mirror of
https://github.com/jomjol/AI-on-the-edge-device.git
synced 2025-12-06 19:46:54 +03:00
Rolling 20220526
This commit is contained in:
@@ -197,33 +197,6 @@ int ClassFlowCNNGeneral::ZeigerEvalHybrid(float zahl, float zahl_vorgaenger, int
|
||||
return ((int) trunc(zahl) + 10) % 10;
|
||||
}
|
||||
|
||||
/*
|
||||
int ClassFlowCNNGeneral::ZeigerEvalHybrid_NEU(float zahl, float zahl_vorgaenger)
|
||||
{
|
||||
int ergebnis_nachkomma = ((int) floor(zahl * 10) + 10) % 10;
|
||||
int ergebnis_vorkomma = ((int) floor(zahl) + 10) % 10;
|
||||
int ergebnis, ergebnis_rating;
|
||||
|
||||
|
||||
if (zahl_vorgaenger < 0)
|
||||
return ergebnis_vorkomma % 10;
|
||||
|
||||
ergebnis_rating = ergebnis_nachkomma - zahl_vorgaenger;
|
||||
if (ergebnis_nachkomma >= 5)
|
||||
ergebnis_rating-=5;
|
||||
else
|
||||
ergebnis_rating+=5;
|
||||
ergebnis = (int) round(zahl);
|
||||
if (ergebnis_rating < 0)
|
||||
ergebnis-=1;
|
||||
if (ergebnis == -1)
|
||||
ergebnis+=10;
|
||||
|
||||
ergebnis = (ergebnis + 10) % 10;
|
||||
return ergebnis;
|
||||
|
||||
}
|
||||
*/
|
||||
|
||||
|
||||
int ClassFlowCNNGeneral::ZeigerEval(float zahl, int ziffer_vorgaenger)
|
||||
@@ -309,11 +282,12 @@ bool ClassFlowCNNGeneral::ReadParameter(FILE* pfile, string& aktparamgraph)
|
||||
{
|
||||
CNNGoodThreshold = std::stof(zerlegt[1]);
|
||||
}
|
||||
if ((toUpper(zerlegt[0]) == "MODELINPUTSIZE") && (zerlegt.size() > 2))
|
||||
/* if ((toUpper(zerlegt[0]) == "MODELINPUTSIZE") && (zerlegt.size() > 2))
|
||||
{
|
||||
this->modelxsize = std::stoi(zerlegt[1]);
|
||||
this->modelysize = std::stoi(zerlegt[2]);
|
||||
}
|
||||
*/
|
||||
if (zerlegt.size() >= 5)
|
||||
{
|
||||
general* _analog = GetGENERAL(zerlegt[0], true);
|
||||
@@ -334,11 +308,14 @@ bool ClassFlowCNNGeneral::ReadParameter(FILE* pfile, string& aktparamgraph)
|
||||
}
|
||||
}
|
||||
|
||||
if (!getNetworkParameter())
|
||||
return false;
|
||||
|
||||
for (int _ana = 0; _ana < GENERAL.size(); ++_ana)
|
||||
|
||||
for (int _ana = 0; _ana < GENERAL.size(); ++_ana)
|
||||
for (int i = 0; i < GENERAL[_ana]->ROI.size(); ++i)
|
||||
{
|
||||
GENERAL[_ana]->ROI[i]->image = new CImageBasis(modelxsize, modelysize, 3);
|
||||
GENERAL[_ana]->ROI[i]->image = new CImageBasis(modelxsize, modelysize, modelchannel);
|
||||
GENERAL[_ana]->ROI[i]->image_org = new CImageBasis(GENERAL[_ana]->ROI[i]->deltax, GENERAL[_ana]->ROI[i]->deltay, 3);
|
||||
}
|
||||
|
||||
@@ -499,13 +476,11 @@ void ClassFlowCNNGeneral::DrawROI(CImageBasis *_zw)
|
||||
}
|
||||
}
|
||||
|
||||
bool ClassFlowCNNGeneral::doNeuralNetwork(string time)
|
||||
bool ClassFlowCNNGeneral::getNetworkParameter()
|
||||
{
|
||||
if (disabled)
|
||||
return true;
|
||||
|
||||
string logPath = CreateLogFolder(time);
|
||||
|
||||
CTfLiteClass *tflite = new CTfLiteClass;
|
||||
string zwcnn = "/sdcard" + cnnmodelfile;
|
||||
zwcnn = FormatFileName(zwcnn);
|
||||
@@ -513,7 +488,6 @@ bool ClassFlowCNNGeneral::doNeuralNetwork(string time)
|
||||
if (!tflite->LoadModel(zwcnn)) {
|
||||
