|
||||
int shape1_i = get_shape_data(input1_shape, input1_data, i);
|
||||
int shape2_i = get_shape_data(input2_shape, input2_data, i);
|
||||
if (shape1_i == 1) {
|
||||
output_data[backward_i] = shape2_i;
|
||||
} else if (shape2_i == 1) {
|
||||
output_data[backward_i] = shape1_i;
|
||||
} else {
|
||||
TFLITE_CHECK_EQ(shape1_i, shape2_i);
|
||||
output_data[backward_i] = shape1_i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace reference_ops
|
||||
} // namespace tflite
|
||||
|
||||
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_BROADCAST_ARGS_H_
|
||||
@@ -0,0 +1,97 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_BROADCAST_TO_H_
|
||||
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_BROADCAST_TO_H_
|
||||
|
||||
#include "tensorflow/lite/kernels/internal/common.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace reference_ops {
|
||||
template <int N>
|
||||
void BroadcastImpl(const NdArrayDesc<N>& input_desc, const char* input_data,
|
||||
const NdArrayDesc<N>& output_desc, char* output_data,
|
||||
int indexes[N], int dim, const int last_broadcasting_dim,
|
||||
const int type_size) {
|
||||
// Copy data from input to output.
|
||||
if (dim == last_broadcasting_dim) {
|
||||
int copy_size = output_desc.strides[dim] * type_size;
|
||||
const char* data_src =
|
||||
input_data + SubscriptToIndex(input_desc, indexes) * type_size;
|
||||
char* data_dst =
|
||||
output_data + SubscriptToIndex(output_desc, indexes) * type_size;
|
||||
for (int i = 0; i < output_desc.extents[dim]; ++i, data_dst += copy_size) {
|
||||
memcpy(data_dst, data_src, copy_size);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
// Recursive call to find the next broadcasting.
|
||||
for (indexes[dim] = 0; indexes[dim] < input_desc.extents[dim];
|
||||
++indexes[dim]) {
|
||||
BroadcastImpl<N>(input_desc, input_data, output_desc, output_data, indexes,
|
||||
dim + 1, last_broadcasting_dim, type_size);
|
||||
}
|
||||
|
||||
// Duplicate data in output tensor.
|
||||
indexes[dim] = 0;
|
||||
if (input_desc.extents[dim] != output_desc.extents[dim]) {
|
||||
int copy_size = output_desc.strides[dim] * type_size;
|
||||
char* data_src =
|
||||
output_data + SubscriptToIndex(output_desc, indexes) * type_size;
|
||||
char* data_dst = data_src + copy_size;
|
||||
for (int i = 1; i < output_desc.extents[dim]; ++i, data_dst += copy_size) {
|
||||
memcpy(data_dst, data_src, copy_size);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <int N>
|
||||
inline void BroadcastTo(const RuntimeShape& unextended_input_shape,
|
||||
const char* input_data,
|
||||
const RuntimeShape& unextended_output_shape,
|
||||
char* output_data, TfLiteType data_type) {
|
||||
NdArrayDesc<N> input_desc;
|
||||
NdArrayDesc<N> output_desc;
|
||||
CopyDimsToDesc(RuntimeShape::ExtendedShape(N, unextended_input_shape),
|
||||
&input_desc);
|
||||
CopyDimsToDesc(RuntimeShape::ExtendedShape(N, unextended_output_shape),
|
||||
&output_desc);
|
||||
|
||||
// Get the last dimension has broadcasting. At this dimension, the data is
|
||||
// copied from input tensor to output tensor.
|
||||
int last_broadcast_dim = -1;
|
||||
for (int i = N - 1; i >= 0; --i) {
|
||||
if (input_desc.extents[i] != output_desc.extents[i]) {
|
||||
last_broadcast_dim = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// If non-broadcasting, just copy data from input to output tensor.
|
||||
if (last_broadcast_dim == -1) {
|
||||
memcpy(output_data, input_data,
|
||||
unextended_input_shape.FlatSize() * TfLiteTypeGetSize(data_type));
|
||||
return;
|
||||
}
|
||||
|
||||
// Broadcasting using memcpy.
|
||||
int indexes[N] = {0};
|
||||
BroadcastImpl<N>(input_desc, input_data, output_desc, output_data, indexes, 0,
|
||||
last_broadcast_dim, TfLiteTypeGetSize(data_type));
|
||||
}
|
||||
} // namespace reference_ops
|
||||
} // namespace tflite
|
||||
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_BROADCAST_TO_H_
|
||||
@@ -43,7 +43,7 @@ inline void Conv(const ConvParams& params, const RuntimeShape& input_shape,
|
||||
(void)im2col_data; // only used in optimized code.
|
||||
(void)im2col_shape; // only used in optimized code.
|
||||
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
|
||||
const int input_depth = MatchingDim(input_shape, 3, filter_shape, 3);
|
||||
const int input_depth = input_shape.Dims(3);
|
||||
const int output_depth = MatchingDim(filter_shape, 0, output_shape, 3);
|
||||
if (bias_data) {
|
||||
TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth);
|
||||
@@ -52,14 +52,20 @@ inline void Conv(const ConvParams& params, const RuntimeShape& input_shape,
|
||||
const int input_width = input_shape.Dims(2);
|
||||
const int filter_height = filter_shape.Dims(1);
|
||||
const int filter_width = filter_shape.Dims(2);
|
||||
const int filter_input_depth = filter_shape.Dims(3);
|
||||
const int groups = input_depth / filter_input_depth;
|
||||
TFLITE_DCHECK_EQ(input_depth % filter_input_depth, 0);
|
||||
const int filters_per_group = output_depth / groups;
|
||||
const int output_height = output_shape.Dims(1);
|
||||
const int output_width = output_shape.Dims(2);
|
||||
|
||||
for (int batch = 0; batch < batches; ++batch) {
|
||||
for (int out_y = 0; out_y < output_height; ++out_y) {
|
||||
const int in_y_origin = (out_y * stride_height) - pad_height;
|
||||
for (int out_x = 0; out_x < output_width; ++out_x) {
|
||||
const int in_x_origin = (out_x * stride_width) - pad_width;
|
||||
for (int out_channel = 0; out_channel < output_depth; ++out_channel) {
|
||||
auto group = out_channel / filters_per_group;
|
||||
float total = 0.f;
|
||||
for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
|
||||
const int in_y = in_y_origin + dilation_height_factor * filter_y;
|
||||
@@ -74,10 +80,11 @@ inline void Conv(const ConvParams& params, const RuntimeShape& input_shape,
|
||||
if (!is_point_inside_image) {
|
||||
continue;
|
||||
}
|
||||
|
||||
for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
|
||||
float input_value = input_data[Offset(input_shape, batch, in_y,
|
||||
in_x, in_channel)];
|
||||
for (int in_channel = 0; in_channel < filter_input_depth;
|
||||
++in_channel) {
|
||||
float input_value =
|
||||
input_data[Offset(input_shape, batch, in_y, in_x,
|
||||
in_channel + group * filter_input_depth)];
|
||||
float filter_value = filter_data[Offset(
|
||||
filter_shape, out_channel, filter_y, filter_x, in_channel)];
|
||||
total += (input_value * filter_value);
|
||||
@@ -126,7 +133,7 @@ inline void Conv(const ConvParams& params, const RuntimeShape& input_shape,
|
||||
TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4);
|
||||
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
|
||||
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
|
||||
const int input_depth = MatchingDim(input_shape, 3, filter_shape, 3);
|
||||
const int input_depth = input_shape.Dims(3);
|
||||
const int output_depth = MatchingDim(filter_shape, 0, output_shape, 3);
|
||||
if (bias_data) {
|
||||
TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth);
|
||||
@@ -135,6 +142,10 @@ inline void Conv(const ConvParams& params, const RuntimeShape& input_shape,
|
||||
const int input_width = input_shape.Dims(2);
|
||||
const int filter_height = filter_shape.Dims(1);
|
||||
const int filter_width = filter_shape.Dims(2);
|
||||
const int filter_input_depth = filter_shape.Dims(3);
|
||||
const int groups = input_depth / filter_input_depth;
|
||||
TFLITE_DCHECK_EQ(input_depth % filter_input_depth, 0);
|
||||
const int filters_per_group = output_depth / groups;
|
||||
const int output_height = output_shape.Dims(1);
|
||||
const int output_width = output_shape.Dims(2);
|
||||
for (int batch = 0; batch < batches; ++batch) {
|
||||
@@ -143,6 +154,7 @@ inline void Conv(const ConvParams& params, const RuntimeShape& input_shape,
|
||||
for (int out_x = 0; out_x < output_width; ++out_x) {
|
||||
const int in_x_origin = (out_x * stride_width) - pad_width;
|
||||
for (int out_channel = 0; out_channel < output_depth; ++out_channel) {
|
||||
auto group = out_channel / filters_per_group;
|
||||
int32_t acc = 0;
|
||||
for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
|
||||
const int in_y = in_y_origin + dilation_height_factor * filter_y;
|
||||
@@ -158,9 +170,11 @@ inline void Conv(const ConvParams& params, const RuntimeShape& input_shape,
|
||||
continue;
|
||||
}
|
||||
|
||||
for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
|
||||
int32_t input_val = input_data[Offset(input_shape, batch, in_y,
|
||||
in_x, in_channel)];
|
||||
for (int in_channel = 0; in_channel < filter_input_depth;
|
||||
++in_channel) {
|
||||
int32_t input_val =
|
||||
input_data[Offset(input_shape, batch, in_y, in_x,
|
||||
in_channel + group * filter_input_depth)];
|
||||
int32_t filter_val = filter_data[Offset(
|
||||
filter_shape, out_channel, filter_y, filter_x, in_channel)];
|
||||
acc +=
|
||||
@@ -206,7 +220,7 @@ inline void HybridConvPerChannel(
|
||||
TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4);
|
||||
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
|
||||
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
|
||||
const int input_depth = MatchingDim(input_shape, 3, filter_shape, 3);
|
||||
const int input_depth = input_shape.Dims(3);
|
||||
const int output_depth = MatchingDim(filter_shape, 0, output_shape, 3);
|
||||
if (bias_data) {
|
||||
TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth);
|
||||
@@ -215,18 +229,24 @@ inline void HybridConvPerChannel(
|
||||
const int input_width = input_shape.Dims(2);
|
||||
const int filter_height = filter_shape.Dims(1);
|
||||
const int filter_width = filter_shape.Dims(2);
|
||||
const int filter_input_depth = filter_shape.Dims(3);
|
||||
const int groups = input_depth / filter_input_depth;
|
||||
TFLITE_DCHECK_EQ(input_depth % filter_input_depth, 0);
|
||||
const int filters_per_group = output_depth / groups;
|
||||
const int output_height = output_shape.Dims(1);
|
||||
const int output_width = output_shape.Dims(2);
|
||||
for (int batch = 0; batch < batches; ++batch) {
|
||||
for (int out_y = 0; out_y < output_height; ++out_y) {
|
||||
for (int out_x = 0; out_x < output_width; ++out_x) {
|
||||
for (int out_channel = 0; out_channel < output_depth; ++out_channel) {
|
||||
auto group = out_channel / filters_per_group;
|
||||
const int in_x_origin = (out_x * stride_width) - pad_width;
|
||||
const int in_y_origin = (out_y * stride_height) - pad_height;
|
||||
int32_t acc = 0;
|
||||
for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
|
||||
for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
|
||||
for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
|
||||
for (int in_channel = 0; in_channel < filter_input_depth;
|
||||
++in_channel) {
|
||||
const int in_x = in_x_origin + dilation_width_factor * filter_x;
|
||||
const int in_y =
|
||||
in_y_origin + dilation_height_factor * filter_y;
|
||||
@@ -235,7 +255,8 @@ inline void HybridConvPerChannel(
|
||||
if ((in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
|
||||
(in_y < input_height)) {
|
||||
int32_t input_val = input_data[Offset(
|
||||
input_shape, batch, in_y, in_x, in_channel)];
|
||||
input_shape, batch, in_y, in_x,
|
||||
in_channel + group * filter_input_depth)];
|
||||
int32_t filter_val =
|
||||
filter_data[Offset(filter_shape, out_channel, filter_y,
|
||||
filter_x, in_channel)];
|
||||
|
||||
@@ -48,7 +48,7 @@ inline void ConvPerChannel(
|
||||
TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4);
|
||||
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
|
||||
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
|
||||
const int input_depth = MatchingDim(input_shape, 3, filter_shape, 3);
|
||||
const int input_depth = input_shape.Dims(3);
|
||||
const int output_depth = MatchingDim(filter_shape, 0, output_shape, 3);
|
||||
if (bias_data) {
|
||||
TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth);
|
||||
@@ -59,6 +59,10 @@ inline void ConvPerChannel(
|
||||
const int input_width = input_shape.Dims(2);
|
||||
const int filter_height = filter_shape.Dims(1);
|
||||
const int filter_width = filter_shape.Dims(2);
|
||||
const int filter_input_depth = filter_shape.Dims(3);
|
||||
const int groups = input_depth / filter_input_depth;
|
||||
TFLITE_DCHECK_EQ(input_depth % filter_input_depth, 0);
|
||||
const int filters_per_group = output_depth / groups;
|
||||
const int output_height = output_shape.Dims(1);
|
||||
const int output_width = output_shape.Dims(2);
|
||||
for (int batch = 0; batch < batches; ++batch) {
|
||||
@@ -67,6 +71,7 @@ inline void ConvPerChannel(
|
||||
for (int out_x = 0; out_x < output_width; ++out_x) {
|
||||
const int in_x_origin = (out_x * stride_width) - pad_width;
|
||||
for (int out_channel = 0; out_channel < output_depth; ++out_channel) {
|
||||
auto group = out_channel / filters_per_group;
|
||||
int32_t acc = 0;
|
||||
for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
|
||||
const int in_y = in_y_origin + dilation_height_factor * filter_y;
|
||||
@@ -82,9 +87,11 @@ inline void ConvPerChannel(
|
||||
continue;
|
||||
}
|
||||
|
||||
for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
|
||||
int32_t input_val = input_data[Offset(input_shape, batch, in_y,
|
||||
in_x, in_channel)];
|
||||
for (int in_channel = 0; in_channel < filter_input_depth;
|
||||
++in_channel) {
|
||||
int32_t input_val =
|
||||
input_data[Offset(input_shape, batch, in_y, in_x,
|
||||
in_channel + group * filter_input_depth)];
|
||||
int32_t filter_val = filter_data[Offset(
|
||||
filter_shape, out_channel, filter_y, filter_x, in_channel)];
|
||||
// Accumulate with 32 bits accumulator.
|
||||
@@ -126,12 +133,13 @@ inline void ConvPerChannel(
|
||||
|
||||
// Fixed-point per-channel-quantization convolution reference kernel.
|
||||
// 16-bit data and 8-bit filter
|
||||
template <typename AccumScalar>
|
||||
inline void ConvPerChannel(
|
||||
const ConvParams& params, const int32_t* output_multiplier,
|
||||
const int32_t* output_shift, const RuntimeShape& input_shape,
|
||||
const int16_t* input_data, const RuntimeShape& filter_shape,
|
||||
const int8_t* filter_data, const RuntimeShape& bias_shape,
|
||||
const std::int64_t* bias_data, const RuntimeShape& output_shape,
|
||||
const AccumScalar* bias_data, const RuntimeShape& output_shape,
|
||||
int16_t* output_data) {
|
||||
// Get parameters.
