diff --git a/docs/Correction Algorithm.md b/docs/Correction Algorithm.md index b8d1059..5cc3a3e 100644 --- a/docs/Correction Algorithm.md +++ b/docs/Correction Algorithm.md @@ -57,11 +57,11 @@ Here the maximum change from one to the next reading can be limited. If a false #### Flow Chart -[[/images/correct_algo_1.jpg]] +![](img/correct_algo_1.jpg) -[[/images/correct_algo_2.jpg]] +![](img/correct_algo_2.jpg) -[[/images/correct_algo_3.jpg]] +![](img/correct_algo_3.jpg) @@ -71,4 +71,4 @@ Here the maximum change from one to the next reading can be limited. If a false The check digit increase consistency algorithm is functional for the digits only. Due to the fact, that the rotation might be a little bit earlier or later compared to the zero crossing of the digit before, errors during the reading before and after a zero crossing can be wrong. Therefore a simple algorithm can be applied, checking the consistency of zero crossing and changes in the following digit. This is applied to one after the other digit, starting with the lowest priority digits. -[[/images/correct_algo_zero_crossing.jpg]] \ No newline at end of file +![](img/correct_algo_zero_crossing.jpg) \ No newline at end of file diff --git a/docs/Installation.md b/docs/Installation.md index ddc36fb..88862d3 100644 --- a/docs/Installation.md +++ b/docs/Installation.md @@ -46,8 +46,7 @@ Beside the 5V power supply, only for the first flashing a connection to the USB- A example for wiring can be found here: -[[/images/progammer_manual.jpg]] - +![](img/progammer_manual.jpg) It is also possible to use external LEDs for the illumination instead of the internal flash LED. This is described here: [[External-LED]] diff --git a/docs/Learn-models-with-your-own-images.md b/docs/Learn-models-with-your-own-images.md index 9f34f52..68fed3c 100644 --- a/docs/Learn-models-with-your-own-images.md +++ b/docs/Learn-models-with-your-own-images.md @@ -8,7 +8,7 @@ The neural network configuration is stored in the TensorFlow Lite format as `fil In order to incorporate new digits a training set of images is required. The training images needs to be collected in the final setup with the help of the `Digits` or `Analog` log settings (not to be confused with the `Data` or `Debug` log). Enable the logging of the images on the configuration page or in the config file `/config/config.ini`: -[[/images/enable_log_image.jpg]] +![](img/enable_log_image.jpg) Now wait, until you have an image of each digit of every type on the SD card. Ideally remove the SD card from the camera and search for two to three images of each digit (**not more! :-)**). The format can be jpg. diff --git a/docs/Neural-Network-Types.md b/docs/Neural-Network-Types.md index eaa4218..496bb96 100644 --- a/docs/Neural-Network-Types.md +++ b/docs/Neural-Network-Types.md @@ -44,8 +44,8 @@ _______________________________ | | Classification
11 classes
0, 1, ... 9 + "N" | Classification
100 classes
0.0, 0.1, ... 9.9 | Continuous
Interval
[0, 10[ | | ---------------------------------------------------- | ----------------------------------------------------- | ------------------------------------------------------ | ------------------------------------- | -| **Digits**
[[/images/0_arbitrary.jpg]] | **dig-class11**_XXX.tflite | **dig-class100**_XXX.tflite | **dig-cont**_XXX.tflite | -| **Analog Pointers**
[[/images/ana-examp.jpg]] | | **ana-class100**_XXX.tflite | **ana-cont**_XXX.tflite | +| **Digits**
![](img/0_arbitrary.jpg) | **dig-class11**_XXX.tflite | **dig-class100**_XXX.tflite | **dig-cont**_XXX.tflite | +| **Analog Pointers**