printf("Can't read model file /sdcard%s\n", cnnmodelfile.c_str());
|
||||
LogFile.WriteToFile("Cannot load model");
|
||||
|
||||
delete tflite;
|
||||
return false;
|
||||
}
|
||||
@@ -521,6 +495,11 @@ bool ClassFlowCNNGeneral::doNeuralNetwork(string time)
|
||||
|
||||
if (CNNType == AutoDetect)
|
||||
{
|
||||
tflite->GetInputDimension(false);
|
||||
modelxsize = tflite->ReadInputDimenstion(0);
|
||||
modelysize = tflite->ReadInputDimenstion(1);
|
||||
modelchannel = tflite->ReadInputDimenstion(2);
|
||||
|
||||
int _anzoutputdimensions = tflite->GetAnzOutPut();
|
||||
switch (_anzoutputdimensions)
|
||||
{
|
||||
@@ -549,6 +528,30 @@ bool ClassFlowCNNGeneral::doNeuralNetwork(string time)
|
||||
}
|
||||
}
|
||||
|
||||
delete tflite;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool ClassFlowCNNGeneral::doNeuralNetwork(string time)
|
||||
{
|
||||
if (disabled)
|
||||
return true;
|
||||
|
||||
string logPath = CreateLogFolder(time);
|
||||
|
||||
CTfLiteClass *tflite = new CTfLiteClass;
|
||||
string zwcnn = "/sdcard" + cnnmodelfile;
|
||||
zwcnn = FormatFileName(zwcnn);
|
||||
printf(zwcnn.c_str());printf("\n");
|
||||
if (!tflite->LoadModel(zwcnn)) {
|
||||
printf("Can't read model file /sdcard%s\n", cnnmodelfile.c_str());
|
||||
LogFile.WriteToFile("Cannot load model");
|
||||
|
||||
delete tflite;
|
||||
return false;
|
||||
}
|
||||
tflite->MakeAllocate();
|
||||
|
||||
for (int _ana = 0; _ana < GENERAL.size(); ++_ana)
|
||||
{
|
||||
for (int i = 0; i < GENERAL[_ana]->ROI.size(); ++i)
|
||||
@@ -581,14 +584,15 @@ bool ClassFlowCNNGeneral::doNeuralNetwork(string time)
|
||||
|
||||
if (isLogImage)
|
||||
{
|
||||
string _imagename = GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name;
|
||||
if (isLogImageSelect)
|
||||
{
|
||||
if (LogImageSelect.find(GENERAL[_ana]->ROI[i]->name) != std::string::npos)
|
||||
LogImage(logPath, GENERAL[_ana]->ROI[i]->name, NULL, &GENERAL[_ana]->ROI[i]->result_klasse, time, GENERAL[_ana]->ROI[i]->image_org);
|
||||
LogImage(logPath, _imagename, NULL, &GENERAL[_ana]->ROI[i]->result_klasse, time, GENERAL[_ana]->ROI[i]->image_org);
|
||||
}
|
||||
else
|
||||
{
|
||||
LogImage(logPath, GENERAL[_ana]->ROI[i]->name, NULL, &GENERAL[_ana]->ROI[i]->result_klasse, time, GENERAL[_ana]->ROI[i]->image_org);
|
||||
LogImage(logPath, _imagename, NULL, &GENERAL[_ana]->ROI[i]->result_klasse, time, GENERAL[_ana]->ROI[i]->image_org);
|
||||
}
|
||||
}
|
||||
} break;
|
||||
@@ -617,7 +621,18 @@ bool ClassFlowCNNGeneral::doNeuralNetwork(string time)
|
||||
if (debugdetailgeneral) LogFile.WriteToFile(_zwres);
|
||||
|
||||
if (isLogImage)
|
||||
LogImage(logPath, GENERAL[_ana]->ROI[i]->name, &GENERAL[_ana]->ROI[i]->result_float, NULL, time, GENERAL[_ana]->ROI[i]->image_org);
|
||||
{
|
||||
string _imagename = GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name;
|
||||
if (isLogImageSelect)
|
||||
{
|
||||
if (LogImageSelect.find(GENERAL[_ana]->ROI[i]->name) != std::string::npos)
|
||||
LogImage(logPath, _imagename, NULL, &GENERAL[_ana]->ROI[i]->result_klasse, time, GENERAL[_ana]->ROI[i]->image_org);