|
||||
const int stride_width = params.stride_width;
|
||||
@@ -151,7 +159,7 @@ inline void ConvPerChannel(
|
||||
TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4);
|
||||
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
|
||||
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
|
||||
const int input_depth = MatchingDim(input_shape, 3, filter_shape, 3);
|
||||
const int input_depth = input_shape.Dims(3);
|
||||
const int output_depth = MatchingDim(filter_shape, 0, output_shape, 3);
|
||||
if (bias_data) {
|
||||
TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth);
|
||||
@@ -162,6 +170,10 @@ inline void ConvPerChannel(
|
||||
const int input_width = input_shape.Dims(2);
|
||||
const int filter_height = filter_shape.Dims(1);
|
||||
const int filter_width = filter_shape.Dims(2);
|
||||
const int filter_input_depth = filter_shape.Dims(3);
|
||||
const int groups = input_depth / filter_input_depth;
|
||||
TFLITE_DCHECK_EQ(input_depth % filter_input_depth, 0);
|
||||
const int filters_per_group = output_depth / groups;
|
||||
const int output_height = output_shape.Dims(1);
|
||||
const int output_width = output_shape.Dims(2);
|
||||
for (int batch = 0; batch < batches; ++batch) {
|
||||
@@ -170,7 +182,8 @@ inline void ConvPerChannel(
|
||||
for (int out_x = 0; out_x < output_width; ++out_x) {
|
||||
const int in_x_origin = (out_x * stride_width) - pad_width;
|
||||
for (int out_channel = 0; out_channel < output_depth; ++out_channel) {
|
||||
std::int64_t acc = 0;
|
||||
auto group = out_channel / filters_per_group;
|
||||
AccumScalar acc = 0;
|
||||
for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
|
||||
const int in_y = in_y_origin + dilation_height_factor * filter_y;
|
||||
for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
|
||||
@@ -185,9 +198,11 @@ inline void ConvPerChannel(
|
||||
continue;
|
||||
}
|
||||
|
||||
for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
|
||||
int32_t input_val = input_data[Offset(input_shape, batch, in_y,
|
||||
in_x, in_channel)];
|
||||
for (int in_channel = 0; in_channel < filter_input_depth;
|
||||
++in_channel) {
|
||||
int32_t input_val =
|
||||
input_data[Offset(input_shape, batch, in_y, in_x,
|
||||
in_channel + group * filter_input_depth)];
|
||||
int32_t filter_val = filter_data[Offset(
|
||||
filter_shape, out_channel, filter_y, filter_x, in_channel)];
|
||||
// Accumulate with 64 bits accumulator.
|
||||
|
||||
@@ -34,12 +34,13 @@ inline void FullyConnected(
|
||||
const int32_t output_activation_min = params.quantized_activation_min;
|
||||
const int32_t output_activation_max = params.quantized_activation_max;
|
||||
TFLITE_DCHECK_GE(filter_shape.DimensionsCount(), 2);
|
||||
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 2);
|
||||
TFLITE_DCHECK_GE(output_shape.DimensionsCount(), 1);
|
||||
|
||||
TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
|
||||
const int filter_dim_count = filter_shape.DimensionsCount();
|
||||
const int batches = output_shape.Dims(0);
|
||||
const int output_depth = output_shape.Dims(1);
|
||||
const int output_dim_count = output_shape.DimensionsCount();
|
||||
const int batches = FlatSizeSkipDim(output_shape, output_dim_count - 1);
|
||||
const int output_depth = output_shape.Dims(output_dim_count - 1);
|
||||
TFLITE_DCHECK_LE(output_depth, filter_shape.Dims(filter_dim_count - 2));
|
||||
const int accum_depth = filter_shape.Dims(filter_dim_count - 1);
|
||||
for (int b = 0; b < batches; ++b) {
|
||||
@@ -62,11 +63,12 @@ inline void FullyConnected(
|
||||
}
|
||||
}
|
||||
|
||||
template <typename AccumScalar>
|
||||
inline void FullyConnected(
|
||||
const FullyConnectedParams& params, const RuntimeShape& input_shape,
|
||||
const int16_t* input_data, const RuntimeShape& filter_shape,
|
||||
const int8_t* filter_data, const RuntimeShape& bias_shape,
|
||||
const int64_t* bias_data, const RuntimeShape& output_shape,
|
||||
const AccumScalar* bias_data, const RuntimeShape& output_shape,
|
||||
int16_t* output_data) {
|
||||
const int32_t filter_offset = params.weights_offset;
|
||||
const int32_t output_multiplier = params.output_multiplier;
|
||||
@@ -85,7 +87,7 @@ inline void FullyConnected(
|
||||
const int accum_depth = filter_shape.Dims(filter_dim_count - 1);
|
||||
for (int b = 0; b < batches; ++b) {
|
||||
for (int out_c = 0; out_c < output_depth; ++out_c) {
|
||||
int64_t acc = 0;
|
||||
AccumScalar acc = 0;
|
||||
for (int d = 0; d < accum_depth; ++d) {
|
||||
int32_t input_val = input_data[b * accum_depth + d];
|
||||
int32_t filter_val = filter_data[out_c * accum_depth + d];
|
||||
|
||||
@@ -119,15 +119,16 @@ inline void TransposeConv(
|
||||
}
|
||||
}
|
||||
|
||||
// int16_t input (zero_point=0), int8_t filter, int64 accumulator
|
||||
// int16_t input (zero_point=0), int8_t filter, int32 or int64 accumulator
|
||||
template <typename Scalar>
|
||||
inline void TransposeConv(
|
||||
const ConvParams& params, const int32_t* output_multiplier,
|
||||
const int32_t* output_shift, const RuntimeShape& input_shape,
|
||||
const int16_t* input_data, const RuntimeShape& filter_shape,
|
||||
const int8_t* filter_data, const RuntimeShape& bias_shape,
|
||||
const std::int64_t* bias_data, const RuntimeShape& output_shape,
|
||||
const Scalar* bias_data, const RuntimeShape& output_shape,
|
||||
int16_t* output_data, const RuntimeShape& im2col_shape, int8_t* im2col_data,
|
||||
std::int64_t* scratch_buffer) {
|
||||
Scalar* scratch_buffer) {
|
||||
const int stride_width = params.stride_width;
|
||||
const int stride_height = params.stride_height;
|
||||
const int pad_width = params.padding_values.width;
|
||||
@@ -157,7 +158,7 @@ inline void TransposeConv(
|
||||
const int num_elements = output_shape.FlatSize();
|
||||
// We need to initialize scratch_buffer to all 0s, as we apply the same
|
||||
// 'scatter' based trick as in float version.
|
||||
memset(scratch_buffer, 0, num_elements * sizeof(std::int64_t));
|
||||
memset(scratch_buffer, 0, num_elements * sizeof(Scalar));
|
||||
|
||||
// Loop through input elements one at a time.
|
||||
for (int batch = 0; batch < batches; ++batch) {
|
||||
@@ -198,8 +199,8 @@ inline void TransposeConv(
|
||||
for (int out_y = 0; out_y < output_height; ++out_y) {
|
||||
for (int out_x = 0; out_x < output_width; ++out_x) {
|
||||
for (int out_channel = 0; out_channel < output_depth; ++out_channel) {
|
||||
std::int64_t acc = scratch_buffer[Offset(output_shape, batch, out_y,
|
||||
out_x, out_channel)];
|
||||
Scalar acc = scratch_buffer[Offset(output_shape, batch, out_y, out_x,
|
||||
out_channel)];
|
||||
if (bias_data) {
|
||||
acc += bias_data[out_channel];
|
||||
}
|
||||
|
||||
@@ -0,0 +1,422 @@
|
||||
/* Copyright 2022 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_LSTM_CELL_H_
|
||||
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_LSTM_CELL_H_
|
||||
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <cstdint>
|
||||
|
||||
#include "tensorflow/lite/kernels/internal/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/reference/concatenation.h"
|
||||
#include "tensorflow/lite/kernels/internal/reference/fully_connected.h"
|
||||
#include "tensorflow/lite/kernels/internal/types.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace reference_ops {
|
||||
|
||||
inline void LstmCell(
|
||||
const LstmCellParams& params, const RuntimeShape& unextended_input_shape,
|
||||
const float* input_data, const RuntimeShape& unextended_prev_activ_shape,
|
||||
const float* prev_activ_data, const RuntimeShape& weights_shape,
|
||||
const float* weights_data, const RuntimeShape& unextended_bias_shape,
|
||||
const float* bias_data, const RuntimeShape& unextended_prev_state_shape,
|
||||
const float* prev_state_data,
|
||||
const RuntimeShape& unextended_output_state_shape, float* output_state_data,
|
||||
const RuntimeShape& unextended_output_activ_shape, float* output_activ_data,
|
||||
const RuntimeShape& unextended_concat_temp_shape, float* concat_temp_data,
|
||||
const RuntimeShape& unextended_activ_temp_shape, float* activ_temp_data) {
|
||||
TFLITE_DCHECK_LE(unextended_input_shape.DimensionsCount(), 4);
|
||||
TFLITE_DCHECK_LE(unextended_prev_activ_shape.DimensionsCount(), 4);
|
||||
TFLITE_DCHECK_LE(unextended_bias_shape.DimensionsCount(), 4);
|
||||
TFLITE_DCHECK_LE(unextended_prev_state_shape.DimensionsCount(), 4);
|
||||
TFLITE_DCHECK_LE(unextended_output_state_shape.DimensionsCount(), 4);
|
||||
TFLITE_DCHECK_LE(unextended_output_activ_shape.DimensionsCount(), 4);
|
||||
TFLITE_DCHECK_LE(unextended_concat_temp_shape.DimensionsCount(), 4);
|
||||
TFLITE_DCHECK_LE(unextended_activ_temp_shape.DimensionsCount(), 4);
|
||||
const RuntimeShape input_shape =
|
||||
RuntimeShape::ExtendedShape(4, unextended_input_shape);
|
||||
const RuntimeShape prev_activ_shape =
|
||||
RuntimeShape::ExtendedShape(4, unextended_prev_activ_shape);
|
||||
const RuntimeShape bias_shape =
|
||||
RuntimeShape::ExtendedShape(4, unextended_bias_shape);
|
||||
const RuntimeShape prev_state_shape =
|
||||
RuntimeShape::ExtendedShape(4, unextended_prev_state_shape);
|
||||
const RuntimeShape output_state_shape =
|
||||
RuntimeShape::ExtendedShape(4, unextended_output_state_shape);
|
||||
const RuntimeShape output_activ_shape =
|
||||
RuntimeShape::ExtendedShape(4, unextended_output_activ_shape);
|
||||
const RuntimeShape concat_temp_shape =
|
||||
RuntimeShape::ExtendedShape(4, unextended_concat_temp_shape);
|
||||
const RuntimeShape activ_temp_shape =
|
||||
RuntimeShape::ExtendedShape(4, unextended_activ_temp_shape);
|
||||
TFLITE_DCHECK_GE(weights_shape.DimensionsCount(), 2);
|
||||
|
||||
const int weights_dim_count = weights_shape.DimensionsCount();
|
||||
const int batches =
|
||||
MatchingDim(input_shape, 0, prev_activ_shape, 0, prev_state_shape, 0,
|
||||
output_state_shape, 0, output_activ_shape, 0);
|
||||
const int height =
|
||||
MatchingDim(input_shape, 1, prev_activ_shape, 1, prev_state_shape, 1,
|
||||
output_state_shape, 1, output_activ_shape, 1);
|
||||
const int width =
|
||||
MatchingDim(input_shape, 2, prev_activ_shape, 2, prev_state_shape, 2,
|
||||
output_state_shape, 2, output_activ_shape, 2);
|
||||
const int input_depth = input_shape.Dims(3);
|
||||
const int prev_activ_depth = prev_activ_shape.Dims(3);
|
||||
const int total_input_depth = prev_activ_depth + input_depth;
|
||||
TFLITE_DCHECK_EQ(weights_shape.Dims(weights_dim_count - 1),
|
||||
total_input_depth);
|
||||
TFLITE_DCHECK_EQ(FlatSizeSkipDim(bias_shape, 3), 1);
|
||||
const int intern_activ_depth =
|
||||
MatchingDim(weights_shape, weights_dim_count - 2, bias_shape, 3);
|
||||
TFLITE_DCHECK_EQ(weights_shape.FlatSize(),
|
||||
intern_activ_depth * total_input_depth);
|
||||
TFLITE_DCHECK_EQ(intern_activ_depth % 4, 0);
|
||||
const int output_depth =
|
||||
MatchingDim(prev_state_shape, 3, prev_activ_shape, 3, output_state_shape,
|
||||
3, output_activ_shape, 3);
|
||||
TFLITE_DCHECK_EQ(output_depth, intern_activ_depth / 4);
|
||||
|
||||
// Concatenate prev_activ and input data together
|
||||
float const* concat_input_arrays_data[2] = {input_data, prev_activ_data};
|
||||
const RuntimeShape* concat_input_arrays_shapes[2] = {&input_shape,
|
||||
&prev_activ_shape};
|
||||
tflite::ConcatenationParams concat_params;
|
||||
concat_params.axis = 3;
|
||||
concat_params.inputs_count = 2;
|
||||
Concatenation(concat_params, concat_input_arrays_shapes,
|
||||
concat_input_arrays_data, concat_temp_shape, concat_temp_data);
|
||||
|
||||
// Fully connected
|
||||
tflite::FullyConnectedParams fc_params;
|
||||
fc_params.float_activation_min = std::numeric_limits<float>::lowest();
|
||||
fc_params.float_activation_max = std::numeric_limits<float>::max();
|
||||
FullyConnected(fc_params, concat_temp_shape, concat_temp_data, weights_shape,
|
||||
weights_data, bias_shape, bias_data, activ_temp_shape,
|
||||
activ_temp_data);
|
||||
|
||||
// Memory state update (the LSTM "guts")
|
||||
for (int b = 0; b < batches; ++b) {
|
||||
for (int w = 0; w < width; ++w) {
|
||||
for (int h = 0; h < height; ++h) {
|
||||
for (int c = 0; c < output_depth; ++c) {
|
||||
const float input_gate =
|
||||
1.f /
|
||||
(1.f + std::exp(-activ_temp_data[Offset(activ_temp_shape, b, h, w,
|
||||
0 * output_depth + c)]));
|
||||
const float new_input = std::tanh(activ_temp_data[Offset(
|
||||
activ_temp_shape, b, h, w, 1 * output_depth + c)]);
|
||||
const float forget_gate =
|
||||
1.f /
|
||||
(1.f + std::exp(-activ_temp_data[Offset(activ_temp_shape, b, h, w,
|
||||
2 * output_depth + c)]));
|
||||
const float output_gate =
|
||||
1.f /
|
||||
(1.f + std::exp(-activ_temp_data[Offset(activ_temp_shape, b, h, w,
|
||||
3 * output_depth + c)]));
|
||||
const float new_state =
|
||||
input_gate * new_input +
|
||||
forget_gate *
|
||||
prev_state_data[Offset(prev_state_shape, b, h, w, c)];
|
||||
output_state_data[Offset(output_state_shape, b, h, w, c)] = new_state;
|
||||
output_activ_data[Offset(output_activ_shape, b, h, w, c)] =
|
||||
output_gate * std::tanh(new_state);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Quantized LSTM cell implementation.
|
||||
// The quantization of the input, output arrays is as follows:
|
||||
// - The input activations are quantized as uint8 on the interval
|
||||
// [-1, 127/128].
|
||||
// The rationale for that is that is the natural interval for output
|
||||
// activations (see next point) and these need to be concatenated together.
|
||||
// We could accommodate different ranges by re-scaling, but we empirically
|
||||
// found that setting the input activations range to be [-1, 127/128] in the
|
||||
// first place, removing the need for re-scaling, greatly improves accuracy.
|
||||
// - The output activations are quantized as uint8 on the interval
|
||||
// [-1, 127/128].
|
||||
// The rationale for that is that the definition of a LSTM cell makes them
|
||||
// intrinsically constrained in [-1, 1]; tweaking that to [-1, 127/128]
|
||||
// makes for simpler, more accurate fixed-point arithmetic.
|
||||
// - The output-at-previous-timestep state array is obviously quantized as
|
||||
// the output activations.
|
||||
// - The internal LSTM memory (not the output-at-previous-timestep, the other
|
||||
// internal state array) is int16-quantized and may use any power-of-two,
|
||||
// symmetric range i.e. [-2^N, 2^N * 32767/32768] for any N, which we call
|
||||
// StateIntegerBits below, see the below discussion of that template
|
||||
// parameter ("The StateIntegerBits template parameter").