![](img/ana-examp.jpg) | | **ana-class100**_XXX.tflite | **ana-cont**_XXX.tflite | XXX contains the versioning and a parameter for different sizes with the following naming: @@ -81,8 +81,8 @@ There are two types of network structure, currently both are supported. The "cla | | | | | | ----------------------------------- | ----------------------------------- | ----------------------------------- | ----------------------------------- | -| [[/images/ana-cont/examp-ana1.jpg]] | [[/images/ana-cont/examp-ana2.jpg]] | [[/images/ana-cont/examp-ana3.jpg]] | [[/images/ana-cont/examp-ana4.jpg]] | -| [[/images/ana-cont/examp-ana5.jpg]] | [[/images/ana-cont/examp-ana6.jpg]] | [[/images/ana-cont/examp-ana7.jpg]] | | +| ![](img/ana-cont/examp-ana1.jpg) | ![](img/ana-cont/examp-ana2.jpg) | ![](img/ana-cont/examp-ana3.jpg) | ![](img/ana-cont/examp-ana4.jpg) | +| ![](img/ana-cont/examp-ana5.jpg) | ![](img/ana-cont/examp-ana6.jpg) | ![](img/ana-cont/examp-ana7.jpg) | | ##### Training data needs @@ -117,8 +117,8 @@ The digit type is a classical classification network, with 11 classes representi | | | | | | | | | -------------------------- | -------------------------- | -------------------------- | -------------------------- | -------------------------- | -------------------------- | -------------------------- | -| [[/images/dig-class11/examp-dig1.jpg]] | [[/images/dig-class11/examp-dig2.jpg]] | [[/images/dig-class11/examp-dig3.jpg]] | [[/images/dig-class11/examp-dig4.jpg]] | [[/images/dig-class11/examp-dig13.jpg]] | [[/images/dig-class11/examp-dig12.jpg]] | [[/images/dig-class11/examp-dig9.jpg]] | -| [[/images/dig-class11/examp-dig5.jpg]] | [[/images/dig-class11/examp-dig6.jpg]] | [[/images/dig-class11/examp-dig7.jpg]] | [[/images/dig-class11/examp-dig8.jpg]] | [[/images/dig-class11/examp-dig11.jpg]] | [[/images/dig-class11/examp-dig10.jpg]] | | +| ![](img/dig-class11/examp-dig1.jpg) | ![](img/dig-class11/examp-dig2.jpg) | ![](img/dig-class11/examp-dig3.jpg) | ![](img/dig-class11/examp-dig4.jpg) | ![](img/dig-class11/examp-dig13.jpg) | ![](img/dig-class11/examp-dig12.jpg) | ![](img/dig-class11/examp-dig9.jpg) | +| ![](img/dig-class11/examp-dig5.jpg) | ![](img/dig-class11/examp-dig6.jpg) | ![](img/dig-class11/examp-dig7.jpg) | ![](img/dig-class11/examp-dig8.jpg) | ![](img/dig-class11/examp-dig11.jpg) | ![](img/dig-class11/examp-dig10.jpg) | | | | | | | | | | @@ -152,7 +152,7 @@ This type of network tries to overcome the problem, that there are intermediate | | | | | | ---------------------------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ---- | -| [[images/dig-cont/dig-cont_1.jpg]] | [[images/dig-cont/dig-cont_2a.jpg]] [[images/dig-cont/dig-cont_2b.jpg]] | [[images/dig-cont/dig-cont_3a.jpg]] [[images/dig-cont/dig-cont_3b.jpg]] [[images/dig-cont/dig-cont_3c.jpg]] | | +| [[images/dig-cont/dig-cont_1.jpg) | [[images/dig-cont/dig-cont_2a.jpg) [[images/dig-cont/dig-cont_2b.jpg) | [[images/dig-cont/dig-cont_3a.jpg) [[images/dig-cont/dig-cont_3b.jpg) [[images/dig-cont/dig-cont_3c.jpg) | | | | | | | diff --git a/docs/ROI-Configuration.md b/docs/ROI-Configuration.md index 8a70368..eda53d7 100644 --- a/docs/ROI-Configuration.md +++ b/docs/ROI-Configuration.md @@ -26,7 +26,7 @@ Ensure an **exact horizontal alignment** of the number via the alignment / refer | :heavy_check_mark: Okay | :x: Not Okay | | ------------------------------ | ---------------------------------- | -| [[/images/alignment_okay.jpg]] | [[/images/alignment_not_okay.jpg]] | +| ![](img/alignment_okay.jpg) | ![](img/alignment_not_okay.jpg) | ### 3. Correct Size for ROI Choose the right size of the ROI: @@ -42,9 +42,9 @@ For this model, there should be a border of 20% of the image size around the num | | Example 1 | Example 2 | | ------------ | --------------------------------- | --------------------------------- | -| :heavy_check_mark: **Okay** | [[/images/bw_okay.jpg]] | [[/images/wb_okay.jpg]] | -| :x: **Not** Okay | [[/images/bw_not_okay_small.jpg]] | [[/images/wb_not_okay_small.jpg]] | -| :x: **Not** Okay | [[/images/bw_not_okay_big.jpg]] | [[/images/wb_not_okay_big.jpg]] | +| :heavy_check_mark: **Okay** | ![](img/bw_okay.jpg) | ![](img/wb_okay.jpg) | +| :x: **Not** Okay | ![](img/bw_not_okay_small.jpg) | ![](img/wb_not_okay_small.jpg) | +| :x: **Not** Okay | ![](img/bw_not_okay_big.jpg) | ![](img/wb_not_okay_big.jpg) |