|
||||
}
|
||||
else
|
||||
{
|
||||
LogImage(logPath, _imagename, NULL, &GENERAL[_ana]->ROI[i]->result_klasse, time, GENERAL[_ana]->ROI[i]->image_org);
|
||||
}
|
||||
}
|
||||
} break;
|
||||
case DigitalHyprid10:
|
||||
{
|
||||
@@ -641,7 +656,18 @@ bool ClassFlowCNNGeneral::doNeuralNetwork(string time)
|
||||
if (debugdetailgeneral) LogFile.WriteToFile(_zwres);
|
||||
|
||||
if (isLogImage)
|
||||
LogImage(logPath, GENERAL[_ana]->ROI[i]->name, &GENERAL[_ana]->ROI[i]->result_float, NULL, time, GENERAL[_ana]->ROI[i]->image_org);
|
||||
{
|
||||
string _imagename = GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name;
|
||||
if (isLogImageSelect)
|
||||
{
|
||||
if (LogImageSelect.find(GENERAL[_ana]->ROI[i]->name) != std::string::npos)
|
||||
LogImage(logPath, _imagename, NULL, &GENERAL[_ana]->ROI[i]->result_klasse, time, GENERAL[_ana]->ROI[i]->image_org);
|
||||
}
|
||||
else
|
||||
{
|
||||
LogImage(logPath, _imagename, NULL, &GENERAL[_ana]->ROI[i]->result_klasse, time, GENERAL[_ana]->ROI[i]->image_org);
|
||||
}
|
||||
}
|
||||
} break;
|
||||
|
||||
case DoubleHyprid10:
|
||||
@@ -649,6 +675,7 @@ bool ClassFlowCNNGeneral::doNeuralNetwork(string time)
|
||||
int _num, _numplus, _numminus;
|
||||
float _val, _valplus, _valminus;
|
||||
float _fit;
|
||||
float _result_save_file;
|
||||
|
||||
tflite->LoadInputImageBasis(GENERAL[_ana]->ROI[i]->image);
|
||||
tflite->Invoke();
|
||||
@@ -680,10 +707,13 @@ bool ClassFlowCNNGeneral::doNeuralNetwork(string time)
|
||||
if (result < 0)
|
||||
result = result + 10;
|
||||
|
||||
_result_save_file = result;
|
||||
|
||||
if (_fit < CNNGoodThreshold)
|
||||
{
|
||||
GENERAL[_ana]->ROI[i]->isReject = true;
|
||||
result = -1;
|
||||
_result_save_file+= 100; // Für den Fall, dass fit nicht ausreichend, soll trotzdem das Ergebnis mit "-10x.y" abgespeichert werden.
|
||||
string zw = "Value Rejected due to Threshold (Fit: " + to_string(_fit) + "Threshold: " + to_string(CNNGoodThreshold);
|
||||
printf("Value Rejected due to Threshold (Fit: %f, Threshold: %f\n", _fit, CNNGoodThreshold);
|
||||
LogFile.WriteToFile(zw);
|
||||
@@ -693,9 +723,23 @@ bool ClassFlowCNNGeneral::doNeuralNetwork(string time)
|
||||
GENERAL[_ana]->ROI[i]->isReject = false;
|
||||
}
|
||||
|
||||
|
||||
GENERAL[_ana]->ROI[i]->result_float = result;
|
||||
printf("Result General(Analog)%i: %f\n", i, GENERAL[_ana]->ROI[i]->result_float);
|
||||
|
||||
if (isLogImage)
|
||||
{
|
||||
string _imagename = GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name;
|
||||
if (isLogImageSelect)
|
||||
{
|
||||
if (LogImageSelect.find(GENERAL[_ana]->ROI[i]->name) != std::string::npos)
|
||||
LogImage(logPath, _imagename, &_result_save_file, NULL, time, GENERAL[_ana]->ROI[i]->image_org);
|
||||
}
|
||||
else
|
||||
{
|
||||
LogImage(logPath, _imagename, &_result_save_file, NULL, time, GENERAL[_ana]->ROI[i]->image_org);
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
|
||||
Reference in New Issue
Block a user