|
||||
// - The output of the internal fully-connected node is int16-quantized
|
||||
// on the interval [-8, 8 * 32767/32768], the rationale for which is
|
||||
// explained just below ("Why [-8, 8] for fully-connected output?").
|
||||
//
|
||||
//
|
||||
// === The StateIntegerBits template parameter ===
|
||||
//
|
||||
// The StateIntegerBits template parameter controls the fixed-point format used
|
||||
// to represent the internal memory of the LSTM cell (not the
|
||||
// output-at-previous-timestep, the other internal state array). It's currently
|
||||
// a template parameter so that the model can control that. The most typical
|
||||
// value for StateIntegerBits is 4. Other plausible values are anywhere between
|
||||
// 3 and 5. We might eventually standardize on a single supported value, e.g. 4,
|
||||
// and drop that template parameter. The reason why it can't be a runtime
|
||||
// parameter is that this controls the fixed-point format used, i.e. we need to
|
||||
// generate actually different code based on it. In particular, we generate code
|
||||
// for a fixed-point tanh() implementation for that format, which internally
|
||||
// uses a fixed-point exp() implementation, which internally uses a
|
||||
// barrel-shifter with a number of steps that depends on StateIntegerBits.
|
||||
// Another consequence of that is that a higher value of StateIntegerBits
|
||||
// results in a more expensive implementation (more barrel shifter steps
|
||||
// needed).
|
||||
//
|
||||
//
|
||||
// === Why [-8, 8] for fully-connected output? ===
|
||||
//
|
||||
// This array is only fed to Logistic and Tanh functions, for which
|
||||
// the quantized implementation will want to use fixed-point arithmetic,
|
||||
// requiring a power-of-two representation interval. Thus, we should right
|
||||
// away quantize this array to a power-of-two interval; otherwise,
|
||||
// implementation will need to rescale that, losing any benefit that a tighter
|
||||
// representation interval might otherwise yield, while introducing some
|
||||
// numerical error and computational overhead.
|
||||
//
|
||||
// Now, Logistic and Tanh
|
||||
// are nearly constant (nearly equal to their horizontal asymptotes)
|
||||
// outside of a small bounded interval around 0:
|
||||
//
|
||||
// Logistic(4) = 1 - 1.8e-2 Tanh(4) = 1 - 6.7e-4
|
||||
// Logistic(8) = 1 - 3.4e-4 Tanh(8) = 1 - 2.3e-7
|
||||
// Logistic(16) = 1 - 1.1e-7 Tanh(16) = 1 - 2.5e-14
|
||||
//
|
||||
// From this, we see that clamping to [-4, 4] would be too inaccurate
|
||||
// (the error of 1.8e-2 on Logistic would be felt even in 8bit precision)
|
||||
// while clamping to [-16, 16] would make no difference even in float32.
|
||||
// However, for a fixed-point implementation in 16-bit integers, using 5
|
||||
// integer bits to represent the [-16, 16] range would leave only 11
|
||||
// fractional bits, giving an increment of 2^-11 = 4.9e-4 between consecutive
|
||||
// representable values. Notice that is higher than the
|
||||
// worst-case clamping error with clamping to [-8, 8]: 3.4e-4 for Logistic.
|
||||
// Using [-8, 8] thus seems like the better compromise overall, enjoying
|
||||
// an increment of 2.4e-4 between representable values and a worst-case
|
||||
// clamping error of 3.4e-4, both better than the increment of 4.9e-4 with
|
||||
// [-16, 16].
|
||||
//
|
||||
// Moreover, all other things being equal, it is nice to choose the narrower
|
||||
// representation range, as that makes the implementation of fixed-point
|
||||
// math functions a little cheaper (each integer bit requires an additional
|
||||
// barrel-shifter atep in the implementation of exp(-x)). That is further
|
||||
// reason to prefer [-8, 8] over [-16, 16]. The choice of [-16, 16] would make
|
||||
// sense for 32-bit float or 32-bit fixed-point quantization, but we are
|
||||
// aiming for 16-bit fixed-point quantization of these internal nodes here.
|
||||
//
|
||||
template <int StateIntegerBits>
|
||||
inline void LstmCell(const LstmCellParams& params,
|
||||
const RuntimeShape& unextended_input_shape,
|
||||
const uint8_t* input_data_uint8,
|
||||
const RuntimeShape& unextended_prev_activ_shape,
|
||||
const uint8_t* prev_activ_data_uint8,
|
||||
const RuntimeShape& weights_shape,
|
||||
const uint8_t* weights_data_uint8,
|
||||
const RuntimeShape& unextended_bias_shape,
|
||||
const int32_t* bias_data_int32,
|
||||
const RuntimeShape& unextended_prev_state_shape,
|
||||
const int16_t* prev_state_data_int16,
|
||||
const RuntimeShape& unextended_output_state_shape,
|
||||
int16_t* output_state_data_int16,
|
||||
const RuntimeShape& unextended_output_activ_shape,
|
||||
uint8_t* output_activ_data_uint8,
|
||||
const RuntimeShape& unextended_concat_temp_shape,
|
||||
uint8_t* concat_temp_data_uint8,
|
||||
const RuntimeShape& unextended_activ_temp_shape,
|
||||
int16_t* activ_temp_data_int16, void* gemmlowp_context) {
|
||||
(void)gemmlowp_context; // only used in optimized code.
|
||||
int32_t weights_zero_point = params.weights_zero_point;
|
||||
int32_t accum_multiplier = params.accum_multiplier;
|
||||
int accum_shift = params.accum_shift;
|
||||
TFLITE_DCHECK_LE(unextended_input_shape.DimensionsCount(), 4);
|
||||
TFLITE_DCHECK_LE(unextended_prev_activ_shape.DimensionsCount(), 4);
|
||||
TFLITE_DCHECK_LE(unextended_bias_shape.DimensionsCount(), 4);
|
||||
TFLITE_DCHECK_LE(unextended_prev_state_shape.DimensionsCount(), 4);
|
||||
TFLITE_DCHECK_LE(unextended_output_state_shape.DimensionsCount(), 4);
|
||||
TFLITE_DCHECK_LE(unextended_output_activ_shape.DimensionsCount(), 4);
|
||||
TFLITE_DCHECK_LE(unextended_concat_temp_shape.DimensionsCount(), 4);
|
||||
TFLITE_DCHECK_LE(unextended_activ_temp_shape.DimensionsCount(), 4);
|
||||
const RuntimeShape input_shape =
|
||||
RuntimeShape::ExtendedShape(4, unextended_input_shape);
|
||||
const RuntimeShape prev_activ_shape =
|
||||
RuntimeShape::ExtendedShape(4, unextended_prev_activ_shape);
|
||||
const RuntimeShape bias_shape =
|
||||
RuntimeShape::ExtendedShape(4, unextended_bias_shape);
|
||||
const RuntimeShape prev_state_shape =
|
||||
RuntimeShape::ExtendedShape(4, unextended_prev_state_shape);
|
||||
const RuntimeShape output_state_shape =
|
||||
RuntimeShape::ExtendedShape(4, unextended_output_state_shape);
|
||||
const RuntimeShape output_activ_shape =
|
||||
RuntimeShape::ExtendedShape(4, unextended_output_activ_shape);
|
||||
const RuntimeShape concat_temp_shape =
|
||||
RuntimeShape::ExtendedShape(4, unextended_concat_temp_shape);
|
||||
const RuntimeShape activ_temp_shape =
|
||||
RuntimeShape::ExtendedShape(4, unextended_activ_temp_shape);
|
||||
TFLITE_DCHECK_GE(weights_shape.DimensionsCount(), 2);
|
||||
|
||||
// Gather dimensions information, and perform consistency checks.
|
||||
const int weights_dim_count = weights_shape.DimensionsCount();
|
||||
const int outer_size = MatchingFlatSizeSkipDim(
|
||||
input_shape, 3, prev_activ_shape, prev_state_shape, output_state_shape,
|
||||
output_activ_shape);
|
||||
const int input_depth = input_shape.Dims(3);
|
||||
const int prev_activ_depth = prev_activ_shape.Dims(3);
|
||||
const int total_input_depth = prev_activ_depth + input_depth;
|
||||
TFLITE_DCHECK_EQ(weights_shape.Dims(weights_dim_count - 1),
|
||||
total_input_depth);
|
||||
const int intern_activ_depth =
|
||||
MatchingDim(weights_shape, weights_dim_count - 2, bias_shape, 3);
|
||||
TFLITE_DCHECK_EQ(weights_shape.FlatSize(),
|
||||
intern_activ_depth * total_input_depth);
|
||||
TFLITE_DCHECK_EQ(FlatSizeSkipDim(bias_shape, 3), 1);
|
||||
TFLITE_DCHECK_EQ(intern_activ_depth % 4, 0);
|
||||
const int output_depth =
|
||||
MatchingDim(prev_state_shape, 3, prev_activ_shape, 3, output_state_shape,
|
||||
3, output_activ_shape, 3);
|
||||
TFLITE_DCHECK_EQ(output_depth, intern_activ_depth / 4);
|
||||
const int fc_batches = FlatSizeSkipDim(activ_temp_shape, 3);
|
||||
const int fc_output_depth =
|
||||
MatchingDim(weights_shape, weights_dim_count - 2, activ_temp_shape, 3);
|
||||
const int fc_accum_depth = total_input_depth;
|
||||
TFLITE_DCHECK_EQ(fc_output_depth, 4 * output_depth);
|
||||
|
||||
// Depth-concatenate prev_activ and input data together.
|
||||
uint8_t const* concat_input_arrays_data[2] = {input_data_uint8,
|
||||
prev_activ_data_uint8};
|
||||
const RuntimeShape* concat_input_arrays_shapes[2] = {&input_shape,
|
||||
&prev_activ_shape};
|
||||
tflite::ConcatenationParams concat_params;
|
||||
concat_params.axis = 3;
|
||||
concat_params.inputs_count = 2;
|
||||
Concatenation(concat_params, concat_input_arrays_shapes,
|
||||
concat_input_arrays_data, concat_temp_shape,
|
||||
concat_temp_data_uint8);
|
||||
|
||||
// Implementation of the fully connected node inside the LSTM cell.
|
||||
// The operands are 8-bit integers, the accumulators are internally 32bit
|
||||
// integers, and the output is 16-bit fixed-point with 3 integer bits so
|
||||
// the output range is [-2^3, 2^3] == [-8, 8]. The rationale for that
|
||||
// is explained in the function comment above.
|
||||
for (int b = 0; b < fc_batches; ++b) {
|
||||
for (int out_c = 0; out_c < fc_output_depth; ++out_c) {
|
||||
// Internal accumulation.
|
||||
// Initialize accumulator with the bias-value.
|
||||
int32_t accum = bias_data_int32[out_c];
|
||||
// Accumulation loop.
|
||||
for (int d = 0; d < fc_accum_depth; ++d) {
|
||||
int16_t input_val =
|
||||
concat_temp_data_uint8[b * fc_accum_depth + d] - 128;
|
||||
int16_t weights_val =
|
||||
weights_data_uint8[out_c * fc_accum_depth + d] - weights_zero_point;
|
||||
accum += input_val * weights_val;
|
||||
}
|
||||
// Down-scale the final int32 accumulator to the scale used by our
|
||||
// (16-bit, using 3 integer bits) fixed-point format. The quantized
|
||||
// multiplier and shift here have been pre-computed offline
|
||||
// (e.g. by toco).
|
||||
accum =
|
||||
MultiplyByQuantizedMultiplier(accum, accum_multiplier, accum_shift);
|
||||
// Saturate, cast to int16, and store to the temporary activations array.
|
||||
accum = std::max(-32768, std::min(32767, accum));
|
||||
activ_temp_data_int16[out_c + fc_output_depth * b] = accum;
|
||||
}
|
||||
}
|
||||
|
||||
// Rest of the LSTM cell: tanh and logistic math functions, and some adds
|
||||
// and muls, all done in 16-bit fixed-point.
|
||||
for (int b = 0; b < outer_size; ++b) {
|
||||
for (int c = 0; c < output_depth; ++c) {
|
||||
// Define the fixed-point data types that we will use here. All use
|
||||
// int16 as the underlying integer type i.e. all are 16-bit fixed-point.
|
||||
// They only differ by the number of integral vs. fractional bits,
|
||||
// determining the range of values that they can represent.
|
||||
//
|
||||
// F0 uses 0 integer bits, range [-1, 1].
|
||||
// This is the return type of math functions such as tanh, logistic,
|
||||
// whose range is in [-1, 1].
|
||||
using F0 = gemmlowp::FixedPoint<std::int16_t, 0>;
|
||||
// F3 uses 3 integer bits, range [-8, 8].
|
||||
// This is the range of the previous fully-connected node's output,
|
||||
// which is our input here.
|
||||
using F3 = gemmlowp::FixedPoint<std::int16_t, 3>;
|
||||
// FS uses StateIntegerBits integer bits, range [-2^StateIntegerBits,
|
||||
// 2^StateIntegerBits]. It's used to represent the internal state, whose
|
||||
// number of integer bits is currently dictated by the model. See comment
|
||||
// on the StateIntegerBits template parameter above.
|
||||
using FS = gemmlowp::FixedPoint<std::int16_t, StateIntegerBits>;
|
||||
// Implementation of input gate, using fixed-point logistic function.
|
||||
F3 input_gate_input = F3::FromRaw(
|
||||
activ_temp_data_int16[b * fc_output_depth + 0 * output_depth + c]);
|
||||
F0 input_gate_output = gemmlowp::logistic(input_gate_input);
|
||||
// Implementation of input modulation gate, using fixed-point tanh
|
||||
// function.
|
||||
F3 input_modulation_gate_input = F3::FromRaw(
|
||||
activ_temp_data_int16[b * fc_output_depth + 1 * output_depth + c]);
|
||||
F0 input_modulation_gate_output =
|
||||
gemmlowp::tanh(input_modulation_gate_input);
|
||||
// Implementation of forget gate, using fixed-point logistic function.
|
||||
F3 forget_gate_input = F3::FromRaw(
|
||||
activ_temp_data_int16[b * fc_output_depth + 2 * output_depth + c]);
|
||||
F0 forget_gate_output = gemmlowp::logistic(forget_gate_input);
|
||||
// Implementation of output gate, using fixed-point logistic function.
|
||||
F3 output_gate_input = F3::FromRaw(
|
||||
activ_temp_data_int16[b * fc_output_depth + 3 * output_depth + c]);
|
||||
F0 output_gate_output = gemmlowp::logistic(output_gate_input);
|
||||
// Implementation of internal multiplication nodes, still in fixed-point.
|
||||
F0 input_times_input_modulation =
|
||||
input_gate_output * input_modulation_gate_output;
|
||||
FS prev_state = FS::FromRaw(prev_state_data_int16[b * output_depth + c]);
|
||||
FS prev_state_times_forget_state = forget_gate_output * prev_state;
|
||||
// Implementation of internal addition node, saturating.
|
||||
FS new_state = gemmlowp::SaturatingAdd(
|
||||
gemmlowp::Rescale<StateIntegerBits>(input_times_input_modulation),
|
||||
prev_state_times_forget_state);
|
||||
// Implementation of last internal Tanh node, still in fixed-point.
|
||||
// Since a Tanh fixed-point implementation is specialized for a given
|
||||
// number or integer bits, and each specialization can have a substantial
|
||||
// code size, and we already used above a Tanh on an input with 3 integer
|
||||
// bits, and per the table in the above function comment there is no
|
||||
// significant accuracy to be lost by clamping to [-8, +8] for a
|
||||
// 3-integer-bits representation, let us just do that. This helps people
|
||||
// porting this to targets where code footprint must be minimized.
|
||||
F3 new_state_f3 = gemmlowp::Rescale<3>(new_state);
|
||||
F0 output_activ_int16 = output_gate_output * gemmlowp::tanh(new_state_f3);
|
||||
// Store the new internal state back to memory, as 16-bit integers.
|
||||
// Note: here we store the original value with StateIntegerBits, not
|
||||
// the rescaled 3-integer-bits value fed to tanh.
|
||||
output_state_data_int16[b * output_depth + c] = new_state.raw();
|
||||
// Down-scale the output activations to 8-bit integers, saturating,
|
||||
// and store back to memory.
|
||||
int16_t rescaled_output_activ =
|
||||
gemmlowp::RoundingDivideByPOT(output_activ_int16.raw(), 8);
|
||||
int16_t clamped_output_activ = std::max<int16_t>(
|
||||
-128, std::min<int16_t>(127, rescaled_output_activ));
|
||||
output_activ_data_uint8[b * output_depth + c] =
|
||||
128 + clamped_output_activ;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace reference_ops
|
||||
} // namespace tflite
|
||||
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_LSTM_CELL_H_
|
||||
@@ -227,6 +227,41 @@ void PortableSparseMatrixBatchVectorMultiplyAccumulate1x4(
|
||||
}
|
||||
}
|
||||
|
||||
void PortableSparseMatrixBatchVectorMultiplyAccumulate1x16(
|
||||
const int8_t* __restrict__ matrix, const int32_t* __restrict__ segments,
|
||||
const int32_t* __restrict__ indices, int m_rows, int m_cols,
|
||||
const int8_t* __restrict__ vector, const int32_t* __restrict__ bias_vector,
|
||||
int n_batch, const int32_t input_offset, const int32_t output_multiplier,
|
||||
const int32_t output_shift, const int32_t output_offset,
|
||||
const int32_t output_activation_min, const int32_t output_activation_max,
|
||||
int8_t* __restrict__ result) {
|
||||
const int kBlockSize = 16;
|
||||
TFLITE_DCHECK_EQ(m_cols % kBlockSize, 0);
|
||||
for (int batch = 0; batch < n_batch; ++batch) {
|
||||
const int8_t* matrix_ptr = matrix;
|
||||
for (int row = 0; row < m_rows; ++row) {
|
||||
int32_t dot_prod = 0;
|
||||
const int8_t* vector_in_batch = vector + batch * m_cols;
|
||||
for (int i = segments[row]; i < segments[row + 1]; ++i) {
|
||||
const int block_start_index = indices[i] * kBlockSize;
|
||||
const int8_t* vector_block_in_batch_ptr =
|
||||
vector_in_batch + block_start_index;
|
||||
for (int c = 0; c < kBlockSize; c++) {
|
||||
dot_prod += *matrix_ptr * *vector_block_in_batch_ptr++;
|
||||
dot_prod += *matrix_ptr++ * input_offset;
|
||||
}
|
||||
}
|
||||
const int32_t bias_value = bias_vector != nullptr ? bias_vector[row] : 0;
|
||||
dot_prod = MultiplyByQuantizedMultiplier(dot_prod + bias_value,
|
||||
output_multiplier, output_shift);
|
||||
dot_prod += output_offset;
|
||||
result[batch * m_rows + row] =
|
||||
static_cast<int8_t>(ActivationFunctionWithMinMax(
|
||||
dot_prod, output_activation_min, output_activation_max));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void PortableSparseMatrixBatchVectorMultiplyAccumulate(
|
||||
const float* __restrict__ matrix, const uint8_t* __restrict__ ledger,
|
||||
int m_rows, int m_cols, const float* __restrict__ vector, int n_batch,
|
||||
|
||||
@@ -0,0 +1,333 @@
|
||||
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_PORTABLE_TENSOR_UTILS_H_
|
||||
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_PORTABLE_TENSOR_UTILS_H_
|
||||
|
||||
#include "tensorflow/lite/kernels/internal/reference/portable_tensor_utils_impl.h"
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#define __restrict__ __restrict
|
||||
#endif
|
||||
|
||||
namespace tflite {
|
||||
namespace tensor_utils {
|
||||
|
||||
// Check if all entries of a vector are zero for float.
|
||||
bool IsZeroVector(const float* vector, int v_size) {
|
||||
return PortableIsZeroVector(vector, v_size);
|
||||
}
|
||||
|
||||
// Check if all entries of a vector are zero for int8_t.
|
||||
bool IsZeroVector(const int8_t* vector, int v_size) {
|
||||
return PortableIsZeroVector(vector, v_size);
|
||||
}
|
||||
|
||||
void SymmetricQuantizeFloats(const float* values, const int size,
|
||||
int8_t* quantized_values, float* min, float* max,
|
||||
float* scaling_factor) {
|
||||
PortableSymmetricQuantizeFloats(values, size, quantized_values, min, max,
|
||||
scaling_factor);
|
||||
}
|
||||
|
||||
void SymmetricQuantizeFloats(const float* values, const int size,
|
||||
int8_t* quantized_values, float min_value,
|
||||
float max_value, float* scaling_factor) {
|
||||
PortableSymmetricQuantizeFloats(values, size, quantized_values, min_value,
|
||||
max_value, scaling_factor);
|
||||
}
|
||||
|
||||
void AsymmetricQuantizeFloats(const float* values, const int size,
|
||||
int8_t* quantized_values, float* scaling_factor,
|
||||
int32_t* offset) {
|
||||
PortableAsymmetricQuantizeFloats(values, size, quantized_values,
|
||||
scaling_factor, offset);
|
||||
}
|
||||
|
||||
void MatrixBatchVectorMultiplyAccumulate(const float* matrix, int m_rows,
|
||||
int m_cols, const float* vector,
|
||||
int n_batch, float* result) {
|
||||
PortableMatrixBatchVectorMultiplyAccumulate(matrix, m_rows, m_cols, vector,
|
||||
n_batch, result);
|
||||
}
|
||||
|
||||
void MatrixBatchVectorMultiplyAccumulate(const int8_t* __restrict__ matrix,
|
||||
const int m_rows, const int m_cols,
|
||||
const int8_t* __restrict__ vector,
|
||||
const float* scaling_factors,
|
||||
int n_batch,
|
||||
float* __restrict__ result) {
|
||||
PortableMatrixBatchVectorMultiplyAccumulate(matrix, m_rows, m_cols, vector,
|
||||
scaling_factors, n_batch, result);
|
||||
}
|
||||
|
||||
void MatrixBatchVectorMultiplyAccumulate(
|
||||
const int8_t* __restrict__ matrix, const int m_rows, const int m_cols,
|
||||
const int8_t* __restrict__ vectors, const float* scaling_factors,
|
||||
int n_batch, float* __restrict__ result, const float* per_channel_scale,
|
||||
const int32_t* input_offset, int32_t* scratch, int32_t* row_sums,
|
||||
bool* compute_row_sums, CpuBackendContext* context) {
|
||||
PortableMatrixBatchVectorMultiplyAccumulate(
|
||||
matrix, m_rows, m_cols, vectors, scaling_factors, n_batch, result,
|
||||
per_channel_scale, input_offset, scratch, row_sums, compute_row_sums,
|
||||
context);
|
||||
}
|
||||
|
||||
void MatrixBatchVectorMultiplyAccumulate(const int8_t* __restrict__ matrix,
|
||||
const int m_rows, const int m_cols,
|
||||
const int8_t* __restrict__ vector,
|
||||
const float* scaling_factors,
|
||||
int n_batch, int32_t* scratch,
|
||||
float* __restrict__ result,
|
||||
CpuBackendContext* context) {
|
||||
PortableMatrixBatchVectorMultiplyAccumulate(matrix, m_rows, m_cols, vector,
|
||||
scaling_factors, n_batch, result);
|
||||
}
|
||||
|
||||
void SparseMatrixBatchVectorMultiplyAccumulate1x4(
|
||||
const float* __restrict__ matrix, const int32_t* __restrict__ segments,
|
||||
const int32_t* __restrict__ indices, int m_rows, int m_cols,
|
||||
const float* __restrict__ vector, int n_batch, float* __restrict__ result) {
|
||||
PortableSparseMatrixBatchVectorMultiplyAccumulate1x4(
|
||||
matrix, segments, indices, m_rows, m_cols, vector, n_batch, result);
|
||||
}
|
||||
|
||||
void SparseMatrixBatchVectorMultiplyAccumulate(
|
||||
const float* __restrict__ matrix, const uint8_t* __restrict__ ledger,
|
||||
int m_rows, int m_cols, const float* __restrict__ vector, int n_batch,
|
||||
float* __restrict__ result) {
|
||||
PortableSparseMatrixBatchVectorMultiplyAccumulate(
|
||||
matrix, ledger, m_rows, m_cols, vector, n_batch, result);
|
||||
}
|
||||
|
||||
void SparseMatrixBatchVectorMultiplyAccumulate1x16(
|
||||
const int8_t* __restrict__ matrix, const int32_t* __restrict__ segments,
|
||||
const int32_t* __restrict__ indices, int m_rows, int m_cols,
|
||||
const int8_t* __restrict__ vector, const int32_t* __restrict__ bias_vector,
|
||||
int n_batch, const int32_t input_offset, const int32_t output_multiplier,
|
||||
const int32_t output_shift, const int32_t output_offset,
|
||||
const int32_t output_activation_min, const int32_t output_activation_max,
|
||||
|
||||
int8_t* __restrict__ result) {
|
||||
PortableSparseMatrixBatchVectorMultiplyAccumulate1x16(
|
||||
matrix, segments, indices, m_rows, m_cols, vector, bias_vector, n_batch,
|
||||
input_offset, output_multiplier, output_shift, output_offset,
|
||||
output_activation_min, output_activation_max, result);
|
||||
}
|
||||
|
||||
void SparseMatrixBatchVectorMultiplyAccumulate(
|
||||
const int8_t* __restrict__ matrix, const uint8_t* ledger, const int m_rows,
|
||||
const int m_cols, const int8_t* __restrict__ vectors,
|
||||
const float* scaling_factors, int n_batch, float* __restrict__ result) {
|
||||
PortableSparseMatrixBatchVectorMultiplyAccumulate(
|
||||
matrix, ledger, m_rows, m_cols, vectors, scaling_factors, n_batch,
|
||||
result);
|
||||
}
|
||||
|
||||
void MatrixBatchVectorMultiplyAccumulate(
|
||||
const int8_t* input, const int32_t* bias,
|
||||
const int8_t* input_to_gate_weights, int32_t multiplier, int32_t shift,
|
||||
int32_t n_batch, int32_t n_input, int32_t n_output, int32_t output_zp,
|
||||
int32_t* scratch, int16_t* output, CpuBackendContext* context) {
|
||||
PortableMatrixBatchVectorMultiplyAccumulate(
|
||||
input, bias, input_to_gate_weights, multiplier, shift, n_batch, n_input,
|
||||
n_output, output_zp, scratch, output, context);
|
||||
}
|
||||
|
||||
void MatrixBatchVectorMultiplyAccumulate(
|
||||
const int8_t* input, const int32_t* bias,
|
||||
const int8_t* input_to_gate_weights, int32_t multiplier, int32_t shift,
|
||||
int32_t n_batch, int32_t n_input, int32_t n_output, int32_t output_zp,
|
||||
int32_t* scratch, int8_t* output, CpuBackendContext* context) {
|
||||
PortableMatrixBatchVectorMultiplyAccumulate(
|
||||
input, bias, input_to_gate_weights, multiplier, shift, n_batch, n_input,
|
||||
n_output, output_zp, scratch, output, context);
|
||||
}
|
||||
|
||||
void MatrixScalarMultiplyAccumulate(const int8_t* matrix, int32_t scalar,
|
||||
int32_t n_row, int32_t n_col,
|
||||
int32_t* output) {
|
||||
PortableMatrixScalarMultiplyAccumulate(matrix, scalar, n_row, n_col, output);
|
||||
}
|
||||
|
||||
void MatrixBatchVectorMultiply(const int8_t* input, int32_t input_zeropoint,
|
||||
const int8_t* input_to_gate_weights,
|
||||
int32_t input_to_gate_effective_scale_a,
|
||||
int32_t input_to_gate_effective_scale_b,
|
||||
int32_t n_batch, int32_t n_input, int32_t n_cell,
|
||||
int8_t* gate_output, int8_t gate_output_zp) {
|
||||
PortableMatrixBatchVectorMultiply(
|
||||
input, input_zeropoint, input_to_gate_weights,
|
||||
input_to_gate_effective_scale_a, input_to_gate_effective_scale_b, n_batch,
|
||||
n_input, n_cell, gate_output, gate_output_zp);
|
||||
}
|
||||
|
||||
void MatrixBatchVectorMultiply(const int16_t* hidden,
|
||||
const int8_t* hidden_to_output_weights,
|
||||
int32_t proj_effective_scale_a,
|
||||
int32_t proj_effective_scale_b,
|
||||
const int32_t* gate_bias, int32_t n_batch,
|
||||
int32_t n_hidden, int32_t n_output,
|
||||
int32_t output_zp, int8_t* proj_output) {
|
||||
PortableMatrixBatchVectorMultiply(hidden, hidden_to_output_weights,
|
||||
proj_effective_scale_a,
|
||||
proj_effective_scale_b, gate_bias, n_batch,
|
||||
n_hidden, n_output, output_zp, proj_output);
|
||||
}
|
||||
|
||||
void ApplyLayerNorm(const int16_t* input, const int16_t* layer_norm_weights,
|
||||
const int32_t* bias, int32_t layer_norm_scale_a,
|
||||
int32_t layer_norm_scale_b, int32_t variance_limit,
|
||||
int n_batch, int n_input, int16_t* output) {
|
||||
PortableApplyLayerNorm(input, layer_norm_weights, bias, layer_norm_scale_a,
|
||||
layer_norm_scale_b, variance_limit, n_batch, n_input,
|
||||
output);
|
||||
}
|
||||
|
||||
void ApplyLayerNormFloat(const int16_t* input,
|
||||
const int16_t* layer_norm_weights,
|
||||
int32_t layer_norm_scale_a, int32_t layer_norm_scale_b,
|
||||
const int32_t* bias, int n_batch, int n_input,
|
||||
int16_t* output) {
|
||||
PortableApplyLayerNormFloat(input, layer_norm_weights, layer_norm_scale_a,
|
||||
layer_norm_scale_b, bias, n_batch, n_input,
|
||||
output);
|
||||
}
|
||||
|
||||
void ApplySigmoid(const int16_t* input, int32_t n_batch, int32_t n_input,
|
||||
int16_t* output) {
|
||||
PortableApplySigmoid(input, n_batch, n_input, output);
|
||||
}
|
||||
|
||||
void ApplySigmoidFloat(const int16_t* input, int32_t n_batch, int32_t n_input,
|
||||
int16_t* output) {
|
||||
PortableApplySigmoidFloat(input, n_batch, n_input, output);
|
||||
}
|
||||
|
||||
void ApplyTanh(int32_t integer_bits, const int16_t* input, int32_t n_batch,
|
||||
int32_t n_input, int16_t* output) {
|
||||
PortableApplyTanh(integer_bits, input, n_batch, n_input, output);
|
||||
}
|
||||
|
||||
void ApplyTanhFloat(const int16_t* input, int32_t n_batch, int32_t n_input,
|
||||
int32_t integer_bits, int16_t* output) {
|
||||
PortableApplyTanhFloat(input, n_batch, n_input, integer_bits, output);
|
||||
}
|
||||
|
||||
void CwiseMul(const int16_t* input_1, const int16_t* input_2, int n_batch,
|
||||
int n_input, int shift, int16_t* output) {
|
||||
PortableCwiseMul(input_1, input_2, n_batch, n_input, shift, output);
|
||||
}
|
||||
|
||||
void CwiseMul(const int16_t* input_1, const int16_t* input_2,
|
||||
int32_t multiplier, int32_t shift, int32_t n_batch,
|
||||
int32_t n_input, int32_t output_zp, int8_t* output) {
|
||||
PortableCwiseMul(input_1, input_2, multiplier, shift, n_batch, n_input,
|
||||
output_zp, output);
|
||||
}
|
||||
|
||||
void CwiseAdd(const int16_t* input_1, const int16_t* input_2, int n_batch,
|
||||
int n_input, int16_t* output) {
|
||||
PortableCwiseAdd(input_1, input_2, n_batch, n_input, output);
|
||||
}
|
||||
|
||||
void CwiseClipping(float* vector, const int v_size,
|
||||
const float clipping_value) {
|
||||
PortableCwiseClipping(vector, v_size, clipping_value);
|
||||
}
|
||||
|
||||
void CwiseClipping(int16_t* vector, const int v_size,
|
||||
const int16_t clipping_value) {
|
||||
PortableCwiseClipping(vector, v_size, clipping_value);
|
||||
}
|
||||
|
||||
void CwiseClipping(int8_t* vector, const int v_size,
|
||||
const int8_t clipping_value) {
|
||||
PortableCwiseClipping(vector, v_size, clipping_value);
|
||||
}
|
||||
|
||||
void VectorBatchVectorCwiseProductAccumulate(const int16_t* vector, int v_size,
|
||||
const int16_t* batch_vector,
|
||||
int n_batch, int32_t multiplier,
|
||||
int shift, int16_t* result) {
|
||||
PortableVectorBatchVectorCwiseProductAccumulate(
|
||||
vector, v_size, batch_vector, n_batch, multiplier, shift, result);
|
||||
}
|
||||
|
||||
float VectorVectorDotProduct(const float* vector1, const float* vector2,
|
||||
int v_size) {
|
||||
return PortableVectorVectorDotProduct(vector1, vector2, v_size);
|
||||
}
|
||||
|
||||
void BatchVectorBatchVectorDotProduct(const int16_t* vector1,
|
||||
const int16_t* vector2, int v_size,
|
||||
int n_batch, int32_t* result) {
|
||||
PortableBatchVectorBatchVectorDotProduct(vector1, vector2, v_size, n_batch,
|
||||
result);
|
||||
}
|
||||
|
||||
void Sub1Vector(const float* vector, int v_size, float* result) {
|
||||
PortableSub1Vector(vector, v_size, result);
|
||||
}
|
||||
|
||||
void Sub1Vector(const int16_t* vector, int v_size, int16_t* result) {
|
||||
PortableSub1Vector(vector, v_size, result);
|
||||
}
|
||||
|
||||
// Multiply all elements of vector with a scalar.
|
||||
void VectorScalarMultiply(const int8_t* vector, int v_size, float scale,
|
||||
float* result) {
|
||||
PortableVectorScalarMultiply(vector, v_size, scale, result);
|
||||
}
|
||||
|
||||
void ReductionSumVector(const float* input_vector, float* output_vector,
|
||||
int output_size, int reduction_size) {
|
||||
PortableReductionSumVector(input_vector, output_vector, output_size,
|
||||
reduction_size);
|
||||
}
|
||||
|
||||
void ReductionSumVector(const int32_t* input_vector, int32_t* output_vector,
|
||||
int output_size, int reduction_size) {
|
||||
PortableReductionSumVector(input_vector, output_vector, output_size,
|
||||
reduction_size);
|
||||
}
|
||||
|
||||
void ReductionSumVector(const int8_t* input_vector, int32_t* output_vector,
|
||||
int output_size, int reduction_size) {
|
||||
PortableReductionSumVector(input_vector, output_vector, output_size,
|
||||
reduction_size);
|
||||
}
|
||||
|
||||
void MeanStddevNormalization(const float* input_vector, float* output_vector,
|
||||
int v_size, int n_batch) {
|
||||
PortableMeanStddevNormalization(input_vector, output_vector, v_size, n_batch);
|
||||
}
|
||||
|
||||
void TwoGateSaturatingAdd(const int8_t* input, int8_t input_zp,
|
||||
const int8_t* recurrent, int8_t recurrent_zp,
|
||||
int32_t input_effective_scale_a,
|
||||
int32_t input_effective_scale_b,
|
||||
int32_t recurrent_effective_scale_a,
|
||||
int32_t recurrent_effective_scale_b, int32_t n_batch,
|
||||
int32_t n_cell, int16_t* output) {
|
||||
PortableTwoGateSaturatingAdd(
|
||||
input, input_zp, recurrent, recurrent_zp, input_effective_scale_a,
|
||||
input_effective_scale_b, recurrent_effective_scale_a,
|
||||
recurrent_effective_scale_b, n_batch, n_cell, output);
|
||||
}
|
||||
|
||||
} // namespace tensor_utils
|
||||
} // namespace tflite
|
||||
|
||||
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_PORTABLE_TENSOR_UTILS_H_
|
||||
@@ -87,6 +87,15 @@ void PortableSparseMatrixBatchVectorMultiplyAccumulate(
|
||||
int m_rows, int m_cols, const float* __restrict__ vector, int n_batch,
|
||||
float* __restrict__ result);
|
||||
|
||||
void PortableSparseMatrixBatchVectorMultiplyAccumulate1x16(
|
||||
const int8_t* __restrict__ matrix, const int32_t* __restrict__ segments,
|
||||
const int32_t* __restrict__ indices, int m_rows, int m_cols,
|
||||
const int8_t* __restrict__ vector, const int32_t* __restrict__ bias_vector,
|
||||
int n_batch, const int32_t input_offset, const int32_t output_multiplier,
|
||||
const int32_t output_shift, const int32_t output_offset,
|
||||
const int32_t output_activation_min, const int32_t output_activation_max,
|
||||
int8_t* __restrict__ result);
|
||||
|
||||
void PortableSparseMatrixBatchVectorMultiplyAccumulate(
|
||||
const int8_t* __restrict__ matrix, const uint8_t* ledger, const int m_rows,
|
||||
const int m_cols, const int8_t* __restrict__ vectors,
|
||||
|
||||
@@ -273,6 +273,9 @@ void BroadcastQuantSubSlow(const ArithmeticParams& params,
|
||||
const T* input2_data,
|
||||
const RuntimeShape& output_shape, T* output_data) {
|
||||
ruy::profiler::ScopeLabel label("BroadcastQuantSubSlow/T");
|
||||
TFLITE_DCHECK_LE(input1_shape.DimensionsCount(), N);
|
||||
TFLITE_DCHECK_LE(input2_shape.DimensionsCount(), N);
|
||||
TFLITE_DCHECK_LE(output_shape.DimensionsCount(), N);
|
||||
NdArrayDesc<N> desc1;
|
||||
NdArrayDesc<N> desc2;
|
||||
NdArrayDesc<N> output_desc;
|
||||
|
||||
@@ -27,6 +27,7 @@ limitations under the License.
|
||||
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/context_util.h"
|
||||
#include "tensorflow/lite/kernels/internal/cppmath.h"
|
||||
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
||||
|
||||
@@ -466,7 +467,7 @@ TfLiteStatus CalculateShapeForBroadcast(TfLiteContext* context,
|
||||
const int d1 = i >= dims1 ? 1 : SizeOfDimension(input1, dims1 - i - 1);
|
||||
const int d2 = i >= dims2 ? 1 : SizeOfDimension(input2, dims2 - i - 1);
|
||||
if (!(d1 == d2 || d1 == 1 || d2 == 1)) {
|
||||
context->ReportError(context,
|
||||
TF_LITE_KERNEL_LOG(context,
|
||||
"Given shapes, %s and %s, are not broadcastable.",
|
||||
GetShapeDebugString(input1->dims).c_str(),
|
||||
GetShapeDebugString(input2->dims).c_str());
|
||||
@@ -504,8 +505,8 @@ TfLiteStatus CalculateShapeForBroadcast(TfLiteContext* context,
|
||||
if (min_value == 0) max_value = 0;
|
||||
if (!(d1 == 1 || d1 == max_value) || !(d2 == 1 || d2 == max_value) ||
|
||||
!(d3 == 1 || d3 == max_value)) {
|
||||
context->ReportError(
|
||||
context, "Given shapes, %s, %s and %s, are not broadcastable.",
|
||||
TF_LITE_KERNEL_LOG(context,
|
||||
"Given shapes, %s, %s and %s, are not broadcastable.",
|
||||
GetShapeDebugString(input1->dims).c_str(),
|
||||
GetShapeDebugString(input2->dims).c_str(),
|
||||
GetShapeDebugString(input3->dims).c_str());
|
||||
@@ -529,6 +530,9 @@ int TfLiteTypeGetSize(TfLiteType type) {
|
||||
return 1;
|
||||
case kTfLiteBool:
|
||||
return sizeof(bool);
|
||||
case kTfLiteUInt16:
|
||||
static_assert(sizeof(uint16_t) == 2, "");
|
||||
return 2;
|
||||
case kTfLiteInt16:
|
||||
static_assert(sizeof(int16_t) == 2, "");
|
||||
return 2;
|
||||
@@ -575,4 +579,15 @@ bool IsMobilePlatform() {
|
||||
return false;
|
||||
}
|
||||
|
||||
bool HasUnspecifiedDimension(const TfLiteTensor* tensor) {
|
||||
#ifndef TF_LITE_STATIC_MEMORY
|
||||
if (tensor->dims_signature) {
|
||||
for (int i : TfLiteIntArrayView(tensor->dims_signature)) {
|
||||
if (i == -1) return true;
|
||||
}
|
||||
}
|
||||
#endif // TF_LITE_STATIC_MEMORY
|
||||
return false;
|
||||
}
|
||||
|
||||
} // namespace tflite
|
||||
|
||||
@@ -314,6 +314,9 @@ int TfLiteTypeGetSize(TfLiteType type);
|
||||
// Whether the current platform is mobile (Android or iOS).
|
||||
bool IsMobilePlatform();
|
||||
|
||||
// Returns whether there is unspecified dimension in the tensor's dim signature.
|
||||
bool HasUnspecifiedDimension(const TfLiteTensor* tensor);
|
||||
|
||||
} // namespace tflite
|
||||
|
||||
#endif // TENSORFLOW_LITE_KERNELS_KERNEL_UTIL_H_
|
||||
|
||||
@@ -29,8 +29,12 @@ AllOpsResolver::AllOpsResolver() {
|
||||
AddAssignVariable();
|
||||
AddAveragePool2D();
|
||||
AddBatchToSpaceNd();
|
||||
AddBroadcastArgs();
|
||||
AddBroadcastTo();
|
||||
AddCallOnce();
|
||||
AddCast();
|
||||
AddCeil();
|
||||
AddCircularBuffer();
|
||||
AddConcatenation();
|
||||
AddConv2D();
|
||||
AddCos();
|
||||
@@ -49,9 +53,12 @@ AllOpsResolver::AllOpsResolver() {
|
||||
AddFloorDiv();
|
||||
AddFloorMod();
|
||||
AddFullyConnected();
|
||||
AddGather();
|
||||
AddGatherNd();
|
||||
AddGreater();
|
||||
AddGreaterEqual();
|
||||
AddHardSwish();
|
||||
AddIf();
|
||||
AddL2Normalization();
|
||||
AddL2Pool2D();
|
||||
AddLeakyRelu();
|
||||
@@ -66,6 +73,7 @@ AllOpsResolver::AllOpsResolver() {
|
||||
AddMaximum();
|
||||
AddMean();
|
||||
AddMinimum();
|
||||
AddMirrorPad();
|
||||
AddMul();
|
||||
AddNeg();
|
||||
AddNotEqual();
|
||||
@@ -85,6 +93,7 @@ AllOpsResolver::AllOpsResolver() {
|
||||
AddRsqrt();
|
||||
AddShape();
|
||||
AddSin();
|
||||
AddSlice();
|
||||
AddSoftmax();
|
||||
AddSpaceToBatchNd();
|
||||
AddSpaceToDepth();
|
||||
@@ -101,6 +110,8 @@ AllOpsResolver::AllOpsResolver() {
|
||||
AddTransposeConv();
|
||||
AddUnpack();
|
||||
AddVarHandle();
|
||||
AddWhile();
|
||||
AddZerosLike();
|
||||
}
|
||||
|
||||
} // namespace tflite
|
||||
|
||||
@@ -0,0 +1,107 @@
|
||||
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/micro/fake_micro_context.h"
|
||||
|
||||
#include "tensorflow/lite/kernels/internal/compatibility.h"
|
||||
#include "tensorflow/lite/micro/micro_allocator.h"
|
||||
#include "tensorflow/lite/micro/micro_arena_constants.h"
|
||||
#include "tensorflow/lite/micro/micro_error_reporter.h"
|
||||
#include "tensorflow/lite/micro/simple_memory_allocator.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace {
|
||||
// Dummy static variables to allow creation of dummy MicroAllocator.
|
||||
// All tests are guarateed to run serially.
|
||||
static constexpr int KDummyTensorArenaSize = 256;
|
||||
static uint8_t dummy_tensor_arena[KDummyTensorArenaSize];
|
||||
} // namespace
|
||||
|
||||
FakeMicroContext::FakeMicroContext(TfLiteTensor* tensors,
|
||||
SimpleMemoryAllocator* allocator,
|
||||
MicroGraph* micro_graph)
|
||||
: MicroContext(
|
||||
MicroAllocator::Create(dummy_tensor_arena, KDummyTensorArenaSize,
|
||||
GetMicroErrorReporter()),
|
||||
nullptr, micro_graph),
|
||||
tensors_(tensors),
|
||||
allocator_(allocator) {}
|
||||
|
||||
TfLiteTensor* FakeMicroContext::AllocateTempTfLiteTensor(int tensor_index) {
|
||||
allocated_tensor_count_++;
|
||||
return &tensors_[tensor_index];
|
||||
}
|
||||
|
||||
void FakeMicroContext::DeallocateTempTfLiteTensor(TfLiteTensor* tensor) {
|
||||
allocated_tensor_count_--;
|
||||
}
|
||||
|
||||
bool FakeMicroContext::IsAllTempTfLiteTensorDeallocated() {
|
||||
return !allocated_tensor_count_;
|
||||
}
|
||||
|
||||
TfLiteEvalTensor* FakeMicroContext::GetEvalTensor(int tensor_index) {
|
||||
TfLiteEvalTensor* eval_tensor =
|
||||
reinterpret_cast<TfLiteEvalTensor*>(allocator_->AllocateTemp(
|
||||
sizeof(TfLiteEvalTensor), alignof(TfLiteEvalTensor)));
|
||||
TFLITE_DCHECK(eval_tensor != nullptr);
|
||||
|
||||
// In unit tests, the TfLiteTensor pointer contains the source of truth for
|
||||
// buffers and values:
|
||||
eval_tensor->data = tensors_[tensor_index].data;
|
||||
eval_tensor->dims = tensors_[tensor_index].dims;
|
||||
eval_tensor->type = tensors_[tensor_index].type;
|
||||
return eval_tensor;
|
||||
}
|
||||
|
||||
void* FakeMicroContext::AllocatePersistentBuffer(size_t bytes) {
|
||||
// FakeMicroContext use SimpleMemoryAllocator, which does not automatically
|
||||
// apply the buffer alignment like MicroAllocator.
|
||||
// The buffer alignment is potentially wasteful but allows the
|
||||
// fake_micro_context to work correctly with optimized kernels.
|
||||
return allocator_->AllocatePersistentBuffer(bytes,
|
||||
MicroArenaBufferAlignment());
|
||||
}
|
||||
|
||||
TfLiteStatus FakeMicroContext::RequestScratchBufferInArena(size_t bytes,
|
||||
int* buffer_index) {
|
||||
TFLITE_DCHECK(buffer_index != nullptr);
|
||||
|
||||
if (scratch_buffer_count_ == kNumScratchBuffers_) {
|
||||
MicroPrintf("Exceeded the maximum number of scratch tensors allowed (%d).",
|
||||
kNumScratchBuffers_);
|
||||
return kTfLiteError;
|
||||
}
|
||||
|
||||
// For tests, we allocate scratch buffers from the tail and keep them around
|
||||
// for the lifetime of model. This means that the arena size in the tests will
|
||||
// be more than what we would have if the scratch buffers could share memory.
|
||||
scratch_buffers_[scratch_buffer_count_] =
|
||||
allocator_->AllocatePersistentBuffer(bytes, MicroArenaBufferAlignment());
|
||||
TFLITE_DCHECK(scratch_buffers_[scratch_buffer_count_] != nullptr);
|
||||
|
||||
*buffer_index = scratch_buffer_count_++;
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
void* FakeMicroContext::GetScratchBuffer(int buffer_index) {
|
||||
TFLITE_DCHECK(scratch_buffer_count_ <= kNumScratchBuffers_);
|
||||
if (buffer_index >= scratch_buffer_count_) {
|
||||
return nullptr;
|
||||
}
|
||||
return scratch_buffers_[buffer_index];
|
||||
}
|
||||
|
||||
} // namespace tflite
|
||||
@@ -0,0 +1,56 @@
|
||||
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef TENSORFLOW_LITE_MICRO_FAKE_MICRO_CONTEXT_H_
|
||||
#define TENSORFLOW_LITE_MICRO_FAKE_MICRO_CONTEXT_H_
|
||||
|
||||
#include "tensorflow/lite/micro/micro_context.h"
|
||||
#include "tensorflow/lite/micro/micro_graph.h"
|
||||
|
||||
namespace tflite {
|
||||
// A fake of MicroContext for kernel util tests.
|
||||
class FakeMicroContext : public MicroContext {
|
||||
public:
|
||||
FakeMicroContext(TfLiteTensor* tensors, SimpleMemoryAllocator* allocator,
|
||||
MicroGraph* micro_graph);
|
||||
|
||||
void* AllocatePersistentBuffer(size_t bytes) override;
|
||||
TfLiteStatus RequestScratchBufferInArena(size_t bytes,
|
||||
int* buffer_index) override;
|
||||
void* GetScratchBuffer(int buffer_index) override;
|
||||
|
||||
TfLiteTensor* AllocateTempTfLiteTensor(int tensor_index) override;
|
||||
void DeallocateTempTfLiteTensor(TfLiteTensor* tensor) override;
|
||||
bool IsAllTempTfLiteTensorDeallocated();
|
||||
|
||||
TfLiteEvalTensor* GetEvalTensor(int tensor_index) override;
|
||||
|
||||
private:
|
||||
static constexpr int kNumScratchBuffers_ = 12;
|
||||
|
||||
int scratch_buffer_count_ = 0;
|
||||
uint8_t* scratch_buffers_[kNumScratchBuffers_];
|
||||
|
||||
TfLiteTensor* tensors_;
|
||||
int allocated_tensor_count_ = 0;
|
||||
|
||||
SimpleMemoryAllocator* allocator_;
|
||||
|
||||
TF_LITE_REMOVE_VIRTUAL_DELETE
|
||||
};
|
||||
|
||||
} // namespace tflite
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_FAKE_MICRO_CONTEXT_H_
|
||||
@@ -0,0 +1,100 @@
|
||||
/* Copyright 2022 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#ifndef TENSORFLOW_LITE_MICRO_IBUFFER_ALLOCATOR_H_
|
||||
#define TENSORFLOW_LITE_MICRO_IBUFFER_ALLOCATOR_H_
|
||||
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
|
||||
#include "tensorflow/lite/c/c_api_types.h"
|
||||
|
||||
namespace tflite {
|
||||
// Interface classes that the TFLM framework relies on to get buffers it needs.
|
||||
// There are two types of buffers that the TFLM framework requires: persistent
|
||||
// and non-persistent. Persistent buffers, once allocated, are never freed by
|
||||
// the TFLM framework. Non-persist buffers can be allocated and deallocated by
|
||||
// the TFLM framework. This file defines two interfaces classes that TFLM
|
||||
// framework will rely on to manage these buffers.
|
||||
|
||||
// Interface class for managing persistent buffers.
|
||||
class IPersistentBufferAllocator {
|
||||
public:
|
||||
IPersistentBufferAllocator() {}
|
||||
virtual ~IPersistentBufferAllocator() {}
|
||||
|
||||
// Allocates persistent memory. The persistent buffer is never freed.
|
||||
virtual uint8_t* AllocatePersistentBuffer(size_t size, size_t alignment) = 0;
|
||||
|
||||
// Returns the size of all persistent allocations in bytes.
|
||||
virtual size_t GetPersistentUsedBytes() const = 0;
|
||||
};
|
||||
|
||||
// Interface class for managing non-persistent buffers.
|
||||
// The default non-persistent buffers are temp buffers that are not resizable.
|
||||
// Support of at least one resizable buffer is required.
|
||||
class INonPersistentBufferAllocator {
|
||||
public:
|
||||
INonPersistentBufferAllocator() {}
|
||||
virtual ~INonPersistentBufferAllocator() {}
|
||||
|
||||
// Allocates a temporary buffer. This buffer is not resizable.
|
||||
virtual uint8_t* AllocateTemp(size_t size, size_t alignment) = 0;
|
||||
|
||||
// Signals that a temporary buffer is no longer needed.
|
||||
virtual void DeallocateTemp(uint8_t* buf) = 0;
|
||||
|
||||
// Returns true if all temporary buffers are already deallocated.
|
||||
virtual bool IsAllTempDeallocated() = 0;
|
||||
|
||||
// Signals that all temporary allocations can be reclaimed. TFLM calls this
|
||||
// API when it knows that all temporary buffers that it requested has been
|
||||
// deallocated. The goal of API is to facilitate implementations of
|
||||
// INonPersistentBufferAllocator can reuse buffer with some reasonable
|
||||
// complexity.
|
||||
virtual TfLiteStatus ResetTempAllocations() = 0;
|
||||
|
||||
// Returns a buffer that is resizable viable ResizeBuffer().
|
||||
virtual uint8_t* AllocateResizableBuffer(size_t size, size_t alignment) = 0;
|
||||
|
||||
// Resizes a buffer that is previously returned by the
|
||||
// AllocateResizableBuffer.
|
||||
virtual TfLiteStatus ResizeBuffer(uint8_t* resizable_buf, size_t size,
|
||||
size_t alignment) = 0;
|
||||
|
||||
// Frees up the memory occupied by the resizable buffer.
|
||||
virtual TfLiteStatus DeallocateResizableBuffer(uint8_t* resizable_buf) = 0;
|
||||
|
||||
// Returns a pointer pointing to the start of the overlay memory, which is
|
||||
// used for activation tensors and scratch buffers by kernels at Invoke stage.
|
||||
virtual uint8_t* GetOverlayMemoryAddress() const = 0;
|
||||
|
||||
// Reserves the size of the overlay memory. This overlay is reserved for the
|
||||
// kernels at Invoke stage. This is referred to as the overlay because before
|
||||
// Invoket state, the same memory can be used for temp buffers. The layout of
|
||||
// the memory is planned by the memory planner separately at Invoke stage.
|
||||
virtual TfLiteStatus ReserveNonPersistentOverlayMemory(size_t size,
|
||||
size_t alignment) = 0;
|
||||
|
||||
// Returns the size of non-persistent buffer in use.
|
||||
virtual size_t GetNonPersistentUsedBytes() const = 0;
|
||||
|
||||
// Returns the number of bytes available with a given alignment. This number
|
||||
// takes in account any temporary allocations.
|
||||
virtual size_t GetAvailableMemory(size_t alignment) const = 0;
|
||||
};
|
||||
|
||||
} // namespace tflite
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_IBUFFER_ALLOCATOR_H_
|
||||
@@ -117,15 +117,21 @@ TfLiteStatus ReluPrepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
ReluOpData* data = static_cast<ReluOpData*>(node->user_data);
|
||||
|
||||
const TfLiteTensor* input = GetInput(context, node, kActivationsInputTensor);
|
||||
MicroContext* micro_context = GetMicroContext(context);
|
||||
TfLiteTensor* input =
|
||||
micro_context->AllocateTempInputTensor(node, kActivationsInputTensor);
|
||||
TF_LITE_ENSURE(context, input != nullptr);
|
||||
TfLiteTensor* output = GetOutput(context, node, kActivationsOutputTensor);
|
||||
TfLiteTensor* output =
|
||||
micro_context->AllocateTempOutputTensor(node, kActivationsOutputTensor);
|
||||
TF_LITE_ENSURE(context, output != nullptr);
|
||||
|
||||
if (input->type == kTfLiteInt8) {
|
||||
CalculateReluOpData<int8_t>(input, output, data);
|
||||
}
|
||||
|
||||
micro_context->DeallocateTempTfLiteTensor(input);
|
||||
micro_context->DeallocateTempTfLiteTensor(output);
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
@@ -133,7 +139,9 @@ TfLiteStatus Relu6Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
Relu6OpData* data = static_cast<Relu6OpData*>(node->user_data);
|
||||
|
||||
const TfLiteTensor* input = GetInput(context, node, kActivationsInputTensor);
|
||||
MicroContext* micro_context = GetMicroContext(context);
|
||||
TfLiteTensor* input =
|
||||
micro_context->AllocateTempInputTensor(node, kActivationsInputTensor);
|
||||
TF_LITE_ENSURE(context, input != nullptr);
|
||||
|
||||
if (input->type == kTfLiteInt8) {
|
||||
@@ -142,6 +150,8 @@ TfLiteStatus Relu6Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
data->zero_int8 = input->params.zero_point;
|
||||
}
|
||||
|
||||
micro_context->DeallocateTempTfLiteTensor(input);
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
|
||||
@@ -80,11 +80,15 @@ TfLiteStatus AddPrepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
TFLITE_DCHECK(node->builtin_data != nullptr);
|
||||
|
||||
const TfLiteTensor* input1 = GetInput(context, node, kAddInputTensor1);
|
||||
MicroContext* micro_context = GetMicroContext(context);
|
||||
TfLiteTensor* input1 =
|
||||
micro_context->AllocateTempInputTensor(node, kAddInputTensor1);
|
||||
TF_LITE_ENSURE(context, input1 != nullptr);
|
||||
const TfLiteTensor* input2 = GetInput(context, node, kAddInputTensor2);
|
||||
TfLiteTensor* input2 =
|
||||
micro_context->AllocateTempInputTensor(node, kAddInputTensor2);
|
||||
TF_LITE_ENSURE(context, input2 != nullptr);
|
||||
TfLiteTensor* output = GetOutput(context, node, kAddOutputTensor);
|
||||
TfLiteTensor* output =
|
||||
micro_context->AllocateTempOutputTensor(node, kAddOutputTensor);
|
||||
TF_LITE_ENSURE(context, output != nullptr);
|
||||
|
||||
OpDataAdd* data = static_cast<OpDataAdd*>(node->user_data);
|
||||
@@ -93,6 +97,9 @@ TfLiteStatus AddPrepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TF_LITE_ENSURE_STATUS(
|
||||
CalculateOpDataAdd(context, params, input1, input2, output, data));
|
||||
|
||||
micro_context->DeallocateTempTfLiteTensor(input1);
|
||||
micro_context->DeallocateTempTfLiteTensor(input2);
|
||||
micro_context->DeallocateTempTfLiteTensor(output);
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
|
||||
@@ -50,18 +50,19 @@ TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node) {
|
||||
TF_LITE_ENSURE(context, num_inputs >= 2);
|
||||
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
||||
|
||||
const TfLiteTensor* input_tensor_first;
|
||||
TF_LITE_ENSURE_OK(
|
||||
context, GetInputSafe(context, node, kInputTensor0, &input_tensor_first));
|
||||
TfLiteTensor* output;
|
||||
TF_LITE_ENSURE_OK(context,
|
||||
GetOutputSafe(context, node, kOutputTensor, &output));
|
||||
MicroContext* micro_context = GetMicroContext(context);
|
||||
TfLiteTensor* input_tensor_first =
|
||||
micro_context->AllocateTempInputTensor(node, kInputTensor0);
|
||||
TF_LITE_ENSURE(context, input_tensor_first != nullptr);
|
||||
TfLiteTensor* output =
|
||||
micro_context->AllocateTempOutputTensor(node, kOutputTensor);
|
||||
TF_LITE_ENSURE(context, output != nullptr);
|
||||
|
||||
// Check that all tensors have the same shape and type.
|
||||
TF_LITE_ENSURE_TYPES_EQ(context, output->type, input_tensor_first->type);
|
||||
for (int i = kInputTensor0 + 1; i < num_inputs; ++i) {
|
||||
const TfLiteTensor* input;
|
||||
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, i, &input));
|
||||
TfLiteTensor* input = micro_context->AllocateTempInputTensor(node, i);
|
||||
TF_LITE_ENSURE(context, input != nullptr);
|
||||
TF_LITE_ENSURE(context, HaveSameShapes(input_tensor_first, input));
|
||||
TF_LITE_ENSURE_TYPES_EQ(context, input_tensor_first->type, input->type);
|
||||
|
||||
@@ -72,6 +73,8 @@ TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node) {
|
||||
TF_LITE_ENSURE(context,
|
||||
input_tensor_first->params.scale == input->params.scale);
|
||||
}
|
||||
|
||||
micro_context->DeallocateTempTfLiteTensor(input);
|
||||
}
|
||||
|
||||
if (output->type == kTfLiteFloat32) {
|
||||
@@ -123,6 +126,9 @@ TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node) {
|
||||
return kTfLiteError;
|
||||
}
|
||||
|
||||
micro_context->DeallocateTempTfLiteTensor(input_tensor_first);
|
||||
micro_context->DeallocateTempTfLiteTensor(output);
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
|
||||
@@ -52,21 +52,19 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
input_resource_id_tensor->type == kTfLiteInt32));
|
||||
TF_LITE_ENSURE_EQ(context, NumElements(input_resource_id_tensor->dims), 1);
|
||||
|
||||
const TfLiteTensor* input_value = GetInput(context, node, kInputValue);
|
||||
tflite::MicroContext* micro_context = tflite::GetMicroContext(context);
|
||||
TfLiteTensor* input_value =
|
||||
micro_context->AllocateTempInputTensor(node, kInputValue);
|
||||
TFLITE_DCHECK(input_value != nullptr);
|
||||
|
||||
// Casting to TfliteIntArray is required since we are re-using
|
||||
// GetExecutionPlan from TfLiteContext. On TFLM this method returns a
|
||||
// MicroGraph.
|
||||
// TODO(b/188226309): Design a cleaner way to get a graph from kernel context.
|
||||
MicroGraph* graph_info;
|
||||
context->GetExecutionPlan(context,
|
||||
reinterpret_cast<TfLiteIntArray**>(&graph_info));
|
||||
MicroResourceVariables* resources = graph_info->GetResourceVariables();
|
||||
MicroGraph& graph_info = micro_context->graph();
|
||||
|
||||
MicroResourceVariables* resources = graph_info.GetResourceVariables();
|
||||
TF_LITE_ENSURE_OK(context,
|
||||
resources->Allocate(input_resource_id_tensor->data.i32[0],
|
||||
context, input_value));
|
||||
|
||||
micro_context->DeallocateTempTfLiteTensor(input_value);
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
@@ -79,14 +77,10 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
tflite::micro::GetEvalInput(context, node, kInputValue);
|
||||
TFLITE_DCHECK(input_value != nullptr);
|
||||
|
||||
// Casting to TfliteIntArray is required since we are re-using
|
||||
// GetExecutionPlan from TfLiteContext. On TFLM this method returns a
|
||||
// MicroGraph.
|
||||
// TODO(b/188226309): Design a cleaner way to get a graph from kernel context.
|
||||
MicroGraph* graph_info;
|
||||
context->GetExecutionPlan(context,
|
||||
reinterpret_cast<TfLiteIntArray**>(&graph_info));
|
||||
MicroResourceVariables* resources = graph_info->GetResourceVariables();
|
||||
tflite::MicroContext* micro_context = tflite::GetMicroContext(context);
|
||||
MicroGraph& graph_info = micro_context->graph();
|
||||
|
||||
MicroResourceVariables* resources = graph_info.GetResourceVariables();
|
||||
if (resources == nullptr) {
|
||||
MicroPrintf(
|
||||
"ASSIGN_VARIABLE requires resource variables. Please create "
|
||||
|
||||
@@ -41,8 +41,12 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TF_LITE_ENSURE_EQ(context, NumInputs(node), 3);
|
||||
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
||||
|
||||
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
||||
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
||||
MicroContext* micro_context = GetMicroContext(context);
|
||||
|
||||
TfLiteTensor* input =
|
||||
micro_context->AllocateTempInputTensor(node, kInputTensor);
|
||||
TfLiteTensor* output =
|
||||
micro_context->AllocateTempOutputTensor(node, kOutputTensor);
|
||||
TF_LITE_ENSURE(context, input != nullptr && output != nullptr);
|
||||
|
||||
TF_LITE_ENSURE(context, NumDimensions(input) >= kInputOutputMinDimensionNum);
|
||||
@@ -51,6 +55,9 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TF_LITE_ENSURE(context, NumDimensions(output) <= kInputOutputMaxDimensionNum);
|
||||
TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
|
||||
|
||||
micro_context->DeallocateTempTfLiteTensor(input);
|
||||
micro_context->DeallocateTempTfLiteTensor(output);
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
|
||||
@@ -0,0 +1,97 @@
|
||||
/* Copyright 2022 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#include "tensorflow/lite/kernels/internal/reference/broadcast_args.h"
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/micro/micro_context.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace {
|
||||
constexpr int kShape1Tensor = 0;
|
||||
constexpr int kShape2Tensor = 1;
|
||||
constexpr int kOutputTensor = 0;
|
||||
|
||||
TfLiteStatus BroadcastArgsPrepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TF_LITE_ENSURE(context, NumInputs(node) == 2);
|
||||
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
||||
|
||||
MicroContext* micro_context = GetMicroContext(context);
|
||||
TfLiteTensor* shape1 =
|
||||
micro_context->AllocateTempInputTensor(node, kShape1Tensor);
|
||||
TfLiteTensor* shape2 =
|
||||
micro_context->AllocateTempInputTensor(node, kShape2Tensor);
|
||||
TfLiteTensor* output =
|
||||
micro_context->AllocateTempOutputTensor(node, kOutputTensor);
|
||||
|
||||
TF_LITE_ENSURE(context,
|
||||
shape1->type == kTfLiteInt32 || shape1->type == kTfLiteInt64);
|
||||
TF_LITE_ENSURE_EQ(context, shape1->type, shape2->type);
|
||||
TF_LITE_ENSURE_EQ(context, shape1->type, output->type);
|
||||
|
||||
// Ensures the shapes are 1D tensor.
|
||||
TF_LITE_ENSURE_EQ(context, NumDimensions(shape1), 1);
|
||||
TF_LITE_ENSURE_EQ(context, NumDimensions(shape2), 1);
|
||||
|
||||
// Ensure the shape of the output tensor is compatible
|
||||
TF_LITE_ENSURE_EQ(context, NumDimensions(output), 1);
|
||||
|
||||
micro_context->DeallocateTempTfLiteTensor(shape1);
|
||||
micro_context->DeallocateTempTfLiteTensor(shape2);
|
||||
micro_context->DeallocateTempTfLiteTensor(output);
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus BroadcastArgsEval(TfLiteContext* context, TfLiteNode* node) {
|
||||
const TfLiteEvalTensor* shape1 =
|
||||
micro::GetEvalInput(context, node, kShape1Tensor);
|
||||
const TfLiteEvalTensor* shape2 =
|
||||
micro::GetEvalInput(context, node, kShape2Tensor);
|
||||
TfLiteEvalTensor* output = micro::GetEvalOutput(context, node, kOutputTensor);
|
||||
|
||||
if (output->type == kTfLiteInt32) {
|
||||
reference_ops::BroadcastArgs(
|
||||
micro::GetTensorShape(shape1), micro::GetTensorData<int32_t>(shape1),
|
||||
micro::GetTensorShape(shape2), micro::GetTensorData<int32_t>(shape2),
|
||||
micro::GetTensorShape(output), micro::GetTensorData<int32_t>(output));
|
||||
} else {
|
||||
reference_ops::BroadcastArgs(
|
||||
micro::GetTensorShape(shape1), micro::GetTensorData<int64_t>(shape1),
|
||||
micro::GetTensorShape(shape2), micro::GetTensorData<int64_t>(shape2),
|
||||
micro::GetTensorShape(output), micro::GetTensorData<int64_t>(output));
|
||||
}
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
TfLiteRegistration Register_BROADCAST_ARGS() {
|
||||
return {/*init=*/nullptr,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/BroadcastArgsPrepare,
|
||||
/*invoke=*/BroadcastArgsEval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
} // namespace tflite
|
||||
@@ -0,0 +1,129 @@
|
||||
/* Copyright 2022 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#include "tensorflow/lite/kernels/internal/reference/broadcast_to.h"
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/micro/micro_context.h"
|
||||
|
||||
namespace tflite {
|
||||
|
||||
namespace {
|
||||
constexpr int kInputTensor = 0;
|
||||
constexpr int kShapeTensor = 1;
|
||||
constexpr int kOutputTensor = 0;
|
||||
// Support a maximum of 5 dimensions in TFLM.
|
||||
constexpr int kMaxDims = 5;
|
||||
|
||||
TfLiteStatus ValidateOutputTensor(TfLiteContext* context, TfLiteTensor* input,
|
||||
TfLiteTensor* shape, TfLiteTensor* output) {
|
||||
// Ensures the shape is 1D tensor.
|
||||
TF_LITE_ENSURE_EQ(context, NumDimensions(shape), 1);
|
||||
|
||||
// Ensure output dims is not less than input dims.
|
||||
int input_num_dims = NumDimensions(input);
|
||||
int output_num_dims = NumDimensions(output);
|
||||
int shape_num_dims = SizeOfDimension(shape, 0);
|
||||
TF_LITE_ENSURE_MSG(context, output_num_dims == shape_num_dims,
|
||||
"Output must match with the expected shape dimension.");
|
||||
TF_LITE_ENSURE_MSG(context, input_num_dims <= output_num_dims,
|
||||
"Output shape must be broadcastable from input shape.");
|
||||
TF_LITE_ENSURE_MSG(context, output_num_dims <= kMaxDims,
|
||||
"BroadcastTo only supports 1-5D tensor.");
|
||||
|
||||
// Check if output shape is broadcastable from input shape.
|
||||
auto get_shape_data = [shape](int i) -> int32_t {
|
||||
if (shape->type == kTfLiteInt32) {
|
||||
return GetTensorData<int32_t>(shape)[i];
|
||||
} else {
|
||||
return GetTensorData<int64_t>(shape)[i];
|
||||
}
|
||||
};
|
||||
|
||||
int extending_dims = output_num_dims - input_num_dims;
|
||||
for (int idx = 0; idx < input_num_dims; ++idx) {
|
||||
TF_LITE_ENSURE_MSG(
|
||||
context,
|
||||
(SizeOfDimension(input, idx) == 1 ||
|
||||
SizeOfDimension(input, idx) == get_shape_data(extending_dims + idx)),
|
||||
"Output shape must be broadcastable from input shape.");
|
||||
}
|
||||
|
||||
// Validating the shape of the output tensor.
|
||||
tflite::RuntimeShape output_shape = tflite::GetTensorShape(output);
|
||||
for (int idx = 0; idx < output_num_dims; ++idx) {
|
||||
TF_LITE_ENSURE(context, output_shape.Dims(idx) == get_shape_data(idx));
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus BroadcastToPrepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TF_LITE_ENSURE(context, NumInputs(node) == 2);
|
||||
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
||||
MicroContext* micro_context = GetMicroContext(context);
|
||||
TfLiteTensor* input =
|
||||
micro_context->AllocateTempInputTensor(node, kInputTensor);
|
||||
TfLiteTensor* shape =
|
||||
micro_context->AllocateTempInputTensor(node, kShapeTensor);
|
||||
TfLiteTensor* output =
|
||||
micro_context->AllocateTempOutputTensor(node, kOutputTensor);
|
||||
|
||||
TF_LITE_ENSURE_MSG(context, (NumDimensions(input) <= kMaxDims),
|
||||
"BroadcastTo only supports 1-5D tensor.");
|
||||
|
||||
TF_LITE_ENSURE(context,
|
||||
shape->type == kTfLiteInt32 || shape->type == kTfLiteInt64);
|
||||
TF_LITE_ENSURE_EQ(context, input->type, output->type);
|
||||
|
||||
// Does not support String type due to its variable size. This limitation is
|
||||
// the same as TFLite.
|
||||
TF_LITE_ENSURE(context, input->type != kTfLiteString);
|
||||
|
||||
TF_LITE_ENSURE_STATUS(ValidateOutputTensor(context, input, shape, output));
|
||||
micro_context->DeallocateTempTfLiteTensor(input);
|
||||
micro_context->DeallocateTempTfLiteTensor(shape);
|
||||
micro_context->DeallocateTempTfLiteTensor(output);
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus BroadcastToEval(TfLiteContext* context, TfLiteNode* node) {
|
||||
const TfLiteEvalTensor* input =
|
||||
micro::GetEvalInput(context, node, kInputTensor);
|
||||
TfLiteEvalTensor* output = micro::GetEvalOutput(context, node, kOutputTensor);
|
||||
|
||||
// BroadcastTo op support upto 5 dims, different from 8 dims in TFLite.
|
||||
reference_ops::BroadcastTo<kMaxDims>(
|
||||
micro::GetTensorShape(input), input->data.raw,
|
||||
micro::GetTensorShape(output), output->data.raw, input->type);
|
||||
return kTfLiteOk;
|
||||
}
|
||||
} // namespace
|
||||
|
||||
TfLiteRegistration Register_BROADCAST_TO() {
|
||||
return {/*init=*/nullptr,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/BroadcastToPrepare,
|
||||
/*invoke=*/BroadcastToEval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
} // namespace tflite
|
||||
@@ -23,6 +23,7 @@ limitations under the License.
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/micro/memory_helpers.h"
|
||||
#include "tensorflow/lite/micro/micro_context.h"
|
||||
#include "tensorflow/lite/micro/micro_graph.h"
|
||||
#include "tensorflow/lite/schema/schema_generated.h"
|
||||
|
||||
@@ -50,16 +51,11 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TF_LITE_ENSURE(context, NumInputs(node) == 0);
|
||||
TF_LITE_ENSURE(context, NumOutputs(node) == 0);
|
||||
|
||||
// Casting to TfliteIntArray is required since we are re-using
|
||||
// GetExecutionPlan from TfLiteContext. On TFLM this method returns a
|
||||
// MicroGraph.
|
||||
// TODO(b/188226309): Design a cleaner way to get a graph from kernel context.
|
||||
MicroGraph* graph_info;
|
||||
context->GetExecutionPlan(context,
|
||||
reinterpret_cast<TfLiteIntArray**>(&graph_info));
|
||||
tflite::MicroContext* micro_context = tflite::GetMicroContext(context);
|
||||
MicroGraph& graph_info = micro_context->graph();
|
||||
|
||||
TF_LITE_ENSURE(context,
|
||||
op_data->init_subgraph_index < graph_info->NumSubgraphs());
|
||||
op_data->init_subgraph_index < graph_info.NumSubgraphs());
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
@@ -72,16 +68,11 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
// Casting to TfliteIntArray is required since we are re-using
|
||||
// GetExecutionPlan from TfLiteContext. On TFLM this method returns a
|
||||
// MicroGraph.
|
||||
// TODO(b/188226309): Design a cleaner way to get a graph from kernel context.
|
||||
MicroGraph* graph_info;
|
||||
context->GetExecutionPlan(context,
|
||||
reinterpret_cast<TfLiteIntArray**>(&graph_info));
|
||||
tflite::MicroContext* micro_context = tflite::GetMicroContext(context);
|
||||
MicroGraph& graph_info = micro_context->graph();
|
||||
|
||||
TF_LITE_ENSURE_OK(context,
|
||||
graph_info->InvokeSubgraph(op_data->init_subgraph_index));
|
||||
graph_info.InvokeSubgraph(op_data->init_subgraph_index));
|
||||
|
||||
op_data->has_run = true;
|
||||
|
||||
|
||||
@@ -28,11 +28,19 @@ constexpr int kOutputTensor = 0;
|
||||
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
|
||||
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
||||
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
||||
|
||||
MicroContext* micro_context = GetMicroContext(context);
|
||||
|
||||
TfLiteTensor* input =
|
||||
micro_context->AllocateTempInputTensor(node, kInputTensor);
|
||||
TF_LITE_ENSURE(context, input != nullptr);
|
||||
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
||||
TfLiteTensor* output =
|
||||
micro_context->AllocateTempOutputTensor(node, kOutputTensor);
|
||||
TF_LITE_ENSURE(context, output != nullptr);
|
||||
|
||||
micro_context->DeallocateTempTfLiteTensor(input);
|
||||
micro_context->DeallocateTempTfLiteTensor(output);
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
@@ -83,6 +91,10 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
case kTfLiteInt32:
|
||||
return copyToTensor(context, tflite::micro::GetTensorData<int32_t>(input),
|
||||
output, num_elements);
|
||||
case kTfLiteUInt32:
|
||||
return copyToTensor(context,
|
||||
tflite::micro::GetTensorData<uint32_t>(input), output,
|
||||
num_elements);
|
||||
case kTfLiteFloat32:
|
||||
return copyToTensor(context, tflite::micro::GetTensorData<float>(input),
|
||||
output, num_elements);
|
||||
|
||||
@@ -29,9 +29,13 @@ constexpr int kInputTensor = 0;
|
||||
constexpr int kOutputTensor = 0;
|
||||
|
||||
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
||||
MicroContext* micro_context = GetMicroContext(context);
|
||||
|
||||
TfLiteTensor* input =
|
||||
micro_context->AllocateTempInputTensor(node, kInputTensor);
|
||||
TF_LITE_ENSURE(context, input != nullptr);
|
||||
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
||||
TfLiteTensor* output =
|
||||
micro_context->AllocateTempOutputTensor(node, kOutputTensor);
|
||||
TF_LITE_ENSURE(context, output != nullptr);
|
||||
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
|
||||
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
||||
@@ -42,6 +46,8 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
for (int i = 0; i < output->dims->size; ++i) {
|
||||
TF_LITE_ENSURE_EQ(context, output->dims->data[i], input->dims->data[i]);
|
||||
}
|
||||
micro_context->DeallocateTempTfLiteTensor(input);
|
||||
micro_context->DeallocateTempTfLiteTensor(output);
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
|
||||
@@ -39,9 +39,13 @@ const int kCircularBufferCyclesMaxIndex = 0; // 'cycles_max'
|
||||
const TfLiteStatus kTfLiteAbort = static_cast<TfLiteStatus>(-9);
|
||||
|
||||
TfLiteStatus CircularBufferPrepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
const TfLiteTensor* input =
|
||||
GetInput(context, node, kCircularBufferInputTensor);
|
||||
TfLiteTensor* output = GetOutput(context, node, kCircularBufferOutputTensor);
|
||||
|
||||
MicroContext * micro_context = GetMicroContext(context);
|
||||
|
||||
TfLiteTensor* input =
|
||||
micro_context-> AllocateTempInputTensor(node, kCircularBufferInputTensor);
|
||||
TfLiteTensor* output =
|
||||
micro_context-> AllocateTempOutputTensor(node, kCircularBufferOutputTensor);
|
||||
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
OpDataCircularBuffer* op_data =
|
||||
@@ -85,6 +89,9 @@ TfLiteStatus CircularBufferPrepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
op_data->cycles_until_run = op_data->cycles_max;
|
||||
node->user_data = op_data;
|
||||
|
||||
micro_context->DeallocateTempTfLiteTensor(input);
|
||||
micro_context->DeallocateTempTfLiteTensor(output);
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
|
||||
@@ -540,9 +540,13 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
OpData* data = static_cast<OpData*>(node->user_data);
|
||||
|
||||
const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
|
||||
MicroContext* micro_context = GetMicroContext(context);
|
||||
|
||||
TfLiteTensor* input1 =
|
||||
micro_context->AllocateTempInputTensor(node, kInputTensor1);
|
||||
TF_LITE_ENSURE(context, input1 != nullptr);
|
||||
const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2);
|
||||
TfLiteTensor* input2 =
|
||||
micro_context->AllocateTempInputTensor(node, kInputTensor2);
|
||||
TF_LITE_ENSURE(context, input2 != nullptr);
|
||||
|
||||
if (input1->type == kTfLiteInt8) {
|
||||
@@ -570,6 +574,9 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
data->params.input2_shift = input2_shift;
|
||||
}
|
||||
|
||||
micro_context->DeallocateTempTfLiteTensor(input1);
|
||||
micro_context->DeallocateTempTfLiteTensor(input2);
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
|
||||
@@ -115,13 +115,19 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
const TfLiteConcatenationParams* params =
|
||||
reinterpret_cast<TfLiteConcatenationParams*>(node->builtin_data);
|
||||
|
||||
const TfLiteTensor* input_tensor = GetInput(context, node, 0);
|
||||
MicroContext* micro_context = GetMicroContext(context);
|
||||
|
||||
TfLiteTensor* input_tensor = micro_context->AllocateTempInputTensor(node, 0);
|
||||
TF_LITE_ENSURE(context, input_tensor != nullptr);
|
||||
TfLiteType input_type = input_tensor->type;
|
||||
const TfLiteTensor* output_tensor = GetOutput(context, node, kOutputTensor);
|
||||
TfLiteTensor* output_tensor =
|
||||
micro_context->AllocateTempOutputTensor(node, kOutputTensor);
|
||||
TF_LITE_ENSURE(context, output_tensor != nullptr);
|
||||
TfLiteType output_type = output_tensor->type;
|
||||
|
||||
micro_context->DeallocateTempTfLiteTensor(input_tensor);
|
||||
micro_context->DeallocateTempTfLiteTensor(output_tensor);
|
||||
|
||||
// Check activation and input type
|
||||
TF_LITE_ENSURE_EQ(context, params->activation, kTfLiteActNone);
|
||||
TF_LITE_ENSURE(context,
|
||||
@@ -138,7 +144,7 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
|
||||
// Shapes with dimensions >4 are not yet supported with static allocation.
|
||||
for (int i = 0; i < num_inputs; ++i) {
|
||||
const TfLiteTensor* input = GetInput(context, node, i);
|
||||
TfLiteTensor* input = micro_context->AllocateTempInputTensor(node, i);
|
||||
TF_LITE_ENSURE(context, input != nullptr);
|
||||
int num_dimensions = NumDimensions(input);
|
||||
|
||||
@@ -150,13 +156,15 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
num_dimensions);
|
||||
return kTfLiteError;
|
||||
}
|
||||
micro_context->DeallocateTempTfLiteTensor(input);
|
||||
}
|
||||
|
||||
// Calculate OpData.
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
OpData* data = static_cast<OpData*>(node->user_data);
|
||||
|
||||
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
||||
TfLiteTensor* output =
|
||||
micro_context->AllocateTempOutputTensor(node, kOutputTensor);
|
||||
TF_LITE_ENSURE(context, output != nullptr);
|
||||
|
||||
switch (output_type) { // Already know in/outtypes are same.
|
||||
@@ -183,10 +191,11 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
// Allocate persistent scale and zeropoint buffers.
|
||||
// Store input scale and zero point values in OpParams:
|
||||
for (int i = 0; i < node->inputs->size; ++i) {
|
||||
const TfLiteTensor* t = GetInput(context, node, i);
|
||||
TfLiteTensor* t = micro_context->AllocateTempInputTensor(node, i);
|
||||
TF_LITE_ENSURE(context, t != nullptr);
|
||||
input_scales[i] = t->params.scale;
|
||||
input_zero_points[i] = t->params.zero_point;
|
||||
micro_context->DeallocateTempTfLiteTensor(t);
|
||||
}
|
||||
|
||||
data->params.input_scale = input_scales;
|
||||
@@ -202,6 +211,8 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
return kTfLiteError;
|
||||
}
|
||||
|
||||
micro_context->DeallocateTempTfLiteTensor(output);
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
|
||||
/* Copyright 2022 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
@@ -79,7 +79,8 @@ TfLiteRegistration Register_CONV_2D();
|
||||
|
||||
#if defined(XTENSA)
|
||||
// Returns a TfLiteRegistration struct for kernel variant that only supports
|
||||
// int8 inputs and outputs.
|
||||
// int8 activations and int8 weights and always calls the reference
|
||||
// implementation.
|
||||
TfLiteRegistration Register_CONV_2D_INT8REF();
|
||||
#else
|
||||
inline TfLiteRegistration Register_CONV_2D_INT8REF() {
|
||||
@@ -87,6 +88,25 @@ inline TfLiteRegistration Register_CONV_2D_INT8REF() {
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(CMSIS_NN)
|
||||
// Returns a TfLiteRegistration struct for kernel variant that only supports
|
||||
// int8 activations and int8 weights and uses the latency optimized
|
||||
// implementations.
|
||||
TfLiteRegistration Register_CONV_2D_INT8();
|
||||
|
||||
// Returns a TfLiteRegistration struct for kernel variant that only supports
|
||||
// int16 activations and int8 weights and uses the latency optimized
|
||||
// implementations.
|
||||
TfLiteRegistration Register_CONV_2D_INT16();
|
||||
|
||||
#else
|
||||
inline TfLiteRegistration Register_CONV_2D_INT8() { return Register_CONV_2D(); }
|
||||
|
||||
inline TfLiteRegistration Register_CONV_2D_INT16() {
|
||||
return Register_CONV_2D();
|
||||
}
|
||||
#endif
|
||||
|
||||
} // namespace tflite
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_KERNELS_CONV_H_
|
||||
|
||||
@@ -93,13 +93,18 @@ TfLiteStatus CalculateOpDataConv(TfLiteContext* context, TfLiteNode* node,
|
||||
params.dilation_width_factor, height, width, filter_height, filter_width,
|
||||
padding, &out_height, &out_width);
|
||||
|
||||
const TfLiteTensor* input = GetInput(context, node, kConvInputTensor);
|
||||
MicroContext* micro_context = GetMicroContext(context);
|
||||
|
||||
TfLiteTensor* input =
|
||||
micro_context->AllocateTempInputTensor(node, kConvInputTensor);
|
||||
TF_LITE_ENSURE(context, input != nullptr);
|
||||
const TfLiteTensor* filter = GetInput(context, node, kConvWeightsTensor);
|
||||
TfLiteTensor* filter =
|
||||
micro_context->AllocateTempInputTensor(node, kConvWeightsTensor);
|
||||
TF_LITE_ENSURE(context, filter != nullptr);
|
||||
const TfLiteTensor* bias =
|
||||
GetOptionalInputTensor(context, node, kConvBiasTensor);
|
||||
TfLiteTensor* output = GetOutput(context, node, kConvOutputTensor);
|
||||
TfLiteTensor* bias =
|
||||
micro_context->AllocateTempInputTensor(node, kConvBiasTensor);
|
||||
TfLiteTensor* output =
|
||||
micro_context->AllocateTempOutputTensor(node, kConvOutputTensor);
|
||||
TF_LITE_ENSURE(context, output != nullptr);
|
||||
|
||||
// Note that quantized inference requires that all tensors have their
|
||||
@@ -119,6 +124,11 @@ TfLiteStatus CalculateOpDataConv(TfLiteContext* context, TfLiteNode* node,
|
||||
data->filter_zero_point = filter->params.zero_point;
|
||||
data->output_zero_point = output->params.zero_point;
|
||||
|
||||
micro_context->DeallocateTempTfLiteTensor(input);
|
||||
micro_context->DeallocateTempTfLiteTensor(filter);
|
||||
micro_context->DeallocateTempTfLiteTensor(output);
|
||||
micro_context->DeallocateTempTfLiteTensor(bias);
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
@@ -129,12 +139,16 @@ TfLiteStatus ConvPrepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
OpDataConv* data = static_cast<OpDataConv*>(node->user_data);
|
||||
const auto& params =
|
||||
*(static_cast<const TfLiteConvParams*>(node->builtin_data));
|
||||
MicroContext* micro_context = GetMicroContext(context);
|
||||
|
||||
TfLiteTensor* output = GetOutput(context, node, kConvOutputTensor);
|
||||
TfLiteTensor* output =
|
||||
micro_context->AllocateTempOutputTensor(node, kConvOutputTensor);
|
||||
TF_LITE_ENSURE(context, output != nullptr);
|
||||
const TfLiteTensor* input = GetInput(context, node, kConvInputTensor);
|
||||
TfLiteTensor* input =
|
||||
micro_context->AllocateTempInputTensor(node, kConvInputTensor);
|
||||
TF_LITE_ENSURE(context, input != nullptr);
|
||||
const TfLiteTensor* filter = GetInput(context, node, kConvWeightsTensor);
|
||||
TfLiteTensor* filter =
|
||||
micro_context->AllocateTempInputTensor(node, kConvWeightsTensor);
|
||||
TF_LITE_ENSURE(context, filter != nullptr);
|
||||
|
||||
const int input_width = input->dims->data[2];
|
||||
@@ -174,6 +188,10 @@ TfLiteStatus ConvPrepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
context, node, params, input_width, input_height, filter_width,
|
||||
filter_height, output_width, output_height, input->type, data));
|
||||
|
||||
micro_context->DeallocateTempTfLiteTensor(filter);
|
||||
micro_context->DeallocateTempTfLiteTensor(input);
|
||||
micro_context->DeallocateTempTfLiteTensor(output);
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
} // namespace tflite
|
||||
|
||||
@@ -47,8 +47,12 @@ TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node) {
|
||||
TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
|
||||
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
||||
|
||||
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
||||
const TfLiteTensor* axis = GetInput(context, node, kAxisTensor);
|
||||
MicroContext* micro_context = GetMicroContext(context);
|
||||
|
||||
TfLiteTensor* input =
|
||||
micro_context->AllocateTempInputTensor(node, kInputTensor);
|
||||
TfLiteTensor* axis =
|
||||
micro_context->AllocateTempInputTensor(node, kAxisTensor);
|
||||
|
||||
TF_LITE_ENSURE(context,
|
||||
input->type == kTfLiteFloat32 || input->type == kTfLiteInt8);
|
||||
@@ -58,7 +62,8 @@ TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node) {
|
||||
|
||||
TF_LITE_ENSURE(context, NumDimensions(input) >= 1);
|
||||
|
||||
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
||||
TfLiteTensor* output =
|
||||
micro_context->AllocateTempOutputTensor(node, kOutputTensor);
|
||||
|
||||
TF_LITE_ENSURE_EQ(context, input->type, output->type);
|
||||
TF_LITE_ENSURE(context, HaveSameShapes(input, output));
|
||||
@@ -91,6 +96,10 @@ TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node) {
|
||||
&data->output_activation_max));
|
||||
}
|
||||
|
||||
micro_context->DeallocateTempTfLiteTensor(input);
|
||||
micro_context->DeallocateTempTfLiteTensor(axis);
|
||||
micro_context->DeallocateTempTfLiteTensor(output);
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
|
||||
@@ -40,11 +40,14 @@ TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node) {
|
||||
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
|
||||
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
||||
|
||||
const TfLiteTensor* input;
|
||||
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input));
|
||||
TfLiteTensor* output;
|
||||
TF_LITE_ENSURE_OK(context,
|
||||
GetOutputSafe(context, node, kOutputTensor, &output));
|
||||
MicroContext* micro_context = GetMicroContext(context);
|
||||
|
||||
TfLiteTensor* input =
|
||||
micro_context->AllocateTempInputTensor(node, kInputTensor);
|
||||
TF_LITE_ENSURE(context, input != nullptr);
|
||||
TfLiteTensor* output =
|
||||
micro_context->AllocateTempOutputTensor(node, kOutputTensor);
|
||||
TF_LITE_ENSURE(context, output != nullptr);
|
||||
|
||||
TF_LITE_ENSURE_EQ(context, NumDimensions(input), 4);
|
||||
|
||||
@@ -83,6 +86,9 @@ TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node) {
|
||||
output->dims->data[kWidthRank] = output_width;
|
||||
output->dims->data[kDepthRank] = output_channels;
|
||||
|
||||
micro_context->DeallocateTempTfLiteTensor(input);
|
||||
micro_context->DeallocateTempTfLiteTensor(output);
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
|
||||
@@ -94,13 +94,18 @@ TfLiteStatus CalculateOpDataDepthwiseConv(
|
||||
params.dilation_width_factor, height, width, filter_height, filter_width,
|
||||
padding, &out_height, &out_width);
|
||||
|
||||
const TfLiteTensor* input = GetInput(context, node, kConvInputTensor);
|
||||
MicroContext* micro_context = GetMicroContext(context);
|
||||
|
||||
TfLiteTensor* input =
|
||||
micro_context->AllocateTempInputTensor(node, kConvInputTensor);
|
||||
TF_LITE_ENSURE(context, input != nullptr);
|
||||
const TfLiteTensor* filter = GetInput(context, node, kConvWeightsTensor);
|
||||
TfLiteTensor* filter =
|
||||
micro_context->AllocateTempInputTensor(node, kConvWeightsTensor);
|
||||
TF_LITE_ENSURE(context, filter != nullptr);
|
||||
const TfLiteTensor* bias =
|
||||
GetOptionalInputTensor(context, node, kConvBiasTensor);
|
||||
TfLiteTensor* output = GetOutput(context, node, kConvOutputTensor);
|
||||
TfLiteTensor* bias =
|
||||
micro_context->AllocateTempInputTensor(node, kConvBiasTensor);
|
||||
TfLiteTensor* output =
|
||||
micro_context->AllocateTempOutputTensor(node, kConvOutputTensor);
|
||||
TF_LITE_ENSURE(context, output != nullptr);
|
||||
|
||||
// Note that quantized inference requires that all tensors have their
|
||||
@@ -120,6 +125,11 @@ TfLiteStatus CalculateOpDataDepthwiseConv(
|
||||
data->filter_zero_point = filter->params.zero_point;
|
||||
data->output_zero_point = output->params.zero_point;
|
||||
|
||||
micro_context->DeallocateTempTfLiteTensor(input);
|
||||
micro_context->DeallocateTempTfLiteTensor(filter);
|
||||
micro_context->DeallocateTempTfLiteTensor(bias);
|
||||
micro_context->DeallocateTempTfLiteTensor(output);
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
@@ -130,14 +140,16 @@ TfLiteStatus DepthwiseConvPrepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
OpDataConv* data = static_cast<OpDataConv*>(node->user_data);
|
||||
const auto& params =
|
||||
*(static_cast<const TfLiteDepthwiseConvParams*>(node->builtin_data));
|
||||
MicroContext* micro_context = GetMicroContext(context);
|
||||
|
||||
TfLiteTensor* output = GetOutput(context, node, kDepthwiseConvOutputTensor);
|
||||
TfLiteTensor* output =
|
||||
micro_context->AllocateTempOutputTensor(node, kDepthwiseConvOutputTensor);
|
||||
TF_LITE_ENSURE(context, output != nullptr);
|
||||
const TfLiteTensor* input =
|
||||
GetInput(context, node, kDepthwiseConvInputTensor);
|
||||
TfLiteTensor* input =
|
||||
micro_context->AllocateTempInputTensor(node, kDepthwiseConvInputTensor);
|
||||
TF_LITE_ENSURE(context, input != nullptr);
|
||||
const TfLiteTensor* filter =
|
||||
GetInput(context, node, kDepthwiseConvWeightsTensor);
|
||||
TfLiteTensor* filter =
|
||||
micro_context->AllocateTempInputTensor(node, kDepthwiseConvWeightsTensor);
|
||||
TF_LITE_ENSURE(context, filter != nullptr);
|
||||
|
||||
const int input_width = input->dims->data[2];
|
||||
@@ -180,6 +192,10 @@ TfLiteStatus DepthwiseConvPrepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
context, node, params, input_width, input_height, filter_width,
|
||||
filter_height, output_width, output_height, input->type, data));
|
||||
|
||||
micro_context->DeallocateTempTfLiteTensor(output);
|
||||
micro_context->DeallocateTempTfLiteTensor(input);
|
||||
micro_context->DeallocateTempTfLiteTensor(filter);
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user